
Eduardo de Paula Miranda

“Linked biology — from phenotypes towards
phylogenetic trees.”

“Conectando dados biológicos — dos fenótipos às
árvores filogenéticas.”

CAMPINAS
2013

i

ii

University of Campinas
Institute of Computing

Universidade Estadual de Campinas
Instituto de Computação

Eduardo de Paula Miranda

“Linked biology — from phenotypes towards
phylogenetic trees.”

Supervisor:
Orientador(a):

Prof. Dr. André Santanchè

“Conectando dados biológicos — dos fenótipos às
árvores filogenéticas.”

MSc Dissertation presented to the Post
Graduate Program of the Institute of Com-
puting of the University of Campinas to
obtain a Mestre degree in Computer Sci-
ence.

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Ciência da Com-
putação do Instituto de Computação da Univer-
sidade Estadual de Campinas para obtenção do
t́ıtulo de Mestre em Ciência da Computação.

This volume corresponds to the fi-
nal version of the Dissertation de-
fended by Eduardo de Paula Mi-
randa, under the supervision of
Prof. Dr. André Santanchè.

Este exemplar corresponde à versão fi-
nal da Dissertação defendida por Ed-
uardo de Paula Miranda, sob orientação
de Prof. Dr. André Santanchè.

iii

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Maria Fabiana Bezerra Muller - CRB 8/6162

 Miranda, Eduardo de Paula, 1984-
 M672L MirLinked biology - from phenotypes towards phylogenetic trees / Eduardo de

Paula Miranda. – Campinas, SP : [s.n.], 2013.

 MirOrientador: André Santanchè.
 MirDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Mir1. Grafo (Sistema de computador) - Banco de dados. 2. Conexão de dados. 3.

Fenótipo. I. Santanchè, André. II. Universidade Estadual de Campinas. Instituto de
Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Conectando dados biológicos - dos fenótipos às árvores filogenéticas
Palavras-chave em inglês:
Graph (Computer system)- Database
linked data
phenotype
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
André Santanchè [Orientador]
Jorge Alberto Prado de Campos
Claudia Maria Bauzer Medeiros
Data de defesa: 22-11-2013
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

iv

Institute of Computing /Instituto de Computação
University of Campinas /Universidade Estadual de Campinas

Linked biology — from phenotypes towards
phylogenetic trees.

Eduardo de Paula Miranda1

November 22, 2013

Examiner Board/Banca Examinadora:

• Prof. Dr. André Santanchè (Supervisor/Orientador)

• Prof.a Dr.a Claudia Maria Bauzer Medeiros
Institute of Computing – UNICAMP

• Prof. Dr. Jorge Alberto Prado de Campos
Universidade Salvador – UNIFACS

• Prof. Dr. Ricardo da Silva Torres
Institute of Computing – UNICAMP (Substitute/Suplente)

• Dr.a Carla Geovana do Nascimento Macário
CNPTIA – EMBRAPA (Substitute/Suplente)

1Financial support: CNPq scholarship (process 138197) 2011–2013

vii

Abstract

A large number of studies in biology, including those involving phylogenetic trees recon-
struction, result in the production of a huge amount of data – e.g., phenotype descriptions,
morphological data matrices, phylogenetic trees, etc. Biologists increasingly face a chal-
lenge and opportunity of effectively discovering useful knowledge crossing and comparing
several pieces of information, not always linked and integrated. In this work, we are in-
terested in a specific biology context, in which biologists apply computational tools to
build and share digital descriptions of living beings. We propose a process that departs
from fragmentary data sources, which we map to graphs, towards a full integration of
descriptions through ontologies. Graph databases mediate this evolvement process. They
are less schema dependent and, since an ontology is also a graph, the mapping process
from the initial graph towards an ontology becomes a sequence of graph transformations.
Our motivation stems from the idea that transforming phenotypical descriptions in a net-
work of relationships and looking for links among related elements will enhance the ability
of solving more complex problems supported by machines. This work details the design
principles behind our process and two practical implementations as proof of concept.

ix

Resumo

Um grande número de estudos em biologia, incluindo os que envolvem a reconstrução de
árvores filogenéticas, resultam na produção de uma enorme quantidade de dados – por
exemplo, descrições fenot́ıpicas, matrizes de dados morfológicos, árvores filogenéticas, etc.
Biólogos enfrentam cada vez mais o desafio e a oportunidade de efetivamente descobrir
conhecimento a partir do cruzamento e comparação de vários conjuntos de dados, nem
sempre conectados e integrados. Neste trabalho, estamos interessados em um contexto
espećıfico da biologia em que biólogos aplicam ferramentas computacionais para construir
e compartilhar descrições digitais dos seres vivos. Nós propomos um processo que parte
de fontes de dados fragmentadas, que nós mapeamos para grafos, em direção a uma plena
integração das descrições através de ontologias. Os bancos de dados de grafos intermediam
o processo de evolução. Eles são menos dependentes de esquema e, uma vez que ontologias
também são grafos, o processo de mapeamento do grafo inicial para uma ontologia torna-
se uma sequência de transformações no grafo. Nossa motivação parte da ideia de que a
conversão de descrições fenot́ıpicas em uma rede de relações e a busca de conexões entre
elementos relacionados irá aumentar a capacidade de resolver problemas mais complexos
suportados por computadores. Este trabalho detalha os prinćıpios de concepção por trás
do nosso processo e duas implementações práticas como prova de conceito.

