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Abstract 

Product family is a key concept is the area of mass customisation. Although the design of a product 

family is a difficult and challenging task, to derive members of the product family to meet the 

requirements of individual customers can be a routine design task. In this work, we propose a formal 

approach to model the customisation of product families that achieves this goal. In fact, this approach 

can be seen as a theory on the customization of product families. It is based on a knowledge framework 

for the representation of product families, which combines a generic product structure and a constraint 

network extended with design functions. The method for deriving members of the product family is a 

two-stage instantiation process. First, a solution to the constraint network model consistent with the 

customer requirements is found. Next, this solution is used to transform the generic product structure 

into a specific structure that corresponds to a member of the product family. In this work, we prove that 

if the constraint network model extended with design functions satisfies a few modelling conditions, 

then to find solutions become a backtrack-free process. Although there are other works in the literature 

that also claim to be backtrack-free, a remarkable fact about our approach is that we achieve this by the 

introduction of knowledge about the product family, instead of resorting to computational power and 

pre-processing as in those approaches. Another remarkable aspect of our approach is that components 

can be designed as part of the customisation process using the design functions. This implies that it is 

possible to have an efficient customisation process without compromising the flexibility of the product 

family. In the conclusion of this work, we argue that our approach can deal with customisation 

problems outside the product configuration area. Two appendices are also added to the thesis. One is a 

complete modelling of the Automatic Transfer Switch (ATS) product family using our approach. This 

example is used in the main body of the thesis to illustrate the concepts that are being introduced. The 

other appendix is the computational implementation of the first-stage of the customisation process of 

the ATS product family.  

 

 

 

Resumo 

Um conceito chave na área de customização em massa é o de família de produtos. Embora o projeto de 

uma família de produtos é uma tarefa difícil e desafiadora, derivar os membros da família de produtos 

para atender os requisitos de clientes individuais pode ser uma tarefa de design rotineira. Neste 

trabalho, propomos uma abordagem formal para modelar o processo de customização de famílias de 

produtos que atinge este objetivo. De fato, está abordagem pode ser vista como uma teoria a respeito de 

customização de famílias de produtos. Ela é baseada em uma estrutura de conhecimento para a 

representação de famílias de produtos que combina uma estrutura genérica de produto e uma rede de 

restrições estendida com funções de design. O método para derivar os membros da família de produtos 

é um processo de instanciação com duas fases. Primeiramente, uma solução para o modelo de rede de 

restrição consistente com os requisitos do cliente é encontrada. Em seguida, esta solução é utilizada 

para transformar a estrutura genérica de produto em uma estrutura especifica que corresponde a um 

membro da família de produtos. Neste trabalho, provamos que, se o modelo de rede de restrição 

estendida com funções de design satisfaz algumas condições de modelagem, então encontrar soluções 

se torna um processo livre de retrocessos. Embora existam outros trabalhos na literatura que também 

afirmam ser livre de retrocessos, um fato notável sobre a nossa abordagem é que conseguimos isso 

através da introdução de conhecimento sobre a família de produtos, em vez de recorrer ao poder 

computacional e pré-processamento como naquelas abordagens. Outro aspecto notável da nossa 
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abordagem é que os componentes podem ser projetados como parte do processo de customização 

através das funções de design. Isto implica que é possível dispor de um processo de customização 

eficiente sem comprometer a flexibilidade da família de produtos. Na conclusão deste trabalho, 

argumentamos que a nossa abordagem pode lidar com problemas de customização que estão fora da 

área de configuração de produtos. Dois apêndices também são adicionados à tese. Um deles é uma 

modelagem completa de uma família de produtos Chave de Transferência Automática (ATS) baseado 

em nossa abordagem. Este exemplo é utilizado no corpo principal da tese para ilustrar os conceitos que 

estão sendo introduzidos. O outro apêndice é uma implementação computacional do primeiro estágio 

do processo de customização da família de produtos ATS. 
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Chapter 1 

Introduction 

Product variety is a competitive strategy of companies to improve their market share by offering 

products tailored to specific market niches. However, an unplanned proliferation of products will cause 

the rising of the manufacturing costs of the company and create inefficiencies [1, 2]. To counter these 

negative effects, the concepts of product families and product platforms have proven to be a successful 

approach [3]. Among the major advantages that can be attributed to them is the reuse of components 

between the members of the product family and the reduction time for the development of new family 

members.  

Product families have also been advocated to be a key concept is the mass customisation area 

[4, 5], but with some additional challenges. As we shall see in more details later, in contrast to mass 

production strategy, which provides a heterogeneous market with standard products, mass 

customization is a market strategy whose goal is to provide products that fit the needs of the customers 

individually, at costs comparable to mass production [6]. In this application, the mass customization 

company will have to design a product family that covers a delimited market segment, and to set up a 

flexible and stable mass customisation system that is capable of deriving members of the product 

family to meet the needs of individual customers in a responsive way [7]. The customers interact with 

the mass customisation system through a configurator, which consist of a software system that assists 

the customers in the process of specifying a product that meets their requirements [8, 9]. 

The capability of solving a configuration problem without backtracking is essential for the 

success of the mass customization company since it allows the customer to specify the product he 
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needs without going into dead ends. This happens whenever the requirements of the customer cannot 

lead to a consistent product. In this case, the customer will have to review previous decisions until a 

product specification that meets the requirements can be found. This may become a tedious interaction 

with the customer eventually given up. Despite its importance, in general, approaches to product 

configuration either cannot guarantee a backtrack-free process or will achieve this by some type of pre-

processing, but running the risk of computational time or space explosion [10]. In this work, we 

propose an approach that takes advantage of the design process of product families to provide enough 

structure to the customization of the product family that it can become a backtrack-free process. 

Certainly, the design of a product family is a “difficult and challenging task” [11], for it requires 

the development of multiple products at the same time keeping as much components in common to 

improve economy of scale, but without sacrificing variety or performance [12, 13]. However, it should 

not come as a surprise that after the product family is designed, deriving its members can be turned into 

a routine design task, one for which the problem solving requires little or no backtracking at all [14]. 

This claim follows from the fact that during the design process, designers acquired a great amount of 

knowledge about the structure and variability of the product family, and how the variable aspects of the 

product family are interrelated.  

In the area of artificial intelligence, the task of deriving products that meet different sets of 

requirements is referred to as product configuration.  It is well known that to improve the efficiency of 

the product configuration process it is necessary to used knowledge about the problem domain to 

constrain the design space and to guide the search process [15]. In this thesis, we propose a new 

approach based on a knowledge framework composed of two general models. A generic product 

structure (GPS) to represent the product family architecture, and a constraint network model extended 

with design functions (CN-F) that complement the GPS in delimiting the design space of the product 

family. The CN-F model is an extension of the classical constraint network (CN) model by associating 

design functions to the variables to generate their values during the customisation process. Members of 

the product family are derived from the knowledge framework as instantiations into two stages. First, 

an instantiation algorithm applies the design functions to find a solution for the CN-F model out of the 

customer requirements. Then, this solution is used to transform the GPS directly into a specific 

physical model that corresponds to a product family member.  

Besides generating values to the variables of the CN-F model, the design functions play a 

crucial role in the problem-solving strategy for they establish dependency patterns between the 

variables, which guide the instantiation process. These structures reduce considerably the search for 
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solutions in the design space and eventual backtracking is confined to a subset of the variables used to 

express the customer requirements. However, the most important contribution of this work in this 

regard is the setting up of a few modelling conditions such that if the CN-F model satisfies them, the 

instantiation process becomes backtrack-free.  

Turning the customisation of the product family into a backtrack-free process has a clear 

advantage in terms of problem-solving efficiency and in the simplicity of the control algorithm that is 

required. Nevertheless, in our approach, this gain in efficiency and simplicity does not compromise the 

flexibility of the product family. Because the design functions can be used to design components (in 

part or entirely) during the customisation process, the custom products can be tailored to the 

requirements of the customers. It also implies that the customisation process does not have to rely on 

pre-defined components. As we will argue in the conclusion of this work, because of this capability, 

our approach can be distinguished from product configuration approaches, as well as the other 

approaches reviewed within this work.  

To illustrate the concepts that will be introduced along this work, we will consider the example 

of the Automatic Transfer Switch (ATS) product family. An ATS is an electronic device that senses the 

loss of power on the utility and promptly activates an emergency generator set to restore power to a 

vital load, such as emergency lights, security equipment, etc. The load is automatically transferred back 

to utility after its power has been restored. More details about the ATS product family are given in 

Appendix I. 

1.1 Contributions of this work 

In this work, we provide many contributions to the area of product configuration, or to product 

customization, in a broader sense. The following list summarizes the main achievements of our 

approach: 

 It sets up a formal theory of the customization process of product families; 

 Introduces a knowledge framework for the representation of for product families, which combines 

the GPS and the CN-F models, and a two stage process for deriving product family members; 

 Introduces a formal definition for product families based on the GPS; 

 Introduces the CN-F model as an extension to the classic constraint network (CN) model by design 

functions; 

 Introduces the concept of instantiation patterns, based on the dependencies between the variables 

established by the design functions;  



4 

 It sets up a few conditions that if satisfied, deriving product family members becomes a backtrack-

free process. 

 The problem of product configuration is treated as a data flow process. 

Although our approach has been developed in view of the mass customisation area, many other 

application areas, such as, software product lines and self-configuring products, can benefit from it as 

well. 

1.2 General organization of this work 

The remaining of this thesis is organized as follows. In Chapter 2, we set up the conceptual background 

of the approach, examining the concepts of product family, product platform and mass customisation. 

Along this chapter, we put our approach in perspective by clarifying its application in mass 

customization and delimiting its scope. In Chapter 3, we develop the framework for representing 

product families. We begin with the definition of component types, followed by a definition for the 

GPS and a definition of product families based on the GPS. Then, we deal with each element 

composing the CN-F model. In Chapter 4, we introduce the two-stage method for deriving product 

family members. It begins with the definition of our instantiation algorithm to find solutions for the 

CN-F model and its consistency issues. Next, we introduce the concept of instantiation patterns for the 

CN-F model. The chapter culminates with the definition of two consistency conditions for the CN-F 

model under which the instantiation process is backtrack-free. After that, we introduce the method for 

transforming the GPS into the physical model of a member of the product family. Finally, we illustrate 

the use of instantiation method on the ATS product family. In Chapter 5, we review the literature on 

approaches related to our proposal and discuss some aspects of our approach in comparison to them. 

Finally, in Chapter 6, we sum up the main advantages of our approach, make some comments about its 

applicability and give directions for further research.  

Two appendices have been included as part of the thesis. In Appendix I, we present the 

complete and detailed modelling of the ATS product family. We also discuss the consistency 

conditions in connection to CN-F model of the ATS product family, and present a simplified version of 

the instantiation algorithm. In Appendix II, we present the implementation of our prototype 

configurator for the ATS product family. As a practical demonstration of the program, we run a 

example of customer requirements. 
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Chapter 2 

Conceptual background 

It what follows, we examine in more detail most of the concepts referred to in the introduction. 

However, this chapter is not intended to be a review on those concepts, but only to set up the 

conceptual background of our approach, to make clear the application area and the type of problem it is 

aimed at. First, we consider the concept of product families and product platform through an example. 

We also look at the relation of product family and market segmentation, and the role of modular 

architectures in the generation of product variety. Then, we examine the definition of mass 

customisation, the application area for which our approach has been developed. Regarding mass 

customisation, we focus on the elicitation process and the role of configurators in this process. Then we 

examine the major factors for the success of a mass customisation company, with emphasis on 

flexibility. 

2.1 Product families and product platforms 

As mention in the introduction, our approach is based on a knowledge framework for representing 

product families. In fact, we are assuming the product family as given and that the necessary 

knowledge about it is available from its design process. Hence, in this work, we will not be specifically 

concerned with the process and tools used for the development of product families, but only with its 

concept and main characteristics. The interested reader will find an extensive review of those subjects 

in [16, 17].  

To clarify the concept of product families, it will be instructive to begin with an example. The 

Walkman is a Sony brand trade name for portable audio cassette players, which has achieved great 
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success in the 80s and early 90s. This example is interesting because it illustrates very well the 

proliferation of products that is possible with the concept of product families. Moreover, it also 

illustrates the concept product platform, which is closely related to the concept of product families. 

In 1979, Sony launched its first model of the Walkman in Japan. Two years later, Sony 

launched the WM-2, the second generation of the device, in a worldwide advertising campaign. During 

the 80s, Sony introduced about 20 new models in the US market each year. For the models introduced 

from 1980 to 1988, the market life was 1.97 years on average. Figure 1 illustrates the variety of models 

in the US market from 1981 to 1991. The variety of new models introduced in that period was a 

response to customer needs, but was also driven by technological improvements. Along that decade, 

Sony dominated the personal portable players market in the world. 

Figure 1. Variety of portable stereos in the US market (from [18]) 

In Figure 2, it is shown three of the models of the Walkman with their variations. The WM-2, 

with dimensions slightly larger than a cassette tape, was the second generation of Walkman launched 

by Sony and the most sold in the world. Another precursor of several models, the WM-20 was designed 

with a flat low-power engine that operated with only one 1.5 V AA battery, and its thickness was half 

of the WM-2. The first sporty model was the WM-F5. It made use of the same DD direct drive 

mechanism as the WMDD model; however, one of its distinguishing characteristics was to be 

waterproof.  
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Figure 2. Three models of Sony’s Walkman 

Despite the apparent large diversity of models, most of the Walkman models were obtained 

from three basic platforms (models WM-2, WMDD and WM-20, shown in Figure 3) by small changes 

in the features, packaging and appearance of these platform models. However, those platforms were the 

outcome of major engineering efforts, giving rise to sub-families of Walkman models. As indicated in 

the figure, significant improvements in component technology were also made during the 80s. Basic 

components were standardized and a flexible manufacturing system was set up to produce all the 

models within a sub-family [18].  

Figure 3. Platforms for the Walkman (from [18]) 
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Based on the Walkman case discussed above, one obvious observation is that a product family 

is a set of related products. However, central to this concept is the fact that all members of product 

family are derived from a collection of assets, or product platform. According to Robertson and Ulrich 

[19], this shared collection of assets includes the components that are used to assemble the products, 

the embedded software, product family architecture, the equipment and process used to produce the 

components, the design teams and their know-how, etc.  

Another definition for product platform is given in [20]. They define it as “a set of common 

components, modules or part from which a stream of products can be efficiently created and launched.” 

It should be noted that, based on this definition, if the core set is composed of just a few components, 

then it may be possible to create from the product platform a plethora of different functional products 

with little more in common than those components, all of them regarded (by definition) as part of the 

same family. For example, in the Black & Decker case described by Mayer and Lehnerd [20], a 

universal motor was the key component of the product platform. From this platform, a portfolio of tools 

as diverse as drills, sanders, grinders, saws etc. were developed. In our view, this poses some 

difficulties to apply the concept of product family to a mass customisation strategy. In our approach, 

one key asset in the product platform is the GPS. As we shall see in Section 3.2, this concept plays a 

central role in restricting the functional scope of the product family without compromising its 

capability to meet different customer requirements within a heterogeneous market segment. 

2.1.1 Market segmentation and product families 

The strategy behind a product platform is to “maximize market leverage from common technology." 

This is accomplished by serving different but related market segments with family members derived 

from the product platform. To set up a robust product platform in association to a market strategy, 

Meyer and Lehnerd [20] proposed the platform-market grid tool shown in Figure 4. The major 

customer groups served by the products of a company are arranged horizontally into distinct market 

segments. These market segments are further subdivided into different tiers of price or performance, for 

example, low cost/performance, mid-range and high cost/performance. Each of the subdivisions of the 

resulting market grid is a market niche. Based on this grid, a company may establish a strategy of 

which niches it will serve at given time and with what product platforms, and how the market coverage 

of the product platform will evolve over time.  
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Figure 4. Market segmentation grid and the associated product platforms (based on [20]) 

However, within a single market niche the same product variant is being offered to a large 

number of customers, not all of them with the same needs. Thus, from a market point of view, a 

standard product is still being offered for every market niche, except that now the scope of each market 

segment has become more focused to the needs of a particular group of customers. However, the 

segmentation process could precede each market niche being subdivided further, hence reducing even 

the heterogeneity of the market segment. However, soon the number of product variants would become 

unmanageable and this market strategy enviable from the economical point of view. However, this 

exercise is interesting because this point stresses one important difference between using the product 

platform as a strategy for providing the market with a variety of products, and a mass customization 

strategy based on a product platform, which, in principle, derives products that meet the needs of 

individual customers. In this regard, a mass customisation market strategy may be considered as the 

limiting case of the market segmentation process, a condition where every customer is a different 

market niche. However, this possibility depends on the flexibility of the product family and the 

capabilities of the mass customisation system. We will return to this point in Subsection 2.2.2. 

