
i

ADRIANE DE MARTINI FONSECA

REFACTORING RULES FOR GRAPH DATABASES

REGRAS DE REFATORAÇÃO PARA BANCO DE DADOS

BASEADO EM GRAFOS

LIMEIRA

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296880022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

iii

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Tecnologia

ADRIANE DE MARTINI FONSECA

REFACTORING RULES FOR GRAPH DATABASES

REGRAS DE REFATORAÇÃO PARA BANCO DE DADOS

BASEADO EM GRAFOS

Dissertation presented to the School of

Technology of the University of Campinas in

partial fulfillment of the requirements for the

degree of Master, in the area of Technology

Dissertação apresentada à Faculdade de

Tecnologia da Universidade Estadual de

Campinas como parte dos requisitos exigidos

para a obtenção do título de Mestra em

Tecnologia, na Área de Tecnologia e Inovação

Supervisor/Orientador: Prof. Dr. Luiz Camolesi Jr.

ESTE EXEMPLAR CORRESPONDE À

VERSÃO FINAL DISSERTAÇÃO DEFENDIDA

PELA ALUNA ADRIANE DE MARTINI

FONSECA, E ORIENTADA PELO PROF. DR.

LUIZ CAMOLESI JR.

LIMEIRA

2015

iv

v

vi

vii

ABSTRACT

The information produced nowadays does not stop growing in volume and complexity,

representing a technological challenge which demands more than the relational model for

databases can currently offer. This situation stimulates the use of different forms of storage,

such as Graph Databases. Current Graph Databases allow automatic database evolution, but

do not provide adequate resources for the information organization. This is mostly left

under the responsibility of the applications which access the database, compromising the

data integrity and reliability. The goal of this work is the definition of refactoring rules to

support the management of the evolution of Graph Databases. The rules presented in this

document are adaptations and extensions of the existent refactoring rules for relational

databases to meet the requirements of the Graph Databases features. The result of this work

is a catalog of refactoring rules that can be used by developers of graph database

management tools to guarantee the integrity of the operations of database evolution.

Keywords: Graph Database, Data Refactoring, Evolutionary Databases.

viii

ix

RESUMO

A informação produzida atualmente apresenta crescimento em volume e complexidade,

representando um desafio tecnológico que demanda mais do que a atual estrutura de

Bancos de Dados Relacionais pode oferecer. Tal fato estimula o uso de diferentes formas

de armazenamento, como Bancos de Dados baseados em Grafos (BDG). Os atuais Bancos

de Dados baseados em Grafos são adaptados para suportar automaticamente a evolução do

banco de dados, mas não fornecem recursos adequados para a organização da informação.

Esta função é deixada a cargo das aplicações que acessam o banco de dados,

comprometendo a integridade dos dados e sua confiabilidade. O objetivo deste trabalho é a

definição de regras de refatoração para auxiliar o gerenciamento da evolução de Bancos de

Dados baseados em Grafos. As regras apresentadas neste trabalho são adaptações e

extensões de regras de refatoração consolidadas para bancos de dados relacionais para

atender às características dos Bancos de Dados baseado em Grafos. O resultado deste

trabalho é um catálogo de regras que poderá ser utilizado por desenvolvedores de

ferramentas de administração de bancos de dados baseados em grafos para garantir a

integridade das operações de evolução de esquemas de dados e consequentemente dos

dados relacionados.

Palavras-chave: Banco de Dados baseado em Grafos, Refatoração de Dados, Banco de

Dados Evolutivos.

x

xi

CONTENTS

ABSTRACT ... vii

RESUMO .. ix

ACKNOWLEDGMENT ... xiii

LIST OF FIGURES .. xvii

LIST OF TABLES .. xix

LIST OF ABBREVIATIONS AND ACRONYMS .. xxi

1. INTRODUCTION ... 1

1.1 Goals ... 2

1.2 Motivation ... 2

1.3 Work Methodology ... 3

1.4 Text Structure .. 3

2. GRAPH DATABASE ... 4

2.1 NoSQL .. 4

2.2 NoSQL Concepts and Properties ... 5

2.3 Categories .. 10

2.3.1 Key-Value Stores .. 11

2.3.2 Column Stores ... 12

2.3.3 Document Stores ... 14

2.3.4 Graph Databases .. 17

2.4 Graph Database Management Systems ... 19

2.4.1 Graph Databases Overview ... 20

2.5 Final Considerations .. 22

3. DATABASE REFACTORING ... 24

3.1 Concept ... 24

3.2 Relational Databases Refactoring ... 26

3.2.1 Renaming Column ... 28

3.2.2 Merge Columns ... 28

3.3 Schema Changes in NoSQL .. 30

3.4 Final Considerations .. 30

xii

4. GRAPH DATABASE REFACTORING .. 32

4.1 Metadata .. 33

4.2 Classification ... 34

4.3 Specification Guideline ... 35

4.4 Expansion Refactoring .. 37

4.4.1 Split property of a node ... 37

4.4.2 Property becoming a node ... 41

4.4.3 Relationship becoming a node .. 45

4.5 Reduction Refactoring ... 48

4.5.1 Merge properties of a node .. 49

4.5.2 Delete a property of a node ... 52

4.5.3 Merge Nodes ... 55

4.6 Improvement Refactoring ... 59

4.6.1 Introduce calculated property .. 59

4.6.2 Move property of a node (to a relationship or to another node) 63

4.6.3 Invert Direction of a relationship .. 67

4.6.4 Shorten Path .. 70

4.7 Data Quality Refactoring .. 73

4.7.1 Introduce Default Values .. 73

4.7.2 Make properties non-nullable .. 76

4.8 Final Considerations .. 79

5. CONCLUSION ... 80

5.1 Future Work .. 80

REFERENCES .. 81

xiii

ACKNOWLEDGMENT

I acknowledge my friends and family, who have supported and loved me during this

journey, mainly my brothers and my parents who are my inspiration, my pride and to whom

I dedicate this dissertation; amo vocês.

I acknowledge the professors and my colleagues of FT/Unicamp, who taught me a lot

and who have helped me to grow in the past years.

I also acknowledge the Faculty of Sciences of Ghent University and the Babel Project

(Erasmus Mundus Programee), who granted me a scholarship for the master mobility

related to this research.

xiv

xv

“Any fact becomes important when it's connected to another.”

Umberto Eco

xvi

xvii

LIST OF FIGURES

Figure 2.1: Sharded client connection (adapted from CHODOROW; 2013, p. 233).......................... 6

Figure 2.2: CAP Theorem ... 8

Figure 2.3: Simplified Diagram illustrating the main phases of Database Design (adapted from

ELMASRI & NAVATHE, 2000) .. 8

Figure 2.4: The NoSQL store quadrants (ROBINSON et al., 2013) ... 10

Figure 2.5: Key-value stores act like a distributed hashmap data structure (ROBINSON et al.,

2013) ... 11

Figure 2.6: MongoDB Database Model and Typical RDBMS model (PLUGGE et al., 2010) 16

Figure 2.7: Comparison between Relational Database and Graph Database Structure..................... 18

Figure 2.8: Example of Graph Database model (ROBINSON et al., 2013) 19

Figure 3.1: The lifecycle of a database refactoring (AMBLER & SADALAGE, 2007) 25

Figure 3.2: The process of database refactoring (AMBLER & SADALAGE, 2007) 27

Figure 3.3: Renaming the Customer.FName column (AMBLER & SADALAGE, 2007) 28

Figure 3.4: Refactoring Merge Columns ... 29

Figure 3.5: Refactoring Merge Properties of a Node .. 29

Figure 4.1: Metadata level 0 .. 33

Figure 4.2: Example of metadata level 1 ... 34

Figure 4.3: Example of the data using metadata of Figure 4.2.. 34

Figure 4.4: Abstract example of refactoring Split property .. 39

Figure 4.5: Refactoring Split property on metadata .. 40

Figure 4.6: Refactoring Split property applied to an instance ... 40

Figure 4.7: Abstract example of refactoring Property becoming a node .. 43

Figure 4.8: Refactoring Property becoming a node on metadata .. 44

Figure 4.9: Refactoring Property becoming a node applied to an instance 44

Figure 4.10: Abstract example of refactoring Relationship becoming a node 47

Figure 4.11: Refactoring Relationship becoming a node on metadata .. 48

Figure 4.12: Refactoring Relationship becoming a node applied to an instance 48

Figure 4.13: Abstract example of Merge properties refactoring ... 51

Figure 4.14: Merge properties refactoring on metadata .. 51

Figure 4.15: Merge properties refactoring applied to an instance .. 52

Figure 4.16: Abstract example of refactoring Delete a property of a node 54

xviii

Figure 4.17: Refactoring Delete a property of a node on metadata .. 54

Figure 4.18: Refactoring Delete a property of a node applied to an instance 55

Figure 4.19: Abstract example of refactoring Merge nodes .. 57

Figure 4.20: Refactoring Merge Nodes on metadata ... 58

Figure 4.21: Refactoring Merge Nodes applied to an instance ... 58

Figure 4.22: Abstract example of refactoring Introduce Calculated Property 61

Figure 4.23: Refactoring Introduce Calculated Property on metadata ... 62

Figure 4.24: Refactoring Introduce Calculated Property applied to an instance 62

Figure 4.25: Abstract example of refactoring Move property of a node ... 65

Figure 4.26: Refactoring Move property of a node on metadata ... 66

Figure 4.27: Refactoring Move property of a node applied to an instance 66

Figure 4.28: Abstract example of refactoring Invert Direction of a Relationship 69

Figure 4.29: Refactoring Invert Direction of a Relationship on metadata .. 69

Figure 4.30: Abstract example of refactoring Shorten Path.. 72

Figure 4.31: Refactoring Shorten Path on metadata ... 72

Figure 4.32: Refactoring Shorten Path applied to an instance .. 73

Figure 4.33: Abstract example of refactoring Introduce Default Values .. 75

Figure 4.34: Refactoring Introduce Default Values on metadata .. 75

Figure 4.35: Refactoring Introduce Default Values applied to an instance 76

Figure 4.36: Abstract example of refactoring Make Property non-nullable 77

Figure 4.37: Refactoring Make Property non-nullable on metadata ... 77

Figure 4.38: Refactoring Make Property non-nullable applied to an instance 78

xix

LIST OF TABLES

Table 2.1: Example of a table with three columns .. 12

Table 2.2: Graph Data Structures .. 21

Table 4.1: Notation of the abstract data .. 36

Table 4.2: List of Refactoring Rules ... 79

xx

xxi

LIST OF ABBREVIATIONS AND ACRONYMS

ACID Atomicity, Consistency, Isolation, Durability

BASE Basically Available, Soft-state, Eventual consistency

DB Database

DBMS Database Management System

DDL Data Definition Language

NoSQL Not Only SQL

RDBMS Relational Database Management System

RDF Resource Description Framework

xxii

1

1. INTRODUCTION

A relational database is a system which stores data in collections of tables (DATE,

2004). A database system based only on the relational model can be inefficient given the

growth in data volume, density and complexity, such as in cases where information systems

use large amount of connected data. The alternative to these new demands is the project of

database systems which adopt different data models instead of the relational one, known as

NoSQL Databases (ANGLES, 2012).

NoSQL Databases ensure high availability, flexibility and scalability and are

categorized according to their data model (STRAUCH, 2011). Graph Databases are

classified as a NoSQL database which can meet the recent demands previously mentioned

and which stores the data in graph structures, providing a natural way of handling highly

connected data (ANGLES, 2012).

Another recent trend which motivates the use of different database technologies is the

evolutionary nature of modern software development processes (AMBLER &

SADALAGE, 2007). This process differs from the serial approach in which, first, all the

requirements are identified, and only after a detailed design the implementation can be

done; it is an incremental approach where the system will have series of releases, first

modeled with an overview of the scope and adding new requirements and details in each

release. One evolutionary database development technique is the database refactoring.

Database Refactoring is a simple change to a database schema that improves its design

while retaining both its behavioral and informational semantics (AMBLER &

SADALAGE, 2007).

A graph database automatically supports this incremental approach due to its optional

schema, but the application which accesses the database is responsible to manage and

organize the changes. This evolution could be done in a more consistent and organized way

if the changes could be done similarly to how they are currently done in relational

databases.

2

This work suggests one technique for supporting the evolutionary approach in graph

databases with the definition of a set of refactoring rules; adapting the typical problems of

database management from the relational model to the graph model.

1.1 Goals

Evolutionary development is an iterative and incremental approach. The model is

released incrementally and evolves over time instead of being developed after the creation

of a requirement specification (AMBLER & SADALAGE, 2007). This software

development approach comes with a need for databases that can also evolve their design

over time.

The goal of this project is the definition of a refactoring rules set, presented as a catalog,

to ensure the evolution of Graph Databases in an organized way, preserving its features,

such as flexibility, scalability and performance, and establishing procedures to maintain the

project architecture of the database.

