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Abstract

SANTOS, Caio Fernando Rodrigues. Simultaneously Diagonal and Minimum Energy High-Order
Bases Appied to Elastic Problems. 2015. 108p. Thesis (Doctoral). School of Mechanical Engineer-
ing, University of Campinas, Campinas.

In this work we present construction procedures of bases for the high-order finite element
method (FEM) considering a procedures for the simultaneous diagonalization of the internal modes
of the one-dimensional mass and stiffness matrices and orthogonalization of the boundary modes
using minimum energy procedure. The concepts of minimum energy orthogonalization are used
efficiently to construct one-dimensional boundary modes orthogonal to the internal modes of the
shape functions. New one-dimensional bases for the high-order FEM are presented for the con-
struction of the simultaneously diagonal and minimum energy basis for the Helmholtz norm. Fur-
thermore, we present a calculation procedure for the 2𝐷 and 3𝐷 mass and stiffness matrices, as
the combination of one-dimensional coefficients of the mass, stiffness and Jacobian matrices. This
procedure is presented for quadrilateral and hexahedral distorted elements in projection, Poisson,
plane state and general linear elasticity problems. The use of the one-dimensional matrices proce-
dure allows a significant speedup compared to the standard procedure for distorted and undistorted
meshes. Also, this procedure stores only one-dimensional shape functions and their derivatives
calculated using one-dimensional integration points, which generates a reduction in memory con-
sumption. The performance of the proposed bases was verified by numerical tests and the results
are compared with those using the standard basis using Jacobi polynomials. Sparsity patterns, con-
dition numbers and number of iterations using the conjugate gradient methods with diagonal pre-
conditioner are also investigated. Furthermore, we investigated the use of the local mass matrix
using simultaneously diagonal and minimum energy bases as preconditioner to solve the system of
equations. The results are compared with the diagonal preconditioner and Symmetric Successive
Over Relaxation (SSOR).

Keywords: Finite Element Method, Minimum Energy Orthogonalization, Simultaneously Diagonal
Matrices.
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Resumo

SANTOS, Caio Fernando Rodrigues. Bases Simultaneamente Diagonais de Mínima Energia de
Alta Ordem Aplicado a Problemas de Elasticidade. 2015. 108p. Tese (Doutorado). Faculdade de
Engenharia Mecânica, Universidade Estadual de Campinas, Campinas.

Nesse trabalho apresentamos os procedimentos de construção de bases para o Método de El-
ementos Finitos (MEF) de alta ordem considerando o procedimento de diagonalização simultânea
dos modos internos da matriz de massa e rigidez unidimensionais e a ortogonalização dos modos
de contorno usando procedimentos de mínima energia. Nesse caso, os conceitos de ortogonaliza-
ção de mínima energia são usados como uma maneira eficiente de se construir modos de contorno
ortogonais aos modos internos das funções de forma 1𝐷. Novas funções de forma unidimensionais
para o MEF de alta ordem são apresentadas para a construção de bases simultaneamente diagonais
de mínima energia para o operador de Helmholtz. Além disso, um procedimento para o cálculo
das matrizes de massa e rigidez 2𝐷 e 3𝐷, como combinação dos coeficientes unidimensionais
das matrizes de massa, rigidez e mista é apresentado para elementos quadrilaterais e hexaédricos
distorcidos em problemas de projeção, Poisson, estado plano e estado geral em problemas de elasti-
cidade linear. O uso de procedimentos via matrizes unidimensionais permite obter um speedup sig-
nificativo em comparação com o procedimento padrão, para malhas distorcidas e não distorcidas.
Com esse procedimento, é possível armazenar apenas as funções de forma unidimensionais e suas
derivadas calculadas nos pontos de integração unidimensionais gerando uma redução no consumo
de memória. O desempenho das bases propostas foi verificado através de testes numéricos e os
resultados comparados com aqueles usando a base padrão com polinômios de Jacobi. Caracterís-
ticas como esparsidade, condicionamento numérico e número de iterações usando o método dos
gradientes conjugados com precondicionador diagonal também são investigados. Além disso, in-
vestigamos o uso da matriz de massa local, utilizando bases simultaneamente diagonais de mínima
energia, como pré-condicionador. Os resultados foram comparados com o uso do precondicionador
diagonal e SSOR (Symmetric Successive Over Relaxation).

Palavras-chave: Método de Elementos Finitos, Ortogonalização de Mínima Energia, Matrizes
Simultaneamente Diagonais.
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1 Introduction

The advance of numerical procedures has provided increasingly realistic and reliable model-
ing. These developments have contributed to make the use of computer simulation techniques a re-
ality in various segments of engineering. In this context, the high-order finite element methods has
emerged as a numerical analysis tool with characteristics as spectral convergence problems with
smooth solution (Karniadakis and Sherwin, 1999). There has been works in several applications
such as computational fluid dynamics (Lomtev et al.; Karniadakis and Sherwin, 1998; 1999), Heat
transfer (Beskok and Warburton, 2001), electromagnetism (Demkowicz and Vardapetyan, 1998),
nonlinear elasticity (Krause et al.; Bittencourt et al.; Dong and Yosibashi, 1995; 2007b; 2009),
seismic imaging (Virieux et al., 2012) among others.

1.1 High-Order Finite Element Methods

The systematic development of the finite element method (FEM) began in the decade of
1960 with the Turner’s work (Turner, 1956), consolidating with the work done by (Clough; Oden;
Clough, 1960; 1987; 2001). The method is based on the domain discretization and the use of poly-
nomial functions for the approximation of the solution. We can distinguish three variants for the
FEM. In ℎ-version (Hughes; Johnson; Oden et al., 1987; 1990; 1981), the convergence of the ap-
proximation is obtained by reducing the size ℎ of mesh elements. In 𝑝-version (Babuska et al.;
Babuska and Suri; Babuska and Suri; Szabó and Babuska, 1981; 1987; 1990; 1991), convergence is
achieved by increasing the polynomial order 𝑃 of the basis functions. This version is also known as
the high-order FEM (𝑝-FEM). There is still a mixed version or ℎ𝑝 combining elements of versions
ℎ and 𝑝.

Generally in the high-order FEM, the choice of the basis functions influences the condition
number and the sparsity pattern of the discretization system. Thus, the closer to a diagonal matrix
is possible to represent the problem, the easier the solution of the initial value problem. In addition,
if the matrix associated with the system of equations is ill-conditioned, rounding and truncation of
operations can lead to very large errors in the solution (Karniadakis and Sherwin, 1999). Note that
high performance is not only related to the use of distributed systems but also the construction of
basis functions that allow the construction of better conditioned and sparser matrices.
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To improve the properties of sparsity and conditioning of the matrix systems, obtained
through interpolation using the high-order FEM, classic hierarchical functions using Legendre
polynomials were used which exploited the tensor nature and orthogonality concepts of func-
tions (Babuska et al., 1981). In this case, the stiffness matrix obtained for structured elements
becomes block diagonal. However, these functions exhibit an exponential increase in the condi-
tion number for unstructured elements with high-order polynomial expansion (Abdul-Rahman and
Kasper, 2007).

The use of hierarchical functions was introduced in (Carnevali et al., 1993) for triangles
and tetrahedra. Moreover, orthogonality concepts were used to achieve local matrices with better
conditioning compared to the sparsity of functions defined in (Szabó and Babuska, 1991).

In (Karniadakis and Sherwin, 1999), tensor product was used for the construction of hier-
archical functions to quadrilaterals and hexahedra, using one-dimensional shape functions with
orthogonal Jacobi polynomials. This basis is widely used in high-order applications such as fluid
dynamics problems and in structural mechanics (Nogueira Jr and Bittencourt; Dong and Yosi-
bash, 2007; 2009). The Jacobi polynomials have been extensively used in the construction of
high-order shape functions due to their orthogonality, resulting in sparser one-dimensional matrices
(Beuchler and Schöberl; Bittencourt et al., 2006; 2007a).

In (Nogueira Jr. and Bittencourt, 2001), the advantages of using Jacobi polynomials to im-
prove the computational efficiency of high-order bases were discussed. It was found an expo-
nential increase in condition number for matrices using the bases functions proposed (Carnevali
et al., 1993), but lower than that shown in the functions introduced by (Szabó and Babuska, 1991).

(Bittencourt et al., 2007a) showed that the appropriate choice of the weights of the Jacobi
polynomials results in an increase in sparsity pattern of the mass and stiffness matrices. Further-
more, it has been found in (Bittencourt and Vazquez, 2009) that the choice of the weights for the
Gauss-Jacobi, Gauss-Radau-Jacobi and Gauss-Lobatto-Jacobi quadratures optimizes the number
of operations required for the integration of the mass and stiffness matrices.

Another technique widely used in the high-order FEM is the Schur complement, referenced in
the literature also as static condensation or substructuring. The application of this procedure signif-
icantly improves the conditioning of the algebraic system and the performance of iterative methods
for the solution systems of equations (Axelsson, 1994). In high-order methods that operation is
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always performed.

In real problems, where in general the system matrices are large, local solution techniques
has also been used successfully. In (Bittencourt and Vazquez, 2010), a technique based on eigen-
value decomposition of mass matrix of the elements was proposed. These concepts were used to
develop local methods of explicit and implicit time integration by (Furlan, 2011). Recently in (Yu
et al., 2014), a semi-local technique was used to accelerate the solution of linear systems resulting
from the discretization of in fluid-structure interaction with linear elasticity.

1.2 Objectives

The convergence rate of the approximated solution may be obtained improved by increasing
the polynomial order of the shape functions in the high-order FEM. This feature combined with
complex geometry make the method computationally expensive which restricts their application
to problems with more variables. Thus, it becomes necessary to use efficient algorithms and is
therefore fundamental to search for numerical and computational solutions to make high-order
FEM more accessible to users.

In the study and implementation of algorithms for the high-order FEM, some computational
aspects, such as the need for scalable algorithms and development of efficient solvers for parallel
computing (Dong and Karniadakis, 2004; Dong and Yosibash, 2009; Bargos, 2009; da Costa, 2012;
Augusto, 2012) must be considered, as illustrated in Fig. 1.1.

High-Order Finite Element Methods
(p-FEM)

Numerical and Computational 
Aspects

Shape Functions
(p-FEM)

Precoditioners
and

 Integration Methods

Parallel Computing
and

Software Engineering
Local Solvers

Figure 1.1: Technical aspects considered in the high-order FEM.

Moreover, numerical aspects, including the tensorial bases that producing elementary matri-
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ces with good condition number and sparsity pattern, local transient solution procedures, precon-
ditioners, time integration methods are topics that have received extensive attention in the recent
high-order FEM literature (Noels et al., 2004; Bittencourt et al., 2007a; Bittencourt and Vazquez,
2009; Furlan, 2011; Zheng and Dong, 2011).

Therefore, the main focus of this work are:

∘ Propose and implement of the simultaneously diagonal and minimum energy bases (SDME)
for the high-order FEM applied to projection problem, Poisson, Helmholtz and transient
linear elasticity using implicit and explicit methods for time integration.

∘ Development and implementation of the procedure for calculating the two- and three-
dimensional mass and stiffness matrices using the product of coefficients of one-dimensional
mass, stiffness and mixed matrices for quadrilateral and hexahedral elements for projection,
Poisson, plane-state (2𝐷) and general strain (3𝐷).

∘ Development of local preconditioners using the SDME bases for the high-order FEM.

1.3 Contributions

The main contributions proposed by this work include:

∘ Implementation in the software (ℎ𝑝2)FEM in MatLab of the simultaneously diagonal and
minimum energy bases for the high-order FEM.

∘ Generalization of the minimum energy orthogonalization procedures for boundary modes
based on the appropriate choice of the norm.

∘ Proposal of the new one-dimensional shape functions for the high-order FEM considering
the simultaneous diagonalization of the internal modes and the minimum energy orthogonal-
ization procedure based on the Helmholtz norm.

∘ Study and testing with the SDME bases in projection, Poisson, Helmholtz and linear elasticity
problems using the implicit and explicit methods for time integration.
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∘ Procedure for calculation of the 2𝐷 and 3𝐷 mass and stiffness matrices for quadrilaterals
and hexahedra structured elements in distorted meshes for problems of projection, Poisson,
plane state (2𝐷) and general strain (3𝐷) for linear elastic problems

∘ Local mass preconditioner using the SDME basis for the high-order FEM.

1.4 Organization of the Text

This work is organized as a collection of two papers developed for publication. It is arranged
into chapters, which enables independent reading of the contributions.

In Chapter 2, we present the procedures for construction of the simultaneously diagonal and
minimum energy bases. We also show that the minimum energy orthogonalization procedure can
be generalized to the choice of the appropriate norm. This allows, to obtain basis functions for the
high-order FEM considering simultaneously diagonal and minimum energy procedures according
to the choice of the norm used in the construction of minimum energy procedures. The new bases
are proposed considering the use of the Helmholtz norm in minimum energy procedure. Further-
more, the calculation of the two- and three-dimensional mass and stiffness matrices, respectively
for quadrilateral and hexahedral elements, is made using the one-dimensional coefficients product
of the mass, stiffness and Jacobian matrices for the general case of the undistorted and distorted
meshes. This formulation was developed in (Vazquez, 2009) to undistorted elements. The perfor-
mance of the high-order bases is verified through numerical tests for projection, Poisson, Helmholtz
and transient linear elasticity using the explicit method of the central difference for time integration.

In chapter 3, we discuss the application of simultaneous diagonal and minimum energy bases
using Helmholtz norm for use in transient elasticity problems with the implicit Newmark method
for time integration. The influence of the 𝜆 parameter used in the construction of the bases is
analyzed. We also present calculation procedures of two- and three-dimensional mass and stiffness
matrices for quadrilateral and hexahedral structured elements, using the product of coefficients
of one-dimensional matrices in a plane state and general 3𝐷 linear elasticity. The use of local
mass matrix preconditioner is analyzed through numerical tests and compared using the diagonal
preconditioner and SSOR (Symmetric Successive Over Relaxation).

The final chapter presents the conclusions and future works.
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2 SIMULTANEOUSLY DIAGONAL AND MINIMUM ENERGY HIGH-
ORDER BASES FOR STRUCTURED ELEMENTS

2.1 Introduction

In the high-order Finite Element Method (FEM), the convergence of the solution is obtained
by increasing the polynomial order of the basis functions. The combination of this feature with
geometrical complexity and the required discretization order fully demand the use of efficient algo-
rithms for the solution of large systems of equations. The choice of the basis for the approximation
space influences the accuracy and efficiency for the numerical calculation of the approximate so-
lution. This comes from the fact that the basis influences the numerical conditioning and sparsity
of the system matrices obtained after discretization. If the matrix associated with the system of
equations is ill-conditioned, rounding and truncation operations can lead to very large errors in the
solution (Karniadakis and Sherwin, 2005).

Tensor-based hierarchical functions with orthogonal Legendre polynomials were used in
(Babuska et al., 1981) to improve the properties of sparsity and conditioning of the matrix sys-
tems. In this case, the stiffness matrix obtained for structured elements is block diagonal. However,
these functions exhibit an exponential increase in the condition number for unstructured elements
with increasing of the polynomial order (Abdul-Rahman and Kasper, 2007).

Hierarchical shape functions for triangles and tetrahedra were presented in (Carnevali et al.,
1993). Orthogonality properties of the polynomial basis were used to obtain local matrices with
better conditioning and sparsity compared to the functions defined in (Szabó and Babuska, 1991).

In (Karniadakis and Sherwin, 2005), tensor product of one-dimensional Jacobi orthogonal
polynomials were considered to build hierarchical shape functions for structured and non-structured
elements. The advantages of using Jacobi polynomials to improve the computational efficiency
of high-order FEM expansion bases were also discussed in (Nogueira Jr. and Bittencourt, 2001).
Modal bases have been used very often in high-order applications not only in fluid dynamics but
also in structural mechanics (Nogueira Jr and Bittencourt, 2007; Dong and Yosibash, 2009).

The appropriate choice of the weights of Jacobi polynomials improves the sparsity of mass
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and stiffness matrices (Karniadakis and Sherwin, 2005; Bittencourt et al., 2007a). Furthermore,
the choice of polynomials weights for the Gauss-Jacobi, Gauss-Radau-Jacobi, and Gauss-Lobatto-
Jacobi quadratures also decreases the number of points required for the numerical integration of
the mass and stiffness matrices (Bittencourt and Vazquez, 2009).

Sparsity of the elemental matrices is desirable because it influences the conditioning of the
resulting algebraic system (Abdul-Rahman and Kasper, 2007). Techniques for simultaneous diago-
nalization of matrices were used to improve the conditioning and sparsity of the matrix systems in
(Shen and Wang, 2007). In this case, 1𝐷 mass and Laplace stiffness matrices are made simultane-
ously diagonal. This technique was used in (Šolín and Vejchodskỳ, 2008) to build internal bubble
functions for the high-order FEM.

Schur complement, also referred to as static condensation, improves significantly the condi-
tioning properties and performance of iterative methods for solving systems of equations. It has
been used as an efficient way to condense the terms related to the internal modes of elements
(Babuska and Guo, 1989). Preconditioners based on the element topology and domain decomposi-
tion techniques were developed in (Casarin, 1997). In (Vejchodskỳ, 2010), the concept of minimum
energy was presented as a simple way to construct boundary modes orthogonal to internal modes.
This technique is applied directly to the construction of one-dimensional basis functions.

Simultaneous diagonalization techniques for the internal modes were employed in (Zheng
and Dong, 2011) to build a high-order expansion basis for structured elements. The algorithm re-
sults in one-dimensional local internal mass and stiffness matrices simultaneously diagonal and
with the same condition number. It is also known that the boundary modes influences strongly the
performance and numerical conditioning of the system matrices after the Schur complement. The
modification of the interior modes only does not affect the numerical performance of the Schur-
complemented system (Zheng and Dong, 2011). An algorithm based on Gram-Schmidt orthogo-
nalization was used to obtain one-dimensional boundary modes orthogonal to the internal modes.
The obtained basis has large efficiency in terms of conditioning and number of iterations for con-
vergence for mass, Poisson stiffness, and Helmholtz matrices using the conjugate gradient method,
when compared to the standard basis proposed in (Sherwin and Karniadakis, 1995; Karniadakis
and Sherwin, 2005). However, the extension to non-structured elements may be difficult.

In this paper, we present a new methodology for building higher-order expansion bases.
Our proposal is to combine the good results in terms of sparsity and conditioning obtained from
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the simultaneous diagonalization of internal modes with the minimum energy transformation of
one-dimensional boundary modes. The construction of boundary modes is simpler that the Gram-
Schmidt procedure and can be suited to different problems as will be considered for projection,
Poisson, Helmholtz, and linear elasticity. A particular high-order basis is presented for the one-
dimensional Helmholtz problem after application of simultaneous diagonalization and minimum
energy directly to the one-dimensional Helmholtz matrix. In addition, we propose a procedure
to calculate the mass and Poisson stiffness matrices for 2𝐷 and 3𝐷 elements in terms of the one-
dimensional mass and stiffness matrices. This procedure only require one-dimensional quadratures.
The performance of the proposed bases are investigated through numerical experiments using the
conjugate gradient method with and without diagonal preconditioner. The results are compared to
those ones obtained with the standard basis given in (Karniadakis and Sherwin, 2005). Explicit
analyses of 3𝐷 linear elasticity problems are also presented and the number of iterations for con-
vergence is compared with the standard basis for different polynomial orders.

2.2 Construction of One-dimensional Bases with Simultaneously Diagonalization
and Minimum Energy

This work considers the one-dimensional modal basis refereed here as the standard basis
and built with Jacobi orthogonal polynomials 𝒫𝛼,𝛽

𝑝 (𝜉1) (Bittencourt et al., 2007a; Karniadakis and
Sherwin, 2005). In general, the modal shape functions are related to the elemental topological
entities as vertices, edges, and faces.

The one-dimensional standard basis of polynomial order 𝑃 is defined in the local coordinate
system 𝜉1 as (Karniadakis and Sherwin, 2005)

𝜓𝑝(𝜉1) =

⎧⎪⎨⎪⎩
1
2
(1 − 𝜉1) 𝑝 = 0

1
2
(1 + 𝜉1) 𝑝 = 1

1
4
(1 − 𝜉1)(1 + 𝜉1)𝒫𝛼,𝛽

𝑝−2(𝜉1) 2 ≤ 𝑝 ≤ 𝑃

. (2.1)

This is a hierarchical basis because the set of functions of order 𝑃 is included in the set of
order 𝑃 + 1. The vertex functions correspond to 𝑝 = 0 and 𝑝 = 𝑃 ; the internal functions are
obtained for 0 < 𝑝 < 𝑃 . The one-dimensional local coefficients of the mass and stiffness matrices
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are respectively determined by

𝑀𝑝𝑞 =

∫︁ 1

−1

𝜓𝑝(𝜉1)𝜓𝑞(𝜉1)𝑑𝜉1, (2.2)

𝐾𝑝𝑞 =

∫︁ 1

−1

𝜓𝑝,𝜉1
(𝜉1)𝜓𝑞,𝜉1

(𝜉1)𝑑𝜉1, (2.3)

with 0 ≤ 𝑝,𝑞 ≤ 𝑃 and 𝜓𝑝,𝜉1
the derivative of 𝜓𝑝 with respect to 𝜉1.