xi

Acknowledgements

First and foremost, I would like to thank my parents, Elizabeth and José, who taught me
the value of hard work and education and for the support and dedication throughout my
life. My sisters, Mayara and Patŕıcia for their warmth over the years and for encouraging
me to pursue my dreams. I also need to thank Patŕıcia for helping me to overcome my
writing weakness and for correcting my papers. My grandparents, Carlos and Delizete for
their wisdom and faith in me. My aunts, Elizete and Simone, my uncles Elizeu and Grei
and my cousins, Nı́colas and Thais for their continuous encouragement. My girlfriend,
Ana Carolina for her support, encouragement and for being part of this journey, even
when being at a distance. You experienced all of the ups and downs of my research
and I would like to thank you all for the tolerance of my occasional bad moods and
general crankiness. Thank you for continuously improving my humor during some of my
most stressful moments. Thank you for being even happier than I am with every single
achievement. Without you, I may never have gotten where I am today and I am who I
am because of you. I would like to express my sincere thanks to my advisor professor
André Santanchè for your patient guidance, insight, and most importantly, the friendship
during this research. I would like to sincerely thank Kieran Murphy for sacrificing his
time correcting my work and providing precious comments. I need to thank Anäıs Grand
and Régine Vignes Lebbe for the great experience and creative ideas while we are working
together. Next, I need to thank all the people who create such a good atmosphere in the
lab, Alessandra, Bruno, Celso, Daniel, Ivelize, Ivo, Jaqueline, João, Joana, Jordi, Lucas,
Matheus and Renato. Thank you all for interesting discussions, friendship and good
laughs. I need to further thank all my friends at the Institute of Computing, particularly
At́ılio Gomes, Carlos Trujillo, Daniel Moraes and Raphael Rosa who took the time to
share their knowledge during evenings and weekends of studying. I would also like to
thank all the members of staff at Institute of Computing.

Finally, I would like to thank the financial support from Brazilian agencies: CNPq
(grant 138197/2011-3), the Microsoft Research FAPESP Virtual Institute (NavScales
project), CNPq (MuZOO Project and PRONEX-FAPESP), INCT in Web Science(CNPq
557.128/2009-9) and CAPES, as well as individual grants from CNPq.

xiii

Contents

Abstract ix

Resumo xi

Acknowledgements xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contributions . 2
1.3 Dissertation Structure . 3

2 Unifying Phenotypes to Support Semantic Descriptions 5
2.1 Introduction . 5
2.2 Related Work . 7
2.3 Common Denominator . 8
2.4 From XML Structures to Graphs . 12
2.5 Practical Experiment of Unifying Phenotypes 14
2.6 Conclusion . 16

3 Linked biology — from phenotypes towards phylogenetic trees 19
3.1 Introduction . 19
3.2 Foundations and Related Work . 20

3.2.1 Building Phylogenetic Trees . 21
3.2.2 Standards for Phenotype Description 21
3.2.3 Phylogenetic Trees and the 3ia Method 23

3.3 Three Layer Method and System Architecture 24
3.4 Unified Graph data model . 25
3.5 Link Discovery . 27

3.5.1 Similarity Index . 29
3.5.2 Practical Implementation of the Similarity Measure 30

xv

3.6 Conclusion . 31

4 Linked biology technical aspects – linking phenotypes and phylogenetic
trees 33
4.1 Introduction . 33
4.2 Basic concepts . 34

4.2.1 Standards for Phenotype Description 34
4.2.2 Life Science Identifiers (LSIDs) . 36
4.2.3 The proposed graph data model . 37

4.3 System Architecture and Implementation Details 38
4.3.1 SDD Parser . 38
4.3.2 Tree Output . 40
4.3.3 Global Names Resolver (GNR) . 41
4.3.4 Graph Importer . 42
4.3.5 Graph Database . 43
4.3.6 Similarity Index . 46

Practical Implementation of the Similarity Measure 47
4.3.7 Tracing the Evolutionary History 49

4.4 Conclusion . 52

5 Conclusions and Extensions 55
5.1 Contributions . 55

Bibliography 57

A Demonstration 63
A.1 SDDParser.py . 63
A.2 TeeOutput.py . 70
A.3 GlobalNamesResolver.py . 76
A.4 GNRResultObject.py . 80
A.5 ITISServices.py . 82
A.6 CoLServices.py . 84
A.7 GraphImporter.py . 88
A.8 SimilarityIndex.py . 99
A.9 TraceEvolutionaryHistory.py . 102

xvii

List of Figures

2.1 Three layers method diagram. 7
2.2 Character-by-taxon matrix . 9
2.3 Fragment of SDD Schema with Instances 1 9
2.4 Symbols and semantic used in the diagrams 10
2.5 Formats for representing phylogenetic data 11
2.6 Property graph model to represents phenotype descriptions. 13
2.7 Varanus knowledge base . 15
2.8 Graph Diagram . 16