1.2 Motivation

The complete or total absence of schema in Graph Databases enables the flexibility for

storing data as it is and contributes to increase the availability. The flexibility and

scalability are important because they make possible to work with any new type of data,

independent of the content structure and the volume of data. The down side is that there is

no data referential integrity guarantee like in the fixed schema of relational databases

(LÓSCIO et al., 2011).

The motivation for this work is the need of controlling and organizing the graph

database evolution, avoiding the loss of data integrity, but also the loss of flexibility and

scalability.

3

1.3 Work Methodology

The initial step to produce the results of this work was the research on refactoring

database processes for relational databases which provided a better overview of database

evolution; at the moment this work started, the researches about graph database evolution

were in an initial stage. The refactoring rules for Graph Databases were established using

the study of those existent techniques as a guideline, mainly the ones described by Ambler

and Sadalage (2007).

Many refactorings of relational databases can be applied in a similar way in graph

databases, thus, some basic refactorings were omitted from this work and the most

important refactorings of the catalog developed are those bringing typical operations from

graph databases, for example, operations in nodes and relationships. The starting point for

finding those typical refactoring operations was the study of real life examples using graph

databases; followed by the analysis of the possible changes that could be applied to them.

The structure of the catalog was developed to present the refactorings in a

homogeneous way, trying to make most of refactorings as simple as possible, except for

some complex refactorings involving a combination of refactorings.

1.4 Text Structure

This text is organized as follows:

 Chapter 2 presents an overview of NoSQL Database and Graph Databases;

 Chapter 3 explains briefly database evolution and the concept of refactoring;

 Chapter 4 brings the catalog created in this work, containing refactoring rules and

the process for performing them in Graph Databases;

 Chapter 5 shows the conclusion and directions for continuation of this research.

4

2. GRAPH DATABASE

The amount of information produced by the use of data capture devices (e.g. sensors),

scientific instruments, social networks, user-driven content, Internet, among others, does

not stop growing, generating a big volume of data in a small amount of time. Studies from

the IDC iView have estimated that the total amount of enterprise data will double every two

years until 2020, growing from about 130 exabytes in 2005 to 40,000 exabytes, or 40

trillion gigabytes, in 2020 (GANTZ & REINSEL, 2012). This information generated is

valuable and it should be stored and manipulated in a good timing, so it is not lost or

unusable.

Besides volume, variety and velocity, technological advances also contributed to

changes in the nature and complexity of data, for example, unstructured, geometric and

multimedia data. This large scale data, distributed, complex, and that are difficult to collect,

store, manage and analyze with conventional database management systems is becoming

part of many sectors of the global economy, representing a technological challenge which

demands more than the structure of relational database can currently offer and stimulating

the use of different forms of storage.

The solution adopted by some companies, like Google and Amazon, was the

development of their own database solutions, known as NoSQL Databases, tailored to the

requirements of their data. The next sections will describe relevant properties of NoSQL

Databases, giving more attention to Graph Databases.

2.1 NoSQL

NoSQL Databases emerged from the need to implement solutions which required

distribution and scalability. Relational Databases were not the best suited for those

solutions because it is difficult and not very efficient to make transactions and join

operations in a distributed system which uses them (OREND, 2010).

The term NoSQL was first coined in 1998 for a Relational Database which omitted the

use of SQL (STRAUCH, 2011; DATE, 2004) and it was reintroduced by Eric Evans in

2009. Although some NoSQL Databases already existed at that time, such as Apache

5

Cassandra1 and Google Big Table2, this boosted the development of NoSQL (BRUHN,

2011).

NoSQL is short for “Not Only SQL” and translates the idea that Relational Databases

can coexist with other technologies and each one has its own place, without meaning that

new ways to store data have to replace Relational Databases.

NoSQL is not only a product or a technology, it is a hypernym of all databases that do

not follow the RDBMS principles (DATE, 2004) and are often related to large data sets

manipulated on Web scale (TIWARI, 2011). Typically, NoSQL technology is used to solve

the scalability problem of traditional databases, where flexibility and velocity of data are

important, but consistency and a predefined schema are not requirements.

Some properties that distinguish NoSQL Databases Systems from RDBMS are: NoSQL

Databases do not require a fixed schema (schemaless); do not support join operations which

must be implemented by hand; they are built to scale horizontally; and often do not attempt

to provide all ACID guarantees (BRUHN, 2011). These properties are explained in more

detail in the following section.

2.2 NoSQL Concepts and Properties

NoSQL Databases share some basic concepts which differ these databases from

Relational Databases. Sharding, CAP Theorem and Schemaless are examples of those

concepts.

The volume of data grows together with the need for scalability and performance

improvement. Several solutions have been suggested for those requirements, for instance,

the vertical scalability, where more power (CPU, RAM, robust server) is added to the

existent machine, and the horizontal scalability, in which you scale adding more machines

(nodes) to a system, such as a new computer to a distributed system.

A way to implement horizontal scalability is by using sharding, which consists of

splitting data horizontally using data partitioning, i.e., split tables to reduce the number of

rows, grouping similar data. Data typically requested and updated together are stored on the

1 http://cassandra.apache.org/
2 http://research.google.com/archive/bigtable.html

6

same node of a cluster (STRAUCH, 2011). As they are related, they should all be treated

on the same physical machine.

In a sharded configuration, as in Figure 2.1, the client connects to a database process

which abstracts the sharding. Thus, from the application point of view, the database is

configured as a nonsharded environment and if there is a need to scale the database, the

application does not have to change.

Figure 2.1: Sharded client connection (adapted from CHODOROW; 2013, p. 233)

The advantage of storing a table on a cluster instead of in a single machine is that nodes

can be added to the cluster to increase its capacity and performance of read and write

operations without changing the application, providing greater availability, decrease in

query response time and parallelism (RUFLIN et al., 2011). The downside is that sharding

makes some typical database operations complex and inefficient, for example, joins

between data shards are not possible (OREND, 2010).

Some NoSQL Databases were already designed to use sharding, but its application in

Relational Databases is more difficult due to some properties of the Relational Model. The

first is that while a RDBMS follows normalization criteria, sharding favors the

denormalization of data. Another one is that RDBMS usually apply a vertical scalability

strategy and sharding works by parallelizing data in multiple servers to enable horizontal

scalability (RUFLIN et al., 2011).

DB DB DB

DB

Client

7

Eventual Consistency is a NoSQL Database property that states that the consistency

does not have to be ensured in all points of a system and has the CAP theorem as the

underlying principle.

The CAP theorem was introduced by Eric Brewer in 2000 and formalized by Gilbert

and Lynch in 2002 (TIWARI, 2011). It states that in a distributed data storage system only

two of the three features: consistency, availability and partition tolerance can be provided

together (OREND, 2010). Before explaining the theorem, it is important to understand

those features:

 Availability means that data has to be always accessible. The system is designed to

always allow clients to read and write data in a specific period of time. If a system is

busy, uncommunicative, or unresponsive when accessed, the system is not available

(STRAUCH, 2011).

 Partition tolerance is the ability of the database to keep operating despite network and

machine failures (WEBER, 2010). A partition tolerant system can only provide strong

consistency by reducing its availability, because it has to ensure that each write

operation only finishes if the data is replicated to all necessary nodes (OREND, 2010).

 A system is consistent if after a write update, all the concurrent operations see the same

valid and updated data in a shared data source, i.e., the data has to be always the same

in every replication on every server (WEBER, 2010).

As mentioned before, NoSQL uses eventual consistency. If there is an update, it does

not guarantee that all processes have the same version of an item. In the case that no

updates were identified, the data returned will be the last one updated. This can

compromise consistency, but increases flexibility, availability and performance (RUFLIN

et al., 2011).

Eric Brewer uses the term BASE (Basically Available, Soft-state, Eventual consistency)

to represent the case of eventual consistency (TIWARI, 2011). BASE stands in contrast

with ACID (Atomicity, Consistency, Isolation, Durability), although they are not opposites

(TIWARI, 2011). While the ACID model enforces the consistency in the end of all

operations, BASE allows the database to be basically available, appearing to work most of

the time and eventually exhibiting a consistent state (ROBINSON et al., 2013).

8

Figure 2.2: CAP Theorem

Figure 2.2 shows the possible options according to CAP theorem. The consistency and

availability (CA) can be chosen by traditional RDBMS, where the consistency is most

important. In some web applications, the data availability is more important than the

consistency, so the alternative AP is more adequate and is the one used in Graph and

Document Databases. Finally, the option CP is used for Key-Value Stores and Column

Databases.

Another defining feature of NoSQL databases is the lack of a required schema.

Database design, or modeling, is an essential activity in the development of information

systems used to specify business rules and database structure. The database design is

composed of Conceptual Design, Logical Design and Physical Design, as shown in Figure

2.3, being the first two of which the most important ones for this text.

Figure 2.3: Simplified Diagram illustrating the main phases of Database Design (adapted

from ELMASRI & NAVATHE, 2000)

Availability

Partitionment
tolerance

Consistency

CA AP

CP

9

The conceptual design is the high-level conceptual data model developed from the

requirements collected. It results in the conceptual schema, a concise description of the user

requirements, including detailed descriptions of entity types, relationships and constraints.

This schema is usually a description of the database structure (usually graphical, as the

Entity-Relationship model) independent of the technology or the application adopted

(ELMASRI & NAVATHE, 2000).

The logical design consists in mapping the conceptual schema to meet the requirements

of the database, make refinements when necessary. A logical schema is the description of

the database structure that can be processed by a DBMS and it depends on the DBMS

which will be used (ELMASRI & NAVATHE, 2000).

The physical design uses the logical schema to write the implementation of the

database, including its storage structures and methods of data access. The physical project

is directed to a specific DBMS and as soon as it is completed, the database can be created

and filled with data.

Even after executing the whole process of database design, it can be necessary to

incorporate new abstractions and modifications to the model and, although it is possible to

make these changes on the relational database schemas, usually they are complex and

demand cost and time.

In a large scale application, it is difficult to achieve the schema flexibility in SQL

databases because of a high number of tables, causing many joins and unions with no good

performance (AKRAWI, 2010). In order to avoid those difficulties, NoSQL Databases do

not require a fixed schema (schemaless).

The complete or almost total absence of a schema to define the data structure of a

model is a NoSQL Database characteristic (LÓSCIO et al., 2011). This absence supports

the flexibility for storing data as it is and contributes to increase the availability. Although it

brings advantages, there is no data referential integrity guarantee like in the relational

databases using a fixed schema (LÓSCIO et al., 2011).

The loss of the data integrity guarantee due to the schemaless characteristic of NoSQL

Databases is a motivation for this work. Since the beginning of this work, some NoSQL

Databases recognized that it could be a problem to not ensure data integrity, developing

10

alternative ways to solve the problem, such as offering an optional schema, which is

explained in the Section 2.4.2 of Graph Database Management Systems.

2.3 Categories

Although NoSQL Databases have some features in common, there are different

approaches to classify them. The categorization adopted for this work is the one proposed

by Ben Scofield (STRAUCH, 2011), which classifies them in: Key-Value Stores, Column

Stores, Document Stores and Graph Databases. This categorization was chosen because it is

aligned with the proposal of this work, as it places Graph databases in its own category.

Figure 2.4: The NoSQL store quadrants (ROBINSON et al., 2013)

The different categories of NoSQL databases can be seen in Figure 2.4 and they are

explained in the next sections, highlighting the Graph Database category since is the one

used for this work.

11

2.3.1 Key-Value Stores

This model is based on a hashmap or an associative array, where there is a collection of

unique keys and pointers to a particular data (values) associated with the keys. The key of a

<key, value> pair should be unique in the set and it can be easily looked up to access the

data (TIWARI, 2011). Values can be of different types like strings, integers, floats or byte

arrays (WEBER, 2010).

Figure 2.5: Key-value stores act like a distributed hashmap

data structure (ROBINSON et al., 2013)

The key space of the hashmap is spread across numerous buckets on the network and,

for fault-tolerance reasons; each bucket is replicated on several machines, as illustrated in

Figure 2.5 (ROBINSON et al., 2013).

Key-values stores have a simple interface, with three primitive operations: to get the

data associated with a particular key, to store some data associated with a key and to delete

a key and its data (WARDEN, 2011). More functionalities or complex operations should be

handled by the application and they are omitted in favor of high scalability.

12

With a key-value store, it is easy to achieve high performance; there is no single point

of failure and high availability because of its flexible schemaless data models and fine

granularity in the partitioning of the data (AKRAWI, 2010). The data model is simple,

without relationships or structure (WEBER, 2010) and it is efficient because adding or

removing a record is extremely flexible and it scales to large number of nodes (AKRAWI,

2010).

Some well-known Key-Value Stores are Amazon Dynamo, Redis and Google Big

Table.