The mass and stiffness matrices are symmetric and the submatrices of internal modes are
positive-definite. The weights (𝛼, 𝛽) of the Jacobi polynomials can be chosen in such way to obtain
sparser matrices (Karniadakis and Sherwin, 2005). Fig. 2.1 illustrates the sparsity pattern of the
local mass and stiffness matrices for 𝛼 = 𝛽 = 1 and 𝑃 = 10. The mass matrix is pentadiagonal
and the vertex and internal blocks of the stiffness matrix are decoupled.
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12

nz = 35

(a)

0 2 4 6 8 10 12

0

2
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8
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12
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(b)

Figure 2.1: Sparsity patterns of the one-dimensional local mass (a) and stiffness (b) matrices ob-
tained with the standard basis (𝛼 = 𝛽 = 1) and polynomial order 𝑃 = 10 (nz is the number of
non-zero coefficients).

We can partition the element system of equation related to the mass matrix

[𝑀 ]{𝑎} = {𝑓} (2.4)

in terms of the blocks relative to vertex (𝑣) and internal (𝑖) modes as
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[︃
[𝑀𝑣𝑣] [𝑀𝑣𝑖]

[𝑀𝑣𝑖]
𝑇 [𝑀𝑖𝑖]

]︃{︃
{𝑎𝑣}
{𝑎𝑖}

}︃
=

{︃
{𝑓𝑣}
{𝑓𝑖}

}︃
, (2.5)

The 𝐿2-inner product of functions 𝑓 and 𝑔 is defined as ⟨𝑓,𝑔⟩𝐿2 =
∫︀ 1

−1
𝑓(𝜉)𝑔(𝜉)𝑑𝜉. Therefore,

the coefficients of the vertex block are given by 𝑀𝑣𝑣 = ⟨𝜓𝑝,𝜓𝑞⟩𝐿2(𝑝,𝑞 = 0, 1); for the coupling
block, 𝑀𝑣𝑖 = ⟨𝜓𝑝,𝜓𝑞⟩𝐿2(𝑝 = 0, 1; 𝑞 = 2,...,𝑃 ); and for the internal block, 𝑀𝑖𝑖 = ⟨𝜓𝑝,𝜓𝑞⟩𝐿2(𝑝,𝑞 =

2,...,𝑃 ).

It is possible to write Eq. (2.4) in terms of the vertex coefficients only after the Schur com-
plement as

[𝑀𝑠] {𝑎𝑣} = {𝑓𝑠} , (2.6)

where

[𝑀𝑠] = [𝑀𝑣𝑣] − [𝑀𝑣𝑖][𝑀𝑖𝑖]
−1[𝑀𝑣𝑖]

𝑇 and {𝑓𝑠} = {𝑓𝑣} − [𝑀𝑣𝑖][𝑀𝑖𝑖]
−1 {𝑓𝑖} . (2.7)

The internal coefficients are obtained as

{𝑎𝑖} = [𝑀𝑖𝑖]
−1

(︀
{𝑓𝑖} − [𝑀𝑣𝑖]

𝑇 {𝑎𝑣}
)︀
. (2.8)

The Schur complement has the advantage of reducing the number of equations to obtain for
the coefficients of the approximated solution, and decreases the condition number of the associated
matrix (Axelsson, 1994).

2.2.1 Diagonalization of Internal Modes

We consider the transformation of the internal modes for the basis given in Eq. (2.1) according
to (Shen and Wang, 2007; Šolín and Vejchodskỳ, 2008) as

𝜑𝑝(𝜉1) =
𝑃∑︁

𝑞=2

𝑦𝑝𝑞𝜓𝑞(𝜉1). (2.9)
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The coefficients 𝑦𝑝𝑞 are determined in such way that the blocks
[︀
𝑀

′
𝑖𝑖

]︀
and

[︀
𝐾

′
𝑖𝑖

]︀
related to the

internal modes of the new mass and stiffness matrices are diagonal and given by

[︀
𝑀

′
𝑖𝑖

]︀
= [𝑌 ] [𝑀𝑖𝑖] [𝑌 ]𝑇 ,[︀

𝐾
′
𝑖𝑖

]︀
= [𝑌 ] [𝐾𝑖𝑖] [𝑌 ]𝑇 .

(2.10)

Given the symmetric and positive-definite internal mass matrix [𝑀𝑖𝑖], we can diagonalize it
as

[𝑋]𝑇 [𝑀𝑖𝑖] [𝑋] = [Λ𝑀 ] , (2.11)

where [𝑋] is the eigenvector matrix of [𝑀𝑖𝑖] and [Λ𝑀 ] is the diagonal matrix with the eigenvalues
of [𝑀𝑖𝑖]. Using these matrices and the internal stiffness matrix [𝐾𝑖𝑖], we can define

[𝐿] =
(︁

[𝑋]
[︁
Λ

− 1
2

𝑀

]︁)︁𝑇

[𝐾𝑖𝑖]
(︁

[𝑋]
[︁
Λ

− 1
2

𝑀

]︁)︁
. (2.12)

This matrix is also symmetric and positive-definite and can be diagonalized analogously to
[𝑀𝑖𝑖] as

[𝑍]𝑇 [𝐿] [𝑍] = [Λ𝑆] , (2.13)

where [𝑍] is the matrix of the eigenvectors and [Λ𝑆] is the diagonal matrix with eigenvalues of [𝐿].
Thus, matrix [𝑌 ] can be written as

[𝑌 ] =
(︁

[𝑋]
[︁
Λ

− 1
2

𝑀

]︁
[𝑍]

[︁
Λ

− 𝑘
2

𝑆

]︁)︁𝑇

, (2.14)

where 𝑘 is a parameter that influences the condition number of the matrices related to the internal
modes. Replacing [𝑌 ] in Eq. (2.10), we have

[𝑌 ] [𝑀𝑖𝑖] [𝑌 ]𝑇 =
[︀
Λ−𝑘

𝑆

]︀
and [𝑌 ] [𝐾𝑖𝑖] [𝑌 ]𝑇 =

[︀
Λ1−𝑘

𝑆

]︀
. (2.15)
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For 𝑘 = 0, the internal block of the mass matrix is the identity matrix. The same fact is
observed for the stiffness matrix with 𝑘 = 1. The same condition number of the internal mass and
stiffness matrices are obtained for 𝑘 = 1/2, as illustrated in Fig. 2.2. The condition number for[︀
𝑀

′
𝑖𝑖

]︀
is 1 for any polynomial order and 𝑘 = 0. For [𝐾𝑖𝑖], the smallest condition number is also 1

but obtained for 𝑘 = 1. From Eq. (2.15), it may be observed that the simultaneous diagonalization
procedure for 𝑘 = 0 is equivalent to solving the generalized eigenvalue problem for [𝑀𝑖𝑖] and [𝐾𝑖𝑖].
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Figure 2.2: Comparison of the condition numbers of the 1𝐷 internal mass (a) and stiffness (b)
matrices for the standard basis (ST) and the simultaneous diagonalization basis (SD) for different
values of the parameter 𝑘.

The different choices for the parameter 𝑘 in Eq. (2.15) do not change the order of the func-
tions associated with the internal modes. Fig. 2.3 illustrates the behavior of the one-dimensional
functions for different values of 𝑘. Note that the internal functions with polynomial order 𝑃 in-
clude the basis functions with polynomial order 𝑃 − 1. Therefore the transformation applied to the
internal modes preserve the hierarchy of the basis.

The internal modes form a linear space and the 1𝐷 linear vertex modes have the best approx-
imation in the space of the interior modes with respect to some norm. One way to calculate this
approximation is to determine an orthogonal basis for the internal modes and then make the pro-
jection of the linear vertex modes on that basis. The difference between the vertex modes and the
best approximation is basically the application of the Gram-Schimdt procedure (Zheng and Dong,
2011). This procedure was used to construct vertex modes orthogonal to the internal modes. Fig.2.4
shows the behavior of the one-dimensional vertex and internal modes for the standard and to the
basis given in (Zheng and Dong, 2011) for 𝑃 = 3. The vertex modes have polynomial order 𝑃 .
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Figure 2.3: 1𝐷 interior basis functions after simultaneous diagonalization for different values of
the parameter 𝑘 = 0 (a), 𝑘 = 1/2 (b) and 𝑘 = 1 (c) with polynomial order 𝑃 = 3.
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Figure 2.4: 1𝐷 Dong’s basis with 𝑘 = 1/2 and polynomial order 𝑃 = 3 to vertex (a) and interior
modes (b).
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In the next section we will introduce the concept of minimum energy orthogonalization to
the boundary modes. This formulation is used to construct the one-dimensional vertex modes. The
main advantage when compared to (Zheng and Dong, 2011) is the convenient choice of the norm
used in the orthogonalization procedure. However, the same bases obtained in (Zheng and Dong,
2011) are recovered for 𝑘 = 1/2.

2.2.2 Minimum Energy Basis

Consider a splitting of the approximation space 𝑉 into the direct sum 𝑉 = 𝑉 𝑣 ⊕ 𝑉 𝑖, where
𝑉 𝑣 and 𝑉 𝑖 are nontrivial subspaces associated respectively to the boundary and internal modes
(Vejchodskỳ, 2010). The basis 𝜓 ∈ 𝑉 are defined as

𝜓 = 𝜓𝑣 ⊕ 𝜓𝑖, (2.16)

where 𝜓𝑣 are boundary modes in 𝑉 𝑣 and 𝜓𝑖 the internal modes in 𝑉 𝑖.

The minimum energy extension 𝜓𝑚𝑒 ∈ 𝑉 of 𝜓𝑣 ∈ 𝑉 𝑣 with respect to 𝑉 𝑖 is uniquely defined
as

𝜓𝑚𝑒 := 𝜓𝑣 − 𝜓*, (2.17)

where 𝜓* is the projection of 𝜓𝑣 into 𝜓𝑖 such that

⟨𝜓𝑚𝑒,𝜓𝑖⟩𝐿2 = 0, ∀𝜓𝑖 ∈ 𝑉 𝑖. (2.18)

Eq. (2.18) implies that 𝜓𝑚𝑒 is the component of 𝜓𝑣 orthogonal to the subspace 𝑉 𝑖. It is pos-
sible show that ‖𝜓𝑚𝑒‖𝐸 ≤ ‖𝜓𝑣‖𝐸 , where ‖𝑣‖2𝐸 = ⟨𝑣,𝑣⟩𝐸 stands for the energy norm (Vejchodskỳ,
2010), and 𝜓𝑚𝑒 is called minimum energy basis. Let 𝜓𝑣 = {𝜓1, ..., 𝜓𝑁𝑣} and 𝜓𝑖 = {𝜓1,..., 𝜓𝑁𝑖

}.
The minimum energy extensions of the standard basis functions is computed as

𝜓𝑚𝑒
𝑘 = 𝜓𝑣

𝑘 −
𝑁𝑖∑︁
𝑗=1

𝛼𝑘𝑗𝜓
𝑖
𝑗, 𝑘 = 1,...,𝑁𝑣. (2.19)

From Eq. (2.18) and (3.11), the coefficients 𝛼𝑀
𝑘𝑗 for the mass norm are uniquely determined
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as

⟨𝜓𝑣
𝑘,𝜓

𝑖
𝑙⟩𝐿2 −

𝑁𝑖∑︁
𝑗=1

𝛼𝑀
𝑘𝑗 ⟨𝜓𝑖

𝑗,𝜓
𝑖
𝑙⟩𝐿2 = 0, ∀𝜓𝑖

𝑙 ∈ 𝑉 𝑖. (2.20)

Using the partitioning given in Eq. (2.5), the previous condition can be written in matrix form
as [︀

𝛼𝑀
]︀

= [𝑀𝑣𝑖] [𝑀𝑖𝑖]
−1 . (2.21)

The modes 𝜓𝑚𝑒 can be used as boundary modes in 𝑉 . With this formulation the submatrix
[𝑀𝑚𝑒

𝑣𝑣 ] ∈ ℜ𝑁𝑣×𝑁𝑣 with entries (𝑀𝑚𝑒
𝑣𝑣 )𝑖𝑗 = ⟨𝜓𝑚𝑒

𝑖 ,𝜓𝑚𝑒
𝑗 ⟩ is just the Schur complement of the standard

mass matrix
[𝑀𝑚𝑒

𝑣𝑣 ] = [𝑀𝑣𝑣] − [𝑀𝑣𝑖] [𝑀𝑖𝑖]
−1 [𝑀𝑣𝑖]

𝑇 . (2.22)

We consider the simultaneous diagonalization of the internal modes of the mass and stiffness
matrices to construct the one-dimensional internal modes together with the minimum energy or-
thogonalization for the boundary modes. This allows to generalize the orthogonalization procedure
for the boundary modes based on the choice of the appropriate norm according to the considered
problem.

Assuming linear vertex functions, the orthogonalization of the vertex and internal modes
using the 𝐿2-norm results in the same basis proposed in (Zheng and Dong, 2011). Therefore, for
𝛼𝑘𝑗 = 𝛼𝑀

𝑘𝑗 , the minimum energy procedure is equivalent to the Gram-Schimidt orthogonalization.

Fig. 2.5 shows the sparsity patterns of the local 1𝐷 mass and stiffness matrices after the
application of the SD and ME procedures. The boundary and internal blocks of the mass matrix
are decoupled and the same blocks of the stiffness matrix become coupled. In this case, the Schur
complement is obtained directly from the one-dimensional basis construction.

Using the energy norm, Eq. (2.20) is given by

⟨𝜓𝑣
𝑘,𝜓

𝑖
𝑙⟩𝐸 −

𝑁𝑖∑︁
𝑗=1

𝛼𝐾
𝑘𝑗⟨𝜓𝑖

𝑗,𝜓
𝑖
𝑙⟩𝐸 = 0, ∀𝜓𝑖

𝑙 ∈ 𝑉 𝑖, (2.23)
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Figure 2.5: Sparsity patterns of the mass (a) and stiffness matrices (b) with polynomial order 𝑃 =
10 for the SDME basis using

[︀
𝛼𝑀

]︀
.

The element local stiffness matrix may be partitioned in terms of boundary and internal modes
as

[𝐾] =

[︃
[𝐾𝑣𝑣] [𝐾𝑣𝑖]

[𝐾𝑣𝑖]
𝑇 [𝐾𝑖𝑖]

]︃
, (2.24)

where (𝐾𝑣𝑣)𝑖𝑗 = ⟨𝜓𝑖,𝜉1
,𝜓𝑗,𝜉1

⟩𝐸 (𝑖,𝑗 = 1, . . . , 𝑁𝑣); (𝐾𝑣𝑖)𝑖𝑗 = ⟨𝜓𝑖,𝜉1
,𝜓𝑗,𝜉1

⟩𝐸 (𝑖 = 1, . . . , 𝑁𝑣 and
𝑗 = 𝑁𝑣 + 1, . . . ,𝑁𝑖); (𝐾𝑖𝑖)𝑖𝑗 = ⟨𝜓𝑖,𝜉1

,𝜓𝑗,𝜉1
⟩𝐸 (𝑖,𝑗 = 𝑁𝑣 + 1, . . . , 𝑁𝑖).

Condition Eq. (2.23) may be expressed matricially as

[︀
𝛼𝐾

]︀
= [𝐾𝑣𝑖] [𝐾𝑖𝑖]

−1 . (2.25)

The submatrix [𝐾𝑣𝑖] = 0 for the standard Jacobi basis. Thus, the previous procedure does
not alter the linear modes of the standard basis (ST). Fig. 2.6 shows the behavior of the vertex and
internal modes of the simultaneously diagonal and minimum energy basis with

[︀
𝛼𝐾

]︀
and 𝑃 = 3.

This results is similar to the Basis-LV presented in (Zheng and Dong, 2011) for 𝑘 = 1/2.

Note that the choice of coefficients matrix [𝛼] allows to recover the bases proposed in the lit-
erature considering the simultaneous diagonalization for the internal modes and orthogonalization
for the vertex modes. We consider now the use of the minimum energy procedure for the Helmholtz
problem.
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Figure 2.6: 1𝐷 SDME basis with
[︀
𝛼𝐾

]︀
, 𝑘 = 1/2 and polynomial order 𝑃 = 3 to vertex (a) and

interior modes (b).

In this case, the energy norm for a function 𝑣 ∈ 𝑉 is ‖𝑣‖2𝐸 = ⟨𝑣,𝑣⟩𝐸 = ⟨𝑣′,𝑣′⟩𝐿2 + 𝜆⟨𝑣,𝑣⟩𝐿2 .
Similarly as discussed for the mass and stiffness matrices the element local Helmholtz matrix can
be partitioned as

[𝐻] = [𝐾] + 𝜆 [𝑀 ] =

[︃
[𝐻𝑣𝑣] [𝐻𝑣𝑖]

[𝐻𝑣𝑖]
𝑇 [𝐻𝑖𝑖]

]︃
. (2.26)

A condition similar to Eq. (2.20) is obtained and the coefficients
[︀
𝛼𝐻

]︀
are calculated as

[︀
𝛼𝐻

]︀
= [𝐻𝑣𝑖] [𝐻𝑖𝑖]

−1 . (2.27)

This choice obtains a one-dimensional Helmholtz matrix with orthogonal vertex and internal
modes as shown in Fig. 2.7. In this case, the local stiffness and mass matrices have vertex and
internal blocks coupled and the orthogonalization of boundary modes and their derivatives cannot
be made independently. However, when we add them to obtain the Helmholtz matrix, boundary
and internal blocks are uncoupled.

The construction of the vertex modes of the SDME basis depends on the parameter 𝜆. Fig.
2.8 shows the behavior of the boundary and internal modes for the standard element and different 𝜆
values and for polynomial order 𝑃 = 3. For larger 𝜆, Fig. 2.8(a), the behavior of the vertex modes
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Figure 2.7: Sparsity patterns of the mass (a), stiffness (b), and Helmholtz (c) one-dimensional local
matrices for 𝑃 = 10 using the standard basis (ST). Sparsity patterns of the mass (d), stiffness (e),
and Helmholtz (f) one-dimensional local matrices for 𝑃 = 10 using the simultaneous diagonaliza-
tion and minimum energy basis (SDME) with 𝜆 = 1.
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is similar to using
[︀
𝛼𝑀

]︀
. For smaller 𝜆, Fig. 2.8(e), the behavior of the vertex modes is similar[︀

𝛼𝐾
]︀
.
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Figure 2.8: 1𝐷 SDME bases with
[︀
𝛼𝐻

]︀
, 𝑘 = 1/2 and polynomial order 𝑃 = 3. Vertex (a) and

internal (b) modes with 𝜆 = 100. Vertex and internal modes to 𝜆 = 1 in (c) and (d). Vertex and
internal modes for 𝜆 = 0.1 in (e) and (f).

Fig. 2.9 shows the behavior of the boundary and internal modes for the standard element with
𝜆 = 100 and for polynomial order 𝑃 = 10. For high-order polynomial functions, the behavior of
the vertex modes is similar to step function.
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Figure 2.9: 1𝐷 SDME bases with
[︀
𝛼𝐻

]︀
, 𝑘 = 1/2 and polynomial order 𝑃 = 10. Vertex (a) and

internal (b) modes with 𝜆 = 100.

In the next section, we will present the condition numbers in terms of the polynomial order
for the one-dimensional projection, Poisson, and Helmholtz problems. For each case we consider
the different norms used in the construction of the SDME bases.

2.3 Simultaneous Diagonalization and Minimum Energy Bases for Projection and
Poisson Problems

In the FEM, the global interpolation functions {𝜓𝑖}𝑛𝑖=1 define a functional space and the
approximated solution for a function 𝑢 is 𝑢𝑎𝑝 = Σ𝑛

𝑖=1𝑎𝑖𝜓𝑖. Solving a 1𝐷 projection problem means
to obtain the coefficients 𝑎𝑖 that minimize the error 𝑒 = 𝑢− 𝑢𝑎𝑝, where 𝑢 is a continuous function
defined in the domain Ω = {𝑥|0 ≤ 𝑥 ≤ 𝑙}.

The solution of the projection problem is obtained by solving the system of equations (Kar-
niadakis and Sherwin, 2005)

[𝑀 ] {𝑎𝑚} = {𝑓𝑚} , (2.28)

where

𝑓𝑚
𝑖 =

∫︀
Ω
𝑢𝜓𝑖𝑑Ω, (2.29)

and [𝑀 ] is the global mass matrix obtained by the assembling of element matrices.

Fig. 2.10 illustrates the construction of the SDME basis for the projection problem. The
diagonalization of the internal modes are made using the matrix [𝑌 ] given in Eq. (2.14). Fig. 2.11
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shows a comparison of the condition numbers of the one-dimensional local mass matrices using the
standard (ST) and the SDME bases with

[︀
𝛼𝑀

]︀
for different values of 𝑘 according to the polynomial

order. Notice that the condition numbers obtained using the SDME basis with 𝑘 = 1/2 is better than
those obtained with the standard basis and equal to those ones obtained with the basis presented in
(Zheng and Dong, 2011).

Standard basis
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matrix
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Minimum Energy 
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Figure 2.10: Scheme of construction of the 1D SDME basis for projection problems.
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Figure 2.11: Numerical conditioning of the 1𝐷 mass matrices using the standard basis (ST) and the
simultaneously diagonal and minimum energy basis (SDME) according to the polynomial order.

The one-dimensional Poisson problem with homogeneous Dirichlet boundary conditions is
defined in the domain Ω = {𝑥|0 ≤ 𝑥 ≤ 𝑙} as

𝑑2𝑢(𝑥)

𝑑𝑥2
= 𝑞(𝑥) Ω

𝑢(𝑥) = 0 𝜕Ω𝐷

, (2.30)

where 𝜕Ω𝐷 is the part of the boundary 𝜕Ω where Dirichlet boundary conditions are applied, i.e.,
𝑥 = 0 and 𝑥 = 𝑙.

The coefficients of the approximated solution are obtained by the system of equations

[𝐾]
{︀
𝑎𝑘
}︀

=
{︀
𝑓𝑘

}︀
, (2.31)
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where

𝑓𝑘
𝑖 =

∫︀
Ω
𝑞𝜓𝑖𝑑Ω. (2.32)

[𝐾] is the global stiffness matrix and 𝑞 is the body load intensity.

