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Abstract

In a functional encryption system, an authority holding a master secret key can generate a

key that enables the computation of some function on the encrypted data. Then, using the

secret key the decryptor can compute the function from the ciphertext. Important exam-

ples of functional encryption are Identity-Based Encryption, Attribute-Based Encryption,

Inner Product Encryption, Fuzzy Identity-Based Encryption, Hidden Vector Encryption,

Certificate-Based Encryption, Public Key Encryption with Keyword Search and Identity-

Based Encryption with Wildcards. Predicate encryption schemes are a specialization of

functional encryption schemes, in which the function does not give information on the

plaintext, but it determines whether the decryption should or should not work properly.

Lattice-Based Cryptography is an important alternative to the main cryptographic

systems used today, since they are conjectured to be secure against quantum algorithms.

Shor’s algorithm is capable of solving the Integer Factorization Problem and the Discrete

Logarithm Problem in polynomial time on a quantum computer, breaking the most used

and important cryptosystems such as RSA, Diffie-Hellman and Elliptic Curve Cryptog-

raphy.

In this work we focus on Lattice-Based Predicate Encryption. We study and describe

the main lattice-based schemes found in the literature, extending them to hierarchical

versions and showing how the use of ideal lattice affects their security proofs. For each

scheme, a formal proof of security is detailed, analyses of complexity and variable sizes

are givem, as well as the choice of parameters that ensures correct decryption.

ix



x



Resumo

Em um sistema de criptografia funcional, uma autoridade de posse de uma chave mestra

pode gerar uma chave secreta que permite o cálculo de uma função sobre a mensagem

nos dados criptografados. Assim, é posśıvel calcular tal função no texto cifrado usando

somente a chave secreta. Exemplos importantes de criptografia funcional são Criptografia

Baseada em Identidades, Criptografia Baseada em Atributos, Criptografia com Produto

Escalar, Criptografia Difusa Baseada em Identidades, Criptografia de Vector Oculto, Crip-

tografia Baseada em Certificados, Criptografia com Pesquisa de Palavra-Chave e Crip-

tografia Baseada em Identidades com Curinga. Esquemas de criptografia com predicados

são uma especialização de esquemas de criptografia funcionais, em que a função utilizada

não fornece informações sobre a mensagem, mas determina se a decriptação deve ou não

funcionar corretamente.

Criptografia baseada em reticulados é uma importante alternativa para os principais

sistemas criptográficos utilizados atualmente, uma vez que elas são supostamente seguras

contra algoritmos quânticos. O Algoritmo de Shor é capaz de resolver o Problema da

Fatoração Inteira e o Problema do Logaritmo Discreto em tempo polinomial em um

computador quântico, quebrando os sistemas criptográficos mais usados e importantes

atualmente, como o RSA, o Diffie-Hellman e a Criptografia de Curvas Eĺıpticas.

Neste trabalho nos concentramos em esquemas de criptografia com predicados basea-

dos em reticulados. Nós estudamos e descrevemos os principais sistemas baseados em

reticulados encontrados na literatura, estendendo-os a versões hierárquicas e mostrando

como o uso de um reticulado com estrutura ideal afeta a prova de segurança. Para cada

esquema, uma prova formal de segurança é detalhada, as análises de complexidade e do

tamanho das variáveis são mostradas e a escolha dos parâmetros garantindo o funciona-

mento correto da decriptação é dada.
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“Le principal fléau de l’humanité n’est

pas l’ignorance, mais le refus de

savoir.”

Simone de Beauvoir
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Chapter 1

Introduction

1.1 Motivation and Main Goals

Public-key cryptographic schemes are based on one-way functions, i.e., functions that are

easy to compute, but hard to invert. For encryption and signing, it is also necessary that

such functions possess a trapdoor, i.e., a shortcut that is kept secret, and that makes

it possible for the secret holder to easily invert the function. Such functions include

large integer factorization, taking discrete logarithms in certain cyclic groups, or finding

shortest vectors in certain classes of lattices.

The first public-key cryptographic scheme was proposed by Diffie and Hellman [25] in

1976 and it was based on the Discrete Logarithm Problem. Two years later, Rivest, Shamir

and Adleman published a public-key cryptographic scheme for encryption and signing,

known as RSA [65], based on the perceived hardness of the Integer Factorization Problem.

Both these problems are hard in general although there are no mathematical proofs of

this fact. However, quantum computers are capable of solving both these problems in

polynomial time using Shor’s algorithm [71]. Moreover, Elliptic Curve Cryptography

(ECC) is also known to be vulnerable to a modified Shor’s algorithm for solving the

discrete logarithm for any choice of parameters. Thus, the construction of quantum

computers will undermine the security of the main cryptographic systems used today

making the study of alternatives essential. Moreover, it is conjectured that there is no

quantum algorithms for solving NP-hard problems based on lattice theory and codes in

polynomial time. Therefore, systems such as McEliece [48] (based on Goppa codes) and

NTRU [37] (based on lattices), along with other systems based on quadratic equations

over finite fields and cryptographic hash functions, have been actively studied in the area

that has been called post-quantum cryptography [12].

Functional encryption provides a system administrator with a fine-grained control over

the decryption capabilities of its users. In particular, each secret key in the system will

1
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allow its holder to compute a particular function of the plaintext. Such ability makes

functional encryption schemes appealing in many emerging applications such as cloud

services where the notion of public-key encryption reveals its inadequacy. More specif-

ically, in a functional encryption system, an authority holding a master secret key can

generate a key that enables the computation of some function on the encrypted data.

Then, using the secret key the decryptor can compute the function from the ciphertext.

Important examples of functional encryption are Identity-Based Encryption, Attribute-

Based Encryption, Inner Product Encryption, Fuzzy Identity-Based Encryption, Hidden

Vector Encryption, Certificate-Based Encryption, Public Key Encryption with Keyword

Search and Identity-Based Encryption with Wildcards. Predicate encryption schemes are

a specialization of functional encryption schemes, in which the function does not give

information on the plaintext, but it determines whether the decryption should or should

not work properly.

More to our interests, there are few known lattice-based predicate encryption schemes,

all of which are less efficient than classical factoring or discrete log-based schemes. How-

ever, since they have important, and sometimes unique, specific applications, improving

them should enhance their deployability. It is important to note that post-quantum sys-

tems do not depend on the existence of quantum computers, and can be implemented in

the classical model. This fact has a crucial role in maintaining a classical system resistant

to quantum machines, since the coexistence of the two paradigms is inevitable once the

quantum computer becomes feasible in practice (no new technology replaces the current

paradigm immediately).

1.2 Notation

In this section we present the basic notation used in our work.

- We use capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. v) to

denote vectors and simple lowercase letters to denote numbers (e.g. x).

- The notation A> denotes the transpose of the matrix A, i.e., the rows of matrix A

are the columns of matrix A>.

- If A1 is an n ×m matrix and A2 is an n ×m′ matrix, then we let [A1|A2] denote

the n × (m + m′) matrix formed by concatenating A1 and A2. If v1 is a m-length

vector and v2 is a m′-length vector, then we let
[
v1
v2

]
denote the (m + m′)-length

vector formed by concatenating v1 and v2.

- The notation [c, d], for c < d denotes the set of positive integers {c, c+1, . . . , d−1, d}.
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- The notation dcc denotes rounding c to the nearest integer.

- An n-degree polynomial f(x) = a0 + a1x
1 + . . . anx

n can be represented by an

(n + 1)-length vector v, in which each position is a coefficient of f(x), i.e., v =

(a0, a1, . . . , an).

- The notation In denotes the identity matrix n× n, i.e., a square matrix with ones

on the main diagonal and zeros elsewhere. The notation O denotes the null matrix,

i.e., a matrix with all its elements being zero.

- For the set S and the operation ?, the notation (S, ?) denotes an abelian group,

i.e., the operation ? on S that is associative, commutative, closed, has an identity

element and every element has an inverse.

- Although most cryptography books and papers use the modular congruence notation

a ≡ b (mod q) we will use the notation that is more common to the lattice-based

cryptography field: a = b mod q.

- If S is a set and s ∈ S, then s
$← S denotes a random sample s chosen from set S.

- The big O notation f(x) = O(g(x)) denotes that:

∃k > 0,∃n0,∀n > n0 : |f(n)| ≤ |g(n) · k|.

The soft-O notation f(x) = Õ(g(x)) denotes f(x) = O(g(x) logk g(x)), for some k.

The small omega notation f(x) = ω(g(x)) denotes that:

∀k > 0,∃n0,∀n > n0 : |f(n)| ≥ k · |g(n)|.

- The notation ‖v‖ denotes the Euclidean Norm of vector v, i.e., ‖v‖ =
√
v2

1 + . . .+ v2
n.

- The notation ‖v −w‖ denotes the Euclidean Distance between the vectors v and

w.

- The notation 〈v,w〉 denotes the inner product of two vectors, i.e., 〈v,w〉 = v1w1 +

v2w2 + . . .+ vnwn.

- We say that a function f(n) is polynomial if f(x) = O(nc) for some c > 0, and we

use poly(n) to denote a polynomial function of n.

- We say that a function f(n) is negligible if f(x) = O(n−c) for all c > 0, and we

use negl(n) to denote a negligible function of n. We say an event occurs with

overwhelming probability if its probability is 1− negl(n).
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- The notation Pr[X = a] denotes the probability of an event a in distribution X

and the notation ∆(X, Y ) = 1
2

∑
a |Pr[X = a] − Pr[Y = a]| denotes the statistical

difference between two distributions. We say two distributions are statistically close

if ∆(X, Y ) is negligible.

- The notation ⊥, when used as a returned value for an algorithm means that the

vale is empty, i.e., that no answer is returned in that case from this algorithm.

- For two rings x̂ = (x1, · · · ,xk) and ŷ = (y1, · · · ,yk), the notation x̂ ⊗ ŷ denotes

the multiplication of the two rings, given by the polynomial
∑
xiyi.

- For a ring r̂ = (r1, · · · , rk) and a polynomial v, the notation r̂ · v denotes the

multiplication of a polynomial and a ring, given by the ring (v · r1, · · · ,v · rk).

1.3 Our Contributions

In this work we focus on Lattice-Based Predicate Encryption, describing and extending

several types of schemes. We show several schemes along with their formal security proofs,

using notions and standard techniques found in the literature. We highlight the following

contributions:

• a hierarchical version of a known Inner Product Encryption (IPE) scheme, described

in Section 5.2 and in a paper published on LatinCrypt 2012 [1];

• a hierarchical version of a known Hidden Vector Encryption (HVE) scheme, de-

scribed in Section 6.2 and in a paper published on SBSeg 2014 [53];

• a hierarchical version of a known Fuzzy Identity-Based Encryption (FBE) scheme,

described in Section 7.2;

• an ideal version of a known Identity-Based Encryption (IBE) scheme and its hierar-

chical version, described in Sections 8.1 and 8.2 and in a technical report published

at IC/UNICAMP [54];

• an analysis of how the ideal and hierarchical features affect each scheme’s security

proof, complexity and key size, in Chapter 9.

1.4 Outline

Chapter 2 gives an overview of Lattice Theory and some lattice-based cryptosystems.

Chapter 3 examines the literature for related work on Predicate Encryption and details
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some of the main known schemes. Chapter 4 contains the description of a lattice-based

IBE scheme and its hierachical version. Chapter 5 presents the description of a lattice-

based IPE scheme and its hierachical version. Chapter 6 consists of the description of

a lattice-based HVE scheme and its hierachical version. Chapter 7 gives the description

of a lattice-based FBE scheme and its hierachical version. Chapter 8 uses the schemes

described in Chapter 4 to construct an ideal lattice-based scheme of the general and

hierachical version of the IBE scheme. Chapter 9 gives a detailed analysis of all schemes

defined in this work, comparing their complexity and key size and detailing how the main

features of each scheme affect their security proof. Chapter 10 draws the conclusions of

our work and gives a perspective for future research.



6



Chapter 2

Lattice-Based Cryptography

In this chapter we give basic definitions on lattices and their use in cryptographic schemes.

In Section 2.1 we give basic concepts on lattices. In Section 2.2 we define Gaussian distri-

butions over lattices and how to use them to generate trapdoor functions. In Section 2.3

we describe the Learning With Errors Problem and its relation to the Hard Lattice Prob-

lems. Finally, in Sections 2.4 and 2.5 two important cryptographic schemes based on

lattices are described, GGH and NTRU.

2.1 Lattices

A lattice Λ is a set of points in Rn generated by integral linear combinations of vectors

from a basis B = [b1|b2| · · · |bm], with n,m ∈ Z, where the bi are linearly independent

vectors. Therefore,

Λ(B) = {Bx : x ∈ Zm}.

The vector space generated by B has a similar definition:

span(B) = {Bx : x ∈ Rm}.

If each bi ∈ Zn, then Λ(B) is an integer lattice.

For a basis B ∈ Rn×m, the value n is called the dimension of the lattice and the value

m is called the rank of the lattice. If n = m, then Λ is called a full rank lattice.

A lattice can have several bases; for two bases B and B′, Λ(B) = Λ(B′) if and only if

B′ = BU , where U is a unimodular matrix, i.e., a square matrix with det(U) = ±1.

Let B be a lattice basis; G = B>B is called the Gram matrix and the lattice determi-

nant is given by the square root of the determinant of G.

7
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The following operations can be performed on a lattice basis, resulting in a new basis

for the same lattice:

1. swap two columns: bi ↔ bj

2. multiply a column by −1: bi ← −bi

3. multiply a column by an integer α and add it to another column: bj ← bj + αbi
(i 6= j)

Figure 2.1 shows some points of a 2-dimensional lattice for the following bases:

B =

(
1 1

2 −1

)
B′ =

(
2 3

1 3

)

Figure 2.1: Some points of the lattice defined by basis B and B′.

A matrix B is in Hermite Normal Form (HNF) if B has the form B = [H|O], where

H is a non-negative lower-triangular matrix (i.e., hij = 0 for i < j and hij ≥ 0 for i ≥ j)

and the maximum of each row is unique and located on the main diagonal.

A lattice is modular or q-ary if it is invariant under shifts by some fixed modulus q ∈ Z
in each of the coordinates:

Λ⊥q (B) = {e ∈ Zm : B · e = 0 mod q}
Λuq (B) = {e ∈ Zm : B · e = u mod q}
Λq(B) = {e ∈ Zm : ∃ s ∈ Zmq with B> · s = e mod q}.
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The lattice Λuq (B) is a coset of Λ⊥q (B); namely, Λuq (B) = Λ⊥q (B) + t for any t such

that B · t = u mod q.

The length of a lattice basis B is given by the maximum length of all vectors in the

basis:

‖B‖ = max ‖b‖, (b ∈ B).

The successive minima of a lattice are defined as: for i ∈ [1,m], λi(Λ) is the radius

of the smaller sphere with its center on the origin that contains i linearly independent

vectors in Λ. Note that λ1(Λ) gives the length of the smallest vector in Λ.

2.1.1 Basis Reduction

As already stated, a lattice can have several bases, and it may be important to find a

basis with short orthogonal vectors. A short basis allows some lattice information, such

as the successive minima, to be found easily. All reduction algorithms known so far have

a running time at least exponential in the dimension of the lattice for the optimal or exact

solution or have a polynomial running time for an approximate solution. A short basis

can be used as a trapdoor in a cryptographic scheme (see Section 2.2 for more details).

The Gram-Schmidt orthogonalization is a process for obtaining an orthogonal basis B̃

of a vector space given by basis B. It is defined by the following iterative formula:

b̃i = bi −
i−1∑
j=1

〈b̃j, bi〉
〈b̃j, b̃j〉

b̃j, for i ∈ [2,m].

Although this process always returns an orthogonal basis for a vector space, this is

not true for lattices. Therefore, the lattice given by Λ(B̃) is not always the same as given

by Λ(B), although span(B) = span(B̃).

The Gram-Schmidt orthogonalization is an important step of the Lenstra-Lenstra-

Lovász [43] reduction algorithm, or simply LLL. The LLL algorithm is a polynomial time

algorithm that finds a δ-LLL reduced basis.

Definition 2.1. A basis B = [b1| · · · |bm] is a δ-LLL reduced basis, for δ ∈ {0, . . . , 1}, if

for all i > j, ∣∣∣∣∣ 〈b̃j, bi〉〈b̃j, b̃j〉

∣∣∣∣∣ ≤ 1

2
and δ‖πi(bi)‖2 ≤ ‖πi(bi+1)‖2

where πi(x) =
m∑
j=i

〈b̃j,x〉
〈b̃j, b̃j〉

.
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The δ-LLL reduced basis is not the exact solution, it is an approximation solution by

δ. The LLL algorithm has many applications as factoring polynomials or finding integer

relations. In lattices, it can be used to solve an important hard lattice problem, the

γ-SVP, for γ = (2/
√

3)m. See Section 2.1.3 for more details on Hard Lattice Problems

and Section 2.1.4 for more details on the LLL Algorithm.

2.1.2 Ideal Lattices

A set S is a ring if it has two operations + and ?, in which (S,+) and (S, ?) are abelian

groups. We denote by S[x] the set of polynomials with coefficients in S. Clearly, S[x] is

a ring. For a polynomial f(x) on S[x], we denote S[x]/〈f(x)〉 the ring in which the two

operations are taken modulo f(x). A subset I of a ring R = Z[x]/〈f(x)〉 is an ideal if:

1. (I,+) is a subset of (R,+)

2. ∀x ∈ I and ∀r ∈ R, x · r ∈ I

3. ∀x ∈ I and ∀r ∈ R, r · x ∈ I

Let I be an ideal of the ring R = Z[x]/〈f(x)〉; then I is a sublattice of Zn, called ideal

lattice.

We can represent a polynomial g(x) ∈ R as a vector g ∈ Zn where, for each i ∈ [0, n−
1], gi is the coefficient of g(x) for xi. We can define the basis of the ideal lattice Λ⊥q (B),

where each row i of B is given by the coefficients of xig(x) mod f(x) for i ∈ [0, n − 1].

The function that, given a vector g, creates the matrix B that is a basis of an ideal lattice

is called rot:

B = rotf (g) ∈ Zn×nq ,

Note that if f(x) = xn + 1, then the matrix A = rotf (g) ∈ Zn×nq is an anti-circulant

matrix, as shown in Figure C.3, and if f(x) = xn − 1, we have that the matrix A =

rotf (g) ∈ Zn×nq is a circulant matrix, as shown in Figure C.2. A circulant matrix is a

matrix where each row is rotated one element to the right relative to the preceding row.

An anti-circulant matrix is a circulant matrix in which after the rotation, the first element

of the row vector has its sign changed. See Appendix C for more details on Toeplitz and

circulant matrices. The lattices generated by these matrices are called cyclic lattices and

they are a special class of ideal lattices.
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A =


a0 a1 · · · an−1 an
−an a0 · · · an−2 an−1

...
... · · · ...

...

−a2 −a3 · · · a0 a1

−a1 −a2 · · · −an a0


Figure 2.2: An anti-circulant matrix A.

A =


a0 a1 · · · an−1 an
an a0 · · · an−2 an−1

...
... · · · ...

...

a2 a3 · · · a0 a1

a1 a2 · · · −an a0


Figure 2.3: A circulant matrix A.

For a ring R = Z[x]/〈f(x)〉, we have that ĝ ∈ Rk is the vector resulting of the con-

catenation of k polynomials in R. We define A = Rotf (ĝ) ∈ Zn×nkq as the concatenation

of every matrix Ai = rotf (gi) ∈ Zn×nq , where gi is a polynomial in ĝ for i ∈ [0, k − 1].

Figure 2.4 shows the construction of matrix A = Rotf (ĝ) ∈ Zn×nkq .

A =


g0x

0 mod f(x) g1x
0 mod f(x) gk−1x

0 mod f(x)

g0x
1 mod f(x) g1x

1 mod f(x) gk−1x
1 mod f(x)

...
... · · · ...

g0x
n−2 mod f(x) g1x

n−2 mod f(x) gk−1x
n−2 mod f(x)

g0x
n−1 mod f(x) g1x

n−1 mod f(x) gk−1x
n−1 mod f(x)


Figure 2.4: Construction of matrix A = Rotf (ĝ) ∈ Zn×nkq .

There are two main advantages of using ideal lattices: more efficient multiplication

and smaller parameters to define a lattice. The basis of an ideal lattice consists of the

concatenation of k Toeplitz n×n matrices and the multiplication of a Toeplitz matrix by a

vector can be done in a more efficient way [59]. Although these basis are n×kn matrices,

they can be described as a polynomial vector of size kn, decreasing the parameters size.
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2.1.3 Hard Lattice Problems

Lattices can be used in the construction of cryptographic systems, as shown by Ajtai [8].

The security of these cryptosystems is usually linked to a reduction of hard problems in

lattices, i.e., an algorithm can be considered secure if breaking it implies in efficiently

solving one of the following lattice problems: Shortest Vector Problem (SVP), Closest

Vector Problem (CVP) and Shortest Independent Vector Problem (SIVP).

The Shortest Vector Problem (SVP) consists of finding a non-zero vector in a lattice

that has the smallest length. The Approximation Shortest Vector Problem (γ-SVP) is

the same problem, but instead of finding the exact shortest vector, it is enough to find a

vector whose length is sufficiently close to the shortest one.

Definition 2.2. The SVP Problem: Given a lattice Λ(B), find the vector v ∈ Λ(B)

such that ‖v‖ 6= 0 and ‖v‖ = λ1(Λ).

Definition 2.3. The γ-SVP Problem: Given a lattice Λ(B) and an approximation

factor γ ≥ 1, find the vector v ∈ Λ(B) such that ‖v‖ 6= 0 and ‖v‖ ≤ γλ1(Λ).

The Gap Shortest Vector Problem (GapSVP) is a decision version of the Shortest

Vector Problem, in which one should decide whether or not the shortest vector is inside

a sphere of radius r and center on the origin. The approximation version defines that the

vector must be inside within an approximation factor.

Definition 2.4. The GapSVP Problem: Given a lattice Λ(B) and a radius r > 0,

return YES if λ1(Λ) ≤ r or NO if λ1(Λ) > r.

Definition 2.5. The γ-GapSVP Problem: Given a lattice Λ(B), an approximation

factor γ ≥ 1 and a radius r > 0, return YES if λ1(Λ) ≤ r or NO if λ1(Λ) > γr. In any

other cases, return arbitrarily.

The exact version of SVP was conjectured to be NP-hard in 1981 [74], but it was

only proved in 2001 [50], where it was also proved that the approximation version γ-SVP

with γ =
√

2 is NP-hard. It is currently known that γ-SVP is NP-hard for factors

γ = 2(logn)1/2−ε , where ε > 0 is a small constant [42].

The Closest Vector Problem (CVP) consists in finding a nonzero vector in the lattice

that is closest to a given vector. The Approximation Closest Vector Problem (γ-CVP) is

the approximation version of the problem, but instead of finding the exact closest vector,

it is enough to find one close to an approximation value.

Definition 2.6. The CVP Problem: Given a lattice Λ(B) and a vector t ∈ Rn, find

the vector v ∈ Λ(B) such that ‖v − t‖ is minimum.
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Definition 2.7. The γ-CVP Problem: Given a lattice Λ(B), a vector t ∈ Rn and an

approximation factor γ ≥ 1, find the vector v ∈ Λ(B) such that ‖v − t‖ ≤ γd, where d is

the smallest distance between t and any other vector in Λ(B).

The Gap Closest Vector Problem (GapCVP) is a decision version of the Closest Vector

Problem, in which one should decide if, given a vector t, there is a closest vector in the

lattice within a distance d of t or if every vector in the lattice is at a distance greater than

d from t. The approximation version defines that every vector in the lattice must be at a

distance greater than d within an approximation factor.

Definition 2.8. The GapCVP Problem: Given a lattice Λ(B), a vector t ∈ Rn and a

distance d > 0, return YES if ∃v : ‖v − t‖ ≤ d or NO if ∀v : ‖v − t‖ > d.

Definition 2.9. The γ-GapCVP Problem: Given a lattice Λ(B), a vector t ∈ Rn, an

approximation factor γ ≥ 1 and a distance d > 0, return YES if ∃v : ‖v − t‖ ≤ d or NO

if ∀v : ‖v − t‖ > γd. In any other cases, return arbitrarily.

The exact version of CVP was proved to be NP-hard in 1981 [74]. It is also known

that γ-GapCVP is hard for a sub-polynomial factor γ = nO(1/ log logn) [26].

It is possible to reduce SVP to CVP, therefore, an oracle that solves CVP can be used

to solve SVP in the same dimension and within the same approximation factor [32]. The

reduction goes as follows:

Given a lattice basis B = [b1| · · · |bm], define bases Bi = [b1| · · · |2bi| · · · |bm]. Use

a CVP-oracle to find the closest vector to bi in Bi for all i ∈ [1,m]. The oracle will

return vector vi. The shortest vector of the lattice given by basis B is the shortest of

{v1 − b1, ...,vm − bm}.
The Shortest Independent Vector Problem (SIVP) consists in finding m linearly inde-

pendent vectors, with the maximum length of these vectors restricted by λm(Λ), where m

is the rank of the lattice. The resulting matrix S = (s1, · · · , sm) does not need to form a

basis of Λ nor does it need to be the successive minima, only the maximum length vector

is bounded by the successive minima. The approximation version restricts the largest

vector of S by an approximation factor of λm(Λ).

Definition 2.10. The SIVP Problem: Given a lattice Λ(B) with rank m, find m

linearly independent vectors S = [s1| · · · |sm], such that max ‖si‖ = λm(Λ).

Definition 2.11. The γ-SIVP Problem: Given a lattice Λ(B) with rank m, find m

linearly independent vectors S = [s1| · · · |sm], such that max ‖si‖ ≤ γλm(Λ).

It is known that the SIVP Problem is NP-hard, as well as its approximation version,

γ-SIVP, for γ = n1/ log logn [13].
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2.1.4 The LLL and Babai’s Algorithm

The two most important algorithms that present approximation solutions for hard lattice

problems are the Lenstra-Lenstra-Lovász Algorithm, or LLL, and Babai’s Nearest Plane

Algorithm. The LLL Algorithm [43] was developed in 1982 and solves the γ-SVP Problem

for γ = ( 2√
3
)m. The Babai’s Nearest Plane Algorithm [10] was developed in 1986 and it

solves the γ-CVP Problem for γ = 2( 2√
3
)m.

The main goal of the LLL Algorithm is to find a new basis B′ = [b′1| · · · |b′m] for

the lattice Λ(B), with B = [b1| · · · |bm], such that the length of vector b′1 is sufficiently

close to λ1. That can be achieved by reducing the basis to a δ-LLL reduced basis with

δ = (1/4) + (3/4)m/(m−1) (see Definition 2.1):

Lemma 2.1. If B = [b1| · · · |bm] ∈ Rn×m is a δ-LLL reduced basis with δ = (1/4) +

(3/4)m/(m−1), then ‖b1‖ ≤ (2/
√

3)mλ1.

The LLL Algorithm has two main steps, the reduction step and the swap step, each

taking care of one property of the δLLL reduced basis definition. The reduction step

redefines the value of each vector bi so that
∣∣∣ 〈b̃j ,bi〉〈b̃j ,b̃j〉

∣∣∣ ≤ 1
2
. The swap step swaps the vectors

bi and bi+1 so that δ‖πi(bi)‖2 ≤ ‖πi(bi+1)‖2. The LLL Algorithm is described in 2.1.

Algorithm 2.1 LLL(): Lenstra-Lenstra-Lovász Algorithm.

Input: lattice basis B, approximation factor δ

Output: δLLL reduced basis B′

while end not 1

for i← 2 to m

for j ← i− 1 downto 1

bi ← bi − d〈bi, b̃j〉/〈b̃j, b̃j〉bjc
end← 1

for i← 1 to m− 1

if δ‖πi(bi)‖2 > ‖πi(bi+1)‖2

bi ↔ bi+1

end← 0

i← m

output B′ = (b1, · · · , bm)

The goal of Babai’s Algorithm is to find a vector that is close to the target vector t.

To achieve this, Babai’s Nearest Plane Algorithm uses the LLL reduction algorithm, then

performs a step that is essentially the same as the first step of the LLL Algorithm. Babai’s

Algorithm is described in 2.2.
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We may consider this algorithm from a geometrical point of view, which explains the

name of the algorithm: First find the vector s that is a projection of t on span(B) and

c ∈ Z such that the hyperplane cb̃m + span(B′), with B′ = [b1| · · · |bm−1], is as close as

possible to s. Then, call the algorithm recursively for basis B′ and vector s − cbm, and

for a return vector x, output x− cbm as an answer.

Algorithm 2.2 Babai(): Babai’s Nearest Plane Algorithm.

Input: lattice basis B, target vector t

Output: vector v close to target vector t

B ← LLL(B, 3/4)

b← t

for j ← m downto 1

b← b− d〈b, b̃j〉/〈b̃j, b̃j〉bjc
output v ← t− b

2.2 Trapdoor Generation and Gaussian Samples

The Gaussian function f(x) in one dimension for x ∈ R is given by:

f(x) = ae−(x−b)2/2c2 ;

for a, b, c ∈ R and e is Euler’s number. The Gaussian, or normal distribution, is the

probability distribution in R, with a = 1/σ
√

2π, b = µ and c = σ, with µ being the mean

and σ being the standard deviation:

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

.

The Standard Spherical Gaussian is the distribution in Rn, with a = 1, b = c and

c =
√

2πσ, for c ∈ Rn and real σ > 0:

ρσ,c(x) = e−π‖x−c‖
2/σ2

.

The Elliptical Gaussian distribution in Rn is given by a vector of standard deviation

σ as follows:

ρ′σ,c(x) = e−
∑

[π(xi−ci)2/σ2
i ].

The Discrete Gaussian distribution DΛ,σ,c over a lattice is given by:
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DΛ,σ,c(x) =
ρσ,c(x)∑
y∈Λ ρσ,c(y)

, if x ∈ Λ and 0 elsewhere.

The following lemma captures standard properties of these distributions.

Lemma 2.2. Let q ≥ 2 and let A be a matrix in Zn×mq with m > n. Let S be a basis for

Λ⊥q (A) and σ ≥ ‖S‖ · ω(
√

logm). Then for c ∈ Rm and u ∈ Znq :

Pr
[
‖x− c‖ > σ

√
m : x

$← DΛ,σ,c

]
≤ negl(n)

Here we define two important distributions in our context:

Definition 2.12. For α ∈ {0, . . . , 1} and an integer q > 2, let Ψα denote the probability

distribution over Zq obtained by choosing x ∈ R according to ρσ,c with c = 0 and σ =

α/
√

2π and outputting bqxe.

Definition 2.13. For α ∈ {0, . . . , 1} and an integer n, let Υα denote the probability

distribution over Zq obtained by choosing x ∈ R according to ρ′σ,c with c = 0 and σ2
i =

σ2
i+n/2 = α2(1 +

√
nxi), for xi ∈ Ψα.

2.2.1 Generating a Trapdoor

Public-key cryptographic schemes are based on one-way functions, i.e., functions that are

easy to compute, but hard to invert. For encryption and signing, it is also necessary that

such functions possess a trapdoor, i.e., a shortcut that is kept secret, and that makes it

possible for the secret holder to easily invert the function. For lattices, the trapdoor is

usually a short basis, as described in Section 2.1.1.

Ajtai [8] and later Alwen and Peikert [9] showed how to generate an essentially uniform

matrix A ∈ Zn×mq along with a basis S of Λ⊥q (A) with low Gram-Schmidt norm.

Theorem 2.1 ([9]). Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n lg q. Then,

there is a probabilistic polynomial-time algorithm TrapGen(q, n,m) that outputs a pair

(A ∈ Zn×mq , S ∈ Zm×m) such that A is statistically close to uniform in Zn×mq and S is a

basis for Λ⊥q (A), satisfying ‖S̃‖ ≤ O(
√
n log q) and ‖S‖ ≤ O(n log q) with overwhelming

probability in n.

Stehlé et al. [73] showed an adaptation of Ajtai’s trapdoor key generation algorithm

for ideal lattices, generating an essentially uniform vector â ∈ (Zq[x]/〈f(x)〉)k along with

a basis S of Λ⊥q (Rotf (â)).

Theorem 2.2 ([73]). Let n, σ, q, k be positive integers with q ≡ 3 mod 8, k ≥ dlog q+ 1e
and n being a power of 2 and let f(x) be a n-degree polynomial in Z[x], with f(x) = xn+1.
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There is a probabilistic polynomial-time algorithm IdealTrapGen(q, n, k, σ, f) that outputs

a pair (â ∈ (Zq[x]/〈f(x)〉)k, S ∈ Zkn×kn) such that â is statistically close to uniform

in â ∈ (Zq[x]/〈f(x)〉)k and S is a basis for Λ⊥q (A), for A = Rotf (â), satisfying |S| =

O(n log q
√
ω(log n)) with overwhelming probability in n.

Later, Micciancio and Peikert [52] improved the TrapGen algorithms by using a simpler

and faster method based only on the multiplication of random matrices to generate the

lattice basis, without involving any expensive Hermite Normal Form or matrix inversion

computations. This construction is faster and simpler and it also improves the quality of

the trapdoor generated.

2.2.2 Sample Algorithms

Using a short basis and a Gaussian distribution it is possible to sample lattice points.

This section describes the sample algorithms used on most of the lattice-based schemes

as shown in [29], [61] and [23].

The foundation for all the sample algorithms is the SampleInt() described in Algo-

rithm 2.3. It samples from a discrete Gaussian distribution over Z, i.e., it samples over

a particular one-dimensional lattice. On input of the Gaussian parameters c and σ, it

outputs an integer e statistically close to DZ,σ,c.

Algorithm 2.3 SampleInt(): Algorithm to sample from a Gaussian distribution over Z.

Input: Gaussian parameters σ and c and integer n

Output: integer e statistically close to DZ,σ,c

choose t(n) ≥ ω(
√

log n)

x
$← Z ∩ [c− σ · t, c+ σ · t]

output e with probability ρσ,0(x− c)

Theorem 2.3 ([29]). Let σ, c be Gaussian parameters and let n be an integer. Then there

is a probabilistic polynomial algorithm SampleInt(σ, c, n) that outputs an integer e ∈ Z
statistically close to DZ,σ,c.

Using the algorithm that samples integers from a discrete Gaussian distribution over Z
we can construct SampleLattice(), described in Algorithm 2.4, that samples from a discrete

Gaussian over any lattice. The algorithm works like Babai’s Nearest Plane Algorithm,

described on Section 2.1.4, but it chooses a plane at random with a probability given by

a discrete Gaussian over Z.
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Algorithm 2.4 SampleLattice(): Algorithm to sample from a Gaussian distribution

over Λ(A).

Input: lattice basis A, with rank m, and Gaussian parameters σ and c

Output: vector e ∈ Zm statistically close to DΛ(A),σ,c

if m = 0, return 0

compute the Gram-Schmidt vector ãm from A

vector t is the projection of c onto span(A)

integer t← 〈t, ãm〉/〈ãm, ãm〉
integer z ← SampleInt(σ/‖ãm‖, t)
matrix A′ = [a1|...|am−1]

output e← z · am + SampleLattice(A′, σ, t− z · am)

Theorem 2.4 ([29]). Let σ, c be Gaussian parameters, let A ∈ Zn×m be a matrix and

let n,m be integers such that σ ≥ ‖A‖ · ω(
√

log n). Then there is a probabilistic polyno-

mial algorithm SampleLattice(A, σ, c) that outputs a vector e ∈ Zm statistically close to

DΛ(A),σ,c.

The SampleLattice(A, σ, c) allows us to sample over any Λ(A), but it restricts the

basis length. It is usual, however, that the basis of the lattice has an arbitrary length,

but we have a short set S of linearly independent lattice vectors of Λ⊥q (A). In this

case, it is possible to sample from a discrete Gaussian distribution over Λ⊥q (A) using

SampleGaussian(), described in Algorithm 2.5.

Algorithm 2.5 SampleGaussian(): Algorithm to sample from a Gaussian distribution

over Λ⊥q (A).

Input: lattice basis A, short set of linearly independent lattice vectors S and Gaussian

parameters σ and c

Output: vector e ∈ Zm statistically close to DΛ⊥q (A),σ,c

choose v ∈ Λ(A), such that v mod Λ(S) is distributed uniformly in Λ(A)/Λ(S)

y ← SampleLattice(S, σ, c− v)

output e← y + v

Theorem 2.5 ([29]). Let A ∈ Zn×mq be a full rank matrix, let S be a short basis of

Λ⊥q (A) and let σ, c be Gaussian parameters. Let q,m, n be integers such that q > 2 and

m > n and let σ > ‖S‖ · ω(
√

logm). Then there is a probabilistic polynomial algorithm

SampleGaussian(A, S, σ, c) that outputs a vector e ∈ Zm statistically close to DΛ⊥q (A),σ,c.