2.3.2 Column Stores

The approach to store and process data by column instead of row has its origin in

business intelligence (STRAUCH, 2011). Instead of storing data by rows, as the RDBMS,

this data model is based on a “sparsely populated table whose rows can contain arbitrary

columns” (ROBINSON et al., 2013).

The idea is to store one attribute of a set of datasets in one unit (column oriented),

unlike SQL databases that would store a dataset with its attributes in one unit (row

oriented) (WEBER, 2010). In this way, similar data are stored together making data access

more efficient if the query is made by specific columns or data (AKRAWI, 2010). Besides

the efficiency in query by columns, this model avoids consuming space to store nulls by

simply not storing a column when the value does not exist for that column (TIWARI,

2011).

To explain how this model works, consider a table with three attributes (identifier,

name and address):

Table 2.1: Example of a table with three columns

ID Name Address

212 Edward New York

213 Mary Seattle

214 Richard Minneapolis

13

In a model oriented by rows, the information of this table would be serialized to the

hard drive or to the RAM in a sequence in this order:

212,Edward,New York;213,Mary,Seattle;214,Richard,Minneapolis;

The structure of the same example stored in a column-oriented way, would be

something like this:

212,213,214;Edward,Mary,Richard;New York,Seattle,Minneapolis;

With this way of storing data, operations of aggregation can be done very quickly,

because the values of the same attribute are stored successively. Also, as in the key-value

stores, there are no relations between datasets (WEBER, 2010) and if there is a need to

query all attributes of one record, each column has to be accessed separately.

Example of column stores are: SimpleDB3 (Amazon), HBase4 and Cassandra, explained

briefly in the following section.

Cassandra

Cassandra was developed by Facebook using Java in 2008 (STRAUCH, 2011) to

improve their Inbox Search feature (LAKSHMAN, 2010). According to Akrawi (2010), it

is one of the most widely-used NoSQL Databases and it brings together the distributed

systems’ technologies from Dynamo and the data model from Google Big Table in a single

model. “It provides a simple data model that supports dynamics control over data layout

and format” (LAKSHMAN, 2010).

The equivalent to a table in Cassandra is a distributed multi-dimensional map indexed

by a key (LAKSHMAN, 2010). Its data model is composed by key-value pairs of data,

columns (key-value pairs with a timestamp), supercolumns (any number of columns

combined) and column families (group both columns and supercolumns with a finite

number of rows) (ROBINSON et al., 2013). It is classified as a column-oriented database

and also as a distributed key-value store based on a distributed hash table (AKRAWI,

2010).

3 http://aws.amazon.com/pt/simpledb/
4 http://hbase.apache.org/

14

Cassandra is designed for high availability, eventual consistency, scalability, no single

point of failure, minimal administration and continuous development, being scalability the

primary reason to adopt it (AKRAWI, 2010). A huge amount of data is distributed across

many servers, for instance, Facebook was running a 150 node Cassandra cluster without

making changes to it (AKRAWI, 2010).

Failure detection is a Cassandra’s mechanism by which each node can locally determine

if any other node in the system is up or down. This is used to avoid attempts to

communicate with unreachable nodes during various operations (LAKSHMAN, 2010), and

to replace nodes without downtime.

Next to Facebook, also Twitter and Digg are companies who already used this database.

2.3.3 Document Stores

This category of NoSQL Database uses entire documents of different types as datasets.

Those versioned documents are collections of other key-value collections. Examples of

document types are structured human readable data files such as XML-, JSON- or YAML

files (WEBER, 2010).

The main advantage of this approach is its flexibility (WARDEN, 2011). In traditional

relational databases, the user has to specify the columns types and names for a table;

additional values that were not specified when the table was created are not allowed and

every value must be present, even if it is as a null value. Different from it, document stores

allows the user to enter each record as a series of names with associated values (WARDEN,

2011).

It means that they do not use a predefined structure and that the database structure is the

same as the datasets structure. If there is a requirement to create an attribute that will be

used only by one record, it can be made directly to this record in the document, without the

need for creating the attribute for all the records with null values, as it would be done in a

relational database.

15

Document databases can be interpreted as particular cases of key-value stores. The

difference is that the database has to know what kind of document is saved in it and it has

to interpret it (WEBER, 2010). MongoDB5 and CouchDB6 are the two major representative

databases of this class of NoSQL databases.

Data in CouchDB is organized in documents that can be stored and accessed with

JSON7. Documents consist of named fields that have a key/name and a value. A fieldname,

or identifier, has to be unique within a document and its assigned value may be string,

number, boolean, date, an ordered list or an associative map (STRAUCH, 2011). Code 2.1,

based on a MongoDB example from Plugge et al. (2010), illustrates the data storage

flexibility because it does not require a predefined structure, thus different types of

documents (representing a book or a cd) can exist in a collection called Media:

{

 “Type”: “CD”,

 “Artist”: “Nirvana”,

 “Tracklist”: [

 {“Track”: “1”, “Title”: “Smells like teen spirit”},

 {“Track”: “2”, “Title”: “In Bloom”}

]

}

{

 “Type”: “Book”,

 “Title”: “Definitive Guide to MongoDB”,

 “Author”: [

 “Plugge, Eelco”, “Membrey, Peter”, “Hawkins, Tim”

]

}

Code 2.1: Different types of documents in a MongoDB collection

The queries are made using the keys (unique identifiers) or any other value in the

document. MongoDB is described in more detail in the following section.

5 http://www.mongodb.org/
6 http://couchdb.apache.org/
7 JSON, or JavaScript Object Notation, is an open standard format that uses human-readable text to transmit
data objects consisting of attribute–value pairs.

16

MongoDB

MongoDB is a Document Store developed in C++. It is open source and schemaless. It

was designed by the company 10gen and provides flexibility, scalability and rapid

application development (MONGODB, 2014).

Like the other NoSQL Databases, this category does not use tables, schemas, joins or

SQL (PLUGGE et al., 2010). Instead of storing data into tables, data is stored in JSON

documents.

Figure 2.6: MongoDB Database Model and Typical RDBMS model (PLUGGE et al., 2010)

In MongoDB, a document contains the data, equivalent to records in SQL and

collections that store the documents, equivalent to tables, as shown in Figure 2.6. Although

the concepts are similar in an abstract way, the way that they store the data is different.

The main difference is that relational databases define attributes on the table level,

while document databases store attributes on the document level. Documents can store

records with completely different attributes, because MongoDB supports also complex data

types (HAN et al., 2011). Another advantage is the high-speed access to mass data: when

the data exceeds 50GB, MongoDB access speed is ten times faster than MySQL (HAN et

al., 2011). MongoDB is fast, scalable and easy to use (PLUGGE et al., 2010).

Its philosophy is “one size does not fit all” (PLUGGE et al., 2010). Each data has to be

analyzed to decide the best way to store it. In the relational approach, it did not matter if the

data was a good fit for the model, because it would be stored using a relational database

anyway.

Database Database

Tables

Rows Documents

Collections

17

MongoDB works with data redundancy; each isolated document has to contain all

information it requires (CHODOROW, 2013). Although it makes it hard to update related

records, this property increases query performance.

This database serves financial services institutions, electronic companies, media and

entertainment companies, healthcare companies, having more than 1,000 customers,

including Cisco, eBay, SAP, Foursquare and Telefonica (MONGODB, 2014).

2.3.4 Graph Databases

Graph Databases can be characterized as those where data structures for the schema and

instances are modeled as graphs or generalization of them (ANGLES, 2012). As opposed to

Relational Databases which store data in tables, data is stored in connected objects.

A graph consists of a set of nodes and edges connecting nodes. A graph where the

edges have a direction associated to them is called a directed graph and if they have no

direction, it is called an undirected graph.

In Graph Databases, vertices represent entities and the edges represent the kind of

association between them. In this way, there is no need to think about how to represent the

data, the developers only have to think about the relations between nodes and focus on

manipulation of the data instead of how to represent it (AKRAWI, 2010).

The edges of the graph can have properties that describe the relationship between

vertices (WEBER, 2010), for example, a KNOWS relationship type can represent that two

nodes of the database know each other. In some cases, the direction of the relationship is

also important, as in the relationship type WORKS_IN where a node representing a person

can have this relationship connecting it to a company, but the other direction would not

make sense.

The first and the third table represented in Figure 2.7 (a) have a many-to-many

relationship and the table between them is used as a join table. In a Graph Database (Figure

2.8 (b)), there is no need to introduce a join table between the data because the relationships

are already explicit in the model.

18

(a) (b)

Figure 2.7: Comparison between Relational Database and Graph Database Structure

 There are several different graph database models (ROBINSON et al., 2013),

including:

 Property graph: contains nodes and relationships (including name and direction),

both containing properties that are key-value pairs.

 Hypergraph: a generalized graph model in which a relationship can connect any

number of nodes; and

 Triples: a way to express information about entities is using semantic triples, in the

form of subject-predicate-object: a resource (the subject) is linked to another

resource (the object) through an arc labeled with a third resource (the predicate). A

combination of triples results in a directed graph.

Graph Databases are easy to scale horizontally (WEBER, 2010). Graphs can be

partitioned so that each portion has a determined size and fewer connections between them,

ensuring a better performance (WEBER, 2010). Another advantage is that the data query is

fast for connected data and it is done directly on the graph structure, without the need for

SQL join operations (ANGLES, 2012).

Just like relational databases have their operations (create, insert, select, etc.), there are

many operations that can be done in graph databases. They have CRUD (create, read,

update and delete) methods and, according to Akrawi (2010), the basic operation is

traversing. The searching for information is made through the navigation between nodes,

keeping track of which nodes were already visited and which ones were not visited yet.

Graph databases are optimized for highly related data with graph traversal of high

performance (AKRAWI, 2010).

19

In the example of Figure 2.8, the purchase history of a user is being modeled. The graph

links the user to his orders and each order is linked to the products bought, so it is possible

to have an insight of customer behavior. This is only an example, because graphs are

everywhere: social networks, related products, spatial data, Internet, human brain, etc. It is

hard to talk about data without talking about connections and, therefore, a database that

make possible to store data structured as graphs is interesting because it makes easier to

represent, visualize and manipulate this kind of data.

user: Alice

order: 1234

date: 20120808

status: delivered

PLA
C
ED

order: 5678

date: 20120816

status: dispatched

id: abcd

description:

strawberry ice cream

handling: freezer

id: efab

description:

brussels sprouts

id: cdef

description:

espresso beans

PREVIOUS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

PLACED

MOST_RECENT

Figure 2.8: Example of Graph Database model (ROBINSON et al., 2013)

2.4 Graph Database Management Systems

In order to choose a graph database to be used for this work, a brief study about some of

the tools available were made. This section presents a description of some relevant graph

databases.

20

2.4.1 Graph Databases Overview

Of the many graph databases available, there are DEX (Sparksee)8, HyperGraphDB9,

InfiniteGraph10, AllegroGraph11 and Neo4j. This section brings a short overview of them

based on the information from their websites and the comparison of current graph databases

models made by Angles (2012).

DEX is a scalable high-performance graph databases. It is suitable for huge amounts of

data and it was developed by researches of the Technical University of Catalonia. DEX is

natively available for .Net, C++, Python and Java, and for any operating system, even

Android and iOS. It also has native indexing, which allows fast access to the graph data

structures. DEX offers a restricted version for personal use, but it is not open-source.

HyperGraphDB is based on generalized hypergraphs as its underlying data model.

This model allows a natural representation of higher-order relations, being interesting for

artificial intelligence and semantic web projects. It is a Java embedded database and open-

source.

AllegroGraph store data and meta-data as triples. It is a database for building semantic

web applications (RDF – Resource Description Framework), but it also includes support for

social network analysis and temporal reasoning.

InfiniteGraph is a distributed database oriented to support large-scale graphs, available

in both free and paid license versions. It aims the efficient traversal of relations across

massive and distributed data stores and its language is Java.

Neo4j is an open-source property graph, fully transactional Java persistence engine that

provides different API’s for Ruby, Python, and Java with support for various web

technologies (AKRAWI, 2010). It provides support for full ACID transactions (NEO4J,

2014).

When this research first started, Neo4j was a schemaless database, meaning that the

organization of information was left under the responsibility of the application,

compromising the data integrity and reliability. Since the release of Neo4j 2.0, Neo4j is

8 http://sparsity-technologies.com/
9 http://www.hypergraphdb.org/index
10 http://objectivity.com/infinitegraph
11 http://www.franz.com/agraph/allegrograph/

21

now a schema-optional graph database (NEO4J, 2014). This means that it is possible to use

Neo4j without any schema, but there is the possibility of a built-in schema, with indexes

(improving the performance of looking up nodes in the database), constraints (helping to

enforce data integrity, specifying the rules for the data and denying any changes that break

these rules; the only constraint type available in Neo4j until now is the unique constraint.)

and labels (a named graph construct that can group nodes into sets making queries more

efficient) that can be associated to the constraints.