Fig. 2.12 illustrates the construction of the SDME basis for the Poisson problem. In this
case, the boundary and internal blocks of the element local stiffness matrix for the Jacobi standard
basis are already decoupled and the coefficients

[︀
𝛼𝐾

]︀
are zero. Therefore, the application of the

minimum energy procedure has no effect on the coupling block of the boundary and internal modes.
This construction is similar to that presented in (Zheng and Dong, 2011) for the Basis-LV, where
only the internal modes are changed. For the bases here proposed, the choice of [𝛼] influences
the coupling blocks of the mass and stiffness matrices. The advantage of the proposed bases is
that we can select the most appropriate [𝛼] according to the considered problem. The choice of[︀
𝛼𝑀

]︀
for the construction of the one-dimensional minimum energy basis does not decouple internal

and boundary modes of the one-dimensional stiffness matrix. However, the one-dimensional mass
matrix has the internal and boundary modes uncoupled.

Standard basis
Simultaneous

 diagonalization 
of the internal modes

Local mass
matrix

Local stiffness
matrix

Minimum energy
 Procedure

Local mass
matrix

Local stiffness
matrix

SDME Basis

Figure 2.12: Scheme of construction of the 1D minimum energy basis for the Poisson problem.

Fig. 2.13 illustrates the behavior of the condition number of the one-dimensional local stiff-
ness matrices using the standard (ST) and simultaneously diagonal and minimum energy (SDME)
bases for different values of 𝑘 in terms of the polynomial order. Note that after 𝑃 = 4, the con-
dition numbers are larger with the proposed minimum energy basis with 𝑘 = 1/2. For 𝑘 = 1, the
condition number is smaller than those ones obtained with the other bases. The choice of parameter
𝑘 = 1/2 is especially convenient for 2𝐷 and 3𝐷 problems.
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Figure 2.13: Numerical conditioning of the 1𝐷 stiffness matrix using the standard (ST) and the
SDME bases, for different values of the parameter 𝑘, in terms of the polynomial order.

2.4 Minimum Energy Basis for Helmholtz Problem

The general equation for the one-dimensional Helmholtz problem is given by (Karniadakis
and Sherwin, 2005)

𝑑2𝑢(𝑥)

𝑑𝑥2
− 𝜆𝑢(𝑥) + 𝑓(𝑥) = 0, 𝑥 ∈ Ω

𝑢(𝑥) = 𝑢0, 𝑥 ∈ 𝜕Ω𝐷

, (2.33)

where 𝑢(𝑥) is a continuous and smooth function in the domain Ω = {𝑥|0 ≤ 𝑥 ≤ 𝑙}, 𝜆 a positive
real constant, 𝑓(𝑥) a known function and 𝑢0 a non-homogeneous Dirichlet condition. Multiplying
Eq. (2.33) by an arbitrary smooth test function 𝑣(𝑥), which satisfies the homogeneous Dirichlet
conditions on the boundary 𝜕Ω𝐷, and further applying integration by parts, we obtain the weak
form of Eq. (2.33) as∫︁

Ω

𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑣(𝑥)

𝜕𝑥
𝑑Ω + 𝜆

∫︁
Ω

𝑢(𝑥)𝑣(𝑥)𝑑Ω =

∫︁
Ω

𝑓(𝑥)𝑣(𝑥)𝑑Ω +
𝜕𝑢(𝑥)

𝜕𝑥
𝑣(𝑥)

⃒⃒⃒⃒
𝜕Ω𝑁

, (2.34)

and 𝜕Ω𝑁 is the Neumann boundary.

Applying the Galerkin discretization, 𝑢(𝑥) =
∑︀𝑛

𝑖=1 𝑎𝑖𝜓
𝑖(𝑥) and 𝑣(𝑥) =

∑︀𝑛
𝑗=1 𝑏𝑗𝜓𝑗(𝑥), we

can write the associated system of equations for Eq. (2.34) as

[𝐻]
{︀
𝑎ℎ
}︀

=
{︀
𝑓ℎ

}︀
, (2.35)
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where
𝑓ℎ
𝑖 =

∫︁
Ω

𝑓(𝑥)𝜓𝑖(𝑥)𝑑Ω +
𝜕𝜓𝑖(𝑥)

𝜕𝑥
𝜓𝑗(𝑥)

⃒⃒⃒⃒
𝜕Ω𝑁

, (2.36)

and
[𝐻] = [𝐾] + 𝜆 [𝑀 ] . (2.37)

[𝑀 ] and [𝐾] are the mass and stiffness matrices, respectively, and [𝐻] the Helmholtz matrix used
for the construction of the SDME bases.

The difference here regarding the construction of the SDME basis is that the orthogonaliza-
tion is applied directly to the Helmholtz matrix as indicated in Fig. 2.14.

Standard
 basis

Simultaneous
 diagonalization 

of the internal modes
Local mass

matrix

Local stiffness
matrix

Local mass
matrix

Local stiffness
matrix

Minimum Energy
Procedure

Local 
Helmholtz

matrix

SDME Basis

Figure 2.14: Scheme of construction of the 1𝐷 SDME basis for the Helmholtz problem.

Fig. 2.15 shows the behavior of the condition number of the one-dimensional local Helmholtz
matrix, using the standard (ST) and the simultaneously diagonal and minimum energy (SDME)
bases with

[︀
𝛼𝐻

]︀
for different values of 𝑘 and 𝜆 = 1, in terms of the polynomial order. The choice

of 𝑘 in Eq. (2.14) is important in determining the behavior of the condition number of the one-
dimensional Helmholtz matrix. In this case, for 𝑘 = 1/2, the condition number of the matrix using
the SDME basis is larger than the standard basis for polynomial order larger than 𝑃 = 4. For 𝑘 = 1,
the condition number is 1 for any polynomial order. Note that in this case, the condition number
for any polynomial order used is smaller than the those ones obtained with the bases presented in
(Zheng and Dong, 2011). For 𝑃 = 2, the condition number for Basis-LV and SDME with 𝑘 = 1/2

are not equal. This difference is observed because for 𝜆 = 1 the vertex modes is not similar. For
smaller values of 𝜆 and larger values of 𝑃 , these results are similar.

Fig 2.16 shows the behavior of the condition number of the one-dimensional local Helmholtz
matrix, using the standard (ST) and the simultaneously diagonal and minimum energy (SDME)
bases for different values of 𝑘 and 𝜆 values for the polynomial order 𝑃 = 10. Note that for larger
values of 𝜆, the condition numbers of the SDME basis with 𝑘 = 1/2 is similar to that presented
in (Zheng and Dong, 2011). For smaller values of 𝜆, the condition number is similar to those ones

25



2 4 6 8 10
10

0

10
1

10
2

10
3

Element Order

C
on

di
tio

n 
N

um
be

r

 

 

ST
SDME k = 0
SDME k = 1/2
SDME k = 1
Dong−Basis
Dong−BasisLV

Figure 2.15: Numerical conditioning of the one-dimensional Helmholtz matrices using the standard
(ST) and the simultaneously diagonal and minimum energy (SDME) bases

[︀
𝛼𝐻

]︀
in terms of the

polynomial order for 𝜆 = 1.

of the Basis-LV. However, for the given range of 𝜆, the condition number of the SDME bases are
better than the other bases.
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Figure 2.16: Numerical conditioning of the one-dimensional Helmholtz matrices using the standard
(ST) and simultaneously diagonal and minimum energy (SDME) bases with

[︀
𝛼𝐻

]︀
in terms of 𝜆 for

polynomial order 𝑃 = 10.

2.5 Construction of Basis for Quadrilaterals and Hexahedra

In this section, we discuss the extension of the proposed 1𝐷 bases to quadrilaterals (2𝐷) and
hexahedra (3𝐷) structured elements using the tensor product of one-dimensional functions.
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The shape functions for squares are given by (Karniadakis and Sherwin, 2005; Bittencourt
et al., 2007a)

𝑁𝑖(𝜉1,𝜉2) = 𝜙𝑝(𝜉1)𝜙𝑞(𝜉2), 0 ≤ 𝑝,𝑞 ≤ 𝑃. (2.38)

Similarly, the shape functions for hexahedra can be obtained as

𝑁𝑖(𝜉1,𝜉2,𝜉3) = 𝜙𝑝(𝜉1)𝜙𝑞(𝜉2)𝜙𝑟(𝜉3), 0 ≤ 𝑝,𝑞,𝑟 ≤ 𝑃, (2.39)

where 𝑝, 𝑞, and 𝑟 are tensor product indices associated with the topological entities of the ele-
ment; 𝑃 the polynomial order in directions 𝜉1, 𝜉2 and 𝜉3; 𝑖 = 1, . . . ,(𝑃 + 1)2 for squares and
𝑖 = 1, . . . ,(𝑃 + 1)3 for hexahedra.

Due to the tensorial nature of the shape functions defined in Eqs. (2.38) and (2.39), sum-
factorization has been used as an effective procedure to calculate the elemental operators (Karni-
adakis and Sherwin, 2005). Another possibility is to calculate the coefficients of the 2𝐷 and 3𝐷

elemental operator as a combination of the coefficients of the 1𝐷 mass and stiffness matrices and
the Jacobian matrix. This procedure requires to work the expressions of the operator as presented
in the next section for general distorted element. A similar procedure was indicated in (Vos et al.,
2010) for the mass matrices of the elements with constant Jacobian.

2.5.1 Tensor product of one-dimensional matrices for quadrilaterals

The one-dimensional local mass, stiffness, and mixed matrices will be respectively denoted
here as

[︀
𝑀1𝐷

]︀
,
[︀
𝐾1𝐷

]︀
and

[︀
𝐷1𝐷

]︀
. Their coefficients are defined by

𝑀1𝐷
𝑖𝑗 (𝜉1) =

∫︁ 1

−1

𝜙𝑖(𝜉1)𝜙𝑗(𝜉1)𝑑𝜉1, (2.40)

𝐾1𝐷
𝑖𝑗 (𝜉1) =

∫︁ 1

−1

𝜙𝑖,𝜉1(𝜉1)𝜙𝑗,𝜉1(𝜉1)𝑑𝜉1. (2.41)

𝐷1𝐷
𝑖𝑗 (𝜉1) =

∫︁ 1

−1

𝜙𝑖,𝜉1(𝜉1)𝜙𝑗(𝜉1)𝑑𝜉1. (2.42)
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The coefficients of the mass and stiffness matrices for quadrilateral elements are given, respectively,
by

𝑀2𝐷
𝑖𝑗 =

∫︁ 1

−1

∫︁ 1

−1

𝑁𝑖(𝜉1,𝜉2)𝑁𝑗(𝜉1,𝜉2)|𝐽 |𝑑𝜉1𝑑𝜉2, (2.43)

𝐾2𝐷
𝑖𝑗 =

∫︁ 1

−1

∫︁ 1

−1

[𝑁𝑖,𝑥𝑁𝑗,𝑥 +𝑁𝑗,𝑦𝑁𝑖,𝑦]|𝐽 |𝑑𝜉1𝑑𝜉2, (2.44)

where |𝐽 | is the Jacobian of the mapping between the local and global reference coordinate systems;
𝑁𝑖,𝑥 and 𝑁𝑖,𝑦 denote the shape function derivatives for the global coordinates 𝑥 and 𝑦. The local
and global derivatives are related by the inverse Jacobian matrix as{︃

𝑁𝑖,𝑥

𝑁𝑖,𝑦

}︃
=

[︃
𝑗11 𝑗12

𝑗21 𝑗22

]︃{︃
𝑁𝑖,𝜉1

𝑁𝑖,𝜉2

}︃
, (2.45)

where 𝑗11, 𝑗12, 𝑗21, and 𝑗22 are coefficients of the inverse Jacobian matrix.

Substituting Eq. (2.38) in Eq. (2.43), we obtain the coefficients of the two-dimensional mass
matrices in terms of coefficients of the one-dimensional mass matrices as

𝑀2𝐷
𝑖𝑗 =

∫︁ 1

−1

𝜙𝑎(𝜉1)𝜙𝑝(𝜉1)

(︂∫︁ 1

−1

𝜙𝑏(𝜉2)𝜙𝑞(𝜉2)|𝐽 |𝑑𝜉2
)︂
𝑑𝜉1

= Σ𝑛1
𝑘=1Σ

𝑛2
𝑙=1𝑀

1𝐷
𝑎𝑝 (𝜉1𝑘)𝑀1𝐷

𝑏𝑞 (𝜉2𝑙)𝑊𝑙𝑊𝑘|𝐽𝑘𝑙|, (2.46)

where 𝑛1, 𝑛2, 𝑊𝑘, and 𝑊𝑙 are, respectively, the number of integration points and weights in local
directions 𝜉1 and 𝜉2.

Analogously, we obtain the coefficients of the two-dimensional Poisson stiffness matrix for
quadrilaterals in terms of the coefficients of the one-dimensional matrices replacing Eqs. (2.38) and
(2.45) in Eq. (2.44). Therefore,

𝐾2𝐷
𝑖𝑗 = Σ𝑛1

𝑘=1Σ
𝑛2
𝑙=1

[︀
(𝑗211 + 𝑗221)𝑘𝑙𝐾

1𝐷
𝑎𝑝 (𝜉1𝑘)𝑀1𝐷

𝑞𝑏 (𝜉2𝑙) + (𝑗212 + 𝑗222)𝑘𝑙𝑀
1𝐷
𝑝𝑎 (𝜉1𝑘)𝐾1𝐷

𝑞𝑏 (𝜉2𝑙)

+ (𝑗11𝑗12 + 𝑗21𝑗22)𝑘𝑙(𝐷
1𝐷
𝑝𝑎 (𝜉1𝑘)𝐷1𝐷

𝑞𝑏 (𝜉2𝑙) +𝐷1𝐷
𝑞𝑏 (𝜉2𝑙)𝐷

1𝐷
𝑝𝑎 (𝜉1𝑘))

]︀
|𝐽𝑘𝑙|𝑊𝑙𝑊𝑘. (2.47)

For undistorted elements, the terms of the Jacobian are constant and can be factored from the
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integral sign. Thus, Eqs. (2.46) and (2.47) can be rewritten as

𝑀2𝐷
𝑖𝑗 = |𝐽 |

[︀(︀
Σ𝑛1

𝑘=1𝑀
1𝐷
𝑎𝑝 (𝜉1𝑘)𝑊𝑘

)︀ (︀
Σ𝑛2

𝑙=1𝑀
1𝐷
𝑏𝑞 (𝜉2𝑙)𝑊𝑙

)︀]︀
= |𝐽 |𝑀1𝐷

𝑎𝑝 (𝜉1)𝑀
1𝐷
𝑏𝑞 (𝜉2), (2.48)

𝐾2𝐷
𝑖𝑗 = |𝐽 |

[︀
(𝑗211 + 𝑗221)

(︀
Σ𝑛1

𝑘=1𝐾
1𝐷
𝑎𝑝 (𝜉1𝑘)𝑊𝑘

)︀ (︀
Σ𝑛2

𝑙=1𝑀
1𝐷
𝑞𝑏 (𝜉2𝑙)𝑊𝑙

)︀
+ (𝑗212 + 𝑗222)

(︀
Σ𝑛1

𝑘=1𝑀
1𝐷
𝑝𝑎 (𝜉1𝑘)𝑊𝑘

)︀ (︀
Σ𝑛2

𝑙=1𝐾
1𝐷
𝑞𝑏 (𝜉2𝑙)𝑊𝑙

)︀]︀
(2.49)

= |𝐽 |
[︀
(𝑗211 + 𝑗221)𝐾

1𝐷
𝑎𝑝 (𝜉1)𝑀

1𝐷
𝑞𝑏 (𝜉2) + (𝑗212 + 𝑗222)𝑀

1𝐷
𝑝𝑎 (𝜉1)𝐾

1𝐷
𝑞𝑏 (𝜉2)

]︀
.

2.5.2 Tensor product of one-dimensional matrices for hexahedra

Similarly, the coefficients of the mass and stiffness matrices for hexahedra can be obtained
from the coefficients of the one-dimensional matrices. The coefficients of the mass and Poisson
stiffness matrices for hexahedra are given, respectively, by

𝑀3𝐷
𝑖𝑗 =

∫︁ 1

−1

∫︁ 1

−1

∫︁ 1

−1

𝑁𝑖(𝜉1,𝜉2,𝜉3)𝑁𝑗(𝜉1,𝜉2,𝜉3)|𝐽 |𝑑𝜉1𝑑𝜉2𝑑𝜉3, (2.50)

𝐾3𝐷
𝑖𝑗 =

∫︁ 1

−1

∫︁ 1

−1

∫︁ 1

−1

(𝑁𝑖,𝑥𝑁𝑗,𝑥 +𝑁𝑖,𝑦𝑁𝑗,𝑦 +𝑁𝑖,𝑧𝑁𝑗,𝑧)|𝐽 |𝑑𝜉1𝑑𝜉2𝑑𝜉3. (2.51)

The global derivatives 𝑁𝑖,𝑘, with 𝑘 = 𝑥,𝑦,𝑧, are determined by the inverse Jacobian matrix as⎧⎪⎨⎪⎩
𝑁𝑖,𝑥

𝑁𝑖,𝑦

𝑁𝑖,𝑧

⎫⎪⎬⎪⎭ =

⎡⎢⎣ 𝑗11 𝑗12 𝑗13

𝑗21 𝑗22 𝑗23

𝑗31 𝑗32 𝑗33

⎤⎥⎦
⎧⎪⎨⎪⎩

𝑁𝑖,𝜉1

𝑁𝑖,𝜉2

𝑁𝑖,𝜉3

⎫⎪⎬⎪⎭ . (2.52)

Substituting Eq. (2.39) in Eq. (2.50), the three-dimensional mass matrix can be written in
terms of the one-dimensional mass matrices as

𝑀3𝐷
𝑖𝑗 =

∫︁ 1

−1

𝜙𝑎(𝜉1)𝜙𝑝(𝜉1)

(︂∫︁ 1

−1

𝜙𝑏(𝜉2)𝜙𝑞(𝜉2)

(︂∫︁ 1

−1

𝜙𝑐(𝜉3)𝜙𝑟(𝜉3)|𝐽 |𝑑𝜉3
)︂
𝑑𝜉2

)︂
𝑑𝜉1

= Σ𝑛1
𝑘=1Σ

𝑛2
𝑙=1Σ

𝑛3
𝑚=1𝑀

1𝐷
𝑎𝑝 (𝜉1𝑘)𝑀1𝐷

𝑏𝑞 (𝜉2𝑙)𝑀
1𝐷
𝑐𝑟 (𝜉3𝑚)|𝐽𝑘𝑙𝑚|𝑊𝑚𝑊𝑙𝑊𝑘, (2.53)

29



where 𝑛1, 𝑛2, 𝑛3, 𝑊𝑘, 𝑊𝑙, and 𝑊𝑚 are respectively the number of integration points and weights
in the local directions 𝜉1, 𝜉2 and 𝜉3.

Analogously, we obtain the coefficients of the three-dimensional Poisson stiffness matrix in
terms of the one-dimensional coefficients replacing Eqs. (2.39) and (2.52) in Eq. (2.51). Therefore,

𝐾3𝐷
𝑖𝑗 = Σ𝑛1

𝑘=1Σ
𝑛2
𝑙=1Σ

𝑛3
𝑚=1

[︀
(𝑗211 + 𝑗221 + 𝑗231)𝑘𝑙𝑚𝐾

1𝐷
𝑎𝑝 (𝜉1𝑘)𝑀1𝐷

𝑏𝑞 (𝜉2𝑙)𝑀
1𝐷
𝑐𝑟 (𝜉3𝑚)

+ (𝑗212 + 𝑗222 + 𝑗232)𝑘𝑙𝑚𝑀
1𝐷
𝑎𝑝 (𝜉1𝑘)𝐾1𝐷

𝑏𝑞 (𝜉2𝑙)𝑀
1𝐷
𝑐𝑟 (𝜉3𝑚)

+ (𝑗213 + 𝑗223 + 𝑗233)𝑘𝑙𝑚𝑀
1𝐷
𝑎𝑝 (𝜉1𝑘)𝑀1𝐷

𝑏𝑞 (𝜉2𝑙)𝐾
1𝐷
𝑐𝑟 (𝜉3𝑚) (2.54)

+ 𝐽1𝑘𝑙𝑚(𝐷1𝐷
𝑎𝑝 (𝜉1𝑘)𝐷1𝐷

𝑞𝑏 (𝜉2𝑙)𝑀
1𝐷
𝑐𝑟 (𝜉3𝑚) +𝐷1𝐷

𝑝𝑎 (𝜉1𝑘)𝐷1𝐷
𝑏𝑞 (𝜉2𝑙)𝑀

1𝐷
𝑐𝑟 (𝜉3𝑚))

+ 𝐽2𝑘𝑙𝑚(𝐷1𝐷
𝑎𝑝 (𝜉1𝑘)𝑀1𝐷

𝑏𝑞 (𝜉2𝑙)𝐷
1𝐷
𝑟𝑐 (𝜉3𝑚) +𝐷1𝐷

𝑝𝑎 (𝜉1𝑘)𝑀1𝐷
𝑏𝑞 (𝜉2𝑙)𝐷

1𝐷
𝑐𝑟 )(𝜉3𝑚)

+ 𝐽3𝑘𝑙𝑚(𝑀1𝐷
𝑎𝑝 (𝜉1𝑘)𝐷1𝐷

𝑏𝑞 (𝜉2𝑙)𝐷
1𝐷
𝑟𝑐 (𝜉3𝑚) +𝑀1𝐷

𝑎𝑝 (𝜉1𝑘)𝐷1𝐷
𝑞𝑏 (𝜉2𝑙)𝐷

1𝐷
𝑐𝑟 (𝜉3𝑚))

]︀
|𝐽𝑘𝑙𝑚|𝑊𝑚𝑊𝑙𝑊𝑘,

where

𝐽1𝑘𝑙𝑚 = (𝑗11𝑗12 + 𝑗21𝑗22 + 𝑗31𝑗32),

𝐽2𝑘𝑙𝑚 = (𝑗11𝑗13 + 𝑗21𝑗23 + 𝑗31𝑗33), (2.55)

𝐽3𝑘𝑙𝑚 = (𝑗12𝑗13 + 𝑗22𝑗23 + 𝑗32𝑗33).