2.1.2 Modular architectures 

A product is a collection of components assembled to realize the desired functions. Besides the 

physical arrangement of components, there is a correspondent conceptual arrangement of functional 

elements that defines how the product overall functions are brought about. A modular architecture is 

defined by Ulrich [21] as a condition for which the functional elements have a one-to-one mapping to 

physical components and a well-defined specification of the interfaces among interacting components. 
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However, products can have different degrees of modularity, ranging from a completely integrate to 

completely modular architecture. Thus, the definition given above should be understood as a condition 

for a highly modular architecture. In Figure 4, it is shown two examples of architectures with different 

degrees of modularity: a) a modular architecture with a one-to-one mapping and b) an integrated 

architecture where some functions are realized by more than one component, and some components are 

involved with more than one function. 

Because in a modular architecture the couplings between components or modules (i.e., groups 

of components with identifiable functions) are greatly reduced, changes introduced to one component 

or module can be prevented from propagating to neighbouring ones. Thus, a modular architecture 

offers a great opportunity to promote variety. Actually, it is widely recognized in the literature that this 

is a fundamental concept for achieving product variety [22]. 

Figure 5. Architecture of trailers with different degrees of modularity (adapted from [21]) 
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Table 1. Typology of modularity (from [3]) 

 

Different types of modularity have been identified, and a typology for modular structures has 

been brought forward. For example, Pahl and Beitz [23] identified modules as being basic, auxiliary, 

special or adaptive. Ulrich and Tung [24] identify types of modularity through which variety can be 

obtained, namely, component swapping, fabricate to fit, bus and sectional modularity. Based on the 

types of interfaces between components and their organization, Ulrich [21] also introduced a typology 

subdividing modular architectures into slot, bus and sectional. In Table 1, it is shown a summary of this 

typology. Although this typology is helpful for the understanding the nature of modular architectures 

and how product variety is entailed, it falls short of providing a modelling language to represent 

product families. This issue is the subject of our approach and will be presented in Chapter 3.  
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The classification of components introduced by Pahl and Beitz [23] brings to light one 

important point. A product family has a set of components that are common to all its members, and that 

define its main functions. We already discussed this point in relation to the definition of product 

platforms, calling attention to the implications of a core set with too few components. On the other 

hand, the variability within the product family is brought about by a set of special components. This 

distinction between components can be seen throughout the literature and are more frequently referred 

to as common and variant components. Since a product family with too many common components has 

low variability, and one that has too many variant components has higher manufacturing costs, the 

commonality/diversity issue and its optimization has been the focus of some works, for example, in 

[25]. 

2.2 Mass customisation 

Differently from the prevailing mass production strategy, which supplies the market with standard 

products produced in high volumes and at low cost, mass customization is a market strategy which 

aims at providing the customers individually with products that fit their needs at a price comparable to 

standard mass-produced products [6]. In a more recent definition, Piller [7] stresses the main factors for 

the success of the approach. He defines mass customization as a “customer co-design process” for the 

manufacturing of products, for which “all operations are performed within a fixed solution space, 

characterized by stable but still flexible and responsive processes.” By co-design, he means the 

integration of the customers into a value creation process “by defining, configuring, matching, or 

modifying an individual solution.” By a solution space, we can understand the set of all products that 

can be derived from the product platform that is supporting the mass customisation system. A fixed and 

well-defined solution space it crucial for the stability and responsive of the mass customisation system. 

However, as will be discussed below, this tends to work against the flexibility. 

Zipkin [26] identifies three key elements for a mass customisation system. An elicitation system 

that is capable of eliciting the customer requirements interactively. A flexible manufacturing system 

that is capable of producing the products the customers need and that can reduce “the trade-of between 

variety and productivity". A logistic system that is capable of delivering the right product to the right 

customer. In this work, we will be concerned only with the elicitation process. This process includes 

the interactions with the customers to define their requirements, up to the point when the product that 

meets their requirements is completely specified. After that, the product specification may go through 

additional stages to transform it into a suitable representation for the manufacturing process.  



13 

An extensive review of the literature on mass customisation can be found in [27, 28]. In the next 

subsection, we will examine some of the difficulties associated to the elicitation process and the use of 

configurators as a tool for its automation. After that, we will characterise flexibility in the mass 

customization system in more details.  

2.2.1 Problems with the elicitation process and the role of configurators 

One of the main problems with the elicitation process is that, in general, customers do not know exactly 

what they need and, in this case, it may not be an easy task to help them to articulate their 

requirements. Moreover, they can easily become overwhelmed and get frustrated if too many options 

are provided to them during the elicitation process, a condition that has been called by Pine as “mass 

confusion” [29]. Even in the assumption that the customers are willing to go through the elicitation 

process, if they are exposed to technical choices, unless they have the necessary background, they may 

feel unsure whether the choices made will lead to products that meet their needs. In that situation, it is 

necessary to bridge the gap between the needs of the customers to the technical decisions necessary to 

specify a product. Because the elicitation process stands as the front end through which the customers 

interact with the mass customisation system, this is an area that deserves much attention [30, 31].  

A configurator is a software tool that assists the customers during the elicitation process to 

specify products that meet their needs. Hence, it is a key technology for the success of the mass 

customization system is the configurator. A configurator comprises three main subsystems [9]:  

1. A core configuration subsystem with an interface through which the customer can interact to 

define the product that meets his requirements.  

2. A feedback subsystem that provides to the customer the relevant information for his decision-

making. The visualization of the custom product and its price are typical forms of feedback.  

3. A back-end subsystem that translate the specifications of the custom product into a production 

order with all the necessary documentation to start its manufacturing. 

Two important problems that manifest themselves in the interaction of the customers with the 

mass customization system have their roots on the core configuration system. If every time the 

customer makes a decision, the problem solving mechanism of the core configuration system has to go 

through an extensive search process in the design space, it may become unresponsive for long periods 

of time. Moreover, if the problem-solving process is not backtrack-free, it may frequently reach dead 

ends, requiring the customer to review previous decisions. These characteristics will inevitably scare 
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the customers. Therefore, the availability of backtrack-free problem solving methods, which exhibits 

real time responses, is of great value for the development of configurators.  

Besides its role in the interface, a configurator can also provide many important benefits to the 

mass customisation company. Reduction of the order fulfilment cycle time by the automatic generation 

of quotations, and accurate order entry are among those benefits [8, 3]. Because of their impact on the 

success of the mass customisation system, this is also an area of research of great interest. 

The approach proposed in this work will provide a theoretical foundation over which backtrack-

free configurators can be developed. Since we will be mainly focused on problem solving aspects of 

the customisation of product families, the results presented in this work will be more closely related to 

the core configuration subsystem mentioned above. Nevertheless, some aspects of the back-end 

subsystem will be supported to some extent. In Appendix II, we will present the implementation of a 

prototype configurator for the ATS product family, as a practical demonstration of our approach.  

2.2.2 Flexibility in the mass customisation process  

If the product is to meet the individual customer requirements, the manufacturing system must allow 

the introduction of the customer requirements at some point of the production process, called the point 

of customer involvement [32]. Points of entry can happen at different stages of the manufacturing 

process, each one enabling a different degree of customisation of the output product. In Figure 6, it is 

depicted the four main entry points along the manufacturing process. The earliest entry point is at the 

design stage. This means that the whole design process is carried out in view of the customer 

requirements. The output of the manufacturing process is a unique product that can fit exactly the 

customer needs. The second entry point corresponds to a condition where the design of an existing 

product is modified or adapted to meet the customer requirements. In this case, some of the product 

components will be modified or new ones may be designed to meet the customer requirements. The 

output of the manufacturing process is a product with some unique features or components. In the third 

entry point, the product is assembled from a finite collection of existing components. This corresponds 

to a typical product configuration process. In the fourth and last entry point, only minor adjustments are 

made, either by the setting of the product or the addition of accessory components. It should be noted 

that these entry points are not exclusive, for the customisation process can involve combinations of 

these entry points. For example, it could involve the redesign and fabrication of some components and 

the configuration of available components.  
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The first entry point corresponds to the Engineer-to-Order (ETO) strategy in the literature. In 

[33] it is argued that, if a company operates according to an ETO strategy, it does not imply that it 

conforms to the definition of mass customisation. Possibly, it will fail regarding the cost and 

responsiveness criteria. On the other hand, at the last entry point, the customisations are rather trivial 

and consist mostly of product bundling. A task left to the sales staff to do. 

Figure 6. Points of customer involvement in the mass customization process (modified from [32]) 

Therefore, mass customisation approaches are most appropriately related and likely to occur in 

the middle entry points, as indicated in Figure 6 by the highlight. In this figure, it is also shown how the 

degree of flexibility, stability and responsiveness of the mass customization system are related to the 

entry points. By flexibility, it is meant how closely the mass customization system can meet the 

customer requirements within a heterogeneous market segment. By stability, it is meant the capability 

of the mass customization system to cope in a cost-effective way with the variety of products that must 

come out from it without having to go through adjustments.  By responsiveness, it is meant the time it 

takes for the products to be delivered to the customers from the moment they are involved in the 

elicitation process. As indicated in the figure, while the flexibility will increase as the entry point 

moves up the downstream of the manufacturing process, the stability and responsiveness will decrease. 
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This inverse relation is because an increase in flexibility allows for the design of novel products, which, 

on the other hand, will lead to longer design time, adjustments in the available manufacturing system to 

produce it and testing to guarantee that it performs as expected. Hence, an increase in the flexibility has 

negative impacts on both the stability and responsiveness of the mass customisation system. 

From the discussion about the relation of market segmentation and product families made 

above, we can view mass customisation as the limit of a market segmentation process by the 

progressive differentiation of the product family to cope with the heterogeneity within the market. 

Thus, eventually, every customer will get a product that precisely fits his needs. However, depending 

on the entry point, that level of segmentation may not be achieved.  For example, entry points after the 

fabrication stage must rely on existing components for the customisation of the products. Therefore, 

even if there is a great variety of components available, it may not be enough to provide each customer 

with a product that exactly fits his requirements. In other words, groups of customer will be provided 

the same product, although their requirements are different. This implies that although customers are 

being served on an individual basis through a configurator, their needs are not being strictly fulfilled 

due to limitation on the flexibility of the product family or the customisation process.    

As it will become evident in the following chapters, our approach to the customisation of 

product families is not based on a predefined set of components. Actually, it allows the design of 

components during the customisation process, which allows the point of customer involvement in the 

mass customisation system to be moved further to the right in Figure 6, thus providing a lot more 

flexibility to the mass customization process to specify a product that fits to the needs of the customers. 

On the other hand, our approach to represent product families has, as one of its pillars, a generic 

architecture that comprises the architectures of all the members of the product family. It also provides a 

clear delimitation of the design space within which its members are located. As it will be argued in the 

conclusion, these conditions will allow for the setting up of a stable mass customization system.  

Moreover, our approach to the customisation of product families can be fully automated and if properly 

modelled, can provide assurances that the products been derived perform as expected, thus contributing 

for the responsiveness of the mass customisation system. Therefore, with our approach, it will be 

possible to chance the balance between the performance factors of the mass customisation system by 

increasing its flexibility without compromising its stability and responsiveness.  
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Chapter 3 

Product family modelling  

The variability of a product family may be defined within the functional, technological and physical 

domains [34]. Nevertheless, any functional or technological variation will ultimately appear as a 

physical variation. Consequently, any two variants within the product family will necessarily have 

distinct physical models, and the differences will be related either to the components or to their 

structural organization. Hence, at the physical domain we have a uniform and inclusive account of the 

variability within a product family.  

Because of their variability, no physical model can stand as the representative for all members 

of the product family.  Therefore, in what follows we will develop a generalization of the physical 

models that is capable of incorporating all the variability within the product family. To define this 

generic physical model, first we will introduce the concept of component types and the criteria for their 

classification.  To represent the physical models of the members of the product family we will use tree 

graphs. The root node will stand for the product itself, while all other nodes in the tree will stand for its 

components, and the hierarchical structure of the tree graph will define the assembling organization of 

the product. The leaf or terminal nodes are single components or compound components that will not 

be further decomposed. They are the primitive components of the product family. 

3.1 Component types 

Let                be a product family and    the physical model of product   . As noted above,    

will be represented by a tree graph with the root node standing for    and the leaf nodes for the set of 
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primitive components   . Hence, the set of all primitive components for   is defined by   ⋃   
 
   . 

Each product      realizes a set of overall functions and has a set of attributes. For example, 

the main functions of an ATS are the monitoring of the utility, starting/stopping the power generator 

and making the transfer of the load between the utility and the power generator. The number of phases 

it can monitor and the types of generators it can control are some of its attributes. Assuming that the 

product family members have modular architectures, to each       we can associate a set of sub-

functions which, when assembled according to   , bring forth the overall functions of   . The same 

rationale is true regarding the attributes. 

Primitive components in   can be organized by the following relation. Components       are 

said to be alternative components if and only if they have similar functionality and have been designed 

to replace each other to create product variety. It should be noted that we did not require alternative 

components to have the same interface. For example, the enclosures for the ATS product family have 

two different interfaces. One with a hole to attach the buzzer, in case the customer wants the ATS to 

monitor the power generator, and the other without such hole.  

Being an alternative component is an equivalence relation over   for it is reflexive (every 

component   is an alternative to itself), symmetrical (if   is an alternative to   then   is an alternative 

to  ) and transitive (if   is an alternative to   and   is an alternative to   then   is an alternative to  ). 

Consequently, this relation partitions   into equivalent classes, such that, within the same class, all the 

components are alternatives to each other. Hence, set   has a correspondent set   such that, for each 

   , there is a corresponding class   to which it belongs, and, for all     , there is at least one 

    such that    . 

Definition 1. Let   be the set of primitive components from which the member of the product family   

are derived. Each class of components      is a component type. 

Every component type      can be classified according to the following criteria. If   contains 

exactly one component from  , it is called a specific component type. Otherwise, it contains two or 

more components from   and is called a generic component type. On the other hand, if        for 

all     , then   is called a common component type. Otherwise,   is called an optional component 

type. These classes are not all mutually exclusive, but can be combined into four categories. For 

example, a generic/common component type represents a class of alternative components such that it 

contains more than one component from   and all members of the product family have a component 

from this class in its physical model. The other possible categories are generic/optional, 
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specific/common and specific/optional. In Figure 7, it is depicted schematically the relation between 

product family members and component types. The members of the product family, shown at the left 

column, are derived from the components at the middle column. These components are grouped into 

classes of alternative components (same colour) forming component types. Their classification, shown 

at the right column, follows the rules defined above.  

Figure 7. The classification of component types in a product family 

In what follows we will introduce a formal definition for the GPS, based on the component 

types of the product family. 

3.2 The generic product structure 

Let   be a tree graph whose root node stands for   and the leaf nodes stand for the elements in   . We 

say that the physical structure    is isomorphic to a sub graph of   if and only if the root node in    is 

mapped onto the root node in   and each leaf node in    (a component     ) is mapped onto the 

corresponding leaf node in   (the component type      to which   belongs). Moreover, we say that 

the isomorphism of the set physical structures                  , corresponding to the members 

of the product family, is adherent to   if and only if the following conditions hold. 1) If   is a common 

component type in  , every element in   has a component that maps onto it. 2) If   is an optional 

component type in  , at least one element in   (although not all of them) does not have a component 

that maps onto it.  

Definition 2. We say that the structure   composed of component types from    is a GPS for the 
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product family   if and only if the product structure of the members of the product family are 

isomorphic and coherent to  .  

Note that while each member of the product family may cover just part of the GPS through 

isomorphism, the property of coherence requires that collectively the members of the product family 

cover all the GPS. Moreover, this coverage must satisfy the definition of the component types. 

To illustrate the concepts of isomorphism and coherence, let           be a product family 

and   a product structure defined out of the components in  . As depicted in the Figure 8, both    and 

   are isomorphic to  . However, because     is a common component type, and there is no 

component from    mapping onto it, one of the conditions for coherence fails.  