Neo4j is a leading graph database and besides the social network application, it has

customers, such as Hewlett-Packard for the use case of network and data center

management, eBay for routing and logistics, Cisco for content management and Walmart

using Neo4j for make recommendations (NEO4J, 2014).

Table 2.2 shows the comparison made by Angles (2012) between the data structures of

the graph databases described above. The data structures refer to the types of entities or

objects that can be used to model the data.

In the Table 2.2 there are three graph data structures: simple graphs, hypergraphs and

attributed graphs (or property graphs), notions that were explained in the last section.

Additionally to the type of graphs, the edges can be directed or not and nodes/edges can be

labeled or attributed (i.e., edges between edges are possible). The introduction of attributes

for nodes and edges is oriented to improve the speed of retrieval for the data directly related

to a given node.

Table 2.2: Graph Data Structures

 Graphs Nodes Edges

 S
im

p
le

 g
ra

p
h

s

H
y

p
er

g
ra

p
h

s

A
tt

ri
b

u
te

d
 g

ra
p

h
s

N
o

d
e

la
b

el
ed

N
o

d
e

at
tr

ib
u

ti
o

n

D
ir

ec
te

d

E
d

g
e

la
b

el
ed

E
d

g
e

at
tr

ib
u

ti
o
n

AllegroGraph X X X X

DEX X X X X X X

HyperGraphDB X X X X

InfiniteGraph X X X X X X

Neo4j X X X X X X

22

It was also verified in this study their usage of integrity constraints, such as:

 Types checking (test consistency of an instance in respect to previous

definitions);

 Node/edge identity (a node/edge can be identified by a value (id) or by values of

its attributes);

 Referential integrity (test that only existing entities are referenced);

 Cardinality checking (verify uniqueness of properties or relations);

 Functional dependency (test that an element in the graph determines the value of

another); and

 Graph pattern constraints (to verify a structural restriction).

Graph databases lack support to integrity constraints and they justify it with their agility

and support for evolving schemas. According to Angles (2012), this argument is not valid

assuming that data consistency in a database is as important as a flexible schema and the

evolution of the schema could be supported by flexible structures in the schema, which is

also a motivation for this work.

DEX, HyperGraph and InfiniteGraph, for example, support types checking and

node/edge identity, also supported by Neo4j, but most of the integrity constraints are not

natural supported by the databases and this still has to be developed.

2.5 Final Considerations

The use of new ways to store data, besides Relational Databases, is growing each day,

requiring a greater attention for NoSQL Databases. This section summarized the basic

concepts and characteristics of NoSQL Databases and its categories.

After an analysis of the available Graph Databases, Neo4j was the one used to support

this work because it had more material available making easier to understand its data

model, because it is becoming a widely used database and because its current version offers

an optional schema.

With the new optional-schema version of Neo4j and the increase of the amount of

companies using Graph Databases for other applications rather than social networks, the

23

importance of the organization of the evolution of Graph Databases becomes clearer,

motivating the research in this document. Despite it, NoSQL Databases still have

deficiencies and among them are the methods of Refactoring, which will be addressed in

the next section.

24

3. DATABASE REFACTORING

In traditional database design, the process to determine and organize the information

which is necessary to keep is very time consuming. A lot of time is spent from the

requirement analysis until the actual implementation of the database, with the goal to

ensure that all data objects required by the database are accurately represented and

maximize the use of resources. The physical model is implemented after many discussions

and careful analysis and, only after finishing the whole process, the application is allowed

to access the data. If subsequent modifications are required after this process is done, it can

be considered that a failure has occurred in the database design.

Contrasting with this almost serial manner to model the data, there is an evolutionary

approach to data modelling (AMBLER & SADALAGE, 2007). Evolutionary database

design accepts the changes in the model as part of the process, because there will be

constantly changes in the requirements, allowing them to occur even late in a development

project. “Changes are controlled, but the attitude of the process is to enable change as much

as possible” (FOWLER et al., 1999). The development techniques that support evolutionary

databases are: Evolutionary data modeling; Database regression testing; Configuration

management of database artifacts; Developer sandboxes; and Database Refactoring, which

will be discussed in more detail in this chapter.

3.1 Concept

Refactoring is defined by Fowler (1999) as “a change made to the internal structure of

software to make it easier to understand and cheaper to modify without changing its

observable behavior”, i.e., it is a small change to the code in order to improve the design

without changing its external behavior and it enables an evolutionary approach to

programming.

Fowler (1999) also stress that there is no functionality added when refactoring code, it

is only an improvement of the existing code so that it can be applied before adding

functionality to the program.

25

Just like it is possible to refactor the source code to improve the quality of the design, it

is also possible to refactor the database schema. Similar to the definition of refactoring, a

database refactoring is “a simple change to a database schema which improves its design

while retaining both its behavioral and informational semantics” (AMBLER &

SADALAGE, 2007), in other words, database refactoring neither adds anything nor breaks

the functionality or the data that is already stored; it merely improves the database.

The process of database refactoring requires a deprecation period or a transition

window. If many applications (hundred) access the same database, there should be a

transition period where the old and the new schema work in parallel. Since not all

applications can be changed at once to work with the new schema, first a new schema is

created and the old one is set as deprecated, together with scaffolding code to keep both

schemas synchronized. This transition period ensures the agility of refactoring because it is

not necessary to wait for all applications to change to the new schema, although, a

transition period may last two years (AMBLER & SADALAGE, 2007).

Figure 3.1: The lifecycle of a database refactoring (AMBLER & SADALAGE, 2007)

After the transition period ends, the old schema and the scaffolding code can be

removed and the refactoring is complete, as illustrated in Figure 3.1. It is important to

consider that the applications will either access the old or the new schema, but they will

never be updating both schemas. It is the responsibility of the database to keep both

schemas updated and it does this in some automated way or by using triggers – a procedure

that initiates an action when an event (insert, update or delete) occurs.

Even requiring some extra operations, the evolutionary approach together with

refactoring techniques can make the database implementation agile, the next sections show

examples of the refactoring process.

Implement the

Refactoring

Transition

Period

Refactoring

Completed

Refactored schema and

any scaffolding code

deployed into production

Original schema and the

scaffolding code removed

from production

26

3.2 Relational Databases Refactoring

Ambler and Sadalage (2007) distinguish six categories of database refactoring:

1) Structural. A change to the table structure of the database schema. (e.g. the union of

complementary columns)

2) Data Quality. A change which improves and/or ensures the consistency and usage of

the values stored within the database. (e.g. adjustment of business rules)

3) Referential Integrity. A change which ensures that a referenced row exists within

another table and/or that ensures that a row which is no longer needed is removed

appropriately. (e.g. cascade delete)

4) Architectural. A change which improves the overall manner in which external

programs interact with a database. (e.g. the migration of methods to the database)

5) Method. A change which improves the quality of a stored procedure, stored function,

or trigger. (e.g. reorder parameters); and

6) Non-refactoring Transformations. A change which changes the semantics of your

database schema by adding new elements to it or by modifying existing elements. (e.g.

insert data, introduce new column).

To explain the process of database refactoring, it is easier to introduce some examples

chosen because of their simplicity, the structural refactorings Rename Column and Merge

Columns excerpted from the book of Ambler and Sadalage (2007). The first can be applied

to increase the readability of the database schema or, for example, before exporting your

data to a new database that uses the old column name as a reserved key and the second

when two columns are always queried together.

The steps of the process of database refactoring are presented in Figure 3.2 and the

example of the refactoring Rename Column in Figure 3.3 will be used to support the

explanation of those steps.

In the example of Figure 3.3 there is a Customer table with a column FName. Since the

name is not intuitive, the user decides to change it to FirstName. The first step in the

process of database refactoring, shown in Figure 3.2, is to verify if the refactoring is needed

and to pick the right one to perform (it could be better to create a new column with another

data type than to rename it).

27

Figure 3.2: The process of database refactoring (AMBLER & SADALAGE, 2007)

The next step is a deprecation period (transition period). A FirstName column is added

to the table, the data from column FName is migrated to column FirstName if necessary

and the old schema is marked as deprecated. During this step, a trigger can be introduced to

keep the values contained in the two column synchronized.

After the original schema is deprecated, external programs that access the database

should be updated to work with the new version and the database refactoring is validated by

writing and implementing unit tests. While running the tests to discover problems, there

will be a need to rework things until they get right, and, then to communicate the changes

that have been made to all application teams. The last step of the process is to put any DDL

created, changed scripts, test data, test cases, documentations and models into a version

control tool.

28

3.2.1 Renaming Column

As shown in Figure 3.1 and explained before, there are three sections now: the original

schema, the transition period where FName is marked to be dropped at a specific date and

time and coexists with the new column and the resulting schema. It is required to introduce

a synchronization trigger to copy data from one column to the other during the transition

period whenever a row is inserted or updated in the database. This trigger is also marked to

be deleted together with the old column.

After running tests to check if the new schema is working properly, the next steps are to

announce the changes made by refactoring and keep a version control of the work.

Figure 3.3: Renaming the Customer.FName column (AMBLER & SADALAGE, 2007)

Renaming a column in a production database without breaking applications accessing it

is a very simple example used to illustrate the process of database refactoring because it is

necessary to think about how to evolve a database in a small way first.

Database refactoring is hard because of the degree of dependence between two items,

what is called coupling. The best case scenario is one database being accessed by one

application, but usually a database is accessed by a wide variety of software systems, as

external systems, applications or other databases.

3.2.2 Merge Columns

Another example of database refactoring is the structural refactoring Merge Columns. A

Structural Refactoring is applied to improve the database schema, cleaning, organizing,

standardizing, and improving the structure and the logic of a database.

29

When a database evolves, it is possible to create a column containing additional

information to another column, which both are always used together, motivating the Merge

Columns refactoring to improve the structure of the database.

Figure 3.4 brings an example of this refactoring; the table Customer has two columns,

PhoneAreaCode and PhoneLocal, which are always used together and could be merged

into one column. During the transition period there is a new column storing the

combination of the other two columns and a synchronization function. In the date specified

the old columns and the function to synchronize them are removed from the database

resulting in the new schema.

Figure 3.4: Refactoring Merge Columns

Similar to the Merge Columns refactoring from relational databases, a Merge Properties

of a Node can be created for Graph Databases. An example of what was developed in this

research is in Figure 3.5 where two properties of a node are combined into a third one

resulting in a new schema.

Figure 3.5: Refactoring Merge Properties of a Node

This and other Graph Database Refactorings will be introduced and explained in

Chapter 4.

30

3.3 Schema Changes in NoSQL

NoSQL databases are not entirely schemaless; the schema is actually defined by the

application. The application is responsible to parse the data before saving in the database or

reading from the database (SADALAGE & FOWLER, 2012). Thus, even in schemaless

databases, the schema of the data has to be taken into consideration when refactoring the

application (SADALAGE & FOWLER, 2012).

Sadalage and Fowler (2012) suggest a technique known as incremental migration to

make sure that data, before the schema changed, can still be parsed by the new code, and

when it is saved, it is saved back in the new schema. This technique migrates data over time

as the data is being accessed. With this technique that could be many versions of the object

on the application side that can translate the old schema to the new schema and also

requires a transition period.

In the case of graph databases it is not possible to change only some of the edges

because it would not be possible to traverse it anymore. Possible solutions are to traverse all

the edges and change the type of each edge or to create new edges between nodes and later

drop the old edges (SADALAGE & FOWLER, 2012).

Schemaless databases still need careful migration due to the implicit schema in any

code that accesses the data and the same migration techniques as databases with strong

schemas.

3.4 Final Considerations

This chapter brought an overview about refactoring in general, applied to relational

databases and schema changes in NoSQL. The study of relational database refactoring was

essential because supported in many ways the development of refactoring rules for graph

database.

The main points are the idea of a transition period where the old and the new schema

work in parallel, the categorization of each group of refactorings to make the rules more

organized and two examples of the existent refactoring operations for relational database

31

that were used as a baseline for the development of the first refactoring rules for graph

database. The study of the process of database refactoring showed in Figure 3.2 is

important to maintain the integrity of the database while evolving the database schema in

small steps and it can also be applied to graph database refactoring.

Section 3.3 explains an option to consider the data schema described on the application

of a NoSQL Database when refactoring an application called as incremental migration.

This and the relational database refactoring approach are processes that enable the

development in an evolutionary manner and were the basis for the next chapter.

32

4. GRAPH DATABASE REFACTORING

The main purpose of this work, as mentioned before, was to develop refactoring rules

for graph databases using the rules for relational databases proposed by Ambler and

Sadalage (2007) as a guide. For this purpose, the assumption was made that there exists an

ideal graph database platform providing full support for an optional schema, which would

include constraints, labels for nodes and relationship types.