Note that Λuq (A) = t + Λ⊥q (A) for some t ∈ Λuq (A). Therefore, to sample from a
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distribution in Λuq (A), we simply call SampleGaussian with c = t and subtract t from the

result. This algorithm, called SamplePre, is described in Algorithm 2.6.

Algorithm 2.6 SamplePre(): Algorithm to sample from a Gaussian distribution over

Λuq (A).

Input: lattice basis A, short set of linearly independent lattice vectors S, Gaussian

parameter σ and vector u

Output: vector e ∈ Zm statistically close to DΛu
q (A),σ,c

t
$← Zm, such that At = u mod q

x← SampleGaussian(A, S, σ, t)

output e← x− t

Theorem 2.6 ([29]). Let A ∈ Zn×mq be a full rank matrix, let S be a short basis of Λ⊥q (A)

and let σ, c be Gaussian parameters such that c = 0. Let q,m, n be integers such that q > 2

and m > n and let σ > ‖S‖·ω(
√

logm). Then there is a probabilistic polynomial algorithm

SamplePre(A, S,u, σ) that outputs a vector e ∈ Zm statistically close to DΛu
q (A),σ,c.

It may be important for some schemes to sample from a discrete Gaussian distribution

over Λuq (A|B), for A ∈ Zn×mq and B ∈ Zn×m1
q , when we only have the short basis for Λ⊥q (A).

SampleLeft(A,B, S,u, σ), described in Algorithm 2.7, accomplishes that, using a sample

over Zm1 and the SamplePre algorithm.

Algorithm 2.7 SampleLeft(): Algorithm to sample from a Gaussian distribution over

Λuq (A|B).

Input: lattice basis A, short set of linearly independent lattice vectors S, matrix B,

Gaussian parameter σ and vector u

Output: e ∈ Zm+m1 statistically close to DΛu
q (F ),σ,c, with F = (A|B)

matrix Z is a basis for Zm1

e2 ← SampleLattice(Z, σ,0)

y ← u−Be2
e1 ← SamplePre(A, S, σ,y)

output e← [e1|e2]

Theorem 2.7 ([4]). Let A ∈ Zn×mq be a full rank matrix, let S be a short basis of

Λ⊥q (A), let B ∈ Zn×m1
q be a matrix, let u ∈ Znq be a vector and σ, c be Gaussian pa-

rameters such that c = 0. Let q,m, n be integers such that q > 2 and m > 2n log q

and let σ > ‖S‖ · ω(
√

log(m+m1)). Then there is a probabilistic polynomial algorithm

SampleLeft(A,B, S,u, σ) that outputs a vector e ∈ Zm+m1 statistically close to DΛu
q (F ),σ,c,

with F = (A|B).
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The last algorithm samples a vector over Λuq (F ), with F = [A|AR + B], and only a

short basis for Λ⊥q (B) is known. In this case, we find a matrix T ∈ Zn×2m with linearly

independent vectors in Λ⊥q (F ), construct a short basis SF for the lattice using Lemma 2.3

and call SamplePre() to sample from a discrete Gaussian distribution over Λuq (F ). Algo-

rithm 2.8 describes SampleRight().

Lemma 2.3. There is a deterministic polynomial-time algorithm BasisConstruction(A, T )

that, given an arbitrary basis A of Λ and a full-rank set T in Λ, returns a basis S of Λ

satisfying ‖T̃‖ ≤ ‖S̃‖ and ‖T‖ ≤ ‖S‖
√
m/2.

Algorithm 2.8 SampleRight(): Algorithm to sample from a Gaussian distribution over

Λ⊥q (A|AR +B).

Input: lattice basis B, short set of linearly independent lattice vectors S matrices A and

R, Gaussian parameter σ and vector u

Output: vector e ∈ Zm+m1 statistically close to DΛu
q (F ),σ,c, with F = (A|AR +B)

F = [A|AR +B]

for i← 1 to m

ti ←
[−Rsi
si

]>
choose U , such that AI +BU = O mod q

for i← m+ 1 to 2m

ti ←
[
wi−Rui
ui

]>
, wi ∈ I

SF ← BasisConstruction(A, T )

output e← SamplePre(F, SF ,u, σ)

Theorem 2.8 ([4]). Let A ∈ Zn×mq and B ∈ Zn×m1
q be a full rank matrices, let S be a short

basis of Λ⊥q (B), let R ∈ {−1, 1}m×m1 be a uniform random matrix, let u ∈ Znq be a vector

and let σ, c be Gaussian parameters such that c = 0. Let q,m, n be integers such that q > 2

and m > n and let σ > ‖S‖ ·
√
m · ω(

√
logm). Then there is a probabilistic polynomial

algorithm SampleRight(A,B,R, S,u, σ) that outputs a vector e ∈ Zm+m1 statistically close

to DΛu
q (F ),σ,c, with F = (A|AR +B).

Besides sampling vectors from lattices, we may need to sample random basis from

lattices.

The first sample basis algorithm, SampleBasis(), just generates another basis for the

same lattice. It uses algorithm SampleLattice() to sample vectors from the lattice and keeps

the vectors that are linearly independent. Using the linearly independent vectors, it is

possible to build a new lattice basis using algorithm BasisConstruction(). Algorithm 2.9

describes SampleBasis().
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Algorithm 2.9 SampleBasis(): Algorithm to sample a basis for lattice Λ(A).

Input: lattice basis A and Gaussian parameter σ

Output: lattice basis T

for i← 1 to m

while v is not linearly independent of V = (v1, · · · ,vi−1)

v ← SampleLattice(A, σ, 0)

vi ← v

T ← BasisConstruction(HNF(A), V )

output T

Theorem 2.9 ([23]). Let A ∈ Zn×mq be a full rank matrix, let σ be Gaussian parameter and

let n,m be integers such that σ ≥ ‖A‖·ω(
√

log n). Then there is a probabilistic polynomial

algorithm SampleBasis(A, σ, c) that outputs a new basis T ∈ Zn×mq for the lattice Λ(A).

SampleBasisLeft(), described in Algorithm 2.10, is similar to algorithm SampleBasis(),

but instead of finding a basis for lattice Λ(A) it finds a new basis for lattice Λ⊥q (A|B), given

that A is a basis for Λ⊥q (A), S is a short set of linearly independent lattice vectors and

M is a random matrix. It accomplishes that by replacing the SampleLattice() algorithm

with the SampleLeft() in the main loop.

Algorithm 2.10 SampleBasisLeft(): Algorithm to sample a basis for lattice Λ⊥q (A|B).

Input: lattice basis A, short set of linearly independent lattice vectors S, matrix B and

Gaussian parameter σ

Output: lattice basis T

for i← 1 to m

while v is not linearly independent of V = (v1, · · · ,vi−1)

v ← SampleLeft(A, S,B, σ, 0)

vi ← v

T ← BasisConstruction(HNF(A), V )

output T

Theorem 2.10 ([4]). Let A ∈ Zn×mq be a full rank matrix, let S be a short basis of Λ⊥q (A),

let B ∈ Zn×m1
q be a matrix and let σ be a Gaussian parameter. Let q,m, n be integers

such that q > 2 and m > 2n log q and let σ > ‖S‖ · ω(
√

log(m+m1)). Then there is

a probabilistic polynomial algorithm SampleBasisLeft(A,B, S, σ) that outputs a new basis

T ∈ Zn×m+m1 for the lattice Λ⊥q (F ), with F = (A|B).

As the two previous basis sample algorithms, the SampleBasisRight() algorithm finds

a basis for the lattice Λ⊥q (A|AR+B) by building a linearly independent vector set V and
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using the BasisConstruction() algorithm to construct a basis from it. The vector set V

is now build using the SampleRight() algorithm to sample from lattice Λ⊥q (A|AR + B).

Algorithm 2.11 describes SampleBasisRight().

Algorithm 2.11 SampleBasisRight(): Algorithm to sample a basis for lattice

Λ⊥q (A|AR +B).

Input: lattice basis B, short set of linearly independent lattice vectors S, matrices A and

R, Gaussian parameter σ

Output: lattice basis T

for i← 1 to m

while v is not linearly independent of V = (v1, · · · ,vi−1)

v ← SampleRight(A,B,R, S, 0, σ)

vi ← v

T ← BasisConstruction(HNF(A), V )

output T

Theorem 2.11 ([4]). Let A ∈ Zn×mq and B ∈ Zn×m1
q be a full rank matrices, let S

be a short basis of Λ⊥q (B), let R ∈ {−1, 1}m×m1 be a uniform random matrix and let

σ be a Gaussian parameter. Let q,m, n be integers such that q > 2 and m > n and

let σ > ‖S‖ ·
√
m · ω(

√
logm). Then, SampleBasisRight(A,B,R, S, σ), is a probabilistic

polynomial algorithm that outputs a new basis T ∈ Zn×m+m1 for the lattice Λ⊥q (F ), with

F = (A|AR +B).

2.3 The Learning With Errors Problem

The Learning with Errors Problem, or LWE, is not a hard lattice problem, but it has

been used as the security base for several lattice-based cryptosystems. This is due to the

proximity of the LWE problem to lattices and to the reductions from hard lattice problems

to LWE.

The LWE problem basically states that given samples of the form (a, 〈a, r〉 + e) one

must find r. In its decision version, samples from a distribution on Znq × Zq are given

and one must decide if these samples are from a uniform distribution or of the form

(a, 〈a, r〉+ e).

Definition 2.14. The LWE Problem: Let n ≥ 1 and q ≥ 2 be integers, and let χ

be a probability distribution on Zq. For r ∈ Znq , let Ar,χ be the probability distribution

on Znq × Zq obtained by choosing a vector a ∈ Znq uniformly at random, choosing e ∈
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Zq according to χ, and outputting (a, b = 〈a, r〉 + e). Given an arbitrary number of

independent samples from the distribution Ar,χ, find r.

Definition 2.15. The decision-LWE Problem: Let n ≥ 1 and q ≥ 2 be integers,

and let χ be a probability distribution on Zq. For r ∈ Znq , let Ar,χ be the probability

distribution on Znq × Zq obtained by choosing a vector a ∈ Znq uniformly at random,

choosing e ∈ Zq according to χ, and outputting (a, b = 〈a, r〉 + e). Given an arbitrary

number of independent samples from Znq × Zq, return YES if the samples come from the

distribution Ar,χ and NO if they come from the uniform distribution on Znq × Zq.

The two versions of the LWE problem above are equivalent, i.e., the decision version

of LWE is as hard as the regular (or search) version, and the search version is as hard as

the decision version. We give a sketch of the proof of this equivalence.

It is easy to notice that if we have an oracle for the LWE problem, then we can solve

the decision version. Given samples from Znq × Zq, use the search oracle to find a vector

r ∈ Znq and check if it produces the pair (a, b = 〈a, r〉+ e) on the samples.

Given an oracle to the decision-LWE problem, it is possible to solve the search version

one coordinate at a time. For the i-th coordinate of r choose a random number l ∈ Zq
and one guess k for ri. Call the decision oracle for the sample (a+(l, 0, . . . , 0), b+(lk)/q);

if the guess k was not correct, the decision will choose the uniform distribution, if it was

correct it will choose the distribution Ar,χ.

Regev [62] showed a reduction from γ-GapSVP and γ-SIVP to LWE, proving that the

LWE problem is as hard as the two lattice problems. This is a quantum reduction, i.e., it

uses quantum algorithms and it is only valid within quantum machines. Later, Peikert [60]

improved Regev’s work, by showing a classical reduction from γ-GapSVP to LWE. For a

simpler notation, we use LWEq,n,χ to denote the LWE for inputs q, n and χ.

Theorem 2.12 ([62]). Let n, q be integers and α ∈ {0, . . . , 1} such that q = poly(n)

and αq > 2
√
n. If there exists an efficient (possibly quantum) algorithm that solves

decision-LWEq,n,Ψα, then there exists an efficient quantum algorithm that solves γ-SIVP

and γ-GapSVP for γ = Õ(n/α) in the worst case.

Theorem 2.13 ([60]). Let n, q be integers and α ∈ {0, . . . , 1}, such that q =
∑

i qi ≤ 2n/2,

where the qi are distinct primes satisfying ω(log n)/α ≤ qi ≤ poly(n). If there exists an

efficient (classical) algorithm that solves decision-LWEq,n,Ψα, then there exists an efficient

(classical) algorithm that solves γ-GapSVP for γ = Õ(n/α) in the worst case.

2.3.1 LWE Problem for Rings and Ideal Lattices

As already stated, one important class of lattices is the ideal lattices. They are the basis

for several cryptosystems and in proving the security of these cryptosystems it is crucial to
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show that the LWE Problem is still hard for these specific lattices. The Ring-LWE Problem

is a special case, in which the inner product is replaced by a product of polynomials and

the probability distribution is on a larger range. The Ideal-LWE Problem is a lot similar

to the general LWE Problem, except for a change in the form in which the samples are

chosen and the fact that it specifies the number of samples.

Definition 2.16. The Ring-LWE Problem: Let n and q = 1 mod 2n be integers, with

n a power of 2, let Rq = Zq[x]/〈xn+ 1〉 be a ring and let χ be a probability distribution on

Rq. For r ∈ Rq, let Ar,χ be the probability distribution on Rq ×Rq obtained by choosing

a vector a ∈ Rq uniformly at random, choosing e ∈ Rq according to χ, and outputting

(a, b = a ·r+e). Given an arbitrary number of independent samples from the distribution

Ar,χ, find r.

Definition 2.17. The decision-Ring-LWE Problem: Let n and q = 1 mod 2n be

integers, with n a power of 2, let Rq = Zq[x]/〈xn + 1〉 be a ring and let χ be a probability

distribution on Rq. For r ∈ Rq, let Ar,χ be the probability distribution on Rq × Rq

obtained by choosing a vector a ∈ Rq uniformly at random, choosing e ∈ Rq according to

χ, and outputting (a, b = a · r + e). Given an arbitrary number of independent samples

from Rq ×Rq, return YES if the samples come from the distribution Ar,χ and NO if they

come from the uniform distribution on Rq ×Rq.

The search-to-decision reduction shown for the LWE Problem does not work for the

Ring-LWE Problem. This happens because the distribution is now on Rq ×Rq instead of

Znq × Zq and it is not possible to isolate each coordinate of r on the Ring-LWE Problem

and we must guess all of them correct at a time. A more sophisticated reduction for only

cyclotomic rings is shown by Lyubashevsky, Peikert and Regev [47].

The hardness of the Ring-LWE Problem was shown by Lyubashevsky et al. [47]. The

proof is a lot similar to the one shown by Regev [62] for the general LWE Problem, the

quantum reduction is used almost without any adaptation. Note, however, that the proof

only applies if the error distribution is chosen from a certain distribution on non-spherical

Gaussian variables.

Theorem 2.14 ([47]). Let n, q be integers and α > 0 such that q ≥ 2, q = 1 mod m

and q be a poly(n)-bounded prime such that αq ≥ ω(
√

log n). If there exists an efficient

(possibly quantum) algorithm that solves decision-Ring-LWEq,n,Υα, then there exists an

efficient quantum algorithm that solves γ-SIVP and γ-SVP for γ = Õ(n/α) in the worst

case.

The Ideal-LWE Problem [73] does not use polynomial multiplication, it uses only the

vector and matrix representation of polynomials, i.e., the function Rotf (). That is possible,

because for a, r ∈ Rq = Zq[x]/〈xn + 1〉, we have that the polynomial multiplication of a
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and r gives a polynomial that has its vector representation equals to rotf (a)>r = a · r,

by the Lemma C.1. So, by limiting the number of samples by k, we can replace the

polynomial multiplication for a matrix by vector multiplication.

Definition 2.18. The Ideal-LWE Problem: Let n, k and q be integers, with n a

power of 2, let Rq = Zq[x]/〈xn + 1〉 be a ring and let χ be a probability distribution on

Rq. For r ∈ Znq , let Ar,χ be the probability distribution on Rk
q ×Zknq obtained by choosing

a vector â ∈ Rk
q uniformly at random, choosing ê ∈ Zknq according to χ, and outputting

(â, b̂ = Rotf (â)>r + ê). Given an arbitrary number of independent samples from the

distribution Ar,χ, find r.

Definition 2.19. The decision-Ideal-LWE Problem: Let n, k and q be integers, with

n a power of 2, let Rq = Zq[x]/〈xn+ 1〉 be a ring and let χ be a probability distribution on

Rq. For r ∈ Znq , let Ar,χ be the probability distribution on Rk
q ×Zknq obtained by choosing

a vector â ∈ Rk
q uniformly at random, choosing ê ∈ Zknq according to χ, and outputting

(â, b̂ = Rotf (â)>r+ê). Given an arbitrary number of independent samples from Rk
q×Rk

q ,

return YES if the samples come from the distribution Ar,χ and NO if they come from the

uniform distribution on Rk
q × Zknq .

Since the multiplication of polynomials is replaced by a matrix-vector multiplication,

the search-to-decision reduction used for the general LWE can be used for the Ideal-LWE:

for each line of Rotf (â)> and each element of ê and b̂, just treat it like a general LWE.

Unlike the Ring-LWE Problem, the error here can be spherical, but it depends on

the number of samples k. The reduction, although not to the decision problem, is also

quantum and it is from an important problem called the Small Integer Solution (SIS),

whose hardness is well know even for its ideal version [46].

Definition 2.20. The SIS Problem: Given an integer q, a matrix A ∈ Zn×k and a real

number β, find a nonzero integer vector e ∈ Zk such that Ae = 0 mod q and ‖e‖ ≤ β.

The Ideal-SIS Problem is exactly the same, but with A = Rotf (â), for â ∈ (Zq[x]/〈f(x)〉)k.

Theorem 2.15 ([73]). Let k, n, q be integers and α ∈ {0, 1}, with k ≥ 41 log q and

α < 1

10
√

log(kn)
. If there exists an efficient (possibly quantum) algorithm that solves

Ideal-LWEq,n,Ψα, then there exists an efficient (quantum) algorithm that solves Ideal-SIS,

for f(x) = xn + 1, with n a power of 2 and q ≡ 3 mod 8.

2.4 GGH

The GGH scheme [31], due to Goldreich, Goldwasser and Halevi, is the first and simplest

lattice-based cryptosystem created. It uses a short “good” basis (which makes the CVP
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problem easy to solve) as private key and a “bad” basis (which makes the CVP problem

hard to solve) as a public key. Its security was based on the CVP problem, but it was

never formally proved. The scheme was later broken by Nguyen [55].

The GGH scheme consists of three algorithms: key generation KeyGen(), encryption

Enc() and decryption Dec(). The KeyGen() algorithm chooses the lattice bases that will

be used as keys. The Enc() algorithm uses the message as a vector to find a point in

the lattice, then adds to it a short error vector in {−σ, σ}m, with σ << n so that the

ciphertext is a point close to the lattice. The Dec() algorithm finds the original message

using the short basis in the secret key with Babai’s Nearest Plane Algorithm to solve the

CVP Problem, i.e., find the closest point in the lattice. Since that point was calculated

using the message as a vector, we only need to invert the basis to recover the message.

Algorithms 2.12, 2.13 and 2.14 describe the GGH scheme.

Algorithm 2.12 GGH-KeyGen(): Key Generation Algorithm for the GGH Scheme.

Input: security parameter n

Output: public key PK and secret key SK

choose an orthogonal basis B ∈ Zn×m of lattice Λ(B)

choose a unimodular matrix U ∈ Zn×n

A = UB

secret key SK = B

public key PK = A

Algorithm 2.13 GGH-Enc(): Encryption Algorithm for the GGH Scheme.

Input: message M and public key PK

Output: ciphertext CT

M = m ∈ Zn

r
$← {−σ, σ}m

c←mA+ r

ciphertext CT = c

Algorithm 2.14 GGH-Dec(): Decryption Algorithm for the GGH Scheme.

Input: public key PK secret key SK ciphertext CT

Output: message M ′

v ← Babai(B, c)

m′ = vA−1

M ′ = m′
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One important step of this algorithm is to change the short and orthogonal basis of

Λ that is part of the secret key, into a random non-orthogonal matrix that is still a basis

of Λ to compound the public key. In the original work many elementary matrices of

different forms are multiplied to generate a random unimodular transformation U . Later,

Micciancio [49] proposed to use the Hermite Normal Form.

Although it was based on the CVP Problem, the security of the GGH scheme was

never formally presented. In 1999, Nguyen [55] broke the scheme showing two main flaws:

the ciphertext leaks information of the message and it is possible to reduce the decrypting

ciphertext problem to a special closest vector problem much easier than the general one.

These problems can be avoided by increasing the security parameters, i.e., the size of the

lattice. This, however, makes the GGH scheme impractical.

2.5 NTRU

The NTRU scheme [37] can be described as a ring-based or a lattice-based cryptosystem

and its security is based on the CVP Problem. The name NTRU is a short for n-th

degree truncated polynomial ring, i.e., the ring Rq = Zq[x]/〈xn − 1〉. It is specified by

three integer parameters: the degree n, the small modulus p and the big modulus q. The

moduli q and p are coprime and the degree n is prime.

Let Rq = Zq[x]/〈xn − 1〉 be a ring and let Rd1,d2 be the set of all polynomials in R
with d1 coefficients equal to 1, d2 coefficients equal to −1 and the rest equal to 0. Let

f ∈ R, if f is invertible in Rq, then there exists f−1
q such that f · f−1

q = 1 mod q.

The secret key consists of two polynomials f and g in Rd1,d2 , with f invertible in Rq

and Rp. The public key is the resulting polynomial of the multiplication of the inverse

of f and g. The encryption of a message in Rp will be the polynomial in the public key

multiplied by a random polynomial and added to the message. The decryption uses f

and its inverse in Rp to recover the message. Algorithms 2.15, 2.16 and 2.17 describe the

NTRU scheme.

Algorithm 2.15 NTRU-KeyGen(): Key Generation Algorithm for the NTRU Scheme.

Input:: security parameter n, public integers p and q

Output:: public key PK and secret key SK

f ∈ Rd+1,d, invertible in Rp and Rq

g ∈ Rd,d

h = f−1
q · g

secret key SK = (f , g)

public key PK = h
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Algorithm 2.16 NTRU-Enc(): Encryption Algorithm for the NTRU Scheme.

Input:: message M and public key PK

Output:: ciphertext CT

M = m ∈ Rp

r
$← Rd,d

c← pr · h+m

ciphertext CT = c

Algorithm 2.17 NTRU-Dec(): Decryption Algorithm for the NTRU Scheme.

Input:: public key PK secret key SK ciphertext CT

Output:: message M ′

a← f · c mod q

m′ ← f−1
p · a mod p

M ′ = m′

The NTRU scheme can be described as a ring-based scheme, as seen above, or as a

lattice-based scheme. For the lattice-based view we can see the two polynomials f and

g as the generators for the lattice Λq(F ), with F = [rotxn−1(f)|rotxn−1(g)]>. The public

key is a “hard” basis for this lattice, given by the Hermite Normal Form H that can be

described using the polynomial h:

H =

(
I O

rotxn−1(h) I

)
The encryption, as in the GGH scheme, can be seen as a point close to a lattice point,

but unlike GGH, the message is part of the error and not the lattice point. Decryption is

possible because of the “good” basis rotxn−1(f). The use of ideal lattices makes it possible

to decrease the key sizes, since to describe the lattice basis we only need a vector.

Like GGH, no proof of security of the NTRU scheme is known and all current attacks

can be prevented by choosing the right parameters set [36]. As always, there is a trade-off

between efficiency and security, but even with the large parameters, the NTRU scheme is

still practical and one of the most important lattice-based public key cryptosystems. Other

than the usual attacks, such as brute force, meet-in-the-middle and chosen-ciphertext

attack, lattice reduction algorithms, such as the LLL can also be used to break the system.

In the same year of its publication, a company called NTRU Cryptosystems, Inc. [40]

was founded by the developers and a patent on the cryptosystem was registered.
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Predicate Cryptography

In this chapter we give the basic definition of Predicate Encryption and details of the

main schemes. In Section 3.1 we give basic concepts on predicate encryption, its security

definitions and a description of the hierarchical encryption. In the rest of the chapter we

describe the main predicate encryption schemes known: Identity-Based Encryption (IBE)

in Section 3.2, Fuzzy Identity-Based Encryption (FBE) in Section 3.3, Attribute-Based

Encryption (ABE) in Section 3.4, Identity-Based Encryption with Wildcards (WIBE) in

Section 3.5, Inner Product Encryption (IPE) in Section 3.6 and Hidden Vector Encryption

(HVE) in Section 3.7.

3.1 Basic Concepts

Functional encryption has become quite popular in the last few years because it provides

users with a much finer control of decryption capabilities. More specifically, in a functional

encryption system, secret keys allow users to learn functions of encrypted data.

The definition of functional encryption given by Boneh, Sahai and Waters [17] is that

a user with a master key MK can generate a secret key SK using an attribute A that

enables the computation of a function f(·, ·) on the encrypted data, i.e., for a plaintext

M and an attribute A, the decryptor can compute f(A,M) without learning anything

else about the plaintext.

Predicate encryption [41] is a sub-class of functional encryption, in which the de-

cryption is only possible if the function f(A) is 1. Note that in a predicate encryption

the function only depends on the attribute A, i.e., it does not use the plaintext M . A

Predicate Encryption Scheme is defined by four algorithms:

• Setup(1n): takes as input the security parameter n and outputs the public key PK

and the master secret key MK.

29
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• KeyGen(PK,MK, f): generates a secret key SK using the public key, the master

key and the predicate f .

• Enc(PK,M,A): returns the ciphertext CT of message M using the public key and

the attribute A.

• Dec(PK, SK,CT ): decrypts the ciphertext CT into message M only if f(A) = 1.

In such schemes a trusted third party, called Private Key Generator (PKG), is needed

to generate all the keys. Since the PKG has all the keys, it can encrypt and decrypt

any message and, therefore, it can be more difficult to prove the integrity and origin of a

message. Besides, if the PKG is compromised the whole system is compromised, so the

PKG can be a good target for adversaries. Finally, a secure channel between each user

and the PKG is needed for the transmission of secret keys.

3.1.1 Security

Predicate encryption schemes usually have their security defined through a game against

an adversary:

1. The challenger C runs the Setup algorithm to generate the public key PK, which it

gives to the adversary A, and the master key, which it retains.

2. The adversary A is given oracle access to KeyGen.

3. The adversary A gives a pair of messages (M0,M1) and a pair of attributes (A0, A1)

to the challenger C. Then the challenger C chooses random bit b ∈ {0, 1}, encrypts

Mb under Ab and sends the resulting ciphertext to the adversary A.

4. The adversary A may continue to request keys for additional predicates.

5. The adversary A outputs a bit b′, and succeeds if b′ = b.

An encryption scheme is indistinguishable under chosen-plaintext attack (IND-CPA)

if no adversary has a non-negligible advantage of winning the above game. If on item 2,

the adversary A can run the decryption algorithm, besides the key generation algorithm,

the scheme is indistinguishable under chosen-ciphertext attack (IND-CCA). Moreover, if

the adversary can run the decryption algorithm on item 2 and on item 4, then the scheme

is indistinguishable under adaptive chosen-ciphertext attack (IND-CCA2). There is also a

weaker security notion, the selective attribute (sAT, also called sID if the attribute is an

identity), in which the adversary must commit the challenge attributes at the beginning

of the game, i.e., before item 1, instead of item 3. Finally, we have that a attribute hiding
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(AH) scheme requires that the ciphertext conceal the attribute and the message, while

payload hiding (PH) requires that the ciphertext conceal only the message. Note that all

predicate encryption schemes must be attribute hiding, while not all functional encryption

schemes must.

3.1.2 Hierarchical Encryption

For cryptosystems that use a trusted third party, as predicate schemes, it is convenient to

have a hierarchy of certificate authorities, that is, the root certificate authority can issue

certificates for other certificate authorities, which can issue certificates for users. For pred-

icate schemes; the PKGs have to compute private keys only to the entities immediately

below them, this scheme is called hierarchical, as introduced in [35]. In a hierarchical

scheme, a user in level t can use his/her secret key to derive a secret key for a user at

level t+ 1.

Hanaoka et al. introduced the concept of hierarchical encryption [35] and Horwitz and

Lynn [38] presented the first hierarchical predicate scheme, a hierarchical identity-based

scheme (HIBE), but their scheme has only 2 levels. Most hierarchical schemes are from

IBE schemes [30, 14, 15, 63, 68], but there are also hierarchical ABE schemes [44, 75, 76]

and hierarchical IPE schemes [56, 57, 58].

Cash et. el. proposed the first lattice-based hierarchical scheme, on their seminal work

about Bonsai Trees [22]. Most of lattice-based IBE schemes known so far were presented

along with its hierarchical version [4, 72]. Besides IBE, a lattice-based IPE scheme [7]

by Abdalla et al. [1] and a lattice-based HVE scheme by Mochetti et al. [53] also have

hierarchical versions and are contributions of this work.

An Hierarchical Scheme is defined by the following tuple of four algorithms:

• Setup(1n, 1µ): takes as input the security parameter n and hierarchical format µ

and outputs the public key PK and the master secret key, i.e., the secret key for

level 0, SK0 = MK.

• KeyDerive(PK, SKt−1, ft): generates a secret key for level t, i.e., for the predicates

(f1, . . . , ft), using: the public key, the secret key SKt−1 for level t − 1 and the

predicate ft for level t.

• Enc(PK,M,A): returns the ciphertext CT of message M using the public key and

the attribute list A = (a1, . . . , at).

• Dec(PK, SKt, CT ): decrypts the ciphertext CT into message M only if f(A) = 1.
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3.2 Identity-Based Encryption (IBE)

In Identity-Based Encryption Schemes (IBE) the secret key is based on a user’s unique

information, such as his email address, and the decryption is only possible if the informa-

tion used during the encryption is exactly the same as the one associated with the key.

IBE schemes do not need a public key distribution infrastructure, since the authenticity

is guaranteed implicitly.

IBE schemes were proposed by Shamir [70] in 1984, but remained as an open problem

until 2001 when Boneh and Franklin [16] and Cocks [24] constructed the first schemes.

Boneh and Franklin’s identity-based encryption scheme is based on bilinear pairings, while

Cock’s IBE scheme’s security is based on the quadratic residuousity problem.

Both schemes have their security based on the random oracle model. Other schemes

are proven secure in the standard model, but under selective security, a weaker notion of

security [20, 14] or are proven adaptively secure [77, 28].

The first lattice-based IBE scheme was proposed by Gentry et al. [29] and its security

is based on the LWE problem in the random oracle model. Another lattice-based IBE

scheme, but with hierarchical property, was proposed by Agrawal et al. [4] and it is based

on the Bonsai Trees concept. This scheme’s security does not use random oracles, but it

is also based on the LWE problem.

An IBE Scheme is defined by the following tuple of four algorithms:

• Setup(1n): takes as input the security parameter n and outputs the public key PK

and the master secret key MK.

• KeyGen(PK,MK, id): generates a secret key SK using the public key, the master

key and the user’s identity id.

• Enc(PK,M, id): returns the ciphertext CT of message M using the public key and

the user’s identity id.

• Dec(PK, SK,CT ): decrypts the ciphertext CT into message M only if the identity

used during the key generation is the same use in th encryption.

To ensure the correctness of the scheme the following must be true:

∀M, id : Dec(PK,KeyGen(PK,MK, id),Enc(PK,M, id)) = M.

3.3 Fuzzy Identity-Based Encryption (FBE)

A Fuzzy Identity-Based Encryption Scheme (FBE) uses a list of attributes ω associated

with the secret key and a list of attributes ω′ associated with the encryption, and it is only
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possible to decrypt if the lists have at least k elements in common. Since a message can

be encrypted defining the attributes of the users allowed to decrypt it, FBE schemes are

often used on broadcast encryption to decrease the number of keys used and in biometric

systems.

The first scheme was proposed by Sahai and Waters [66] and it uses the selective model

to prove the security of the scheme. The Sahai and Waters’ scheme uses Shamir’s method

of secret sharing [69] and a group for which an efficient bilinear map exists, but for which

the Computational Diffie-Hellman Problem is assumed to be hard. Baek et al. improved

the first scheme’s efficiency by employing random oracles [11] and Ren et al. presented

the first fully secure scheme in the standard model [64].

The only lattice-based FBE scheme known was proposed by Agrawal et al. [6]. It is

similar to the previous IBE scheme [4] and it is secure against selective-identity attacks

in the standard model, based on the hardness of the LWE problem.

A FBE scheme is defined by the following tuple of four algorithms:

• Setup(1n): takes as input the security parameter n and outputs the public key PK

and the master secret key MK.

• KeyGen(PK,MK,ω): generates a secret key SK using the public key, the master

key and the user’s attributes ω.

• Enc(PK,M,ω′): returns the ciphertext CT of message M using the public key and

the user’s attributes ω′.

• Dec(PK, SK,CT ): decrypts the ciphertext CT into message M only if |ω∩ω′| ≥ k.

To ensure the correctness of the scheme the following must be true:

∀M,ω,ω′, with |ω ∩ ω′| ≥ k : Dec(PK,KeyGen(PK,MK,ω, k),Enc(PK,M,ω′)) = M.

3.4 Attribute-Based Encryption (ABE)

In Attribute-Based Encryption Schemes (ABE), the secret key is based on the user’s

attributes ω and the decryption is only possible if the attributes ω′ used during the

encryption are close enough to ω, i.e. if ω and ω′ are within a certain distance of each

other as judged by some metric.

It is important to notice the difference between IBE, ABE and FBE schemes. In an

IBE scheme, the user’s information associated with the key and the encryption are unique

and must be exactly the same for the decryption to occur properly. In ABE and FBE

schemes the secret key and the encryption are associated with a list of attributes that
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do not need to match exactly for the decryption to occur properly. FBE schemes are a

particular type of ABE, where the metric used to compare each list of attributes is only

the number of attributes that are present in both lists, while in ABE the metric can be

more general, i.e., it can be an arbitrary boolean formula.

The initial approach to ABE schemes was made by Sahai and Waters [66] with the

FBE scheme, but the first ABE scheme, i.e., the first scheme in which the metric used

was a boolean formula, was proposed by Goyal et al. [34], also based on secret sharing and

bilinear maps. Recently, Waters [78] improved the ABE schemes to support functionality

for regular languages. This scheme is also based on bilinear maps and is secure in the

selective model under the Bilinear Diffie-Hellman Exponent assumption.

Zhang et al. proposed the first lattice-based ABE scheme [81]. It uses Shamir secret

sharing and is secure against chosen plaintext attack in the selective model under the

Learning With Errors (LWE) assumption. Later, Boyen [19] used a basis splicing technique

to propose a lattice-based ABE scheme that has its security in the selective sense reduced

to the LWE problem in the standard model. Two similar and concurrent works [27, 33]

are based on multilinear maps, but have a translation to lattices and can have security

proofs reduced to the LWE Problem.

An ABE Scheme is defined by the following tuple of four algorithms:

• Setup(1n): takes as input the security parameter n and outputs the public key PK

and the master secret key MK.

• KeyGen(PK,MK,ω): generates a secret key SK using the public key, the master

key and the user’s attributes ω.

• Enc(PK,M,ω′): returns the ciphertext CT of message M using the public key and

the user’s attributes ω′.

• Dec(PK, SK,CT ): decrypts the ciphertext CT into message M only if ω ∼ ω′.

To ensure the correctness of the scheme the following must be true:

∀M,ω,ω′, with ω ∼ ω′ : Dec(PK,KeyGen(PK,MK,ω),Enc(PK,M,ω′)) = M.

3.5 Identity-Based Encryption with Wildcards (WIBE)

Identity-Based Encryption with Wildcards (WIBE) is a generalisation of HIBE schemes,

in which one can encrypt messages to a range of users simultaneously, whose identities

match a certain pattern. A pattern p = {p0, · · · , pn} is a set containing identities or “don’t
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care” elements (represented by ?). For an identity id = {id0, · · · , idn}, the encryption is

possible only if idi = pi,∀i such that pi 6= ?.

Abdalla et al. [2] proposed the three first WIBE schemes based on the following HIBE

schemes: Water’s HIBE scheme [77], Boneh-Boyen’s HIBE scheme [14] and Boneh-Boyen-

Goh’s HIBE scheme [15].