Figure 8. Illustration of isomorphism and adherence 

Apparently, the definition of the GPS may seem somewhat restrictive. However, it is possible to 

construct a GPS satisfying our definition even for a collection of completely distinct products, just by 

aggregating the root nodes of their corresponding physical models into a common root node. In this 

case, except for the root node, all other nodes of the resulting GPS would correspond to 

specific/optional component types. Of course, one would hardly call this collection of products a 

product family. A more interesting situation arises if some of the leaf nodes in the GPS are common 

component types.  

Note that, based on the classification of the leaf nodes, all the nodes in the GPS can also be 

classified by applying some rules. For instance, if a leaf node in a GPS is a common (or generic) 

component type, then all nodes up to the root node are also common (or generic). If a component has 

daughter nodes that are specific/common and at least one is an optional component type, then the 

parent node is a generic/common component type, for it admits different configurations of its 
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subcomponents. Other rules may be more complicated, and sometimes a complete classification may 

depend on information other than the classification of the daughter nodes. The classification of the 

component types for the ATS product family can be seen in Figure 9 (see the legend).  

From these classification rules, it follows that the leaf component types that are common will 

define on the GPS a substructure that is common to all members of the product family. However, if 

some of the component types along this substructure are generic as well, then, besides being a common 

substructure, it will also vary among the members of the product family. It should be noted that this 

observation stresses a different perspective from the literature on product families, which tends to 

regard the common component types as fixed within the product family.   

To conclude this subsection, we note that the GPS subsumes the physical structure of all the 

members of the product family, and works as an envelope for its variability. Hence, it delimits the 

design space around the members of the product family. However, the GPS alone is not sufficient to 

determine what physical structures in that delimited design space correspond to a valid product and 

which one meets a given set of customer requirements. Therefore, in the following subsection, we will 

introduce a complementary model to the GPS to accomplish those goals.  

3.3 The constraint network extended with design functions 

A constraint network (CN) model consists of a set of variables, each one associated to a finite set of 

values, and a set of constraints restricting the values they can take simultaneously. A solution to a CN 

model is an assignment of values to the variables such that every constraint is satisfied [35].  

A CN model is a natural way for constraining the combinations of components on the GPS, 

with the variables identifying the variations and the constraints describing the couplings that exist 

between them. The foreground diagram of Figure 9 shows a graphical representation of the CN model 

for the ATS example. However, in this work, we will introduce an extension to the CN model that is 

capable of representing procedural knowledge in addition to the declarative knowledge associated to 

the CN model. This extension will be defined as follows.  

Definiton 3. A constraint network model extended with design functions (CN-F) is a triple 〈     〉, 

where   is a set of variables,   is a set of constraints over   and   is a set of design functions. 

Moreover, for every    , there is at least one design function      attached to   which generates 

its values.  
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Figure 9. The GPS (background) and the CN-F model (foreground) for the ATS product family 

In the following three subsections, we will define each of the elements comprising the CN-F 

model. In Appendix I, we present the complete description for the ATS product family using this 

modelling approach. However, in the following chapters we reproduce parts of this modelling to 

illustrate the concepts introduced.  

3.3.1 Variables 

Variations among the members of a product family will be identified by variables. They can be mapped 

on the GPS. However, variations may also be found related to the operational environment of the 

product family and, therefore, are localized outside the GPS. The set of all these variables will be 

represent by  . Their scope of variation can extend from a specific attribute to an entire component. In 

Figure 9, variables are represented as nodes of a network, either on or outside the GPS.  

Elements in   are classified primarily as input or output variable. The input variables, 

represented by the set  , are used to express the customer requirements. In Figure 9, they are indicated 

by the incoming arrows from the customer interface. Except for the input variable   (which is an 

inclusion variable associated to an optional component type, namely, the Terminal Block) and the input 
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variable   (which specifies the material for the component type Enclosure), the remaining input 

variables  ,  ,         are related to the operational environment of the ATS. The latter input variables 

specify the attributes of the utility, power generator, neutral wires and load, respectively, to which the 

ATS will be connected. Every variable on the GPS is an output variable, used to instantiate the GPS 

into the specific physical models representing members of the product family (see Section 4.2). Output 

variables are represented by the set  . Since any composite component in the GPS becomes specified 

after all its subcomponents are specified, to specify a physical model from the GPS it is sufficient to 

specify the leaf components. Therefore, the output variables are located only on leaf components of the 

GPS. Except for specific/common component types, which do not vary among members of the product 

family, every other leaf component type in the GSP must be associated to at least one variable. An 

optional leaf component type is always associated to an inclusion variable as well, which specifies if 

the component is to be included or not in the custom product. Therefore, every generic/optional leaf 

component type has at least two variables; one to specify if the component type is included or not, and 

all other variables to specify which of the variants of the generic component type is to be used in the 

custom product. 

It should be noted that the sets   and   are not necessarily mutually exclusive, for instance, 

variable   belong to both. Moreover, we could have introduced intermediate variables, i.e., variables 

that do not belong to   nor to  , in order to break down a complex relation between variables in  . This 

type of variable was not necessary in the modelling of the ATS product family. 

Every variable has an associated domain of variation that can be defined as the set of all 

possible variations within the product family in reference to the scope of the variable. In what follows, 

the domain of variation for variable     is represented by    and is defined as the set of all the 

values that can be assigned to  . We will refer to    simply as the domain of  . For example,    

       is the domain of   on the Terminal Block and accounts for its inclusion (   ) or not (   ) 

in the custom ATS. The domain    of the composite variable   (          ) is a bit more 

complicated. It is defined by Table 2, which lists the voltage   , amperage    and dimensions    of all 

the available transfer switches. Later (in connection to Figure 11) we will see an example of a more 

complex variable whose scope extends over the whole component. One important point, which we will 

call attention here, is that domains are not necessarily defined explicitly in our approach. This issue will 

be considered in more detail in Subsection 3.3.3 after the design functions have been introduced.  
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Table 2. Available transfer switches 

As mentioned above, depending on the value of the inclusion variable, the correspondent 

component type may not be included in the custom product. However, if this optional component type 

is also generic, there will be other variables associated to it. To make the value of these variables 

consistent with the fact that the component is not been included, we can assign to them the value     

(Not Applicable). For example, if    , it makes no sense to specify the amperage rate   of the 

terminal block and, therefore, it      . Hence, for every variable other than the inclusion variable on 

a generic/optional component type, we will add the value    to their domains and assign this value 

whenever the component they are associated with will not be include in the custom product.  

To conclude this subsection we will introduce some formal definitions concerning the 

instantiation of the CN-F model. Let                       be a subset of variables. We define an 

instantiation of   as the value assignment        , for    ,  ,  ,  , such that        . For 

convenience, an instantiation of   can be represented by a k-tuple (               )            

   . Now, let     be another subset such that     {               }. We define 

(               )   (               )  as the restriction of the instantiation (               ) to the 

variables that are common to both   and  . This operation can be generalized to a subset of 

instantiations                , so that     {(               )   (               )   }. 

The set of all possible instantiations of   is represented by             . This set presents 

another perspective for the design space of the product family. 
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3.3.2 Constraints 

Variables are related by constraints, which restrict the values that can be assigned to them during the 

customisation of the product family. Thus, let    be a constraint between the set of variables   

{               }    and   the set of all constraints on  . The constraint      can be represented by 

a subset                 , which may be defined either intentionally, by logical or 

mathematical expressions involving the variables, or extensionally, by listing the combinations of 

values that the variables can take simultaneously. Given an instantiation (               ) of  , if 

(               )    , we say that it satisfies   . A solution to the CN-F model is an instantiation of   

that satisfies all constraints in  . The set of all such solutions in   is represented by  . As we shall 

argue, this set of solutions corresponds to the members of the product family. 

Constraints are classified according to the number of variables involved. 

      (         ) (         )           is an example of unary constraint. It is used to delimit the 

domain of variable  , constraining the electrical and dimensional attributes of the transfer switches to 

those available in Table 2.         (      )         is an example of a binary constraint over the 

variables   and  , specifically, it constrains the amperage of the switch (  ) to a value greater than or 

equal to the amperage of the load (  ). In the CN-F model of the ATS product family only two of the 

constraints involve more than two variables. For example,          relates the volume occupied by the 

switch and the dimensions of the enclosure. However, in the CN-F model constraints may involve any 

number of variables from  . 

It should be noted that constraints relating variables located on different component types 

define the interfaces between these components. For example, the constraints        and        

completely define the interface between the component types Switch and Wiring. Together these 

constraints require that every switch terminal must be connected with a wire with cross-section area 

compatible to the amperage of the switch. 

3.3.3 Design functions 

The primary role of a design function is to assign values to the variable to which it is attached (the 

dependent variable). In general, the values are generated from the values assigned to other variables 

(the independent variables) related to the dependent variable by constraints. To avoid inconsistencies, 

the design function is required to incorporate all the constraints involving the dependent and 
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independent variables related by it.  

In preparation to a formal definition of design functions, in what follows we will first define 

precisely in what sense a function incorporates constraints. Let  ( )    be the set of all constraints 

involving   and   {   
    

      
} a non-empty subset of  ( ). Since     , for          , we 

have that   ⋃   
 
      {          } is the set of all variables related to   through the 

constraints in  . Now, let       
    

      
    be a non-empty set of instantiations of 

      satisfying all the constraints in   and        the set of those instantiations restricted to  . 

By construction, it follows that, for every (          )   , there is at least one value in    for 

which their combination satisfy all the constraints in  . Now, let         be a function defined on   

and with values in   . We say that    incorporates the set of constraints   if and only if, for every 

(          )   , (             (          )) satisfies all constraints in  .  

Definition 4. Let   {          } be a set of variables related to  , and   {   
    

      
} the 

set of all constraints relating the variables       and such that     , for          .  If the 

function          (defined as above) incorporates all the constraints in  , we say that    is a design 

function for  . 

 In the remaining of this work, we will refer to design functions in the abbreviated form 

d-function. Now, let  ( )     
    

      
   be the set of all d-functions attached to  .  The domain    

will be defined as    ⋃   
  

   (  ), where    is the domain of definition of   
 . In other words,    

consists of all the values that can be generated to   by the d-functions in  ( ).  

In the modelling of the ATS product family the d-functions are implemented as procedures. 

They can range from relatively simple procedures to request the customers to make their choices, to 

more elaborated procedures that can design a component variant. As an example, let us consider the 

d-function   (   ) shown in Figure 10. It defines the electrical attributes of the transfer switch, 

represented by the compound variable  . This d-function depends on the attributes of the utility and 

load, more specifically, on the voltage of the utility    and the amperage of the load   . The procedure 

begins equating the voltage of the transfer switch    to the voltage of the utility   . Then, according to 

line 2, the procedure collects from Table 2 those switches for which the voltage is equal to    and the 

amperage is greater than or equal to   . In the subsequent lines, the procedure determines the amperage 

   and dimensions    of the switch. If there is more than one switch satisfying the conditions in line 2, 

in the next line, the procedure chooses the one with the lowest amperage. Note that, if the value of    is 
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greater than the amperage of all the available switches, then       and no value can be assigned to 

  . To avoid this outcome, the values that can be assigned to    by the customer are limited to the 

maximum amperage of the available switches. From the foregoing, it follows that when a value is 

assigned to   it is unique and the constraints       ,        and      are satisfied by the values of the 

variables involved. Thus, we conclude that   (   ) is a function incorporating these constraints and, 

therefore, qualifies as a d-function for  . Note that the use of the minimum operator in line 3 also 

illustrates another important fact about d-functions. Besides constraints, they can incorporate other 

forms of knowledge. In this particular case, the immediate goal is to optimize the transfer switch; 

however, this will also lead to the optimization in the dimensions and cost of the entire custom ATS.  

Figure 10. An example of design function 

As mentioned earlier, a d-function can be used to generate the variants of a component type as a 

whole. To illustrate this point, let us consider   (       ) attached to the variable   on the component 

type Wiring, which comprises the wirings for all members of the ATS product family. A wiring is a set 

of wires that establishes all the necessary electrical connections between the components of the custom 

ATS, each wire having the proper cross-section area to support the currents that it will carry. Except for 

the wires connected to the transfer switch terminals, the cross-section areas of the remaining wires are 

fixed. For simplicity, we will admit that the lengths of the wires do not vary among the family 

members.  

The procedure to generate the wiring for a custom ATS is based on a master template, 

illustrated in Figure 11. This diagram contains the wires between every possible terminal for all the 

members of the ATS product family. The wires connected to the solid terminals in the diagram are 

common to all members, while those connected to the crosshatched terminals are optional, thick lines 

indicate multiple wires and the label A is a parameter that specifies the cross-section area of the 

associated wires. This is defined based on a table relating the cross section area of the available wires 
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and amperage that are supported by them (see Table I-4 in Appendix I). To derive a custom wire 

diagram, first all the unnecessary wires are removed from the template in reference to the terminals of 

the components already allocated to the custom ATS. To do this, it suffices to consider the values of 

the variables  ,   and  , representing the number of switch poles, the inclusion of the terminal block 

and the buzzer, respectively. After that, the cross-section area of the remaining wires connected to the 

transfer switch are determined taking into account the rating of the switch, specified by variable  . The 

resulting diagram is a complete specification of the wiring for the custom ATS. 

Figure 11. Master template for the wiring of the ATS product family 

In general, the customer provides the values for the input variables. Therefore, every variable in 

  will have a special d-function attached to it, which is called an input d-function. Their role is to help 

the customer to define the requirements. An input d-function presents the customers a range of options, 

asking them to choose one (see the dialog windows in Part II of Appendix II). The range of options 

must be consistent with the domain of the input variable, as defined by the associated unary constraint. 

For example, because the available switches can deal only with amperages between 1 and 80A, the 

constraint      delimits the amperage of the load    to values in that range, and the customer is 

requested to specify the amperage of the load within that range. In this sense, we can say that the input 

d-functions incorporate the unary constraints on the input variables to which they are attached. Input 
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d-functions will be defined by   (   )   , where   stands for the customer and   is the range of 

options that is presented to him. If the assignment of values to   depends exclusively on the customer, 

we have that     . However, as we shall see in Section 4.3, the definition of the range of options 

may depend on the values that the customer has already assigned to related variables. In this case, the 

input variable   is also dependent on other variables in   and     .  

To avoid the introduction of inconsistencies during the value generation process, the 

d-functions are required to incorporate all the constraints between the dependent and independent 

variables. However, typically, the variable to which the d-function is attached is not dependent on all 

the related variables. To illustrate this point, let us consider again the variable   and the d-function 

  (   ). As it can be verified in Figure 9,   is related to the set of variables               by the 

constraints  ( )  {                                         }. However, through   (   ) the variable   is 

dependent only on   and  . As it can be verified from the specification of this d-function (Figure 10), 

the variables   and   and the constraints       ,        and      are enough to generate consistent values 

for  . Making   dependent on any other of those related variables is useless. Actually, the attempt to 

define the dimensions of the enclosure before knowing the dimensions of the switch and the number of 

poles would possibly incur into inconsistencies and non-optimal solutions. The d-function 

  (       ), described above, gives further evidence of the existence of a logical dependency between 

variables. Clearly, the specification of the wiring cannot be completed before all the other components 

inside the enclosure have been defined. However, in this case, the variable   depends on all the 

variables to which it is related. Hence, we conclude that the set of d-functions   captures the 

dependency relation that exist between the variables in  , such that, if    (          )   , then   

depends on           . This property is at the core of our instantiation method and will be dealt with 

in more detail in Subsection 4.1.1.  

Before leaving this chapter, we will introduce one more concept. As we have seen, not all 

constraints in  ( ) have been incorporated in   . A constraint    involving a variable    , but not 

incorporated in   , will be said to be free in relation to   . However, this constraint may be incorporated 

in another d-function attached to the same variable or to another variable in  . For example,          is 

free in relation to   (   ); however, it is incorporated in   (   ) to generate the dimensions of the 

enclosure. The set of free constraints relative to      will be represented by  (  ).  
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Chapter 4 

Product family customisation process 

Mass customisation is about providing the individual customers with products that meet their needs. In 

our approach, the customisation process takes place in two stages. First, a solution to the CN-F model 

that is consistent with the customer requirements is found. Then the solution is used to transform the 

GPS into a specific physical model that corresponds to a member of the product family. It should be 

noticed that this separation into stages is just a convenience to simplify the customisation process. In 

principle, they could be carried out in parallel. 