3.1 Fragment of SDD Schema with Instances 23
3.2 Three layer method diagram . 25
3.3 General System Architecture. 26
3.4 Property Graph Model . 28
3.5 Practical Scenario . 29
3.6 Practical Implementation . 32

4.1 Fragment of SDD Schema with Instances 35
4.2 Property Graph Model . 38
4.3 Retained Tree Example . 41
4.4 Real Example . 43
4.5 Practical Implementation . 48
4.6 Bottom Up Aggregation . 50
4.7 Top Down Refining . 51
4.8 Evolved Traits Visualization . 52

xix

List of Abbreviations

3ia Three-item analysis
APN Australian Plant Name Index
C,CS Characters – Character-states
CoL Catalogue of Life
EAV Entity – Attribute – Value
EoL Encyclopedia of Life
EQ Entity – Quality
GNR Gobal Names Resolver
HTU Hypothetical Taxonomic Unit
IPNI International Plant Names Index
ITIS Integrated Taxonomic Information System
LBS Lateral Branching System
LSID Life Science Identifiers
MIAPA Minimum Information About a Phylogenetic Analysis
NCBI National Center for Biotechnology Information
OMG Object Management Group
OTU Operational Taxonomic Unit
PATO Phenotype and Trait Ontology
SDD Structure Descriptive Data
TAO Teleost Anatomy Ontology
TDWG Biodiversity Information Standards
TU Taxonomic Units
uBio Universal Biological Indexer and Organizer

xxi

Chapter 1

Introduction

1.1 Motivation
There are large collections of biological data scattered in various resources that are, most
of the time, produced as independent entities and are not linked. Potential links in these
data sources can be discovered crossing and comparing pieces of information, as they
hold implicit semantics that could enhance the ability of solving more complex problems
supported by machines.

The focus of this research are phenotype descriptions and their application in phy-
logenetic trees, which are resources widely used in a variety of biological studies. A
phenotype is a set of observable physical and behavioral characteristics of an individual,
resulting from the interaction of its genotype (genetic makeup) with the environment. In
this context, recent approaches enrich these descriptions via ontology annotations, using
the Entity-Quality (EQ) formalism. EQ is a representation [6] which associates ontology
entity terms (E) – e.g., bone or vertebra from the Teleost Anatomy Ontology (TAO) –
with quality terms (Q) – e.g., triangular, horizontal or smooth shape from the Phenotype
and Trait Ontology (PATO) [18].

Ontologies have gained wide acceptance in biology due to their ability to represent
knowledge and also the advantage of querying and reasoning information [23]. Further-
more, semantic web standards allow unique identification of ontology concepts, facilitating
interoperability across databases [7, 30]. Several tools have emerged to support annota-
tion of biological phenotypes using ontologies, e.g., Phenex (http://phenoscape.org/wiki/
Phenex) and Phenote (http://www.phenote.org/), both curation tools designed for anno-
tation of phenotype characters with ontology concepts, using the EQ formalism [6].

Dahdul et al. [18] developed a workflow for curation of phenotypic characters from
systematic studies. This workflow extracts phenotype characters from a large collection
of phylogenetic studies – that have been documented in natural language using a semi-

1

2 Chapter 1. Introduction

structured format – and converts them into EQ representations. This process has limited
scalability due to the curation process, which is very time-consuming and was executed
manually by trained domain experts.

If, on one hand, to represent and integrate phenotype descriptions through the EQ
formalism using ontologies appears to be the most promising approach to be adopted, on
the other hand, it is not a straightforward task when we depart from existing non EQ
resources.

The challenge in this work is to establish a model to represent a common denomina-
tor among phenotypical description standards, which will support findings in the latent
semantics implicit in the relations. These semantics can guide the interaction between
textual descriptions and ontologies. Our approach remodels semi-structured descriptions
to a graph abstraction, in which the data can be integrated more easily. Graph trans-
formations are applied for the transition from a semi-structured data representation to a
more formalized representation through ontologies.

1.2 Goals and Contributions
The main goal of this research is to design and implement a linked biology approach to
automatically connect and combine data from independent semi-structured resources of
phenotype descriptions and/or phylogenetic trees, exploiting their latent semantics. We
propose a graph data model that plays a crucial role, since it is the basis of our linking
discovery and combination process.

The main contributions of the present work are:

• A graph data model able to represent essential data from phylogenetic
trees and phenotype descriptions, which: (i) is the basis to exploit the latent
semantics resulting from the interconnection of penotype characters; (ii) provides
the ground work for the transition from a semi-structured data representation to a
more formalized representation through ontologies. The unified model enables to
discover and to make explicit the latent semantics through links among previously
unconnected information. Its ability of integrating knowledge around taxonomic
units will enable, for instance, to generate new research questions, to gain insights
and to confront evolutionary hypotheses.

• The design of an approach and implementation of a prototype to transform
phenotype descriptions and phylogenetic trees – represented as semi-structured doc-
uments – into graph representations with the essential information for link discovery
and ontology transformation.

1.3. Dissertation Structure 3

An heuristic similarity measure that computes the similarity degree be-
tween two morphological character descriptions, which will represent how close re-
lated they are.