Later, Abdalla et al. [3] explored the relations between HIBE schemes and WIBE

schemes. They presented a generic transformation from any selective-secure WIBE to

a fully-secure HIBE, depending only on the notion of admissible hash functions; and

identified the conditions under which it is possible to get a generic transformation from a

selective-secure HIBE scheme into a selective-secure WIBE scheme.

They also proposed the first lattice-based WIBE scheme using the constructions and

HIBE scheme presented by Cash et al. [23]. The HIPE scheme (see Section 3.6) presented

by Abdalla, De Caro and Mochetti [1] was also converted into a lattice-based WIBE

scheme. Both schemes are selective-secure based on the Learning With Errors Problem

(LWE).

A WIBE Scheme is defined by the following tuple of four algorithms:

• Setup(1n): takes as input the security parameter n and outputs the public key PK

and the master secret key MK.

• KeyGen(PK,MK, id): generates a secret key SK using the public key, the master

key and the user’s identity id.

• Enc(PK,M,p): returns the ciphertext CT of message M using the public key and

the pattern p.

• Dec(PK, SK,CT ): decrypts the ciphertext CT into message M only if idi = pi,∀i,
such that pi 6= ?.

To ensure the correctness of the scheme the following must be true:

∀M, id,p, with idi = pi,∀i where pi 6= ? :

Dec(PK,KeyGen(PK,MK, id),Enc(PK,M,p)) = M.

3.6 Inner Product Encryption (IPE)

Inner-Product Encryption Schemes (IPE) associate the ciphertext with a vector w and

the secret key with a vector v and the decryption is only possible if the vector v and w are

orthogonal to each other, i.e., if their inner product is zero. IPE schemes can be used to
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support conjunction, subset and range queries on encrypted data as well as disjunctions,

polynomial evaluation, and CNF and DNF formulas.

IPE schemes were introduced by Katz, Sahai, and Waters [41] as a generalization of

IBE schemes. Since its introduction, there has been an extensive amount of work on

the construction of IPE schemes, most of them based on bilinear groups. The first IPE

scheme proposed by Katz et al. was based on bilinear groups and has its security proved

in the selective model. Later on, Okamoto et al. [56] were able to move to prime order

bilinear groups, but maintaining the security in the selective model.

In the lattice-based setting, there is only one know construction, by Agrawal et al. [7],

and its hierarchical version by Abdalla et al. [1]. Both are shown to be weak selective

secure based on the difficulty of the learning with errors (LWE) problem. Later, a more

efficient version of this scheme was showed by Xagawa [79].

An IPE Scheme is defined by the following tuple of four algorithms:

• Setup(1n): takes as input the security parameter n and outputs the public key PK

and the master secret key MK.

• KeyGen(PK,MK,v): generates a secret key SK using the public key, the master

key and the vector v.

• Enc(PK,M,w): returns the ciphertext CT of message M using the public key and

the vector w.

• Dec(PK, SK,CT ): decrypts the ciphertext CT into message M only if 〈v,w〉 = 0.

To ensure the correctness of the scheme the following must be true:

∀M,v,w, with 〈v,w〉 = 0 : Dec(PK,KeyGen(PK,MK,v),Enc(PK,M,w)) = M.

3.7 Hidden Vector Encryption (HVE)

Hidden Vector Encryption Schemes (HVE) associate the ciphertext with a binary vector

w and the secret key with a binary vector v, which can have special entries called “don’t

care” represented by ?. The decryption is only possible if the vector v and w are exactly

the same, except for the “don’t care” elements on vector v, i.e., vi = wi,∀i such that

vi 6= ?. HVE schemes are usually used on conjunctive, comparison and range queries.

HVE schemes were proposed by Boneh, and Waters [18] as a generalization of IBE

schemes. This scheme was based on bilinear groups and proved secure under the selective

model. Other schemes, also based on bilinear groups, were also developed: Iovino et
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al. [39] scheme used bilinear groups of prime order while De Caro et al. [21] scheme is the

first fully secure construction known.

HVE schemes were improved by Sedghi et al. [67] to create a cryptographic scheme that

can search keywords with wildcards on encrypted data. This scheme is based on bilinear

groups of prime order, supports vectors over any alphabet, not only binary vectors, and

it is proved secure in a selective model, under the decision linear assumption.

Any IPE scheme can be used to build an HVE scheme, as showed by Boneh, and

Waters [18]; therefore the lattice-based IPE scheme of Agrawal et al. [7] and its hierarchical

version by Abdalla et al. [1] can be enhanced to create a lattice-based HVE scheme.

In both schemes, the resultant HVE scheme will be weak selective secure based on the

difficulty of the Learning With Errors Problem (LWE). Another lattice-based HVE scheme

can be achieved by simple changes in the FBE scheme proposed by Agrawal et al. [6], as

described in details by Mochetti et al. [53].

An HVE Scheme is defined by the following tuple of four algorithms:

• Setup(1n): takes as input the security parameter n and outputs the public key PK

and the master secret key MK.

• KeyGen(PK,MK,v): generates a secret key SK using the public key, the master

key and the vector v.

• Enc(PK,M,w): returns the ciphertext CT of message M using the public key and

the vector w.

• Dec(PK, SK,CT ): decrypts the ciphertext CT into message M only if vi = wi,∀i
such that vi 6= ?.

To ensure the correctness of the scheme the following must be true:

∀M,v,w, with vi = wi,∀i where vi 6= ? :

Dec(PK,KeyGen(PK,MK,v),Enc(PK,M,w)) = M.

3.7.1 HVE Scheme from an IPE Scheme

It is possible to build an HVE scheme using an IPE scheme [41]. In this section we show

this construction. Given w ∈ {0, 1}n and v ∈ {0, 1, ?}n, we want a scheme that can be

decrypted only if vi = wi,∀i such that vi 6= ?. We can build two vectors a ∈ {0, 1, ?}2n

and b ∈ {0, 1}2n such that:

vi = wi, ∀i such that vi 6= ?⇒ 〈a, b〉 = 0 (3.1)



38 Chapter 3. Predicate Cryptography

and

∃i, vi 6= wi and vi 6= ?⇒ Pr[〈a, b〉 = 0] is negligible (3.2)

The vector a, used during the KeyGen algorithm is built from the vector v as follows:

if vi 6= ? : a2i−1 ← 1 and a2i ← vi
if vi = ? : a2i−1 ← 0 and a2i ← 0

Given a random vector r ∈ Z2n
N , the vector b, used during the Enc algorithm is built

from the vector w as follows:

b2i−i ← −riwi and b2i ← ri
Now we have to prove that equations 3.1 and 3.2 are valid for our construction of

vectors a and b. First notice that:

〈a, b〉 =
2n∑
j=1

ajbj =
n∑
i=1

a2i−1b2i−1 + a2ib2i

We have to analyse the sum term a2i−1b2i−1 + a2ib2i. There are three main cases:

• vi = ?

We have that the terms a2i−1 and a2i are 0, and therefore the whole sum term

a2i−1b2i−1 + a2ib2i is also 0, for any values of b2i−1 and b2i.

• vi = wi and vi 6= ?

We have that the term a2i−1 is 1 and the term a2i is vi. Beside that, we have that

the term b2i−1 is −riwi and b2i is ri. Remember that vi = wi, so by replacing the

values on the sum term a2i−1b2i−1 + a2ib2i we have:

a2i−1b2i−1 + a2ib2i = 1(−riwi) + viri = ri(vi − wi) = 0

• vi 6= wi and vi 6= ?

As before, we have that the term a2i−1 is 1 and the term a2i is vi. Beside that, we

have that the term b2i−1 is −riwi and b2i is ri. Now vi 6= wi, so replacing the values

on the sum term a2i−1b2i−1 + a2ib2i will give us:

a2i−1b2i−1 + a2ib2i = 1(−riwi) + viri = ri(vi − wi)

For equation 3.1, we only have terms on two first items; therefore, all the terms in the

sum are 0 and 〈a, b〉 = 0.

For equation 3.2, we can have terms from all the items above; all of them are 0 except

the third item, which will be ri(vi−wi). In this case we have to analyse
∑
ri(vi−wi), ∀i,

where vi 6= wi. Assuming gcd(vi−wi, N) = 1 we have that the probability of this sum be

0 is 1/N . For N big enough, this probability is negligible [41].

Therefore, if vi = wi,∀i such that vi 6= ? then we have 〈a, b〉 = 0 and if ∃i, vi 6= wi
such that vi 6= ? then the probability of 〈a, b〉 = 0 is negligible.
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Identity-Based Encryption

In this chapter we describe the lattice-based IBE scheme proposed by Agrawal, Boneh and

Boyen [4]. Section 4.1 reviews the general scheme and Section 4.2 gives the hierarchical

version, both described in the same work.

4.1 Lattice-Based Identity-Based Encryption

This Section reviews the IBE scheme proposed by Agrawal, Boneh and Boyen [4]. Sec-

tion 4.1.1 describes the four algorithms that comprise the IBE scheme, Sections 4.1.2,

4.1.3, 4.1.4 and 4.1.5 give the correctness, security, parameters and complexity analysis

of the underlined scheme, respectively.

4.1.1 Description

As described in Section 3.2, an Identity-Based Encryption Scheme consists of the following

algorithms: SetUp(1n), KeyGen(PK,MK, id), Enc(PK,M, id) and Dec(PK, SK,CT ). In

this section we describe each algorithm as presented by Agrawal et al. [4].

IBE-SetUp creates a general lattice and chooses at random the matrices and vector that

will form the public and master keys. IBE-KeyGen generates the secret key by encoding

the identity id into a matrix using the rotf () function and concatenating it to the lattice

basis. The secret key is a vector e created by the SampleLeft algorithm (described in

Section 2.2), using the matrix concatenation as the lattice basis; therefore e ∈ Λuq (Aid).

IBE-Enc uses the message M , the identity id and the matrices in the public key to

create an integer c′ and vectors c0 and c1 that will compose the ciphertext for one bit.

Finally, IBE-Dec can recover the message from the ciphertext only if the identity used

during the key generation is the same as the one used during the encryption.

39
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Let n be the security parameter and σ be the Gaussian parameter. Algorithms 4.1,

4.2, 4.3 and 4.4 describe the IBE scheme.

Algorithm 4.1 IBE-SetUp(): Setup Algorithm for the IBE Scheme

Input: security parameter 1n

Output: Public key PK and master key MK

A,S ← TrapGen(q, n,m)

A0, B
$← Zn×mq

u
$← Znq

public key PK = (A,A0, B,u)

master key MK = S

Algorithm 4.2 IBE-KeyGen(): Key Generation Algorithm for the IBE Scheme

Input: Public key PK, master key MK and identity id

Output: Secret key SK

C = A0 + rotf (id)B

Aid = [A|C] ∈ Zn×2m

e← SampleLeft(A,C, S,u, σ)

secret key SK = e ∈ Z2m
q

Algorithm 4.3 IBE-Enc(): Encryption Algorithm for the IBE Scheme

Input: Public key PK, message M and identity id

Output: Ciphertext CT

s
$← Znq

x ∈ Ψ
m

α and x ∈ Ψα

R
$← {−1, 1}m×m

C = A0 + rotf (id)B

c0 = A>s+ x ∈ Zmq
c1 = C>s+R>x ∈ Zmq
c′ = u>s+ x+Mbq/2c
ciphertext CT = (c0, c1, c

′)
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Algorithm 4.4 IBE-Dec(): Decryption Algorithm for the IBE Scheme

Input: Public key PK, secret key SK and ciphertext CT

Output: message M

z = c′ − e>
[
c0
c1

]
mod q

if |z| < q/4, then M = 0; else M = 1

4.1.2 Correctness

The correctness is straightforward. First we just substitute the values of c0, c1 and c′

in z. If the identity used during the key generation is the same as the one used during

the encryption, then Aid is [A|C] and, therefore, u> = e>[A|C]>. Finally, we cancel the

terms u>s, identify all terms that refer to the “noise” and get the right value of M in z.

z = c′ − e>
[
c0

c1

]
mod q

= c′ − e>
[
A>s+ x

C>s+R>x

]
mod q

= c′ − e>
[
A

C

]>
s− e>

[
x

R>x

]
mod q

= u>s+ x+Mbq/2c − u>s− e>
[
x

R>x

]
mod q

= x+Mbq/2c − e>
[
x

R>x

]
mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

4.1.3 Security

In this section we prove the following theorem.

Theorem 4.1. If the decision-LWE problem is infeasible, then the functional encryption

scheme described in Section 4.1.1 is IND-AH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.IBE-SetUp(1n, id?): The algorithm chooses random matrices A ∈ Zn×mq and

R? ∈ {−1, 1}m×m and vector u ∈ Znq and it uses TrapGen(q, n,m) to generate B? ∈ Zn×mq
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and the basis S? ∈ Zm×m for Λ⊥q (B?). It then defines A0 ← AR? − rotf (id
?)B? and

outputs PK = (A,A0,u) and MK = (R?, B?, S?).

Sim.IBE-KeyGen(PK,MK, id): Secret keys are now sampled by the SampleRight

algorithm, using the trapdoor S?. It outputs

SK = e ∈ Λuq (A|AR? + (rotf (id)− rotf (id
?))B?), where

e← SampleRight(A, (rotf (id)− rotf (id
?))B?, R?, S?,u, σ).

Note that we must have id 6= id? for the algorithm SampleRight to work properly.

Sim.IBE-Enc(PK,M, id?): The algorithm differs from IBE-Enc in the sense that it

uses matrices R? and B? instead of matrices R and B.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

• Game 0: C runs IBE-SetUp, answers A’s secret key queries using the IBE-KeyGen

algorithm, and generates the challenge ciphertext using the IBE-Enc with identity id?0

and M0.

• Game 1: C runs Sim.IBE-SetUp with identity id?0, answers A’s secret key queries

using Sim.IBE-KeyGen, and generates the challenge ciphertext using the Sim.IBE-Enc al-

gorithm with id?0 and M0.

• Game 2: C runs Sim.IBE-SetUp with identity id?0, answers A’s secret key queries

using Sim.IBE-KeyGen, and generates the challenge ciphertext randomly.

• Game 3: C runs Sim.IBE-SetUp with identity id?1, answers A’s secret key queries

using Sim.IBE-KeyGen, and generates the challenge ciphertext randomly.

• Game 4: C runs Sim.IBE-SetUp with identity id?1, answers A’s secret key queries

using Sim.IBE-KeyGen, and generates the challenge ciphertext using the Sim.IBE-Enc al-

gorithm with id?1 and M1.

• Game 5: C runs IBE-SetUp, answers A’s secret key queries using the IBE-KeyGen

algorithm, and generates the challenge ciphertext using the IBE-Enc with identity id?1

and M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.

Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 4.1. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.
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SetUp In Game 0, matrix A is generated by TrapGen and matrix A0 is uniformly

random in Zn×mq . Instead, in Game 1, A is chosen uniformly at random and we have A0 ←
AR?− rotf (id

?)B?, where B? is generated by TrapGen and the matrix R? is uniformly and

independently chosen at random in {−1, 1}m×m. In both games the vector u is chosen at

random in Znq .

Secret keys In Game 0, the secret key for identity id is a vector e ∈ Λuq (Aid), sampled

using the SampleLeft algorithm. The same happens in Game 1 by using SampleRight.

Thus, the secret keys have the same distribution in both games.

Challenge Ciphertext In both games the challenge ciphertext components c′ and

c0 are computed the same way but, in Game 0, the challenge ciphertext component c1 is

computed as follows:

c1 = (A0 + rotf (id
?)B?)>s+R?>x ∈ Zmq .

On the other hand, in Game 1, we have:

c1 = (A0 + rotf (id
?)B?)>s+R?>x

= (AR? − rotf (id
?)B? + rotf (id

?)B?)>s+R?>x

= (AR)?>s+R?>x ∈ Zmq

.

Let us now analyse the joint distribution of the public parameters and the challenge

ciphertext in Game 0 and Game 1. We will show that the distributions of (A,A0, c1) in

Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemmas A.4 and A.5 we have that the following two distributions

are statistically indistinguishable for every fixed matrix B?, every id? and every vector

x ∈ Zmq :

(
A,A0, R

?>x
)
≈s
(
A,AR? − rotf (id

?)B?, R?>x
)
.

Since (AR? − rotf (id
?)B?)>s is statistically close to A>0 s, it is possible to add each

term to each side of the equation: (
A,A0, A

>
0 s+R?>x

)
≈s(

A,AR? − rotf (id
?)B?, (AR? − rotf (id

?)B?)>s+R?>x
) .

Then, we add (rotf (id
?)B?)>s to each side of the equation:(
A,A0, (A0 + rotf (id

?)B?)>s+R?>x
)
≈s(

A,AR? − rotf (id
?)B?, (AR?)>s+R?>x

) .
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To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 4.2. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-LWE.

Init B is given m + 1 LWE challenge pairs (aj, yj) ∈ Znq × Zq, where either yj =

〈aj, s〉+ xj for a random s ∈ Znq and a noise term xj ← Ψα, or yj is uniformly random in

Zq.
SetUp The public parameters are constructed using the vectors of the pairs (aj, yj).

The i-th column of matrix A will be the vector ai, for 1 ≤ i ≤ m and vector u will be

a0. The matrix A0 is still calculated as in Sim.IBE-SetUp, i.e., A0 ← AR? − rotf (id
?)B?.

Secret keys All private-key extraction queries are answered using Sim.IBE-KeyGen.

Challenge Ciphertext The ciphertext CT = (c?0, c
?
1, c
′?) is constructed based on

the terms in the LWE challenge pairs (aj, yj), with c?0 = (y1, . . . , ym), c?1 = R?>c?0 and

c′? = y0+Mbq/2e. If we have yj = 〈aj, s〉+xj on the LWE challenge, then the ciphertext is

distributed exactly as in Game 1, and if yj is uniformly random in Zq, then the ciphertext

is distributed exactly as in Game 2 . If yj = 〈aj, s〉+ xj, then

(y1, . . . , ym) = (〈a1, s〉+ x1, . . . , 〈am, s〉+ xm) = A>s+ x.

Therefore, for Game 1 we have

c?0 = A>s+ x

= (y1, . . . , ym) ,

and

c?1 = C>s+R>x

= (A0 + rotf (id)B)>s+R?>x

= (AR? − rotf (id
?)B? + rotf (id)B)>s+R?>x

= (AR?)>s+R?>x

= R?>(A>s+ x)

= R?>c?0 .
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If yj is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer

to this guess is also the answer to the LWE challenge, because, as we showed, if yj is

uniformly random in Zq, then A’s view is the same as in Game 2 and if yj = 〈aj, s〉+ xj,

then A’s view is the same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 4.3. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated in the same way in both games. A and

u are random and A0 ← AR? − rotf (id
?)B?, with id? = id?0 for Game 2 and id? = id?1

for Game 3.

Secret keys All private-key extraction queries are answered using Sim.IBE-KeyGen.

The only difference is, again, that for Game 2, id? = id?0 and, for Game 3, id? = id?1.

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for matrix A0.

Therefore, the indistinguishability of Game 2 and Game 3 only depends on the indistin-

guishability of A0. From Lemmas A.4 and A.5 we can prove that A0 for each game is

statistically close to a uniformly random matrix, because

A0 ← AR? − rotf (id
?)B?.

4.1.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.

We know that ‖e‖ ≤ σ
√

2m from Lemma A.1 and ‖Re‖ ≤ 12
√

2m‖e‖ from Lemma A.2;

therefore, for e =

[
e1

e2

]
:

‖e1 +Re2‖ ≤ (σ
√

2m+ 12
√

2mσ
√

2m) so

‖e1 +Re2‖ ≤ O(σm) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈e1 +Re2,x〉 ≤ O(σm)qαw(
√

log 2m) +O(σm)
√

2m/2

〈e1 +Re2,x〉 ≤ Õ(σmqα) +O(σm3/2) .



46 Chapter 4. Identity-Based Encryption

To ensure that the error term is less than q/4, we need the following:

x− e>
[
x

R>x

]
< q/4

x− e>1 x− e>2 R>x < q/4

x− (e1 +Re2)>x < q/4

x− 〈e1 +Re2,x〉 < q/4

Õ(σmqα) +O(σm3/2) < q/4

To ensure that σ is sufficiently large for SampleLeft and SampleRight (Theorems 2.7

and 2.8), we have

σ > ‖S‖
√

2mω(
√

log 2m).

To ensure that TrapGen (Theorem 2.1) can operate, we have

m ≥ 6n log q and

‖S‖ ≤ O(n log q) .

To ensure that the reduction applies (Theorem 2.12), we have

q > 2
√
n/α .

Therefore, we need to set the parameters as

m = 6nδ+1,

q = m2.5ω(
√

log n),

α = (m2ω(
√

log n))−1,

σ = mω(
√

log n),

with δ such that nδ = O(log q).

4.1.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 4.1.1. Note that for security

parameter n and modulus q, we have m = O(n log q) (see Section 4.1.4).

The master key MK is just an m×m matrix, therefore its size is m2. The public key

PK is comprised of a vector of length n and three n ×m matrices; therefore its size is

n+ 3nm, which is O(mn). The secret key is just a vector of length 2m; therefore its size



4.2. Lattice-Based Hierarchical Identity-Based Encryption 47

is 2m, which is O(m). Finally, the ciphertext is comprised of an integer and two vectors

of length m; therefore its size is 1 + 2m, which is O(m).

The complexity of IBE-SetUp is based on the complexity of the TrapGen algorithm. By

Theorem 2.1 we have that the TrapGen algorithm is polynomial, and, therefore, IBE-SetUp

is also polynomial. The complexity of IBE-KeyGen is based on the complexity of the

SampleLeft algorithm plus one matrix-matrix multiplication (O(n2m)) and a matrix ad-

dition (O(nm)). As before, we have that the SampleLeft algorithm is polynomial, by

Theorem 2.7.

The IBE-Enc algorithm does one matrix-matrix multiplication (O(n2m)), three matrix-

vector multiplications (O(nm+nm+m2)), one inner product (O(n)), one matrix addition

(O(nm)), two vector additions (O(m), each) and two simple additions O(1). Therefore,

the complexity of IBE-Enc is based on the matrix-matrix multiplication operation. The

IBE-Dec algorithm does only the inner product between two vectors and a simple addition.

Since the vectors are of length 2m, we have that the complexity of IBE-Dec is O(m).

Table 4.1 summarises the size of the main variables and Table 4.2 summarises the

complexity of the four algorithms of the scheme described in Section 4.1.1.

Variable Size

Public Key PK O(n2 log q)

Master Key MK O(n2 log2 q)

Secret Key SK O(n log q)

Ciphertext CT O(n log q)

Table 4.1: Key Sizes of the general IBE Scheme

Algorithm Complexity

SetUp O(poly(n))

KeyGen O(poly(n) + n3 log q)

Enc O(n3 log q)

Dec O(n log q)

Table 4.2: Complexity of the general IBE Scheme

4.2 Lattice-Based Hierarchical Identity-Based Encryp-

tion

This Section reviews the hierarchical IBE scheme proposed by Agrawal, Boneh and

Boyen [4]. Section 4.2.1 describes the four algorithms that comprise the HIBE scheme,
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Sections 4.2.2, 4.2.3, 4.2.4 and 4.2.5 give the correctness, security, parameters and com-

plexity analysis of the underlined scheme, respectively.

4.2.1 Description

As described in Section 3.1, an Hierarchical Identity-Based Encryption Scheme consists

of the following algorithms: SetUp(1n, µ), KeyDerive(PK, SKt−1, id1, · · · , idt),
Enc(PK,M, id1, · · · , idt) and Dec(PK, SKt, CT ). In this section we describe each algo-

rithm as presented by Agrawal et al. [4]. The hierarchy is described by parameter µ and

has maximum depth d.

HIBE-SetUp creates a general lattice and chooses at random d+1 matrices and a vector

that will form the public and master keys. HIBE-KeyDerive generates the secret key by

encoding each identity idi into a matrix using the rotf () function and concatenating it

to the lattice basis. Now, the secret key is a short basis for the lattice generate by this

concatenation, using the algorithm SampleBasisLeft, described in Section 2.2. Note that

SK0 = MK.

HIBE-Enc uses the message M , the identities idi and the matrices in the public key

to create an integer c′, vector c0 and t vectors ci, one for each level, that will compose

the ciphertext for one bit. Finally, HIBE-Dec uses the algorithm SamplePre with the basis

that comprise SKt to find a vector e ∈ Λuq (A|C1| · · · |Ct) and then recover the message

from the ciphertext only if all the identities idj used are the same, for all j ∈ [1, t].

Let n be the security parameter, µ be the hierarchical parameter and σi (for i ∈ [1, d])

be the Gaussian parameters. Algorithms 4.5, 4.6, 4.7 and 4.8 describe the HIBE scheme.

Algorithm 4.5 HIBE-SetUp(): Setup Algorithm for the HIBE Scheme

Input: security parameter 1n and hierarchical parameter 1µ

Output: Public key PK and master key MK

A,S ← TrapGen(q, n,m)

Ai
$← Zn×mq , for i ∈ [1, d]

B
$← Zn×mq

u
$← Znq

public key PK = (A, {Ai}, B,u)

master key MK = S
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Algorithm 4.6 HIBE-KeyDerive(): Key Generation Algorithm for the HIBE Scheme

Input: Public key PK, secret key SKt−1 and identities id1, · · · , idt
Output: Secret key SKt

Ci = Ai + rotf (idi)B, for i ∈ [1, t]

C = [C1| · · · |Ct−1]

St ← SampleBasisLeft([A|C], Ct, St−1, σt)

secret key SKt = St ∈ Zn×(t+1)m
q

Algorithm 4.7 HIBE-Enc(): Encryption Algorithm for the HIBE Scheme

Input: Public key PK, message M and identities id1, · · · , idt
Output: Ciphertext CT

s
$← Znq

x ∈ Ψ
m

α and x ∈ Ψα

Ri
$← {−1, 1}m×m

Ci = Ai + rotf (idi)B

c0 = A>s+ x ∈ Zmq
ci = C>i s+R>i x ∈ Zmq
c′ = u>s+ x+Mbq/2c
ciphertext CT = (c0, {ci}, c′)

Algorithm 4.8 HIBE-Dec(): Decryption Algorithm for the HIBE Scheme

Input: Public key PK, secret key SKt and ciphertext CT

Output: message M

Ci = Ai + rotf (idi)B, for i ∈ [1, t]

C = [C1| · · · |Ct]
σ = σt

√
m(t+ 1)ω(

√
log(tm))

e = SamplePre([A|C], St,u, σ)

z = c′ − e>


c0

c1

...

ct

 mod q

if |z| < q/4, then M = 0; else M = 1
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4.2.2 Correctness

The correctness is straightforward, exactly like the IBE scheme. First we just substitute

the values of c0, ci and c′ in z. If the identities used during the key generation are the

same as the ones used during the encryption, then u> = e>[A|C]>, with C = [C1| · · · |Ct].
Finally, we cancel the terms u>s, identify all terms that refer to the “noise” and get the

right value of M in z.

z = c′ − e>


c0

c1

...

ct

 mod q

= c′ − e>


A>s+ x

C>1 s+R>1 x
...

C>t s+R>t x

 mod q

= c′ − e>
[
A>

C>

]
s− e>

[
x

R>x

]
mod q

= c′ − e>[A|C]>s− e>
[
x

R>x

]
mod q

= u>s+ x+Mbq/2c − u>s− e>
[
x

R>x

]
mod q

= x+Mbq/2c − e>
[
x

R>x

]
mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

4.2.3 Security

In this section we prove the following theorem.

Theorem 4.2. If the decision-LWE problem is infeasible, then the functional encryption

scheme described in Section 4.2.1 is IND-AH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.HIBE-SetUp(1n, 1µ, id?1, · · · , id?d): The algorithm chooses random A ∈ Zn×mq ,

R?
i ∈ {−1, 1}m×m and u ∈ Znq and it uses TrapGen(q, n,m) to generate B? ∈ Zn×mq and
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the basis S? ∈ Zm×m for Λ⊥q (B?). It then defines Ai ← AR?
i − rotf (id

?
i )B

?, for i ∈ [1, d]

and outputs PK = (A, {Ai},u) and MK = (R?, B?, S?).

Sim.HIBE-KeyDerive(PK,MK, id1, · · · , idt): Secret keys are now sampled by the

SampleBasisRight algorithm, using the trapdoor S?. It outputs SKt = St which is a basis

for lattice Λ⊥q (A|AR?
1 − rotf (id

?
1)B?| · · · |AR?

t − rotf (id
?
t )B

?):

S ← SampleBasisRight(A,B?
id, R

?, S?, σt),

with R? = [R?
1| · · · |R?

t ]

and B?
id = [(rotf (id1)− rotf (id

?
1))B?| · · · |(rotf (idt)− rotf (id

?
t ))B

?].

Note that we must have idi 6= id?i , for all i ∈ [1, t], for the algorithm SampleRight to

work properly.

Sim.HIBE-Enc(PK,M, id?1, · · · , id?t ): The algorithm differs from HIBE-Enc in the

sense that it uses matrices R?
i and B? instead of matrices Ri and B.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

•Game 0: C runs HIBE-SetUp, answersA’s secret key queries using the HIBE-KeyDerive

algorithm, and generates the challenge ciphertext using the HIBE-Enc with identities

id?01 , · · · , id?0t and M0.

• Game 1: C runs Sim.HIBE-SetUp with identities id?01 , · · · , id?0d , answers A’s secret

key queries using Sim.HIBE-KeyDerive, and generates the challenge ciphertext using the

Sim.HIBE-Enc algorithm with id?01 , · · · , id?0t and M0.

• Game 2: C runs Sim.HIBE-SetUp with identity identities id?01 , · · · , id?0d , answers

A’s secret key queries using Sim.HIBE-KeyDerive, and generates the challenge ciphertext

randomly.

• Game 3: C runs Sim.HIBE-SetUp with identity identities id?11 , · · · , id?1d , answers

A’s secret key queries using Sim.HIBE-KeyDerive, and generates the challenge ciphertext

randomly.

• Game 4: C runs Sim.HIBE-SetUp with identities id?11 , · · · , id?1d , answers A’s secret

key queries using Sim.HIBE-KeyDerive, and generates the challenge ciphertext using the

Sim.HIBE-Enc algorithm with id?11 , · · · , id?1t and M1.

•Game 5: C runs HIBE-SetUp, answersA’s secret key queries using the HIBE-KeyDerive

algorithm, and generates the challenge ciphertext using the HIBE-Enc with identities

id?11 , · · · , id?1t and M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.

For simplicity reasons, assume that every time we refer to matrices Ai and R?
i and

vectors ci we are referring to all matrices or vector for i ∈ [1, d].
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Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 4.4. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.

SetUp In Game 0, matrix A is generated by TrapGen and matrices Ai are uniformly

random in Zn×mq . Instead, in Game 1, A is chosen uniformly at random and we have

Ai ← AR?
i − rotf (id

?
i )B

?, where B? is generated by TrapGen and the matrices R?
i are

uniformly and independently chosen at random in {−1, 1}m×m. In both games the vector

u is chosen at random in Znq .

Secret keys In Game 0, the secret key for identity id is a basis of Λ⊥q (A|C), with

C = [A1 + rotf (id1)B| . . . |At + rotf (idt)B] sampled using the SampleBasisLeft algorithm.

The same happens in Game 1 by using SampleBasisRight. Thus, the secret keys have the

same distribution in both games.

Challenge Ciphertext In both games the challenge ciphertext components c′ and

c0 are computed the same way but, in Game 0, the challenge ciphertext components ci
are computed as follows:

ci = C>i s+R
?>
i x

ci = (Ai + rotf (idi)B
?)>s+R>i x ∈ Zmq

.

On the other hand, in Game 1, we have:

ci = C>i s+R?>
i x

= (Ai + rotf (idi)B
?)>s+R

?>
i x ∈ Zmq

= (AR?
i − rotf (id

?
i )B

? + rotf (idi)B
?)>s+R

?>
i x ∈ Zmq

= (AR?
i )
>s+R>i x ∈ Zmq

.

Let us now analyse the joint distribution of the public parameters and the challenge

ciphertext in Game 0 and Game 1. We will show that the distributions of (A, {Ai}, {ci})
in Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemmas A.4 and A.5 we have that the following two distributions

are statistically indistinguishable for every fixed matrix B?, every id?i and every vector

x ∈ Zmq :

(
A,Ai, R

?>
i x

)
≈s
(
A,AR?

i − rotf (id
?
i )B

?, R?>
i x

)
.

Since each R?
i is chosen independently for every i, then the joint distribution of them

are statistically close:
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(
A, {Ai}, {R?>

i x}
)
≈s
(
A, {AR?

i − rotf (id
?
i )B

?}, {R?>
i x}

)
.

Since (AR?
i − rotf (id

?
i )B

?)>s is statistically close to A>i s, it is possible to add each

term to each side of the equation: (
A, {Ai}, {A>i s+R?>

i x}
)
≈s(

A, {AR?
i − rotf (id

?
i )B

?}, {(AR?
i − rotf (id

?
i )B

?)>s+R?>
i x}

) .

Then, we add (rotf (id
?
i )B

?)>s to each side of the equation:(
A, {Ai}, {(Ai + rotf (id

?
i )B

?)>s+R?>
i x}

)
≈s(

A, {AR?
i − rotf (id

?
i )B

?}, {(AR?
i )
>s+R?>

i x}
) .

To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 4.5. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-LWE.

Init B is given m + 1 LWE challenge pairs (aj, yj) ∈ Znq × Zq, where either yj =

〈aj, s〉+ xj for a random s ∈ Znq and a noise term xj ← Ψα, or yj is uniformly random in

Zq.
SetUp The public parameters are constructed using the vectors of the pairs (aj, yj).

The i-th column of matrix A will be the vector ai, for 1 ≤ i ≤ m and vector u will be a0.

The matrices Ai are still calculated as in Sim.HIBE-SetUp, i.e., Ai ← AR?
i − rotf (id

?
i )B

?.

Secret keys All private-key extraction queries are answered using Sim.HIBE-KeyDerive.

Challenge Ciphertext The ciphertext CT = (c?0, {c?i }, c′?) is constructed based on

the terms in the LWE challenge pairs (aj, yj), with c?0 = (y1, . . . , ym), c′? = y0 + Mbq/2e
and c?i = R?>

i c
?
0. If we have yj = 〈aj, s〉+xj on the LWE challenge, then the ciphertext is

distributed exactly as in Game 1, and if yj is uniformly random in Zq, then the ciphertext

is distributed exactly as in Game 2. If yj = 〈aj, s〉+ xj, then

(y1, . . . , ym) = (〈a1, s〉+ x1, . . . , 〈am, s〉+ xm) = A>s+ x.

Therefore, for Game 1 we have
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c?0 = A>s+ x

= (y1, . . . , ym) ,

and

c?i = C>i s+R?>
i x

= (Ai + rotf (idi)B
?)>s+R?>

i x

= (AR?
i − rotf (id

?
i )B

? + rotf (idi)B
?)>s+R?>

i x

= (AR?
i )
>s+R?>

i x

= R?>
i (A>s+ x)

= R?>
i c

?
0 .

If yj is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer

to this guess is also the answer to the LWE challenge, because, as we showed, if yj is

uniformly random in Zq, then A’s view is the same as in Game 2 and if yj = 〈aj, s〉+ xj,

then A’s view is the same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 4.6. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated in the same way in both games. A and

u are random and Ai ← AR?
i − rotf (id

?
i )B

?, with id?i = id?0i for Game 2 and id?i = id?1i
for Game 3.

Secret keys All private-key extraction queries are answered using Sim.HIBE-KeyDerive.

The only difference is, again, that for Game 2, id?i = id?0i and, for Game 3, id?i = id?1i .

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for matrices

Ai. Therefore, the indistinguishability of Game 2 and Game 3 only depends on the

indistinguishability of Ai. From Lemmas A.4 and A.5 we can prove that each Ai for each

game is statistically close to a uniformly random matrix, because

Ai ← AR?
i − rotf (id

?
i )B

?.
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4.2.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.

We know that ‖e‖ ≤ σt
√

(t+ 1)m from Lemma A.1 and ‖Re‖ ≤ 12
√
tm+m‖e‖

from Lemma A.2, for R = [R1| · · · |Rt], with max(t) = d; therefore, for e =

[
e1

e2

]
:

‖e1 +Re2‖ ≤ σt
√

(d+ 1)m+ d12
√

(d+ 1)mσt
√

(d+ 1)m so

‖e1 +Re2‖ ≤ O(σtd
2m) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈e1 +Re2,x〉 ≤ O(σtd
2m)qαtω(

√
logm) +O(σtd

2m)
√
m/2

〈e1 +Re2,x〉 ≤ Õ(σtd
2mqαt) +O(σtd

2m3/2) .