The terms of the Jacobian matrix for undistorted elements are constant and can be factored from
the integral sign. Thus, Eqs. (2.53) and (2.55) can be rewritten as

𝑀3𝐷
𝑖𝑗 = |𝐽 |

[︀
(Σ𝑛1

𝑘=1𝑀
1𝐷
𝑎𝑝 (𝜉1𝑘)𝑊𝑘)(Σ𝑛2

𝑙=1𝑀
1𝐷
𝑏𝑞 (𝜉2𝑙)𝑊𝑙)(Σ

𝑛3
𝑚=1𝑀

1𝐷
𝑐𝑟 (𝜉3𝑚)𝑊𝑚)

]︀
= |𝐽 |

[︀
𝑀1𝐷

𝑎𝑝 (𝜉1)𝑀
1𝐷
𝑏𝑞 (𝜉2)𝑀

1𝐷
𝑐𝑟 (𝜉3)

]︀
, (2.56)

𝐾3𝐷
𝑖𝑗 = |𝐽 |

[︀
(𝑗211 + 𝑗221 + 𝑗231)𝐾

1𝐷
𝑎𝑝 (𝜉1)𝑀

1𝐷
𝑏𝑞 (𝜉2)𝑀

1𝐷
𝑐𝑟 (𝜉3)

+ (𝑗212 + 𝑗222 + 𝑗232)𝑀
1𝐷
𝑎𝑝 (𝜉1)𝐾

1𝐷
𝑏𝑞 (𝜉2)𝑀

1𝐷
𝑐𝑟 (𝜉3)

+ (𝑗213 + 𝑗223 + 𝑗233)𝑀
1𝐷
𝑎𝑝 (𝜉1)𝑀

1𝐷
𝑏𝑞 (𝜉2)𝐾

1𝐷
𝑐𝑟 (𝜉3)

]︀
. (2.57)

For straight-side elements, mapping is calculated by using only the vertex shape functions of the
standard basis.
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2.5.3 Sparsity of the matrices

In this section, we present the sparsity patterns for the mass, Poisson stiffness, and Helmholtz
matrices obtained with the standard (ST) and the simultaneously diagonal and minimum energy
(SDME) bases for two and three-dimensional elements. The degrees of freedom are numbered
beginning with boundary modes followed by the internal modes of the elements.

To study the sparsity patterns for 2𝐷 and 3𝐷 undistorted elements, we consider the domains
Ω = [0,1] × [0,1] and Ω = [0,1] × [0,1] × [0,1]. The distorted elements illustrated in Fig. 2.17 are
also considered.

(0, 0) (0.2, 0)

(0.232, 0.203)(0, 0.2)

(a)

(0, 0, 0) (0.5, 0, 0)

(0.5, 0.5, 0)(0, 0.5, 0)

(0, 0, 0.5) (0.5, 0, 0.5)

(0.693, 0.531, 0.694)
(0, 0.5, 0.5)

(b)

Figure 2.17: Distorted 2𝐷 (a) and 3𝐷 (b) elements.

Fig. 2.18 shows the sparsity patterns of the mass matrices obtained using the ST and SDME
bases for two-dimensional elements with

[︀
𝛼𝑀

]︀
and polynomial order 𝑃 = 10. Note that the mass

matrix obtained with the SDME basis is much sparser. Moreover, it is observed that the boundary
and internal modes of the mass matrix with SDME basis are decoupled as shown in Fig. 2.18(b).
The same behavior is obtained for the sparsity patterns of the mass matrix for 3𝐷 elements as
illustrated in Fig. 2.19. In both cases, the distortion of the elements generates coupling of boundary
and internal coefficients of the mass matrix.

Figs. 2.20 and 2.21 illustrate the sparsity patterns of the Poisson stiffness matrices for the
2𝐷 and 3𝐷 elements. As discussed in the previous section, the stiffness matrices for two and
three-dimensional elements can be obtained using the one-dimensional mass and stiffness matrices.
Using

[︀
𝛼𝐾

]︀
, the boundary and internal blocks of the one-dimensional mass matrices are coupled.

Consequently, the 2𝐷 and 3𝐷 stiffness matrices have coupled internal and boundary modes as may
be seen in Figs. 2.20(b) and 2.21(b). For the distorted element, the sparsity pattern obtained using
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Figure 2.18: Sparsity patterns of 2𝐷 mass matrices using the standard (a) and simultaneously diag-
onal and minimum energy bases (b) for undistorted element and polynomial order 𝑃 = 10. Sparsity
patterns of 2𝐷 mass matrices using the standard (c) and simultaneously diagonal and minimum en-
ergy bases (d) for distorted element and polynomial order 𝑃 = 10. All results with SDME used[︀
𝛼𝑀

]︀
.
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Figure 2.19: Sparsity patterns of 3𝐷 mass matrices with standard (a) and SDME bases (b) for
undistorted element and polynomial order 𝑃 = 10. Sparsity patterns of 3𝐷 mass matrices with
standard (c) and SDME bases (d) for distorted element and polynomial order 𝑃 = 10. All results
with SDME used

[︀
𝛼𝑀

]︀
.

the SDME basis is completely full. Observe that using the SDME basis, the block of internal modes
of the stiffness matrices maintains a diagonal profile for the 2𝐷 and 3𝐷 undistorted elements, which
makes easier the calculation of the Schur complement.
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Figure 2.20: Sparsity patterns of 2𝐷 Poisson stiffness matrices with standard (a) and SDME bases
(b) for undistorted element and polynomial order 𝑃 = 10. Sparsity pattern of 2𝐷 stiffness matrices
with standard basis (c) for distorted element and polynomial order 𝑃 = 10.

The sparsity patterns for Helmholtz matrices obtained for the undistorted and distorted ele-
ments of Fig. 2.17 are shown in Figs. 2.22 and 2.23. In this case, the SDME basis is constructed
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Figure 2.21: Sparsity patterns of 3𝐷 Poisson stiffness matrices with standard (a) and SDME bases
(b) for undistorted element and polynomial order 𝑃 = 10. Sparsity pattern of 3𝐷 stiffness matrices
with standard basis (c) for distorted element and polynomial order 𝑃 = 10.

such that the one-dimensional mass and stiffness matrices have coupled boundary and internal
modes. However, when added to the construction of the one-dimensional Helmholtz matrices, the
boundary and internal modes are uncoupled. As shown in Figs. 2.22(b) and 2.23(b), the boundary
and internal modes are coupled for 2𝐷 and 3𝐷 elements.
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Figure 2.22: Sparsity patterns of 2𝐷 Helmholtz matrices with standard (a) and minimum energy
bases (b) for undistorted element and polynomial order 𝑃 = 10. Sparsity pattern of 2𝐷 Helmholtz
matrices with standard basis (c) for distorted element and polynomial order 𝑃 = 10.

2.6 Numerical results

The following norms are used, respectively, to study the convergence of the 3𝐷 projection,
Poisson, and Helmholtz problems.

‖𝑢‖𝐿2 =

(︂∫︁
Ω

𝑢2𝑑Ω

)︂ 1
2

, (2.58)
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Figure 2.23: Sparsity patterns of 3𝐷 Helmholtz matrices with standard (a) and SDME bases (b) for
undistorted element and polynomial order 𝑃 = 10. Sparsity pattern of 3𝐷 Helmholtz matrices with
standard basis (c) for distorted element and polynomial order 𝑃 = 10.

‖𝑢‖𝐸 =

(︂∫︁
Ω

(∇𝑢)2𝑑Ω

)︂ 1
2

, (2.59)

‖𝑢‖𝐻 =

(︂∫︁
Ω

(∇𝑢)2 + 𝜆𝑢2𝑑Ω

)︂ 1
2

. (2.60)

The standard basis (ST), standard basis with diagonal preconditioner (DP-ST), the simultane-
ously diagonal and minimum energy basis (SDME), and the simultaneously diagonal and minimum
energy basis with diagonal precontitioner (DP-SDME) were considered. We used the conjugate
gradient method with tolerance 10−11 for solving the systems of equations after applying the Schur
complement. For 3𝐷 domains, meshes with 8 hexahedra were used.

In all examples, the relative percentage reduction 𝐼 in the number of iterations is given by

𝐼 =
(𝑛𝑆𝑇 − 𝑛𝑆𝐷𝑀𝐸)

𝑛𝑆𝑇

100, (2.61)

where 𝑛𝑆𝑇 and 𝑛𝑆𝐷𝑀𝐸 are the number of iterations using the ST and SDME bases. The relative
percentage reduction in number of iterations obtained using the diagonal preconditioner is indicated
by 𝐷𝑃𝐼 . We compute the relative percentage reduction in solution time as

𝐼 =
(𝑡𝑆𝑇 − 𝑡𝑆𝐷𝑀𝐸)

𝑡𝑆𝑇
100, (2.62)

where 𝑡𝑆𝑇 and 𝑡𝑆𝐷𝑀𝐸 are the solution time using the ST and SDME bases. The relative percentage
reduction in solution time obtained using the diagonal preconditioner is indicated by 𝐷𝑃𝐼 .
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2.6.1 Projection Problem

Consider the function 𝑢(𝑥,𝑦,𝑧) = e2𝑥 sin(𝜋𝑦 + 1)2 in the domain Ω = [0,1] × [0,1] × [0,1].
The undistorted and distorted meshes with 8 hexahedra illustrated in Fig. 2.24 were used.

(a) (b)

Figure 2.24: Undistorted (a) and distorted (b) meshes with 8 hexahedra.

The sparsity patterns of the global mass matrices for the distorted and undistorted meshes
are shown in Fig. 2.25. It is observed in Fig. 2.25(c) that the boundary and internal blocks of
the mass matrix are uncoupled for the undistorted mesh when using

[︀
𝛼𝑀

]︀
for construction of the

simultaneously diagonal and minimum energy bases. The number of non-zero coefficients for the
distorted meshes is about half of the number for the standard basis.

Figs. 2.26(a) and 2.26(c) show the number of iterations required for convergence using the
conjugate gradient method in terms of the polynomial order for the undistorted and distorted meshes
respectively. In this case and without diagonal preconditioner, the choice of the parameter 𝑘 = 0

for the simultaneouly diagonalization of the internal modes is better than the choice 𝑘 = 1/2 with
undistorted mesh. With distorted mesh, for the range of polynomial order used, the number of
iterations with the choice 𝑘 = 1/2 was smaller than that observed with the choice of the 𝑘 = 0.
When using diagonal preconditioner, the number of iterations is similar for both 𝑘 parameters,
even in distorted mesh. The condition numbers of the mass matrices are also shown in terms of
polynomial order in Figs.2.26(b) and 2.26(d). In both cases, the SDME basis presented the best
performance for the condition number of the global mass matrices after Schur complement.

This improvement can be also seen for the relative percentage reduction of the number of
iterations for convergence. In Fig. 2.27(a), there is a reduction of more than 80% for the range
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Figure 2.25: Sparsity patterns of global mass matrices for the 3𝐷 projection problem with undis-
torted mesh using ST (a) and SDME (c) bases with

[︀
𝛼𝑀

]︀
. Sparsity patterns of global mass matrices

for the 3𝐷 projection problem with distorted mesh using ST (b) and SDME (d) bases for polyno-
mial order 𝑃 = 10.

37



2 4 6 8 10
10

0

10
1

10
2

10
3

10
4

10
5

Element Order

N
um

be
r 

of
 It

er
at

io
ns

 

 

ST
DP−ST
SDME
DP−SDME
SDME−k0
DP−SDME−k0

(a)

2 4 6 8 10
10

0

10
2

10
4

10
6

10
8

10
10

Element Order

C
on

di
tio

n 
nu

m
be

r

 

 

ST
DP−ST
SDME
DP−SDME
SDME−k0
DP−SDME−k0

(b)

2 4 6 8 10
10

1

10
2

10
3

10
4

10
5

Element Order

N
um

be
r 

of
 It

er
at

io
ns

 

 

ST
DP−ST
SDME
DP−SDME
SDME−k0
DP−SDME−k0

(c)

2 4 6 8 10
10

0

10
2

10
4

10
6

10
8

10
10

Element Order

C
on

di
tio

n 
nu

m
be

r

 

 

ST
DP−ST
SDME
DP−SDME
SDME−k0
DP−SDME−k0

(d)

Figure 2.26: Number of iterations for convergence for the 3𝐷 projection problem with undistorted
(a) and distorted (c) meshes. Condition number of the global mass matrices for the 3𝐷 projection
problem with Schur complement to the simultaneously diagonal and minimum energy basis with
undistorted (b) and distorted (d) meshes.
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of polynomial order used for the SDME basis compared to the ST basis. For the problem with
distorted mesh, the reduction in the number of iterations was also significant and similar to that one
of the undistorted mesh as shown in Fig. 2.27(b).
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Figure 2.27: Relative percentage reduction in the number of iterations compared with and without
the use of diagonal preconditioner for the 3𝐷 projection problem with undistorted (a) and distorted
(b) meshes.

This results confirm the efficiency of the procedure of the simultaneous diagonal and mini-
mum energy. The results are similar to those ones obtained with the Dong’s basis and 𝑘 = 1/2. In
next section we present the results in Poisson problems.

2.6.2 Poisson Problem

In this section, we consider the solution of Poisson problem in 3𝐷 meshes. The results for the
2𝐷 case are similar and will not be presented here. We used also the fabricated solution 𝑢(𝑥,𝑦) =

sin(𝜋𝑥) sin(𝜋𝑦), with homogeneous boundary conditions, in the domain Ω = [0,1] × [0,1] × [0,1]

and the undistorted mesh with 8 hexahedra illustrated in Fig. 2.24(a).

The sparsity patterns of the global stiffness matrices are shown in Fig. 2.28. It is observed
that the stiffness matrices obtained using the SDME basis have a similar profile to the ST basis,
but with a greater number of non-zero coefficients. As discussed in Section 2.3, the procedure
for the construction of the SDME basis with

[︀
𝛼𝐾

]︀
for Poisson problems does not decouple the
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internal and boundary blocks of the one-dimensional mass matrices. This affects the sparsity of the
stiffness matrices in 2𝐷 and 3𝐷 problems. As shown in Eqs. (2.47) and (2.55), the 2𝐷 and 3𝐷

stiffness matrices are defined in terms of the one-dimensional mass matrices, which in this case
have internal and boundary blocks coupled. This makes the global stiffness matrix denser than that
one obtained with the standard basis. But the internal block is still diagonal and the calculation of
the Schur complement does not require the matrix inversion.
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Figure 2.28: Sparsity patterns of the global stiffness matrices for the 3𝐷 Poisson problem with
undistorted mesh using the ST (a) and SDME (b) bases and polynomial order 𝑃 = 10. The matrix
blocks related to the free dofs and boundary conditions are indicated.

Regarding the condition numbers of the global matrices for the 3𝐷 undistorted mesh, the
SDME basis showed better conditioning, as shown in Fig. 2.29(b). The SDME basis was also
superior to the ST basis in terms of CG iterations as illustrated in Fig. 2.29(a). The choice of the
parameter 𝑘 = 1 did not have no advantage over 𝑘 = 1/2. The construction of the 2𝐷 or 3𝐷

stiffness matrix is dependent of the one-dimensional mass and stiffness matrices. For 𝑘 = 1, the
condition number of the one-dimensional mass matrix is larger than the one with 𝑘 = 1/2. This
fact affects the increase in the condition number for the 3𝐷 stiffness matrix.

The relative percentage reduction in the number of iterations was about 70% comparing the
SDME and ST bases without the use of preconditioner and 30% with the use of diagonal precondi-
tioner for polynomial order 𝑃 = 10, as illustrated in Fig. 2.30(b). The relative percentage reduction
in solution time reached 50% comparing the bases without preconditioner and was slightly above
10% using diagonal preconditioner for the polynomial order 𝑃 = 10.

We also considered the same problem using the hexahedra distorted mesh shown in Fig.
2.24(b). The global stiffness matrices with the SDME basis have more non-zero coefficients as
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Figure 2.29: Number of CG iterations for the 3𝐷 Poisson problem with undistorted mesh (a). Con-
dition number of the global stiffness matrices for the 3𝐷 Poisson problem after Schur complement
and with undistorted mesh (b).
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Figure 2.30: Relative percentage reduction in solution time (a) and number of iterations (b) with
and without the use of diagonal preconditioner for the 3𝐷 Poisson problem with undistorted mesh.
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illustrated in Fig. 2.31. Fig. 2.32 illustrates the behavior of the number of iterations for convergence
and the condition number of the global stiffness matrices after Schur complement, in terms of the
polynomial order used in the approximation. Note that the use of diagonal preconditioner with
SDME basis reduced the number of iterations required for convergence as compared to the use
of diagonal preconditioner applied to the ST basis, as show in Fig. 2.32(a). This reduction was
observed in terms of the number of iterations, as shown in Fig. 2.33(b) for polynomial orders
𝑃 = 6, 8, 10.

(a) (b)

Figure 2.31: Sparsity patterns of the global stiffness matrices for the 3𝐷 Poisson problem with
distorted mesh using ST basis (a) and SDME basis (b) and polynomial order 𝑃 = 10.
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Figure 2.32: Number of iterations for the 3𝐷 Poisson problem with distorted mesh (a). Condition
number of the global stiffness matrices for the 3𝐷 Poisson problem and distorted mesh (b).

However, the diagonal preconditioner worked well for both bases in terms of the number of
iterations when compared to the standard CG as illustrated in Figs. 2.33(b) and 2.32(a).
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Figure 2.33: Relative percentage reduction in the solution time (a) and the number of iterations
(b) with and without the use of diagonal preconditioner for the 3𝐷 Poisson problem with distorted
mesh.

This results shows the equivalence for the SDME basis with
[︀
𝛼𝐾

]︀
and the Basis-LV pre-

sented in (Zheng and Dong, 2011). In next section we present the results obtained with
[︀
𝛼𝐻

]︀
for

construction the SDME basis.

2.6.3 Helmholtz problem

We consider the fabricated solution 𝑢(𝑥,𝑦) = sin(𝜋𝑥) sin(𝜋𝑦) to the 3𝐷 domain using the
distorted mesh illustrated in Fig. 2.24(b). The Dirichlet conditions were imposed on the boundaries
with 𝜆 = 1. For the construction of the SDME basis, we used

[︀
𝛼𝐻

]︀
and 𝑘 = 1/2.

The approximation errors in terms of polynomial order are shown in Fig. 2.34. By increasing
the polynomial order, the error decreases exponentially until 𝑃 = 8. The machine accuracy is
achieved using the SDME basis with diagonal preconditioner (DP-SDME).

The sparsity patterns for the 3𝐷 Helmholtz problems, using distorted mesh, are shown in
Fig. 2.35. We observe a larger number of non-zero coefficients for the Helmholtz matrices using
the SDME basis.
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Figure 2.34: Approximation error for the SDME and ST bases in 3𝐷 Helmholtz problems with
distorted mesh.
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Figure 2.35: Sparsity patterns for the 3𝐷 Helmholtz matrices using the ST (a) and SDME (b) bases
with distorted mesh and polynomial order 𝑃 = 10.
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Fig. 2.36 illustrates the behavior of the number of iterations and the relative percentage re-
duction in the number of iterations for the undistorted mesh and 𝜆 = 1. The proposed SDME basis
presented a reduction of the number of iterations compared to the ST basis, according to Figs.
2.36(a). Fig. 2.36(b) illustrates the relative percentage reduction in the number of iterations for
convergence for the conjugate gradient methods with the distorted mesh. The relative percentage
reduction in the number of iterations using the SDME basis with the diagonal preconditioner was
about 40% when using the polynomial order 𝑃 = 8.
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Figure 2.36: Number of iterations (a) and relative percentage reduction in the number of iterations
with and without diagonal preconditioner (b) in terms of the polynomial order for the 3𝐷 Helmholtz
problem with distorted mesh.

The solution time in terms of the polynomial approximation order is given in Fig. 2.37 for
distorted mesh. We observed a reduction in time required for convergence of the solution for SDME
basis. In this case, the solution time for the proposed basis was lower than the ST basis as shown in
Fig. 2.37(a). The relative percentage reduction in solution time was over 70% using SDME basis
without diagonal preconditioner and 𝑃 = 10 as illustrated in Fig. 2.37(b). Using the preconditioner,
the relative reduction in solution time was over 40% for the same polynomial order.

We solved the Helmholtz equation with different 𝜆 values for the distorted mesh (Fig. 2.24(b))
using the fabricated solution 𝑢(𝑥,𝑦) = sin(𝜋𝑥) sin(𝜋𝑦). Fig. 2.38 shows the number of iterations
of the conjugate gradient solver obtained with the SDME with

[︀
𝛼𝐻

]︀
and ST bases using diagonal

preconditioner. For comparison, we included the results obtained with SDME using
[︀
𝛼𝑀

]︀
(SDME-

M). Note that for small 𝜆 values, the number of iterations using the SDME basis is smaller when
compared with the ST basis but still larger than SDME-M as shown Fig. 2.38(a). For large 𝜆 values,
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Figure 2.37: Solution time (a) and relative percentage reduction in solution time (b) for the 3𝐷
Helmholtz problem in terms of the polynomial order with distorted mesh.

the difference is even more remarkable when comparing to the ST basis and better than the SDME-
M basis. This results indicates the efficiency of the basis for large 𝜆 values and

[︀
𝛼𝐻

]︀
.
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Figure 2.38: Number of iterations in terms of the polynomial order for the 3𝐷 Helmholtz problem
with distorted mesh and different values of 𝜆.