The refactoring rules proposed in this document were elaborated using the graph

database Neo4j as support and some specific features from this database can be noticed,

such as the use of properties in nodes and relationships, the labels to identify different node

types and the data types used in the examples. However, the rules are intended to be generic

and they could be applied to other graph databases.

Chapter 3 explains that data refactoring is a simple change to a database schema, in

order to improve it, which does not add functionality and preserves the data stored in it.

Before applying a refactoring, the data modeler should evaluate whether the behavior and

information semantics of the object changed will be maintained after the changes. If the

semantics are not the same, the refactoring is not applicable and it should not be allowed.

All database refactoring rules were developed thinking about situations with well

determined logic. Because of this, one refactoring can include another refactoring or it can

be a combination of other simple refactorings and, in these cases, they are treated like one

unit. Although they can be used together as one unit, two refactorings cannot be launched

simultaneously by the user to preserve the atomicity and ensure the consistency of the

operations. The rules were also evaluated trying to avoid the propagation of their event,

because it could trigger unexpected events by the user, i.e., a refactoring will not trigger

new events which were not required by the user, for example, when trying to delete a

property which is used to calculate another property, the refactoring will be blocked.

Refactorings which include creation of nodes will also require the creation of a specific

identification besides the general id created automatically by the database. This id can be a

surrogate key or a natural key created for a specific type of node.

33

4.1 Metadata

Metadata Schema is a set of metadata elements (structured information) designed to

describe, explain, manage and use a particular type of information. In databases, a metadata

schema generally specifies other information, such as the domain of the data and rules of

content representation.

For this work, two levels of Metadata were created in order to detail the basic structure

of a Data Schema. These levels make possible to apply refactoring and support the

Database Evolution in Graph Databases. They are general to any graph database

management system assuming that they have nodes, edges and properties. Figure 4.1 shows

the data schema called Metadata level 0 (zero) represented by nodes and edges. Each node

has a property key-value in which the key is the property name and the value what it

represents. In Figure 4.1 there are four main domains: node_type,

relationship_type, node_property and relationship_property; and other

nodes representing properties of the main domains.

A node_type (NT) is the type of a node and a relationship_type (RT)

represents the type of an edge connecting two nodes in a determined direction. Both

node_type and relationship_type can have properties (node_property and

relationship_property) containing their name, datatype, size, if accept null values

(nullable) and default value, besides others not used in the refactoring rules presented in

this work.

Figure 4.1: Metadata level 0

34

Metadata level 1 (one) uses the metadata described in Metadata level 0. Each node can

have a node_type (NT) with determined properties and their datatype and each edge has a

relationship type (RT) with its properties. Figure 4.2 brings an example of Metadata

level 1 with two node_type’s and one relationship type has. The node_type Customer,

for example, has three node_property’s describing their datatype and their size when

necessary.

Figure 4.2: Example of metadata level 1

Figure 4.3: Example of the data using metadata of Figure 4.2

Figure 4.3 shows a partial example of how a database using the metadata level 1 of

Figure 4.2 would look like. The nodes of determined NT would have the properties

described in metadata level 1 working as an optional schema.

Some graph databases, such as Neo4j, are already changing to support an optional

schema, offering labels that work similar to node types and indexes to improve query

performance, but since the rules in this work are general to any graph database, these

metadata levels were created independent of the Neo4j optional schema to handle database

constraints and schema evolution in any graph database.

4.2 Classification

Some of the refactoring rules cited in this catalog, for example the merge properties, are

very similar to the ones from relational database, (e.g., merge columns). Even with this

35

similarity, some of them are included in this catalog in order to make easier the

understanding of the rules. However, most of them were omitted in this document, since

they do not bring relevant additional information to the process and they can be adapted

straight from the refactoring catalog for relational database. Other refactoring rules are very

specific for graph databases, such as a relationship becoming a node and invert the

direction of a relationship.

Because the classification of database refactoring cited in Section 3.2 is related to

specific features of relational database, that categorization cannot be applied to this catalog,

making it necessary to use a new classification to organize the text. The refactoring rules

were placed in four categories:

 Expansion Refactoring is a structural change aiming for the improvement of the

database. A refactoring in this category improves the database by expanding it,

bringing improvements as standardization, organization and separation of the

data.

 Reduction Refactoring rules are used to improve the database schema, cleaning

up and improving the structure of the database;

 Improvement Refactoring is a change in the database schema to improve the

logic of the database;

 Data Quality Refactoring rules are used to improve or ensure the consistency

and usage of the values stored within the database.

4.3 Specification Guideline

Each refactoring rule described in the next section is organized using the following

structure:

 Goal;

 Motivation;

 Inputs (what the user should provide to apply a refactoring);

 Preconditions (points which should be evaluated to verify if the refactoring is

useful and can be applied to the database; it’s the minimum analysis required

and can be used as a general orientation; the possibility of adding new

36

preconditions has to be considered according to the database which is being

refactored);

 Postconditions (points which should be evaluated after the refactoring process is

completed in order to test it);

 Implementation (what the data modeler has to implement to create the

refactoring);

 Steps (it describes the main activities that should be done by the data modeler

during the transition period and the directions to complete the refactoring);

 Metadata (how would the schema change during the refactoring process);

 Example (most of the examples used are from a family or a bank database, they

are simple examples to make the understanding of the refactoring easier);

 Application (a refactoring can require changes in the applications which access

the database. This part brings an overview of what has to be done to adapt the

applications but should not be limited to it); and

 Additional Notes.

A notation was developed to be used in the item Metadata in order to represent better

the abstract data. The symbols used are listed in Table 4.1.

Table 4.1: Notation of the abstract data

Symbol Meaning

NA Node of type A

pi Property i

Ti Datatype of property i

Φ Function

Φ: (Ti) → TN Transformation function from Ti to TN

NA Ⱶ pi pi is a property of NA

Rx Relationship type

Rx: NA → NB Relationship between node type A and B

This homogeneous representation is used for all refactoring rules as an orientation to

their use. Since they are subdivided in topics, it is easier for the data modeler to find the

37

refactoring which best suits the desired change and to verify the steps and actions required

for its execution.

4.4 Expansion Refactoring

In the category Expansion Refactoring three refactoring rules were included: Split

property of a node, Property becoming a node and Relationship becoming a node. All three

refactoring rules expand the schema and hence the database, but, at the same time, they

improve the data organization.

4.4.1 Split property of a node

This refactoring allows the data modeler to split a property of nodes from a determined

node type into one or more properties (goal). It can be applied when there is a need to

work with fragments of the value of a property (motivation). Therefore, it is required to

split the property to use one part of its value alone. This refactoring is the inverse operation

of Merge properties.

Inputs: Target node type (NA);

 Property to be divided (pj);

 Name and type of the properties to be created (pN and TN);

 Transformation function defining the division rules of the

property: Φ: (Tj) → TN.

Preconditions: A transformation function able to deal with unexpected

values.

Postconditions: All new properties have to be of the same data type. If

necessary, this can be changed later through a refactoring to

change data types of properties;

 The identifications (keys) of the new properties have to be

different from the property selected to be separated.

38

Implementation:

1. Create functions ΦN to separate the property given as input, defining the data type of

the new property and how to proceed when the value of a property cannot be separated.

2. Create a synchronization function ft to run automatically in order to maintain properties

(the old one and the new ones) updated

a. When updating/deleting the split property, or the new ones, the function must be

invoked to copy data from this property to the other ones. Also when inserting new

data through applications using the old/new schema, all the properties have to be

updated.

Steps:

1. Select node type;

2. Select a property (pj) to split;

3. If preconditions are met:

a. Create the required new properties in the node type selected;

4. [Transition] Use the split function Φ to generate and set the value of the new properties

(pN) for all instances of the selected node type;

5. [Transition] Set a date to remove the split property (pj) from the database;

6. [Transition] Remove the old property (pj) and the function ft that synchronizes the

properties

a. If necessary, keep the data from the old properties outside the database

7. If postconditions are true after the execution of all the steps

a. All nodes (instances) from target node type will have their properties pj transformed

in n properties.

Metadata: In Figure 4.4, an example with abstract data is shown, which can also be

explained with the following formulation:

39

Given:

NA

Ⱶ pi: Ti

 pj: Tj

ΦN: (Tj) → TN

Resulting Schema:

NA

Ⱶ pi: Ti,

 pk: Tk | new

 …

 pN: TN | new

A property pj from a node type NA is selected to be split into other properties. The number

of properties, their name and the rules to divide the selected property will be provided in

the transformation function. After the transformation function is implemented and the

property to be divided is selected, the new properties are added to the target node type and

an initial value to all instances is set through the synchronization function. After all the

values are set and the old property is not used anymore, it can be deleted from the database

resulting in the desired schema.

Figure 4.4: Abstract example of refactoring Split property

In the original schema of Figure 4.5, the property customer’s name was storing the full

name of the customer. Because of a user requirement, it was necessary to work with the

middle and the last name of the customers and having this information in distinct properties

could facilitate the querying information of nodes from this node type.

The refactoring creates new properties with the required values and removes the old

property containing the complete value.

40

Figure 4.5: Refactoring Split property on metadata

Example: Figure 4.6 shows a practical application of the refactoring split property. In this

case, three new properties were created separating the value of the property custName,

which was storing the full name of the customer.

Figure 4.6: Refactoring Split property applied to an instance

Application: Change the references to the old property to the new properties. Applications

have to remove code they were using before the refactoring.

Additional Notes: It is important to think about the treatment of unexpected data, which

cannot be split using the transformation function; and how to proceed in the case that

different instances have completely different values, becoming hard to set a unique way to

separate the values and create the new properties.

The reverse refactoring of Split property is the Merge properties.

41

4.4.2 Property becoming a node

This refactoring allows replacing a property with a new node of a chosen type (goal).

The purpose of this expansion refactoring is to increase the details of a property, turning it

into a node (motivation). The metadata structure is modified evolving the property to a

node, allowing it to have its own properties. Other parameters are:

Inputs: Target node type (NA);

 Property to be transformed into a node (pk);

 Relationship type between target node type and new node

type (Rx);

 Name of the new node type [optional] (the key of the

property can be used as the name if a new name is not

provided);

 Name of the property of the new node type [optional].

Preconditions: The name of the new node type has to be different from the

existing node types.

Postconditions: All nodes of the node type created have a relationship with a

node from the same type of the one containing the

transformed property.

Implementation:

1. Create two synchronization functions f1 and f2 to run automatically in order to maintain

properties updated (the one from the selected node type and the one from the recent

created node type).

a. In any of the events update, insert or delete occurring in the new node type or in its

property, the property selected to be transformed also has to change and the other

way around. Each node type will have its own synchronization function.

Steps:

1. Select node type (NA);

42

2. Select pk to be transformed into a node of a chosen type;

3. Provide a new relationship type (RX) or select an existing one;

4. If desired, provide name of the new node type and the name of its property;

5. Evaluate preconditions;

6. [Transition] If preconditions are met:

a. Create a new relationship type RX (if required);

b. Create a new node type

c. Create a connection between the selected node and the created node through the

relationship type RX.

7. [Transition] Create instances of the new node type and relationship between the

instances of the new node type and the selected node type for each instance of the

selected node type;

8. [Transition] Use the refactoring move properties to move the property selected to be

transformed (pk) to the new node type (Nk), changing its name later if required;

9. [Transition] Use the synchronization functions f1 and f2 to maintain properties updated;

10. [Transition] Set a date to remove the selected property(pk) from the database

11. [Transition] Remove the selected property(pk) and the function ft that synchronizes the

selected property with the property of the new node type;

12. If postconditions are true after the execution of all the steps

a. All nodes (instances) from the selected node type will have the selected property

transformed into a new node type.

Metadata:

In Figure 4.7, an example with abstract data is shown, which can also be explained with the

following formulation:

Given:

NA

Ⱶ pi: Ti,

 pj: Tj,

 pk: Tk

Resulting Schema:

NA

Ⱶ pi: Ti,

 pj: Tj

Nk | new

Ⱶ pk: Tk | copy

RX: NA → Nk | new

43

As explained before in the steps, a new relationship type and a new node type are created.

The new relationship will connect the target node type to the new node type and the

property selected to become a node type will be moved to the new node type. The new node

type, relationship type and property will be named according to the data modeler input or

will remain the same as the old ones when it is possible. After all the steps are completed,

the selected property will be removed and transformed into a new node type.

Figure 4.7: Abstract example of refactoring Property becoming a node

In the schema of Figure 4.8, there is a new user requirement to add more information to the

property location of the node type Wedding. The data modeler decides then to create a new

node type using the value of the property location. This refactoring would also be useful in

order to normalize the database and avoid duplicated data if many nodes were using the

same location. In this case, after the refactoring is completed, duplicate data should be

removed from the database and their relationships moved to the same node. The

performance should be evaluated before trying to normalize a graph database because it can

bring future scalability problems.