An algorithm to trace changes in traits of phylogenetic trees. This
algorithm was built on top of our proposed graph data model. It searches in a given
tree for traits (characters) that might be “responsible” for a tree branching.

A visual tool prototype to analyze phenotype taxonomic units, their charac-
ters and the correlation among them.

1.3 Dissertation Structure
The structure of this dissertation is a compilation of two research papers and a technical
report, namely:

• Chapter 2: Unifying Phenotypes to Support Semantic Descriptions, presented to the
VI Brazilian Conference on Ontological Research (Ontobras 2013), which was held
in Belo Horizonte, Brazil.

• Chapter 3: Linked biology — from phenotypes towards phylogenetic trees, still to
be submitted.

• Chapter 4: Linked biology technical aspects – linking phenotypes and phylogenetic
trees, technical report to be submitted.

Each paper/report is presented in a chapter, following an evolutionary perspective
of this research. Chapter 2 presents our initial approach, in which we propose a graph
data model focused in phenotype descriptions, based in a comparative analysis of four
standards related to this kind of description. A practical implementation, built on top of
the graph, exploited existing biology phenotype descriptions and their latent semantics
to discover links and integrate descriptions.

Chapter 3 presents an enhanced graph data model that links phylogenetic trees to
phenotype descriptions. Our first proposed graph data model (Chapter 2) was based on
the Entity – Attribute – Value (EAV) representation. While, in the second enhanced
graph data model (Chapter 3) we made an important modification in order to make
the graph more easily analyzed by a researcher. This chapter also presents a practical
implementation, in which we introduce a heuristic that computes the similarity degree
between two morphological character descriptions; it aims at supporting biologists in
perceiving correlations.

4 Chapter 1. Introduction

Chapter 4 summarizes the main functionalities of the system and presents an algorithm
to trace the phylogenetic history of trait changes. Chapter 5 presents the conclusions of
this dissertation and future work. Appendix A shows details of the system architecture
and implementation, in order to document the functionalities and operational features of
the system.

Chapter 2

Unifying Phenotypes to Support
Semantic Descriptions

2.1 Introduction
Bioinformatics is the science of integrating, managing, mining and interpreting infor-
mation from biological data [22]. In the life science field, there are a large number of
distributed biological datasets freely available and ready to use. However, this wealth of
information has hardly been tapped even today due its distributed nature, heterogene-
ity and complex data types and representation [39]. In this scenario, their combination
and interconnection are barely feasible [42]. A massive amount of relevant information is
hidden in the potential connection of unrelated files.

In this work we are interested in a specific biology context, in which biologists apply
computational tools to build and share digital descriptions of living beings as phenotypes.
These descriptions are a fundamental starting point for several biology tasks, like living
beings identification and tools for phylogenetic tree analysis. Even though the last gen-
eration of these tools is based on open standards (e.g., XML), the descriptions are still
based on textual sentences in natural language [6].

Semantic integration in this context is one of the main challenges. Besides ontologies
to support phenotype description, there are tools to annotate descriptions by associating
ontology concepts to textual descriptions [6]. This distinction between description and
their annotations based on ontologies does not consider that descriptions can conversely
contribute to ontology expansion and revision. The challenge in this work is to establish
a model to represent a common denominator among phenotipical description standards,
which will support findings in the latent semantics implicit in relations in a strategy
inspired by folksonomies. These semantics can guide the interaction between textual
descriptions and ontologies.

5

6 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

In a previous work [2], we showed that the latent semantics presented in tags and their
correlations, as a product of an organic work collectively produced by a community on
the web (the folksonomies), can be exploited to expand and review ontologies. While the
model behind folksonomies is based on the correlation of three elements – tags, resources
and users – descriptions in the biological context present a more complex and specialized
structures. Co-occurrence is a strong principle we considered to extract latent semantics.
The main idea is that the set of tags put together in a given resource can provide a “con-
text” to interpret each tag. Consider a tag cell, which can have a distinct interpretation
according to the context. The co-occurrence with the tags cytoplasm or organelle will
put it in the biology context. Moreover, the compilation of data concerning the occur-
rence and co-occurrence of millions of tags can support the analysis of similarity among
terms – see more details in [2]. We consider that we can apply an equivalent technique
to put terms of phenotype descriptions in a context, to improve their interpretation and
correlation.

The present paper addresses this problem in exploiting existing biology assets related
to phenotypic descriptions, and the latent semantics resulting from their interconnection,
to support their development towards a richer semantical representation, as part of ontolo-
gies. It implies promoting relations among concepts to first class citizens. Accordingly,
we designed a three layered method illustrated in Figure 2.1, in which graph databases
intermediate this evolvement process from fragmentary data sources to accomplish full
integration descriptions as ontologies.

Our approach remodels semi-structured descriptions to a graph abstraction, in which
the data can be integrated more easily. Graph transformations are applied for the tran-
sition from a semi-structured data representation to a more formalized representation
through ontologies. As we will further explain, this graph representation will also support
an analytical tool to compare data across studies, wherein it will help evolutionary biolo-
gists to answer evolutionary questions. This paper presents a work in progress concerning
the first step of this method, focusing in the integration of data from the semi-structured
data layer and their transition to the graph data abstraction layer. Our proposed graph-
based model is derived from a comparative analysis among four standards related to
phenotype description, plus a practical experiment.