2.6.4 Linear elasticity

Consider the domain Ω = [−1, 1]× [−1, 1]× [−1, 1] discretized with 4 elements as shown in
Fig. 2.39. We adopt Young modulus 𝐸 = 1, density 𝜌 = 1, and Poisson ratio 𝜈 = 0.25 and assume
the following fabricated solution for the displacement field as a function of time 𝑡
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(a) (b)

Figure 2.39: Undistorted (a) and distorted (b) meshes for 3𝐷 linear elasticity.

𝑢𝑥 = (1 − 𝑥2)(1 − 𝑦2)(1 − 𝑧2) sin(2𝜋𝑡),

𝑢𝑦 = 0, (2.63)

𝑢𝑧 = 0.

For small strain, the body force field is given by

𝑓𝑥 =
4 sin(2𝜋𝑡)

5

{︀
(𝑥2 − 1)(𝑦2 − 1)

[︀
1 + 5𝜋2(𝑧2 − 1)

]︀
+
[︀
(𝑥2 − 1) + 3(𝑦2 − 1)

]︀
(𝑧2 − 1)

}︀
,

𝑓𝑦 =
sin(2𝜋𝑡)

5

[︀
16𝑥𝑦(𝑧2 − 1)

]︀
, (2.64)

𝑓𝑧 =
sin(2𝜋𝑡)

5

[︀
16𝑥𝑧(𝑦2 − 1)

]︀
.

Homogeneous boundary conditions are applied on all faces of the domain and the initial conditions
in terms of displacement and velocity are given by

𝑢𝑥 = 0,

𝑢𝑦 = 0,

𝑢𝑧 = 0, (2.65)

𝑢𝑥 = 2𝜋(1 − 𝑥2)(1 − 𝑦2)(1 − 𝑧2) cos(2𝜋𝑡),

𝑢𝑦 = 0,

𝑢𝑧 = 0.

For the meshes shown in Fig. 2.39, the solution time was obtained using the explicit central differ-
ence method with time interval [𝑡0; 𝑡𝑓 ] = [0; 0.12] and ∆𝑡 = 0.0012. In such cases, we used

[︀
𝛼𝑀

]︀
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and 𝑘 = 1/2 for the construction of the shape functions.

We also considered the Schur complement and diagonal preconditioner. The number of itera-
tions was obtained as the sum of the number of iterations at each time step. As shown in Fig. 2.40,
the number of iterations in terms of polynomial order is always smaller with the SDME basis to the
range of 𝑃 used. The reduction in the number of iterations is larger than 95% for distorted meshes
and 98% for undistorted meshes and 𝑃 = 4. These results indicate a higher efficiency of the use of
SDME basis.
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Figure 2.40: Number of iterations for convergence using undistorted (a) and distorted (b) meshes
in 3𝐷 linear elasticity.

Figure 2.41: Mesh used for the conrod.

We also consider a conrod of an internal combustion engine discretized with a mesh of 768

hexahedra, as shown in Fig. 2.41. The internal nodes of the small end were fixed. The surface pres-
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sures in directions 𝑥 and 𝑦 are applied on the internal surface of the big end. The load corresponds
to a complete combustion engine cycle and was obtained using a dynamic rigid body model for the
piston-conrod crankshaft system (Carbonara et al., 2009).

The explicit central difference method was used with time interval [𝑡0; 𝑡𝑓 ] = [0; 5.454 × 10−3]

and ∆𝑡 = 6.06 × 10−7. Furthermore, Schur complement and diagonal preconditioner were applied
to obtain the solution at each time step. In our analyzes the number of iterations per load case was
significantly smaller when using the SDME-M basis. The average number of iterations was 23.24

per load case for the standard basis and polynomial order 𝑃 = 2. Using SDME basis this number
was 2.22. The reduction in the number of iterations per load case was about 90%. Similar results
was obtained for polynomial order 𝑃 = 3. In this case, the average number of iterations was 27.18

for standard and 1.65 for SDME bases.

2.7 Conclusion

In this paper we presented the construction of high-order bases for structured elements con-
sidering the procedure of simultaneous diagonalization for internal modes and minimum energy
orthogonalization to boundary modes. We shown that the procedure of orthogonalization can be
generalized with the choice of the appropriate norm. This feature allows, in accordance with norm,
obtain some high-order bases proposed in the literature, considering the simultaneously diagonal of
internal modes and orthogonalization of the boundary modes procedure. The new basis functions
is proposed when use the Helmholtz norm for construction the boundary modes with minimum
energy orthogonalization. This particular basis for the one-dimensional Helmholtz problem uncou-
pled vertex and internal matrix blocks and is dependent of the parameter 𝜆. For a given choice this
parameter, exhibits a smaller condition number comparing with standard or Dong bases. Similar
results is obtained for 3𝐷 Helmholtz problems and larger efficiency in terms of the number of
iterations and numerical conditioning of the global matrices compared to the standard basis.

For construct the 2𝐷 and 3𝐷 mass and Poisson stiffness matrices, we presented the construc-
tion in terms of the one-dimensional mass and stiffness matrices for quadrilateral and hexahedral
structural elements in distorted domains. This procedure interesting because consumes less memory
for the solver, since we only need to store the one-dimensional shape functions and their derivatives
calculated on one-dimensional integration points.
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Numerical experiments for undistorted and distorted 3𝐷 meshes were made to verify the
efficiency of this bases functions in projection, Poisson, Helmholz and linear elasticity problems.
In projection and Poisson problems the application of the procedure of the minimum energy with[︀
𝛼𝑀

]︀
and

[︀
𝛼𝐾

]︀
is more efficient in terms of the condition number and number of interations for

solver when comparing to standard bases. This results are similar to presented in literature. We
also shown that for 3𝐷 projection problems, the choice of the parameter 𝑘 = 0 in procedure of
the simultaneous diagonalization can improve the number of interations for convergence. For 3𝐷

Poisson problems the use of the parameter 𝑘 = 1 in procedure of the simultaneous diagonalization
not improve the number of iterations for convergence because the condition number of the one-
dimensional mass matrix is larger than obtained with 𝑘 = 0.

In transient linear elastic problems with explicit central difference methods, the use of the[︀
𝛼𝑀

]︀
is convenient due to dependence of the mass matrix to solver. The diagonal preconditioner

was used to improved the performance of the bases.

The procedure proposed has been extended to non-structured elements.
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3 TRANSIENT LINEAR ELASTIC ANALYSIS USING MINIMUM EN-
ERGY HIGH-ORDER EXPANSION BASES

3.1 Introduction

The use of high-order shape functions for the FEM is convenient because of the higher con-
vergence rate obtained with the increase of the polynomial order for problems with smooth solu-
tions. There has been an increasing number of elasticity applications the high-order FEM method
in the literature, such as Reissner-Mindlin plates, problems with large displacements and strains,
elastoplasticity, nearly-incompressible, hyperelasticity, contact, dynamic, and powder metallurgy
(Krause et al., 1995; Nogueira Jr and Bittencourt, 2007; Gharti et al., 2012; Yu et al., 2012; Dong
and Yosibash, 2009; Konyukhov and Schweizerhof, 2009; Heisserer et al., 2008).

Pioneering work involving the high-order FEM for three-dimensional linear elasticity is at-
tributed to (Zienkiewicz et al., 1970), where hierarchical high-order shape functions were used
in regions with elevated gradients of the considered domain. Since then, several families of shape
functions for the high-order FEM were proposed in the literature. Regarding unstructured elements,
hierarchical shape functions were derived for triangular elements using barycentric coordinates
(Peano, 1976). The use of orthogonal Legendre polynomials to construct shape functions was pro-
posed by (Babuska et al., 1981), which obtained a block-diagonal stiffness matrix and improved
the sparsity profile and numerical conditioning of the matrix system. In fact, as shown by (Abdul-
Rahman and Kasper, 2007), the condition number for unstructured elements has an exponential
increase with the polynomial order. Other works, such as (Carnevali et al., 1993) used orthogonal-
ity properties to obtain local matrices with better conditioning and sparsity profiles.

The use of the tensor product of one-dimensional Jacobi orthogonal polynomials to build hi-
erarchical shape functions for structured and unstructured elements was introduced by (Karniadakis
and Sherwin, 2005). Moreover, a study comparing some modal basis and the applicability of the
high-order FEM for nonlinear and linear elastic problems using three-dimensional unstructured
meshes is presented in (Nogueira Jr and Bittencourt, 2007).

The choice of the weights of Jacobi polynomials to construct basis functions can influence
the sparsity of the element mass and stiffness matrices. Therefore, an appropriate choice can re-

51



sult in better properties regarding sparsity profiles and numerical conditioning (Bittencourt et al.,
2007a). Moreover, the weights of the Gauss-Jacobi, Gauss-Radau-Jacobi, and Gauss-Lobatto-
Jacobi quadratures have an important correlation with the number of required points to integrate
the element matrices numerically (Bittencourt and Vazquez, 2009).

Techniques such as Schur complement and simultaneous diagonalization were implemented
as an effective way to obtain better sparsity and numerical conditioning of mass and stiffness ma-
trices (Babuska and Guo, 1989; Shen and Wang, 2007). Schur complement allows better condition-
ing and improves the performance of iterative solvers for the linear system of equations (Babuska
and Guo, 1989). In (Šolín and Vejchodskỳ, 2008) simultaneous diagonalization was used to con-
struct internal functions for the high-order FEM which makes simultaneously diagonal the one-
dimensional Laplace stiffness and mass matrices. Also, in (Vejchodskỳ, 2010), a minimum energy
orthogonalization technique was presented to construct one-dimensional basis functions. As the
Schur complement, the application of the minimum energy procedure results in the orthogonality
between the boundary and internal modes.

A modification of the construction of the one-dimensional high-order shape functions for
structured elements was proposed by (Zheng and Dong, 2011) using simultaneous diagonalization.
In this case, the internal shape functions were constructed in such way that the respective internal
mass and stiffness matrices have the same condition number and are simultaneously diagonal. The
Gram-Schmidt orthogonalization was used to decouple the boundary and internal modes when
constructing the mass matrix. This is important to obtain an efficient high-order basis in terms of
conditioning and number of iterations required by the conjugate gradient method to solve the global
matrix system.

Traditionally, sum factorization and differentiation collocation have been used as effective
procedures to obtain the two- and three-dimensional shape functions and their derivatives from the
values of the one-dimensional shape functions and their derivatives on the integrations points. In
this paper, we present an alternative procedure to calculate the coefficients of the two- and three-
dimensional mass and elastic stiffness matrices in terms of the product of the local one-dimensional
element matrices. The advantages of this procedure are the use of only one-dimensional shape
functions and their derivatives, one-dimensional integration rules and better computational perfor-
mance. We refer to this method as 1𝐷 matrices, while the fully tensorial procedure is referred as
standard.
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In this paper, we present a simulataneously diagonal and minimum energy high-order ex-
pansion basis applied to transient elastic analysis using structured elements. For this purpose, the
internal modes are constructed in such way that the internal 1𝐷 mass and stiffness matrices have the
same condition number. The minimum energy orthogonalization with Helmholtz and mass norms
is used to decouple the boundary and internal modes for a transient three-dimensional problem
in linear elasticity using the Newmark method. We perform numerical tests to show the perfor-
mance when using the 1𝐷 matrices procedure. We investigate the performance of the proposed
basis, comparing it to the standard basis with Jacobi polynomials given in (Karniadakis and Sher-
win, 2005). We also use the 1𝐷 matrices procedure to construct the element matrices in terms of
the one-dimensional mass, stiffness and mixed matrices. Furthermore, we propose the use of the
local undistorted mass matrix as a preconditioner and compare it with the use of the diagonal and
symmetric successive over relaxation (SSOR) preconditioners.

3.2 Minimum Energy High Order Basis

In this section we present the construction of shape functions based on simultaneously diag-
onalization and minimum energy procedures. A special construction for the one-dimensional basis
functions using the Helmholtz norm is considered for application in dynamic problems using the
Newmark method.

3.2.1 One-dimensional basis function

Consider the one-dimensional local element in the domain −1 ≤ 𝜉1 ≤ 1. The hierarchical
standard one-dimensional basis of polynomial order 𝑃 is defined as

𝜓𝑝(𝜉1) =

⎧⎪⎨⎪⎩
1
2
(1 − 𝜉1) 𝑝 = 0

1
2
(1 + 𝜉1) 𝑝 = 1

1
4
(1 − 𝜉1)(1 + 𝜉1)𝒫𝛼,𝛽

𝑝−2(𝜉1) 2 ≤ 𝑝 ≤ 𝑃

, (3.1)

where 𝒫𝛼,𝛽
𝑝 (𝜉) is the Jacobi polynomial of order 𝑃 and weights (𝛼, 𝛽). The Jacobi basis is related

to the element topological entities such as vertices, edges and faces. The one-dimensional local
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coefficients of the mass and stiffness matrices are respectively determined by

𝑀𝑝𝑞 =

∫︁ 1

−1

𝜓𝑝(𝜉1)𝜓𝑞(𝜉1)𝑑𝜉1, (3.2)

𝐾𝑝𝑞 =

∫︁ 1

−1

𝜓𝑝,𝜉1
(𝜉1)𝜓𝑞,𝜉1

(𝜉1)𝑑𝜉1, (3.3)

with 0 ≤ 𝑝,𝑞 ≤ 𝑃 and 𝜓𝑝,𝜉1
the derivative of 𝜓𝑝 with respect to 𝜉1.

The construction of the new shape functions 𝜑𝑝(𝜉) for the interior modes is performed in the
following way

𝜑𝑝(𝜉) =
𝑃∑︁

𝑞=2

𝑦𝑝𝑞𝜓𝑞(𝜉), (3.4)

where the matrix [𝑌 ] are determined in such way that the blocks
[︀
𝑀

′
𝑖𝑖

]︀
and

[︀
𝐾

′
𝑖𝑖

]︀
related to the

internal modes of the mass and stiffness matrices are diagonal and determined as[︀
𝑀

′
𝑖𝑖

]︀
= [𝑌 ] [𝑀𝑖𝑖] [𝑌 ]𝑇 ,[︀

𝐾
′
𝑖𝑖

]︀
= [𝑌 ] [𝐾𝑖𝑖] [𝑌 ]𝑇 .

(3.5)

Consider [𝐿] =
(︁

[𝑋]
[︁
Λ

− 1
2

𝑀

]︁)︁𝑇

[𝐾𝑖𝑖]
(︁

[𝑋]
[︁
Λ

− 1
2

𝑀

]︁)︁
, where [𝑋] and [Λ𝑀 ] are respectively the

matrices of eigenvectors and eigenvalues of [𝑀𝑖𝑖]. The matrix [𝑌 ] are determined as

[𝑌 ] =
(︁

[𝑋]
[︁
Λ

− 1
2

𝑀

]︁
[𝑍]

[︁
Λ

− 𝑘
2

𝑆

]︁)︁𝑇

, (3.6)

where [𝑍] is the matrix of eigenvectors and [Λ𝑆] is the diagonal matrix with the eigenvalues of [𝐿].
Factor 𝑘 influences the condition number of the matrices related to the internal modes (Zheng and
Dong, 2011). The choice of 𝑘 = 1/2 is convenient, since it yields the same condition number for
the internal blocks of the one-dimensional mass and stiffness matrices.

The above transformation is applied to the internal modes. However, the vertex and internal
modes are still coupled. In the next section we present a procedure to modify the one-dimensional
boundary modes for the mass and stiffness matrices.
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3.2.2 Newmark Method and the Minimum Energy Procedure

In general, the implicit methods for time integration have better numerical stability and ac-
curacy when compared to explicit methods. They are unconditionally stable and allows the use of
larger time steps. Consider the discrete equation of motion for a structural body given by

[𝑀 ] {𝑈̈ 𝑡} + [𝐶] {𝑈̇ 𝑡} + [𝐾] {𝑈 𝑡} = {𝑅𝑡}, (3.7)

where [𝑀 ], [𝐶] and [𝐾] are the global mass, damping and stiffness matrices. The terms {𝑈̈ 𝑡}, {𝑈̇ 𝑡}
and {𝑈 𝑡} are the acceleration, velocity and displacement vectors for a given time 𝑡. The vector
{𝑅𝑡} contains the equivalent nodal loads.

In the Newmark method, the displacement at time 𝑡 + △𝑡 can be approximated by (Bathe,
1996)

[𝐾̂]{𝑈 𝑡+Δ𝑡} = {𝑅̂𝑡+Δ𝑡}, (3.8)

with the effective stiffness matrix [𝐾̂] given by

[𝐾̂] = [𝐾] + 𝑎0 [𝑀 ] + 𝑎1 [𝐶] , (3.9)

and

{𝑅̂𝑡+Δ𝑡} = {𝑅𝑡+Δ𝑡} + [𝑀 ]
(︁
𝑎0{𝑈 𝑡} + 𝑎2{𝑈̇ 𝑡} + 𝑎3{𝑈̈ 𝑡}

)︁
+ ... (3.10)

+ [𝐶]
(︁
𝑎1{𝑈 𝑡} + 𝑎4{𝑈̇ 𝑡} + 𝑎5{𝑈̈ 𝑡}

)︁
.

The constants used for the Newmark method are 𝑎0 = 1
𝛼Δ𝑡2

, 𝑎1 = 𝛿
𝛼Δ𝑡

, 𝑎2 = 1
𝛼Δ𝑡

, 𝑎3 = 1
2𝛼
−1,

𝑎4 = 𝛿
𝛼
− 1, 𝑎5 = Δ𝑡

2

(︀
𝛿
𝛼
− 2

)︀
, 𝑎6 = ∆𝑡 (1 − 𝛿), 𝑎7 = 𝛿∆𝑡, with 𝛿 ≥ 0.50 and 𝛼 ≥ 0.25 (0.5 + 𝛿)2.

For our analyses, we adopt 𝛼 = 0.25 and 𝛿 = 0.50.

We propose a modification of the one-dimensional vertex modes based on the simultaneously
diagonal and minimum energy (SDME) procedure with the Helmholtz norm. The minimum energy
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extensions of the standard basis functions is computed as (Vejchodskỳ, 2010)

𝜓𝑚𝑒
𝑘 = 𝜓𝑣

𝑘 −
𝑁𝑖∑︁
𝑗=1

𝛼𝑘𝑗𝜓
𝑖
𝑗, 𝑘 = 1,...,𝑁𝑣, (3.11)

where 𝑁𝑣 and 𝑁𝑖 are the numbers of vertex and internal modes.

This formulation enables the construction of the minimum energy procedure according to the
choice of the coefficients 𝛼𝑘𝑗 . The effective stiffness matrix without damping can be partitioned as

[︁
𝐾̂
]︁

=

[︃
[𝐾𝑣𝑣] [𝐾𝑣𝑖]

[𝐾𝑣𝑖]
𝑇 [𝐾𝑖𝑖]

]︃
+ 𝜆

[︃
[𝑀𝑣𝑣] [𝑀𝑣𝑖]

[𝑀𝑣𝑖]
𝑇 [𝑀𝑖𝑖]

]︃
=

⎡⎣
[︁
𝐾̂𝑣𝑣

]︁ [︁
𝐾̂𝑣𝑖

]︁
[︁
𝐾̂𝑣𝑖

]︁𝑇 [︁
𝐾̂𝑖𝑖

]︁
⎤⎦ , (3.12)

where the subindices 𝑣 and 𝑖 identify the blocks relative to vertex and internal modes.

The Helmholtz energy norm of a function 𝑣 ∈ 𝑉 is ‖𝑣‖2𝐸 = ⟨𝑣,𝑣⟩𝐸 = ⟨𝑣,𝑣⟩𝐿2 + 𝜆⟨𝑣,𝑣⟩𝐿2 .
The 𝐿2-inner product of functions 𝑓 and 𝑔 is defined as ⟨𝑓,𝑔⟩𝐿2 =

∫︀ 1

−1
𝑓(𝜉)𝑔(𝜉)𝑑𝜉. The coefficients

𝛼𝑣𝑗 in Eq. 3.11 are determined such that

⟨𝜓𝑚𝑒
𝑘 ,𝜓𝑖

𝑗⟩𝐸 = 0, 𝑘 = 1,...,𝑁𝑣 and 𝑗 = 1,...,𝑁𝑖. (3.13)

This condition decouples the boundary and internal blocks such of the one-dimensional ef-
fective stiffness matrix [𝐾̂]. In matrix notation, the coefficients 𝛼𝑘𝑗 are calculated as[︁

𝛼𝐾̂
]︁

=
[︁
𝐾̂𝑣𝑖

]︁ [︁
𝐾̂𝑖𝑖

]︁−1

. (3.14)

In this case, 𝜆 could be associated with coefficient 𝑎0 in Eq. (3.9). For convenience, we take
𝜆 = 1 and then analyse later the effect of the choice of this parameter in the construction of the
one-dimensional shape functions of the minimum energy.

Analogously , we can use a construction based on the terms of the mass matrix only and the
respective coefficients

[︀
𝛼𝑀

]︀
are [︀

𝛼𝑀
]︀

= [𝑀𝑣𝑖] [𝑀𝑖𝑖]
−1 . (3.15)
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This construction decouples the internal and boundary modes of the one-dimensional mass matrix,
but these modes remain coupled for the effective stiffness matrix. In Fig.3.1, we show the sparsity
profiles of the one-dimensional effective stiffness matrix with the standard basis (ST) and the si-
multaneously diagonal and minimum energy bases (SDME). The boundary modes are numbered
first followed by the internal modes.