It is interesting to note that some general conclusions about the relationship between customer 

requirements and product family members can be drawn just by taking into account the relationship 

between the sets   and  . For example, if the set of input variables is not contained in the set of output 

variables (   ), there may exist solutions         such that           (the solutions restricted to 

  are equal) while           (the solutions restricted to   are different). In other words, the 

requirements of the customer may be associated to more than one product family member. In this case, 

some provision should be made for deriving the best solution according to some criteria. In our 

approach, this is accomplished through the d-functions, as in   (   ), by the selection of the switch 

with the minimal amperage of those qualified. 

4.1 Finding solutions to the CN-F model 

A solution to the CN-F model is an instantiation of   such that no constraint in   is violated. The 

instantiation process begins with the assignment of values to variables from   by the customer, and 
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proceeds towards the variables in   guided by the dependencies between the variables established by 

the d-functions. However, not necessarily all variables in   must be assigned values for the instantiation 

process to proceed. If the input variable is attached with an alternative d-function, in case the customer 

does not assign its value it can still be generated from the values of related variables. In Figure 12, we 

propose an instantiation algorithm to carry out this process. Since it will be instrumental in the 

demonstration of the conditions for a backtrack-free instantiation process, in this subsection we will 

examine it in detail. However, first we will introduce some preliminary definitions and assumptions.  

Let us suppose that the variable   depends on the value of   for the generation of its value by 

  . Then, if    is a d-function attached to  , we can say that    depends on   . Moreover, if   has more 

than one d-function attached to it,    also depends on each of them alternatively. Otherwise, if   do not 

depend on other variables in   by means of   , we say that    is an independent d-function. It should be 

noted that, although every independent d-function is an input d-function, the other way round is not 

true. In Section 4.3 we will present an example of an input d-function which depends on other variables 

to define the range of options that will be presented to the customers. Based on the foregoing 

discussion, we conclude that the dependency between variables in   induces a dependency relation 

between d-functions in  . Now, it may happen that following a sequence of dependencies we get back 

to a previous d-function. More formally, we say that the d-functions            form a dependency 

loop, if each d-function depends on the previous one in this sequence, and    also depends on   . Next, 

we will introduce a condition for the ordering of   based on this dependency relation which prevents 

loops. 

Definition 5. Let               . We say that   is ordered if the d-functions that satisfies the 

following condition: for every          ,    is either an independent d-function or all the 

d-functions it depends on precedes it in that order.  

One simple procedure to verify if   can be order is given next. First, move all the independent 

d-functions to the left of the set  . Let us call this the ordered part of  . If all the d-functions in   have 

been moved, then   satisfies Definition 5 and, consequently, it is ordered. Otherwise, find within the 

unordered part of   a d-function that depends only on d-functions in the ordered part and move it to the 

end (right) of the ordered part, thus extending the ordered part. Repeat this process until the unordered 

part of   is empty. When the unordered part is empty the procedure stops and   is ordered according to 

Definition 5. To show that this procedure is sufficient to order   in the absence of loops, we 

demonstrate the following theorem. 
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Theorem 1. The set   satisfies the ordering condition if and only if there is no dependency loop 

between the d-functions in  .  

If   can be ordered, it follows immediately from Definition 5 that there is no loop between the 

d-functions. Now, let us suppose that at some point of the procedure described above, the unordered 

part is not empty and we cannot find a d-function that depends only on d-functions in the ordered part 

of  . This means that every d-function in the unordered part depends on at least one d-function that is 

still in the unordered part. In this case, no arrangement of the d-functions in   will satisfy the ordering 

condition. Next, we will demonstrate that if this condition happens, there is at least one loop in the 

unordered part.  

 Let  ̃                  consist of the unordered part of  . By definition, every d-function in  ̃ 

must depend on some other element inside it. Now, going from right to the left and starting with    , 

move every d-function to the right just behind the first element encountered  it depends on. Of course, 

if this element is already the preceding one in the order of  ̃, no displacement is necessary. Apply the 

same procedure to every d-function in  ̃ until     is reached. However, if a d-function that has already 

been considered previously is encountered, skip that element and go to the next one to the left. When 

this process reaches    , the elements in  ̃ are arranged so that all elements to the right of    depends on 

it directly or indirectly, through a chain of dependencies. From the definition of  ̃, it follows that     

also depends on some other d-function to its right in  ̃, thus defining a loop.   

Note that, if   can be ordered to satisfy Definition 5, then there may be alternative arrangements 

of d-functions in   that also satisfy that ordering condition. 

Assumption 1. In what follows, we will assume that   can be order.  

According to the procedure described in Figure 12, the instantiation algorithm uses the set   to 

collect the variables whose values are being assigned, and the set   to collect free constraints that have 

not been verified up to a given point in the execution of the algorithm. We say that a d-function is 

enabled during the instantiation process if and only if the variables it depends on are contained in  . 

Since the sets   and   are empty at the beginning of the instantiation process, the independent 

d-functions are the only functions that are enabled. If a variable has been assigned the value   , every 

constraint in set   involving this variable is trivially satisfied. This is justified by the fact that the 

correspondent optional component type will not be included in the custom product. In what follows, we 

will examine the steps of the instantiation algorithm.  
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Let us begin with the steps of the algorithm where the conditions leading to a failure during the 

instantiation process are located. This happens at step 7, if the selected d-function fails to generate a 

value for the variable under consideration and there is no alternative d-function attached to it. More 

specifically, a d-function         will fail to generate a value if the combination of values of the 

variable it depends on (all of them already in  ) fall outside the domain of definition  . The failure at 

step 12 happens if a free constraint in   is not satisfied by the values of the variables in  . We will refer 

to those failures as inconsistencies of type 1 and 2, respectively.  

Figure 12. The instantiation algorithm 

To illustrate inconsistency of type 1, let us consider the d-function   (   ), defined in Figure 

10. If the customer assigns to the load   an amperage that is greater than the amperages of the switches 

in Table 2,   (   ) is not defined and an inconsistency will arise. However, this source of inconsistency 

can be avoided by just making the unary constraint      consistent with the available switches. With 

regard to inconsistency of type 2, the only critical point in our modelling of the ATS product family is 

related to constraint       , which is free in relation to both    and   (   ). In this case, it may happen 

that the choice of material made by the customer by means of     and the dimension of the enclosure 

assigned by   (   ) do not satisfy the constraint        (which is defined based on Table 3) leading to 

an inconsistency. In the next subsections, we will discuss how to avoid this source of inconsistency. 
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If the execution reaches step 13 and    , then all points in   have been instantiated and a 

solution has been found. To prove this statement we note that, if    , then every variable must have 

been assigned a value (through step 2). Moreover, since every constraint in   was been verified either 

as a constraint incorporated in a d-function, at step 2, or as a free constraint in  , at step 8, we conclude 

that no constraint in   has been violated.  

Now, we will prove that the algorithm always succeeds at step 1. It is clear that while not all the 

independent d-functions have been removed from   there will be at least one d-function that is enabled. 

Thus, let us suppose that all independent d-functions have been removed from   and we still have 

   . Moreover, let us suppose by absurd that in the next iteration through step 1 no d-function is 

enabled. From the assumption on the ordering of   and from the fact that an inconsistency of type 1 did 

not happened up to this point, it follows that the first d-function not enabled (in the order of the 

remaining d-functions in  ) will depend on variables that have already been assigned their respective 

values and, consequently, must be in  . Since this conclusion contradicts the initial assumption that no 

d-function is enabled, this assumption is unwarranted and we can conclude that the algorithm will 

always succeed at step 1.  

At step 2 an additional variable is assigned its value, thus extending a partial solution. However, 

if the resulting set of values does not match any solution in  , an inconsistency of type 1 or 2 will 

necessarily occurred as the execution of the algorithm proceeds. In particular, this may happen while 

the values to the variables in   are being assigned. If the value assignment of the input variables does 

not match any partial solution in    , we say that there is an inconsistency embedded in the input.  

If   can be ordered, no matter how the d-functions are actually arranged in  , the instantiation 

algorithm introduced above can be executed. Nevertheless, it is unable to deal with backtracking for the 

removal of inconsistencies or with iteration due to the tear up of dependency loops (an issue that will 

be discussed further in the next section). In spite of these restrictions, it is sufficient for our goals in this 

work.  

4.1.1 Instantiation patterns 

Every time the instantiation algorithm is run, a subset of the d-functions in   is executed in sequence 

until an inconsistency arises or a solution for the CN-F model is found. This instantiation process can 

be represented as the construction of a dependency graph composed of nodes, representing the 

variables, which are added to the graph as their values are generated, and directed arcs, that represent 

the dependencies between the variables as established by the d-functions that has been used to generate 
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their values. Such a graph can be organized into dependency levels. Level 0 is composed of input 

variables which depends exclusively on the customer for the assignment of their values. Level 

  (        ) is composed of variables that depend on at least one variable at level    . As we shall 

see below, if different sequences of d-functions are executed, probably different instantiation graphs 

will arise. Figure 13 illustrates the two instantiation graphs, labelled    and   , for the CN-F model of 

the ATS example. Nodes with a double circle represent output variables. The dashed curve around 

nodes   and   in    represents constraint       , which is free in relation to both    and   (   ) in 

that graph.  

Figure 13. Instantiation graphs    and    for the ATS example 

Instead of variables, the nodes in the instantiation graph can be labelled with the d-functions 

that were used to generate their values, giving rise to a correspondent structure of dependencies 

between the d-functions.  Since such graphs are patterns of functions executed during the instantiation 

process that will repeat for many different sets of inputs, we will refer to them as an instantiation 

patterns. Note that, by construction, the set of d-functions that corresponds to an instantiation pattern 

satisfies the ordering condition. 

Definition 6. An instantiation pattern is a subset     satisfying the ordering condition and such that, 

for every    , there is only one     .  

The advantage of defining instantiation patterns in terms of d-functions instead of variables is 

that their representation are unique, i.e., for each     that satisfies Definition 6 there is only one 

graphical representation associated to it. In contrast, the same instantiation graph may be the result of 

distinct instantiation patterns in  . As we will show in Appendix I, in the ATS example there are only 
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two instantiation patterns    and   , which are associated to the instantiation graphs    and   , 

respectively. As it will be proved next, if   satisfies the ordering condition, then it is always possible to 

find an instantiation pattern for the CN-F model. 

Theorem 2. If   satisfies the ordering condition, then it contains at least one instantiation pattern  .  

To prove this statement, let   be an empty set of d-functions and     . While    is not empty, do 

the following procedure. Remove   from   , find any      and move it to  . If    is not and 

independent d-function, for each of the variables that   depends on through   , first, verify if there is 

already a d-function attached to it in  . If this is the case, go to the next variable. Otherwise, remove it 

from    and move one d-function attached to it from   to  . Because   satisfies the ordering 

condition, we can continue expanding the dependency tree to which   is a root until it is completed, 

that is to say, ending up with independent d-functions. Since   is a finite set, eventually     will 

become empty and this process will terminate. By construction, the resulting set   satisfies the ordering 

condition and, for every    , there is only one     . Based on the foregoing, we conclude that   

satisfies the conditions of Definition 6.    

From the procedure described above it follows that, if a variable is associated to more than one 

d-function, there will exist more than one instantiation pattern in  .  

Because of our assumption on  , all variables in the instantiation graph are connected to 

variables at level 0 through dependencies. Hence, tracing back all the possible paths from a given node 

  towards the nodes at level 0, we determine a dependency tree graph that has   as its root and the 

nodes at level 0 as its leaves. However, as for instantiation patterns, dependency trees will also be 

defined in terms of d-functions.   

Definition 7. Let  (   )                  be an ordered non-empty subset of  .  (   ) is a 

dependency tree in   if and only if it satisfies the following conditions. If     is an independent 

d-function attached to  , then    . Otherwise, for      , all variables to which     depends on 

has one and only one d-function attached to them in  (   ) and these d-functions precede     in the 

sequence defined by  (   ). Moreover, for every    ,     is attached to a variable which another 

subsequent d-function in the order of  (   ) depends on.  

From this definition, it follows that a dependency tree  (   ) is a directed acyclic graph that has 

    as its root and input d-functions as leaves. For example, the dependency tree  (  )       is 
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represented by a graph that consists of a single node, while the dependency tree  (  ( ))  

{        ( )   (   )   (   )   ( )} is represented by a graph as the one highlighted by heavy arrows 

in   , with the variables substituted by the correspondent d-functions. 

As can be recognized from the instantiation graphs in Figure 13, every d-function in   can be 

associated to a dependency tree. The main difference in the topology between dependency trees and 

instantiation patterns is that the latter admits multiple roots. For example, the d-functions attached to  , 

 ,  ,   and   in    are roots in the correspondent instantiation pattern   , each one associated to its 

own dependency tree. Actually, instantiation patterns can be regarded as the composition of 

dependency trees.  

Theorem 3. Let   be the set of all dependency trees in   and    a subset of  . If the set   ⋃       

is such that, for every    , there is only one d-function attached to  , then   is an instantiation 

pattern. 

By definition, for every    , there is only one     . Thus, to prove the theorem it is necessary to 

show that   satisfies the ordering condition. It can be easily demonstrated that the union of subsets of   

satisfying the ordering condition has the same property. Therefore, since all      satisfy the ordering 

condition, it follows that   ⋃       also satisfies the ordering condition.    

It follows that every instantiation pattern   is composed by a set of dependency trees     . 

Next, we will prove that this composition in terms of dependency trees is unique. By definition, we 

know that for every    , there is only one     . However, it remains to be proved that there can be 

only one dependency tree in    to which    is the root. 

Theorem 4. Let   (  )   (  )    be two distinct dependency trees that has    as their root and   an 

instantiation pattern. Then it cannot be the case that they belong to the same instantiation pattern 

simultaneously, that is to say, either   (  )    or   (  )   , but not both. 

Assuming that   (  )    (  ), it must be the case that, while tracing back the dependencies in 

synchrony from their common root, at some point we will find two distinct d-functions associated to 

the same variable, for otherwise there would be no difference between them contrary to our 

assumption. But since alternative d-functions cannot belong to the same instantiation pattern  ,   (  ) 

and   (  ) cannot both belong to  .   

If we define a maximal tree as a dependency tree that is not strictly contained in any other 

dependency tree in  , it follows that any instantiation pattern   can also be expressed in terms of the 
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maximal trees. For example, the instantiation pattern    can be expressed as the composition of five 

maximal dependency trees, each one associated to one of the roots on it. Such a composition 

corresponds to a minimal arrangement, that is to say, any other composition of dependency trees from 

  to express the instantiation pattern   will require more elements. Thus, once the maximal trees in   

has been defined, the instantiation patterns in   can be determine by combining the maximal 

dependency trees according to the conditions of Theorem 3. However, we will not explore further this 

point in this work. As we shall see below, the concept of dependency tree is particularly useful in 

connection to inconsistency removal during the instantiation process to define the scope of change of 

the values of the input variables.  

In the literature, dependencies between variables are analysed using the Design Structure 

Matrix (DSM) technique [36]. The rows and columns in a DSM correspond to the variables in   and 

the marks inside the matrix to dependencies between variables. Then, loops between variables 

correspond to couplings in the DSM. Couplings are a common outcome in the design of products, and 

product families by extension. On the other hand, from Theorem 1, it follows that the ordering 

assumption on   rules out dependency loop between d-functions and, consequently, between variables 

as well.  However, in practice loops tend to be confined within the modules of the product architecture 

[37]. In our approach, loops can be confined within the d-functions by grouping variables that are 

highly coupled and attaching the d-function to the group of variables. Therefore, we can conclude that 

our assumption on the ordering of   is not much restrictive in this respect. Anyway, couplings can be 

torn up by transforming one of the variables forming a loop into a special input variable. However, this 

would require the assignment of estimated values to these input variables at the beginning of the 

instantiation process and, possibly, subsequent refinements, into an iterative process, a capability that 

the algorithm described in Figure 12 does not have.  

Since loops are ruled out by the ordering assumption on  , the instantiation algorithm does not 

have to deal with them. However, it is able to deal with multiple instantiation patterns in  . Because 

alternative d-functions are discarded at step 2 of the instantiation algorithm, only one of the patterns in 

  will be followed during the instantiation process. Which one is actually followed will depend on the 

specific order of the d-functions in  , and on the inputs from the customer. In the ATS example, the 

d-functions    and   ( ) are attached to the same variable, and each one is associated to a different 

pattern (patterns    and   , respectively). If    is placed before   ( ) in  , the preference to assign the 

value for the variable   is given to the customer. If the customer effectively assigns a value to  , then 

the instantiation process follows pattern   , otherwise it follows pattern   . On the other hand, if    is 
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placed after   ( ), then the instantiation will follow pattern     and the customer will never be asked to 

provide a value for   because   ( ) always succeeds. Actually, in this case,    could be removed 

from   with no further consequence, since only pattern    would be followed for all the inputs. The 

main advantage is that an inconsistency of type 2 will never happen. However, as discussed in Section 

4.3, the penalty for this particular modelling of the ATS product family is that the customer will not be 

asked to make a choice regarding the material of the enclosure and some solutions may be lost. In that 

section, we will also see how to overcome these negative effects by substituting    by another input 

d-function. 