44

Figure 4.8: Refactoring Property becoming a node on metadata

Example: The data example in Figure 4.9 shows a different schema from Figure 4.8. The

property selected to be transformed is the address property of the node type Customer. The

value of this property can contain different values and after finishing this refactoring, it is

interesting to apply the refactoring split property.

Figure 4.9: Refactoring Property becoming a node applied to an instance

Application: Applications have to change in order to work with the new node type instead

of the old property.

Additional Notes: A special case is if the property transformed stores complex or some kind

of structured data, like XML. In these cases, after this refactoring, it is important to apply

the refactoring split property to the new node in order to create more properties and make it

easier to query the data, add more detail or make the new properties non-nullable. The

45

refactoring split properties can only be applied after this refactoring is completed, because,

as explained in the beginning of this chapter, two refactorings cannot occur at the same

time to ensure the consistency of the operations.

In the beginning of this chapter it was said that all refactorings involving creation of nodes,

should also include the creation of a specific id. If the data modeler decides it before the

creation of the instances, then the surrogate key can be easily introduced together with this

refactoring. It can also be done later with the refactoring introduce surrogate key which is

not included in this catalog because it is very similar to the similarly named refactoring for

relational databases.

4.4.3 Relationship becoming a node

This refactoring allows transforming all connections of a relationship type in instances

of a node type, keeping the existent connections and moving the properties of the

relationship type to the node type (goal). It can be required before adding more details and

connections to a relationship (motivation).

Inputs: Relationship type (RX) to be transformed;

 Name of the new node type (NX);

 Name of the first new relationship type (RY);

 Name of the second new relationship type (RZ).

Preconditions: A valid relationship type selected.

 All instances of the selected relationship type can be

modified.

Postconditions: Properties of the new node type have to be the same as the

properties of the transformed relationship type;

 Direction of the new relationships (RY and RZ) should be the

same in all instances;

46

Implementation:

1. Create synchronization functions ft to run automatically, in order to:

a. maintain the properties updated (properties from the relationship and properties of

the new node type);

b. maintain data updated, so if a relationship is removed from an instance of the

database, the corresponding new node type and its relationships should also be

removed and the other way around.

The function should be invoked in the case of any event update, insert or delete and

also when insert new data through applications.

Steps:

1. Select a relationship type (RX);

2. Provide the required inputs (name of the new node type and its new relationships (NX,

RY and RZ));

3. Evaluate preconditions;

4. If preconditions are met:

a. The new node will be connected to the nodes it was connecting before through

relationships of types RY and RZ. If these relationship types do not exist in the

database, create them using the input data;

b. Create the new node type that will replace the relationship.

5. [Transition] Create the new nodes and relationships in all instances;

6. [Transition] Use the refactoring move properties to move properties from the

relationship to the new node type;

7. [Transition] Enable the synchronization functions;

8. [Transition] Set a date to remove the old relationship type and its instances from the

database;

9. [Transition] Remove the old relationship type and the synchronization functions;

10. If postconditions are true after the execution of all the steps

a. Resulting schema will contain a new node type and two new relationship types

connecting them instead of the selected relationship type and all data in the database

will be modified to meet the resulting schema.

47

Metadata:

In Figure 4.10, an example with abstract data is shown, which can also be explained with

the following formulation:

Given:

NA

NB

RX: NA → NB

Ⱶ pi: Ti,

 pj: Tj

Resulting Schema:

NA

NB

NX | new

Ⱶ pi: Ti, | copy

 pj: Tj | copy

RY: NA → NX | new

RZ: NX → NB | new

A relationship type (RX) is selected and, using the input parameters, new node types and

relationship types are created. After the refactoring, the resulting schema will have the new

node type, new relationship types and the properties moved from the old relationship to the

new node type.

Figure 4.10: Abstract example of refactoring Relationship becoming a node

In the metadata example from Figure 4.11, there is a need to add connections to the

relationship married. The refactoring creates a new node type Wedding, with an incoming

and an outgoing relationship. The properties of the relationship become properties of the

node created. After this refactoring, it is possible to create associations from the new node

to other nodes (see for instance the data example in the additional notes).

48

Figure 4.11: Refactoring Relationship becoming a node on metadata

Example: Figure 4.12 shows how this refactoring would change the data from the graph

database.

Figure 4.12: Refactoring Relationship becoming a node applied to an instance

Application: All references to the old relationship should be analyzed and the required

modifications should be done to use the nodes from the new node type instead of the old

relationship types.

Additional Notes: After the Refactoring more properties and connections can be added to

the new schema, as in the example of Figure 4.11, a connection with guests that attended

the wedding could be created increasing the level of detail of this node type.

4.5 Reduction Refactoring

The category Reduction Refactoring is a subdivision of the Structural Refactoring, as

the Expansion Refactoring. Three rules are listed in this section, with their importance

49

recognized because of the changes made in the nodes and properties of the graph database

schema to improve its structure.

4.5.1 Merge properties of a node

This refactoring allows the data modeler to merge properties of a single node type into a

new property (goal). During the evolution of Graph Database, different data modelers may

have added identical properties with different names because the schema is not available or

two or more properties may contain additional information and their usage is for the same

purpose (motivation). The cases that do not require different properties motivate the merge

properties refactoring.

Inputs: Target node type (NA);

 Properties to be merged (pj and pk);

 Name and type of the property to be created (pl and Tl);

 Transformation function to create the new property: Φ: (Tj,

Tk) → Tl.

Preconditions: Properties (pj and pk) have to be in the same node type;

 Properties (pj and pk) have to be from the same data type

(Tj==Tk) or the transformation function should transform

them;

 The identification (key) of the new property (pk) has to be

different from the other properties selected to be merged.

 Two properties have to be indicated to the transformation

function in each operation.

Postconditions: Properties pj and pk are removed from the database.

Implementation:

1. Create a function Φ to merge the properties

b. The merge function will tell how the properties will be merged, including the

direction of the merge and the resulting data type.

50

2. Create a synchronization function ft to run automatically in order to maintain properties

(the old ones and the new one – pj, pk and pl) updated

c. When updating/deleting one merged property the function must be invoked to copy

data from this property to the old properties and also the other way around. Besides

that, when inserting new data trough applications using the old/new schema, all the

properties have to be updated.

Steps:

1. Select nodes of node type NA;

2. Select pj and pk;

3. Provide name (key) and the data type of pl;

4. Evaluate preconditions;

5. If preconditions are met:

a. Include the new property (pl) in the node type provided as input

6. [Transition] Use the merge function Φ to generate and set the value of the new

property (pl) to all instances of the selected node type

7. [Transition] Set a date to remove the merged properties(pj and pk) from the database

8. [Transition] Remove the old properties(pj and pk) and the function ft that synchronizes

the properties

a. If necessary, keep the data from the old properties outside the database

9. If postconditions are true after the execution of all the steps

a. All nodes (instances) from target node type will have their properties pj and pk

merged in the property pl.

Metadata:

In Figure 4.13, an example with abstract data is shown, which can also be explained with

the following formulation:

51

Given:

NA

Ⱶ pi: Ti,

 pj: Tj,

 pk: Tk

Φ: (Tj, Tk) → Tl

Resulting Schema:

NA

Ⱶ pi: Ti,

 pl: Tl | new

First, a new property pl is added to the target node type. Then, the transformation function

is used to set values for this new property and a drop date is set for the old properties. The

resulting schema will contain only the merged property.

Figure 4.13: Abstract example of Merge properties refactoring

Figure 4.14: Merge properties refactoring on metadata

In the original schema of Figure 4.14, the customer’s phone number is stored using three

different properties, but phoneAreaCode and phoneLocal are always used together. The

resulting schema will then contain only one property containing the information of both old

properties because, since they are always used together, there is no reason to keep both

properties separate. The refactoring included a new property during the transition period

52

called phoneNumber which is created through the transformation function and in this case

is the concatenation of the two old properties and, after the new property is updated, the old

ones are removed.

Example: The data example shows a practical application of the merge properties

refactoring. In this case, two strings were concatenated in an order determined by the merge

function, resulting in the final property phoneNumber.

Figure 4.15: Merge properties refactoring applied to an instance

Application: Change the references to the old property to the new property. Applications

have to remove code they were using before the refactoring for merging properties.

Additional Notes: Before starting this refactoring, it is important to verify if it is necessary

to preserve the properties separated for future use. After the merge of the properties, it can

be difficult to separate the data. Still, if it is necessary to separate the data, it is possible to

use the reverse refactoring Split property.

4.5.2 Delete a property of a node

This refactoring allows removing a property from an existing node type (goal). After

some evolutions, a database may contain properties that are not used anymore. In this

situation it is important to remove properties of the corresponding node type for cleanness

of the model and to avoid inappropriate use (motivation). It is necessary to decide what to

do with the existent data before removing the property.

53

Inputs: Target node type (NA);

 Property to be deleted (pj);

Preconditions: Property is not being used to calculate other properties in the

database.

Postconditions: Property removed from database without being used by any

application.

Implementation: There is no need to create support code for this refactoring.

Steps:

1. Select target node type (NA);

2. Select a property(pj) to be removed;

3. [Transition] Set a date to remove the selected property (pj);

4. [Transition] Check if the property is being used in any other place before the removal

(index, functions, calculated properties, …) and, if it is, stop the refactoring;

5. [Transition] Remove the selected property (pj);

a. If necessary, keep the data from the removed properties outside the database

6. If postconditions are true after the execution of all the steps

a. All nodes (instances) from target node type will not have the selected property (pj)

anymore.

Metadata:

In Figure 4.16, an example with abstract data is shown, which can also be explained with

the following formulation:

Given:

NA

Ⱶ pi: Ti,

 pj: Tj

Resulting Schema:

NA

Ⱶ pi: Ti

54

A property pj is selected to be removed from the target node type NA. During the transition

period a date to remove this property is set and all required changes are made. After the

refactoring, the selected property is removed from the schema of the target node type.

Figure 4.16: Abstract example of refactoring Delete a property of a node

Figure 4.17: Refactoring Delete a property of a node on metadata

In the metadata of Figure 4.17, the original schema has a property custTitle that is not used

anymore. During the transition period, the drop date will be set and developers will be

alerted about this change, but the property will still exist in the database. Before the final

removal, it is useful to rename the property in order to test if the applications will keep

running after the deletion. After the refactoring, the resulting schema will be clean without

the unused property custTitle.

Example: The data example in Figure 4.18 shows a practical application of the refactoring

delete a property from a node. The property that was not used anymore was removed from

all instance nodes after the refactoring.

55

Figure 4.18: Refactoring Delete a property of a node applied to an instance

Application: Remove all the references to the removed property on the applications.

Additional Notes: A very similar refactoring can be derived from this refactoring: delete a

property of a relationship type.

4.5.3 Merge Nodes

This refactoring allows the contraction of two node types intimately connected (goal).

Two node types are so intimately connected that they could be represented together as

another node type, with a distinct name (motivation).

Inputs: Target nodes type (NA and NB);

 New node type (NAB);

 Existent relationships in the merged nodes that will be kept

in the new node (by standard all the relationships will be

kept, but the user should be able to select which ones he

wants to keep).

Preconditions: Nodes have to be intimately connected (minimum and

maximum multiplicities 1:1)

Postconditions: New node type (NAB) containing all properties existent in the

merged nodes;

 Nodes of the merged node types do not exist in the database.

56

Implementation:

1. Create a function Φ to create the new node type, moving the properties from the old

node types and changing their names before adding them to the new node, when

required;

2. Create synchronization functions ft to run automatically in order to maintain properties

(belonging to the old node types and the new one) updated

a. When update/delete/insert a property in the new or the old node types, a function

must be invoked to copy data from one property to another. Also when inserting

new data trough applications using old/new schema, all the properties have to be

updated.

Steps:

1. Select nodes type (NA and NB) to merge;

2. If preconditions are met:

3. [Transition] Create a new node type (NAB) that will be the resulting node;

4. [Transition] Move properties of both nodes selected to be merged to the new node,

using the function Φ to treat properties;

5. [Transition] Move all the relationships or the ones selected by the user from the old

nodes to the new node;

6. [Transition] Support code to maintain new and old schema updated

7. [Transition] Set a date to remove the old nodes from the database;

8. [Transition] Remove the old nodes and the functions ft that synchronizes it

9. If postconditions are true after the execution of all the steps

a. All nodes (instances) from selected node types will be merged into a new node type.

Metadata: In Figure 4.19, an example with abstract data is shown, which can also be

explained with the following formulation:

57

Given:

NA

Ⱶ pi: Ti

NB

Ⱶ pj: Tj

RX: NA → NB

Ⱶ pk: Tk

Resulting Schema:

NAB | new

Ⱶ pi: Ti, | copy

 pj: Tj , | copy

 pk: Tk | copy

A node type NA and one node type NB connected by a relationship RX are selected to be

merged into a new node type. The properties of both nodes and of the relationship between

them will be copied to the new node type NAB. There will be a function to treat properties

which have the same key and synchronization functions to maintain the old and the new

schema updated. Unless the user specifies it different, all connections from the merged

nodes will be moved to the new node (NAB). After the new node type is created and all

instances of the selected node type are changed, a date to drop the merged nodes will be set

and the old schema can later be removed from the database. Figure 4.20 shows how this

refactoring would be applied to the schema. Customer and Account are intimately

connected and could be merged into the same node type.