This paper is organized as follows: Section 2.2 summarizes the related work; Sec-
tion 2.3 presents the comparative analysis which subsidizes our minimal common denom-
inator model; Section 2.4 presents out graph-based model; Section 2.5 shows a practical
experiment of unifying phenotypes; Section 2.6 presents concluding remarks.

2.2. Related Work 7

Ontology concepts

Semi-structured data

Graph data abstraction

Figure 2.1: Three layers method diagram.

2.2 Related Work
Integration is a key point as humans are progressively unable of handling the sheer volume
of data presented [8]. It is an important step towards knowledge discovery [28]. The
integration of digital phenotype descriptions is a relevant challenge in this context since
they support fundamental biology tasks as the building of identification keys for living
beings and can support the creation of a complete evolutionary Tree of Life [39] assembling
genomic and morphological data so as to congregate the phylogenetic relationships among
all living or extinct organisms [15]. Likewise, integrating these data may contribute to
better understanding of how a morphological trait became organized and evolved over
time [29].

Recent approaches enrich descriptions via ontology annotations, using the Entity-
Quality (EQ) formalism for phenotype modeling. EQ is a representation [6] which asso-
ciates ontology entity terms (E) – e.g., bone or vertebra from Teleost Anatomy Ontology
(TAO) – with quality terms (Q) – e.g., triangular, horizontal, smooth from the Phenotype
and Trait Ontology (PATO) [18]. Ontologies have gained wide acceptance in biology due
to their ability of representing knowledge and also the advantage of querying and reason-
ing information [23]. Furthermore, semantic web standards to represent ontology concepts
with unique identifiers facilitates interoperability across databases [30]. Recently, several
tools have emerged to support annotation of biological phenotypes using ontologies, e.g.,
Phenex (http://phenoscape.org/wiki/Phenex) and Phenote (http://www.phenote.org/),
both curation tools designed for annotation of phenotypic characters with ontology con-
cepts using EQ formalism [6].

8 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

[18] developed a workflow for curation of phenotypic characters extracted from sci-
entific publications. It is important to note the limitations of this curation process,
considering that it is very time-consuming since it is manually carried out by domain
experts.

2.3 Common Denominator
There is a wide variety of representation formats for phenotype description, adopted by
information systems and open standards, which represent differently the same informa-
tion. In this section, we analyze four of them – Xper2, SDD, Nexus and NeXML – looking
for a minimal common denominator, which is the foundation for our graph-based model,
to be used to link related information.

SDD, Nexus and NeXML are widely adopted open standards further detailed. Xper2

(http://lis-upmc.snv.jussieu.fr/lis/) is a management system adopted by the systema-
tist community, for the storing, editing and analyzing of phenotype descriptive data.
It focuses mainly on taxonomic descriptions, allowing creation, sharing and comparison
of identification keys [47, 48]. Xper2 was developed in the Laboratoire Informatique &
Systématique of the University Pierre et Marie Curie and this work is part of a bigger
project in collaboration with this lab. Therefore, Xper2 was adopted for our practical
experiments.

In order to illustrate our analysis, let us consider a practical case, in which a biologist
is building a phenotype description of monitor lizards (genus Varanus). The process starts
with the biologist collecting observations of lizards, organized as characters and character
states (C, CS). [41] defined character as “a feature of organisms that can be evaluated
as a variable with two or more mutually exclusive and ordered states”. The observations
involved the species Varanus albiguralis and Varanus brevicauda. The final result is the
character-by-taxon matrix illustrated in Figure 2.2.

In order to transform these observations to digital records and generalize them –
e.g., devising general characters and states observed in a genre of monitor lizards – the
biologist will use a tool like Xper2. Phenotypes descriptions can be stored in the Xper2

native format or can be exported to the SDD open format. The Structure Descriptive
Data (SDD) (http://wiki.tdwg.org/SDD) is a platform and application-independent XML-
based standard developed by the Biodiversity Information Standards (historic acronym:
TDWG) for recording and exchanging descriptions of biological and biodiversity data of
any type [26]. SDD is adopted by several other phenotype description tools – e.g., Lucid
Central (http://www.lucidcentral.org) and Linnaeus II (http://www.eti.uva.nl/).

We further introduce some key elements of the SDD format, which are recurrent in
the formats confronted in this section. A SDD description comprises, in a single file, a

2.3. Common Denominator 9

no
st

ri
ls

' f
or

m

tr
an

sv
er

sa
l

se
ct

io
n

of
 th

e
ta

il

nu
ch

al
 s

ca
le

s

Varanus albiguralis 2 1 2

Varanus brevicauda 1 2 1

Nostrils' form
1 – well round
2 – oval or split-like

Transversal section of the tail
1 – laterally compressed
2 – roundish

Nuchal scales
1 – same size than head scales
2 – bigger than head scales

Figure 2.2: Character-by-taxon matrix

domain schema and its instances. Figure 2.3 shows a diagram with a fragment of a SDD
file containing the description of a varanus lizard. A (C,CS) description in SDD has two
main blocks: (i) defines the characters involved and their possible states – Figure 2.3 top;
(ii) describes an Operational Taxonomic Unit (OTU) using the characters defined in (i)
– Figure 2.3 bottom. OTU is a biology term which refers to a given entity in sampling
level adopted to the study – e.g., a specimen, a gender etc.