To ensure that the error term is less than q/4, we need the following:

x− e>
[
x

R>x

]
< q/4

x− e>1 x− e>2 R>x < q/4

x− (e1 +Re2)>x < q/4

x− 〈e1 +Re2,x〉 < q/4

Õ(σtd
2mqα) +O(σtd

2m3/2) < q/4

To ensure that σt is sufficiently large for SampleBasisLeft and SampleBasisRight (The-

orems 2.10 and 2.11), we have

σt > ‖S‖
√
mω(

√
logm).

To ensure that TrapGen (Theorem 2.1) can operate, we have

m ≥ 6n log q and

‖S‖ ≤ O(n log q) .

To ensure that the reduction applies (Theorem 2.12), we have

q > 2
√
n/αt .

Therefore, we need to set the parameters as
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m = 6nδ+1,

q = m2.5ω(
√

log n),

αt = (m2ω(
√

log n))−1,

σt = mω(
√

log n),

with δ such that nδ = O(log q).

4.2.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 4.2.1. Note that for security

parameter n, hierarchy’s maximum depth d and modulus q, we have m = O(n log q) (see

Section 4.2.4).

The master key MK is just an m×m matrix, therefore its size is m2. The public key

PK is comprised of a vector of length n and d + 2 matrices of size n ×m; therefore its

size is n + (d + 2)nm, which is O(dmn). The secret key is now a matrix, not a vector,

of size n × (t + 1)m, with max(t) = d; therefore its size is at most n(d + 1)m, which is

O(dnm). Finally, the ciphertext is comprised of an integer and t+ 1 vectors of length m,

with max(t) = d; therefore its size is at most 1 +m+ dm, which is O(dm).

The complexity of HIBE-SetUp is based on the complexity of the TrapGen algorithm.

By Theorem 2.1 we have that the TrapGen algorithm is polynomial, and, therefore,

HIBE-SetUp is also polynomial. The complexity of HIBE-KeyDerive is based on the com-

plexity of the SampleBasisLeft algorithm plus t matrix-matrix multiplications (O(n2m),

each) and t matrix addition (O(nm), each). As before, we have that the SampleBasisLeft

algorithm is polynomial, by Theorem 2.10.

The HIBE-Enc algorithm does t matrix-matrix multiplication (O(n2m), each), t matrix

additions (O(nm), each), 2t + 1 matrix-vector multiplications (O(nm + tnm + tm2)),

one inner product (O(n)), 1 + t vector additions (O(m + tm)) and two simple additions

O(1). Therefore, the complexity of HIBE-Enc is based on the matrix-matrix multiplication

operations for t = d. The HIBE-Dec algorithm does t matrix-matrix multiplications

(O(n2m), each), t matrix-matrix addition operations (O(nm), each), one inner product

between two vectors of length tm, a few simple additions and multiplications and calls the

SamplePre algorithm. We have, by Theorem 2.6, that SamplePre is polynomial, therefore

the complexity of the HIBE-Dec algorithm is based on SamplePre and the matrix-matrix

multiplications.

Table 4.3 summarises the size of the main variables and Table 4.4 summarises the

complexity of the four algorithms of the scheme described in Section 4.2.1.
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Variable Size

Public Key PK O(dn2 log q)

Master Key MK O(n2 log2 q)

Secret Key SK O(dn2 log q)

Ciphertext CT O(dn log q)

Table 4.3: Key Sizes of the HIBE Scheme

Algorithm Complexity

SetUp O(poly(n))

KeyDerive O(poly(n) + dn3 log q)

Enc O(dn3 log q)

Dec O(poly(n) + dn3 log q)

Table 4.4: Complexity of the HIBE Scheme
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Chapter 5

Inner Product Encryption

In this chapter we describe the lattice-based IPE scheme proposed by Agrawal, Freeman

and Vaikuntanathan [7]. Section 5.1 describes the general scheme as described by Agrawal

et al. [7] and Section 5.2 describes our contribution, a hierarchical version of the same

scheme as decsribed by Abdalla et al. [1].

5.1 Lattice-Based Inner Product Encryption

This Section reviews the IPE scheme proposed by Agrawal, Freeman and Vaikuntanathan [7].

Section 5.1.1 describes the four algorithms that comprise the IPE scheme, Sections 5.1.2,

5.1.3, 5.1.4 and 5.1.5 give the correctness, security, parameters and complexity analysis

of the underlined scheme, respectively.

5.1.1 Description

As described in Section 3.6, an Inner Product Encryption Scheme consists of the following

algorithms: SetUp(1n), KeyGen(PK,MK,v), Enc(PK,M,w) and Dec(PK, SK,CT ). In

this section we describe each algorithm as presented by Agrawal et al. [7].

This scheme is similar to the IBE scheme described in Section 4.1, but the attributes

are vectors, instead of identities, and the decryption is only possible if the inner product

of these two vectors is zero. These vectors have length l and their elements are integers

in [0, q− 1]. For a vector v ∈ Zlq, each element vj ∈ v can be decomposed in k integers as

follows:

vj =
k∑
γ=0

vj,γr
γ.

As before, IPE-SetUp creates a general lattice and chooses at random the matrices

and a vector that will form the public and master keys. But now it will create l(1 + k)

59
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matrices, instead of only two. IPE-KeyGen generates the secret key by multiplying each

element of v, decomposed in k elements, with a matrix, adding all the resulting matrices

and concatenating it to the lattice basis. The secret key is the vector e created by the

SampleLeft algorithm as described in Section 2.2, using the matrix concatenation as the

lattice basis; therefore e ∈ Λuq (Av).

IPE-Enc uses the message M , the elements of vector w and the matrices in the public

key to create an integer c′, a vector c0 and several vectors cj,γ that will compose the

ciphertext for one bit. Finally, IPE-Dec can recover the message from the ciphertext only

if 〈v,w〉 = 0.

Let n be the security parameter and σ be the Gaussian parameter. Algorithms 5.1,

5.2, 5.3 and 5.4 describe the IPE scheme.

Algorithm 5.1 IPE-SetUp(): Setup Algorithm for the IPE Scheme

Input: security parameter 1n

Output: Public key PK and master key MK

A,S ← TrapGen(q, n,m)

Aj,γ
$← Zn×mq , for j ∈ [1, l] and γ ∈ [0, k]

u
$← Znq

public key PK = (A, {Aj,γ},u)

master key MK = S

Algorithm 5.2 IPE-KeyGen(): Key Generation Algorithm for the IPE Scheme

Input: Public key PK, master key MK and vector v

Output: Secret key SK

C =
l∑

j=1

k∑
γ=0

vj,γAj,γ

Av = [A|C] ∈ Zn×2m

e← SampleLeft(A,C, S,u, σ)

secret key SK = e ∈ Z2m
q
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Algorithm 5.3 IPE-Enc(): Encryption Algorithm for the IPE Scheme

Input: Public key PK, message M and vector w

Output: Ciphertext CT

B
$← Zn×mq

s
$← Znq

x ∈ Ψ
m

α and x ∈ Ψα

R
$← {−1, 1}m×m

c0 = A>s+ x ∈ Zmq
cj,γ = (Aj,γ + rγwjB)>s+R>x ∈ Zmq
c′ = u>s+ x+Mbq/2c
ciphertext CT = (c0, {cj,γ}, c′)

Algorithm 5.4 IPE-Dec(): Decryption Algorithm for the IPE Scheme

Input: Public key PK, secret key SK and ciphertext CT

Output: message M

cv =
l∑

j=1

k∑
γ=0

vj,γcj,γ

z = c′ − e>
[
c0
cv

]
mod q

if |z| < q/4, then M = 0; else M = 1

5.1.2 Correctness

On the first step of the correctness we substitute the values of all vectors cj,γ in cv. In this

step we recover the value with the inner product of v and w and we only can cancel the

term multiplying B if 〈v,w〉 = 0. Then, we substitute the value of cv together with c0

and c′ in z. Finally, we cancel the terms u>s, identify all terms that refer to the “noise”
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and get the right value of M in z.

cv =
l∑

i=1

k∑
γ=0

vj,γcj,γ

=
l∑

i=1

k∑
γ=0

vj,γ[(Aj,γ + rγwiB)>s+R>x]

=
l∑

i=1

k∑
γ=0

vj,γA
>
j,γs+

l∑
i=1

k∑
γ=0

vj,γr
γwiB

>s+
l∑

i=1

k∑
γ=0

vj,γR
>x

= C>s+ 〈v,w〉B>s+
l∑

i=1

k∑
γ=0

vj,γR
>x

= C>s+
l∑

i=1

k∑
γ=0

vj,γR
>x

z = c′ − e>
[
c0

cv

]
mod q

= u>s+ x+Mbq/2c − e>

 A>s+ x

C>s+
l∑

i=1

k∑
γ=0

vj,γR
>x

 mod q

= u>s+ x+Mbq/2c − e>
[
A>

C>

]
s− e>

 x
l∑

i=1

k∑
γ=0

vj,γR
>x

 mod q

= u>s+ x+Mbq/2c − u>s− e>

 x
l∑

i=1

k∑
γ=0

vj,γR
>x

 mod q

= x+Mbq/2c − e>

 x
l∑

i=1

k∑
γ=0

vj,γR
>x

 mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

5.1.3 Security

In this section we prove the following theorem.
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Theorem 5.1. If the decision-LWE problem is infeasible, then the functional encryption

scheme described in Section 5.1.1 is IND-wAH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.IPE-SetUp(1n,w?): The algorithm chooses randomA ∈ Zn×mq , R?
j,γ ∈ {−1, 1}m×m

and u ∈ Znq and it uses TrapGen(q, n,m) to generate B? ∈ Zn×mq and the basis S? ∈ Zm×m

for Λ⊥q (B?). It then defines, for j ∈ [1, l] and γ ∈ [0, k], Aj,γ ← AR?
j,γ − rγw?jB

? and

outputs PK = (A, {Aj,γ},u) and MK = ({R?
j,γ}, B?, S?).

Sim.IPE-KeyGen(PK,MK,v): Secret keys are now sampled by the SampleRight al-

gorithm, using the trapdoor S?. It outputs

SK = e ∈ Λuq (A|A
∑∑

vj,γR
?
j,γ − 〈v,w〉B?), where

e← SampleRight

(
A,−〈v,w〉B?,

l∑
j=1

k∑
γ=0

vj,γR
?
j,γ, S

?,u, σ

)
.

Note that 〈v,w〉 must be non-zero for the algorithm SampleRight to work properly.

Sim.IPE-Enc(PK,M,w?): The algorithm differs from IPE-Enc in the sense that it

uses matrices R?
j,γ and B? instead of matrices Rj,γ and B.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

• Game 0: C runs IPE-SetUp, answers A’s secret key queries using the IPE-KeyGen

algorithm, and generates the challenge ciphertext using the IPE-Enc with vector w?0 and

M0.

•Game 1: C runs Sim.IPE-SetUp with vectorw?0, answersA’s secret key queries using

Sim.IPE-KeyGen, and generates the challenge ciphertext using the Sim.IPE-Enc algorithm

with w?0 and M0.

• Game 2: C runs Sim.IPE-SetUp with vector w?0, answers A’s secret key queries

using Sim.IPE-KeyGen, and generates the challenge ciphertext randomly.

• Game 3: C runs Sim.IPE-SetUp with vector w?1, answers A’s secret key queries

using Sim.IPE-KeyGen, and generates the challenge ciphertext randomly.

•Game 4: C runs Sim.IPE-SetUp with vectorw?1, answersA’s secret key queries using

Sim.IPE-KeyGen, and generates the challenge ciphertext using the Sim.IPE-Enc algorithm

with w?1 and M1.

• Game 5: C runs IPE-SetUp, answers A’s secret key queries using the IPE-KeyGen

algorithm, and generates the challenge ciphertext using the IPE-Enc with vector w?1 and

M1.
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To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.

For simplicity reasons, assume that every time we refer to matrices Aj,γ and R?
j,γ and

vectors cj,γ we are referring to all matrices or vector for j ∈ [1, l] and γ ∈ [0, k].

Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 5.1. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.

SetUp In Game 0, matrix A is generated by TrapGen and matrices Aj,γ are uniformly

random in Zn×mq . Instead, in Game 1, A is chosen uniformly at random and we have

Aj,γ ← AR?
j,γ − rγw?jB

?, where B? is generated by TrapGen and the matrices R?
j,γ are

uniformly and independently chosen at random in {−1, 1}m×m. In both games the vector

u is chosen at random in Znq .

Secret keys In Game 0, the secret key for vector v is a vector e ∈ Λuq (Av), sampled

using the SampleLeft algorithm. The same happens in Game 1 by using SampleRight.

Thus, the secret keys have the same distribution in both games.

Challenge Ciphertext In both games the challenge ciphertext components c′ and

c0 are computed the same way but, in Game 0, the challenge ciphertext component cj,γ
is computed as follows:

cj,γ = (Aj,γ + rγw?jB
?)>s+R?>

j,γx ∈ Zmq .

On the other hand, in Game 1, we have:

cj,γ = (Aj,γ + rγw?jB
?)>s+R?>

j,γx

= (AR?
j,γ − rγw?jB? + rγw?jB

?)>s+R?>
j,γx

= (AR?
j,γ)
>s+R?>

j,γx ∈ Zmq

.

Let us now analyse the joint distribution of the public parameters and the challenge

ciphertext in Game 0 and Game 1. We will show that the distributions of (A,Aj,γ, cj,γ)

in Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemmas A.4 and A.5 we have that the following two distributions

are statistically indistinguishable for every fixed matrix B?, every w? and every vector

x ∈ Zmq :

(
A,Aj,γ, R

?>
j,γx

)
≈s
(
A,AR?

j,γ − rγw?jB?, R?>
j,γx

)
.
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Matrices R?
j,γ are chosen independently for every j, γ, therefore the joint distributions

of these quantities are also statistically close:

(
A, {Aj,γ}, {R?>

j,γx}
)
≈s
(
A, {AR?

j,γ − rγw?jB?}, {R?>
j,γx}

)
.

Since (AR?
j,γ− rγw?jB?)>s is statistically close to A>j,γs, it is possible to add each term

to each side of the equation: (
A, {Aj,γ}, {A>j,γs+R?>

j,γx}
)
≈s(

A, {AR?
j,γ − rγw?jB?}, {(AR?

j,γ − rγw?jB?)>s+R?>
j,γx}

) .

Then, we add (rγw?jB
?)>s to each side of the equation:(
A, {Aj,γ}, {(Aj,γ + rγw?jB

?)>s+R?>
j,γx}

)
≈s(

A, {AR?
j,γ − rγw?jB?}, {(AR?

j,γ)
>s+R?>

j,γx}
) .

To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 5.2. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-LWE.

Init B is given m + 1 LWE challenge pairs (aj, yj) ∈ Znq × Zq, where either yj =

〈aj, s〉+ xj for a random s ∈ Znq and a noise term xj ← Ψα, or yj is uniformly random in

Zq.
SetUp The public parameters are constructed using the vectors of the pairs (aj, yj).

The i-th column of matrix A will be the vector ai, for 1 ≤ i ≤ m and vector u will be a0.

The matrices Aj,γ are still calculated as in Sim.IPE-SetUp, i.e., Aj,γ ← AR?
j,γ − rγw?jB?.

Secret keys All private-key extraction queries are answered using Sim.IPE-KeyGen.

Challenge Ciphertext The ciphertext CT = (c?0, c
?
j,γ, c

′?) is constructed based on

the terms in the LWE challenge pairs (aj, yj), with c?0 = (y1, . . . , ym), c?j,γ = R?>
j,γc

?
0 and

c′? = y0+Mbq/2e. If we have yj = 〈aj, s〉+xj on the LWE challenge, then the ciphertext is

distributed exactly as in Game 1, and if yj is uniformly random in Zq, then the ciphertext

is distributed exactly as in Game 2 . If yj = 〈aj, s〉+ xj, then
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(y1, . . . , ym) = (〈a1, s〉+ x1, . . . , 〈am, s〉+ xm) = A>s+ x.

Therefore, for Game 1 we have

c?0 = A>s+ x

= (y1, . . . , ym) ,

and

c?j,γ = (AR?
j,γ)
>s+R?>

j,γx

= R?>
j,γ(A>s+ x)

= R?>
j,γc

?
0 .

If yj is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer

to this guess is also the answer to the LWE challenge, because, as we showed, if yj is

uniformly random in Zq, then A’s view is the same as in Game 2 and if yj = 〈aj, s〉+ xj,

then A’s view is the same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 5.3. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated in the same way in both games. A and

u are random and Aj,γ ← AR?
j,γ − rγw?jB?, with w? = w?0 for Game 2 and w? = w?1 for

Game 3.

Secret keys All private-key extraction queries are answered using Sim.IPE-KeyGen.

The only difference is, again, that for Game 2, w? = w?0 and, for Game 3, w? = w?1.

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for matrix Aj,γ.

Therefore, the indistinguishability of Game 2 and Game 3 only depends on the indistin-

guishability of Aj,γ. From Lemmas A.4 and A.5 we can prove that each Aj,γ for each game

is statistically close to a uniformly random matrix, because

Aj,γ ← AR?
j,γ − rγw?jB?.
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5.1.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.

We know that ‖e‖ ≤ σ
√

2m from Lemma A.1 and ‖Rj,γe‖ ≤ 12
√

2m‖e‖ from

Lemma A.2. We also know vj,γ ∈ [0, r − 1] because of the decomposition, therefore,

for e =

[
e1

e2

]
:

‖e1 +
l∑

i=1

k∑
γ=0

vj,γRj,γe2‖ ≤ (σ
√

2m+ l(k + 1)r12
√

2mσ
√

2m) so

‖e1 +
l∑

i=1

k∑
γ=0

vj,γRj,γe2‖ ≤ O(lkrσm) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈
e1 +

l∑
i=1

k∑
γ=0

vj,γRj,γe2,x

〉
≤ O(lkrσm)qαw(

√
log 2m) +O(lkrσm)

√
2m/2〈

e1 +
l∑

i=1

k∑
γ=0

vj,γRj,γe2,x

〉
≤ Õ(lkrσmqα) +O(lkrσm3/2) .

To ensure that the error term is less than q/4, we need the following:

x− e>

 x
l∑

i=1

k∑
γ=0

vj,γR
>
j,γx

 < q/4

x− e>1 x− e>2
l∑

i=1

k∑
γ=0

vj,γR
>
j,γx < q/4

x−

(
e1 +

l∑
i=1

k∑
γ=0

vj,γRj,γe2

)>
x < q/4

x−

〈
e1 +

l∑
i=1

k∑
γ=0

vj,γRj,γe2,x

〉
< q/4

Õ(lkrσmqα) +O(lkrσm3/2) < q/4

To ensure that σ is sufficiently large for SampleLeft and SampleRight (Theorems 2.7

and 2.8), we have
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σ > ‖S‖
√

2mω(
√

log 2m).

To ensure that TrapGen (Theorem 2.1) can operate, we have

m ≥ 6n log q and

‖S‖ ≤ O(n log q) .

To ensure that the reduction applies (Theorem 2.12), we have

q > 2
√
n/α .

Therefore, we need to set the parameters as

r = 2,

k = log q,

m = nδ+1,

σ = mω(
√

log n),

q = lm2.5ω(
√

log n log q),

α = (lm2ω(
√

log n) log q)−1,

with δ such that nδ = O(log q).

5.1.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 5.1.1. Note that for security

parameter n, vector length l and modulus q, we have m = O(n log q) and k = log q (see

Section 5.1.4).

The master key MK is just an m×m matrix, therefore its size is m2. The public key

PK is comprised of a vector of length n and l(k+ 1) + 1 matrices of size n×m; therefore

its size is n + l(k + 1)nm + nm, which is O(lkmn). The secret key is just a vector of

length 2m; therefore its size is 2m, which is O(m). Finally, the ciphertext is comprised of

an integer and (1 + l(k + 1)) vectors of length m; therefore its size is 1 +m+ l(k + 1)m,

which is O(lkm).

The complexity of IPE-SetUp is based on the complexity of the TrapGen algorithm. By

Theorem 2.1 we have that the TrapGen algorithm is polynomial, and, therefore, IPE-SetUp

is also polynomial. The complexity of IPE-KeyGen is based on the complexity of the

SampleLeft algorithm plus l(k + 1) constant-matrix multiplications (O(lknm)) and l(k +
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1) matrix additions (O(lknm)). As before, we have that the SampleLeft algorithm is

polynomial, by Theorem 2.7.

The IPE-Enc algorithm does 1 + 2l(k + 1) matrix-vector multiplications (mn + l(k +

1)nm+ l(k+ 1)m2 operations, which is O(lkm2)), l(k+ 1) matrix addictions (O(lkmn)),

1+ l(k+1) vector additions (O(lkm)), one inner product (O(n)) and two simple additions

O(1). Therefore, the complexity of IPE-Enc is based on the several matrix-vector multi-

plications. The IPE-Dec algorithm does l(k + 1) constant-vector multiplication, l(k + 1)

vector additions, one inner product between two vectors and a simple addition. Since the

vectors are of length 2m, we have that the complexity of IPE-Dec is O(lkm).

Table 5.1 summarises the size of the main variables and Table 5.2 summarises the

complexity of the four algorithms of the scheme described in Section 5.1.1.

Variable Size

Public Key PK O(ln2 log2 q)

Master Key MK O(n2 log2 q)

Secret Key SK O(n log q)

Ciphertext CT O(ln log2 q)

Table 5.1: Key Sizes of the general IPE Scheme

Algorithm Complexity

SetUp O(poly(n))

KeyGen O(poly(n) + ln2 log2 q)

Enc O(ln2 log3 q)

Dec O(ln log2 q)

Table 5.2: Complexity of the general IPE Scheme

5.2 Lattice-Based Hierarchical Inner Product Encryp-

tion

This Section describes the Hierarchical IPE scheme as proposed by Abdalla, De Caro

and Mochetti [1]. Section 5.2.1 describes the four algorithms that comprise the HIPE

scheme, Sections 5.2.2, 5.2.3, 5.2.4 and 5.2.5 give the correctness, security, parameters

and complexity analysis of the underlined scheme, respectively.
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5.2.1 Description

As described in Section 3.1, an Hierarchical Inner Product Encryption Scheme consists of

the following algorithms: SetUp(1n, 1µ), KeyDerive(PK, SKt−1,v1, · · · ,vt),
Enc(PK,M,w1, · · · ,wt) and Dec(PK, SKt, CT ). In this section we describe each algo-

rithm as presented by Abdalla et al. [1]. The hierarchy is described by parameter µ and

has maximum depth d.

As in the IPE scheme described in Section 5.1, the attributes are vectors instead of

identities and the decryption is only possible if the inner product of the pairs of these

vectors are zero, i.e., 〈vi,wi〉 = 0, for all i ∈ [1, d]. Each vector has length l and its

elements are integers in [0, q − 1]. For each vector vi ∈ Zlq, each element vi,j ∈ vi can be

decomposed in k integers as follows:

vi,j =
k∑
γ=0

vi,j,γr
γ.

As before, HIPE-SetUp creates a general lattice and chooses at random the matrices

and a vector that will form the public and master keys. But now it will create ld(1 + k)

random n × m matrices. HIPE-KeyDerive generates the secret key by multiplying each

element of each vi, decomposed in k elements, with a matrix, adding all the resulting

matrices and concatenating it to the lattice basis. Now, the secret key is the basis for the

lattice generate by this concatenation, using the algorithm SampleBasisLeft described in

Section 2.2. Note that SK0 = MK.

HIPE-Enc uses the message M , the elements of vectors wi and the matrices in the

public key to create an integer c′, a vector c0 and several vectors ci,j,γ that will compose

the ciphertext for one bit. Finally, HIPE-Dec can recover the message from the ciphertext

only if 〈vi,wi〉 = 0, for all i ∈ [1, t].

Let n be the security parameter, µ be the hierarchical parameter, l be the vectors

lenght and σi (for i ∈ [1, d]) be the Gaussian parameters. Algorithms 5.5, 5.6, 5.7 and 5.8

describe the HIPE scheme.
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Algorithm 5.5 HIPE-SetUp(): Setup Algorithm for the HIPE Scheme

Input: security parameter 1n and hierarchical parameter 1µ

Output: Public key PK and master key MK

A,S ← TrapGen(q, n,m)

Ai,j,γ
$← Zn×mq , for i ∈ [1, d], j ∈ [1, l] and γ ∈ [0, k]

u
$← Znq

public key PK = (A, {Ai,j,γ},u)

master key MK = S

Algorithm 5.6 HIPE-KeyDerive(): Key Generation Algorithm for the HIPE Scheme

Input: Public key PK, secret key SKt−1 and vectors v1, · · · ,vt
Output: Secret key SKt

Ci =
l∑

j=1

k∑
γ=0

vi,j,γAi,j,γ

C = [C1| · · · |Ct−1] ∈ Zn×(t−1)m

St ← SampleBasisLeft([A|C], Ct, St−1, σt)

secret key SKt = St ∈ Zn×(t+1)m
q

Algorithm 5.7 HIPE-Enc(): Encryption Algorithm for the HIPE Scheme

Input: Public key PK, message M and vectors w1, · · · ,wt

Output: Ciphertext CT

B
$← Zn×mq

s
$← Znq

x ∈ Ψ
m

α and x ∈ Ψα

Ri,j,γ
$← {−1, 1}m×m

c0 = A>s+ x ∈ Zmq
ci,j,γ = (Ai,j,γ + rγwi,jB)>s+R>i,j,γx ∈ Zmq
c′ = u>s+ x+Mbq/2c
ciphertext CT = (c0, {ci,j,γ}, c′)
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Algorithm 5.8 HIPE-Dec(): Decryption Algorithm for the HIPE Scheme

Input: Public key PK, secret key SKt and ciphertext CT

Output: message M

ci =
l∑

j=1

k∑
γ=0

vi,j,γci,j,γ

Ci =
l∑

j=1

k∑
γ=0

vi,j,γAi,j,γ

C = [C1| · · · |Ct]
σ = σt

√
m(t+ 1)ω(

√
log(tm))

e = SamplePre([A|C], St,u, σ)

z = c′ − e>

 c0

...

ct

 mod q

if |z| < q/4, then M = 0; else M = 1

5.2.2 Correctness

On the first step of the correctness we substitute the values of all the vectors ci,j,γ in

each ci. In this step we recover the value with the inner product of vi and wi and we

are only able to cancel the term multiplying B if 〈vi,wi〉 = 0, for all i ∈ [1, t]. Then, we

substitute the value of each ci together with c0 and c′ in z. Finally, we cancel the terms

u>s, identify all terms that refer to the “noise” and get the right value of M in z.

Note that Ri =
l∑

j=1

k∑
γ=0

vi,j,γRi,j,γ and R = [R1| · · · |Rt].

ci =
l∑

j=1

k∑
γ=0

vi,j,γci,j,γ

=
l∑

j=1

k∑
γ=0

vi,j,γ((Ai,j,γ + rγwi,jB)>s+R>i,j,γx)

=
l∑

j=1

k∑
γ=0

vi,j,γA
>
i,j,γs+

l∑
j=1

k∑
γ=0

vi,j,γ(r
γwi,jB)>s+

l∑
j=1

k∑
γ=0

vi,j,γR
>
i,j,γx

= C>i s+ 〈vi,wi〉B>s+R>i x

= C>i s+R>i x
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z = c′ − e>


c0

c1

...

ct

 mod q

= u>s+ x+Mbq/2− e>


A>s+ x

C>1 s+R>1 x
...

C>t s+R>t x

 mod q

= u>s+ x+Mbq/2− e>
[
A>s+ x

C>s+R>x

]
mod q

= u>s+ x+Mbq/2c − e>[A|C]>s− e>
[
x

R>x

]
mod q

= u>s+ x+Mbq/2c − u>s− e>
[
x

R>x

]
mod q

= x+Mbq/2c − e>
[
x

R>x

]
mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

5.2.3 Security

In this section we prove the following theorem.

Theorem 5.2. If the decision-LWE problem is infeasible, then the functional encryption

scheme described in Section 5.2.1 is IND-wAH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.HIPE-SetUp(1n, 1µ,w?
1, · · · ,w?

d): The algorithm chooses random A ∈ Zn×mq ,

R?
i,j,γ ∈ {−1, 1}m×m and u ∈ Znq and it uses TrapGen(q, n,m) to generate B? ∈ Zn×mq

and the basis S? ∈ Zm×m for Λ⊥q (B?). It then defines, for i ∈ [1, d], j ∈ [1, l] and

γ ∈ [0, k], Ai,j,γ ← AR?
i,j,γ − rγw?i,jB

? and outputs PK = (A, {Ai,j,γ},u) and MK =

({R?
i,j,γ}, B?, S?).

Sim.HIPE-KeyDerive(PK,MK,v1, · · · ,vt): Secret keys are now created using the

trapdoor S?, sampled by the SampleBasisRight algorithm. It outputs SKt = S, a basis of

lattice Λ⊥q (A|AR?
1 − 〈v1,w

?
1〉B?| · · · |AR?

t − 〈vt,w?
t 〉B?), using

S ← SampleBasisRight(A,B?
v, R

?, S?, σt),
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with R? = [R?
1| · · · |R?

t ], for R?
i =

l∑
j=1

k∑
γ=0

vi,j,γR
?
i,j,γ

and B?
v = [〈v1,w

?
1〉B?| · · · |〈vt,w?

t 〉B?].

Note that 〈vi,wi〉must be non-zero, for all i ∈ [1, t], for the algorithm SampleBasisRight

to work properly.

Sim.HIPE-Enc(PK,M,w?
1, · · · ,w?

t ): The algorithm differs from HIPE-Enc in the

sense that it uses matrices R?
i,j,γ and B? instead of matrices Ri,j,γ and B.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

•Game 0: C runs HIPE-SetUp, answersA’s secret key queries using the HIPE-KeyDerive

algorithm, and generates the challenge ciphertext using the HIPE-Enc with vectorsw?0
1 , · · · ,

w?0
t and M0.

• Game 1: C runs Sim.HIPE-SetUp with vectors w?0
1 , · · · ,w?0

d , answers A’s secret

key queries using Sim.HIPE-KeyDerive, and generates the challenge ciphertext using the

Sim.HIPE-Enc algorithm with w?0
1 , · · · ,w?0

t and M0.

• Game 2: C runs Sim.HIPE-SetUp with vectors w?0
1 , · · · ,w?0

d , answers A’s secret key

queries using Sim.HIPE-KeyDerive, and generates the challenge ciphertext randomly.

• Game 3: C runs Sim.HIPE-SetUp with vectors w?1
1 , · · · ,w?1

d , answers A’s secret key

queries using Sim.HIPE-KeyDerive, and generates the challenge ciphertext randomly.

• Game 4: C runs Sim.HIPE-SetUp with vectors w?1
1 , · · · ,w?1

d , answers A’s secret

key queries using Sim.HIPE-KeyDerive, and generates the challenge ciphertext using the

Sim.HIPE-Enc algorithm with w?1
1 , · · · ,w?1

t and M1.

•Game 5: C runs HIPE-SetUp, answersA’s secret key queries using the HIPE-KeyDerive

algorithm, and generates the challenge ciphertext using the HIPE-Enc with vectorsw?1
1 , · · · ,

w?1
t and M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.

For simplicity reasons, assume that every time we refer to matrices Ai,j,γ and R?
i,j,γ

and vectors ci,j,γ we are referring to all matrices for i ∈ [1, d], j ∈ [1, l] and γ ∈ [0, k].

Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 5.4. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.
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SetUp In Game 0, matrix A is generated by TrapGen and matrices Ai,j,γ are uniformly

random in Zn×mq . Instead, in Game 1, A is chosen uniformly at random and we have

Ai,j,γ ← AR?
i,j,γ − rγw?i,jB?, where B? is generated by TrapGen and the matrices R?

i,j,γ are

uniformly and independently chosen at random in {−1, 1}m×m. In both games the vector

u is chosen at random in Znq .

Secret keys In Game 0, the secret key for level t is a basis of lattice given by

Λ⊥q (A|C1 + rγw1,jB| . . . |Ct + rγwt,jB) sampled using the SampleBasisLeft algorithm. The

same happens in Game 1 by using SampleBasisRight. Thus, the secret keys have the same

distribution in both games.

Challenge Ciphertext In both games the challenge ciphertext components c′ and

c0 are computed the same way but, in Game 0, the challenge ciphertext component ci,j,γ
is computed as follows:

ci,j,γ = (Ai,j,γ + rγw?i,jB
?)>s+R?>

i,j,γx ∈ Zmq .

On the other hand, in Game 1, we have:

ci,j,γ = (Ai,j,γ + rγw?i,jB
?)>s+R?>

i,j,γx

= (AR?
i,j,γ − rγw?i,jB? + rγw?i,jB

?)>s+R?>
i,j,γx

= (AR?
i,j,γ)

>s+R?>
i,j,γx ∈ Zmq

.

Let us now analyse the joint distribution of the public parameters and the challenge ci-

phertext in Game 0 and Game 1. We will show that the distributions of (A, {Ai,j,γ}, {ci,j,γ})
in Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemmas A.4 and A.5 we have that the following two distributions

are statistically indistinguishable for every fixed matrix B?, every w?
i and every vector

x ∈ Zmq : (
A,Ai,j,γ, R

?>
i,j,γx

)
≈s
(
A,AR?

i,j,γ − rγw?i,jB?, R?>
i,j,γx

)
.

Matrices R?
i,j,γ are chosen independently for every i, j, γ, therefore the joint distribu-

tions of these quantities are also statistically close:(
A, {Ai,j,γ}, {R?>

i,j,γx}
)
≈s
(
A, {AR?

i,j,γ − rγw?i,jB?}, {R?>
i,j,γx}

)
.

Since (AR?
i,j,γ − rγw?i,jB?)>s is statistically close to A>i,j,γs, it is possible to add each

term to each side of the equation: (
A, {Ai,j,γ}, {A>i,j,γs+R?>

i,j,γx}
)
≈s(

A, {AR?
i,j,γ − rγw?i,jB?}, {(AR?

i,j,γ − rγw?i,jB?)>s+R?>
i,j,γx}

) .

Then, we add (rγw?i,jB
?)>s to each side of the equation:
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(
A, {Ai,j,γ}, {(Ai,j,γ + rγw?i,jB

?)>s+R?>
i,j,γx}

)
≈s(

A, {AR?
i,j,γ − rγw?i,jB?}, {(AR?

i,j,γ)
>s+R?>

i,j,γx}
) .

To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 5.5. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-LWE.

Init B is given m + 1 LWE challenge pairs (aj, yj) ∈ Znq × Zq, where either yj =

〈aj, s〉+ xj for a random s ∈ Znq and a noise term xj ← Ψα, or yj is uniformly random in

Zq.
SetUp The public parameters are constructed using the vectors of the pairs (aj, yj).

The i-th column of matrix A will be the vector ai, for 1 ≤ i ≤ m and vector u will be

a0. The matrices Ai,j,γ are still calculated as in Sim.HIPE-SetUp, i.e., Ai,j,γ ← AR?
i,j,γ −

rγw?i,jB
?.

Secret keys All private-key extraction queries are answered using Sim.HIPE-KeyDerive.

Challenge Ciphertext The ciphertext CT = (c?0, c
?
i,j,γ, c

′?) is constructed based on

the terms in the LWE challenge pairs (aj, yj), with c?0 = (y1, . . . , ym), c′? = y0+Mbq/2e and

c?i,j,γ = R?>
i,j,γc

?
0. If we have yj = 〈aj, s〉+ xj on the LWE challenge, then the ciphertext is

distributed exactly as in Game 1, and if yj is uniformly random in Zq, then the ciphertext

is distributed exactly as in Game 2 . If yj = 〈aj, s〉+ xj, then

(y1, . . . , ym) = (〈a1, s〉+ x1, . . . , 〈am, s〉+ xm) = A>s+ x.

Therefore, for Game 1 we have

c?0 = A>s+ x

= (y1, . . . , ym) ,

and
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c?i,j,γ = (Ai,j,γ + rγwi,jB)>s+R>i,j,γx

= (AR?
i,j,γ − rγw?i,jB? + rγwi,jB)>s+R>i,j,γx

= (AR?
i,j,γ)

>s+R>i,j,γx

= R?>
i,j,γ(A

>s+ x)

= R?>
i,j,γc

?
0 .