From the foregoing discussion, we conclude that it is possible to control the interactions of the 

customer in the customisation process by the order of the d-functions in  . Moreover, some 

inconsistencies may be prevented by the appropriate adjustment of the range of options for the input 

variables. However, it may be difficult to prevent all the inconsistencies embedded in the input at the 

outset, since inconsistencies may reveal themselves only at a deeper level of the instantiation process. 

Within a dependency tree, value assignment follows a strict order. Therefore, to remove an 

inconsistency during the instantiation process, it is necessarily to go back to the input variables to 

change their values. Fortunately, the scope of change can be quite restricted, taking into account only 

the input variables in the scope of the dependency tree of the variables involved in the inconsistency. 

To define this scope of change precisely, let us define  (   ) as the set of input variables in the 

dependency tree  (  )   . If the inconsistency is of type 2, then it must be the case that a constraint 

           has been violated by the combination of the values assigned to the variables in          . In 

the attempt to remove the inconsistency, the values of at least one of those variables must be changed. 

However, given that these changes must be effected by the input d-functions associated to those 

variables, the set  (   )   (   )     (   ) defines the scope of the inconsistency in relation to 

the instantiation pattern   that is being followed. For example, let us suppose that an inconsistency of 

type 2 arises by means of the free constraint        in instantiation pattern    after the value for   is 

generated. To remove this inconsistency, we should consider changing only the values of the input 

variables  ,        . If the inconsistency is of Type 1, then a d-function   (       ) is not defined 

for the combination of values assigned to the independent variables          . In this case we would 

be in a situation similar to the previous one, having to change the values of some of the input variables 

in the set  (   )   (   )     (   ). Because values at the dependency level 0 correspond to 

customer requirements, any value change at this level should be carried out by the customer, as part of 

his interaction in the customisation process. After some change is made, only the affected dependency 
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trees must have their values generated again. However, this may lead to an iterative process that goes 

on until all inconsistencies embedded in the input have been removed.  

In this work, we will not pursue further the procedures for removing inconsistency. Instead, in 

the next subsection, we will define two modelling conditions for which inconsistencies do not occur. 

4.1.2 Conditions for consistency  

Up to this point, we have demonstrated that if there is an inconsistency embedded in the customer 

input, it will emerge during the instantiation process. Now, let us suppose that the values assigned to 

the variables in   by the customer belong to    , i.e., the input is part of a solution. Given that 

d-functions generate values that are locally consistent, one may wonder if a partial solution can be 

expanded into a solution for the CN-F model without incurring into inconsistencies. However, local 

consistency alone does not guarantee that a partial solution can be expanded into a complete solution 

without backtracking [35]. Based on the analysis of the causes of failure of the instantiation algorithm, 

in what follows we will introduce two consistency conditions to the CN-F model such that the 

instantiation algorithm will be able to execute without failing.  

Consistency Condition 1. For every    , there is at least one      which is defined for every 

instantiation of the variables it depends on.  

To understand the consequences of this consistency condition, let us begin reconsidering the 

definition of d-functions. Since a d-function incorporates a subset of constraints from  , some 

combinations of values for the variables it depends on may not satisfy all those constraints and, 

therefore, the d-function will be undefined for those values. If this is the case, it implies that the domain 

of definition of the d-function is a strict subset of the set of all possible combinations of values for the 

variables it depends on. Formally, this is expressed by           
    

      
. Therefore, 

in general, a d-function may not satisfy Consistency Condition 1. On the other hand, if the domain for 

   satisfies the condition           
    

      
, it will be defined for every instantiation of 

the variables it depends on. However, to satisfy this condition does not imply that the d-function is 

trivial. For example, the d-function for generating the wiring for the custom ATS is defined for every 

combination of values it depends on. These values are used in a complementary way to determine the 

wires from the template that will be kept and their cross-section areas. In our modelling of the CN-F for 

the ATS, all d-functions satisfy the first consistency condition. This is shown in the Appendix I. 
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Consistency Condition 1 can also be achieved by restricting the values that can be assigned to 

the variables the d-function depends on, so that the combinations of their values are always within its 

domain of definition. For example, by delimiting appropriately the domains of the amperage of the load 

  and the voltage of the utility   to amperages and voltages that can be handled by the available 

switches, we can ensured that the combination of their values are within the domain of definition of 

  (   ). In our modelling of the ATS product family (Appendix I), this restriction was effected through 

the constraints      and     . Eventually, restricting the unary constraints on the input variables that a    

depends on is not enough and it will be necessary to introduce new constraints. In this case, some of the 

d-functions involved must be redefined to incorporate the new constraints.  

Theorem 5. If the CN-F model satisfies the Consistency Condition 1, no inconsistency of type 1 will 

occur during the instantiation process. 

To prove this theorem, we simply note that, in the worst case, the instantiation algorithm will iterate 

between steps 2 and 1 until an enabled    that satisfies Consistency Condition 1 is reached.  This 

implies that, during the instantiation process, every    , at least one d-function attached to   will 

succeed assigning a value to it. Therefore, we conclude that an inconsistency of type 1 will never occur 

at step 2 under Consistency Condition 1.    

Next, we will prove that if the CN-F model satisfies Consistency Condition 1, it implies that it 

contains at least one instantiation pattern     that also satisfies this condition.  

Theorem 6. The CN-F model satisfies the Consistency Condition 1 if and only if it contains at least 

one instantiation pattern that satisfies this condition. 

If there exists an instantiation pattern that consists of d-functions that are defined for every instantiation 

of the variables they depend on, it is obvious that the CN-F model also satisfies the Consistency 

Condition 1. Now, for every    , let us remove all the d-functions attached to it from  , except one 

which is defined for every instantiation of the variables it depends on. Let us call the remaining set of 

d-functions  . Hence, for every     , we can also find in   d-functions attached to the variables it 

depends on. Moreover, there is no loop between the elements in  , otherwise this loop would also 

belong to  , which by assumption does not have loops. Therefore, we conclude that   is an 

instantiation pattern for the CN-F model.   
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 Based on Theorem 6, we can rephrase Theorem 5 as follows. If the CN-F model contains at 

least one instantiation pattern that satisfies the Consistency Condition 1, no inconsistency of type 1 will 

occur during the instantiation process. Next, we will introduce our second consistency condition. 

Consistency Condition 2. Let     be an instantiation pattern. Every constraint in   is incorporated 

by some d-function belonging to  .  

The next theorem proves that this condition is enough to avoid inconsistencies of type 2. 

Theorem 7. If every instantiation pattern     satisfies the Consistency Condition 2, no 

inconsistency of type 2 will occur during the instantiation process.  

To prove this statement, let us assume by contradiction that after   
    have assigned a value to  , the 

constrain      involving the variables             has been violated. Since the value assignment 

to   was made only by the i-th d-function in  , we can conclude that    is not incorporated in any of 

the preceding d-function executed by the instantiation algorithm, otherwise they would not be enabled. 

From the assumption that every constraint in   is incorporated by some d-function in   and from the 

fact that    must be incorporated by a d-function attached to one variable in  , we can conclude that 

   must be incorporated by a d-function attached to  . But, since   can have at most one d-function 

attached to it in  , it follows that    must be incorporated in   
 . This implies that the value assigned to 

  must be consistent with the values of the variables in       with respect to   . However, this leads 

to a contradiction with our assumption at the beginning of the argument, thus proving our 

proposition.    

Since the constraint        is not incorporated by    nor   (   ) in the instantiation pattern    

of the CN-F model for the ATS, it follows that it does not satisfies the Consistency Condition 2. 

Actually, as we have discussed above, inconsistencies may arise in connection to the variables   and   

during the instantiation process following this instantiation pattern.  

From Theorems 6 and 7, we conclude that, if the CN-F model has at least one instantiation 

pattern that satisfies the Consistency Condition 1 and all of them satisfy the Consistency Condition 2, 

then inconsistencies of type 1 and 2 will not occur during the execution of the instantiation algorithm 

(Figure 12). Consequently, for all the inputs belonging to    , a solution will be found without 

backtracking. However, it is interesting to note that under those conditions, actually all inputs in     

can be extended to a solution without backtracking. 
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Theorem 8. If the CN-F model has at least one instantiation pattern that satisfies the Consistency 

Condition 1 and all of them satisfy the Consistency Condition 2, then        . 

To prove this theorem, we begin noting that by definition        . Now, let us suppose that     

   , i.e., there is at least one assignment of values to the input variables   which is not part of any 

solution in  . If this input is not part of a solution, it implies that an inconsistency will arise during the 

execution of the instantiation algorithm, either at step 2 or 3. However, we have already proved that 

under the conditions of the present theorem this cannot happen. Therefore, it follows that        .   

In Subsection 4.3, we will discuss an implication of this fact for the customisation process. 

Next, we will consider how solutions are used to transform the GPS into a specific physical model, 

thereby establishing the correspondence between the set of solution   and the product family  .  

4.2 Transforming the GPS into physical models 

Solutions in   are instantiations for the variables in   and, in particular, for the subset  . Given a 

solution, the initial stage in the transformation of the GPS into a specific physical model consists of 

removing the components types not required for the custom product. This is a bottom-up process, 

which starts with the removing of every optional leaf component from the GSP for which the 

corresponding inclusion variable has been assigned a value that prescribes its removal. In case a 

compound component type has all its sub-components removed, the component itself is removed. After 

the GPS has been stripped of the components not required by the solution, the second stage of the 

transformation process is the substitution of the generic components by specific variants chosen from 

the corresponding classes of components. Once again, this is a bottom-up process. However, after the 

generic leaf component types have been substituted, a specific physical model will immediately emerge 

from the GSP. By means of this transformation process every solution in   derives a specific physical 

model.  

By construction, the resulting physical model is isomorphic to the GPS of the product family 

and is coherent to its component types. Since the choice of the components was made by a solution of 

the CN-F model, it implies that no design constraint of the product family introduce in the CN-F model 

is violated. Now, if every relevant design constraint has been elicited and introduced in the CN-F 

model, we can conclude that every solution in   corresponds to a member of the product family. In this 

case, we say that the CN-F model is representative of the product family. Moreover, if         are 

any two solutions such that          , the physical models they instantiate are also distinct. Thus, 
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the correspondence between solutions and physical models is such that distinct solutions in relation to 

the output variables lead to distinct members of the product family. 

4.3 Customisation of the ATS product family 

In this section we will illustrate the customization process introduce in the preceding sections, and will 

discuss some of the consequences of turning the customisation the ATS product family into a 

backtrack-free process. As detailed in Appendix I, the set of d-functions for the ATS is defined by 

   {                     (   )   (   )   (   )   (   )   ( )   (   )   ( )   ( )   (       ) }, 

which contains the instantiation patterns    and    (see Table I-5 for their definition). In Appendix I, 

we also demonstrate that both patterns satisfy the Consistency Condition 1, but the instantiation pattern 

   does not satisfy the Consistency Condition 2 because the constraint        is not incorporated in any 

of its d-functions. Thus, the instantiation pattern    is a source for inconsistencies. One option to fix 

this problem is to remove    from  . Then, the resulting set    coincides with the instantiation pattern 

  .  

Table 3. Available enclosures 

Not having included    in   , it implies that   is no longer an input variable. An immediate 

consequence is that the customers are prevented from expressing their preferences concerning the 

material of the enclosure. Another consequence is that the number of possible solutions in the ATS 

example is reduced. While under pattern    there are solutions for which the material of the enclosure 

is plastic, under pattern    the enclosure will always be specified as metal. Actually, this happens only 
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because in our implementation of the d-function   ( ) we simply select the first option of material 

encountered in Table 3 for a given dimension of the enclosure. Therefore, it should not be concluded 

from our example that the elimination of a pattern necessarily leads to the loss of solutions. Moreover, 

as the following discussions shows, there is another option to eliminate the cause for inconsistencies 

that has no such side effect. 

Suppose that, instead of   (    )   , which presents to the customer   all the values in    

as options he can choose from, we had an input d-function   
  that presents only the material from 

Table 3 that are consistent with the value he already assigned to variable  . In this case, the range of 

options   would be a function of  , let us say,  ( )   , and the input d-function   
  would be 

represented by   
 (   ( ))   . This new input d-function would give rise to the instantiation pattern 

   associated to the instantiation graph    shown in Figure 14. As in the case of the instantiation graph 

   (Figure 13), the variable   appears at the dependency level 3. However, instead of being 

automatically generated from the value assigned to variable  , the value for   is again assigned by the 

customer. Since   
  incorporates the constraint        by means of  ( ), the pattern    satisfies both 

consistency conditions. Consequently, we would have a backtrack-free instantiation pattern in which 

the customer can still choose the material of the enclosure and no solution is lost. Although this change 

fixes the cause for inconsistency in pattern   , in what follows we will proceed considering the set   , 

defined at the beginning of this section. 

Figure 14. The instantiation graph associated to pattern    

Table 4 defines the domains for the input variables (note that   is no longer an input variable). 

As it can be verified, there are 245,760 possible combinations of values in    . This huge number of 
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inputs is because two of the domains are relatively large;    has 240 options and    has 32. 

Nevertheless, not all combinations of values will occur in practice. For example, if the utility is single 

phase (    ), then it is not expected that the load will have four wires (    ). To prevent such 

combinations, we could have included additional constraints over the input variables in the CN-F 

model. However, since these constraints are related to the consistency of the wiring in the application 

and not specifically to the ATS, we choose not to do so. Anyway, because under the consistency 

conditions we have that        , a solution will be found for each of those inputs. For example, for 

the “inconsistent” input mentioned above, there is a solution that specifies a transfer switch with more 

poles than needed. A similar outcome will result if the customer informs incorrectly that the neutral and 

ground are grounded. Thus, although such inputs lead to a solution, the resulting custom product is not 

necessarily what the customer needs, something that should be expected from an ill-formulated set of 

requirements.  

Table 4. The input variables and their respective domains 

Taking into account the range of values of the d-functions attached to the output variables, the 

set   contains 9,216 solutions, each one corresponding to a member of the ATS product family. This 

number of solutions is obtained by multiplying the number of configurations of the 8-position DIP 

switch (256 options), the configuration of the transfer switch (36 options) and the inclusion or not of 

the terminal block (2 options), and dividing this product by 2 to account for the fact that the voltage of 

the transfer switch is already counted in the configuration of the 8-position DIP switch. Since the 

configuration of all the other components in the ATS are derived from them, they will not add to the 

number of solutions in  . Note that this number is 3/80 of the number of inputs. The reason is that, in 

our example, the transfer switch has only three options of amperage (see Table 1) to deal with 80 

possible inputs for the load amperage.  
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In the remaining of this subsection, we will go through a simulation of the instantiation process 

of the ATS product family. This will be made with the help of the implementation of the first part of 

the customization process presented in Appendix II. Thus, the solution for the customer inputs in our 

simulation will be generated using that program. The elicitation process and the solutions is shown in 

Part II of that appendix. However, below we will comment briefly the execution of that program to 

generate the solution. After that, the solution is used to transform the GPS into the custom ATS. Since 

our implementation does not cover this part of the customization process, it will be carried out 

manually.  