CategoricalCharacter
id=“c6”

States StateDefinition
id=“s12”

“well round”

“Nostrils look like a quite per...”

Label

Detail

StateDefinition
id=“s13”

“oval or split-like”

“Nostrils are not perfectly rou...”

Label

Detail

“nostrils' form”

“Monitors' nostrils may have different forms...”

Label

Detail
Representation

Dataset

Datasets

“V. albiguralis”

“White-throated monitor. Distribution: Africa (West...”

Label

Detail
Representation

CodedDescription
id=“D1”

SummaryData
Categorical

ref=“c6”

State
ref=“s13”

Figure 2.3: Fragment of SDD Schema with Instances 1

<CategoricalCharacter>s and their <States> (shown in Figure 2.3 top) are primitives
to describe an OTU [26]. Each <CategoricalCharacter> has its <Representation> – com-

1Knowledge base: http://lis-upmc.snv.jussieu.fr/xper2/infosXper2Bases/liste-bases-recherche.php

10 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

prising a label and a description as plain texts – and a set of <StateDefinition> elements
with their possible states. <CategoricalCharacter> and <StateDefinition> elements de-
fined here will be referred throughout the XML document by their ids.

The <CodedDescription> (Figure 2.3 bottom) links the OTU being described to States
of each <CategoricalCharacter>. It has two essential items: (i) the OTU being described,
where its name and description are listed in natural language under <Representation>;
(ii) a set of character and values (<Categorical> and <State>), which address the char-
acters defined in the previous section through the ref attribute. It is possible and usual
to define multiple states for a character of a given OTU. A first integration, problem
observed here is that each character or OTU described does not have a global unique
identification among documents. Therefore, the description can only be used by the doc-
ument where it was declared and it is not possible to guarantee the equivalence of two or
more <CategoricalCharacters>.

In Figure 2.5 we expand our analysis to the Xper2 native format, Nexus and NeXML.
Our study addresses mainly morphological character descriptions. Figure 2.5 provides
simplified diagrams focusing on the elements to record descriptions, which will be con-
fronted here. Figure 2.4 presents the symbols adopted in the diagram. All the formats
adopt XML and the symbols represent the relations among elements and their respective
cardinality. Five types of elements, which are focus of our analysis, receive special sym-
bols: the Entity being described, which can be a taxon or a specimen; the Character
definition and its respective association with entities (Character instance); the State
definition and its respective association with entities (State instance).

one to one one to one
(zero or one)

one to many
(zero or more)

one to many
(one or more)

exclusive
option

structural
element

Relationship typesElement types

Character StateCharacter InstanceEntity State Instance

Structural element specializations

Figure 2.4: Symbols and semantic used in the diagrams

Nexus [31] is an extensively used file format developed for storage and exchange of phy-
logenetic data, including morphological and molecular characters, taxa distances, genetic
codes, phylogenetic trees etc. It was designed in 1987 and it is still used by many popular

2.3. Common Denominator 11

entry

in
de
x

Nexus

Characters

matrix

row

charLabels

stateLabels

character-‐number

charStateLabel

taxon-‐name

character-‐name

state-‐name

character-‐name

state-‐name

in
de
x

in
de
x

index

in
de
x

(a) Nexus

NeXML

OTUs

Format

matrix

row

OTU

cell

OTU

state

char

State

States

(b) NeXML

SDD

Representation

SummaryData

Representation

States

CodedDescription

State

Categorical

CategoricalCharacter

StateDe7inition

(c) SDD

Variables

name

Individuals

name

Xper2

Individual

description_element

mode

Variable

description_list

(d) Xper2

Figure 2.5: Formats for representing phylogenetic data

software as Xper2 (http://lis-upmc.snv.jussieu.fr/lis/), Mesquite (http://mesquiteproject.
org/), MrBayes (http://mrbayes.sourceforge.net/) and data repositories, like TreeBASE
(http://treebase.org/) and Dryad (http://datadryad.org/). Nexus gathers together (C,CS)
based descriptions and related trees [49].

NeXML (http://www.nexml.org) [49] is a standard inspired by the Nexus. It supports
and extends Nexus functionalities and addresses some Nexus limitations – e.g., connects

12 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

objects with ontology concepts, supports citations and annotations [49]. In order to
accomplish full compatibility and interoperability among different environments, NeXML
defines a formalized XSD grammar and enables semantic annotations of any element in a
NeXML document, which goes towards to a “Minimum Information About a Phylogenetic
Analysis” (MIAPA) standard.

These comparative diagrams show that even if the structures are arranged differently,
they address the same key elements. All formats organize data in accordance with the
(C,CS) data model that, in practice, is an entity-attribute-value (EAV) model, in which
entities are OTUs, attributes are characters and values are character-states [49]. Nexus
and NeXML formats define a matrix, in which OTUs are listed in rows, characters are
columns and the cells contain a numeric code for a specific character-state (see Figure 2.2).
Although Xper2 and SDD do not define a matrix, both formats have a similar structure
to describe OTUs with their (C, CS) records.