If yj is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer

to this guess is also the answer to the LWE challenge, because, as we showed, if yj is

uniformly random in Zq, then A’s view is the same as in Game 2 and if yj = 〈aj, s〉+ xj,

then A’s view is the same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 5.6. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated in the same way in both games. A and

u are random and Ai,j,γ ← AR?
i,j,γ − rγw?i,jB?, with w?

i = w?0
i for Game 2 and w?

i = w?1
i

for Game 3.

Secret keys All private-key extraction queries are answered using Sim.HIPE-KeyDerive.

The only difference is, again, that for Game 2, w?
i = w?0

i and, for Game 3, w?
i = w?1

i .

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for matrix Ai,j,γ.

Therefore, the indistinguishability of Game 2 and Game 3 only depends on the indistin-

guishability of Ai,j,γ. From Lemmas A.4 and A.5 we can prove that each Ai,j,γ for each

game is statistically close to a uniformly random matrix, because

Ai,j,γ ← AR?
i,j,γ − rγw?i,jB?.

5.2.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.

We know that ‖e‖ ≤ σt
√

(t+ 1)m from Lemma A.1 and ‖Ri,j,γe‖ ≤ 12
√
tm+m‖e‖

from Lemma A.2. We also know vi,j,γ ∈ [0, r− 1] because of the decomposition therefore,
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for max(t) = d, e =

[
e1

e2

]
, R = [R1| · · · |Rt] and Ri =

∑∑
vi,j,γRi,j,γ:

‖e1 +Re2‖ ≤ σt
√

(t+ 1)m+ dl(k + 1)r12
√

(t+ 1)mσt
√

(t+ 1)m so

‖e1 +Re2‖ ≤ O(d2lkrσtm) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈e1 +Re2,x〉 ≤ O(d2lkrσtm)qαtω(
√

logm) +O(d2lkrσtm)
√
m/2

〈e1 +Re2,x〉 ≤ Õ(d2lkrσtmqα) +O(d2lkrσtm
3/2) .

To ensure that the error term is less than q/4, we need the following:

e>
[
x

R>x

]
< q/4

x− e>1 x− e>2 R>x < q/4

x− (e1 +Re2)>x < q/4

x− 〈e1 +Re2,x〉 < q/4

Õ(d2lkrσtmqα) +O(d2lkrσtm
3/2) < q/4

To ensure that σt is sufficiently large for SampleBasisLeft and SampleBasisRight (The-

orems 2.10 and 2.11), we have

σt > ‖S‖
√
mω(

√
logm).

To ensure that TrapGen (Theorem 2.1) can operate, we have

m ≥ 6n log q and

‖S‖ ≤ O(n log q) .

To ensure that the reduction applies (Theorem 2.12), we have

q > 2
√
n/α .

Therefore, we need to set the parameters as

r = 2,

k = log q,

m = nδ+1,

σ = mω(
√

log n),

q = lm2.5ω(
√

log n log q),

α = (lm2ω(
√

log n) log q)−1,
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with δ such that nδ = O(log q).

5.2.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 5.2.1. Note that for security

parameter n, vector length l, hierarchy’s maximum depth d and modulus q, we have

m = O(n log q) and k = log q (see Section 5.2.4).

As always, the master key MK is just an m×m matrix, therefore its size is m2. The

public key PK is comprised of a vector of length n and dl(k + 1) + 1 matrices of size

n×m; therefore its size is n+ dl(k + 1)nm+ nm, which is O(dlkmn). The secret key is

a matrix of size n× (t+ 1)m, with max(t) = d; therefore its size is O(dnm). Finally, the

ciphertext is comprised of an integer and (1 + ld(k+ 1)) vectors of length m; therefore its

size is 1 +m+ ld(k + 1)m, which is O(dlkm).

The complexity of HIPE-SetUp is based on the complexity of the TrapGen algorithm.

By Theorem 2.1 we have that the TrapGen algorithm is polynomial, and, therefore,

HIPE-SetUp is also polynomial. The complexity of HIPE-KeyDerive is based on the com-

plexity of the SampleBasesLeft algorithm plus tl(k + 1) constant-matrix multiplications

(O(dlknm)) and tl(k + 1) matrix additions (O(dlknm)). As before, we have that the

SampleBasisLeft algorithm is polynomial, by Theorem 2.10.

The HIPE-Enc algorithm does 1 + 2tl(k + 1) matrix-vector multiplications (O(nm +

dlknm+ dlkm2)), tl(k + 1) matrix addictions (O(dlkmn)), 1 + tl(k + 1) vector additions

(O(dlkm)), one inner product (O(n)) and two simple additions O(1). Therefore, the com-

plexity of HIPE-Enc is based on the several matrix-vector multiplications. The HIPE-Dec

algorithm does tl(k+ 1) constant-vector multiplications (O(dlkm)), tl(k+ 1) vector addi-

tions (O(dlkm)), tl(k + 1) constant-matrix multiplications (O(dlkmn)), tl(k + 1) matrix

additions (O(dlkmn)), one inner product between two vectors (O(dm)), a few simple ad-

ditions and multiplications and calls the SamplePre algorithm. We have, by Theorem 2.6,

that SamplePre is polynomial, therefore the complexity of the HIPE-Dec algorithm is based

on SamplePre and the constant-matrix multiplications. Note that max(t) = d.

Table 5.3 summarises the size of the main variables and Table 5.4 summarises the

complexity of the four algorithms of the scheme described in Section 5.2.1.
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Variable Size

Public Key PK O(dln2 log2 q)

Master Key MK O(n2 log2 q)

Secret Key SK O(dn2 log q)

Ciphertext CT O(dln log2 q)

Table 5.3: Key Sizes of the general HIPE Scheme

Algorithm Complexity

SetUp O(poly(n))

KeyDerive O(poly(n) + dln2 log2 q)

Enc O(dln2 log3 q)

Dec O(poly(n) + dln2 log2 q)

Table 5.4: Complexity of the general HIPE Scheme



Chapter 6

Hidden Vector Encryption

In this chapter we describe the lattice-based HVE scheme based on the FBE scheme pro-

posed by Agrawal, Boyen, Vaikuntanathan, Voulgaris and Wee [6]. Section 6.1 describes

the general HVE scheme and Section 6.2 describes our contribution, a hierarchical version

of the same scheme, as described by Mochetti et al. [53].

6.1 Lattice-Based Hidden Vector Encryption

This Section reviews the HVE scheme based on the FBE scheme proposed by Agrawal,

Boyen, Vaikuntanathan, Voulgaris and Wee [6]. Section 6.1.1 describes the four algo-

rithms that comprise the hidden vector scheme, Sections 6.1.2, 6.1.3, 6.1.4 and 6.1.5 give

the correctness, security, parameters and complexity analysis of the underlined scheme,

respectively.

6.1.1 Description

As described in Section 3.7, an Hidden Vector Encryption Scheme consists of the following

algorithms: SetUp(1n), KeyGen(PK,MK,v), Enc(PK,M,w) and Dec(PK, SK,CT ). In

this section we describe each algorithm similar to the one as presented by Agrawal et

al. [6].

This scheme is similar to the IBE scheme described in Section 4.1, but now the at-

tributes are vectors v ∈ {0, 1, ?}l and w ∈ {0, 1}l and the decryption is only possi-

ble if vj = wj,∀i such that vj 6= ?. To make that possible, Shamir’ Secret Sharing

Scheme, described in Appendix B, is used. The Secret Sharing Scheme used is com-

posed of two algorithms: SplitVector, that divides a data vector into n vector pieces, and

FindLagrangianCoef, that find the lagrangian coefficients so it is possible to recover the

vector data using k ≤ n pieces.

81
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HVE-SetUp creates several general lattices, two for each coefficient of the attribute

vector and chooses at random a vector that will form the public key. HVE-KeyGen gener-

ates the secret key by dividing each element of vector u using the SplitVector algorithm

and creating vectors uj. The secret key will be the l vectors ej created by the SamplePre

algorithm, described in Section 2.2, using the correspondent matrices as the lattice basis;

therefore ej ∈ Λ
uj
q (Aj,vj), i.e., Aj,vjej = uj, for j ∈ [1, l].

HVE-Enc uses the message M , the attribute vector w and the matrices in the public

key to create an integer c′ and several vectors cj that will compose the ciphertext for one

bit. Finally, HVE-Dec can recover the message from the ciphertext only if vj = wj,∀j
such that vj 6= ?, calculating the Lagrangian coefficients such as the Join algorithm does.

Let n be the security parameter, σ be the Gaussian parameter and k be the threshold.

Algorithms 6.1, 6.2, 6.3 and 6.4 describe the HVE scheme.

Algorithm 6.1 HVE-SetUp(): Setup Algorithm for the HVE Scheme

Input: Security parameter 1n

Output: Public key PK and master key MK

Aj,b, Sj,b ← TrapGen(q, n,m) for j ∈ [1, l] and b ∈ {0, 1}
u

$← Znq
public key PK = ({Aj,b},u)

master key MK = ({Sj,b})

Algorithm 6.2 HVE-KeyGen(): Key Generation Algorithm for the HVE Scheme

Input: Public key PK, master key MK, vector v

Output: Secret key SK

u1, · · · ,ul ← SplitVector(u, k)

if (vj = ?): b
$← {0, 1}

else: b← vj
ej ← SamplePre(Aj,b, Sj,b,uj, σ) ∈ Zmq
secret key SK = ({ej})
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Algorithm 6.3 HVE-Enc(): Encryption Algorithm for the HVE Scheme

Input: Public key PK, message M and vector w

Output: Ciphertext CT

β ← (l!)2

s
$← Znq

xj ∈ Ψ
m

α , for j ∈ [1, l] and x ∈ Ψα

cj ← A>j,wjs+ βxj ∈ Zmq
c′ ← u>s+ βx+Mbq/2c
ciphertext CT = ({cj}, c′)

Algorithm 6.4 HVE-Dec(): Decryption Algorithm for the HVE Scheme

Input: Public key PK, secret key SK and ciphertext CT

Output: message M

if vj 6= ?: G← G ∪ {j}
l← FindLagrangianCoef(G)

z ← c′ −
∑
ρ∈G

lρe
>
ρ cρ mod q

if |z| < q/4, then M = 0; else M = 1

6.1.2 Correctness

First recall that, based on Shamir’s Secret Sharing Scheme (see Appendix B), we have

∑
ρ∈G

lρAρ,vρeρ =
∑
ρ∈G

lρuρ = u

Now the correctness is straightforward. We just substitute the values of cj and c′ in z and

based on the Shamir’s Secret Sharing Scheme we can recover the vector u. Therefore, it

is possible to cancel the terms u>s, identify all terms that refer to the “noise” and get
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the right value of M in z.

z = c′ −
∑
ρ∈G

lρe
>
ρ cρ mod q

= u>s+ βx+Mbq/2c −
∑
ρ∈G

lρe
>
ρ (A>ρ,wρs+ βxρ) mod q

= u>s+ βx+Mbq/2c −
∑
ρ∈G

(lρAρ,wρeρ)
>s−

∑
ρ∈G

lρe
>
ρ βxρ mod q

= u>s+ βx+Mbq/2c − u>s−
∑
ρ∈G

lρe
>
ρ βxρ mod q

= Mbq/2c+ βx− β
∑
ρ∈G

lρe
>
ρ xρ mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

6.1.3 Security

In this section we prove the following theorem.

Theorem 6.1. If the decision-LWE problem is infeasible, then the functional encryption

scheme described in Section 6.1.1 is IND-wAH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.HVE-SetUp(1n,w?): The l matrices Aj,w?j , i.e., matrices that refer to the bits

that belong to w? are chosen randomly in Zn×mq , and the algorithm TrapGen(q, n,m) is

used to generate the l matrices Aj,w?j and Sj,w?j , i.e., matrices that refer to the bits that

do not belong to w?. The vector u ∈ Znq is still chosen randomly.

Sim.HVE-KeyGen(PK,MK,v): The secret keys are now created using two algo-

rithms, SamplePre and SampleLattice. The l shares of u are now represented as

uj =
k−1∑
γ=0

aγj
γ,

for j ∈ [1, l], with a0 = u.

First choose random values in {0, 1} for all values where vj = ?. Assume without lot

of generality that the first γ < k bits of v are now equal to w.

For j ∈ [1, γ], such that vj = w?j , we have ej ← SampleLattice(Aj,wj , σ), and

uj = Aj,vjej.
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For j ∈ [γ + 1, k − 1], we randomly choose uj, determining all coefficients aj, and

therefore, calculating all l shares uj.

Finally, for j ∈ [k + 1, l] we have

ej ← SamplePre(Aj,w?j , Sj,w?j ,uj, σ).

Note that we must have less than k bits of v equal to w and different of ? for the

algorithm to work properly.

Sim.HVE-Enc(PK,M,w?): The algorithm differs from HVE-Enc in the way that it

uses constant β to calculate the ciphertext. Now we have

c′? = β(u>s+ x) +Mbq/2c
and

c?j = β(A>j,w?j s+ xj).

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

• Game 0: C runs HVE-SetUp, answers A’s secret key queries using the HVE-KeyGen

algorithm, and generates the challenge ciphertext using the HVE-Enc with vector w?0 and

M0.

• Game 1: C runs Sim.HVE-SetUp with vector w?0, answers A’s secret key queries

using Sim.HVE-KeyGen, and generates the challenge ciphertext using the Sim.HVE-Enc

algorithm with w?0 and M0.

• Game 2: C runs Sim.HVE-SetUp with vector w?0, answers A’s secret key queries

using Sim.HVE-KeyGen, and generates the challenge ciphertext randomly.

• Game 3: C runs Sim.HVE-SetUp with vector w?1, answers A’s secret key queries

using Sim.HVE-KeyGen, and generates the challenge ciphertext randomly.

• Game 4: C runs Sim.HVE-SetUp with vector w?1, answers A’s secret key queries

using Sim.HVE-KeyGen, and generates the challenge ciphertext using the Sim.HVE-Enc

algorithm with w?1 and M1.

• Game 5: C runs HVE-SetUp, answers A’s secret key queries using the HVE-KeyGen

algorithm, and generates the challenge ciphertext using the HVE-Enc with vector w?1 and

M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.

Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 6.1. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).
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Proof.

SetUp The public parameters are generated almost in the same way in both games.

The vector u in both games is random. The matrices Aj,b are chosen by the algorithm

TrapGen in Game 0 and are chosen either by random or by the same algorithm according

to the value of w?
0 in Game 1.

Secret keys In Game 0, the secret key for vector v is a set of vectors ej ∈ Λuq (Aj,b),

where b is chosen according to each value of vj. Each vector is sampled using the SamplePre

algorithm. The same happens in Game 1. Thus, the secret keys have the same distribution

in both games.

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

The public parameters are generated almost in the same way in both games. The

vector u in both games are random. The matrices Aj,b are chosen by the algorithm

TrapGen in Game 0 and are chosen either by random or by the same algorithm according

to the value of w?
0 in Game 1.

Since the matrices generated by TrapGen are indistinguishable for random, the public

parameters are also indistinguishable in both games and we have that the indistinguisha-

bility of the two games depends on the ciphertext. For Game 0 we have

cj = A>j,w?j s+ βxj and c′ = u>s+ βx+Mbq/2c;
and for Game 1 we have

c?j = β(A>j,w?j s+ xj) and c′? = β(u>s+ x) +Mbq/2c.
We know that vectors s and u are random and matrices Aj,b are indistinguishable

from random, therefore by Lemma A.7 we have that the two games are indistinguishable

from each other.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 6.2. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-LWE.

Init B is given lm + 1 LWE challenge pairs (ak, yk) ∈ Znq × Zq, where either yk =

〈ak, s〉 + xk for a random s ∈ Znq and a noise term xk ← Ψα, or yk is uniformly random

in Zq.
SetUp The public parameters are constructed using the vectors of the pairs (ak, yk).

The i-th column of matrix Aj,w?j will be the vector a(j−1)m+i+1 and vector u will be a0.

The matrices Aj,w?j and shares of u are calculated as in Sim.HVE-SetUp.
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Secret keys All private-key extraction queries are answered using Sim.HVE-KeyGen.

Challenge Ciphertext The ciphertext CT = (c?j , c
′?) is constructed based on the

terms in the LWE challenge pairs (ak, yk), with c?j = β(y(j−1)m+1, . . . , yjm+1), for j ∈ [1, l],

and c′? = βy0 + Mbq/2e. If we have yk = 〈ak, s〉 + xk on the LWE challenge, then the

ciphertext is distributed exactly as in Game 1, and if yk is uniformly random in Zq, then

the ciphertext is distributed exactly as in Game 2. If yk = 〈ak, s〉+ xk, then

β(y(j−1)m+1, . . . , yjm+1) = (β〈a(j−1)m+1, s〉+ βx(j−1)m+1, . . . , β〈ajm+1, s〉+ βxjm+1)

= βA>j,w?j s+ βxj

= β(A>j,w?j s+ xj)

Therefore, for Game 1 we have

c?j = β(A>j,w?j s+ x)

= β(y(j−1)m+1, . . . , yjm + 1) ,

If all yk is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer

to this guess is also the answer to the LWE challenge, because, as we showed, if yk is

uniformly random in Zq, then A’s view is the same as in Game 2 and if yk = 〈ak, s〉+xk,

then A’s view is the same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 6.3. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated almost in the same way in both games.

The vector u in both games are random and the matrices Aj,b are chosen at random or

by the algorithm TrapGen according to the value of the bits in w?0 for Game 2 and w?1

for Game 3.

Secret keys All private-key extraction queries are answered using Sim.HVE-KeyGen.

The only difference is, again, that for Game 2, w? = w?0 and, for Game 3, w? = w?1.

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated or generated by algorithm TrapGen in

both games. Since the matrices generated by TrapGen are indistinguishable from random,

we have that the two games are indistinguishable from each other.



88 Chapter 6. Hidden Vector Encryption

6.1.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.

We know that ‖e‖ ≤ σ
√
m from Lemma A.1, |x| ≤ 2m from Lemma A.6, |βlρ| ≤

β2 ≤ (l!)4 from Lemma B.1 and β = (l!)2 from construction. Therefore, to ensure that

the error term is less than q/4, we need the following:

|βx−
∑
ρ∈G

lρe
>
ρ βxρ| < q/4

β|x|+
∑
ρ∈G

lρβ|e>ρ xρ| < q/4

β2m+
∑
ρ∈G

β22mσ
√
m < q/4

(l!)22m+ l(l!)42mσ
√
m < q/4

2l(l!)42mσ
√
m < q/4

4l(l!)4m1.5σ < q/4

25lm1.5σ < q/4

Note that (l!)4 ≤ l4l ≤ 25l. To ensure that σ is sufficiently large for SamplePre and

SampleLattice (Theorems 2.6 and 2.4), we have

σ > ‖S‖ω(
√

logm).

To ensure that TrapGen (Theorem 2.1) can operate, we have

m ≥ 6n log q and

‖S‖ ≤ O(n log q) .

To ensure that the reduction applies (Theorem 2.12), we have

q > 2
√
n/α .

Therefore, we need to set the parameters as

m = n1.5

σ = m logm,

q = 25lm3 logm,

α = (25lpoly(n))−1.
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6.1.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 6.1.1. Note that for security

parameter n, attribute vector of length l and modulus q, we have m = O(n log q) (see

Section 6.1.4).

The master key MK is comprised of 2l matrices of size m × m, therefore its size is

2lm2. The public key PK is comprised of 2l matrices of size n×m and a vector of length

n; therefore its size is 2lmn+n, which is O(lmn). The secret key is comprised of l vectors

of length m; therefore its size is O(lm). Finally, the ciphertext is comprised of an integer

and l vectors of length m; therefore its size is 1 +ml, which is also O(lm).

The complexity of HVE-SetUp is based on the complexity of the TrapGen algorithm. By

Theorem 2.1 we have that the TrapGen algorithm is polynomial, and, since it is executed

2l times, the complexity will be 2l · poly(n). The complexity of HVE-KeyGen is based on

the complexity of the SamplePre algorithm that are executed l times and the SplitVetor

algorithm. As before, we have that the SamplePre algorithm is polynomial, by Theorem 2.6

and the SplitVetor algorithm is linear, therefre the complexity is given by the SamplePre

algorithm.

The HVE-Enc algorithm does l matrix-vector multiplications (O(lnm)), l constant-

vector multiplications (O(lm)), l vector additions (O(lm)), one inner product (O(n)) and

two simple additions O(1). Therefore, the complexity of HVE-Enc is based on the several

matrix-vector multiplications. The HVE-Dec algorithm calls the FindLagrangianCoef which

is O(n), does at most l inner product between two vectors of lenght m and a simple

addiction. So, we have that the complexity of HVE-Dec is O(lm).

Table 6.1 summarises the size of the main variables and Table 6.2 summarises the

complexity of the four algorithms of the scheme described in Section 6.1.1.

Variable Size

Public Key PK O(ln2 log q)

Master Key MK O(ln2 log2 q)

Secret Key SK O(ln log q)

Ciphertext CT O(ln log q)

Table 6.1: Key Sizes of the general HVE Scheme
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Algorithm Complexity

SetUp O(l · poly(n))

KeyGen O(l · poly(n))

Enc O(ln2 log q)

Dec O(ln log q)

Table 6.2: Complexity of the general HVE Scheme

6.2 Lattice-Based Hierarchical Hidden Vector Encryp-

tion

This Section describes the Hierarchical HVE scheme as proposed by Mochetti and Da-

hab [53]. Section 6.2.1 describes the four algorithms that comprise the HHVE scheme,

Sections 6.2.2, 6.2.3, 6.2.4 and 6.2.5 give the correctness, security, parameters and com-

plexity analysis of the underlined scheme, respectively.

6.2.1 Description

As described in Section 3.1, an Hierarchical Hidden Vector Encryption Scheme consists

of the following algorithms: SetUp(1n, 1µ), KeyDerive(PK, SKt−1,v1, · · · ,vt),
Enc(PK,M,w1, · · · ,wt) and Dec(PK, SKt, CT ). In this section we describe each algo-

rithm as presented by Mochetti et al. [53]. The hierarchy is described by parameter µ

and has maximum depth d.

As in the HVE scheme described in Section 6.1, the attributes are vectors vi ∈ {0, 1, ?}l
and wi ∈ {0, 1}l and the decryption is only possible if vi,j = wi,j,∀j such that vi,j 6= ? for

all vectors vi and wi, with i ∈ [1, t]. Again, Shamir’ Secret Sharing Scheme, described

in Appendix B, is used. The Secret Sharing Scheme used is composed of two algorithms:

SplitVector, that divide a data vector into n vector pieces, and FindLagrangianCoef, that

find the lagrangian coefficients so it is possible to recover the vector data using k ≤ n

pieces.

HHVE-SetUp creates l lattices’ basis, several general random matrices and a random

vector u. HHVE-KeyDerive generates the secret key by choosing the correspondent ma-

trices based on values of vi and concatenating it to the lattice basis. Now, the secret

key is the basis for the lattices generated by these concatenations, using the algorithm

SampleBasisLeft described in Section 2.2. Note that SK0 = MK.

HHVE-Enc uses the message M , the vectors wj and the matrices in the public key

to create an integer c′ and several vectors ci,j that will compose the ciphertext for one

bit. Here, it splits a random vector s using the SplitVector algorithm. Finally, HHVE-Dec
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calculates the lagrangian coefficients so that it can recover the message from the ciphertext

only if vi,j = wi,j,∀j such that vi,j 6= ? for all vectors vi and wi, with i ∈ [1, t], .

Let n be the security parameter, µ be the hierarchical parameter, l be the vectors

lenght, σi (for i ∈ [1, d]) be the Gaussian parameters and k be the threshold. Algo-

rithms 6.5, 6.6, 6.7 and 6.8 describe the HHVE scheme.

Algorithm 6.5 HHVE-SetUp(): Setup Algorithm for the HHVE Scheme

Input: security parameter 1n and hierarchical parameter 1µ

Output: Public key PK and master key MK

Aj, Tj ← TrapGen(q, n,m) for j ∈ [1, l]

u
$← Znq

Ai,j,b
$← Zn×mq for i ∈ [1, d], j ∈ [1, l] and b ∈ {0, 1}

Bj
$← Zn×mq for j ∈ [1, l]

public key PK = ({Aj},u, {Ai,j,b}, {Bj})
master key MK = ({Tj})

Algorithm 6.6 HHVE-KeyDerive(): Key Generation Algorithm for the HHVE Scheme

Input: Public key PK, secret key SKt−1 and vectors v1, · · · ,vt
Output: Secret key SKt

if (vi,j = ?): bi
$← {0, 1}

else: bi ← vi,j
Cj ← [A1,j,b1 +Bj| · · · |At−1,j,bt−1 +Bj]

Sj ← SampleBasisLeft([Aj|Cj], At,j,bt +Bj, S
′
j, σt), where S ′j ∈ SKt−1

secret key SKt = ({Sj}), with Sj ∈ Zn×(t+1)m
q
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Algorithm 6.7 HHVE-Enc(): Encryption Algorithm for the HHVE Scheme

Input: Public key PK, message M and identity w1, · · · ,wt

Output: Ciphertext CT

β ← (l!)2

s
$← Znq

xj ∈ Ψ
m

α , for j ∈ [1, l] and x ∈ Ψα

Ri,j
$← {−1, 1}m×m, for i ∈ [1, d] and j ∈ [1, l]

s1, · · · , sl ← SplitVector(s, k)

c0,j ← A>j sj + βxj ∈ Zmq
ci,j ← [Ai,j,wi,j +Bj]

>sj + βR>i,jxj ∈ Zmq
c′ ← u>s+ βx+Mbq/2c
ciphertext CT = ({ci,j}, c′)

Algorithm 6.8 HHVE-Dec(): Decryption Algorithm for the HHVE Scheme

Input: Public key PK, secret key SKt and ciphertext CT

Output: message M

if vi,j 6= ? for all i ∈ [1, d]: G← G ∪ {j}
l← FindLagrangianCoef(G)

Cj ← [A1,j,v1,j +Bj| · · · |At,j,vt,j +Bj]

σ = σt
√
m(t+ 1)ω(

√
log(tm))

ej ← SamplePre([Aj|Cj], Sj, lju, σ), where Sj ∈ SKt

z ← c′ −
∑
ρ∈G

e>ρ

 c0,ρ

...

ct,ρ

 mod q

if |z| < q/4, then M = 0; else M = 1

6.2.2 Correctness

First recall that, based on Shamir’s Secret Sharing Scheme (see Appendix B) and since

u>s = s>u, we have ∑
ρ∈G

lρu
>sρ =

∑
ρ∈G

lρs
>
ρ u = s>u = u>s

Now the correctness is straightforward. We just substitute the values of ci,j and c′ in z

and based on the Shamir’s Secret Sharing Scheme we can recover the vector s. Therefore,

it is possible to cancel the terms u>s, identify all terms that refer to the “noise” and get



6.2. Lattice-Based Hierarchical Hidden Vector Encryption 93

the right value of M in z.

z = c′ −
∑
ρ∈G

e>ρ


c0,ρ

c1,ρ

...

ct,ρ

 mod q

= c′ −
∑
ρ∈G

e>ρ


A>ρ sρ + βxρ

(A1,ρ,w1,ρ +Bj)
>sρ + βR>1,ρxρ
...

(At,ρ,wt,ρ +Bj)
>sρ + βR>t,ρxρ

 mod q

= c′ −
∑
ρ∈G

e>ρ [Aρ|Cρ]>sρ −
∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]
mod q

= c′ −
∑
ρ∈G

lρu
>sρ −

∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]
mod q

= u>s+ βx+Mbq/2c − u>s−
∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]
mod q

= Mbq/2c+ βx−
∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]
mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

6.2.3 Security

In this section we prove the following theorem.

Theorem 6.2. If the decision-LWE problem is infeasible, then the functional encryption

scheme described in Section 6.2.1 is IND-wAH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.HHVE-SetUp(1n, 1µ,w?
1, · · · ,w?

d): The algorithm chooses randomly the l matri-

ces Aj in Zn×mq and a vector u ∈ Znq , and it uses the algorithm TrapGen(q, n,m) to generate

the l matrices B?
j and T ?j . It defines the matrices that refer to the bits that belong to w?

i

as Ai,j,wi,j ← AjR
?
i,j − B?

j , for j ∈ [1, l], where all matrices R?
i,j are randomly chosen in

{−1, 1}m×m. The l matrices Aj,w?i,j , i.e., matrices that refer to the bits that do not belong

to w?
i are chosen randomly in Zn×mq . The algorithm also chooses s′? ∈ Znq at random and
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calculates s? such that all shares s?j = s′?, i.e., it solves the equation s?j = s +
∑
aij

i

for s?j = s′?, j ∈ [1, l] and i ∈ [0, k − 1]. Finally, it outputs PK = ({Aj}, {Ai,j,b},u) and

MK = ({R?
i,j}, {B?

j }, {T ?j }, s?, s′?).
Sim.HHVE-KeyDerive(PK,MK,v1, · · · ,vt): Secret keys are now created using the

trapdoors T ?j , sampled by the SampleBasisRight algorithm. It outputs SKt = {Sj}, a

basis of lattice Λ⊥q
(
Aj|AjR?

1,j −B?
j | · · · |AjR?

t,j −B?
j

)
, using

Sj ← SampleBasisRight(Aj, B
?
j , R

?
j , T

?
j , σt),

with R?
j = [R?

1,j| · · · |R?
t,j ].

Sim.HHVE-Enc(PK,M,w?
1, · · · ,w?

t ): The algorithm differs from HHVE-Enc in the

sense that it uses matrices R?
i,j and B?

j instead of matrices Ri,j and Bj and vectors s? and

s′? instead of vectors s and sj. It also uses constant β to calculate the ciphertext. Now

we have

c0,j = β(A>j s
′? + xj),

ci,j = β([Ai,j,wi,j +B?
j ]
>s′? +R?>

i,j xj) and

c′ = β(u>s? + x) +Mbq/2c.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

• Game 0: C runs HHVE-SetUp, answers A’s secret key queries using algorithm

HHVE-KeyDerive, and generates the challenge ciphertext using the HHVE-Enc with vectors

w?0
1 , · · · , w?0

t and M0.

• Game 1: C runs Sim.HHVE-SetUp with vectors w?0
1 , · · · ,w?0

t , answers A’s secret

key queries using Sim.HHVE-KeyDerive, and generates the challenge ciphertext using the

Sim.HHVE-Enc algorithm with w?0
1 , · · · ,w?0

t and M0.

• Game 2: C runs Sim.HHVE-SetUp with vectors w?0
1 , · · · ,w?0

d , answers A’s secret

key queries using Sim.HHVE-KeyDerive, and generates the challenge ciphertext randomly.

• Game 3: C runs Sim.HHVE-SetUp with vectors w?1
1 , · · · ,w?1

d , answers A’s secret

key queries using Sim.HHVE-KeyDerive, and generates the challenge ciphertext randomly.

• Game 4: C runs Sim.HHVE-SetUp with vectors w?1
1 , · · · ,w?1

t , answers A’s secret

key queries using Sim.HHVE-KeyDerive, and generates the challenge ciphertext using the

Sim.HHVE-Enc algorithm with w?1
1 , · · · ,w?1

t and M1.

• Game 5: C runs HHVE-SetUp, answers A’s secret key queries using algorithm

HHVE-KeyDerive, and generates the challenge ciphertext using the HHVE-Enc with vectors

w?1
1 , · · · , w?1

t and M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.
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Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 6.4. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.

SetUp In Game 0, matrices Aj are generated by TrapGen and matrices Aj,b are uni-

formly random in Zn×mq . Instead, in Game 1, Aj are chosen uniformly at random and we

have Ai,j,wi,j ← AjR
?
i,j−B?

j and randomly chosen Aj,w?i,j , where B? is generated by TrapGen

and the matrices R?
i,j are uniformly and independently chosen at random in {−1, 1}m×m.

In both games the vector u is chosen at random in Znq .

Secret keys In Game 0, the secret key for vectors vj is a set of basis of lattices

Λ⊥q (Aj|Cj), with Cj = [A1,v1,j ,j + Bj| . . . |At,j,vt,j + Bj] sampled using the SampleBasisLeft

algorithm. The same happens in Game 1 by using SampleBasisRight. Thus, the secret

keys have the same distribution in both games.

Challenge Ciphertext The challenge ciphertext components c′ and c0,j in both

games are computed almost in the same way and are clearly indistinguishable by Lemma A.7.

But, in Game 0, the challenge ciphertext components ci,j, for i ∈ [1, t], are computed as

follows:

ci,j = [Ai,j,wi,j +Bj]
>s′? + βR>i,jxj .

On the other hand, in Game 1, we have:

ci,j = β([Ai,j,wi,j +Bj]
>s′? +R?>

i,j xj)

= β([AjR
?
i,j −B?

j +B?
j ]
>s′? +R?>

i,j xj)

= β([AjR
?
i,j]
>s′? +R?>

i,j xj)

.

Let us now analyse the joint distribution of the public parameters and the challenge ci-

phertext in Game 0 and Game 1. We will show that the distributions of ({Aj}, {Ai,j,b}, {ci,j})
in Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemmas A.4, A.5 and A.7 we have that the following two dis-

tributions are statistically indistinguishable for every fixed matrix B?
j and every vector

xj ∈ Zmq :

(
Aj, Ai,j,b, βR

?>
i,j xj

)
≈s
(
Aj, AjR

?
i,j −B?

j , R
?>
i,j xj

)
.

Since each R?
i,j is chosen independently for every i ∈ [1, d] and j ∈ [1, l], then the joint

distribution of them are statistically close:

(
{Aj}, {Ai,j,b}, {βR?>

i,j xj}
)
≈s
(
{Aj}, {AjR?

i,j −B?
j }, {R?>

i,j xj}
)
.
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Since each (AjR
?
i,j −B?

j )
>s′? is statistically close to A>i,j,bs

′?, it is possible to add each

term to each side of the equation:(
{Aj}, {Ai,j,b}, {A>i,j,bs′? + βR?>

i,j xj}
)
≈s(

{Aj}, {AjR?
i,j −B?

j }, {[AjR?
i,j −B?

j ]
>s′? +R?>

i,j xj}
) .

Then, we add B?>
j s

′? to each side of the equation:(
{Aj}, {Ai,j,b}, {[Ai,j,b +B?

j ]
>s′? + βR?>

i,j xj}
)
≈s(

{Aj}, {AjR?
i,j −B?

j }, {[AjR?
i,j]
>s′? +R?>

i,j xj}
) .

Finally, we can multiply β in one side of the equation by Lemma A.7:(
{Aj}, {Ai,j,b}, {[Ai,j,b +B?

j ]
>s′? + βR?>

i,j xj}
)
≈s(

{Aj}, {AjR?
i,j −B?

j }, {β([AjR
?
i,j]
>s′? +R?>

i,j xj)}
) .

To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 6.5. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-LWE.

Init B is given lm + 1 LWE challenge pairs (ak, yk) ∈ Zmq × Zq, where either yk =

〈ak, s〉 + xk for a random s ∈ Znq and a noise term xk ← Ψα, or yk is uniformly random

in Zq.
SetUp The public parameters are constructed using the vectors of the pairs (ak, yk).

The i-th column of matrix Aj will be the vector a(j−1)m+i+1, and vector u will be a0. The

matrices Ai,j,b are still calculated as in Sim.HHVE-SetUp, i.e., Ai,j,wi,j ← AjR
?
i,j −B?

j .

Secret keys All private-key extraction queries are answered using Sim.HHVE-KeyDerive.

Challenge Ciphertext The ciphertext CT = (c?i,j, c
′?) is constructed based on the

terms in the LWE challenge pairs (ak, yk), with c?0,j = (y(j−1)n+1, · · · , yjn+1), c′? = y0 +

Mbq/2e and c?i,j = R?>
i,j c0,j. If we have yk = 〈ak, s′?〉+ xk on the LWE challenge, then the

ciphertext is distributed exactly as in Game 1, and if yk is uniformly random in Zq, then

the ciphertext is distributed exactly as in Game 2. If yk = 〈ak, s′?〉+ xk, then
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(y(j−1)m+1, . . . , yjm+1) = (〈a(j−1)m+1, s
′?〉+ x(j−1)m+1, . . . , 〈ajm+1, s

′?〉+ xjm+1).

Therefore, for Game 1 we have

c?0,j = β(A>j s
′? + xj)

= β(y(j−1)m+1, . . . , yjm+1)

and

c?i,j = β((Ai,j,wi,j +B?
j )
>s′? +R?>

i,j xj)

= β(AjR
?
i,j −B?

j +B?
j )
>s′? +R?>

i,j xj)

= β((AjR
?
i,j)
>s′? +R?>

i,j xj)

= βR?>
i,j (A>j s

′? + xj)

= βR?>
i,j c0,j .