The proposed basis considers the simultaneously diagonalization and minimum energy
(SDME) procedures in linear dynamic analysis using the Newmark method. As in (Zheng and
Dong, 2011), the proposed basis functions and their derivatives are not constructed analytically but
calculated on the integration points.
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Figure 3.1: Sparsity patterns of the effective stiffness matrix for a polynomial order 𝑃 = 6 with the
standard basis (a), SDME basis with

[︁
𝛼𝐾̂

]︁
and 𝜆 = 1 (b) and SDME basis with

[︀
𝛼𝑀

]︀
and 𝜆 = 1

(c).

3.3 Calculation Procedure for the Matrices of Quadrilaterals and Hexahedra

This section presents the 1D matrices procedure which obtains the coefficients of the mass
and stiffness matrices of quadrilaterals and hexahedra using the product of the coefficientes of
the one-dimensional matrices. As will be seen in Section 3.4.1, this procedure has performance
gains in terms of speed and less memory allocation for the high-order FEM software. We write
the coefficientes of the stiffness and mass matrices in explicit form, that is, we do not use the
product of matrix operators as done in the standard procedure. This allows to simplify the obtained
expressions for the stiffness matrix when the material is isotropic. The element matrices using the
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standard procedure are calculated of

[𝑀 ] = 𝜌

∫︁
Ω𝑒

[𝑁 ]𝑇 [𝑁 ] |𝐽 |𝑑Ω𝑒, (3.16)

[𝐾] =

∫︁
Ω𝑒

[𝐵]𝑇 [𝐷] [𝐵] |𝐽 |𝑑Ω𝑒, (3.17)

where 𝜌 is the density, [𝑁 ] and [𝐵] respectively are the matrices of the shape functions and their
global derivatives, [𝐷] is the constitutive matrix and |𝐽 | is the determinant of the Jacobian matrix.
We introduce the coefficients of the local one-dimensional element matrices, denoted as 𝑀1𝐷

𝑎𝑝 for
mass, 𝐾1𝐷

𝑎𝑝 for stiffness and 𝐷1𝐷
𝑎𝑝 for mixed:

𝑀1𝐷
𝑎𝑝 (𝜉) =

∫︁ 1

−1

𝜙𝑎(𝜉)𝜙𝑝(𝜉)𝑑𝜉,

𝐾1𝐷
𝑎𝑝 (𝜉) =

∫︁ 1

−1

𝜙𝑎,1(𝜉)𝜙𝑝,1(𝜉)𝑑𝜉, (3.18)

𝐷1𝐷
𝑎𝑝 (𝜉) =

∫︁ 1

−1

𝜙𝑎,1(𝜉)𝜙𝑝(𝜉)𝑑𝜉.

For notation purposes, we rewrite the above expressions in terms of numerical integration as:

𝑀1𝐷
𝑎𝑝 (𝜉) =

𝑛1∑︁
𝑑=1

𝜙𝑎(𝜉𝑑)𝜙𝑝(𝜉𝑑)𝑊𝑑,

𝐾1𝐷
𝑎𝑝 (𝜉) =

𝑛1∑︁
𝑑=1

𝜙𝑎,1(𝜉𝑑)𝜙𝑝,1(𝜉𝑑)𝑊𝑑, (3.19)

𝐷1𝐷
𝑎𝑝 (𝜉) =

𝑛1∑︁
𝑑=1

𝜙𝑎,1(𝜉𝑑)𝜙𝑝(𝜉𝑑)𝑊𝑑,

where 𝑛1 is the number of integration points in direction 𝜉, 𝜉𝑑 is the corresponding integration
coordinate and 𝑊𝑑 the associated weight. The terms 𝜙𝑎 and 𝜙𝑝 are the one-dimensional shape
functions, 𝜙𝑎,1 and 𝜙𝑝,1 are their derivatives relative to 𝜉. The indices 𝑎 and 𝑝 will be explained
in Section 3.3.1. We define the terms inside the summation in Eq.(3.19) as the one-dimensional
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matrices calculated for each integration point and given by

𝑀1𝐷
𝑎𝑝 (𝜉𝑑) = 𝜙𝑎(𝜉𝑑)𝜙𝑝(𝜉𝑑),

𝐾1𝐷
𝑎𝑝 (𝜉𝑑) = 𝜙𝑎,1(𝜉𝑑)𝜙𝑝,1(𝜉𝑑), (3.20)

𝐷1𝐷
𝑎𝑝 (𝜉𝑑) = 𝜙𝑎,1(𝜉𝑑)𝜙𝑝(𝜉𝑑).

3.3.1 Tensor product of one-dimensional matrices for quadrilaterals

The coefficients of the mass matrix for quadrilateral elements are given by

𝑀2𝐷
𝑠𝑡 = 𝜌

∫︁ 1

−1

∫︁ 1

−1

𝑁𝑠(𝜉,𝜂)𝑁𝑡(𝜉,𝜂)|𝐽 |𝑑𝜉𝑑𝜂, (3.21)

with 𝑁𝑠(𝜉,𝜂) and 𝑁𝑡(𝜉,𝜂) the local shape functions for quadrilaterals defined as (Karniadakis and
Sherwin, 2005; Bittencourt et al., 2007a)

𝑁𝑠(𝜉,𝜂) = 𝜙𝑝(𝜉)𝜙𝑞(𝜂), 0 ≤ 𝑝,𝑞 ≤ 𝑃,

𝑁𝑡(𝜉,𝜂) = 𝜙𝑎(𝜉)𝜙𝑏(𝜂), 0 ≤ 𝑎,𝑏 ≤ 𝑃,
(3.22)

where 𝑝,𝑞,𝑎,𝑏 are the tensor product indices associated with the topological entities of the element,
𝑃 is the polynomial order in directions 𝜉 and 𝜂, and 𝑠,𝑡 = 1, . . . ,(𝑃 + 1)2. Rewriting Eq.(3.21) in
terms of numerical integration quadrature, we obtain

𝑀2𝐷
𝑠𝑡 = 𝜌

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝑁𝑠(𝜉𝑑,𝜂𝑒)𝑁𝑡(𝜉𝑑,𝜂𝑒)|𝐽 |𝑑𝑒𝑊𝑑𝑊𝑒, (3.23)

and 𝑛2 is the number of integration points for direction 𝜂, 𝑊𝑒 is the weight, and |𝐽 |𝑑𝑒 is the de-
terminant of the Jacobian matrix on integration point (𝜉𝑑,𝜂𝑒). Recalling Eq.(3.19), the product of
local shape functions for the quadrilateral can be written in terms of the local one-dimensional mass
matrices for an integration point in the following way:

𝑁𝑠(𝜉𝑑,𝜂𝑒)𝑁𝑡(𝜉𝑑,𝜂𝑒) = 𝜙𝑝(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑎(𝜉𝑑)𝜙𝑏(𝜂𝑒) = 𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒). (3.24)

Substituting Eq.(3.24) into Eq.(3.23), we obtain the explicit expression for the coefficients of
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the mass matrix in terms of the one-dimensional matrices as

𝑀2𝐷
𝑠𝑡 = 𝜌

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒)|𝐽 |𝑑𝑒𝑊𝑑𝑊𝑒. (3.25)

The coefficients of the stiffness matrix are written in index notation, because the derivative
operators and constitutive terms assume different values according to the degrees of freedom. The
expression is given by

𝐾2𝐷
𝑠𝑡 (𝑖,𝑗) =

∫︁ 1

−1

∫︁ 1

−1

𝐶𝑖𝑙𝑗𝑘𝑁𝑠,𝑘𝑁𝑡,𝑙|𝐽 |𝑑𝜉𝑑𝜂, (3.26)

with 𝑖,𝑗,𝑘,𝑙 = 1,2. The terms 𝑁𝑠,𝑘 and 𝑁𝑡,𝑙 are the global derivatives of the quadrilateral shape
functions. The term 𝐶𝑖𝑙𝑗𝑘 is the constitutive tensor given by

𝐶𝑖𝑙𝑗𝑘 = 𝜆𝛿𝑖𝑙𝛿𝑗𝑘 + 𝜇 (𝛿𝑖𝑗𝛿𝑙𝑘 + 𝛿𝑖𝑘𝛿𝑙𝑗) . (3.27)

The above equation is usually written in Voigt notation, which we present here for implemen-
tation purpose. We have for plane strain in linear isotropic elasticity:

[𝐷] =

⎡⎢⎣𝐶1111 𝐶1122 𝐶1112

𝐶1122 𝐶2222 𝐶2212

𝐶1112 𝐶2212 𝐶1212

⎤⎥⎦ =

⎡⎢⎣2𝜇+ 𝜆 𝜆 0

𝜆 2𝜇+ 𝜆 0

0 0 𝜇

⎤⎥⎦ , (3.28)

where 𝜇 and 𝜆 are the Lamé coefficients. We can rewrite Eq.(3.26) in terms of numerical integration
and obtain:

𝐾2𝐷
𝑠𝑡 (𝑖,𝑗) =

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝐶𝑖𝑙𝑗𝑘𝑁𝑠,𝑘(𝜉𝑑,𝜂𝑒)𝑁𝑡,𝑙(𝜉𝑑,𝜂𝑒)|𝐽 |𝑑𝑒𝑊𝑑𝑊𝑒. (3.29)

The global derivatives of the shape functions for each integration point are

𝑁𝑠,𝑘(𝜉𝑑,𝜂𝑒) = (𝑗𝑘𝑚)𝑑𝑒𝑁𝑠,𝑚(𝜉𝑑,𝜂𝑒), (3.30)

𝑁𝑡,𝑙(𝜉𝑑,𝜂𝑒) = (𝑗𝑙𝑛)𝑑𝑒𝑁𝑡,𝑛(𝜉𝑑,𝜂𝑒),

where (𝑗𝑘𝑚)𝑑𝑒 and (𝑗𝑙𝑛)𝑑𝑒 are the coefficients of the inverse of the Jacobian matrices and𝑁𝑠,𝑚(𝜉𝑑,𝜂𝑒)

and 𝑁𝑡,𝑛(𝜉𝑑,𝜂𝑒) are the local derivatives of the quadrilateral shape functions for each integration
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point. We can substitute Eq.(3.30) into Eq.(3.29) and obtain

𝐾2𝐷
𝑠𝑡 (𝑖,𝑗) =

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝐶𝑖𝑙𝑗𝑘(𝑗𝑘𝑚𝑗𝑙𝑛)𝑑𝑒𝑁𝑠,𝑚(𝜉𝑑,𝜂𝑒)𝑁𝑡,𝑛(𝜉𝑑,𝜂𝑒)|𝐽 |𝑑𝑒𝑊𝑑𝑊𝑒. (3.31)

Recalling Eq.(3.20), we can write the local derivatives of the quadrilateral shape functions
in terms of the one-dimensional element matrices calculated for each integration point. For this
purpose, the indices 𝑘, 𝑙 are expanded and the following expressions are obtained:

𝑁𝑠,1(𝜉𝑑,𝜂𝑒)𝑁𝑡,1(𝜉𝑑,𝜂𝑒) = 𝜙𝑝,1(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑎,1(𝜉𝑑)𝜙𝑏(𝜂𝑒) = 𝐾1𝐷
𝑝𝑎 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒),

𝑁𝑠,1(𝜉𝑑,𝜂𝑒)𝑁𝑡,2(𝜉𝑑,𝜂𝑒) = 𝜙𝑝,1(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑎(𝜉𝑑)𝜙𝑏,2(𝜂𝑒) = 𝐷1𝐷
𝑝𝑎 (𝜉𝑑)𝐷

1𝐷
𝑏𝑞 (𝜂𝑒),

𝑁𝑠,2(𝜉𝑑,𝜂𝑒)𝑁𝑡,1(𝜉𝑑,𝜂𝑒) = 𝜙𝑝(𝜉𝑑)𝜙𝑞,2(𝜂𝑒)𝜙𝑎,1(𝜉𝑑)𝜙𝑏(𝜂𝑒) = 𝐷1𝐷
𝑎𝑝 (𝜉𝑑)𝐷

1𝐷
𝑞𝑏 (𝜂𝑒),

𝑁𝑠,2(𝜉𝑑,𝜂𝑒)𝑁𝑡,2(𝜉𝑑,𝜂𝑒) = 𝜙𝑝(𝜉𝑑)𝜙𝑞,2(𝜂𝑒)𝜙𝑎(𝜉𝑑)𝜙𝑏,2(𝜂𝑒) = 𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝐾

1𝐷
𝑞𝑏 (𝜂𝑒). (3.32)

The terms𝑁𝑠,1(𝜉𝑑,𝜂𝑒)𝑁𝑡,2(𝜉𝑑,𝜂𝑒) and𝑁𝑠,2(𝜉𝑑,𝜂𝑒)𝑁𝑡,1(𝜉𝑑,𝜂𝑒) are different, since the one-dimensional
mixed matrices 𝐷1𝐷 are not symmetric. We expand the index notation to show the explicit form for
𝐾2𝐷

𝑠𝑡 (1,1). Setting the free indices 𝑖,𝑗 = 1 in Eq.(3.31), we obtain

𝐾2𝐷
𝑠𝑡 (1,1) =

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝐶1𝑙1𝑘(𝑗𝑘𝑚𝑗𝑙𝑛)𝑑𝑒𝑁𝑠,𝑚(𝜉𝑑,𝜂𝑒)𝑁𝑡,𝑛(𝜉𝑑,𝜂𝑒)|𝐽 |𝑑𝑒𝑊𝑑𝑊𝑒. (3.33)

Expanding the repeated indices 𝑚 and 𝑛, and omitting 𝜉𝑑 and 𝜂𝑒 for simplicity, we obtain

𝐾2𝐷
𝑠𝑡 (1,1) =

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝐶1𝑙1𝑘 [ (𝑗𝑘1𝑗𝑙1)𝑑𝑒𝑁𝑠,1𝑁𝑡,1 + (𝑗𝑘1𝑗𝑙2)𝑑𝑒𝑁𝑠,1𝑁𝑡,2+ (3.34)

(𝑗𝑘2𝑗𝑙1)𝑑𝑒𝑁𝑠,2𝑁𝑡,1 + (𝑗𝑘2𝑗𝑙2)𝑑𝑒𝑁𝑠,2𝑁𝑡,2] |𝐽 |𝑑𝑒𝑊𝑑𝑊𝑒.
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Expanding the repeated indices 𝑘 and 𝑙, we obtain

𝐾2𝐷
𝑠𝑡 (1,1) =

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

{ 𝐶1111 [ (𝑗11𝑗11)𝑑𝑒𝑁𝑠,1𝑁𝑡,1 + (𝑗11𝑗12)𝑑𝑒𝑁𝑠,1𝑁𝑡,2+

(𝑗12𝑗11)𝑑𝑒𝑁𝑠,2𝑁𝑡,1 + (𝑗12𝑗12)𝑑𝑒𝑁𝑠,2𝑁𝑡,2] +

𝐶1211 [ (𝑗11𝑗21)𝑑𝑒𝑁𝑠,1𝑁𝑡,1 + (𝑗11𝑗22)𝑑𝑒𝑁𝑠,1𝑁𝑡,2+

(𝑗12𝑗21)𝑑𝑒𝑁𝑠,2𝑁𝑡,1 + (𝑗12𝑗22)𝑑𝑒𝑁𝑠,2𝑁𝑡,2] + (3.35)

𝐶1112 [ (𝑗21𝑗11)𝑑𝑒𝑁𝑠,1𝑁𝑡,1 + (𝑗21𝑗12)𝑑𝑒𝑁𝑠,1𝑁𝑡,2+

(𝑗22𝑗11)𝑑𝑒𝑁𝑠,2𝑁𝑡,1 + (𝑗22𝑗12)𝑑𝑒𝑁𝑠,2𝑁𝑡,2] +

𝐶1212 [ (𝑗21𝑗21)𝑑𝑒𝑁𝑠,1𝑁𝑡,1 + (𝑗21𝑗22)𝑑𝑒𝑁𝑠,1𝑁𝑡,2+

(𝑗22𝑗21)𝑑𝑒𝑁𝑠,2𝑁𝑡,1 + (𝑗22𝑗22)𝑑𝑒𝑁𝑠,2𝑁𝑡,2] } |𝐽 |𝑑𝑒𝑊𝑑𝑊𝑒.

Recalling that 𝐶1211 = 𝐶1112 = 0 from Eq.(3.28), we can simplify the above equation and rewrite
it in terms of the one-dimensional matrices of Eq.(3.32) as

𝐾2𝐷
𝑠𝑡 (1,1) =

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

{𝐶1111 [ (𝑗211)𝑑𝑒𝐾
1𝐷
𝑝𝑎 𝑀

1𝐷
𝑞𝑏 + (𝑗11𝑗12)𝑑𝑒𝐷

1𝐷
𝑝𝑎 𝐷

1𝐷
𝑏𝑞 +

(𝑗12𝑗11)𝑑𝑒𝐷
1𝐷
𝑎𝑝 𝐷

1𝐷
𝑞𝑏 + (𝑗12𝑗12)𝑑𝑒𝑀

1𝐷
𝑝𝑎 𝐾

1𝐷
𝑞𝑏

]︀
+ (3.36)

𝐶1212 [ (𝑗21𝑗21)𝑑𝑒𝐾
1𝐷
𝑝𝑎 𝑀

1𝐷
𝑞𝑏 + (𝑗21𝑗22)𝑑𝑒𝐷

1𝐷
𝑝𝑎 𝐷

1𝐷
𝑏𝑞 +

(𝑗22𝑗21)𝑑𝑒𝐷
1𝐷
𝑎𝑝 𝐷

1𝐷
𝑞𝑏 + (𝑗22𝑗22)𝑑𝑒𝑀

1𝐷
𝑝𝑎 𝐾

1𝐷
𝑞𝑏

]︀
} |𝐽 |𝑑𝑒𝑊𝑑𝑊𝑒.

The other three stiffness terms can be obtained by changing the free indices 𝑖,𝑗. The above
procedure can be easily applied to plane stress, by just changing the plane strain constitutive matrix
[𝐷] of Eq.(3.28) for the plane stress equivalent.

3.3.2 Tensor product of one-dimensional matrices for hexahedra

It is straightforward to extend the previous procedure to three dimensions. The coefficients
of the mass matrix for hexahedra are defined as
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𝑀3𝐷
𝑠𝑡 =

∫︁ 1

−1

∫︁ 1

−1

∫︁ 1

−1

𝑁𝑠(𝜉,𝜂,𝜁)𝑁𝑡(𝜉,𝜂,𝜁)|𝐽 |𝑑𝜉𝑑𝜂𝑑𝜁, (3.37)

where 𝑁𝑠(𝜉,𝜂,𝜁) and 𝑁𝑡(𝜉,𝜂,𝜁) are the local shape function, given by (Karniadakis and Sherwin,
2005; Bittencourt et al., 2007a)

𝑁𝑠(𝜉,𝜂,𝜁) = 𝜙𝑝(𝜉)𝜙𝑞(𝜂)𝜙𝑟(𝜁), 0 ≤ 𝑝,𝑞,𝑟 ≤ 𝑃,

𝑁𝑡(𝜉,𝜂,𝜁) = 𝜙𝑎(𝜉)𝜙𝑏(𝜂)𝜙𝑐(𝜁), 0 ≤ 𝑎,𝑏,𝑐 ≤ 𝑃,
(3.38)

where 𝑟 is the tensor index for direction 𝜁 , and 𝑟,𝑠,𝑡 = 1, . . . ,(𝑃+1)3. Rewriting Eq.(3.37) in terms
of numerical integration, we obtain

𝑀3𝐷
𝑠𝑡 = 𝜌

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝑛3∑︁
𝑓=1

𝑁𝑠(𝜉𝑑,𝜂𝑒,𝜁𝑓 )𝑁𝑡(𝜉𝑑,𝜂𝑒,𝜁𝑓 )|𝐽 |𝑑𝑒𝑓𝑊𝑑𝑊𝑒𝑊𝑓 , (3.39)

where 𝑛3 is the number of integration points for direction 𝜁 , 𝜁𝑓 is the corresponding integration
coordinate and 𝑊𝑓 is the weight. The product of the local shape functions for hexahedra on an
integration point can be written in terms of the local one-dimensional mass matrices as

𝑁𝑠(𝜉𝑑,𝜂𝑒,𝜁𝑓 )𝑁𝑡(𝜉𝑑,𝜂𝑒,𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟(𝜁𝑓 )𝜙𝑎(𝜉𝑑)𝜙𝑏(𝜂𝑒)𝜙𝑐(𝜁𝑓 )

= 𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒)𝑀

1𝐷
𝑟𝑐 (𝜁𝑓 ). (3.40)

Substituting Eq.(3.40) into Eq.(3.39), we obtain the explicit expression for the coefficients of the
three dimensional mass matrix in terms of the one-dimensional matrices:

𝑀3𝐷
𝑠𝑡 = 𝜌

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝑛3∑︁
𝑓=1

𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒)𝑀

1𝐷
𝑟𝑐 (𝜁𝑓 )|𝐽 |𝑑𝑒𝑓𝑊𝑑𝑊𝑒𝑊𝑓 . (3.41)

The coefficients of the stiffness matrix for hexahedrical elements in index notation can be
written as

𝐾3𝐷
𝑠𝑡 (𝑖,𝑗) =

∫︁ 1

−1

∫︁ 1

−1

∫︁ 1

−1

𝐶𝑖𝑙𝑗𝑘𝑁𝑠,𝑘𝑁𝑡,𝑙|𝐽 |𝑑𝜉𝑑𝜂𝑑𝜁, (3.42)

where 𝑖,𝑗,𝑘,𝑙 = 1,2,3. Rewriting the above equation using numerical integration, we obtain

𝐾3𝐷
𝑠𝑡 (𝑖,𝑗) =

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝑛3∑︁
𝑓=1

𝐶𝑖𝑙𝑗𝑘𝑁𝑠,𝑘(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,𝑙(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )|𝐽 |𝑑𝑒𝑓𝑊𝑑𝑊𝑒𝑊𝑓 , (3.43)
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The global derivatives for three dimensions are

𝑁𝑠,𝑘(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = (𝑗𝑘𝑚)𝑑𝑒𝑓𝑁𝑠,𝑚(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ), (3.44)

𝑁𝑡,𝑙(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = (𝑗𝑙𝑛)𝑑𝑒𝑓𝑁𝑡,𝑛(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ).