2.4 From XML Structures to Graphs
The next step in our Three Tier Method is designing a graph model. In a previous work [2],
we have compared several approaches to capture latent relations+semantics among tags
produced collaboratively. Graph models to represent and analyze data were a common
denominator. The role of the graph is not to reflect all details of the original model. The
central challenge is how to abstract key elements, for which we are looking for potential
relations to be discovered. It is a movement from the latent semantics to an explicit
semantics expressed as links.

On one hand, we devised in the previous section the common denominator we are
looking for: OTUs, character and character states. On the other hand, a second important
ingredient is devising what is our target in ontologies. As mentioned in Section 2.2, a
predominant ontology model for phenotype descriptions is the Entity-Quality (EQ) [6].
An Entity refers to the “part” of the OTU being described, which is related to one or
more Qualities. In a comparison with the (C, CS) approach, a Character comprises an
Entity plus the Quality involved in the description in a single textual sentence. A State is a
complementary part of the Quality. Even though it is not a trivial task to split Characters
into their components of Entity and Quality, a first step will be linking disperse elements
referring to the same semantic concept.

Departing from the key elements identified in the previous section, we can devise the
following linking discovery challenges:

• Which OTUs in the graph refer to the same real world OTU (link OTU-OTU)?

• Which characters can be applied to each OTU (link OTU-character)?

2.4. From XML Structures to Graphs 13

• Which states for each character can be observed in each OTU (link OTU-character-
state)? Conversely, which OTUs have a given character+state?

The answer to these questions will enable to integrate, summarize and compare data
concerning each OTU and each character. Therefore, it becomes possible to answer queries
like:

• What are the possible colors of a Varanus tongue?

• Which animals present an oval nostrils form?

The discovery process is carried by graph transformations. As graphs are crucial for
our modeling approach, our method was built over graph databases. These databases
reduce the gap between how data is modeled (as graphs) and how it is stored. It is
capable of representing data structures with high abidance. Compared with relational
databases, graph databases do not require join operations because it is done implicitly
traversing the graph from node to node. Graph databases are less schema-dependent
and for this reason, they can scale more easily in size and complexity as the application
evolves.

The questions stated before were the basis to conceive the model presented in Figure
2.6. We adopted the property graph model, in which nodes and relationships can maintain
extra metadata as a set of key/value pairs. Moreover, relationships are typed, enabling to
create multi-relational networks with heterogeneous sets of edges. Different from single-
relational networks, in which edges are of the same type, multi-relational networks are
more appropriate to represent complex domain models, due the variety of relationship
types in the same graph [45].

In our graph model, OTUs and character-states are nodes connected by characters
(edges). Therefore the statement “V. albiguralis has a well round tail shape” becomes V.
albiguralis (node) → tail shape (edge) → well round (node).

OTU

Type OTU

Label

Detail

Character-State

Type State

Label

Detail

Type Character

Detail

Character

Figure 2.6: Property graph model to represents phenotype descriptions.

14 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

2.5 Practical Experiment of Unifying Phenotypes

We have implemented an automatic process to ingest SDD files into a graph database, in
order to show the linking possibilities raised by our model. In our experiments, we use
the Neo4j (http://www.neo4j.org/), an open-source graph database. Our data integration
processing flow is divided into the main stages: preprocessing, data ingestion, data linkage.

One of the problems faced in bioinformatics is related to the identification of objects
within and across repositories [38]. More precisely, an object may refer to a taxon, gene,
anatomical feature, phenotypic description, geographical location etc. Uniquely identify-
ing those objects is undoubtedly a key point for the success of our proposed solution.

In order to address this issue, some organizations – e.g., Universal Biological In-
dexer and Organizer (uBio), Integrated Taxonomic Information System (ITIS), Cata-
logue of Life (CoL), The International Plant Names Index (IPNI), National Center for
Biotechnology Information (NCBI) etc. – incorporated into their projects the Life Sci-
ence Identifiers (LSIDs), which was proposed by the Object Management Group (OMG)
(http://www.omg.org/). LSID is a persistent, location-independent resource identifier,
whose purpose is to uniquely identify biological resources [16]. The persistent property
refers to the fact that LSID identifiers are unique, can be assigned to only one object
forever and they never expire. The location-independent property specifies that each au-
thority locally creates LSIDs and they are the responsible to guaranteeing the uniqueness
of LSIDs.

We applied LSIDs to unify OTUs in the graph referring to the same real world ob-
ject. In order to find a valid LSID, we adopted the Global Names Resolver (GNR) web
service (http://resolver.globalnames.org/) that executes exact or fuzzy matching against
canonical forms of scientific names in 170 distinct data sources. The Canonical form (cf)
is the simplest, most complete and unambiguous form of a name. The Canonical form of
scientific names consists of the genus and species – when applied – with no authorship,
rank, nomenclatural annotation or subgenus.