Following the order in   , the instantiation algorithm begins with the input d-functions, which 

by definition are enabled. As they are executed, the customer is asked about the electrical attributes of 

the utility and load, the timing of the power generator and its monitoring, the neutral grounding and the 

terminal block inclusion. Let us suppose, the customer have assigned the following values to those 

variables:   (        ),   (    ),   (   ),     and    . According to the instantiation 

pattern   , these values completely define the customer requirements. Then, the next two d-functions in 

   define the configuration of the transfer switch.   (   ) makes the assignment 

  (       (        )), defining the electrical and dimensional characteristics of the transfer 

switch in reference to Table 2, and   (   ) makes the assignment   (       ), ascribing one pole 

for switching the neutral wires and one for the active wires, thus completing the configuration of 

transfer switch. Given that the customer did not require a terminal block, there is no need for its 

electrical specification and, therefore, the d-function   (   ) makes the assignment      (Not 

Applicable). The d-function   (   ) makes de assignment   (               ), transforming some 

of the specification related to the input variables   and   into a binary representation for the 

configuration of the 8-position DIP switch on the control board, 0 for “OFF” and 1 for “ON”. Since the 

level of fuel of the power generator will not be monitored,   ( ) makes the assignment    , defining 

that there will be no buzzer in the customised ATS. Consequently,   ( ) makes the assignment    , 

defining that the enclosure has no buzzer fixture. The next two d-functions complete the specification 

of the enclosure.   (   ) makes the assignment   (           ), selecting from Table 3 the 

smallest enclosure for which all the other components can be assembled inside.   ( ) makes the 

assignment        , defining the material of the enclosure (also in reference to Table 3) by 

selecting the first type of material related to the item that matches the dimensions just defined. Finally, 

the d-function   (       ) makes the assignment   ((     ) (     ) (      ) (      )), 

which corresponds to the wires (from the master template) required for the connections between the 
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components in the custom ATS. This d-function also specifies the cross-section area for the wires 

connected to the switch, based on a table relating the cross section and amperage of the wires (see 

Table I-2 in Appendix I). 

The next stage in the instantiation process is the use of the solution just found to derive a 

member of the ATS product family from its GPS. As we have already noted, the instantiation of the 

GPS could have been carried out while the instantiation of the CN-F model progresses. The optional 

component types can be removed as soon as the inclusion variables have their values assigned, and the 

generic component types can be replaced by specific components as soon as all the variables on them 

have been assigned their values.  

Figure 15. The architecture of the custom ATS 

Based on the two-stage process, the instantiation of the GPS of the ATS product family begins 

with the removal of the optional leaf components Terminal Block and Buzzer. This is due to the fact 

that     and    , respectively. Since removing these two components does not leave higher-order 

components in the hierarchy depleted, there is no further removal of components from the GPS. The 

resulting structure of the custom ATS is shown in Figure 15.  
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Figure 16. The wiring component for the custom ATS 

To complete the transformation of this structure into a physical model representing the custom 

ATS, the generic leaf components need to be substituted by specific ones, defined by the values of 

remaining variables. Since the Control Panel is a specific/common component type, the same 

component is used for all members of the ATS product family. The Switch is specified as an 110V/50A 

switch with two poles.  The specification of the Control Board is made by the configuration (OFF, ON, 

OFF, OFF, OFF, ON, OFF, OFF) of its 8-position DIP switch. The Enclosure is specified as a 280, 480 

and 200 mm metal box with no hole on it, since the buzzer will not be required. Finally, the diagram of 

Figure 16 specifies the Wiring, thus completing the custom ATS. 
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Chapter 5 

Related approaches to the customisation 

of product families 

An early proposal for representing the customisation process of product families was the generic bill-

of-material (GBOM) concept, introduced in [38; 39]. As a generalization of the bill-of-material 

structure used in production engineering, the GBOM avoids data redundancy by ascribing a common 

structure to the product family. It is a hierarchical structure composed of generic assemblies and 

generic primary products (or components), and the product family variability is represented by 

parameters. Members of the product family are derived from the GBOM with the help of a 

complementary decision tree and by a parameter inheritance mechanism to identify a specific variant, 

which satisfies the customer requirements. Moreover, using the GBOM concept both the commercial 

and assembly views on the product family are integrated into a single generic product model [40].  In 

[34] the product family architecture is analysed taking into account the functional, technological and 

physical perspectives alongside the development process of products. It is proposed that to represent a 

product family in a non-redundant way, a generic product structuring language should allow for the 

decomposition of product families into a hierarchy of generic compound and generic primitive 

products, which are ultimately decomposed into sets of primitive variants with identical interfaces. 

Moreover, this modelling language should allow for the coordination of dependent component variants 

in order to derive product family members. 

Further contributions to the modelling of product families and their role for mass customisation 

are found in [4, 41, 42, 43, 44]. The approach is also centred on the architecture as “the logical 

organization of the product family from both the sales and engineering viewpoints.”  Product family 
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variants are derived from a GPS as instantiations. This process begins within the sales perspective 

where optional functional features are selected to represent the customer requirements. At this stage, 

selection constraints are applied to prevent unfeasible options. Then, within the engineering 

perspective, these functional options are represented as variety parameters and propagated along the 

GPS by inheritance and derivation mechanisms. Basic variety generation methods such as 

attaching/removing, swapping and scaling modules are modelled by variable structural relationship and 

include module conditions. In [45, 46] the mechanism for instantiating the GPS is implemented as a 

graph rewriting system. Variants are derived from a base product by the operations of attaching, 

removing, swapping and scaling modules, carried out by production rules. However, in this approach, 

the control mechanism that specifies the applicable productions and their order of invocation to get all 

its correspondent variants is specific to the end-product and each compound component in the GPS. 

Moreover, except for the scaling operation, which admits a continuous range of transformations, all 

variants must be identified explicitly.  

Another approach to the concept of product families based on graph grammar is presented in 

[47]. In this approach, the product family architecture is defined by a common core function structure 

and a set of optional functions. The members of the product family are derived by the application of 

grammar rules to add optional functions to the core function structure and to transform the resulting 

function structure into a product structure. Variety is obtained by the addition of different optional 

functions and by the use of alternate rules to transform functions into structure. Customer requirements 

are used in the selection of optional functions and to generate the final product structure/assembly 

viewpoint [48].  

Product configuration is a research area in AI. It is defined as a design task in which 

components are selected from a set of pre-defined components and combined to meet a set of 

requirements, taking into account a set of design constraints that restricts their combination [15]. 

Approaches for representing and solving product configuration problems have been classified as rule-

base, model-base and case-base paradigms [49]. Among the model-base approaches, those using 

constraints are akin to our approach and will be reviewed next.  

For a product configuration problem applying the classical constraint satisfaction problem 

(CSP) the properties and ports of components are typically represented as variables, each one 

associated to a finite set of possible values, and subject to a set of design constraints, which restricts the 

values that can be assigned to the variables simultaneously. The design space is defined as the set of all 

possible combinations of values assigned to the variables. A valid configuration (or solution in the 
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design space) is an instantiation of the variables that do not violate any of the design constraints. 

Solutions are found by search procedures that typically combine backtracking and constraint 

propagation methods, using heuristics to improve their performance [35, 50]. However, as pointed out 

in [51], although classical CSP is a promising modelling approach, some extensions are necessary to 

cope with the specificities of product configuration problems. Hence, since the proposal made by Mittal 

and Frayman [52] to represent product configuration as a CSP problem, a number of other proposals to 

extend the CSP model have been put forward.  

Because the set of variables that are relevant for the solution of a configuration problem may 

change dynamically during the problem solving, Mittal and Falkenhainer [53] proposed a dynamic 

constraint satisfaction problem (DCSP) approach. Besides the traditional constraints over the value of 

the variables, which they call Compatibility Constraints, in this approach it is introduced the notion of 

Activity Constraints. These constraints describe the conditions under which variables may or may not 

be activated to be part of the final solutions. They also propose an instantiation algorithm that can deal 

with both types of constraints.  

To deal with the structural aspect of configuration problems, such as the constituent parts of the 

final product or the internal structure of components, in [53] it is proposed a composite CSP where 

variables are allowed to represent entire sub problems. According to Veron et al. [51], product 

configuration problems require the management of the product structural decomposition and the states 

of its components, the interaction of the user during the configuration process, and the mapping of 

functional requirements onto product components. To handle these requirements, they propose to 

model the configurable product as a tree with internal nodes representing sub-configurable components 

and leaf nodes corresponding to elementary configurable or standard components. The attributes of the 

configurable components are represented as variables and each component is associated to a state 

variable. These variables have four possible values: inactive, optional, required and completed. 

Constraints are used to restrict the combination of variables of the configurable components. A subset 

of the constraints is the state conditions, which handle the values of the state variables. The 

configuration process works on two levels. First, the state variables are used to manage the tree 

structure. Then, the CSP problem is addressed to define the attributes of the active components. The 

user expresses his choices by adding/retracting unary constraints.  

CSP approaches have been focused mostly on discrete variables and binary constraints. 

However, in the configuration of engineering products it is quite common to have continuous variables 

and constraint on multiple variables. Thus, Gelle et al. [55] introduced local consistency methods to 
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handle discrete and numerical variables and in the same framework to address engineering products 

represented as a CSP. 

In [56] it is proposed the Dependent CSP. In this approach, the variables can be related by 

dependencies or constraints and are divided into independent and dependent by means of the relation of 

dependency. The independent variables are assigned values from their associated domains, while the 

values of the dependent variables are assigned from the values of the independent variables through the 

relations of dependency. A solution is an assignment to the variables such that all dependencies and 

constraints are satisfied. The search for solutions is made by a backtracking method of the type 

"backjunping". The updating of values and the verification of constraints is organized by a directed 

acyclic graph. This graph is defined based on the dependencies between variables and of constraints in 

relation to the independent variables. Heuristics are used to establish the order in which variables are 

considered. 

As we have noticed in Subsection 2.2.1, if the response time of a configurator to the inputs of 

the customers is too long, and the customer is required to undo previous decisions because the 

configuration process has reached a dead end, the interaction with the configurator will inevitably 

become a bad experience for the customer. These conditions arise if the configurator have to solve a 

computationally hard problem on real time whenever requirements are inputted, and the problem-

solving process is not backtrack-free. To avoid these problems associated to search-based methods, 

some recent works resorted to a two-stage process, by precompiling all the solutions using some form 

of efficient representation. Although these methods still have to solve a hard problem to find all the 

solutions, this is done offline and only once. Then, the interactive part of the configuration process can 

be done efficiently. For instance, in [10] the solution space is encoded using binary decision diagrams. 

Although they claim to have very good practical results, depending on the size of the configuration 

problem they may run out of space, since their method compiles all the solutions of the problem. In 

[57], it is proposed a pre-processing method that result in a backtrack-free representation. Unlike other 

conventional approaches that add constraints to the problem, thus making them susceptible to space 

limitation, they remove values from the domain of the variables to make their representation of the 

problem backtrack-free. The disadvantage of this method is that solutions are lost.  

In the next chapter, we will be considering the main advantages of our approach. However, it is 

worth at this point to make some considerations on how the proposal of this thesis compares to the 

approaches review above. 

Although the concept of a GPS composed of component types can be found in the literature, the 
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one introduced in this work is a generalization and extension of the prevailing ones. In general, 

components are divided into common and variants. The former class is composed of the components 

that belong to all members of the product family and frequently are regarded as specific and fixed. The 

latter class is further divided into generic and optional components. However, in our classification 

scheme we have stressed the fact that common components can be generic, the generic/common 

component type. This implies that even the common part of the GPS, which forms the backbone of the 

product family, is also allowed to vary. Moreover, in contrast to the rather informal definitions of 

product families found in the literature, in our approach we provide a formal and strict definition that 

delimits the products that can belong to the product family, by requiring them to be isomorphic and 

coherent to a GPS. 

To overcome the limitations of the CN model to deal with the specificities of product 

configuration problems, we introduced in this work the CN-F model as an extension of the classical CN 

model by the attachment of d-function to the variables. By means of the d-functions we have embedded 

procedural knowledge to an otherwise declarative framework. Besides the generation of the values for 

the variables during the instantiation process, d-functions are used to establish the dependencies 

between variables. Dependencies are typically revealed by means of tools such as Dependency 

Structure Matrixes (DSM) during the design process of product families [58, 37, 59]. However, through 

the d-function we describe the way the variables actually depend on each other. 

Finally, differently from the other approaches that claim to be backtrack-free, we do not resort 

to computational power, nor do we require a pre-processing stage, but we take advantage of the 

knowledge about the design of the product families to systematise the customisation process. As a 

result, a configurator based on our approach can be implemented as dataflow programs, with the 

prospect of running even on handheld devices.   
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Chapter 6 

Conclusions and Future Research  

In this thesis, we have proposed a formal approach to the customisation of product families, thus 

providing a solid foundation for our claims. We have introduced a new knowledge framework for 

representing product families, which combines the GPS and the CN-F models. Deriving product family 

members from this framework is a two-stage process. First, a solution to the CN-F model is searched 

for, guided by instantiation patterns. Then, in the second stage, the solution is used to transform the 

product family GPS into a specific model. The outcome is a member of the product family that satisfies 

the customer requirements. We also defined conditions for which this process becomes a backtrack-free 

process.  

Many of the requirements for dealing with product configuration which have been reviewed in 

the previous chapter, are present in our own approach. However, what is remarkable about it is that 

much of these requirements have been accomplished in a single framework. Moreover, we also have 

introduced many unique contributions, which have been related in Section 1.1. Among the advantages 

of our approach, it should be mention that: 

 The approach is suited for the configuration of complex products for which the 

customers do not have the necessary expertise to participate directly in all the 

configuration process;  

 It can deal with configuration problems for which the constraints between the variables 

are complex; 

 It can deal with mixed discrete and continuous variables;  
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 It provides flexibility to the customisation process because the values of the variables 

need not to be predefined; 

 Moreover, in principle, components may be designed during the customisation process 

(see the discussions below);  

 Based on our approach, configurators can be implemented as dataflow programs 

requiring little computation power compared to other approaches that claim to be 

backtrack-free.  

This approach has been developed to serve as a basis for the implementation of configurators to 

mass customization systems for manufacturable goods. However, it can equally well be applied to the 

area of software, where there has been much research in software product lines [60]. Moreover, 

because the configurator can be implemented as a dataflow program requiring little computation power, 

our approach might be very useful for other applications such as self-configuring systems and 

autonomous devices [61, 62, 63].  

6.1 Applicability to the area of mass customisation 

Concerning the applicability of our approach to practical problems, besides the ATS example presented 

in this work, it has been used in two other applications. In Schneider et al. [64] we made the 

configuration of a solar power pump system (SPPS). The task was to configure the SPPS so that it 

could pump water from a well to meet with the water requirements of the application, taking into 

account the required system autonomy and other conditions. Besides the choice of the water pumping 

system components, it is capable of defining the optimum arrangement of the photovoltaic and battery 

arrays and their wire interconnections. The CN-F model for this problem has a mix of discrete and 

continuous variables. The configurator was implemented as dataflow program, and ported to a 

simulator for a handheld device without compromising its performance. In Schneider et al. [65], we 

used our approach in connection to additive manufacturing technologies, or 3D printing, as they are 

popularly known. In that application, we have developed a customization system for a scale 

compressed air engine. After requirements such as the cylinder diameter and throw length have been 

entered into the system, it automatically dimensions all the related components of the CA engine 

accordingly. We have shown that our approach can be integrated naturally to a CAD system, resulting 

in a powerful product family representation system. Besides specifying the member of the product 

family that meets the customer requirements, the configurator also generates files containing the 
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detailed design of the product components. These files can be sent directly to the production system. As 

in the SPPS application described above, the CN-F model can also be modelled to satisfy the 

conditions for a backtrack-free customization process. 

The capability of designing components during the customisation process, either automatically 

or by the customer, has a fundamental implication on the nature of the design problem our approach 

can deal with. Product configuration is defined as a design problem for which the components are 

specified in advance, either as an explicit or parameterised set of components [15]. On the other hand, 

for our approach, it is not necessary to know beforehand all the components that are associate to a 

generic component type. This follows from the fact that for a sufficient complex d-function, one may 

not know all the possible outcomes that can arise in practice. Therefore, we can conclude that our 

approach can be used to deal with design problems outsides the domain of product configuration. 

6.2 Implications for the routinization of the design activity 

The concept of dependency pattern, introduced in this work, is the outcome of the dependencies 

between variables set up by the d-functions. The establishment of the instantiation patterns may be 

associated to the routinization of the problem-solving process that happens when one gets used to solve 

design problems of the same type [66, 14]. Although this issue was not our focus in this work, it is 

interesting to note that some of the results we get are corroborated by traits that are attributed to routine 

design. To exemplify this point, next we present a selection of some of those traits listed in Brown [14]. 

The material within brackets are the concepts in our approach that related to those traits.  

 “Use of a fixed set of well-understood design plans [the instantiation patterns].”  

 “Dependencies between sub problems [defined by the d-functions] are known (...).”  

 “Sub problems can usually be solved in a fixed order [set by the instantiation patterns] 

with little or no back-tracking, due to the anticipated dependencies.” 

 “The knowledge needed to calculate or select a value for each attribute [the d-functions] 

is known in advance.”  