Figure 4.19: Abstract example of refactoring Merge nodes

58

Figure 4.20: Refactoring Merge Nodes on metadata

Example: In the example, it is not necessary to have two different nodes to store the data

from a user. The instances of node type Customer could be merged with instances of node

type Account into a new instance of node type User. All nodes customer connected to

account through a relationship has will be transformed in a node of node type user.

Figure 4.21 shows an example of this refactoring, where the relationship existent between

the merged node Customer and the node Store was copied to the nodes of type User. The

relationship type has between the merged nodes do not have to be maintained.

Before starting the refactoring, it is necessary to evaluate and ensure that the old

information will not be required again, since the details of the old schema will be lost after

this refactoring.

Figure 4.21: Refactoring Merge Nodes applied to an instance

59

Additional Notes: If nodes selected to be merged contains the same properties, the

transformation function will rename those properties even if their information are not

valuable anymore. After this refactoring, it is important to evaluate the properties copied

and apply the refactorings merge properties or delete properties if necessary.

4.6 Improvement Refactoring

Improvement Refactorings improve the logic of the database. In this category the rules

bring small changes to the database schema that can improve query performance and its

results. The refactoring rules presented here are: Introduce calculated property, Shorten

path, Invert direction of a relationship and Move a property of a node to another node.

4.6.1 Introduce calculated property

This refactoring introduces a new property based on calculations involving data of one

or more node types (goal). There are cases in which applications make calculations based

on values from the database each time it queries the data. In this case, the calculation is

repeated in each query. This refactoring unifies the calculation formula to all applications

and avoids repetition of calculation (motivation). This improves the application

performance by providing prepopulated values for a given property derived from other

properties.

Inputs: Target node type (NA);

 Name and type of the property to be created (pCALC and

TCALC);

 Properties used to calculate the value of pCALC;

 Transformation function to create the new property, given

the properties that will be used: Φ: (TN) → TCALC.

Preconditions: Properties selected to calculate the value of the property

have to belong to the target node type or to a node type that

60

has a relationship with the target node type.

Postconditions: Calculated property has to be set according to the selected

properties for the calculation;

 The identification (key) of the new property (pCALC) has to

be different from the other properties in the target node.

Implementation:

1. There is no need to create the function to create the calculated property because this

function will be given as an input, but a function to keep the calculated property

updated is required, which should be invoked for any event update, insert or delete

occurring in the properties used to calculate pCALC.

Steps:

1. Select target node type;

2. Select properties used to make the calculations;

3. Provide name(key) and the data type of pCALC;

4. Evaluate preconditions;

5. If preconditions are met:

a. Include the new property (pCALC) in the target node type provided as input and in all

instances of this type.

6. [Transition] Use the transformation function Φ to generate and set the values of the

new calculated property (pCALC) to all instances of the selected node type;

a. The calculate function will keep active in the database, being used as batch process

or as an automatic function triggered by an event.

7. If postconditions are true after the execution of all the steps

a. All nodes (instances) from target node type will have a new calculated property

pCALC.

Metadata:

In Figure 4.22, an example with abstract data is shown, which can also be explained with

the following formulation:

61

Given:

NA

Ⱶ pk: Tk,

 Pl: Tl

[NB]

Ⱶ pi: Ti,

 pj: Tj

Φ: (TN) → TCALC

Resulting Schema:

NA

Ⱶ pk: Tk,

 pl: Tl,

 PCALC: TCALC | new

[NB]

Ⱶ pi: Ti,

 pj: Tj

A new property pCALC is added to the target node type and calculated according to the

transformation function Φ. In the abstract example, NB is optional because the calculated

property can be computed using only properties from the same node type. A process to

keep the calculated property updated has to be defined, for example, using the calculate

function any time one of the properties used for the calculation is updated. The resulting

schema will contain the calculated property.

Figure 4.22: Abstract example of refactoring Introduce Calculated Property

62

Figure 4.23: Refactoring Introduce Calculated Property on metadata

In the example, a customer can have many accounts and, before applying the refactoring,

the applications would have to find his accounts and calculate the balance sum of all of

them. After the refactoring and an automatic function to update the totalAccountBalance,

the applications only have to query this new property.

The transition period it is only necessary to announce the changes to the users of this

database, and it is when the new property is added to the nodes of a node type in order to

store the calculation result and the code to update new properties (batch or trigger) is used.

Example: The data example in Figure 4.24 shows a customer that has more than one

account. In order to calculate his totalAccountBalance the calculate function has to query

all his accounts and sum the balance in all of them. After the refactoring, all nodes of this

node type will have a new calculated property.

Figure 4.24: Refactoring Introduce Calculated Property applied to an instance

63

Application: Remove from the application methods that calculate the value before the

refactoring. Instead, applications have to query the new calculated property.

Additional Notes: The transformation function Φ that calculates the value of the calculated

property received as input can be used in two different ways: batch process that will

calculate the property to all nodes or as an automatic function that calculates the value of

the property after a determined event, such as an update.

4.6.2 Move property of a node (to a relationship or to another node)

This refactoring allows the migration of a property from a specified node type to a node

from another type or to a relationship (goal). The creation of a new node type due to a

database evolution can require the migration of a property from an old node type to a new

one. This refactoring makes this reorganization allowing the new nodes to add properties

containing coherent value (motivation).

Inputs: Property to be moved (pi);

 Node type (NA) that contains the property;

 Node type (NB) or Relationship type (RX) that will receive

the property.

Preconditions: -

Postconditions: Property pi from NB (moved property) has to be from the

same data type and store the same value than property pi

from NA (original property);

 Moved property should not be similar to other properties of

the new node type it belongs;

 The identification (key) of the moved property (pi) has to be

different from the other properties belonging to the new

node type.

64

Implementation:

1. Create a synchronization function ft to run automatically in order to maintain properties

(the one in the old node type and the moved ones) updated.

a. The function should run automatically for any event update/insert/delete occurring

in the property at its old or new location maintaining both properties updated with

the same value.

Steps:

1. Select target node type (NA);

2. Select a property(pi) to be moved;

3. Select node type (NB) or relationship type (RX) to where the property (pi) will be

moved;

4. Evaluate preconditions;

5. If preconditions are met:

a. Create a new property (pi) in the selected node/relationship type(NB/RX);

b. The new property will have the same name of the selected property. If the new

location already contains a property with the same name, a prefix or a suffix can be

added (e.g.: “pi_1”) and the name can be changed afterwards;

c. It is also important try to find properties used together or similar ones and consider

applying the refactoring merge properties after the current refactoring.

6. [Transition] Update the property at the new location with the existent data of the old

location (it can be done applying the synchronization function ft manually to all nodes);

7. [Transition] Enable the synchronization function ft;

8. [Transition] Set a date to remove the moved property (pi) from the old location in the

schema and all instances;

9. [Transition] Remove the old property(pA) and the synchronization function ft;

10. If postconditions are true after the execution of all the steps

a. All properties in the old location will be moved to the new locations.

65

Metadata:

In Figure 4.25, an example with abstract data is shown. The property pk is selected to be

moved from node NA to NB, which can also be explained with the following formulation:

Given:

NA

Ⱶ pi: Ti,

 pj: Tj,

 pk: Tk

NB

Ⱶ pl: Tl,

 pm: Tm

Resulting Schema:

NA

Ⱶ pi: Ti,

 pj: Tj,

NB

Ⱶ pl: Tl,

 pm: Tm

 pk: Tk | copy

The selected property (pk) is created at the new location and removed from the old one. The

examples are showing only properties moving from one node type to another node type, but

properties can move between relationships and also from nodes to relationships.

Figure 4.25: Abstract example of refactoring Move property of a node

In the metadata example of Figure 4.26, the property balance was stored in the node

type Customer, but for some reason, for example, a change in the database that allows a

customer to have multiple accounts, the property balance should be moved to the node type

account. In order to keep both properties updated, synchronization functions that run

automatically according to some event have to be developed and applied to both node

66

types. The refactoring will be complete after the removal of the old property and the

support code.

Figure 4.26: Refactoring Move property of a node on metadata

Example: The node Customer in Figure 4.27 was storing the balance of a customer before

the refactoring. After the change in the database allowing a customer to have more than one

account, the property balance had to be moved to the node type Account, since a customer

can have a different balance in each account. During the transition period, the properties

exist in both locations; and, after the refactoring, all the nodes of node type Account will

have the property balance.

Figure 4.27: Refactoring Move property of a node applied to an instance

Application: All references to the property in the old node type have to be modified to refer

to the node type that the property currently is.

67

Additional Notes: To remove the property of the old location, the refactoring delete

property of a node type can be used to ensure that the property is not being used in any

other location and avoid future problems. Again, if there is a similar property to the one

moved at the new location, the refactoring Merge Properties has to be considered. The data

modeler should recognize if the semantic of the property will be the same after moving the

node before applying the refactoring.

4.6.3 Invert Direction of a relationship

The goal of this Refactoring is to switch the origin (initial point) and the destiny point

of a selected edge, removing an old relationship type and create a new one with the same

properties and connections, but with inverted direction (goal). A relationship direction can

be wrong in the schema of a database, causing an error of consistency or a change in the

business rules can happen. Both cases would require the inversion of the relationship

direction (motivation).

Inputs: Relationship type (RX);

 Properties of the relationship type that will be kept in the

new direction (the user selects which ones will be kept).

Preconditions: The direction of the relationship type (RX) has to be

previously defined.

Postconditions: -

Implementation:

1. Create a synchronization function ft to run automatically in order to maintain properties

of both relationships updated after any insert/update event. It is also important to think

about what to do if the old relationship is deleted from the database: delete or keep the

relationship type with the new direction.

Steps:

1. Select a relationship type (RX);

68

2. Evaluate the preconditions;

3. [Transition] Create a new relationship type (RY) with the same properties and

connections of the relationship type selected in 1, but with inverted direction.

4. [Transition] For every relationship of type RX create a new connection of type RY

connecting the same old nodes;

5. [Transition] Use the refactoring move properties to move properties from old

relationships to the new ones according to the input data;

6. [Transition] Mark all relationships of type RX to be removed from the database.

7. Remove the relationships of type RX.

8. If postconditions are true after the execution of all the steps

b. All nodes that were connected by the relationship RX will be then connected by the

relationship RY in the inverse direction.

Metadata:

Figure 4.28 shows an example with abstract data, which can also be explained with the

following formulation:

Given:

NA

Ⱶ pi: Ti, …

NB

Ⱶ pj: Tj, …

RX: NA → NB

Ⱶ pk: Tk, …

Resulting Schema:

NA

Ⱶ pi: Ti, …

NB

Ⱶ pj: Tj, …

RY: NB → NA | new

Ⱶ pk: Tk, … | copy

A new relationship type is created based on the relationship type selected to be inverted,

with the same properties and connecting the same nodes, but with an inverted direction.

After creating the new relationship to all required nodes, the relationship with the old

direction can be removed.

69

Figure 4.28: Abstract example of refactoring Invert Direction of a Relationship

In the example of Figure 4.29, there is a relationship type likes connecting a Customer to a

Product. However the direction of the edge shows that the product is the one who likes the

customer. Using this refactoring, it is possible to invert the direction of the arc and thus, the

relationship type likes would have the origin in Customer instead of Product.

Figure 4.29: Refactoring Invert Direction of a Relationship on metadata

Example: The instances of the database would have exactly the same change from Figure

4.29.

Application: Applications working with this relationship should be reviewed and, if

required, change to use the new schema.

70

Additional Notes: Old queries should be reviewed and, if necessary, the direction of their

relationships modified. It is important to verify if this change will not imply in semantic

changes to the database, otherwise, it cannot be applied.

4.6.4 Shorten Path

The goal of this refactoring is to create an edge (relationship) between two nodes, based

on other relationships, in order to reduce the path between them (goal). It reinforces the

data quality because the refactoring will allow multiple paths between two nodes and make

some queries easier (motivation).

Inputs: Origin and Destiny Nodes (NC and NB);

 Path between two nodes that can be provided as query

containing the desired nodes and relationships between

them;

 A Relationship type (RZ) used to reduce the path;

 Its direction and which nodes it will connect in order to

reduce the path [optional].

Preconditions: The path between origin and destiny nodes should be a valid

path in the database;

 Relationship type RZ should exist in the database;

 The new relationship type (RZ) should be different from the

others described in the matched pattern.

Postconditions: Valid relationship between two nodes reducing the path and

improving the quality of the database.

Implementation: There is no need to create support code for this refactoring.