If all yk is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer

to this guess is also the answer to the LWE challenge, because, as we showed, if yk is

uniformly random in Zq, then A’s view is the same as in Game 2 and if yk = 〈ak, s〉+xk,

then A’s view is the same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 6.6. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated almost in the same way in both games.

The vector u in both games are random and the matrices Ai,j,wi,j are chosen at random

or by the algorithm TrapGen according to the value of w?0 for Game 2 and w?1 for Game 3.

Secret keys All private-key extraction queries are answered using Sim.HHVE-KeyDerive.

The only difference is, again, that for Game 2, w? = w?0 and, for Game 3, w? = w?1.

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for matrix Ai,j,wi,j .

Therefore, the indistinguishability of Game 2 and Game 3 only depends on the indistin-

guishability of Ai,j,wi,j . From Lemmas A.4 and A.5 we can prove that Ai,j,wi,j for each

game is statistically close to a uniformly random matrix, because

Ai,j,wi,j ← AjR
?
i,j −B?

j .
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6.2.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.

We know that ‖e‖ ≤ σ
√

2m from Lemma A.1 and ‖Rρe‖ ≤ 12
√
tm+m‖e‖ from

Lemma A.2, for Rρ = [R1,rho| · · · |Rt,ρ], with max(t) = d; therefore, for e =

[
e1

e2

]
:

‖e1 +Rρe2‖ ≤ (σt
√
m(d+ 1) + 12

√
m(d+ 1)σt

√
m(d+ 1)) so

‖e1 +Rρe2‖ ≤ O(d2σtm) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈e1 +Rρe2,x〉 ≤ O(d2σtm)qαtw(
√

log 2m) +O(d2σtm)
√

2m/2

〈e1 +Rρe2,x〉 ≤ Õ(σtd
2mqαt) +O(σtd

2m3/2) .

We also know that |x| ≤ 2m from Lemma A.6 and β = (l!)2 from construction.

Therefore, to ensure that the error term is less than q/4, we need the following:∣∣∣∣∣βx−∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]∣∣∣∣∣ < q/4

β|x| −
∑
ρ∈G

βe>ρ

[
xρ

R>ρ xρ

]
< q/4

β2m− lβe>ρ
[
xρ

R>ρ xρ

]
< q/4

β2m− lβ(e>1,ρxρ + e>2,ρR
>
ρ xρ) < q/4

β2m− lβ(e1,ρ +Re2,ρ)
>xρ < q/4

β2m+ lβ〈e1,ρ +Re2,ρ,xρ〉 < q/4

β2m+ lβ(Õ(σtd
2mqαt) +O(σtd

2m3/2)) < q/4

Õ(lβσtd
2mqαt) +O(lβσtd

2m3/2)) < q/4

Õ(l(l!)2σtd
2mqαt) +O(l(l!)2σtd

2m3/2)) < q/4

Õ(23lσtd
2mqαt) +O(23lσtd

2m3/2)) < q/4

Note that l(l!)2 ≤ l2l+1 ≤ 23l. To ensure that σt is sufficiently large for SampleBasisLeft

and SampleBasisRight (Theorems 2.10 and 2.11), we have

σt > ‖S‖
√
mω(

√
logm).

To ensure that TrapGen (Theorem 2.1) can operate, we have
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m ≥ 6n log q and

‖S‖ ≤ O(n log q) .

To ensure that the reduction applies (Theorem 2.12), we have

q > 2
√
n/α .

Therefore, we need to set the parameters as

m = 6nδ+1,

q = 23lm2.5ω(
√

log n),

αt = (23lm2ω(
√

log n))−1,

σt = mω(
√

log n),

with δ such that nδ = O(log q).

6.2.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 6.2.1. Note that for security

parameter n, vector length l, hierarchy’s maximum depth d and modulus q, we have

m = O(n log q) (see Section 6.2.4).

The master key MK is comprised of l matrices of size m×m, therefore its size is lm2.

The public key PK is comprised of 2l(d+ 1) matrices of size n×m and a vector of length

n; therefore its size is 2lmn+ 2ldmn+ n, which is O(ldmn). The secret key is comprised

of l matrices of size n×(t+1)m, with max(t) = d; therefore its size is ln(d+1)m, which is

O(ldnm). Finally, the ciphertext is comprised of an integer and l(t+ 1) vectors of length

m, with max(t) = d; therefore its size is 1 + l(d+ 1)m, which is O(ldm).

The complexity of HHVE-SetUp is based on the complexity of the TrapGen algorithm.

By Theorem 2.1 we have that the TrapGen algorithm is polynomial, and, since it is ex-

ecuted l times on HHVE-SetUp, the complexity will be l · poly(n). The complexity of

HHVE-KeyDerive is based on the complexity of the SampleBasisLeft algorithm, that is ex-

ecuted l times, and on the lt matrices additions of size n ×m. Therefore, we have that

the complexity of HHVE-KeyDerive is O(ldnm+ l · poly(n)).

The HHVE-Enc algorithm calls the SpliVector algorithm which is linear, does lt matrix

additions (O(nm) each), 2l(t+ 1) matrix-vector multiplications (O(nm) each), lt matrix-

vector multiplications (O(m2) each), l(t + 1) constant-vector multiplications (O(m)),

l(t + 1) vector additions (O(m)), one inner product (O(n)) and two simple additions

O(1), always with max(t) = d. Therefore, the complexity of HHVE-Enc is based on the
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several multiplications. The HHVE-Dec algorithm does lt matrix additions (O(nm)), l

inner products, a simple addiction, calls the SamplePre algorithm l times and calls the

FindLagrangianCoef algorithm one time (which is O(n)). We have, by Theorem 2.6, that

SamplePre is polynomial, therefore the complexity of the HHVE-Dec algorithm is based

on SamplePre and the matrix additions.

Table 6.3 summarises the size of the main variables and Table 6.4 summarises the

complexity of the four algorithms of the scheme described in Section 6.2.1.

Variable Size

Public Key PK O(dln2 log q)

Master Key MK O(ln2 log2 q)

Secret Key SK O(dln2 log q)

Ciphertext CT O(dln log q)

Table 6.3: Key Sizes of the general HHVE Scheme

Algorithm Complexity

SetUp O(l · poly(n))

KeyDerive O(ldn2 log q + l · poly(n))

Enc O(dln2 log q)

Dec O(l · poly(n) + dln2 log q)

Table 6.4: Complexity of the general HHVE Scheme
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Fuzzy Identity-Based Encryption

In this chapter we describe the full FBE lattice-based scheme proposed by Agrawal, Boyen,

Vaikuntanathan, Voulgaris and Wee [5]. Section 7.1 reviews the full original scheme and

Section 7.2 describes our contribution, a hierarchical version of the same scheme.

7.1 Lattice-Based Fuzzy Identity-Based Encryption

This Section reviews the full FBE scheme proposed by Agrawal, Boyen, Vaikuntanathan,

Voulgaris and Wee [5], given in the appendix of their work. Section 7.1.1 describes the

four algorithms that comprise the FBE scheme, Sections 7.1.2, 7.1.3, 7.1.4 and 7.1.5 give

the correctness, security, parameters and complexity analysis of the underlined scheme,

respectively.

7.1.1 Description

As described in Section 3.3, an Fuzzy Identity-Based Encryption Scheme consists of the

following algorithms: SetUp(1n), KeyGen(PK,MK,ω), Enc(PK,M,ω′) and

Dec(PK, SK,CT ). In this section we describe each algorithm as presented by Agrawal

et al. [5].

As in the HVE scheme described in Section 6.1, Shamir’ Secret Sharing Scheme, de-

scribed in Appendix B, is used. The Secret Sharing Scheme used is composed of two algo-

rithms: SplitVector, that divides a data vector into n vector pieces, and FindLagrangianCoef,

that find the lagrangian coefficients so it is possible to recover the vector data using k ≤ n

pieces.

FBE-SetUp creates l general lattices and chooses at random the matrices and vector

that will form the public and master keys. FBE-KeyGen generates the secret key by

dividing each element of vector u using the SplitVector algorithm and creating vectors

101
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uj. Than, it encodes each identity idj ∈ ω into a matrix using the rotf () function and

concatenates it to each corresponding lattice basis. The secret key will be the l vectors ej
created by the SampleLeft algorithm, described in Section 2.2; therefore ej ∈ Λ

uj
q (Aidj).

FBE-Enc uses the message M , the identity vector ω′ and the matrices in the public

key to create an integer c′ and several vectors cj that will compose the ciphertext for one

bit. Finally, FBE-Dec can recover the message from the ciphertext only if |ω ∩ ω′| ≥ k,

where ω and ω′ are identities vectors.

Let n be the security parameter, l be the vectors lenght, σ be the Gaussian parameter

and k be the threshold. Algorithms 7.1, 7.2, 7.3 and 7.4 describe the IBE scheme.

Algorithm 7.1 FBE-SetUp(): Setup Algorithm for the FBE Scheme

Input: security parameter 1n

Output: Public key PK and master key MK

Aj, Sj ← TrapGen(q, n,m) for j ∈ [1, l]

A′j, Bj
$← Zn×mq for j ∈ [1, l]

u
$← Znq

public key PK = ({Aj}, {A′j}, {Bj},u)

master key MK = ({Sj})

Algorithm 7.2 FBE-KeyGen(): Key Generation Algorithm for the FBE Scheme

Input: Public key PK, master key MK and identities vector ω = [id1, · · · , idl]
Output: Secret key SK

u1, · · · ,ul ← SplitVector(u, k)

Cj = A′j + rotf (idj)Bj

ej ← SampleLeft(Aj, Cj, Sj,uj, σ) ∈ Z2m
q

secret key SK = ({ej})
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Algorithm 7.3 FBE-Enc(): Encryption Algorithm for the FBE Scheme

Input: Public key PK, message M and identities vector ω′ = [id′1, · · · , id′l]
Output: Ciphertext CT

β ← (l!)2

s
$← Znq

R
$← {−1, 1}m×m

xj ∈ Ψ
m

α , for j ∈ [1, l] and x ∈ Ψα

Cj = A′j + rotf (id
′
j)Bj

c′j ← A>j s+ βxj ∈ Zmq
cj ← C>j s+ βR>xj ∈ Zmq
c′ ← u>s+ βx+Mbq/2c
ciphertext CT = ({cj}, {c′j}, c′)

Algorithm 7.4 FBE-Dec(): Decryption Algorithm for the FBE Scheme

Input: Public key PK, secret key SK and ciphertext CT

Output: message M

if idj = id′j: G← G ∪ {j}
l← FindLagrangianCoef(G)

z ← c′ −
∑
ρ∈G

lρe
>
ρ

[
c′ρ
cρ

]
mod q

if |z| < q/4, then M = 0; else M = 1

7.1.2 Correctness

First recall that, based on Shamir’s Secret Sharing Scheme (see Appendix B) we have

∑
ρ∈G

lρ[Aj|Cj]eρ =
∑
ρ∈G

lρuρ = u

Now the correctness is straightforward. We just substitute the values of cj and c′ in z and

based on the Shamir’s Secret Sharing Scheme we can recover the vector u. Therefore, it

is possible to cancel the terms u>s, identify all terms that refer to the “noise” and get
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the right value of M in z.

z = c′ −
∑
ρ∈G

lρe
>
ρ

[
c′ρ
cρ

]
mod q

= c′ −
∑
ρ∈G

lρe
>
ρ

[
A>ρ s+ βxρ

C>ρ s+ βR>xρ

]
mod q

= c′ −
∑
ρ∈G

lρe
>
ρ

[
Aρ
Cρ

]>
s+ β

[
xρ

R>xρ

]
mod q

= u>s+ βx+Mbq/2c −
∑
ρ∈G

lρe
>
ρ

(
[Aj|Cj]>s+ β

[
xρ

R>xρ

])
mod q

= u>s+ βx+Mbq/2c −
∑
ρ∈G

(lρ[Aj|Cj]eρ)>s−
∑
ρ∈G

lρe
>
ρ β

[
xρ

R>xρ

]
mod q

= u>s+ βx+Mbq/2c − u>s−
∑
ρ∈G

lρe
>
ρ β

[
xρ

R>xρ

]
mod q

= Mbq/2c+ βx−
∑
ρ∈G

βlρe
>
ρ

[
xρ

R>xρ

]
mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

7.1.3 Security

In this section we prove the following theorem.

Theorem 7.1. If the decision-LWE problem is infeasible, then the functional encryption

scheme described in Section 7.1.1 is IND-wAH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.FBE-SetUp(1n,ω′?): The algorithm chooses random matrices Aj ∈ Zn×mq and

R? ∈ {−1, 1}m×m and vector u ∈ Znq and it uses TrapGen(q, n,m) to generate basis

B?
j ∈ Zn×mq and S?j ∈ Zm×m for Λ⊥q (B?

j ). It then defines A′j ← AjR
? − rotf (id

′?
j )B?

j and

outputs PK = ({Aj}, {A′j},u) and MK = (R?, {B?
j }, {S?j }).

Sim.FBE-KeyGen(PK,MK,ω): Secret keys are now sampled by the SampleRight

algorithm, using the trapdoor S?j . It outputs

SK = ej ∈ Λ
uj
q (Aj|AjR? − rotf (id

′?
j )B?

j ), where
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ej ← SampleRight(Aj, (rotf (idj)− rotf (id
′?
j ))B?

j , R
?, S?j ,uj, σ).

Note that we must have idj 6= id′?j , for j ∈ [1, l], for the algorithm SampleRight to

work properly.

Sim.FBE-Enc(PK,M,ω′?): The algorithm differs from FBE-Enc in the sense that it

uses matrices R? and B?
j instead of matrices R and Bj and it uses constant β to calculate

the ciphertext. Now we have

c′?j = β(A>j s+ xj),

c?j = β(C>j s+R>xj) and

c′? = β(u>s+ x) +Mbq/2c.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

• Game 0: C runs FBE-SetUp, answers A’s secret key queries using the FBE-KeyGen

algorithm, and generates the challenge ciphertext using the FBE-Enc with identities vector

ω′?0 and M0.

• Game 1: C runs Sim.FBE-SetUp with identities vector ω′?0, answers A’s secret

key queries using Sim.FBE-KeyGen, and generates the challenge ciphertext using the

Sim.FBE-Enc algorithm with ω′?0 and M0.

• Game 2: C runs Sim.FBE-SetUp with identities vector ω′?0, answers A’s secret key

queries using Sim.FBE-KeyGen, and generates the challenge ciphertext randomly.

• Game 3: C runs Sim.FBE-SetUp with identities vector ω′?1, answers A’s secret key

queries using Sim.FBE-KeyGen, and generates the challenge ciphertext randomly.

• Game 4: C runs Sim.FBE-SetUp with identities vector ω′?1, answers A’s secret

key queries using Sim.FBE-KeyGen, and generates the challenge ciphertext using the

Sim.FBE-Enc algorithm with ω′?1 and M1.

• Game 5: C runs FBE-SetUp, answers A’s secret key queries using the FBE-KeyGen

algorithm, and generates the challenge ciphertext using the FBE-Enc with identities vector

ω′?1 and M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.

Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 7.1. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.
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SetUp In Game 0, matrices Aj are generated by TrapGen and matrices A′j are uni-

formly random in Zn×mq . Instead, in Game 1, Aj are chosen uniformly at random and

we have A′j ← AjR
? − rotf (id

′?
j )B?

j , where matrices B?
j are generated by TrapGen and

the matrix R? is uniformly and independently chosen at random in {−1, 1}m×m. In both

games the vector u is chosen at random in Znq .

Secret keys In Game 0, the secret key for identities vector ω is a set of vectors

ej ∈ Λ
uj
q (Aj|Cj), sampled using the SampleLeft algorithm. The same happens in Game 1

by using SampleRight. Thus, the secret keys have the same distribution in both games.

Challenge Ciphertext The challenge ciphertext components c′ and c′j in both games

are computed almost in the same way and are clearly indistinguishable by Lemma A.7.

But, in Game 0, the challenge ciphertext component cj is computed as follows:

cj = C>j s+ βR?>xj

= (A′j + rotf (id
′?
j )B?

j )
>s+ βR?>xj ∈ Zmq

.

On the other hand, in Game 1, we have:

cj = β(C>j s+R?>xj)

= β((A′j + rotf (id
′?
j )B?

j )
>s+R?>xj)

= β((AjR
? − rotf (id

′?
j )B?

j + rotf (id
′?
j )B?

j )
>s+R?>xj)

= β((AjR
?)>s+R?>xj) ∈ Zmq

.

Let us now analyse the joint distribution of the public parameters and the challenge ci-

phertext in Game 0 and Game 1. We will show that the distributions of ({Aj}, {A′j}, {cj})
in Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemmas A.4, A.5 and A.7 we have that the following two distri-

butions are statistically indistinguishable for every fixed matrix B?
j , every id′?j and every

vector xj ∈ Zmq :(
{Aj}, {A′j}, {βR?>xj}

)
≈s
(
{Aj}, {AjR? − rotf (id

′?
j )B?

j }, {R?>xj}
)
.

Since (AjR
? − rotf (id

′?
j )B?

j )
>s is statistically close to A′>j s, it is possible to add each

term to each side of the equation:

(
{Aj}, {A′j}, {A′>j s+ βR?>xj}

)
≈s(

{Aj}, {AjR? − rotf (id
′?
j )B?

j }, {(AjR? − rotf (id
′?
j )B?

j )
>s+R?>xj}

) .

Then, we add (rotf (id
′?
j )B?

j )
>s to each side of the equation:(

{Aj}, {A′j}, {(A′j + rotf (id
′?
j )B?

j )
>s+ βR?>xj}

)
≈s(

{Aj}, {AjR? − rotf (id
′?
j )B?

j }, {(AjR?)>s+R?>xj}
) .



7.1. Lattice-Based Fuzzy Identity-Based Encryption 107

Finally, we can multiply β in one side of the equation by Lemma A.7:(
{Aj}, {A′j}, {(A′j + rotf (id

′?
j )B?

j )
>s+ βR?>xj}

)
≈s(

{Aj}, {AjR? − rotf (id
′?
j )B?

j }, {β((AjR
?)>s+R?>xj)}

) .

To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 7.2. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-LWE.

Init B is given lm + 1 LWE challenge pairs (ak, yk) ∈ Znq × Zq, where either yk =

〈ak, s〉 + xk for a random s ∈ Znq and a noise term xk ← Ψα, or yk is uniformly random

in Zq.
SetUp The public parameters are constructed using the vectors of the pairs (ak, yk).

The i-th column of matrix Aj will be the vector a(j−1)m+i+1 and vector u will be a0. The

matrices A′j are calculated as in Sim.FBE-SetUp.

Secret keys All private-key extraction queries are answered using Sim.FBE-KeyGen.

Challenge Ciphertext The ciphertext CT = (c′?j , c
?
j , c
′?) is constructed based on the

terms in the LWE challenge pairs (ak, yk), with c′?j = β(y(j−1)m+1, . . . , yjm+1), c?j = βc′?j
and c′? = βy0 + Mbq/2e. If we have yj = 〈aj, s〉 + xj on the LWE challenge, then the

ciphertext is distributed exactly as in Game 1, and if yj is uniformly random in Zq, then

the ciphertext is distributed exactly as in Game 2. If yk = 〈ak, s〉+ xk, then

β(y(j−1)m+1, . . . , yjm+1) = (β〈a(j−1)m+1, s〉+ βx(j−1)m+1, . . . , β〈ajm+1, s〉+ βxjm+1)

= βA>j,w?j s+ βxj

= β(A>j,w?j s+ xj)

Therefore, for Game 1 we have

c′?j = β(A>j s+ xj)

= β(y(j−1)m+1, . . . , yjm+1) ,

and
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c?j = β(C>j s+R>xj)

= β(A′j + rotf (id
′?
j )B?

j )
>s+R>xj)

= β(AjR
? − rotf (id

′?
j )B?

j + rotf (id
′?
j )B?

j )
>s+R>xj)

= β(AjR
?)>s+R>xj)

= R?>β(A>j s+ xj)

= R?>c′?j .

If all yk is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer

to this guess is also the answer to the LWE challenge, because, as we showed, if yk is

uniformly random in Zq, then A’s view is the same as in Game 2 and if yk = 〈ak, s〉+xk,

then A’s view is the same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 7.3. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated in the same way in both games. Aj and

u are random and A′j ← AjR
?− rotf (id

′?
j )B?

j , with ω′? = ω′?0 for Game 2 and ω′? = ω′?1

for Game 3.

Secret keys All private-key extraction queries are answered using Sim.FBE-KeyGen.

The only difference is, again, that for Game 2, ω′? = ω′?0 and, for Game 3, ω′? = ω′?1.

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for matrices

A′j. Therefore, the indistinguishability of Game 2 and Game 3 only depends on the

indistinguishability of A′j. From Lemmas A.4 and A.5 we can prove that A′j for each

game is statistically close to a uniformly random matrix, because

A′j ← AjR
? − rotf (id

′?
j )B?

j .

7.1.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.
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We know that ‖e‖ ≤ σ
√

2m from Lemma A.1 and ‖Re‖ ≤ 12
√

2m‖e‖ from Lemma A.2;

therefore, for e =

[
e1

e2

]
:

‖e1 +Re2‖ ≤ (σ
√

2m+ 12
√

2mσ
√

2m) so

‖e1 +Re2‖ ≤ O(σm) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈e1 +Re2,x〉 ≤ O(σm)qαw(
√

log 2m) +O(σm)
√

2m/2

〈e1 +Re2,x〉 ≤ Õ(σmqα) +O(σm3/2) .

We also know that |x| ≤ 2m from Lemma A.6, |βlρ| ≤ β2 ≤ (l!)4 from Lemma B.1

and β = (l!)2 from construction. Therefore, to ensure that the error term is less than q/4,

we need the following:∣∣∣∣∣βx−∑
ρ∈G

βlρe
>
ρ

[
xρ

R>xρ

]∣∣∣∣∣ < q/4

β|x| −
∑
ρ∈G

(l!)4e>ρ

[
xρ

R>xρ

]
< q/4

(l!)22m− l(l!)4e>ρ

[
xρ

R>xρ

]
< q/4

(l!)22m− l(l!)4(e>1,ρxρ + e>2,ρR
>xρ) < q/4

(l!)22m− l(l!)4(e1,ρ +Re2,ρ)
>xρ < q/4

(l!)22m+ l(l!)4〈e1,ρ +Re2,ρ,xρ〉 < q/4

(l!)22m+ l(l!)4(Õ(σmqα) +O(σm3/2)) < q/4

Õ(l(l!)4σmqα) +O(l(l!)4σm3/2)) < q/4

Õ(l25lσmqα) +O(l25lσm3/2)) < q/4

Note that (l!)4 ≤ l4l ≤ 25l. To ensure that σt is sufficiently large for SampleLeft and

SampleRight (Theorems 2.7 and 2.8), we have

σt > ‖S‖
√
mω(

√
logm).

To ensure that TrapGen (Theorem 2.1) can operate, we have

m ≥ 6n log q and

‖S‖ ≤ O(n log q) .

To ensure that the reduction applies (Theorem 2.12), we have
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q > 2
√
n/α .

Therefore, we need to set the parameters as

m = 6nδ+1,

q = l25lm2.5ω(
√

log n),

α = (l25lm2ω(
√

log n))−1,

σ = mω(
√

log n),

with δ such that nδ = O(log q).

7.1.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 7.1.1. Note that for security

parameter n, identities vector length l and modulus q, we have m = O(n log q) (see

Section 7.1.4).

The master key MK comprised of l matrices of size m×m matrix, therefore its size

is lm2. The public key PK is comprised of a vector of length n and three n×m matrices;

therefore its size is n+ 3nm, which is O(mn). The secret key is comprised of l vectors of

length 2m; therefore its size is 2lm, which is O(lm). Finally, the ciphertext is comprised

of an integer and 2l vectors of length m; therefore its size is 1 + 2lm, which is O(lm).

The complexity of FBE-SetUp is based on the complexity of the TrapGen algorithm. By

Theorem 2.1 we have that the TrapGen algorithm is polynomial, and, since it is executed

l times on FBE-SetUp, the complexity will be l · poly(n). The complexity of FBE-KeyGen

is based on the complexity of the SampleLeft algorithm, that is executed l times, and on

the l matrix-matrix multiplications of size (O(n2m) each). Therefore, we have that the

complexity of FBE-KeyGen is O(lmn2 + l · poly(n)).

The FBE-Enc algorithm does l matrix-matrix multiplications (O(n2m), each), 3l matrix-

vector multiplications (O(lnm + lnm + lm2) total), one inner product (O(n)), l matrix

addition (O(nm)), 2l vector additions (O(m) each) and two simple additions O(1). There-

fore, the complexity of FBE-Enc is based on the matrix-matrix multiplication operations.

The FBE-Dec algorithm does at most l vector additions (O(2m)), l inner products, a

simple addiction, and calls the FindLagrangianCoef algorithm one time (which is O(n)).

We have, therefore, that the complexity of the FBE-Dec algorithm is based on the vector

additions and inner products.

Table 7.1 summarises the size of the main variables and Table 7.2 summarises the

complexity of the four algorithms of the scheme described in Section 7.1.1.
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Variable Size

Public Key PK O(ln2 log q)

Master Key MK O(ln2 log2 q)

Secret Key SK O(ln log q)

Ciphertext CT O(ln log q)

Table 7.1: Key Sizes of the general FBE Scheme

Algorithm Complexity

SetUp O(l · poly(n))

KeyGen O(l · poly(n) + ln3 log q)

Enc O(ln3 log q)

Dec O(ln log q)

Table 7.2: Complexity of the general FBE Scheme

7.2 Lattice-Based Hierarchical Fuzzy Identity-Based

Encryption

This Section reviews the HFBE scheme, one of the contributions of this work. Sec-

tion 7.2.1 describes the four algorithms that comprise the HFBE scheme, Sections 7.2.2,

7.2.3, 7.2.4 and 7.2.5 give the correctness, security, parameters and complexity analysis

of the underlined scheme, respectively.

7.2.1 Description

As described in Section 3.1, an Hierarchical Fuzzy Identity-Based Encryption Scheme

consists of the following algorithms: SetUp(1n, 1µ), KeyDerive(PK, SKt−1,ω1, · · · ,ωt),
Enc(PK,M,ω′1, · · · ,ω′t) and Dec(PK, SKt, CT ).

As in the HVE scheme described in Section 6.1, Shamir’ Secret Sharing Scheme, de-

scribed in Appendix B, is used. The Secret Sharing Scheme used is composed of two algo-

rithms: SplitVector, that divides a data vector into n vector pieces, and FindLagrangianCoef,

that find the lagrangian coefficients so it is possible to recover the vector data using k ≤ n

pieces.

HFBE-SetUp creates l general lattices and chooses at random the matrices and vector

that will form the public and master keys. HFBE-KeyDerive generates the secret key by

choosing the correspondent matrices based on values of each idi,j and concatenating it
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to the lattice basis. Now, the secret key is the basis for the lattices generated by these

concatenations, using the algorithm SampleBasisLeft described in Section 2.2. Note that

SK0 = MK.

HFBE-Enc uses the message M , the identities vectors ω′ and the matrices in the public

key to create an integer c′ and several vectors ci,j that will compose the ciphertext for one

bit. Here, it splits a random vector s using the SplitVector algorithm. Finally, HFBE-Dec

calculates the lagrangian coefficients so that it can recover the message from the ciphertext

only if |ωi ∩ ω′i| ≥ k, for all i ∈ [1, d] where each ωi and ω′i are identities vectors.

Let n be the security parameter, µ be the hierarchical parameter, l be the vectors

lenght, σi (for i ∈ [1, d]) be the Gaussian parameter and k be the threshold. Algo-

rithms 7.5, 7.6, 7.7 and 7.8 describe the HFBE scheme.

Algorithm 7.5 HFBE-SetUp(): Setup Algorithm for the HFBE Scheme

Input: security parameter 1n and hierarchical parameter 1µ

Output: Public key PK and master key MK

Aj, Tj ← TrapGen(q, n,m) for j ∈ [1, l]

Ai,j, Bj
$← Zn×mq for i ∈ [1, d] and j ∈ [1, l]

u
$← Znq

public key PK = ({Aj}, {Ai,j}, {Bj},u)

master key MK = ({Tj})

Algorithm 7.6 HFBE-KeyDerive(): Key Generation Algorithm for the HFBE Scheme

Input: Public key PK, secret key SKt−1 and identities vectors ω = ω1, · · · ,ωt
Output: Secret key SK

Cj = [A1,j + rotf (id1,j)Bj| · · · |At−1,j + rotf (idt−1,j)Bj]

Sj ← SampleBasisLeft([Aj|Cj], At,j + rotf (idt,j)Bj, S
′
j, σt), where S ′j ∈ SKt−1

secret key SKt = ({Sj}), with Sj ∈ Zn×(t+1)m
q
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Algorithm 7.7 HFBE-Enc(): Encryption Algorithm for the HFBE Scheme

Input: Public key PK, message M and identities vectors ω′ = ω′1, · · · ,ω′t
Output: Ciphertext CT

β ← (l!)2

s
$← Znq

Ri,j
$← {−1, 1}m×m, for i ∈ [1, d] and j ∈ [1, l]

xj ∈ Ψ
m

α , for j ∈ [1, l] and x ∈ Ψα

s1, · · · , sl ← SplitVector(s, k)

c0,j ← A>j sj + βxj ∈ Zmq
ci,j ← [Ai,j + rotf (idi,j)Bj]

>sj + βR>i,jxj ∈ Zmq
c′ ← u>s+ βx+Mbq/2c
ciphertext CT = ({ci,j}, c′)

Algorithm 7.8 HFBE-Dec(): Decryption Algorithm for the HFBE Scheme

Input: Public key PK, secret key SKt and ciphertext CT

Output: message M

if idi,j = id′i,j for all i ∈ [1, d]: G← G ∪ {j}
l← FindLagrangianCoef(G)

Cj ← [A1,j + rotf (id1,j)Bj| · · · |At,j + rotf (idt,j)Bj]

σ = σt
√
m(t+ 1)ω(

√
log(tm))

ej ← SamplePre([Aj|Cj], Sj, lju, σ), where Sj ∈ SKt

z ← c′ −
∑
ρ∈G

e>ρ

 c0,ρ

...

ct,ρ

 mod q

if |z| < q/4, then M = 0; else M = 1

7.2.2 Correctness

First recall that, based on Shamir’s Secret Sharing Scheme (see Appendix B) and since

u>s = s>u, we have ∑
ρ∈G

lρu
>sρ =

∑
ρ∈G

lρs
>
ρ u = s>u = u>s

Now the correctness is straightforward. We just substitute the values of ci,j and c′ in z

and based on the Shamir’s Secret Sharing Scheme we can recover the vector s. Therefore,

it is possible to cancel the terms u>s, identify all terms that refer to the “noise” and get
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the right value of M in z.

z = c′ −
∑
ρ∈G

e>ρ


c0,ρ

c1,ρ

...

ct,ρ

 mod q

= c′ −
∑
ρ∈G

e>ρ


A>ρ sρ + βxρ

(A1,j + rotf (id1,j)Bj)
>sρ + βR>1,ρxρ

...

(At,j + rotf (idt,j)Bj)
>sρ + βR>t,ρxρ

 mod q

= c′ −
∑
ρ∈G

e>ρ [Aρ|Cρ]>sρ −
∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]
mod q

= c′ −
∑
ρ∈G

lρu
>sρ −

∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]
mod q

= u>s+ βx+Mbq/2c − u>s−
∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]
mod q

= Mbq/2c+ βx− β
∑
ρ∈G

e>ρ

[
xρ

R>ρ xρ

]
mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

7.2.3 Security

In this section we prove the following theorem.

Theorem 7.2. If the decision-LWE problem is infeasible, then the functional encryption

scheme described in Section 7.2.1 is IND-wAH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.HFBE-SetUp(1n, 1µ,ω′?1 , · · · ,ω′?d ): The algorithm chooses randomly the l ma-

trices Aj in Zn×mq and a vector u ∈ Znq , and it uses the algorithm TrapGen(q, n,m) to

generate the l matrices B?
j and T ?j . It defines the matrices Ai,j ← AjR

?
i,j − rotf (idi,j)B

?
j ,

for j ∈ [1, l] and i ∈ [1, d], where all matrices R?
i,j are randomly chosen in {−1, 1}m×m. The

algorithm also chooses s′? ∈ Znq at random and calculates s? such that all shares s?j = s′?,

i.e., it solves the equation s?j = s+
∑
aij

i for s?j = s′?, j ∈ [1, l] and i ∈ [0, k−1]. Finally,

it outputs PK = ({Aj}, {Ai,j},u) and MK = ({R?
i,j}, {B?

j }, {T ?j }, s?, s′?).
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Sim.HFBE-KeyDerive(PK,MK,ω1, · · · ,ωt): Secret keys are now created using the

trapdoors T ?j , sampled by the SampleBasisRight algorithm. It outputs SKt = {Sj}, the

bases of lattices Λ⊥q
(
Aj|AjR?

1,j − rotf (id
′?
1,j)B

?
j | · · · |AjR?

t,j − rotf (id
′?
t,j)B

?
j

)
, using

Sj ← SampleBasisRight(Aj, B
?
j , R

?
i,j, T

?
j , σt),

with R?
j = [R?

1,j| · · · |R?
t,j].

Note that we must have idi,j 6= id′?i,j, for j ∈ [1, l] and i ∈ [1, d], for the algorithm

SampleBasisRight to work properly.

Sim.HFBE-Enc(PK,M,ω′?1 , · · · ,ω′?t ): The algorithm differs from HFBE-Enc in the

sense that it uses matrices R?
i,j and B?

j instead of matrices Ri,j and Bj and vectors s? and

s′? instead of vectors s and sj. It also uses constant β to calculate the ciphertext. Now

we have

c0,j = β(A>j s
′? + xj),

ci,j = β([Ai,j + rotf (id
′?
i,j)B

?
j ]
>s′? +R?>

i,j xj) and

c′ = β(u>s? + x) +Mbq/2c.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

• Game 0: C runs HFBE-SetUp, answers A’s secret key queries using algorithm

HFBE-KeyDerive, and generates the challenge ciphertext using the HFBE-Enc with identi-

ties vectors ω′?01 , · · · ,ω′?0t and M0.

• Game 1: C runs Sim.HFBE-SetUp with identities vectors ω′?01 , · · · ,ω′?0d , answers

A’s secret key queries using Sim.HFBE-KeyDerive, and generates the challenge ciphertext

using the Sim.HFBE-Enc algorithm with identities vectors ω′?01 , · · · ,ω′?0t and M0.

• Game 2: C runs Sim.HFBE-SetUp with identities vectors ω′?01 , · · · ,ω′?0d , answers

A’s secret key queries using Sim.HFBE-KeyDerive, and generates the challenge ciphertext

randomly.

• Game 3: C runs Sim.HFBE-SetUp with identities vectors ω′?11 , · · · ,ω′?1d , answers

A’s secret key queries using Sim.HFBE-KeyDerive, and generates the challenge ciphertext

randomly.

• Game 4: C runs Sim.HFBE-SetUp with identities vectors ω′?11 , · · · ,ω′?1d , answers

A’s secret key queries using Sim.HFBE-KeyDerive, and generates the challenge ciphertext

using the Sim.HFBE-Enc algorithm with identities vectors ω′?11 , · · · ,ω′?1t and M1.

• Game 5: C runs HFBE-SetUp, answers A’s secret key queries using algorithm

HFBE-KeyDerive, and generates the challenge ciphertext using the HFBE-Enc with identi-

ties vectors ω′?11 , · · · ,ω′?1t and M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.
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Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 7.4. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.

SetUp In Game 0, matrices Aj are generated by TrapGen and matrices Ai,j are uni-

formly random in Zn×mq . Instead, in Game 1, Aj are chosen uniformly at random and we

have Ai,j ← AjR
?
i,j − rotf (idi,j)B

?
j , where B?

j is generated by TrapGen and the matrices

R?
i,j are uniformly and independently chosen at random in {−1, 1}m×m. In both games

the vector u is chosen at random in Znq .

Secret keys In Game 0, the secret key for identities vectors ω1, · · · ,ωt is a set

of basis of lattices Λ⊥q (Aj|Cj), with Cj = [A1,j + rotf (id1,j)Bj| . . . |At,j + rotf (idt,j)Bj]

sampled using the SampleBasisLeft algorithm. The same happens in Game 1 by using

SampleBasisRight. Thus, the secret keys have the same distribution in both games.

Challenge Ciphertext The challenge ciphertext components c′ and c0,j in both

games are computed almost in the same way and are clearly indistinguishable by Lemma A.7.