Substituting Eq.(3.44) in Eq.(3.43), we obtain

𝐾3𝐷
𝑠𝑡 (𝑖,𝑗) =

𝑛1∑︁
𝑑=1

𝑛2∑︁
𝑒=1

𝑛3∑︁
𝑓=1

𝐶𝑖𝑙𝑗𝑘(𝑗𝑘𝑚𝑗𝑙𝑛)𝑑𝑒𝑓𝑁𝑠,𝑚(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,𝑛(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )|𝐽 |𝑑𝑒𝑓𝑊𝑑𝑊𝑒𝑊𝑓 . (3.45)

Analogously to quadrilateral elements, we can expand the indices 𝑘 and 𝑙 and rewrite the
local hexahedron shape functions in terms of the one-dimensional element matrices as

𝑁𝑠,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝,1(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟(𝜁𝑓 )𝜙𝑎,1(𝜉𝑑)𝜙𝑏(𝜂𝑒)𝜙𝑐(𝜁𝑓 )

= 𝐾1𝐷
𝑝𝑎 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒)𝑀

1𝐷
𝑟𝑐 (𝜁𝑓 ),

𝑁𝑠,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝,1(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟(𝜁𝑓 )𝜙𝑎(𝜉𝑑)𝜙𝑏,2(𝜂𝑒)𝜙𝑐(𝜁𝑓 )

= 𝐷1𝐷
𝑝𝑎 (𝜉𝑑)𝐷

1𝐷
𝑏𝑞 (𝜂𝑒)𝑀

1𝐷
𝑟𝑐 (𝜁𝑓 ),

𝑁𝑠,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝,1(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟(𝜁𝑓 )𝜙𝑎(𝜉𝑑)𝜙𝑏(𝜂𝑒)𝜙𝑐,3(𝜁𝑓 )

= 𝐷1𝐷
𝑝𝑎 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒)𝐷

1𝐷
𝑐𝑟 (𝜁𝑓 ),

𝑁𝑠,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞,2(𝜂𝑒)𝜙𝑟(𝜁𝑓 )𝜙𝑎,1(𝜉𝑑)𝜙𝑏(𝜂𝑒)𝜙𝑐(𝜁𝑓 )

= 𝐷1𝐷
𝑎𝑝 (𝜉𝑑)𝐷

1𝐷
𝑞𝑏 (𝜂𝑒)𝑀

1𝐷
𝑟𝑐 (𝜁𝑓 ),

𝑁𝑠,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞,2(𝜂𝑒)𝜙𝑟(𝜁𝑓 )𝜙𝑎(𝜉𝑑)𝜙𝑏,2(𝜂𝑒)𝜙𝑐(𝜁𝑓 ) (3.46)

= 𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝐾

1𝐷
𝑞𝑏 (𝜂𝑒)𝑀

1𝐷
𝑟𝑐 (𝜁𝑓 ),

𝑁𝑠,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞,2(𝜂𝑒)𝜙𝑟(𝜁𝑓 )𝜙𝑎(𝜉𝑑)𝜙𝑏(𝜂𝑒)𝜙𝑐,3(𝜁𝑓 )

= 𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝐷

1𝐷
𝑞𝑏 (𝜂𝑒)𝐷

1𝐷
𝑐𝑟 (𝜁𝑓 ),

𝑁𝑠,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟,3(𝜁𝑓 )𝜙𝑎,1(𝜉𝑑)𝜙𝑏(𝜂𝑒)𝜙𝑐(𝜁𝑓 )

= 𝐷1𝐷
𝑎𝑝 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒)𝐷

1𝐷
𝑟𝑐 (𝜁𝑓 ),

𝑁𝑠,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟,3(𝜁𝑓 )𝜙𝑎(𝜉𝑑)𝜙𝑏,2(𝜂𝑒)𝜙𝑐(𝜁𝑓 )

= 𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝐷

1𝐷
𝑏𝑞 (𝜂𝑒)𝐷

1𝐷
𝑟𝑐 (𝜁𝑓 ),

𝑁𝑠,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑁𝑡,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟,3(𝜁𝑓 )𝜙𝑎(𝜉𝑑)𝜙𝑏(𝜂𝑒)𝜙𝑐,3(𝜁𝑓 )

= 𝑀1𝐷
𝑝𝑎 (𝜉𝑑)𝑀

1𝐷
𝑞𝑏 (𝜂𝑒)𝐾

1𝐷
𝑟𝑐 (𝜁𝑓 ).
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The constitutive tensor in matrix form for general linear isotropic elasticity is given by

[𝐷] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶1111 𝐶1122 𝐶1133 𝐶1112 𝐶1113 𝐶1123

𝐶1122 𝐶2222 𝐶2233 𝐶2212 𝐶2213 𝐶2223

𝐶1133 𝐶2233 𝐶3333 𝐶3312 𝐶3313 𝐶3323

𝐶1112 𝐶2212 𝐶3312 𝐶1212 𝐶1213 𝐶1223

𝐶1113 𝐶2213 𝐶3313 𝐶1213 𝐶1313 𝐶1323

𝐶1123 𝐶2223 𝐶3323 𝐶1223 𝐶1323 𝐶2323

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝜇+ 𝜆 𝜆 𝜆 0 0 0

𝜆 2𝜇+ 𝜆 𝜆 0 0 0

𝜆 𝜆 2𝜇+ 𝜆 0 0 0

0 0 0 𝜇 0 0

0 0 0 0 𝜇 0

0 0 0 0 0 𝜇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.47)

The Jacobian matrix is calculated using the same tensorization procedure. The general ex-
pression is given by

[𝐽 ]𝑑𝑒𝑓 =

⎡⎢⎣
∑︀𝑛

𝑠=1𝑁𝑠,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑋𝑠

∑︀𝑛
𝑠=1𝑁𝑠,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑌𝑠

∑︀𝑛
𝑠=1𝑁𝑠,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑍𝑠∑︀𝑛

𝑠=1𝑁𝑠,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑋𝑠

∑︀𝑛
𝑠=1𝑁𝑠,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑌𝑠

∑︀𝑛
𝑠=1𝑁𝑠,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑍𝑠∑︀𝑛

𝑠=1𝑁𝑠,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑋𝑠

∑︀𝑛
𝑠=1𝑁𝑠,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑌𝑠

∑︀𝑛
𝑠=1𝑁𝑠,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑍𝑠

⎤⎥⎦ , (3.48)

where 𝑛 is the number of element nodes/modes and 𝑋𝑠, 𝑌𝑠, 𝑍𝑠 are the nodal/modal coordinates.
The local shape function derivatives calculated on the integration point coordinates are written in
terms of the one-dimensional shape functions as

𝑁𝑠,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝,1(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟(𝜁𝑓 ),

𝑁𝑠,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞,2(𝜂𝑒)𝜙𝑟(𝜁𝑓 ), (3.49)

𝑁𝑠,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 ) = 𝜙𝑝(𝜉𝑑)𝜙𝑞(𝜂𝑒)𝜙𝑟,3(𝜁𝑓 ).

In the case of non-distorted elements, the Jacobian matrix is diagonal, given by

[𝐽 ]𝑑𝑒𝑓 =

⎡⎢⎣
∑︀𝑛

𝑠=1𝑁𝑠,1(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑋𝑠 0 0

0
∑︀𝑛

𝑠=1𝑁𝑠,2(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑌𝑠 0

0 0
∑︀𝑛

𝑠=1𝑁𝑠,3(𝜉𝑑, 𝜂𝑒, 𝜁𝑓 )𝑍𝑠

⎤⎥⎦ , (3.50)
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Notice that the Jacobian matrix is not written in terms of the one-dimensional matrices. This is
because the Jacobian operator has only one shape function derivative operator 𝑁𝑠,𝑚.

3.4 Numerical Examples

3.4.1 1D matrices procedure benchmarks

The purpose here is to show the speedup obtained using the 1D matrices procedure compared
to the standard one. We implemented the procedure in the C++ high-order finite element code
(ℎ𝑝)2FEM and computed the runtime ratio to calculate the element matrices.

We measured the calculation time of the stiffness matrix for plane stress/strain (quadrilat-
erals), axisymmetric (quadrilaterals) and 3D elasticity (hexahedra) problems with the increase of
the element order. The number of time measurements was taken according to the number of ele-
ments of the mesh: 9 for plane stress/strain, 8 for axisymmetric, and 8 for solid. This procedure was
performed for distorted and non-distorted meshes.

Fig.3.2 shows the time ratio between the standard and the 1D procedures for the stiffness
matrices with distorted elements. Notice that the overall time ratio is in the range of 2-3. The
calculation of quadrilateral elements with the 1D matrices procedure was about 2 times faster and
for hexahedrical elements it was approximately 2.5 times faster.

The results for non-distorted elements are shown in Fig.3.3. The very high time ratio is be-
cause the Jacobian matrix is constant for all integration points. Therefore, we can sum up the
one-dimensional matrices calculated for all integration points, and use the resulting matrix to per-
form the tensor product procedure by only indexing the shape function indices, and without the
summation on the integration points of Eq.(3.33). The same implementation cannot be performed
for the standard procedure, because the matrix [𝐵] with global derivatives is not constant, as the
local derivatives change with the integration point coordinates. Also, when implementing the ex-
plicit expressions, we excluded the inverse Jacobian matrix terms 𝑗12 and 𝑗21, since they are zero
for non-distorted meshes (see Eq.3.50). We did not show the results for non-distorted meshes in
axisymmetric problems, since the radial coordinate 𝑟 must be calculated for each integration point.
Therefore, it would be necessary to loop all integration points, and this would make the above
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Figure 3.2: Mean time ratio between the standard and 1D matrices procedures to calculate the
element stiffness matrix for distorted meshes. The average time ratio values are approximately 2.5
for hexahedra and 2 for quadrilaterals, without much variation for different element orders.

procedure troublesome to implement, possibly without significant speed up.

Figure 3.3: Mean time ratio in logarithmic scale between the standard and 1D matrices procedures
to calculated the element stiffness matrix for undistorted meshes. The time ratio reache values of
300 for quadrilateral and 4000 for hexahedrical elements.

The time ratio measurements for the mass matrix were also performed for two- and three-
dimensional problems, using meshes with 16 quadrilateral and 16 hexahedrical elements. Figs.
3.4 and 3.5 respectively show the results for distorted and undistorted element meshes. Note the
increasing time ratio with the element order for hexahedra.

We measured the memory consumption of the class that calculates the shape functions and
their derivatives and the class that allocates the entire finite element model. The shape function
class has a high memory consumption in high-order FE codes, since the number of shape functions
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Figure 3.4: Mean time ratio between the standard and 1D matrices procedures to calculate the
element mass matrix for distorted meshes. The ratio ranges from 1.5 to 2.5 for quadrilaterals and 0.7
to 2.8 for hexahedrical elements. Notice that different to the stiffness matrix for distorted elements,
the ratio increases with the element interpolation order.

Figure 3.5: Mean time ratio between the standard and 1D matrices procedures to calculate the
element mass matrix for non-distorted element meshes. The ratio reaches 60 for quadrilaterals and
500 for hexahedra.
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and their derivatives, as well as the number of integration points greatly increase with the element
interpolation order.

For a projection problem with 32 hexahedrical elements of interpolation order 𝑃 = 13, the
class with shape functions represents 44.87% (1.629 Gigabytes) of the total memory allocated by
the entire FE model for the standard procedure. The 1D matrices procedure reduced this allocation
to 0.02% (0.4 Megabytes), representing 4019 times less memory consumption. The class with the
FE model had a reduction from 3.6 Gigabytes to 2.1 Gigabytes, representing a total reduction of
43% in memory allocation.

3.4.2 Simultaneously diagonal and minimum energy bases

In this section we present the numerical efficiency of the minimum energy basis applied to
three-dimensional linear elastic dynamic problems integrated with the Newmark method. Consider
the following definition for the energy norm:

‖u𝑡‖2𝐸 =

∫︁
Ω

E(u𝑡) : T(u𝑡)𝑑Ω, (3.51)

where u𝑡 is the analytic solution for time 𝑡, E the infinitesimal strain tensor and T the Cauchy stress
tensor. The relative error in the energy norm is calculated as

‖𝑒𝑟𝑒𝑙‖2𝐸 =
‖u𝑡‖2𝐸 − ‖u𝑡

𝑎𝑝𝑝‖2𝐸
‖u𝑡‖2𝐸

(3.52)

with the energy norm of the approximated solution u𝑡
𝑎𝑝𝑝 at time 𝑡 given by

‖u𝑡
𝑎𝑝𝑝‖2𝐸 = {𝑈 𝑡}𝑇

[︁
𝐾̂
]︁
{𝑈 𝑡}.

The errors in the 𝐿2 and 𝐿∞ norms are respectively

‖𝑒‖2𝐿2
=

∫︁
Ω

(︀
u𝑡 − u𝑡

𝑎𝑝𝑝

)︀2
𝑑Ω, (3.53)

‖𝑒‖𝐿∞ = 𝑚𝑎𝑥|u𝑡 − u𝑡
𝑎𝑝𝑝|. (3.54)
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We use the conjugate gradient method to solve the linear systems of equations with tolerance
10−11 after applying the Schur complement (Axelsson, 1994). The numerical conditioning of the
effective stiffness matrix and the number of iterations are analyzed.

Figure 3.6: Distorted mesh for 3𝐷 linear elasticity.

Consider the domain Ω = [0,1]× [0,1]× [0,1] discretized with 8 elements as shown in Fig.3.6,
with material properties 𝐸 = 1 [𝑈𝐹 ]/[𝑈𝐿]2, 𝜌 = 1 [𝑈𝑀 ]/[𝑈𝐿]3 and 𝜈 = 0.3, where 𝑈𝐹 , 𝑈𝐿 and
𝑈𝑀 respectively indicate units of force, units of length and units of mass. We use the following
fabricated solution for the displacement field:

𝑢𝑥(x,𝑡) = 10−4𝑥4 sin(2𝜋𝑡),

𝑢𝑦(x,𝑡) = 0, (3.55)

𝑢𝑧(x,𝑡) = 0.

The face at 𝑥 = 0 is clamped and the following surface tractions are applied on the other
faces

𝑡𝑥(x,𝑡) = 7𝑥3𝑛𝑥 sin(2𝜋𝑡)
1

13
,

𝑡𝑦(x,𝑡) = 3𝑥3𝑛𝑦 sin(2𝜋𝑡)
1

13
, (3.56)

𝑡𝑧(x,𝑡) = 3𝑥3𝑛𝑧 sin(2𝜋𝑡)
1

13
,
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where n = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧]
𝑇 is the normal vector. The respective body force field is given by

𝑓𝑥(x,𝑡) = − sin(2𝜋𝑡)

(︂
𝜋2𝑥4

2500
+

21

13
𝑥2
)︂
,

𝑓𝑦(x,𝑡) = 0, (3.57)

𝑓𝑧(x,𝑡) = 0.

The initial condition in terms of displacement is u(x,𝑡) = [0, 0, 0]𝑇 . The initial velocities are given
by

𝑢𝑥(x,0) =
𝜋𝑥4

5000
cos(2𝜋𝑡),

𝑢𝑦(x,0) = 0,

𝑢𝑧(x,0) = 0.

We investigated the spatial convergence rate by varying the element order 𝑃 using the stan-
dard (ST) and simultaneously diagonal and minimum energy (SDME) bases with

[︁
𝛼𝐾̂

]︁
and 𝜆 = 1.

The convergence of the approximated energy norm in terms of the polynomial order is illustrated in
Fig. 3.7(a). The exponential convergence rates of the relative error in the energy norm is shown in
Fig. 3.7(b). We considered four possibilities: the standard basis with diagonal preconditioner (DP-
ST), the simultaneously diagonal and minimum energy basis with diagonal precontitioner (DP-
SDME), the standard basis with symmetric successive over relaxation preconditioner (SSOR-ST)
and SDME basis with symmetric successive over relaxation preconditioner (SSOR-SDME) (Ax-
elsson, 1994), with relaxation parameter 𝜔 = 1. Fig. 3.8(a) shows the 𝐿2 and 𝐿∞ error norms for
displacement components in terms of the polynomial order to the time interval [𝑡0; 𝑡𝑓 ] = [0; 0.25]

and 30 time steps. There is an exponential convergence rate for the error as the element order in-
creases. Also note that when 𝑃 = 5, the convergence rate does not change, since we have achieved
the order of the analytical solution defined in Eq.(3.55). Fig.3.8(b) shows the quadratic convergence
rate for the Newmark method with 𝑃 = 4.

Fig.3.9 shows the sparsity profiles of the Schur-complemented global effective stiffness ma-
trices with element order 𝑃 = 4 obtained with the standard, SDME basis with

[︁
𝛼𝐾̂

]︁
and SDME

basis with
[︀
𝛼𝑀

]︀
. The sparsity profile of the SDME basis with

[︁
𝛼𝐾̂

]︁
is slightly different from that

of the standard basis. Note that the profile with SDME contains a smaller number of non-zeros (nz)
than the standard basis. The number of non-zeros was smaller when using the SDME basis with
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Figure 3.7: Convergence of the energy norm (a) with ST and SDME bases with
[︁
𝛼𝐾̂

]︁
and 𝜆 = 1 in

terms of the element order with 30 time steps. Convergence rates of the relative energy error norm
(b) in terms of the element order.
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Figure 3.8: Exponential convergence rates of the error for 𝐿2 and 𝐿∞ norms with ST and SDME
bases with

[︁
𝛼𝐾̂

]︁
and 𝜆 = 1 in terms of the element order with 30 time steps (a) and quadratic

convergence rate of the error in terms of ∆𝑡 with 𝑃 = 4 (b).
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[︀
𝛼𝑀

]︀
.

(a) (b) (c)

Figure 3.9: Sparsity profiles of the global effective stiffness matrices for 𝑃 = 4 using the standard
basis (a), SDME basis with

[︁
𝛼𝐾̂

]︁
with 𝜆 = 1 (b), SDME basis with

[︀
𝛼𝑀

]︀
(c).

Fig.3.10 shows the total number of iterations for all time steps in terms of ∆𝑡 with 𝑃 = 4.
For comparison, the number of iterations using the standard basis is considered. The total number
of iterations is computed as the sum of the number os iterations for each time step. Consequently
the number of iterations decreases when of the time step size is increased. We observed that the
SDME basis has a superior numerical efficiency. The conjugate gradient algorithm using the SSOR
preconditioner had the smallest number of iterations compared to all other cases.

10
−2

10
−1

10
0

10
2

10
3

10
4

∆t

N
um

be
r 

of
 It

er
at

io
ns

 to
 C

on
ve

rg
en

ce

 

 

DP−ST
DP−SDME
SSOR−ST
SSOR−SDME

Figure 3.10: Number of iterations in terms of the time step size with 𝑃 = 4 for the standard and
SDME basis with

[︁
𝛼𝐾̂

]︁
and 𝜆 = 1, using the diagonal and symmetric successive over relaxation

(SSOR) preconditioners.

Next, we consider at the condition number and number of iterations in terms of the poly-
nomial order. We used 30 time steps and increased the element order. Fig. 3.11(a) illustrates the
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condition number. Notice that the condition numbers for the standard basis are larger than using
the SDME basis by two orders of magnitude, for both diagonal and SSOR preconditioners. Also
notice that the condition number with the diagonal preconditioner for the SDME basis was lower
even when compared to the standard basis using the SSOR preconditioner.
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Figure 3.11: Condition number of the effective stiffness matrix (a) and number of iterations (b)
using standard and SDME bases with

[︁
𝛼𝐾̂

]︁
with 𝜆 = 1 in terms of the element order with diagonal

and SSOR preconditioners and 30 time steps.

Fig. 3.11(b) shows the number of iterations in terms of the element order. Notice that the
SDME basis required less iterations than the standard basis for all element orders. For 𝑃 = 4, there
was an average of 369 iterations using the diagonal preconditioner for the standard basis. This
number lowered to 202 when using the same preconditioner for the SDME basis, representing a
reduction of approximately 45%. The same behavior is observed when comparing both bases with
the SSOR preconditioner. In this case, the reduction in the number of iterations was approximately
39%. The use of SSOR preconditioner for the SDME bases reduction the number of iterations of
the 202 to 74 for 𝑃 = 4. This represent the improvement of the 63%.

3.4.3 Analysis of the 𝜆-parameter

As shown in Eq. (3.12), the construction of the SDME basis with
[︁
𝛼𝐾̂

]︁
involves the choice

of the parameter 𝜆 and until now we have used 𝜆 = 1. Now we investigate the influence of 𝜆 in the
numerical conditioning of the effective stiffness matrix and the number of iterations to convergence.
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We consider the same previous problem with 𝑃 = 4 and 30 time steps and calculate the condition
number of the effective stiffness matrix using the diagonal preconditioner. Notice in Fig.3.12(a)
that there is a value of 𝜆 that yields a minimum condition number. Values of 𝜆 close to 100 resulted
in a better conditioned matrix. This choice results in a decrease in the number of iterations required
for convergence as shown in Fig. 3.12(b). The reduction in the number of interations for 𝜆 = 100

was nearly 88% when compared to 𝜆 = 0.1. Note also that the further increase of 𝜆 results in the
increase of the condition number and number of iterations. For 𝜆 = 1000, we observed an increase
in the number of iterations of nearly 25% when compared to 𝜆 = 100.