All those traits are clearly associated to our own findings. Actually, we have gone further 

setting conditions for which the problem-solving process becomes completely backtrack-free. Thus, we 

may conclude that our approach can be used as a theory to explain how routinization is established as 

the designer gets familiar with the design of a set of similar products that constitutes a product family. 
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6.3 Further developments and future research 

Our main concern in this thesis was with the problem-solving core of the customization process. 

Therefore, some important issues were touched only slightly in this thesis, and must be further 

developed so that the practical potential of our approach can be fully exploited. These issues are related 

to the front and back end of the elicitation process.  In the front end, one of the important issues is the 

customer interface. In our prototype configurator shown in Appendix II, we only implemented a 

rudimentary interface (below we discussed another issues regarding the interface). Another issue 

related to the front end of the elicitation process is the automatic generation of quotations [67, 68]. 

Although we have not considered this issue in any detail in this work, it should be noted that after the 

custom product is specified, all its components are known, and this is the starting point from which the 

quotation for the customer can be generated. Concerning the back end process, the generation of the 

product order is another important issue [67]. Once again, after the specification of the custom product 

is given, it can be further transformed into a suitable representation that can be used by the 

manufacturing system. In [65] we have proposed the integration of a product specification system, 

implemented using our approach, with a commercial CAD system for the generation of 3D models of 

the components of the custom compressed air engine. Subsequently, these files are saved as STL files, 

and send directly to the manufacturing system (based on 3D printers) for production. However, in 

general, the generation of production order will require a more elaborate representation of the GPS, and 

consequently, for the specific product models derived from it [69].  

Finally, let us examine more closely co-design, one line of research that we intend to pursue in 

the future. Co-design has been much emphasized in the literature of mass customisation. It is defined as 

the integration of the customer “into value creation by defining, configuring, matching, or modifying 

an individual solution” [7]. However, instead of just presenting the customer with options to choose 

from, as it is typical for configurators, to exploit co-design in a broader sense, it is necessary to allow 

the customers to participate more deeply into the design stage of the mass customisation process, for 

example, by allowing them to directly designing parts of the product they need. In our approach, this 

can be done through the input d-functions, for example, by providing the customers with access to 

templates in a CAD system so that they can adapt components to their needs. Hints on this type of 

capability and its potential may be found in [70, 71].  

Nevertheless, if too much flexibility is provided to the customer, the customization process may 

get in trouble at the design or manufacturing stage. Even if no apparent problem arises during those 

stages, there is no guarantee that the resulting product will have the desired performance or that it will 
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work at all. For example, it was part of our experience with the compressed air engine [65] that 

solutions that work well for a range of parameter values, may present functional problems if their limits 

are stretched too much. If we cannot be sure about the manufacturability, functionality and reliability of 

the custom product, it will be necessary to go through testing. In this case, the responsiveness of the 

mass customisation system will become seriously compromised. Therefore, the capability of defining 

new components or even extending the product family limits on the design space must be approached 

with caution. Actually, it is our belief that product customization apart from the more routine design 

processes tends to be a difficult and illusive task for a mass customization system, leaving little room 

for novel design [72], except for simple products.   

Hence, with the increased flexibility given to the customer during the customisation process, it 

must be necessary to find ways to define the limits of the product family in the design space. However, 

this must be done so that the customization process does not become a frustrating tentative-and-error 

process to the customer. Moreover, the output of this customization process must be manufacturable 

functional, reliable, and it must perform as expected. In other words, it is necessary that the 

representation of the product family be certified by construction. This is a challenging issue that will 

extend the understanding of the capabilities of the customisation approach presented in this work, and 

one of our future lines of research.  
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Appendix I 

Modelling the Automatic Transfer Switch 

In this appendix, we present the complete and detailed description of our knowledge framework for the 

automatic transfer switch (ATS) product family. This modelling is based on a commercial product 

developed at the Centre of Information Technology Renato Archer. Although some of its features were 

designed to allow reuse within a range of different powers, the goal of that project was not the 

development of an ATS product family as defined in this work. Hence, the ATS product family that 

will be presented here is a generalization of that product. Moreover, we modified some of its features to 

illustrate specific points of our theory of the customization process of product families.   

In the following sections, first we give a description of the ATS product family. In Section I.2, 

we present the modelling of its generic product structure (GPS). In Section I.3, the elements of the 

constraint network model extended with d-functions (CN-F) for the ATS product family are detailed. 

After the specification of each of the d-functions we add some comments with respect to the 

consistency conditions, defined in Section 4.1.2 of the main body of the thesis. In Section I.4, we 

define the instantiation patterns and discuss their compliance to the consistency conditions.  Finally, in 

Section I.5, we redefine the instantiation algorithm for CN-F models that satisfy both consistency 

conditions. Some parts of the material of this appendix have already been presented in the main body of 

the thesis to illustrate the concepts introduced there. 

In Appendix II, we will present the implementation of a prototype of the configurator for the 

ATS product family based on the modelling presented here.  

I.1 The ATS product family 

The ATS is a device that senses the loss of power on the utility and promptly activates an emergency 

generator set to restore power to a vital load, such as emergency lights, security equipment, etc. The 

load will be automatically transferred back to utility when its power has been restored. Besides these 

main functions, the ATS may perform some auxiliary functions. For example, it may run the engine 
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periodically, as a maintenance procedure, and monitor the fuel level of the engine, sounding an alarm if 

the level is low. The ATS product family of our example is focused at residential and small business 

applications. 

Figure I-1. The ATS and its main components  

As depicted in Figure I-1, the ATS is composed from seven main components: transfer switches, 

control board, control panel, buzzer, terminal block, wiring and enclosure. The transfer switch is 

composed of up to four poles, one for every wire of the load that must be switched between the utility 

and the alternative energy source. The control board is the electronic circuit that is responsible for the 

realization of the ATS functions. Its main functions are sensing the utility, starting/stopping the engine-

generator group, commuting the transfer switch and the maintenance of the power generator. The 

control panel contains the buttons and light indicators for the basic operation of ATS.  The buzzer is the 

device for sounding alarms in case of operation failures. The role of the terminal block is to provide an 

interface to facilitate the electrical connection of the ATS to the utility, engine-generator group and 

load. Wiring is the bundle of wires that make all the electrical connection between the terminals inside 

the ATS. The role of the enclosure is to provide protective and structural support for the components of 

the ATS.  

I.2 The generic product structure 

According to our formal definition, presented in Section 3.2 of the main body of the thesis, the GPS is a 
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generalization of the physical models for all the members of the product family. It stands as the product 

structure for the product family. Instead of physical components, the GPS is composed of classes of 

components or component types. In our approach, we used a simple diagram as the representation for 

the GPS. It provides the general pattern for the assembling of the components of the product family 

members. The components of the GPS are classified into four component types: generic/common, 

generic/optional, specific/common and specific/optional. These categories identify the mode of 

variation of the product family.  

Figure I-2 shows the GPS (in the background) and its component types for the ATS product 

family. Except for the control panel, which is a specific/common component type, all other component 

types are customizable to meet the requirements of the customers. The transfer switch is a 

generic/common component type. It is rated with amperage equal or greater than the amperage of the 

load, and configured to have a pole for every wire of the load that must be switched. The control board 

is the logical unit of ATS. In our example, its functions are: monitoring of the utility, starting/stopping 

the engine, switching the load between utility and generator (taking into account the waiting time for 

engine warm) and monitor the battery charge and level fuel generator. It has an 8-position DIP switch 

that is configured to represent the voltage, frequency and the number of phases of the utility, as well the 

delay time before the load can be transferred to the power generator and whether the customer wants 

the power generator to be monitored. Thus, the control board is also a generic/common component 

type. The buzzer is a specific/optional component type. It is included in the ATS configuration if the 

monitoring of the power generator is one of the functions of the control board. The enclosure is a 

generic/common component type. Its dimensions will change depending on the dimensions of the 

components that go inside. The customer can also express his/her preferences by choosing the material 

of the enclosure.  The terminal block is a generic/optional component type. The customer decides 

whether it will be included or not. If the terminal block is included, it is rated with the same amperage 

of the transfer switch. Finally, the wiring is a generic/common component type. The bundle of wires is 

configured to provide all the necessary electrical connections within the ATS, and the cross-section 

areas of the wires are rated to support the currents that will pass through them.  
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Figure I-2. The GPS (background) and the CN-F model (foreground) for the ATS product family 

I.3 The constraint network model with extended functions 

In the following three subsections, we will cover each of the elements comprising the CN-F model for 

the ATS product family.  

I.3.1 Variables  

For each variable of the CN-F model, we will describe its nature, composition and domain. For 

convenience, variables may be group to form composite variables. As depicted in Figure I-2, variables 

are represented as nodes of the constraint network.  According to our approach, except for input 

variables, there is no need to define the domains explicitly. However, because of their simplicity, we 

have defined explicitly the domain of almost all the variables.  
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Utility ( ) 

The utility is the primary source of energy. It is characterized by a voltage (  ), frequency (  ) and 

number of phases (  ). 

   {(          )                                    } 

Engine-generator group ( )  

The engine-generator group is the alternative source of energy. It is assumed that the engine-generator 

group is pre-sized to meet the electrical load, and all its output wires required by the ATS are available. 

Depending on the type of engine, such as gas, gasoline or diesel, there is a specific waiting time (  ) to 

warm up the engine before the load can be transferred to the generator. At the customer discretion, the 

operational monitoring (  ) of the engine-generator group can be done automatically (    ) or not 

(    ).  

   {(      )    [    ]            } 

Emergency load ( ) 

The emergency load is the electric circuit which will be powered by the alternative energy source. It is 

characterized by the load current (  ) and the number of wires (  ) to be connected to the ATS. The 

voltage and number of phases of the load are assumed to be compatible with the utility. 

   {(      )    (    ]    {       }}  

Neutral grounding ( ) 

This variable refers to the grounding condition of the neutral from the utility and the generator. If both 

are grounded    , otherwise,    . 

   {         } 

Enclosure material ( ) 

This variable refers to the type of material of the ATS enclosure. Table I-1 introduces the available 

enclosures relating their dimensions and materials. 
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      (   )             

Table I-1. Specifications of the available ATS enclosures 

Enclosure dimensions ( ) 

The role of the enclosure is to provide structural support and protection to the other components of the 

ATS. In this example, the enclosure will be available in a few standard dimensions, specified in Table 

I-1.  

   {(       ) ((       )  )            } 

Terminal block inclusion ( ) 

This variable accounts for the inclusion (   ) of the terminal block in the configuration of the ATS 

or not (   ). 

   {          } 

Terminal block amperage ( ) 

This variable specifies the nominal amperage of the terminal block, according to Table I-2. However, if 

the terminal block will not be included in the configuration of the ATS,     . 

 



77 

Table I-2. Specifications of the available terminal blocks 

 

                        

Buzzer inclusion ( ) 

This variable accounts for the inclusion of the component Buzzer (   ) in the configuration of the 

ATS or not (   ). 

   {          } 

Enclosure hole ( ) 

A hole must be made on the door of the enclosure (   ) to attach the buzzer. Otherwise    . 

   {         } 

Control board configuration ( ) 

The control board is configured through an 8-position DIP switch:     for the monitoring of the 

engine,     for the voltage of the utility,     for its frequency,     for the number of phases to be 

monitored, and DS5, DS6, DS7, DS8 to encode the waiting time. Since the waiting time can vary from 

0 to 15 seconds, it has a four binary representation: (0, 0, 0, 0) stands for 0, (0, 0 , 0, 1) for 1, (0, 0, 1 , 

0) for 2, and so on. Hence, values for the variable   are binary vectors corresponding to the possible 

configurations of the DIP switch, in the position OFF for 0 or ON for 1. 

   {(                                )           } 

Switch poles ( ) 

The switch component is composed of poles, one for each wire of the load that must be switched 

between the utility and the generator. The switch may have one to four poles   ,   ,   , and   .    is 

associated to the neutral, and   ,    and    are associated to each of the possible phases of the utility. 
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If the neutral are not grounded, it is not required to be switched and then the pole    (for the neutral) is 

replaced with a solid bar. As a general rule, if switch represented by    is present in the ATS, then 

    , otherwise,     . Thus, the number of poles is equal to ∑    
   . 

The overall size of the component switch is a function of the number of poles and their dimensions. In 

the calculation of its total dimensions, the dimensions of the solid bar will be assumed to be negligible. 

   {(           )           } 

Table I-3. Specifications of the available switches 

Switch specification ( ) 

Each pole of the switch will be characterized by its nominal amperage (  ), voltage (  ) and physical 

dimensions (       ). Table I-3 introduces the available switches. 

   {(        (       )) (        (       ))           } 

Wiring configuration ( ) 

The wiring makes all the necessary electrical connections between the component terminals in the 

ATS. Figure I-3 shows the diagram that represents all those possible connections. Thick lines in the 

represent multiple wires, lines connecting solid terminal represent wires common to all family 

members and lines connecting hatched terminal are optional wires. If every wire in the diagram is 

represented by the pairs of terminals that it connects, the wiring diagram can be represented by the list 
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WIRE_TEMPLATE = {(P1, P2), (B1, B2), (O1, O2), (C1, C2), (SU1, M1), (SU2, M2), (SU3, M3), (SUN, 

MN), (SU1, U1), (SU2, U2), (SU3, U3), (SUN, UN), (SG1, G1), (SG2, G2), (SG3, G3), (SGN, GN), (SL1, L1), 

(SL2, L2), (SL3, L3), (SLN, LN)}. In this case, the wiring for a custom ATS is a subset of 

WIRE_TEMPLATE by the removal of the pairs that correspond to unused wires. In our example, only 

the wires connected to the switch will have their cross-section area configured due to changes in 

amperage. This will be made according to Table I-4, which shows the diameter of the cross section area 

of the wire and the related amperage. The lengths of the wires will be regarded as fixed. 

   {(        )                        (   )         - } 

Figure I-3. Wire template for the ATS product family 

Table I-4. Specifications of the cross section area of the available wires 
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I.3.2 Constraints  

Constraints define how the variables are related. The relations may be described by mathematical or 

logical expressions or explicitly, by a list of all the allowed combinations of values that can be assigned 

to the variables. The set of variables in subscript indicate all the variables that are being related by the 

constraint. The symbol   stands for “if and only if”. 

                                          

                       

                          

             

                        

              

     ((       )  )            

                       

      (          )            

      (   )            

                                       

                               

                            

                                   

(  )                               
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        (   )             

                

                   

             

               (      ) (      ) (      ) (      )          

       (      ) (      ) (      ) (      )        

       (      ) (      ) (      ) (      )        

           (      )        

              (     ) (     ) (      ) (      ) (      ) (      )   

(      ) (      ) (      ) (      ) (      ) (      ) (      )   

(      )         

                              

                            

                                   

Comment: The size of the enclosure needs to be large enough to avoid conflicts between components 

and to facilitate their assembly. The determining factor for the size of the enclosure is the component 

switch, which is a function of the dimensions of the poles and the number. The switch is fixed at the 

back of the enclosure at distances dα, dβ, dγ, dδ and dε from the internal sides of the enclosure, as shown 

in Figure I-4. These distances should not be lower than a minimum, designated by α, β, γ, δ and ε (in 

millimeters), respectively. These conditions are expressed by         . In our example, we will assume 

these limits to be 120, 120, 180, 180 and 110, respectively. 
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Figure I-4. Space allowances between the switch and the sides of the enclosure 

I.3.3 Design functions 

In what follows, we present the specification of the d-functions attached to the variables of the CN-F. 

They are defined as procedures and described in structured language. After each d-functions we add 

comments on their domain of definition and the incorporation of constraints in view of our 

considerations about the consistency conditions in Section I-4.  

In the description of some d-functions, particularly those attached to the input variables, we 

make use of the procedure Ask (Question, Options, Variable), which ask the customer the question in 

Question to provide a value within the range defined in Options, and assigns the value chosen by the 

customer to the variable in Variable. In our example, Options is defined explicitly, by a set of 

alternatives, or implicitly, by the limits of an interval. Since the d-functions attached to the input 

variables do not depend on other variables, they will be represented without arguments.  

   

Begin 

1.     (                                    {        }   ) 

2.     (                                      {      }   ) 

3.     (                                             {    }   ) 

4.   (        )  

End 

Comment: By this d-function the customer assigns the values for the voltage, frequency and the number 

of phases of the utility. The range of options presented to the customer corresponds to the values 

defined by the constraint      and, therefore, this constraint is satisfied by the values generated by the 

d-function.  Moreover, it is defined for all combinations of the options.  
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Begin 

1.     (                                           [    ]   ) 

2.     (                                                              ) 

3.                                    