But, in Game 0, the challenge ciphertext components ci,j, for i ∈ [1, t], are computed as

follows:

ci,j = (Ai,j + rotf (id
′?
i,j)B

?
j )
>s′? + βR?>

i,j xj ∈ Zmq .

On the other hand, in Game 1, we have:

ci,j = β((Ai,j + rotf (id
′?
i,j)B

?
j )
>s′? +R?>

i,j xj)

= β((AjR
?
i,j − rotf (id

′?
i,j)B

?
j + rotf (id

′?
i,j)B

?
j )
>s′? +R?>

i,j xj)

= β((AjR
?
i,j)
>s′? +R?>

i,j xj) ∈ Zmq

.

Let us now analyse the joint distribution of the public parameters and the challenge ci-

phertext in Game 0 and Game 1. We will show that the distributions of ({Aj}, {Ai,j}, {ci,j})
in Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemmas A.4, A.5 and A.7 we have that the following two dis-

tributions are statistically indistinguishable for every fixed matrix B?
j and every vector

xj ∈ Zmq : (
Aj, Ai,j, βR

?>
i,j xj

)
≈s
(
Aj, AjR

?
i,j − rotf (id

′?
i,j)B

?
j , R

?>
i,j xj

)
.

Since each R?
i,j is chosen independently for every i ∈ [1, d] and j ∈ [1, l], then the joint

distribution of them are statistically close:

(
{Aj}, {Ai,j}, {βR?>

i,j xj}
)
≈s
(
{Aj}, {AjR?

i,j − rotf (id
′?
i,j)B

?
j }, {R?>

i,j xj}
)
.
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Since each (AjR
?
i,j − rotf (id

′?
i,j)B

?
j )
>s′? is statistically close to A>i,js

′?, it is possible to

add each term to each side of the equation:

(
{Aj}, {Ai,j}, {A>i,js′? + βR?>

i,j xj}
)
≈s(

{Aj}, {AjR?
i,j − rotf (id

′?
i,j)B

?
j }, {[AjR?

i,j − rotf (id
′?
i,j)B

?
j ]
>s′? +R?>

i,j xj}
) .

Then, we add rotf (id
′?
i,j)B

?>
j s

′? to each side of the equation:(
{Aj}, {Ai,j}, {[Ai,j + rotf (id

′?
i,j)B

?
j ]
>s′? + βR?>

i,j xj}
)
≈s(

{Aj}, {AjR?
i,j − rotf (id

′?
i,j)B

?
j }, {[AjR?

i,j]
>s′? +R?>

i,j xj}
) .

Finally, we can multiply β in one side of the equation by Lemma A.7:(
{Aj}, {Ai,j}, {[Ai,j + rotf (id

′?
i,j)B

?
j ]
>s′? + βR?>

i,j xj}
)
≈s(

{Aj}, {AjR?
i,j − rotf (id

′?
i,j)B

?
j }, {β([AjR

?
i,j]
>s′? +R?>

i,j xj)}
) .

To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 7.5. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-LWE.

Init B is given lm + 1 LWE challenge pairs (ak, yk) ∈ Zmq × Zq, where either yk =

〈ak, s〉 + xk for a random s ∈ Znq and a noise term xk ← Ψα, or yk is uniformly random

in Zq.
SetUp The public parameters are constructed using the vectors of the pairs (ak, yk).

The i-th column of matrix Aj will be the vector a(j−1)m+i+1, and vector u will be a0. The

matrices Ai,j are still calculated as in Sim.HFBE-SetUp, i.e., Ai,j ← AjR
?
i,j− rotf (id

′?
i,j)B

?
j .

Secret keys All private-key extraction queries are answered using Sim.HFBE-KeyDerive.

Challenge Ciphertext The ciphertext CT = (c?i,j, c
′?) is constructed based on the

terms in the LWE challenge pairs (ak, yk), with c?0,j = (y(j−1)n+1, · · · , yjn+1), c′? = y0 +

Mbq/2e and c?i,j = R?>
i,j c0,j. If we have yk = 〈ak, s′?〉+ xk on the LWE challenge, then the

ciphertext is distributed exactly as in Game 1, and if yk is uniformly random in Zq, then

the ciphertext is distributed exactly as in Game 2. If yk = 〈ak, s′?〉+ xk, then
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(y(j−1)m+1, . . . , yjm+1) = (〈a(j−1)m+1, s
′?〉+ x(j−1)m+1, . . . , 〈ajm+1, s

′?〉+ xjm+1).

Therefore, for Game 1 we have

c?0,j = β(A>j s
′? + xj)

= β(y(j−1)m+1, . . . , yjm+1)

and
c?i,j = β((Ai,j + rotf (id

′?
i,j)B

?
j )
>s′? +R?>

i,j xj)

= β(AjR
?
i,j − rotf (id

′?
i,j)B

?
j + rotf (id

′?
i,j)B

?
j )
>s′? +R?>

i,j xj)

= β((AjR
?
i,j)
>s′? +R?>

i,j xj)

= βR?>
i,j (A>j s

′? + xj)

= R?>
i,j c0,j .

If all yk is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer

to this guess is also the answer to the LWE challenge, because, as we showed, if yk is

uniformly random in Zq, then A’s view is the same as in Game 2 and if yk = 〈ak, s〉+xk,

then A’s view is the same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 7.6. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated in the same way in both games. Aj and u

are random and Ai,j ← AjR
?
i,j− rotf (id

′?
i,j)B

?
j , with ω′?i = ω′?0i for Game 2 and ω′?i = ω′?1i

for Game 3, for i ∈ [1, d].

Secret keys All private-key extraction queries are answered using Sim.HFBE-KeyDerive.

The only difference is, again, that for Game 2, ω′?i = ω′?0i and ω′?i = ω′?1i for Game 3, for

i ∈ [1, d].

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for matrices

Ai,j. Therefore, the indistinguishability of Game 2 and Game 3 only depends on the

indistinguishability of Ai,j. From Lemmas A.4 and A.5 we can prove that Ai,j for each

game is statistically close to a uniformly random matrix, because

Ai,j ← AjR
?
i,j − rotf (id

′?
i,j)B

?
j .
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7.2.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.

We know that ‖e‖ ≤ σ
√

2m from Lemma A.1 and ‖Rρe‖ ≤ 12
√
tm+m‖e‖ from

Lemma A.2, for Rρ = [R1,rho| · · · |Rt,ρ], with max(t) = d; therefore, for e =

[
e1

e2

]
:

‖e1 +Rρe2‖ ≤ (σt
√
m(d+ 1) + 12

√
m(d+ 1)σt

√
m(d+ 1)) so

‖e1 +Rρe2‖ ≤ O(d2σtm) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈e1 +Rρe2,x〉 ≤ O(d2σtm)qαtw(
√

log 2m) +O(d2σtm)
√

2m/2

〈e1 +Rρe2,x〉 ≤ Õ(σtd
2mqαt) +O(σtd

2m3/2) .

We also know that |x| ≤ 2m from Lemma A.6 and β = (l!)2 from construction.

Therefore, to ensure that the error term is less than q/4, we need the following:∣∣∣∣∣βx−∑
ρ∈G

e>ρ

[
βxρ

βR>ρ xρ

]∣∣∣∣∣ < q/4

β|x| −
∑
ρ∈G

βe>ρ

[
xρ

R>ρ xρ

]
< q/4

β2m− lβe>ρ
[
xρ

R>ρ xρ

]
< q/4

β2m− lβ(e>1,ρxρ + e>2,ρR
>
ρ xρ) < q/4

β2m− lβ(e1,ρ +Re2,ρ)
>xρ < q/4

β2m+ lβ〈e1,ρ +Re2,ρ,xρ〉 < q/4

β2m+ lβ(Õ(σtd
2mqαt) +O(σtd

2m3/2)) < q/4

Õ(lβσtd
2mqαt) +O(lβσtd

2m3/2)) < q/4

Õ(l(l!)2σtd
2mqαt) +O(l(l!)2σtd

2m3/2)) < q/4

Õ(23lσtd
2mqαt) +O(23lσtd

2m3/2)) < q/4

Note that l(l!)2 ≤ l2l+1 ≤ 23l. To ensure that σt is sufficiently large for SampleBasisLeft

and SampleBasisRight (Theorems 2.10 and 2.11), we have

σt > ‖S‖
√
mω(

√
logm).

To ensure that TrapGen (Theorem 2.1) can operate, we have
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m ≥ 6n log q and

‖S‖ ≤ O(n log q) .

To ensure that the reduction applies (Theorem 2.12), we have

q > 2
√
n/α .

Therefore, we need to set the parameters as

m = 6nδ+1,

q = 23lm2.5ω(
√

log n),

αt = (23lm2ω(
√

log n))−1,

σt = mω(
√

log n),

with δ such that nδ = O(log q).

7.2.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 7.2.1. Note that for security

parameter n and modulus q, we have m = O(n log q) (see Section 7.2.4).

The master key MK comprised of l matrices of size m×m matrix, therefore its size is

lm2. The public key PK is comprised of a vector of length n and 2l+ ld matrices of size

n×m; therefore its size is n+2lnm+ldmn, which is O(ldmn). The secret key is comprised

of l matrices of size n×(t+1)m, with max(t) = d; therefore its size is ln(d+1)m, which is

O(ldnm). Finally, the ciphertext is comprised of an integer and l(t+ 1) vectors of length

m, with max(t) = d; therefore its size is 1 + l(d+ 1)m, which is O(ldm).

The complexity of HFBE-SetUp is based on the complexity of the TrapGen algorithm.

By Theorem 2.1 we have that the TrapGen algorithm is polynomial, and, since it is ex-

ecuted l times on HFBE-SetUp, the complexity will be l · poly(n). The complexity of

HFBE-KeyDerive is based on the complexity of the SampleBasisLeft algorithm, that is

executed l times, on the lt matrices additions of size n×m and on the lt matrices multi-

plications, with max(t) = d. Therefore, we have that the complexity of HFBE-KeyDerive

is O(ldm2 + l · poly(n)).

The HFBE-Enc algorithm calls the SpliVector algorithm which is linear, does lt matrix

additions (O(nm) each), lt matrix-matrix multiplications (O(nm2), each), 2l(t+1) matrix-

vector multiplications (O(nm) each), lt matrix-vector multiplications (O(m2) each), l(t+

1) constant-vector multiplications (O(m)), l(t + 1) vector additions (O(m)), one inner

product (O(n)) and two simple additions O(1), always with max(t) = d. Therefore, the
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complexity of HFBE-Enc is based on the several multiplications. The HFBE-Dec algorithm

does lt matrices additions (O(nm), each), lt matrices multiplications (O(nm2), each), l

inner products, a simple addiction, calls the SamplePre algorithm l times and calls the

FindLagrangianCoef algorithm one time (which is O(n)). We have, by Theorem 2.6, that

SamplePre is polynomial, therefore the complexity of the HFBE-Dec algorithm is based on

SamplePre and the matrices multiplications.

Table 7.3 summarises the size of the main variables and Table 7.4 summarises the

complexity of the four algorithms of the scheme described in Section 7.2.1.

Variable Size

Public Key PK O(ldn2 log q)

Master Key MK O(ln2 log2 q)

Secret Key SK O(ldn2 log q)

Ciphertext CT O(ldn log q)

Table 7.3: Key Sizes of the general HFBE Scheme

Algorithm Complexity

SetUp O(l · poly(n))

KeyDerive O(l · poly(n) + ldn2 log2 q)

Enc O(ldn3 log2 q)

Dec O(l · poly(n) + ldn3 log2 q)

Table 7.4: Complexity of the general HFBE Scheme
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Chapter 8

Ideal Lattice-Based Encryption

In this chapter we show a version of the IBE and HIBE schemes proposed by Agrawal,

Boneh and Boyen [4] using ideal lattices. Section 8.1 describes the general scheme as

proposed by Yang, Wu, Zhang and Chen [80] and Section 8.2 describes our contribution,

a hierarchical version of the same scheme as proposed by Mochetti and Dahab [54].1

8.1 Ideal Lattice-Based Identity-Based Encryption

This Section reviews the IBE scheme proposed by Agrawal et al. [4] using ideal lattices

as described by Yang et al. [80]. Section 8.1.1 describes the four algorithms that comprise

the ideal IBE scheme, Sections 8.1.2, 8.1.3, 8.1.4 and 8.1.5 give the correctness, security,

parameters and complexity analysis of the underlined scheme, respectively.

8.1.1 Description

As described in Section 3.2, an Identity-Based Encryption Scheme consists of the following

algorithms: SetUp(1n), KeyGen(PK,MK, id), Enc(PK,M, id) and Dec(PK, SK,CT ). In

this section we describe each algorithm as presented by Yang et al. [80].

SetUp creates an ideal lattice and chooses at random the vectors that will form the

public and master keys. KeyGen generates the secret key by encoding the identity id into

the lattice basis. The secret key is a ring ê created by the SampleLeft algorithm (described

in Section 2.2), using the matrix created with the identity as the lattice basis; therefore

ê ∈ Λuq (Rotf (âid)), with âid =
[

â
â0+id·b̂

]
.

Enc uses the message M , the identity id and the vectors in the public key to create

an integer c′ and rings ĉ0 and ĉ1 that will compose the ciphertext for one bit. Finally,

1Although really similar, the schemes described in [54] were developed independently of the schemes
described in [80].
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Dec can recover the message from the ciphertext only if the identity used during the key

generation is the same as the one used during the encryption.

Let n = 2α be the security parameter, σ be the Gaussian parameter and R =

Zq[x]/f(x), with f(x) = xn + 1. Algorithms 8.1, 8.2, 8.3 and 8.4 describe the ideal

IBE scheme.

Algorithm 8.1 ideal-IBE-SetUp(): Setup Algorithm for the ideal IBE Scheme

Input: security parameter 1n

Output: Public key PK and master key MK

â, S ← IdealTrapGen(n, k, q, σ)

â0, b̂
$← Rk

q

u
$← Rq

public key PK = (â, â0, b̂,u)

master key MK = S

Algorithm 8.2 ideal-IBE-KeyGen(): Key Generation Algorithm for the ideal IBE

Scheme

Input: Public key PK, master key MK and identity id

Output: Secret key SK

ĉ = â0 + id · b̂
ê← SampleLeft(Rotf (â),Rotf (ĉ), S,u, σ)

secret key SK = ê ∈ R2k
q

Algorithm 8.3 ideal-IBE-Enc(): Encryption Algorithm for the ideal IBE Scheme

Input: Public key PK, message M and identity id

Output: Ciphertext CT

s
$← Rq

x̂ ∈ Ψ
kn

α and x ∈ Ψα

r̂γ
$← Rk with coefficients in {−1, 1}, for γ ∈ [1, k]

R = [Rotf (r̂1)>| · · · |Rotf (r̂k)>]

ĉ0 = â · s+ x̂ ∈ Rk
q

ĉ1 = (â0 + id · b̂) · s+R>x̂ ∈ Rk
q

c′ = u>s+ x+Mbq/2c
ciphertext CT = (ĉ0, ĉ1, c

′)
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Algorithm 8.4 ideal-IBE-Dec(): Decryption Algorithm for the ideal IBE Scheme

Input: Public key PK, secret key SK and ciphertext CT

Output: message M

z = c′ − ê>
[
ĉ0
ĉ1

]
mod q

if |z| < q/4, then M = 0; else M = 1

Note that R>x̂ = (r̂1 ⊗ x̂, · · · , r̂k ⊗ x̂).

8.1.2 Correctness

The correctness is straightforward. First we just substitute the values of ĉ0, ĉ1 and c′ in

z. If the identity used during the key generation is the same as the one used during the

encryption, then âid is
[

â
â0+id·b̂

]
. We have for f(x) = xn + 1 that âid · s = Rotf (âid)

>s

(see Lemma C.1) and, therefore, ê>âid · s = ê>Rotf (âid)
>s = u>s. So, we cancel the

terms u>s, identify all terms that refer to the “noise” and get the right value of M in z.

z = c′ − ê>
[
ĉ0

ĉ1

]
mod q

= c′ − ê>
[

â · s+ x̂

(â0 + id · b̂) · s+R>x̂

]
mod q

= c′ − ê>
[

â

(â0 + id · b̂)

]
· s− ê>

[
x̂

R>x̂

]
mod q

= u>s+ x+Mbq/2c − u>s− ê>
[
x̂

R>x̂

]
mod q

= x+Mbq/2c − ê>
[
x̂

R>x̂

]
mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

8.1.3 Security

In this section we prove the following theorem.

Theorem 8.1. If the decision-Ring-LWE problem is infeasible, then the functional en-

cryption scheme described in Section 8.1.1 is IND-AH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.
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Sim.ideal-IBE-SetUp(1n, id?): The algorithm chooses random ring â ∈ Rk
q and r̂?γ ∈

Rk with coefficients in {−1, 1} and vector u ∈ Rq and it uses IdealTrapGen(q, n, k, σ) to

generate b̂? ∈ Rk
q and the basis S? ∈ Zkn×kn for Λ⊥q (Rotf (b̂

?)). It then defines â0 ←
âR? − id? · b̂?, with R? = [Rotf (r̂

?
1)>| · · · |Rotf (r̂?k)>] and outputs PK = (â, â0,u) and

MK = ({r̂?γ}, b̂?, S?).

Sim.ideal-IBE-KeyGen(PK,MK, id): Secret keys are now sampled by the SampleRight

algorithm, using the trapdoor S?. It outputs

SK = ê ∈ Λuq (Roff (âid), with âid =
[

â
âR−(id+id?)·b̂?

]
, where

ê← SampleRight(Roff (â), (id− id?)Roff (b̂?), R?, S?,u, σ),

with R? = [Rotf (r̂
?
1)>| · · · |Rotf (r̂?k)>].

Note that we must have id 6= id? for the algorithm SampleRight to work properly.

Sim.ideal-IBE-Enc(PK,M, id?): The algorithm differs from ideal-IBE-Enc in the sense

that it uses rings r̂?γ and b̂? instead of rings r̂γ and b̂.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

• Game 0: C runs ideal-IBE-SetUp, answers A’s secret key queries using algorithm

ideal-IBE-KeyGen, and generates the challenge ciphertext using the ideal-IBE-Enc with

identity id?0 and M0.

• Game 1: C runs Sim.ideal-IBE-SetUp with identity id?0, answers A’s secret key

queries using Sim.ideal-IBE-KeyGen, and generates the challenge ciphertext using the

Sim.ideal-IBE-Enc algorithm with id?0 and M0.

• Game 2: C runs Sim.ideal-IBE-SetUp with identity id?0, answers A’s secret key

queries using Sim.ideal-IBE-KeyGen, and generates the challenge ciphertext randomly.

• Game 3: C runs Sim.ideal-IBE-SetUp with identity id?1, answers A’s secret key

queries using Sim.ideal-IBE-KeyGen, and generates the challenge ciphertext randomly.

• Game 4: C runs Sim.ideal-IBE-SetUp with identity id?1, answers A’s secret key

queries using Sim.ideal-IBE-KeyGen, and generates the challenge ciphertext using the

Sim.ideal-IBE-Enc algorithm with id?1 and M1.

• Game 5: C runs ideal-IBE-SetUp, answers A’s secret key queries using algorithm

ideal-IBE-KeyGen, and generates the challenge ciphertext using the ideal-IBE-Enc with

identity id?1 and M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.
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Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 8.1. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.

SetUp In Game 0, ring â is generated by IdealTrapGen and ring â0 is uniformly

random in Rk
q . Instead, in Game 1, â is chosen uniformly at random and we have

â0 ← âR?− id? · b̂?, where b̂? is generated by IdealTrapGen and the rings r̂?γ are uniformly

and independently chosen at random with coefficients in {−1, 1}. In both games the

vector u is chosen at random in Rq.

Secret keys In Game 0, the secret key for identity id is a ring ê ∈ Λuq (Rotf (âid)), sam-

pled using the SampleLeft algorithm. The same happens in Game 1 by using SampleRight.

Thus, the secret keys have the same distribution in both games.

Challenge Ciphertext In both games the challenge ciphertext components c′ and

ĉ0 are computed the same way but, in Game 0, the challenge ciphertext component ĉ1 is

computed as follows:

ĉ1 = (â0 + id? · b̂?) · s+R?>x̂ ∈ Rk
q .

On the other hand, in Game 1, we have:

ĉ1 = (â0 + id? · b̂?) · s+R?>x̂

= (âR? − id? · b̂? + id? · b̂?) · s+R?>x̂

= (âR?) · s+R?>x̂ ∈ Rk
q

.

Let us now analyse the joint distribution of the public parameters and the challenge

ciphertext in Game 0 and Game 1. We will show that the distributions of (â, â0, ĉ1) in

Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemma A.8 we have that the following two distributions are

statistically indistinguishable for every fixed matrix b̂?, every id? and every vector x̂ ∈ Rk
q :(

â, â0, R
?>x̂

)
≈s
(
â, âR? − id? · b̂?, R?>x̂

)
.

Since (âR? − id? · b̂?) · s is statistically close to â0 · s, it is possible to add each term

to each side of the equation: (
â, â0, â0 · s+R?>x̂

)
≈s(

â, âR? − id? · b̂?, (âR? − id? · b̂?) · s+R?>x̂
) .

Then, we add (id? · b̂?) · s to each side of the equation:
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(
â, â0, (â0 + id? · b̂?) · s+R?>x̂

)
≈s(

â, âR? − id? · b̂?, (âR?) · s+R?>x̂
) .

To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 8.2. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-Ring-LWE

and decision-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-Ring-LWE.

Init B is given k Ring-LWE challenge pairs (aj,yj) ∈ Rq × Rq, where either yj =

aj · s+xj for a random s ∈ Rq and a noise term xj ← Ψn
α, or yj is uniformly random in

Rq. And one LWE challenge pair (a0, y0) ∈ Znq × Zq, where either y0 = 〈a0, s〉 + xj for a

noise term xj ← Ψα, or y0 is uniformly random in Zq.
SetUp The public parameters are constructed using the vectors of the pairs (aj,yj).

The i-th polynomial of ring â will be the vector ai, for 1 ≤ i ≤ k and vector u will be

a0. The ring â0 is still calculated as in Sim.ideal-IBE-SetUp, i.e., â0 ← âR? − id? · b̂?.
Secret keys All private-key extraction queries are answered using Sim.ideal-IBE-KeyGen.

Challenge Ciphertext The ciphertext CT = (ĉ?0, ĉ
?
1, c
′?) is constructed based on

the terms in the LWE challenge pairs (aj,yj), with ĉ?0 = (y1, . . . ,ym), c?1 = R?>ĉ?0 and

c′? = y0+Mbq/2e. If we have yj = aj ·s+xj on the Ring-LWE challenge and y0 = 〈a0, s〉+x
on the LWE challenge, then the ciphertext is distributed exactly as in Game 1, and if yj
is uniformly random in Rq and y0 is uniformly random in Zq, then the ciphertext is

distributed exactly as in Game 2. If yj = aj · s+ xj, then

(y1, . . . ,ym) = (a1 · s+ x1, . . . ,ak · s+ xm) = â · s+ x̂.

Therefore, for Game 1 we have

c?0 = â · s+ x̂

= (y1, . . . , ym) ,

and
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c?1 = (â0 + id? · b̂) · s+R?>x̂

= (âR? − id? · b̂+ id? · b̂) · s+R?>x̂

= (âR?) · s+R?>x̂

= R?>(â · s+ x̂)

= R?>ĉ?0 .

If yj is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer to

this guess is also the answer to the Ring-LWE and LWE challenges, because, as we showed,

if yj is uniformly random in Rq and y0 is uniformly random in Zq, then A’s view is the

same as in Game 2 and if y0 = 〈a0, s〉 + x0 and yj = aj · s + xj, then A’s view is the

same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 8.3. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated in the same way in both games. â and

u are random and â0 ← âR? − id? · b̂?, with id? = id?0 for Game 2 and id? = id?1 for

Game 3.

Secret keys All private-key extraction queries are answered using Sim.ideal-IBE-KeyGen.

The only difference is, again, that for Game 2, id? = id?0 and, for Game 3, id? = id?1.

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for ring â0.

Therefore, the indistinguishability of Game 2 and Game 3 only depends on the indistin-

guishability of â0. From Lemma A.8 we can prove that â0 for each game is statistically

close to a uniformly random matrix, because

â0 ← âR? − id? · b̂?.

8.1.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.
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We know that ‖e‖ ≤ σ
√

2kn from Lemma A.1 and ‖Re‖ ≤ 12
√

2kn‖e‖ from Lemma A.2;

therefore, for e =

[
e1

e2

]
:

‖e1 +Re2‖ ≤ (σ
√

2kn+ 12
√

2knσ
√

2kn) so

‖e1 +Re2‖ ≤ O(σkn) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈e1 +Re2,x〉 ≤ O(σkn)qαw(
√

log 2kn) +O(σkn)
√

2kn/2

〈e1 +Re2,x〉 ≤ Õ(σknqα) +O(σ(kn)3/2) .

To ensure that the error term is less than q/4, we need the following:

x− e>
[
x

R>x

]
< q/4

x− e>1 x− e>2 R>x < q/4

x− (e1 +Re2)>x < q/4

x− 〈e1 +Re2,x〉 < q/4

Õ(σknqα) +O(σ(kn)3/2) < q/4

To ensure that σ is sufficiently large for SampleLeft and SampleRight (Theorems 2.7

and 2.8), we have

σ > ‖S‖
√

2knω(
√

log 2kn).

To ensure that IdealTrapGen (Theorem 2.2) can operate, we have

k ≥ dlog q + 1e and

‖S‖ = O(n log q
√
ω(log n)) .

To ensure that the reduction applies (Theorem 2.14), we have

q > ω(
√

log n)/α .

Therefore, we need to set the parameters as

k = O(log q),

q = (kn)2.5ω(
√

log n),

α = (k2n2ω(
√

log n))−1,

σ = knω(
√

log n).
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8.1.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 8.1.1. Note that for security

parameter n and modulus q, we have k = O(log q) (see Section 8.1.4).

The master key MK is just an kn× kn matrix, therefore its size is (kn)2. The public

key PK is comprised of a vector of length n and three rings of lenght kn; therefore its

size is O(kn). The secret key is just a vector of length 2kn; therefore its size is O(km).

Finally, the ciphertext is comprised of an integer and two vectors of length kn; therefore

its size is also O(kn).

The complexity of ideal-IBE-SetUp is based on the complexity of the IdealTrapGen

algorithm. By Theorem 2.2, we have that the IdealTrapGen algorithm is polynomial,

and, therefore, ideal-IBE-SetUp is also polynomial. The complexity of ideal-IBE-KeyGen is

based on the complexity of the SampleLeft algorithm plus one ring-vector multiplication

(O(kn)) and one ring addition (O(kn)). As before, we have that the SampleLeft algorithm

is polynomial, by Theorem 2.7.

The ideal-IBE-Enc algorithm does three ring-vector multiplications (O(kn)), three ring

addictions (O(kn)), k ring-ring multiplications (O(k2n)), one inner product (O(n)) and

two simple additions O(1). Therefore, the complexity of ideal-IBE-Enc is based on the ring-

ring multiplications. The ideal-IBE-Dec algorithm does only the inner product between

two vectors and a simple addition. Since the vectors are of length 2kn, we have that the

complexity of ideal-IBE-Dec is O(kn).

Table 8.1 summarises the size of the main variables and Table 8.2 summarises the

complexity of the four algorithms of the scheme described in Section 8.1.1.

Variable Size

Public Key PK O(n log q)

Master Key MK O(n2 log2 q)

Secret Key SK O(n log q)

Ciphertext CT O(n log q)

Table 8.1: Key Sizes of the general ideal IBE Scheme
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Algorithm Complexity

SetUp O(poly(n))

KeyGen O(poly(n) + n log q)

Enc O(n log2 q)

Dec O(n log q)

Table 8.2: Complexity of the general ideal IBE Scheme

8.2 Ideal Lattice-Based Hierarchical Identity-Based

Encryption

This Section reviews the HIBE scheme proposed by Agrawal et al. [4] using ideal lattices as

described by Mochetti et al. [54]. Section 8.2.1 describes the four algorithms that comprise

the ideal HIBE scheme, Sections 8.2.2, 8.2.3, 8.2.4 and 8.2.5 give the correctness, security,

parameters and complexity analysis of the underlined scheme, respectively.

8.2.1 Description

As described in Section 3.1, an Hierarchical Identity-Based Encryption Scheme consists

of the following algorithms: SetUp(1n, µ), KeyDerive(PK, SKt−1, id1, · · · , idt),
Enc(PK,M, id1, · · · , idt) and Dec(PK, SKt, CT ). In this section we describe each algo-

rithm as presented by Mochetti et al. [54]. The hierarchy is described by parameter µ

and has maximum depth d.

SetUp creates an ideal lattice and chooses at random d + 1 rings and a vector that

will form the public and master keys. KeyDerive generates the secret key by encoding

each identity idi into the lattice basis. Now, the secret key is a short basis for the lattice

generate by this encoding, using the algorithm SampleBasisLeft, described in Section 2.2.

Note that SK0 = MK.

Enc uses the message M , the identities idi and the rings in the public key to create an

integer c′, ring ĉ0 and t rings ĉi, one for each level, that will compose the ciphertext for

one bit. Finally, Dec uses the algorithm SamplePre with the basis that comprise SKt to

find a ring ê ∈ Λuq (A|C1| · · · |Ct) and then recover the message from the ciphertext only

if all the identities idi used are the same, for all j ∈ [1, t].

Let n = 2α be the security parameter, µ be the hierarchical parameter, σi (for i ∈ [1, d])

be the Gaussian parameters and R = Zq[x]/f(x), with f(x) = xn + 1. Algorithms 8.5,

8.6, 8.7 and 8.8 describe the ideal HIBE scheme.
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Algorithm 8.5 ideal-HIBE-SetUp(): Setup Algorithm for the ideal HIBE Scheme

Input: security parameter 1n and hierarchical parameter 1µ

Output: Public key PK and master key MK

â, S ← IdealTrapGen(n, k, q, σ)

âi
$← Rk

q , for i ∈ [1, d]

b̂
$← Rk

q

u
$← Rq

public key PK = (â, {âi}, b̂,u)

master key MK = S

Algorithm 8.6 ideal-HIBE-KeyDerive(): Key Generation Algorithm for the ideal HIBE

Scheme

Input: Public key PK, secret key SKt−1 and identities id1, · · · , idt
Output: Secret key SKt

ĉi = âi + idi · b̂, for i ∈ [1, t]

C = [Rotf (ĉ1)| · · · |Rotf (ĉt−1)]

A = Rotf (â)

Ct = Rotf (ĉt)

St ← SampleBasisLeft([A|C], Ct, St−1, σt)

secret key SKt = St ∈ Zn×(t+1)kn
q

Algorithm 8.7 ideal-HIBE-Enc(): Encryption Algorithm for the ideal HIBE Scheme

Input: Public key PK, message M and identities id1, · · · , idt
Output: Ciphertext CT

s
$← Rq

x̂ ∈ Ψ
kn

α and x ∈ Ψα

r̂γ,i
$← R with coefficients in {−1, 1}, for γ ∈ [1, k] and i ∈ [1, t]

Ri = [Rotf (r̂1,i)
>| · · · |Rotf (r̂k,i)>]

ĉ0 = â · s+ x̂ ∈ Rk
q

ĉi = (âi + idi · b̂) · s+R>i x̂ ∈ Rk
q

c′ = u>s+ x+Mbq/2c
ciphertext CT = (ĉ0, {ĉi}, c′)
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Algorithm 8.8 ideal-HIBE-Dec(): Decryption Algorithm for the ideal HIBE Scheme

Input: Public key PK, secret key SKt and ciphertext CT

Output: message M

ĉi = âi + idi · b̂, for i ∈ [1, t]

Ci = Rotf (ĉi), for i ∈ [1, t]

C = [C1| · · · |Ct]
A = Rotf (â)

σ = σt
√
kn(t+ 1)ω(

√
log(tkn))

ê = SamplePre([A|C], St,u, σ)

z = c′ − ê>


ĉ0

ĉ1

...

ĉt

 mod q

if |z| < q/4, then M = 0; else M = 1

Note that R>i x̂ = (r̂1,i ⊗ x̂, · · · , r̂k,i ⊗ x̂).

8.2.2 Correctness

The correctness is straightforward. First we just substitute the values of ĉ0, ĉi and c′ in

z. If the identity used during the key generation is the same as the one used during the

encryption, then

âid =


â

(â1 + id1 · b̂)
...

(ât + idt · b̂)

.

We have for f(x) = xn+ 1 that âid ·s = Rotf (âid)
>s (see Lemma C.1) and, therefore,

ê>âid · s = ê>Rotf (âid)
>s = u>s. So, we cancel the terms u>s, identify all terms that
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refer to the “noise” and get the right value of M in z.

z = c′ − ê>


ĉ0

ĉ1

...

ĉt

 mod q

= c′ − ê>


â · s+ x̂

(â1 + id1 · b̂) · s+R>1 x̂
...

(ât + idt · b̂) · s+R>t x̂

 mod q

= c′ − ê>


â

(â1 + id1 · b̂)
...

(ât + idt · b̂)

 · s− ê>


x̂

R?>
1 x̂
...

R?>
t x̂

 mod q

= u>s+ x+Mbq/2c − u>s− ê>
[
x̂

R>x̂

]
mod q

= x+Mbq/2c − ê>
[
x̂

R>x̂

]
mod q

= Mbq/2c+ err mod q

Note that for the correct decryption the error term must be less than q/4.

8.2.3 Security

In this section we prove the following theorem.

Theorem 8.2. If the decision-Ring-LWE problem is infeasible, then the functional en-

cryption scheme described in Section 8.2.1 is IND-AH-sAT-CPA.

We need to define additional algorithms that will not be used in the actual scheme,

but will be used in our security proof.

Sim.ideal-HIBE-SetUp(1n, 1µ, id?1, · · · , id?d): The algorithm chooses random ring â ∈
Rk
q and r̂?γ,i ∈ R with coefficients in {−1, 1} and vector u ∈ Rq and it uses algorithm

IdealTrapGen(q, n, k, σ) to generate b̂? ∈ Rk
q and the basis S? ∈ Zkn×kn for Λ⊥q (Rotf (b̂

?)).

It then defines âi ← âR?
i − id?i · b̂?, with R?

i = [Rotf (r̂
?
1,i)
>| · · · |Rotf (r̂?k,i)>] and outputs

PK = (â, {âi},u) and MK = ({r̂?γ,i}, b̂?, S?).
Sim.ideal-HIBE-KeyDerive(PK,MK, id1, · · · , idt): Secret keys are now sampled by

the SampleBasisRight algorithm, using the trapdoor S?. It outputs SKt = St which is a
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basis for lattice Λ⊥q (Roff (â(id)), with â(id) = [â|âR?
1 − (id1 + id?1) · b̂?| · · · |âR?

t − (idt +

id?t ) · b̂?], where:

S ← SampleBasisRight(Roff (â), B?
id, R

?, S?, σt),

with R? = [R?
1| · · · |R?

t ] and B?
id = [(id1 − id?1)B?| · · · |(idt − id?t )B?],

for R?
i = [Rotf (r̂

?
1,i)
>| · · · |Rotf (r̂?k,i)>].

Note that we must have idi 6= id?i , for all i ∈ [1, t], for the algorithm SampleRight to

work properly.

Sim.ideal-HIBE-Enc(PK,M, id?1, · · · , id?t ): The algorithm differs from ideal-HIBE-Enc

in the sense that it uses rings r̂?i,γ and b̂? instead of rings r̂i,γ and b̂.

For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of six games between A and C. The six games are defined as

follows:

• Game 0: C runs ideal-HIBE-SetUp, answers A’s secret key queries using the algo-

rithm ideal-HIBE-KeyDerive, and generates the challenge ciphertext using the algorithm

ideal-HIBE-Enc with identities id?01 , · · · , id?0t and M0.

• Game 1: C runs Sim.ideal-HIBE-SetUp with identities id?01 , · · · , id?0d , answers A’s

secret key queries using Sim.ideal-HIBE-KeyDerive, and generates the challenge ciphertext

using the Sim.ideal-HIBE-Enc algorithm with id?01 , · · · , id?0t and M0.

• Game 2: C runs Sim.ideal-HIBE-SetUp with identity identities id?01 , · · · , id?0d , an-

swers A’s secret key queries using Sim.ideal-HIBE-KeyDerive, and generates the challenge

ciphertext randomly.