71

Steps:

1. Select the relationship type provided as input or, if it does not exist, include the new

relationship type in the database;

2. Query all nodes that meet the specific pattern provided as input;

3. Evaluate preconditions;

4. If preconditions are met:

a. Connect the nodes matching the provided pattern using the relationship type

created/select in step 1;

5. If postconditions are true after the execution of all the steps

a. All nodes (instances) matching the provided pattern will have an extra relationship

in order to reduce the path and improve queries.

Metadata:

In Figure 4.30, an example with abstract data is shown, where a RZ is created between

nodes NC and NB, since they meet a specified pattern. The abstract data can also be

explained with the following formulation:

Given:

NA

NB

NC

RX: NC → NA

RY: NA → NB

Resulting Schema:

NA

NB

NC

RX: NC → NA

RY: NA → NB

RZ: NC → NB | new

The example in Figure 4.31 has three nodes of type person connected by two relationships

is_parent. The path between two nodes could be shortened and instead of querying data

using the middle node, a new connection could be added skipping it.

72

Figure 4.30: Abstract example of refactoring Shorten Path

In this example the two relationships are the same, but there are cases where the pattern

will involve different relationships and the new relationship will be created based on them.

For example a customer that rates a restaurant located inside a hotel can have a connection

saying that he had been to this hotel shortening the path between the nodes hotel and

customer. There is no need of a transition period because the only change will be the new

relationship between two node types.

Through this refactoring, the connection between the two nodes is reinforced.

Figure 4.31: Refactoring Shorten Path on metadata

Example: The data example in Figure 4.32 shows a practical application of the refactoring

shorten path.

73

Figure 4.32: Refactoring Shorten Path applied to an instance

Application: The application can replace the queries meeting the pattern to retrieve the data

using the new relationship.

Additional Notes: -

4.7 Data Quality Refactoring

In the data quality refactoring only two refactorings were introduced. Since this

category aims to ensures the consistency and usage of the values stored within the database,

the rules of this section make use of metadata nullable and default, to increase the number

of rules in this category, new metadata, such as unique, should be introduced.

4.7.1 Introduce Default Values

This refactoring lets the database provide a default value for an existing property of a

node type (goal). There are cases where a property has to exist and null values or values

with no meaning cannot be used. To solve this issue, this refactoring sets a default value for

a property, so it will always have a value (motivation). The default value has to be useful

for all the applications using the database.

74

Inputs: Target node type (NA);

 Property(pi) to be set with the default value;

 Default value.

Preconditions: Default value has to be from the same data type as the

property selected.

Postconditions: Default value should be applied to all corresponding

properties, ensuring there is no property storing null values

or values without meaning

Implementation:

1. Create a function ft to apply the default value to the property when a new node from the

target node type is created.

Steps:

1. Select node type (NA);

2. Select a property(pi);

3. Provide the default value (“value”) for the selected property;

4. Evaluate preconditions;

5. If preconditions are met:

a. Include the constraint default value with the provided value to the selected property

(pi).

6. Update existent nodes of the selected node type in which the property is null or that do

not have this property.

7. Keep the function ft active in the database for later updates;

8. If postconditions are true after the execution of all the steps

a. All nodes (instances) of the target node type will contain a default value for the

selected property and it will never be null.

Metadata:

In Figure 4.33, an example with abstract data is shown, which can also be explained with

the following formulation:

75

Given:

NA

Ⱶ pi: Ti,

 pj: Tj

Resulting Schema:

NA

Ⱶ pi: Ti,

 pj: Tj {default = ‘value’}

Figure 4.33: Abstract example of refactoring Introduce Default Values

The only change in the resulting schema of Figure 4.33 is the creation of a new constraint

containing the default value for the selected property pj.

In the example of Figure 4.34, the node type Customer has a property storing the status of a

customer. After the refactoring, in the case of creating a new node without provide the

value for the property status, the default value ‘Active’ will be applied.

This refactoring does not need a transition period, it is sufficient to alter the metaschema

setting a default value to the property.

Figure 4.34: Refactoring Introduce Default Values on metadata

Example: The original data of Figure 4.35 did not have the status of the customer, after the

refactoring, this node contains a property status with the default value for it.

76

Figure 4.35: Refactoring Introduce Default Values applied to an instance

Application: If an application has code to treat null values, this treatment has to change to

use the default value.

Additional Notes: Not all graph database systems allow setting a default value for a

property and that is the reason an alternative notation, without the need of a constraint, is

used here to show that a property will receive a default value.

4.7.2 Make properties non-nullable

This refactoring changes an existing property such that it does not accept any null

values (goal). The refactoring is used to reinforce a business rule that requires one property

to be non-null or when it is desired to remove the code treating properties which were not

provided by the application (motivation). It can be applied to properties of a node or of a

relationship type.

Inputs: Target node type (NA);

 Property(pj) to be set as not null.

Preconditions: -

Postconditions: Selected property cannot be null in all nodes in the database.

Implementation: -

Steps:

1. Select target node type (NA);

77

2. Select a property(pj);

3. Update all existing nodes of the selected node type that does not have this property to a

valid value using a determined value or the refactoring introduce default value

4. Include the constraint not null to the select property;

5. If postconditions are true after the execution of all the steps:

a. All nodes (instances) belonging to the target node type will contain the non nullable

property.

Metadata:

In Figure 4.36, an example with abstract data is shown, which can also be explained with

the following formulation:

Given:

NA

Ⱶ pi: Ti,

 pj: Tj

Resulting Schema:

NA

Ⱶ pi: Ti,

 pj: Tj {not null}

The only change in the resulting schema of Figure 4.34 is the creation of a not null

constraint for the selected property pj.

Figure 4.36: Abstract example of refactoring Make Property non-nullable

Figure 4.37: Refactoring Make Property non-nullable on metadata

78

Before the refactoring, some applications could insert a customer without providing the

status value. After the refactoring, the property status has a constraint not null, requiring

this information from all applications.

To perform this refactoring it is necessary to add some kind of constraint to the property

nullable in the optional schema and set it as not null. Then, whenever an application inserts

or updates a node/relationship containing a non-nullabe property, the value of this property

should be provided. One useful technique is to assign a default value using the refactoring:

introduce default values to all properties that became non-nullable.

Example: The data example in Figure 4.38 shows a node that did not have the property

status before the refactoring, since it was not required. After the refactoring to make the

property non-nullable, the property status was added to all the instances of the node type

Customer storing the default value provided before.

Figure 4.38: Refactoring Make Property non-nullable applied to an instance

Application: Applications should also provide a valid value for this property because after

this refactoring, the property will have to exist and cannot contain null values.

Additional Notes: Not all graph databases allow setting a property as non-nullable and that

is the reason why an alternative notation, without the need of a constraint, is used here to

show that a property cannot be null.

79

4.8 Final Considerations

This chapter brought a catalog of refactoring rules for graph databases. An overview of

the refactoring rules created is showed in Table 4.2.

Table 4.2: List of Refactoring Rules

Expansion Refactoring Improvement Refactoring

Split property of a node

Property becoming a node

Relationship becoming a node

Introduce calculated property

Move property of a node

Invert Direction of a relationship

Shorten Path

Reduction Refactoring Data Quality Refactoring

Merge properties of a node

Delete a properties of a node

Merge Nodes

Introduce Default Values

Make properties non-nullable

The refactorings were developed to be as simple as possible and, if there is a

complicated case that does not meet the preconditions of a refactoring and you still want to

apply the refactoring, other refactorings have to be applied to resolve and simplify the

cases.

In very complex cases or cases with high coupling, it is not recommended to apply a

refactoring and that is the reason why some situations were not covered in this document.

In cases extremely complex the refactoring should be prevented.

Although a formal implementation to validate the rules was not executed, the rules can

be useful for data modelers looking for an initial orientation on how to evolve a graph

database which uses the optional schema. Furthermore, the creation of a catalog with best

practices encourages the growing of this catalog with new rules.

80

5. CONCLUSION

This work provides support for applying refactoring rules in graph database enabling an

organized evolution of the graph database. The rules can be useful for data modelers

looking for a primary orientation on how to evolve a graph database using an optional

schema without compromising the flexibility of it and enabling an organized evolution of

graph databases. The rules created are generic and can be adapted to any graph database.

In past works of the group (FONSECA & CAMOLESI Jr., 2015) similar results were

presented, which included the specification guideline, the classification of the refactoring

rules and initial refactoring rules examples. This line of research is still new and the catalog

does not end with the rules listed here. The refactoring rules set has some operations, but

new operations can emerge considering that graph database management systems are still

being improved and new rules can become interesting for the new versions that will be

released soon.

5.1 Future Work

The work presented in this document could be extended with the development of a

refactoring tool applied to existent engines which would allow a user to recognize the

existent metadata in a database, make changes in the metadata and refactor the data linked

to it.

Another activity would be to grow the catalog, adding new refactoring rules and

improving the description of the refactoring’s execution process, already listed in this

document, based on user experiences. For the creation of the new rules, the researchers can

make use of the specification guideline developed in this work. They also have to ensure

that the new refactoring rules do not subvert the integrity and consistency of the current

refactoring rules.

81

REFERENCES

AKRAWI, A. Social Network System Design. Dissertation. Royal Institute of

Technology. Stockholm, Sweden. 2010.

AMBLER, S. W. & SADALAGE, J. Refactoring databases: Evolutionary database

design. Addison-Wesley Professional. 1st Edition. 2007.

ANGLES, R. A Comparison of Current Graph Database Models. In 28th IEEE

International Conference on Data Engineering Workshop (ICDEW), pages 171-177.

2012.

BRUHN, D. Comparison of Distribution Technologies in Different NoSQL Database

Systems. Institute of Technology (KIT). Karlsruhe, Germany. 2011.

CHODOROW, K. MongoDB: The Definitive Guide. O'Reilly Media, Inc. 2nd Edition.

2013.

DATE, C. J. An Introduction to database systems. Pearson/Addison-Wesley. 8th Edition.

2004.

ELMASRI, R.; NAVATHE, S.B. Fundamentals of Database Systems. Addison-Wesley

Publishing Company. 6th edition. 2010.

FOWLER, M. Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional. 1st Edition. 1999.

FONSECA, A. M.; CAMOLESI Jr.; L. Refactoring Rules for Graph Databases. In World

Conference on Information Systems and Technology (WorldCIST’15). /* no prelo*/

GANTZ, J.; REINSEL, D. The digital Universe in 2020: Big Data, bigger digital

shadows, and biggest growth in the far east. IDC iView. 2012. Available at:

http://idcdocserv.com/1414. Last Access: 10 may 2014.

HAN, J.; HAIHONG, E.; LE G.; DU J. Survey on NoSQL database. In 6th IEEE

International Conference on Pervasive Computing and Applications (ICPCA), pages

363-366. 2011.

http://www.google.com.br/search?tbo=p&tbm=bks&q=inauthor:%22Kristina+Chodorow%22
http://idcdocserv.com/1414

82

LAKSHMAN, A.; MALIK, P. Cassandra - A Decentralized Structured Storage System.

In ACM SIGOPS Operating Systems Review, pages 35-40. 2010.

LÓSCIO, B. F.; OLIVEIRA, H. R. NoSQL no desenvolvimento de aplicações Web

colaborativas. In VIII Simpósio Brasileiro de Sistemas Colaborativos. 2011.

MONGODB. Available at: http://www.mongodb.org/display/DOCS/Home. Last Access:

10 may 2014.

NEO4J. Neo4j: The World’s Leading Graph Database. Available at: http://neo4j.org/.

Last Access: 15 dec 2014.

OREND, K. Analysis and Classification of NoSQL Databases and Evaluation of their

Ability to Replace an Object-relational Persistence Layer. Dissertation. Technische

Universität München, Germany. 2010.

PLUGGE, E.; MEMBREY, P.; HAWKINS. T. The Definitive Guide to MongoDB: The

NoSQL Database for Cloud and Desktop Computing. Apress. 2010.

ROBINSON, I.; WEBBER, J. AND EIFREM, E. Graph Databases. O'Reilly Media. 2013.

RUFLIN, N.; BURKHART, H.; RIZZOTTI, S. Social-data storage-systems. In Databases

and Social Networks. ACM, pages 7-12. 2011.

SADALAGE, P. J.; FOWLER, M. NoSQL Distilled: A Brief Guide to the Emerging

World of Polyglot Persistence. Addison-Wesley Professional. 2012.

STRAUCH, C. NoSQL Databases. Lecture, Selected Topics on Software Technology.

Stuggart Media University. 2011.

TIWARI, S. Professional NoSQL. John Wiley & Son, Inc. 2011.

WARDEN, P. Big Data Glossary. O'Reilly Media, Inc. 2011.

WEBER, S. NoSQL Databases. University of Applied Sciences HTW Chur, Switzerland.

2010.

http://www.mongodb.org/