4.   (     )  

End 

Comments: By this d-function the customer assigns the values for the waiting time and expresses his 

preference regarding the monitoring of the engine-generator group. The range of options presented to 

the customer corresponds (after the conversion) to the values defined by the constraint     . Moreover, 

this d-function is defined for all combinations of the options.  

   

Begin 

1.     (                                  (    ]   ) 

2.     (                                                    ) 

3.   (     )  

End 

Comments: By this d-function the customer assigns the values for the amperage and number of wires of 

the load. The range of options presented to the customer corresponds to the values defined by 

constraint     .  Moreover, this d-function is defined for all combinations of the options.  

   

Begin 

1.     (                                                                         ) 

2.                                   

3. End 

Comments: By this d-function the customer specifies if the neutral wires are grounded. The range of 

options presented to the customer corresponds (after the conversion) to the values defined by the 

constraint     . Moreover, this d-function is defined for all the options.  
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Begin 

4.     (                                                     ) 

5.                                   

6. End 

Comments: By this d-function the customer expresses preference regarding the inclusion of an 

electrical interface for the ATS. The range of options presented to the customer corresponds (after the 

conversion) to the values defined by the constraint     .  Moreover, this d-function is defined for all the 

options.  

   

Begin 

1.     (                                                                   )  

End 

Comments: By means of this d-function the customer expresses his preference regarding the material 

for the ATS enclosure. The range of options presented to the customer corresponds to the values 

defined by the constraint     .  Moreover, this d-function is defined for all the options. 

  (   ) 

Begin 

1.        

2.         (      )         -         

3. If       then 

4.           

5.       (       )         -  

6.     (         ) 

End 

Comments: The choice of the switch depends on the electrical characteristics of the utility and the load 

to which it will be connected. As it can be verified, line 1 incorporates the constraint        and line 2 

incorporates      and       . Moreover, taking into account that the amperage the customer can assign to 

the load (  ) has been restricted in accordance to Table I-3, and that the amperage    and voltage    are 
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related by this same table, we can conclude that   (   ) is defined for all allowed combination of 

values for the independent variables   and  .  

  (   ) 

Begin 

1.                             

2.                             

3.                             

4.                             

5.   (           ) 

End 

Comments: The number of poles depends on the number of load wires that must be commuted. Because 

the procedure defining   (   ) satisfies the equation                 , it follows that the 

constraint          is incorporated by it. Moreover, it is evident that, for every combination of values 

assigned to   and  , a value can be generated for  . 

  (   ) 

Begin 

1.                   

2.            {             -       } 

End 

Comments: The electrical characteristic of the terminal block must match the specifications of the 

switch. However, this is necessary only if it is included in the ATS configuration. As it can be verified, 

constraint      is incorporated partly in line 1 and partly of line 2, and          is incorporated in line 2. 

If    , no matter what is the value assigned to  ,     . On the other hand, if    , then, by 

construction, Tables I-2 and I-3 guarantee that for every value assigned to    there is an   such that 

          -          . Thus, for any combination of values of the independent variables   and  , a 

value can be generated for  .  
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  (   ) 

Begin 

1.               

2. (        )     

3.   (     )  (     )         -  (        )    (    )    (      )    

End  

Comments: The dimensions of the enclosure must be determined based on the dimensions of the 

components that go inside it, and on the necessary clearance required for their assembly and 

maintenance. As a simplification, in our example we take into account only the dimensions of the 

switch. In line 3, the enclosure is selected from Table I-1, thus satisfying constraint     . Since Table 

I-1 includes an enclosure that can handle the worst case, that is to say, a four pole 80A switch, there is 

always an enclosure that satisfies the condition of constraint         . Hence,   (   ) is defined for all 

combinations of values assigned to the independent variables. 

  ( ) 

Begin 

1. Find the first     (   )         -  

2.     

End 

Comments: This is an alternative d-function attached to variable  . While the input d-function    

depends on the customer,   ( ) generates the value for   from Table I-1. Since the material assigned 

to   is one of the available in Table I-1, it implies that the d-function incorporates constraint     . 

Moreover, since the values for variables   and   are related by Table I-1, the constraint        is also 

incorporated. Furthermore, since the value assigned to   by   (   ) is one of the sizes in Table I-1, 

there is always an associated material that can be assigned to  . Therefore, the procedure above always 

generates a value to  , which implies that the d-function is defined for all the values assigned to  .  

  (   ) 

Begin 

1.      

2.                                       
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3.                                       

4.                                       

5.                                

6.                                  

7.                                   

8.                                    

9.                                  

10.   (                                ) 

End 

Comments: The configuration of the DIP switch depends on the values of the related variables. Lines 1-

5 convert the waiting time (a decimal number) into a binary number and line 9 specify if the engine has 

to be monitored. These lines correspond to constraint       . Lines 6-8 specify the electrical 

characteristics of the utility. They correspond to constraint       . Thus, it can be concluded that these 

two constraints are incorporated in   (   ). Moreover, for every combination of values assigned to the 

independent variables   and  , the procedure generates a value to variable  , which implies that 

  (   ) is defined for all values assigned to the independent variables.  

  ( ) 

Begin 

1.                               

End 

Comments: The inclusion of the buzzer depends on the necessity of monitoring the engine-generator 

group. Clearly, this d-function incorporates the constraint       , and it is defined for all values of the 

independent variable  . 

  ( ) 

Begin 

1.                             

End 
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Comments: The requirement of a hole on the enclosure depends on the inclusion of the buzzer into the 

custom ATS. Clearly, this d-function incorporates the constraint       , and it is defined for all values 

of the independent variable  . 

  (       ) 

Begin 

1.                        

2.                             (      )  

3.                             

{
 

 
(     ) (     ) (      ) (      ) 
(      ) (      ) (      ) (      ) 
(      ) (      ) (      ) (      ) 

(      ) (      ) }
 

 
 

4.                               (      ) (      ) (      ) (      )  

5.                               (      ) (      ) (      ) (      )  

6.                               (      ) (      ) (      ) (      )  

7.       {   (   )         -       } 

8.   (        ) 

End 

Comments: The wiring can be configured only after the components going inside the ATS are 

specified, to determine which terminals must be connected and what currents must be supported. Line 2 

satisfies constraint       , line 3 satisfies constraint       , lines 4-6 satisfy constraint       , and line 7 

satisfies constraints      and       . Each of the lines, from 2 to 6, defines independently a portion of 

the wiring. Moreover, Table I-4 contains a wire that can stand any of the amperages of the available 

switches. Therefore, no matter what is the combination of values of the independent variables, a value 

for the variable   can always be generated. 
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I.4 Instantiation patterns 

In Section 4.1.1 of the main body of this thesis, we have concluded that if some variable is attached to 

more than one d-function, there will be more than one instantiation pattern in  , each one giving rise to 

a correspondent instantiation graph. The d-functions specified in the preceding section can be gathered 

to form two instantiation patterns, shown as columns    and    in the Table I-5. Note that, except for 

   and   ( ), all other d-functions are contained in both instantiation patterns. The instantiation 

graphs that come out when these patterns are followed during the instantiation process are shown in 

Figure I-5, labelled    and   , respectively.  

Figure I-5. The instantiation graphs for the ATS product family example 

Based on our comments following the specifiction of the d-functions, we can conclude that the 

Consistency Condition 1 (defined in Section 4.1.2 of the main body of this thesis) is satisfied by all 

d-functions since all of them are defined for all the combinations of values assigned to their 

independent variables. However, the instantiation pattern    does not satisfy the Consistency Condition 

2. This can be seen in Table I-5, which summarizes the incorporation of constraints by the d-functions. 

As indicated by the highlighted rows, the d-function    does not incorporate the constraint        and 

  ( ) is the only d-function to do that. Moreover, the latter d-function is not included in the 

instantiation pattern   . On the other hand, all constraints are incorporated in one of the d-functions 

belonging to the instantiation pattern   . This proves that    is the only instantiation pattern of the 

CN-F model for the ATS product family that satisfies the second consistency conditions. 
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Table I-5. Summary of the relations between constraints, d-functions and instantiation patterns of the 

CN-F model for the ATS product family 

Constraints d-functions P1 P2 

        yes yes 

        yes yes 

        yes yes 

        yes yes 

     
   yes no 

  ( ) no yes 
       

        yes yes 

       (   ) yes yes 

         ( ) yes yes 

         ( ) yes yes 

       
  (   ) yes yes 

       

     

  (   ) yes 
 

yes 
 

       

       

     

  (       ) yes 
 

yes 
 

       

       

       

       

           (   ) yes yes 

           (   ) yes yes 

     
  (   ) yes yes 

         

 



91 

 

To avoid having to deal with inconsistencies, we can simply remove    from  , the source of 

inconsistencies in our CN-F modelling of the ATS example. The remaining set of d-functions coincides 

to    and, therefore, the new CN-F model satisfies both consistency conditions. As it was discussed in 

Section 4.3 of the main body of this thesis, the inconvenience of removing    is that we lose possible 

solutions. The implication is that some of the members of the ATS are not reached by the 

customization method. In that section, we also present an alternative way to overcome the 

inconsistencies associated to the instantiation pattern   , by defining a new input d-function   
 ( ) that 

presents to the customer only options of materials that are consistent with the value already assigned to 

the variable   and replacing it by   . In case no solution is lost. 

I.5 The instantiation algorithm 

The instantiation algorithm for the CN-F model was introduced in Figure 12, Section 4.1, in the main 

body of this thesis. This algorithm was instrumental in the definition of the consistency conditions. It is 

capable of identifying inconsistencies of type I and II during the instantiation process. However, if the 

CN-F model satisfies both inconsistency conditions, that algorithm can be simplified by removing the 

lines 4-12 related to the checking of inconsistencies. The resulting algorithm is shown in Figure I-6. 

This algorithm is quite straightforward and admits no backtracking. Actually, as we shall see in 

Appendix II, this algorithm can be implemented as a dataflow program, by the concatenation of the 

d-functions of the CN-F model.  

Figure I-6. A simplified instantiation algorithm for CN-F models that satisfy Consistency Condition 1 

and 2 

 

 

 



92 

  



93 

Appendix II 

Implementation of the ATS Customisation 

Process 

In this appendix, we present the implementation of the customisation process of the ATS product 

family using the programming language LabVIEW. However, this implementation covers only the first 

stage of this process, to find solutions to the CN-F model. Appendix II is divided into two parts. In Part 

I, we present the implementation of the d-functions, the control structure and the interface of the system 

to display the solutions of the customisation process. This implementation follows the modelling 

presented in Appendix I. In Part II, we use this program to run the case introduced in Section 4.3 of the 

main body of the thesis.  

Part I – The implementation 

LabView is a graphical programming language from National Instruments. One of the main reasons for 

choosing this language for the implementation of our approach is the fact that LabVIEW is based on 

the principle of dataflow, in which the functions are executed only after all the data required is 

available. This principle matches quite well with the concept of instantiation patterns and the algorithm 

for the instantiation process, thus facilitating the programing of the configurator. Actually, when the 

CN-F model satisfies the inconsistency conditions, the resulting process turns out to be a dataflow 

program, as can be verified in Figure II-15. Another major advantage of LabVIEW is the level of 

modularity that can be obtained. The resulting software program is such that any d-function can be 

improved without affecting the other functions or the control structure. 

In what follows, we first present the implementation of each d-function based on the 

specifications in Subsection I.3.3 of Appendix I. Note that the implementation of the d-functions is 

composed of at least two views. This is because they are implemented using the Case Structure of 

LabVIEW, with the state True indicating the inclusion of the d-function in the set   and the state False 
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indicating its removal from  , to implement line 1 of the instantiation algorithm. However, if another 

Case Structure is also used inside, there will be more than two views. Note also that some of the d-

functions will read data from .txt files (for example, see Figure II-6). Although these files are part of 

the implementation, they have not been included explicitly in this appendix since they correspond 

strictly to the tables of Appendix I. 

 

 

 

Figure II-1. The d-function attached to the variable Utility 
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Figure II-2. The d-function attached to the variable Engine-generator group 
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Figure II-3. The d-function attached to the variable Emergency load 
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Figure II-4. The d-function attached to the variable Neutral grounding 

 

 

 

Figure II-5. The d-function attached to the variable Terminal block inclusion 
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Figure II-6. The d-function attached to the variable Switch specification 
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Figure II-7. The d-function attached to the variable Switch poles 
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Figure II-8. The d-function attached to the variable Control board configuration 
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Figure II-9. The d-function attached to the variable Terminal block amperage 
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Figure II-10. The d-function attached to the composite variable Enclosure 

Note that, for convenience, the d-function shown in Figure II-10 combines the specification of 

the d-functions   ( ) and   (   ) to generate the values for the variables Enclosure material and 

Enclosure dimensions.  
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Figure II-11. The d-function attached to the variable Buzzer inclusion 

 

 

 

Figure II-12. The d-function attached to the variable Enclosure hole 
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Figure II-13. One view of the d-function attached to the variable Wiring configuration 

Note that the implementation of this d-function does not correspond exactly to the specification 

presented in Appendix I. Instead of beginning with the wire template and removing the unused wires, 

we start with the set of common wires and add the necessary optional wires. 
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Figure II-14. Second view of the d-function attached to the variable Wiring configuration 

The implementation of the control structure for the instantiation algorithm is showm in Figure 

II-15. Note that, the instantiation algorithm presented in Figure I-6 has an iterative structure where only 

one d-function is executed during each iteration. However, in this implementation, we prefer to stress 

the dataflow character of the instantiation process. In this setting, all d-functions are executed in only 

one iteration. For the sake of visibility, each of the d-functions presented in the preceding figures 

appears as a SubVI (a kind of subroutine in LabVIEW) within the While Loop structure of LabVIEW. 

They a re represented as boxes in the diagonal of the While Loop and numbered from F1 to F13. The 

input lines connecting the bottom of a d-function from the outputs of lower level d-functions indicate 

the dependencies between the d-functions. 
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Figure II-15. Implementation of the control structure of the instantiation algorithm 
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Initially, all the variables of the type Active “X” are set to True, making the d-functions 

available for execution. As the d-functions are executed, these variables are set to False, to inactivate 

the d-function. Because of the dependencies, this process begins with the d-functions at the bottom of 

the iterative structure, which corresponds to the input variables. When all the d-functions are disabled 

the program ends, and a solution has been found. 

 

Figure II-16. The Front Panel of LabVIEW showing all the variables used in the ATS configurator 

Figure II-16 shows the Front Panel of LabVIEW with all the variables used in the program. At 

the left, it can be seen the variables of the type Active “X”, all of them initially set to True (buttons of 

the corresponding switches turned to the right), indicating that the d-functions are available to generate 

the values for the varaibles they are attached. At the right, it can be seen all the variables related to the 

ATS product family, and the corresponding fields to be filled with the values generated by the 

correspondent d-functions, as they are executed.     

Part II – An example of the customisation process of the ATS product family 

The customisation process starts with the configurator asking the customer to enter the requirements of 



108 

the ATS through a sequence of windows. This happens while the input d-functions are being executed. 

For our prototype system, it has been assumed that the customers answer all the questions by choosing 

values within the limits or options set by the questions. In what follows, the input windows that are 

prompted by the same input d-function are grouped together. Since all the inputs are independent of 

each other, there is no restriction in the order the windows are presented to the customer. The answers 

for the questions are those values of the example in the Section 4.3 of the main body of the thesis. 

 

 

 

Figure II-17. Inputs regarding the Utility 
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Figure II-18. Input regarding the Neutral grounding 

 

 

Figure II-19. Inputs regarding the Emergency load 
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Figure II-20. Inputs regarding the Motor-generator group 

 

Figure II-21. Input regarding the Terminal block inclusion 
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Figure II-22. The solution for the customer requirements 

After the customer requirements have been entered, a solution to the CN-F model is found in 

only one iteration of the program shown in Figure II-15. The values of the solution found are shown in 

Figure II-22. Note that, at this point all the variables of the type Active “X” have become disabled 

(buttons of the corresponding switches turned to the left), indicating that all of them have been 

executed and the corresponding output values defined. The values for the input variables, defined by 

the customer, are shown in the lower fields (coloured in yellow) and the values for the output variables, 

defined by the d-functions, are shown in the upper fields enclosed by (blue) frames. Note that, the 

variable Terminal block inclusion is both an input and output variable. 

  