• Game 3: C runs Sim.ideal-HIBE-SetUp with identity identities id?11 , · · · , id?1d , an-

swers A’s secret key queries using Sim.ideal-HIBE-KeyDerive, and generates the challenge

ciphertext randomly.

• Game 4: C runs Sim.ideal-HIBE-SetUp with identities id?11 , · · · , id?1d , answers A’s

secret key queries using Sim.ideal-HIBE-KeyDerive, and generates the challenge ciphertext

using the Sim.ideal-HIBE-Enc algorithm with id?11 , · · · , id?1t and M1.

• Game 5: C runs ideal-HIBE-SetUp, answers A’s secret key queries using the algo-

rithm ideal-HIBE-KeyDerive, and generates the challenge ciphertext using the algorithm

ideal-HIBE-Enc with identities id?11 , · · · , id?1t and M1.

To prove the security of this scheme, we now show that each pair of consecutive games

are indistinguishable, therefore proving that Game 0 and Game 5 are indistinguishable.

For simplicity reasons, assume that every time we refer to rings âi and ĉi and matrices

R?
i we are referring to all matrices or rings for i ∈ [1, d].
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Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 8.4. The view of the adversary A in Game 0 (resp. Game 4) is statistically

close to the view of A in Game 1 (resp. Game 5).

Proof.

SetUp In Game 0, ring â is generated by IdealTrapGen and rings âi are uniformly

random in Rk
q . Instead, in Game 1, â is chosen uniformly at random and we have

âi ← âR?
i −id?i · b̂?, where b̂? is generated by IdealTrapGen and the rings r̂?γ,i are uniformly

and independently chosen at random with coefficients in {−1, 1}. In both games the vector

u is chosen at random in Rq.

Secret keys In Game 0, the secret key for identity id is a basis of Λ⊥q (Rotf (âid))

sampled using the SampleBasisLeft algorithm. The same happens in Game 1 by using

SampleBasisRight. Thus, the secret keys have the same distribution in both games.

Challenge Ciphertext In both games the challenge ciphertext components c′ and

ĉ0 are computed the same way but, in Game 0, the challenge ciphertext components ĉi
are computed as follows:

ĉi = (âi + id?i · b̂?) · s+R?>
i x̂ ∈ Rk

q .

On the other hand, in Game 1, we have:

ĉi = (âi + id?i · b̂?) · s+R?>
i x̂

= (âR?
i − id?i · b̂? + id?i · b̂?) · s+R?>

i x̂

= (âR?
i ) · s+R?>

i x̂ ∈ Rk
q

.

Let us now analyse the joint distribution of the public parameters and the challenge

ciphertext in Game 0 and Game 1. We will show that the distributions of (â, {âi}, {ĉi})
in Game 0 and in Game 1 are statistically indistinguishable.

First notice that by Lemma A.8 we have that the following two distributions are

statistically indistinguishable for every fixed matrix b̂?, every id?i and every vector x̂ ∈ Rk
q :(

â, âi, R
?>
i x̂

)
≈s
(
â, âR?

i − id?i · b̂?, R?>
i x̂

)
.

Since each r̂?γ,i is chosen independently for every i and γ, then the joint distribution

of them are statistically close:

(
â, {âi}, {R?>

i x̂}
)
≈s
(
â, {âR?

i − id?i · b̂?}, {R?>
i x̂}

)
.

Since (âR?
i − id?i · b̂?) · s is statistically close to âi · s, it is possible to add each term

to each side of the equation:
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(
â, {âi}, {âi · s+R?>

i x̂}
)
≈s(

â, {âR?
i − id?i · b̂?}, {(âR?

i − id?i · b̂?) · s+R?>
i x̂}

) .

Then, we add (id?i · b̂?) · s to each side of the equation:(
â, {âi}, {(âi + id?i · b̂?) · s+R?>

i x̂}
)
≈s(

â, {âR?
i − id?i · b̂?}, {(âR?

i ) · s+R?>
i x̂}

) .

To conclude, observe that the distribution on the left hand side is that of the public

parameters and the challenge ciphertext in Game 0, while that on the right hand side is

the distribution in Game 1.

Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 8.5. The view of the adversary A in Game 1 (resp. Game 3) is computationally

indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-Ring-LWE.

Proof.

SupposeA can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-Ring-LWE.

Init B is given k Ring-LWE challenge pairs (aj,yj) ∈ Rq × Rq, where either yj =

aj · s+xj for a random s ∈ Rq and a noise term xj ← Ψn
α, or yj is uniformly random in

Rq. And one LWE challenge pair (a0, y0) ∈ Znq × Zq, where either y0 = 〈a0, s〉 + xj for a

noise term xj ← Ψα, or y0 is uniformly random in Zq.
SetUp The public parameters are constructed using the vectors of the pairs (aj,yj).

The i-th polynomial of ring â will be the vector ai, for 1 ≤ i ≤ k and vector u will be

a0. The matrix â0 is still calculated as in Sim.ideal-IBE-SetUp, i.e., âi ← âR?
i − id?i · b̂?.

Secret keys All private-key extraction queries are answered using the algorithm

Sim.ideal-HIBE-KeyDerive.

Challenge Ciphertext The ciphertext CT = (ĉ?0, ĉ
?
i , c
′?) is constructed based on

the terms in the LWE challenge pairs (aj,yj), with ĉ?0 = (y1, . . . ,ym), ĉ?i = R?>
i ĉ

?
0 and

c′? = y0+Mbq/2e. If we have yj = aj ·s+xj on the Ring-LWE challenge and y0 = 〈a0, s〉+x
on the LWE challenge, then the ciphertext is distributed exactly as in Game 1, and if yj
is uniformly random in Rq and y0 is uniformly random in Zq, then the ciphertext is

distributed exactly as in Game 2. If yj = aj · s+ xj, then

(y1, . . . , ym) = (a1 · s+ x1, . . . ,ak · s+ xm) = â · s+ x̂.

Therefore, for Game 1 we have
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ĉ?0 = â · s+ x̂

= (y1, . . . , ym) ,

and

ĉ?i = (âi + id?i · b̂) · s+R?>
i x̂

= (âR?
i − id?i · b̂+ id?i · b̂) · s+R?>

i x̂

= (âR?
i ) · s+R?>

i x̂

= R?>
i (â · s+ x̂)

= R?>
i ĉ

?
0 .

If yj is uniformly random in Zq then the ciphertext is uniformly random, as the

ciphertext generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2 . The answer to

this guess is also the answer to the Ring-LWE and LWE challenges, because, as we showed,

if yj is uniformly random in Rq and y0 is uniformly random in Zq, then A’s view is the

same as in Game 2 and if y0 = 〈a0, s〉 + x0 and yj = aj · s + xj, then A’s view is the

same as in Game 1.

Indistinguishability of Game 2 and Game 3

Lemma 8.6. The view of the adversary A in Game 2 is statistically indistinguishable

from the view of A in Game 3.

Proof.

SetUp The public parameters are generated in the same way in both games. â and

u are random and âi ← âR?
i − id?i · b̂?, with id?i = id?0i for Game 2 and id?i = id?1i for

Game 3.

Secret keys All private-key extraction queries are answered using Sim.ideal-IBE-KeyGen.

The only difference is, again, that for Game 2, id?i = id?0i and, for Game 3, id?i = id?1i .

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for matrix âi.

Therefore, the indistinguishability of Game 2 and Game 3 only depends on the indistin-

guishability of âi. From Lemma A.8 we can prove that âi for each game is statistically

close to a uniformly random matrix, because

âi ← âR?
i − id?i · b̂?.
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8.2.4 Parameters

In this section we analyse the several parameters of the scheme based on all the require-

ments used during construction, correction and security.

We know that ‖e‖ ≤ σt
√

(t+ 1)kn from Lemma A.1 and ‖Re‖ ≤ 12
√
tkn+ kn‖e‖

from Lemma A.2, for R = [R1| · · · |Rt], with max(t) = d; therefore, for e =

[
e1

e2

]
:

‖e1 +Re2‖ ≤ σt
√

(d+ 1)kn+ d12
√

(d+ 1)knσt
√

(d+ 1)kn so

‖e1 +Re2‖ ≤ O(σtd
2kn) .

From Lemma A.3 we have that 〈y,x〉 ≤ ‖y‖qαw(
√

log n) + ‖y‖
√
n/2; therefore:

〈e1 +Re2,x〉 ≤ O(σtd
2kn)qαtω(

√
log kn) +O(σtd

2kn)
√
kn/2

〈e1 +Re2,x〉 ≤ Õ(σtd
2knqαt) +O(σtd

2(kn)3/2) .

To ensure that the error term is less than q/4, we need the following:

x− e>
[
x

R>x

]
< q/4

x− e>1 x− e>2 R>x < q/4

x− (e1 +Re2)>x < q/4

x− 〈e1 +Re2,x〉 < q/4

Õ(σtd
2knqα) +O(σtd

2(kn)3/2) < q/4

To ensure that σt is sufficiently large for SampleBasisLeft and SampleBasisRight (The-

orems 2.10 and 2.11), we have

σt > ‖S‖
√
knω(

√
log kn).

To ensure that IdealTrapGen (Theorem 2.2) can operate, we have

k ≥ dlog q + 1e and

‖S‖ = O(n log q
√
ω(log n)) .

To ensure that the reduction applies (Theorem 2.14), we have

q > ω(
√

log n)/α .

Therefore, we need to set the parameters as
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k = O(log q),

q = (kn)2.5ω(
√

log n),

α = (k2n2ω(
√

log n))−1,

σ = knω(
√

log n).

8.2.5 Complexity and Key Sizes

In this section we present an analysis of the size of the main variables and the complexity

of the algorithms from the scheme described on Section 8.2.1. Note that for security

parameter n, hierarchy’s maximum depth d and modulus q, we have k = O(log q) (see

Section 8.2.4).

The master key MK is just an kn× kn matrix, therefore its size is (kn)2. The public

key PK is comprised of a vector of length n and d + 2 rings of lenght kn; therefore its

size is O(dkn). The secret key is now a matrix, not a vector, of size n × (t + 1)kn, with

max(t) = d; therefore its size is at most n(d + 1)kn, which is O(dkn2). Finally, the

ciphertext is comprised of an integer and t + 1 vectors of length kn, with max(t) = d;

therefore its size is at most 1 + kn+ dkn, which is O(dkn).

The complexity of ideal-HIBE-SetUp is based on the complexity of the IdealTrapGen

algorithm. By Theorem 2.2 we have that the IdealTrapGen algorithm is polynomial, and,

therefore, ideal-HIBE-SetUp is also polynomial. The complexity of ideal-HIBE-KeyDerive

is based on the complexity of the SampleBasisLeft algorithm plus t ring-vector multipli-

cations (O(kn), each) and t ring additions (O(kn), each). As before, we have that the

SampleBasisLeft algorithm is polynomial, by Theorem 2.10.

The ideal-HIBE-Enc algorithm does 1 + 2t ring-vector multiplications (O(kn), each),

1 + 2t ring addictions (O(kn), each), tk ring-ring multiplications (O(kn), each), one

inner product (O(n)) and two simple additions O(1). Therefore, the complexity of

ideal-HIBE-Enc is based on the ring-ring multiplications with max(t) = d.

The ideal-HIBE-Dec algorithm does t ring-vector multiplications (O(kn), each), t ring

addition operations (O(kn), each), one inner product between two vectors of length tkn, a

few simple additions and multiplications and calls the SamplePre algorithm. We have, by

Theorem 2.6, that SamplePre is polynomial, therefore the complexity of the ideal-HIBE-Dec

algorithm is based on SamplePre and the ring operations.

Table 8.3 summarises the size of the main variables and Table 8.4 summarises the

complexity of the four algorithms of the scheme described in Section 8.2.1.
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Variable Size

Public Key PK O(dn log q)

Master Key MK O(n2 log2 q)

Secret Key SK O(dn2 log q)

Ciphertext CT O(dn log q)

Table 8.3: Key Sizes of the ideal HIBE Scheme

Algorithm Complexity

SetUp O(poly(n))

KeyDerive O(poly(n) + dn log q)

Enc O(dn log2 q)

Dec O(poly(n) + dn log q)

Table 8.4: Complexity of the ideal HIBE Scheme



Chapter 9

Results and Evaluation

This chapter summarizes and compares all results and schemes in this work, showing how

their expansion to hierarchical versions and the use of ideal lattices affect the security

proofs, the algorithms’ efficiency and variable sizes and detailing the pitfalls and steps

involving each expansion.

Table 9.1 gives a summary of keys and variable sizes for all schemes. Table 9.2 gives

a summary of the complexity of the four algorithms for all schemes. Entries in the tables

are given as functions of the security parameter n, maximum hierarchical depth d, vector

length l and modulo q.

Public Key PK Master Key MK Secret Key SK Ciphertext CT

IBE O(n2 log q) O(n2 log2 q) O(n log q) O(n log q)

HIBE O(dn2 log q) O(n2 log2 q) O(dn2 log q) O(dn log q)

IPE O(ln2 log2 q) O(n2 log2 q) O(n log q) O(ln log2 q)

HIPE O(dln2 log2 q) O(n2 log2 q) O(dn2 log q) O(dln log2 q)

HVE O(ln2 log q) O(ln2 log2 q) O(ln log q) O(ln log q)

HHVE O(dln2 log q) O(ln2 log2 q) O(dln2 log q) O(dln log q)

FBE O(ln2 log q) O(ln2 log2 q) O(ln log q) O(ln log q)

HFBE O(ldn2 log q) O(ln2 log2 q) O(ldn2 log q) O(ldn log q)

ideal IBE O(n log q) O(n2 log2 q) O(n log q) O(n log q)

ideal HIBE O(dn log q) O(n2 log2 q) O(dn2 log q) O(dn log q)

Table 9.1: Key sizes for all schemes

143
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SetUp KeyGen Enc Dec

IBE O(poly(n)) O(poly(n) + n3 log q) O(n3 log q) O(n log q)

HIBE O(poly(n)) O(poly(n) + dn3 log q) O(dn3 log q) O(poly(n) + dn3 log q)

IPE O(poly(n)) O(poly(n) + ln2 log2 q) O(ln2 log3 q) O(ln log2 q)

HIPE O(poly(n)) O(poly(n) + dln2 log2 q) O(dln2 log3 q) O(poly(n) + dln2 log2 q)

HVE O(l · poly(n)) O(l · poly(n)) O(ln2 log q) O(ln log q)

HHVE O(l · poly(n)) O(ldn2 log q + l · poly(n)) O(dln2 log q) O(l · poly(n) + dln2 log q)

FBE O(l · poly(n)) O(l · poly(n) + ln3 log q) O(ln3 log q) O(ln log q)

HFBE O(l · poly(n)) O(l · poly(n) + ldn2 log2 q) O(ldn3 log2 q) O(l · poly(n) + ldn3 log2 q)

ideal IBE O(poly(n)) O(poly(n) + n log q) O(n log2 q) O(n log q)

ideal HIBE O(poly(n)) O(poly(n) + dn log q) O(dn log2 q) O(poly(n) + dn log q)

Table 9.2: Algorithm complexities for all schemes

9.1 Hierarchical Expansion

In some cryptosystems, such as the ones we described in this work, a trusted third party,

or Private Key Generator (PKG), is needed to generate all the keys (master, public and

secret keys). Since the PKG has all the keys, it can encrypt and decrypt any message

and, therefore, it can be more difficult to prove the integrity and origin of a message.

Besides, if the PKG is compromised the whole system is compromised, so the PKG can

be a good target for adversaries. Finally, a secure channel between each user and the

PKG is needed for the transmission of secret keys. Therefore, it is convenient to have a

hierarchy of certificate authorities, reducing the workload on the PKG as it does not need

to generate all secret keys anymore.

9.1.1 Defining the Lattice

To create a hierarchical expansion of a lattice-based predicate encryption scheme, we need

to create a new lattice for each level, always concatenating the previous lattice basis with

the new matrix for the current level. Now the secret key will a be the short basis of this

newly created lattice, and it is possible to get this short basis using the SampleBasisLeft

algorithm that calculates a short basis for this new lattice using the short basis for the

previous level lattice. For level 0, we have that the secret key is the master key.

Therefore, the master key is a short basis S for the lattice Λ(A), and for level 1 we can

use the SampleBasisLeft algorithm with S and A to find a short basis S1 for the lattice

Λ(A|A1), where A1 is a new matrix that represents this level. Now, for each level we can

continue to compute the short basis St using the matrix St−1 and concatenating A with

all Ai. That is how the secret keys are calculated in each KeyDerive algorithm.

Now, using the short basis St for level t, it is possible to calculate a vector e such that
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u = [A|A1| · · · |At]e by calling the SamplePre algorithm. This vector is the same vector

used in the non-hierarchical version as the secret key, but now it is calculated in the Dec

algorithm using the short lattice basis that is used now as the secret key. This change is

the core of the hierarchical algorithm, since it allows the KeyDerive algorithm to calculate

the secret key for level t using only the secret for level t− 1 and not the master key.

9.1.2 Sampling the Basis

Changing the definition of the lattice basis also affects the security proof, that now will

use SampleBasisRight to calculate the new short basis in the simulation algorithms of the

proof. Using SampleBasisRight in the simulation algorithms of the hierarchical versions

will have the same outcome as using SampleRight in the simulation algorithms of the

regular schemes.

Another effect is seen in the matrices R ∈ {−1, 1}: we must assure now that for each

level the R matrix is chosen independently so that we have that each matrix Ai ← AR+

CB, for random A and B and a constant matrix C in the simulation, is indistinguishable

from a random matrix.

9.1.3 Increasing the Key Size

The main complexity effect in the hierarchical versions is the increase in the secret key

size. As we can see in Table 9.1, all keys except the master key, are at least d times larger

for all the hierarchical schemes, where d is the maximum hierarchical level. The secret

keys are even bigger since they are now a matrix, instead of a vector. This also reflects

on the efficiency of Enc and Dec that have to perform more operations in a larger number

of matrices, increasing their complexity also by a factor d as we can see in Table 9.2.

Tables 9.3 and 9.4 show the real size of each variable for two security levels, 128 bits

and 256 bits respectively, and for d = 3. The key sizes are calculated based on the results

by Lindner et al. [45] and describe the practical effect of using hierarchical versions of the

schemes.

We notice a large increase on the secret key size from 54 KB to 27 MB (for 128 bits)

and from 22 KB to 5 MB (for 256 bits), while the master key size remains the same. This

happens because the master key is the secret key for level 0, i.e., the short basis generated

by the SampleBasisRight algorithm without any concatenation and it does depend on the

hierarchical level. We also have an increase in the public key and the ciphertext size.

Since the main problem with lattice-based schemes is the large size of the keys, the

practical feasibility of hierarchical schemes proves to be a real challenge.
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IBE HIBE

Public Key 20736 37632

Master Key 497664 497664

Secret Key 54 27648

Ciphertext 54 108

Table 9.3: Comparing hierarchical and non-hierarchical key sizes in KB for n = 128 bits,

q = 2053 bits and d = 3

IBE HIBE

Public Key 4356 8668

Master Key 95832 95832

Secret Key 22 5808

Ciphertext 22 44

Table 9.4: Comparing hierarchical and non-hierarchical key sizes in KB for n = 256 bits,

q = 4093 bits and d = 3

9.1.4 Splitting the Vector

We would also like to notice a specific effect that the hierarchical version has in the last

two schemes, the Hidden Vector Encryption Scheme (HVE) and the Fuzzy Identity-Based

Encryption Scheme (FBE). In the non-hierarchical version the vector split is vector u,

while in the hierarchical version vector s is split. This happens because if we split vector u

in the hierarchical scheme we allow the user to decrypt the message only if vt,j = wt,j (for

the HHVE scheme) or idj = id′j (for the HFBE scheme) for a single j. That is possible by

calling algorithm SamplePre only once for u and this given j, instead of calling SamplePre

for each share of u as would be expected. Then, making z = c′ − e>j cj will give the right

message.

This happens because in the general version we split vector u during the KeyGen

algorithm and this is not possible for the hierarchical version. Since we cannot guarantee

that every time a share is created it is the same as before, the bases for each level will

not always be the same, and the KeyDerive algorithm will not work properly.

Therefore, our main ideia consists of splitting vector s during encryption, guaranteeing

that at least k Lagrangian coefficients must be correctly computed and that each group of

vt,j = wt,j (for the HHVE scheme) and idj = id′j (for the HFBE scheme) must be equal

for the right lattice basis to be calculated, and, therefore, for the correct vector s to be

reconstructed.
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9.2 Use of Ideal Lattices

Ideal lattices are a generalization of cyclic lattices, in which the lattice corresponds to

ideals in a ring Z[x]/〈f(x)〉, for some irreducible polynomial function f . They can be

used to decrease the parameters needed to describe a lattice, as shown in Section 2.1.1

and its basis pattern can be used to decrease the matrix multiplication complexity, as

shown in Appendix C.

9.2.1 Using Rings Instead of Matrices

The change in the representation from matrices to rings (represented as vectors) has a

direct effect on the efficiency of the operations done in the four algorithms of the scheme,

as in the size of the main parameters used, but it also affects some steps of the security

proof.

For the ideal lattice scheme, we can not use Lemmas A.4 and A.5 in the proof of the

indistinguishability of Games 0 and 1, because both lemmas refer to matrices, not rings.

Therefore, one important difference in this security proof is to use Lemma A.8 that refers

to the indistinguishability of rings, and their multiplication, from random rings. This

happens because in the simulation algorithm we replace matrix A0 ← AR + CB by ring

â0 ← âR− id · b̂.

9.2.2 Generating the Trapdoor

To make possible the use of ideal lattices in some cryptosystems, as the ones described

in this work, we first need an algorithm to generate a short and a hard basis for an ideal

lattice. Algorithm IdealTrapGen (Theorem 2.2) given by Stehlé et al. [73] generates these

bases for an ideal lattice. The hard basis is described by a ring ĝ and the short basis,

that will be used as the master key, is still a matrix S. Therefore, only the public key will

be decreased, the master key size will remain the same.

9.2.3 Learning With Errors for Ideals Problem

The security proof of all the schemes are based on the reduction from the decision-LWE

Problem, but this problem does not apply for ideal lattices. Two new problems were

defined as suitable for ideal lattices: the Ring-LWE Problem and the Ideal-LWE Problem

(see Section 2.3).

Lyubashevsky et al. [47] defined the Ring-LWE problem as finding vector r given vectors

a and b = a · r + e. While in the original LWE problem we had that b was a number,

in the Ring-LWE we have that b is a vector. Now we can reduce an ideal lattice system,
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since the ring that defines the lattice basis is the concatenation of vectors and we have

that ĝ · s = [r1 · s, · · · , rk · s]. The encryption will now be based on this multiplication.

Lyubashevsky et al. proved that the decision Ring-LWE problem is as hard as γ-SIVP and

γ-SVP in a quantum environment.

Stehlé et al. [73] defined another problem closer to the original LWE Problem. The

Ideal-LWE Problem is defined as finding vector r given rings â and b̂ = Rotf (â)>r + ê.

The definition of b̂ is exactly the same as it will be in the original LWE Problem, because

Rotf (â) gives the matrix that is the basis of the lattice. Although closer to the original

one, this problem has one big issue: only the general, not the decision version, of this

problem is known to be as hard as Ideal-SIS. There is no proof for the decision problem,

making it impossible to use the reduction for this problem in all the schemes studied

in this work. Note that for both problems the ideal lattice must be for the ring with

f(x) = xn + 1.

9.2.4 Decreasing the Key Size

One main effect of using ideal lattices is the decrease of the public key size. As we can

see in Table 9.1, comparing schemes ideal IBE and IBE, for the general lattice scheme

we have three n×m matrices as public key and for the ideal lattice scheme we have only

three rings of length kn. Therefore the key size is reduced by a factor of n, for m = kn.

Unfortunately, all the other parameters remain the same size asymptotically.

Tables 9.5 and 9.6 show the real size for the variables for two security levels, 128 bits

and 256 bits respectively, based on the results by Lindner et al. [45]. We can see that,

although most of parameters remain the same size asymptotically, for the real size we

have a great improvement for all, specially the master key size. We also can highlight

the importance of the use of ideal lattices to reduce the public key drastically from ap-

proximately 20 MB to only 13 KB (for 128 bits) and from approximately 4 MB to only 5

KB (for 256 bits). This happens because the parameter choice is also different for ideal

lattices and for schemes with large key sizes, as lattice-based ones, the constants’ choice

can make a difference on the practical viability.

IBE ideal-IBE

Public Key 20736 13

Master Key 497664 13824

Secret Key 54 9

Ciphertext 54 9

Table 9.5: Comparing ideal and non-ideal key sizes in KB for n = 128 bits and q = 2053

bits
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IBE ideal-IBE

Public Key 4356 5

Master Key 95832 2662

Secret Key 22 3

Ciphertext 22 3

Table 9.6: Comparing ideal and non-ideal key sizes in KB for n = 256 bits and q = 4093

bits

9.2.5 Improving the Complexity

Since the basis of an ideal lattice consists of the concatenation of k Toeplitz n×n matrices,

the multiplication of the basis by a vector can be done in a more efficient way [59].

As shown in Table 9.2, comparing schemes ideal IBE and IBE, we have the largest

improvement in the Enc algorithm, in which most of the multiplications are done. Since

we are using ideal lattices and anti-circular matrices, and because f(x) = xn + 1, we can

enhance the multiplication operations by a factor of n2. Note that this fact also makes

the KeyGen algorithm more efficient for the ideal lattice version.

9.3 Hierarchical with Ideals

In Chapter 8 we combine the two features, describing a hierarchical IBE scheme based on

ideal lattices. For a hierarchical scheme, ideal lattices only contribute with the decrease of

the public key by a factor of n, as in the general lattice versions, as we can see in Table 9.1,

comparing schemes ideal HIBE and HIBE. Unfortunately, the secret key continues to be

larger than the non-hierarchical version. This happens because the secret keys are now a

short basis of the lattice generated by the SampleBasisLeft algorithm and this short basis,

although it is from an ideal lattice, does not have any distinguishable pattern. Therefore,

the secret keys are still comprised of a large matrix.

Since multiplication with ideal lattices is more efficient, we have a decrease in the

complexity of the main algorithms, especially encryption and decryption, as we can see in

Table 9.2, comparing schemes ideal HIBE and HIBE. This is possible because the pattern

found in the ideal lattice basis allows all operations to be performed with vectors and

polynomials. Notice that we have an anti-circular matrix, since we use f(x) = xn + 1,

but we can have more efficient multiplications for any Toeplitz matrix (see Appendix C

for more details).
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Chapter 10

Conclusion

In this work we study several lattice-based predicate encryption schemes, a sub-class of

functional encryption. Our main contribution is to show hierarchical versions of the main

lattice-based functional encryption schemes used nowadays. Hierarchical schemes reduce

the workload on a Thrusted Third Part as it does not need to generate all public and

master keys. We also show detailed security proofs and analysis of some schemes using a

special class of lattices called ideal lattices. Ideal lattices are usually applied to decrease

the size of the parameters needed to describe a lattice and its basis pattern can be used

to improve the scheme’s complexity.

10.1 Future Work

Ideal lattices are very helpful for decreasing the size of the main variables and thus effi-

ciency of the many matrix multiplications normally used in lattice-based schemes. Since

their security is proved to be the same as regular lattices, creating a scheme exclusively

for use with ideal lattices may provide even more improvements in the complexity of the

algorithms and also decrease the ciphertext size.

A more detailed analysis with benchmarks for each scheme presented in this work can

lead to more precise results on the practical effects of using ideal lattices and hierarchical

versions. Implementing and addressing these practical issues is an important and under-

rated work. Not only the ideal and hierarchical versions should be studied along with their

improvements, but the regular schemes should be compared with the functional schemes

used nowadays and their feasibility should be analysed in detail.

Furthermore, there are no lattice-based hierarchical ABE schemes known, as well as

very few studies on lattice-based WIBE schemes. Both schemes have several applications

and, therefore, are promising research subjects.

Regarding their security, most of lattice-based functional schemes known have a weak
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security proofs; they are attribute hiding, in which the adversary must commit the chal-

lenge attributes at the beginning of the game proof. Therefore, it would be interest to

build fully secure schemes that have a stronger security proof.

Finally, the main problem with the hierarchical schemes is the size of the secret key,

even using ideal lattices; so, searching for other ways to improve these schemes is an

important and interesting work.
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Appendix A

Lemmas on Matrices, Vectors and

Rings

This chapter presents some important lemmas on matrices, vectors and rings length and

randomness they are used during this work.

Lemma A.1 ([4]). Let q ≥ 2 and let A be a matrix in Zn×m with m > n. Let S be a

basis for Λ⊥q (A) and σ ≥ ‖S̃‖ω(
√

logm). Then for c ∈ Rm and u ∈ Znq :

Pr[e ∼ DΛu
q (A),σ : ‖e‖

√
mσ] ≤ negl(n).

Lemma A.2 ([4]). Let R be a k ×m matrix chosen at random from {−1, 1}k×m. Then:

Pr[‖R‖ > 12
√
k +m] < e−(k+m)

Lemma A.3 ([4]). Let e be some vector in Zn and let v
$← Ψ

n

α. Then the quantity

〈e,v〉 = e>v when treated as an integer in [0, q − 1] satisfies

〈e,v〉 ≤ ‖e‖ · (qα · ω(
√

log n) +
√
n/2)

with overwhelming probability (in n).

Lemma A.4 ([4]). Let m > (n + 1) log q = ω(log n) be an integer, let R be an m × k

matrix chosen uniformly in {−1, 1}m×k where k = k(n) is polynomial in n. Let A and B be

matrices chosen uniformly in Zn×m and Zn×k respectively. Then, for all vectors x ∈ Zm,

the distribution (A,AR,R>,x) is statistically close to the distribution (A,B,R>x).

Lemma A.5 ([4]). For any fixed n ×m matrix X and uniformly random n ×m matrix

C, the matrix C −X is uniformly random.

Lemma A.6 ([6]). Any vector v
$← Ψ

n

α has length O(αq
√
n) ≤ 2n with all but exponen-

tially small probability.
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Lemma A.7. For any fixed constant x and uniformly random n×m matrix C, the matrix

xC is uniformly random.

Lemma A.8. ([51, Lemma 4.4]) Let b̂ ∈ Rk be a sequence of arbitrary ring elements. If

â ∈ Rk are independently and uniformly distributed ring elements, then â ⊗ b̂ =
∑
aibi

is uniformly distributed over the ideal generated by b̂. Note that for k = 1 we have that

a · b is uniformly distributed for a ∈ R and b ∈ R.



Appendix B

Shamir’s Secret Sharing

Shamir’s Secret Sharing [69] is a threshold scheme, i.e., a scheme to divide a data into n

parts in a way that it is only possible to recover the data with at least k parts, for k ≤ n.

Note that k − 1 or fewer parts does not give enough information to determine the data.

Threshold schemes are commonly used in the management of keys.

Shamir’s threshold scheme is based on polynomial interpolation, i.e., given k points it

is possible to define a polynomial of degree k−1. For a data d, the Split(d, n, k) algorithm

chooses a random polynomial p of degree k − 1, with p(0) = d, i.e., coefficient a0 = d.

Each share piece di, for i ∈ [1, n] will be a point defined by the polynomial, so:

di = p(i).

To recover the data, the Join(x,y) algorithm reconstructs the polynomial using k

points. Several algorithms for polynomial evaluation and interpolation are known and

can be used. One of the most efficient methods known is the Lagrange Algorithm.

The Lagrange Algorithm calculates k polynomials lj(x), called Lagrangian coefficients,

based on the k given points (xj, yj) = (i, di) and reconstruct the polynomial p(x) as follows:

p(x) =
k∑
j=0

yjlj(x)

where,

lj(x) =
k∏

m=0

x− xm
xj − xm

Note that the data is, therefore:

d = p(0) =
k∑
j=0

yjlj(0)
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Tables B.1 and B.2 describe the two algorithm for the Shamir’s Secret Sharing Scheme.

Algorithm B.1 Split(): Split Algorithm for Shamir’s Secret Sharing Scheme

Input: data d, number of parts n and threshold k

Output: vector d of length n with all share pieces di
a0 ← d

for i← 1 to k

ai
$← Z

for i← 1 to n

di ←
k∑
j=0

aji
j

output d

Algorithm B.2 Join(): Join Algorithm for Shamir’s Secret Sharing Scheme

Input: vector y of length k with share pieces di and vector x with each position i

Output: data d

for j ← 0 to k

lj(x) =
k∏

m=0

x− xm
xj − xm

p(x) =
k∑
j=0

yjlj(x)

d← p(0)

output d

On some of the encryption schemes described in this work, we use the Shamir’s Secret

Sharing to split a vector of length n into m vectors that can be reconstructed only by

finding the k lagrangian coefficients. Algorithms B.3 and B.4 define this idea.

Algorithm B.3 SplitVectors(): Algorithm to split a vector.

Input: vector x of length n, number of parts m and threshold k

Output: m vectors xi of length n

choose n random polynomials pi(x) of degree k − 1, with pi(0) = xi
xi ← [p1(i), p2(i), . . . , pn(i)]
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Algorithm B.4 FindLagrangianCoef(): Algorithm to find the lagrangian coefficients.

Input: set G of size k with each position i

Output: a vector l of length n with each lagrangian coeficients (0 for all i 6∈ G)

for i← 0 to n

li = 0

for i ∈ G

l(x) =
∏
j∈G

x− j
i− j

li ← l(0)

Note that we now have∑
i∈G

lixi =
∑
i∈G

li[p1(i), p2(i), . . . , pn(i)]

=
∑
i∈G

[lip1(i), lip2(i), . . . , lipn(i)]

= [
∑
i∈G

lip1(i),
∑
i∈G

lip2(i), . . . ,
∑
i∈G

lipn(i)]

= [x1, x2, . . . , xn]

= x.

Lemma B.1. ([6, Lemma 3]) Let β = (l!)2. Given k ≤ l numbers x1, · · · , xk ∈ [1, l]

define the lagrangian coefficients

lj =
∏
i 6=j

−xi
xj − xi

.

Then, for every 1 ≤ j ≤ k, the value βlj is an integer, and |βlj| ≤ β2 ≤ (l!)4.
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Appendix C

Multiplication of Toeplitz Matrices

A Toeplitz matrix is a matrix in which each descending diagonal from left to right is

constant, i.e., ai,j = ci−j

A =


a0 a−1 a−2 · · · a−n+1

a1 a0 a−1 · · · a−n+2

...
... · · · ...

...

an−2 an−3 · · · a−1

an−1 an−2 · · · a0


Figure C.1: A Toeplitz matrix A.

A circulant matrix is a special kind of Toeplitz matrix in which each row is rotated

one element to the right relative to the preceding row.

A =


a0 a1 · · · an−1 an
an a0 · · · an−2 an−1

...
... · · · ...

...

a2 a3 · · · a0 a1

a1 a2 · · · an a0


Figure C.2: A circulant matrix A.

An anti-circulant matrix is a circulant matrix in which after the rotation, the first

element of the row has its sign changed.
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A =


a0 a1 · · · an−1 an
−an a0 · · · an−2 an−1

...
... · · · ...

...

−a2 −a3 · · · a0 a1

−a1 −a2 · · · −an a0


Figure C.3: An anti-circulant matrix A.

We can use the discrete Fourier transform to obtain a faster multiplication between

a circulant matrix and a vector [59]. While, for general matrices, this multiplications is

O(n2), for a circulant matrix we have a O(n log n) time. Let c be the first row of the

circulant matrix C, then we have that:

Cx = Fn(c)Fn(x),

where

Fn(x) = y and yi =
1

n

n−1∑
j=0

xj · e2πji
√
−1/n.

This algorithm can be expanded to any Toeplitz matrix T , by constructing a circular

auxiliar matrix C as follows:

C =

(
T B

B T

)
,

with

B =


0 an−1 an−2 · · · a2 a1

a1−n 0 an−1 · · · a3 a2

...
... · · · ...

...

a−2 a−3 a−4 · · · 0 an−1

a−1 a−2 a−3 · · · a1−n 0

 .

Then to get the multiplication of the Toeplitz matrix T by a vector x we make:

C ·
(
x

0

)
=

(
T B

B T

)
·
(
x

0

)
=

(
Tx

Bx

)
.

Lemma C.1. For two polynomials f(x) = a0 + a1x
1 + . . . an−1x

n−1 and g(x) = b0 +

b1x
1 + . . . bn−1x

n−1, let f be the vectorial representation of f(x) in which each position is
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a coefficient of f(x), i.e., v = (a0, a1, . . . , an) and let G be the anti-circulant matrix in

which the first row is the vector representation of g(x), then:

G>f = (f · g) mod xn + 1