10
−2

10
0

10
2

10
4

10
6

10
2

10
3

10
4

10
5

λ

C
on

di
tio

n 
N

um
be

r

 

 

DP−SDME

(a)

10
−2

10
0

10
2

10
4

10
6

10
3

10
4

10
5

λ

N
um

be
r 

of
 It

er
at

io
ns

 

 

DP−SDME

(b)

Figure 3.12: Condition number (a) and number of iterations (b) of the effective stiffness matrix in
terms of 𝜆 with 𝑃 = 4, 30 time steps, using the SDME basis with the diagonal preconditioner.

This behavior is significant when analyzing the influence of 𝜆 in terms of the polynomial
order. Now we investigate an arbitrary choice of 𝜆 = [0.1, 1, 100, 1000] for different polynomial
orders. Fig.3.13(a) shows that the choice of 𝜆 = 100 or 𝜆 = 1000 makes the condition number of
the effective stiffness matrix nearly constant. This value is significantly lower when compared with
the standard basis. The choice of the 𝜆 = 100 is better than 𝜆 = 1 even for the SDME basis with[︁
𝛼𝐾̂

]︁
. This result influences the number of iterations as shown in Fig.3.13(b). For 𝜆 = 1000 and

𝑃 = 4, we observed that the reduction in the number of iterations is approximately 86% compared
to the standard basis. For 𝜆 = 100 this reduction is even larger, nearly 89%. These results suggest a
stronger influence of the mass matrix on the conditioning reduction of the effective stiffness matrix
when constructing the SDME basis. In fact, the higher the value of 𝜆, the greater the contribution
of the mass matrix to the conditioning.
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Figure 3.13: Condition number of the effective stiffness matrix (a) and number of iterations (b) for
SDME basis with

[︁
𝛼𝐾̂

]︁
and

[︀
𝛼𝑀

]︀
in terms of 𝑃 . 30 time steps and 𝜆 = [0.1, 1, 100, 1000] was used

with diagonal preconditioner.

Fig.3.13 shows also the behavior of the condition number and the number of iterations in
terms of the polynomial order to compare the construction of the SDME basis using

[︀
𝛼𝑀

]︀
and[︁

𝛼𝐾̂
]︁
. The condition number of the effective stiffness matrix using SDME with

[︀
𝛼𝑀

]︀
is nearly

constant when compared to the SDME basis with
[︁
𝛼𝐾̂

]︁
and 𝜆 = 1. Similar results are observed for

the number of iterations in Fig. 3.13(b). For 𝑃 = 5, the reduction in the number of iterations with
the SDME basis with

[︀
𝛼𝑀

]︀
is approximately 76% compared to the SDME basis with

[︁
𝛼𝐾̂

]︁
and

𝜆 = 1. But the number of iterations obtained with SDME basis with
[︁
𝛼𝐾̂

]︁
and 𝜆 = 100 is smaller

than obtained using SDME basis with
[︀
𝛼𝑀

]︀
, for the range considered for 𝑃 . This reduction reaches

28% for 𝑃 = 5.

We observed a similar behavior when using the undistorted mesh illustrated in Fig.3.14. The
sparsity profile of the global effective stiffness matrix is illustrated in Fig.3.15 after applying the
Schur-complement for the undistorted mesh. The results for the standard basis and SDME basis
with

[︀
𝛼𝑀

]︀
are respectively shown in Figs.3.15(a) and 3.15(c). In this case, despite the similar

sparsity profiles, the number of non-zeros of the standard basis is smaller than the SDME basis
with

[︁
𝛼𝐾̂

]︁
with 𝜆 = 1 as illustrated in Fig. 3.15(b). The SDME basis with

[︀
𝛼𝑀

]︀
provided a

significant reduction in the number of zeros and lower than the standard basis.

The results for the condition number and number of iterations in terms of the polynomial
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Figure 3.14: Undistorted mesh for 3𝐷 linear elasticity.

(a) (b) (c)

Figure 3.15: Sparsity profiles of the global effective stiffness matrices using the standard basis (a),
SDME basis with

[︁
𝛼𝐾̂

]︁
with 𝜆 = 1 (b), ME basis with

[︀
𝛼𝑀

]︀
(c). Interpolation order is 𝑃 = 4

using the undistorted mesh.
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Figure 3.16: Condition number of the effective stiffness matrix (a) and number of iterations (b)
with standard and SDME bases with

[︁
𝛼𝐾̂

]︁
and 𝜆 = 1 in terms of the polynomial order using the

diagonal and SSOR preconditioners with 30 time steps, undistorted mesh.

order are respectively illustrated in Figs.3.16(a) and 3.16(b). Notice the lower values obtained with
the SDME basis for the range of 𝑃 used. For 𝑃 = 4, the preconditioned standard basis has an av-
erage number of 263 iterations per time step, while the preconditioned SDME basis has an average
of 170 iterations, representing a 35% reduction. A similar behavior is observed using the SSOR
preconditioner, with a reduction of approximately 39% in the number of iterations.

We performed the same analysis with the preconditioned SDME bases using
[︀
𝛼𝑀

]︀
and

[︁
𝛼𝐾̂

]︁
with 𝜆 = 1 and 𝜆 = 100. Similar to distorted meshes, the condition number using the SDME
basis with

[︀
𝛼𝑀

]︀
is almost constant for the range of 𝑃 used, as illustrated in Fig.3.17(a). Likewise,

we found that the number of iterations is lower than the SDME basis with
[︁
𝛼𝐾̂

]︁
and 𝜆 = 1, as

shown in Fig. 3.17(b). For 𝑃 = 5 the reduction in the number of iterations was approximately 74%

compared to the SDME basis with
[︁
𝛼𝐾̂

]︁
with 𝜆 = 1. But when 𝜆 = 100 the condition number and

the number of iterations is smaller than presented with SDME basis with
[︀
𝛼𝑀

]︀
. For all range of 𝑃

analysed, the number of iterations using the standard basis was higher than the SDME bases.

78



2 3 4 5
10

0

10
2

10
4

10
6

10
8

Element Order

C
on

di
tio

n 
N

um
be

r

 

 

DP−ST
DP−SDME (λ = 1)
DP−SDME (λ = 100)
DP−SDME−M

(a)

2 3 4 5

10
3

10
4

Element Order

N
um

be
r 

of
 It

er
at

io
ns

 to
 C

on
ve

rg
en

ce

 

 

DP−ST
DP−SDME (λ = 1)
DP−SDME (λ = 100)
DP−SDME−M

(b)

Figure 3.17: Condition number of the effective stiffness matrix (a) and number of iterations (b)
with the standard and SDME bases with

[︁
𝛼𝐾̂

]︁
and

[︀
𝛼𝑀

]︀
in terms of the polynomial order with 30

time steps, using the diagonal preconditioner and the undistorted mesh.

3.4.4 Minimum Energy Local Mass Preconditioner

We have used the the diagonal and SSOR preconditioners in the CG method. For a general
preconditioning matrix [𝑃 ], we replace the original system of equation in Eq.(3.8) by

[𝑃 ]−1
[︁
𝐾̂
]︁ {︀
𝑈 𝑡+Δ𝑡

}︀
= [𝑃 ]−1

[︁
𝑅̂𝑡+Δ𝑡

]︁
. (3.58)

We will now investigate the numerical efficiency using the undistorted local mass matrix
obtained with the SDME basis as the preconditioner. First we do not consider the Jacobian and the
preconditioner matrix [𝑃 ] is given by the assembly of the local mass matrices as

[𝑃 ] = 𝑎0

𝑛𝑒𝑙⋃︁
𝑒=1

[𝑀𝐿]𝑒 , (3.59)

where 𝑎0 is a Newmark constant and [𝑀𝐿] is the local undistorted mass matrix. The second pre-
conditioned matrix uses the average Jacobian for each element and assembles the global matrix
as
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[𝑃 ] = 𝑎0

𝑛𝑒𝑙⋃︁
𝑒=1

[𝑀𝑎𝑣]𝑒 . (3.60)

This choice is interesting since the sparsity profile of the local mass matrix after Schur com-
plement is very sparse. Fig. 3.18(a) shows the sparsity profile of the preconditioner mass matrix
using

[︀
𝛼𝑀

]︀
with polynomial order 𝑃 = 4 for the all elements of the mesh of the Fig. 3.6. Fig.

3.18(b) shows the sparsity profile of the inverse preconditioner mass matrix. In this case, we ob-
served that the local preconditioner mass matrix using

[︀
𝛼𝑀

]︀
is very sparse. When using the average

Jacobian in the construction of preconditioner, the sparsity profile is similar to the local precondi-
tioner mass without average Jacobian.

0 500 1000
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1000

nz = 4422

(a)

0 500 1000

0

500

1000

nz = 6102

(b)

Figure 3.18: Sparsity profile of the preconditioner global mass matrix using
[︀
𝛼𝑀

]︀
without consider

the Jacobian (a), and the inverse preconditioner global mass matrix (b).

We can verify the influence of 𝜆 in the sparsity profile of the local mass matrix using
[︁
𝛼𝐾̂

]︁
.

Fig. 3.19 illustrates the number of non-zeros (nz) in terms of 𝜆 using the preconditioner local mass
matrix, its inverse, and the effective stiffness matrix with and without preconditioning. Notice that
the number of non-zeros reduces with increasing 𝜆 and consequently a better sparsity profile of
[𝑃 ]. When the order of magnitude of 𝜆 gets closer to the tolerance used to construct the matrices,
the sparsity of [𝑃 ] increases. Fig. 3.19 shows that the sparsity of [𝑃 ]−1 𝐾̂ was nearly constant for
𝜆 < 1010.

We perform the tests for the problem of the previous sections using the same mesh, number
of time steps, and analyze the condition number and number of iterations in terms of the poly-
nomial order using the preconditioners defined in Eqs.(3.59) and (3.60) after applying the Schur
complement to the effective stiffness matrix.
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Figure 3.19: Number of the non-zeros in terms of 𝜆 for effective stiffness and preconditioner ma-
trices.

Fig. 3.20 shows the results for the effective stiffness matrix for the SDME basis using
[︁
𝛼𝐾̂

]︁
with 𝜆 = 1 and 𝜆 = 100 and the standard basis. We considered diagonal and SSOR precondition-
ers and included the results using the local mass preconditioner (LP-SDME) and the local mass
preconditioner with average Jacobian (LP-SDME𝑎𝑣). Notice that the condition number using the
local mass matrix as preconditioner with the SDME basis is smaller than the using the standard ba-
sis with diagonal and SSOR preconditioners. Likewise the number of iterations was smaller when
compared to the standard basis.

Fig. 3.21 shows the results using the local diagonal mass preconditioner with
[︁
𝛼𝐾̂

]︁
and 𝜆 =

100. For comparison, we also consider the results using the local mass preconditioner. In this case,
the condition number of the effective stiffness matrix has a similar behavior to both preconditioners.
However, there is a slight reduction in the number of iterations when using the local diagonal mass
preconditioner, compared to the local mass preconditioner.

Fig. 3.22 shows the condition number and number of iterations of the effective stiffness ma-
trix using the SDME with

[︀
𝛼𝑀

]︀
. The results with the standard basis are also included. The con-

dition number obtained with LP-SDME-M and LP-SDME-M𝑎𝑣 is smaller than the standard cases
with diagonal and SSOR preconditioner. However, the results obtained are larger than the ones ob-
tained with diagonal and SSOR preconditioners for the SDME basis, as show in Fig. 3.22(a). Fig.
3.22(b) shows similar behavior to number of iterations when using LP-SDME-M and LP-SDME-
M𝑎𝑣. Similarly, we find that the number of iterations is smaller when we use the diagonal or SSOR
preconditioners.
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Figure 3.20: Condition number of the effective stiffness matrix (a) and number of iterations (b)
using standard and SDME basis with

[︁
𝛼𝐾̂

]︁
and 𝜆 = 1 and 𝜆 = 100. Diagonal, SSOR, local mass

and local mass matrix with average Jacobian preconditioners are considered. We used undistorted
mesh and 30 time steps.
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Figure 3.21: Condition number of the effective stiffness matrix (a) and number of iterations (b)
using the standard and SDME bases with

[︁
𝛼𝐾̂

]︁
with 𝜆 = 100. Diagonal, SSOR, local mass and

local diagonal mass matrix preconditioners, with and without average Jacobian, are considered. We
used undistorted mesh and 30 time steps.
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Figure 3.22: Condition number of the effective stiffness matrix (a) and number of iterations (b)
with standard and SDME basis with

[︀
𝛼𝑀

]︀
using diagonal, SSOR, local mass and local mass with

average Jacobian preconditioners in terms of the polynomial order with 30 time steps, undistorted
mesh.

Fig. 3.23 shows the results using the local lumped mass preconditioner with
[︀
𝛼𝑀

]︀
. We also

show the results using the local mass preconditioner for comparison. Notice that the condition
number using the lumped preconditioner was lower than the full preconditioner for the range of
considered polynomial orders. The number of iterations for both preconditioners showed a similar
behavior. This suggests that the use of the lumped diagonal preconditioner can be an appropriate
choice when using the SDME basis with

[︀
𝛼𝑀

]︀
.

We observe that the local mass preconditioner using
[︀
𝛼𝑀

]︀
or

[︁
𝛼𝐾̂

]︁
is an alternative as pre-

conditioner for SDME bases. The sparsity patterns of the local mass preconditioners with
[︀
𝛼𝑀

]︀
have a smaller number of the non-zeros coefficients 𝑛𝑧, when comparing with use of the

[︁
𝛼𝐾̂

]︁
,

for any choice of the 𝜆. We obtained good results with the diagonal local mass preconditioner with[︁
𝛼𝐾̂

]︁
and 𝜆 = 100. The lumped local mass preconditioner was more interesting with

[︀
𝛼𝑀

]︀
.

3.4.5 Application

In the previous sections we applied the proposed bases to a fabricated smooth solution. Now
we consider a larger problem with a complex geometry. Consider the conrod of an internal com-
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Figure 3.23: Condition number of the effective stiffness matrix (a) and number of iterations (b)
with standard and minimum energy basis using

[︀
𝛼𝑀

]︀
. We considered diagonal, SSOR, local mass

and local diagonal concentrated mass preconditioners, with and without average Jacobian, in terms
of the polynomial order. We used undistorted mesh and 30 time steps.

bustion engine discretized with a mesh of 768 hexahedrical elements, as shown in Fig. 3.24(a). The
internal nodes of the small end are clamped while the internal nodes of the big end are subjected
to surface tractions in 𝑥 and 𝑦. The loads corresponds to a complete cycle and are obtained using a
dynamic rigid body model for the piston-conrod-crankshaft system (Carbonara et al., 2009).
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Figure 3.24: Mesh used for the conrod (a) and number of iterations per load step to standard and
ME bases with

[︁
𝛼𝐾̂

]︁
with 𝜆 = 1 and

[︀
𝛼𝑀

]︀
(b), and 𝑃 = 3.

The time interval used was [𝑡0; 𝑡𝑓 ] = [0; 5.454 × 10−3] and ∆𝑡 = 6.06 × 10−5. We applied
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the Schur complement to obtain the solution and used the diagonal preconditioner on the standard
and SDME bases with

[︁
𝛼𝐾̂

]︁
and 𝜆 = 1 and also the SDME basis with

[︀
𝛼𝑀

]︀
. We computed the

number of iterations for each load step with a total of 90 load steps. The results are shown in
Fig.3.24(b). Notice that the numbers of iterations using the SDME bases are significantly lower
than the standard basis along the load steps. The average number of iterations were 319 for the
standard basis, 170 for the SDME basis with

[︁
𝛼𝐾̂

]︁
and 152 for the SDME basis with

[︀
𝛼𝑀

]︀
. The

reduction in the number of iterations is about 46.7% between DP-ST and DP-SDME with
[︁
𝛼𝐾̂

]︁
and

52% between DP-ST and DP-SDME-M. This clearly demonstrates a higher numerical efficiency
when using the proposed minimum energy bases.

3.5 Concluding remarks

In this paper we presented the simultaneously diagonal and minimum energy high-order ex-
pansion bases applied to transient analysis in linear elasticity using structured elements. A special
construction for the one-dimensional basis functions was used. This formulation is suitable for ap-
plication to dynamic problems using the Newmark method because considers use of the Helmholtz
norm for minimum energy procedure. The internal modes of the one-dimensional mass and stiff-
ness matrices are made simultaneously diagonal.

We also consider the mass norm in orthogonalization minimum energy procedure for bound-
ary modes and compared with the use of Helmhotz norm. Numerical tests demonstrated a superior
efficiency of the proposed bases in terms of number of iterations and condition number. We also
observed that the use of the diagonal and SSOR preconditioners improved the numerical efficiency
of the SDME bases. This makes the application of diagonal preconditioners preferable. Further-
more, the proposed bases can be efficiently preconditioned with the undistorted local mass matrix.
In our tests we found advantages using this type of preconditioner, even compared to the standard
diagonal preconditioner using SDME basis with

[︁
𝛼𝐾̂

]︁
.

The use of the 1𝐷 matrices procedure allowed us to obtain a significant speedup ratio com-
pared to the standard procedure, for distorted and undistorted meshes. In the case of undistorted
meshes, the speedup was very high, due to a factorization of the one-dimensional element matri-
ces. This procedure also consumes less memory for the solver, since we only need to store the
one-dimensional shape functions and their derivatives calculated on one-dimensional integration
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points.

We have considered in this work only structured elements. The extension to unstructured
elements will be the focus of future work. Also, we also have interest on extending the 1𝐷 matrices
procedure for nonlinear problems with large displacements and strains.
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4 Conclusions

This work presented the construction of high-order bases for structured elements considering
the procedure of simultaneous diagonalization for internal modes and minimum energy orthogonal-
ization to boundary modes. The choice of the appropriate norm was used to generalize the minimum
energy orthogonalization procedure. We show that, in accordance with the norm, some high-order
bases proposed in the literature can be constructed considering the simultaneously diagonal of in-
ternal modes and orthogonalization of the boundary modes procedure. In addition, we proposed
the use of the Helmholtz norm for construction of boundary modes with minimum energy orthogo-
nalization. This particular basis for the one-dimensional Helmholtz problem uncoupled vertex and
internal matrix blocks and is dependent of the parameter 𝜆. For a given choice of this parameter, a
smaller condition number is obtained when comparing with standard or Dong bases. Similar results
are obtained for 3𝐷 Helmholtz problems and better efficiency in terms of the number of iterations
and numerical conditioning of the global matrices compared to the standard basis.

We also showed that this special construction for the one-dimensional basis functions, using
Helmholtz norm with

[︀
𝛼𝐻

]︀
or

[︁
𝛼𝐾̂

]︁
, is suitable for application to dynamic problems using the

Newmark method for time integration. In transient linear elastic problems with explicit central
difference methods, the use of the

[︀
𝛼𝑀

]︀
is more convenient due to the use of the mass matrix in

this procedure.

In projection and Poisson problems, the application of the procedure of the minimum energy
with

[︀
𝛼𝑀

]︀
and

[︀
𝛼𝐾

]︀
is more efficient in terms of the condition number and number of iterations

when compared to the standard bases. The results are similar to those ones presented in literature.
We also showed that for 3𝐷 projection problems, the choice of the parameter 𝑘 = 0 in the pro-
cedure of the simultaneous diagonalization can improve the number of iterations for convergence.
For 3𝐷 Poisson problems, the use of the parameter 𝑘 = 1 in the procedure of the simultaneous
diagonalization did not improve the number of iterations for convergence because the condition
number of the one-dimensional mass matrix is larger than that obtained with 𝑘 = 0.

This work also presented the calculation of the coefficients of the 2𝐷 and 3𝐷 elemental op-
erators as a combination of the coefficients of the 1𝐷 mass and stiffness matrices and the Jacobian
matrix for quadrilateral and hexahedral elements in distorted domains. This procedure is interesting
because consumes less memory, since we only need to store the one-dimensional shape functions
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and their derivatives calculated on one-dimensional integration points. The use of the 1𝐷 matrices
procedure allowed us to obtain a significant speedup ratio compared to the standard procedure, for
distorted and undistorted meshes. In the case of undistorted meshes, the speedup was very high,
due to a factorization of the one-dimensional element matrices.

We observed that the use of the diagonal and SSOR preconditioners improved the numerical
efficiency of the SDME bases. Furthermore, the local mass preconditioner using

[︀
𝛼𝑀

]︀
or

[︁
𝛼𝐾̂

]︁
is an alternative as preconditioner for SDME bases. The SDME bases can be efficiently precon-
ditioned with the undistorted local mass matrix. In our tests we found advantages using this type
of preconditioner, even compared to the standard diagonal preconditioner using SDME basis with[︁
𝛼𝐾̂

]︁
. In addition, the lumped local mass preconditioner was more interesting when we use

[︀
𝛼𝑀

]︀
.

4.1 Future work

We show that the use of the simultaneously diagonal and minimum energy basis is interesting
for the considered problems. The a suggestions of work include:

∘ The extension to unstructured elements.

∘ Extending the 1𝐷 matrices procedure for nonlinear problems with large displacements and
strains.

∘ Consider the application of the simultaneously diagonal and minimum energy (SDME) bases
for unstructured elements using local solution.

∘ Analysis of performance of the preconditioners in parallel computer

∘ Study and application of SDME bases in seismic modeling problems with a high degree of
complexity and large number of degrees of freedom.

∘ Application to contact problems.
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