Our system used three of the six types of matching offered by the GNR resolver: (i)
exact matching; (ii) exact matching of canonical forms – this process reduce a given name
to its canonical form and checks it with an exact match; (iii) fuzzy matching of canonical
forms – uses a modified version of the TaxaMatch algorithm [43] and it intends to work
around misspellings errors. It does a fuzzy match of the canonical form of a given name –
even with mistakes – against spellings considered correct. The GNR resolver reports the
matching quality (“confidence score”) for each match.

The matching module of the system is still a work in progress, but we already have ob-
tained some relevant results to show the viability of our approach. From the LIS knowledge
base we collected 7 distinct morphological descriptions: genus Varanus; species Varanus

2.5. Practical Experiment of Unifying Phenotypes 15

gouldii, Varanus timorensis, Varanus auffenbergi and Varanus scalaris; species groups
Varanus indicus, Varanus prasinus, Varanus salvator ; and Autralian spiny-tailed monitor
lizards. Through Xper2 those morphological descriptions were exported to the SDD for-
mat and imported into the graph database, with no preprocessing. Figure 2.7(a) shows
an overview of the resulting graph without labels. We can note the disconnectedness of
the graph (7-partite graph). On the other hand, Figure 2.7(b) shows the same knowledge
after employing the LSID unification. The graphs became connected. Before applying
the LSID unification the graph had 74 distinct taxonomic units (TUs). After performing
the LSID unification its total reduced to 44 TUs, i.e., 30 taxonomic units (40%) were
recurring and were integrated in a single node.

(a) Graph 7-partite (b) Connected graph

Figure 2.7: Varanus knowledge base

The next step is to link equivalent characters of the same OTU, enabling integration
of states of the same character. In the present stage of this research we apply a simple
matching algorithm. One example of our preliminary results is presented in the diagram of
Figure 2.8. As can be seen, our algorithm was able to unify all “nuchal scales” characters,
by defining the same type to the edges. Moreover, we unified and congregated the possible
states observed for this character across different description files.

16 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

Varanus prasinus

smooth, unkeeled

granular to slightly keeled

triangular keeled, hull-shaped

strongly keeled

same size than head scales

bigger than head scales

Varanus beccarii

Varanus bogerti

Varanus komodoensis

nuchal scales

nuchal scales

nuchal scales

nuchal scales

nuchal scales

nuchal scales

nuchal scales

Prasinus.sdd

Varanus.sdd

Figure 2.8: Graph Diagram

2.6 Conclusion

Several initiatives propose to relate phenotype descriptions with ontologies to enable a
semantic integration. The challenge is how to expand and revise the ontology while new
descriptions were created. Tools which annotate descriptions with ontologies address
them as an external artifact crafted apart, disregarding the synergy between building
an ontology and using it. [Shirky 2005] emphasizes the importance of the semantics
organically built by a community, where a binary categorization approach – in which a
concept A “is” or “is not” part of a category B – to a probabilistic approach – in which
a percentage of people relates A to B. This work contributes in this direction. Inspired
by previous work, which explores latent semantics in folksonomies, this work analyzes
standards to describe phenotypes to find a common denominator, which is the bases to
link descriptions.

The main contribution of this work is to create the basis to exploit the latent seman-
tics in the descriptions. The viability and the potential of our approach were tested by
experiments. These experiments are the first steps to exploit a bigger latent semantics
scenario. Moreover, having the capability of integrating knowledge around taxonomic
units will enable, for instance, evolutionary biologists to generate new research questions,
gain predictive insight or confront evolutionary hypotheses. More complete answers might
be provided as new data sources are integrated.

2.6. Conclusion 17

Our representation in a graph database is aligned with the RDF [32] graph-based
representation, which will be the next step to achieve the third layer. The challenge will
be to map labels of character/character-states in RDF properties/values. The unification
of characters and states, as shown on this preliminary work, is a first and high relevant
step for this mapping. Since several ontologies related to phenotype descriptions are in
OWL, the relations discovered in our graph can subsidize a better matching of labels
and concepts in OWL ontologies by confronting relations. For example, to enhance the
match of a character label (in the graph database) with an OWL property, it is possible
to consider the states allowed by the character, confronting them with the property range
(values allowed by the property).

There are several possible ways to extend this work. One possible way is to incor-
porate morphological descriptions stored in other knowledge bases, e.g., MorphoBank
(http://morphobank.org/) or Dryad (http://datadryad.org/). Another direction is to in-
vestigate correlations between State nodes and ontology terms.

Chapter 3

Linked biology — from phenotypes
towards phylogenetic trees

3.1 Introduction
Traditionally, evolutionary biologists organize and classify the extant and extinct organ-
isms around the classical Tree of Life model. This model is an abstract form of repre-
sentation of hypotheses about evolutionary relationships where all taxa (i.e. groups of
organisms) are related according to the characteristics they share. This representation is
called a phylogenetic tree. Besides relationships among taxa, a phylogenetic tree provides
hypotheses about the homology (i.e. sameness) of entities (organs, anatomical features
etc.). In this model, taxa are the leaves of the tree and the internal nodes are common
ancestors, or hypothetical taxa from which the leaves are differentiated. For instance,
given the taxa Human, Horse and Frog, a tree can indicate that Human and Horse are
more closely related than they are with Frog. The node grouping Human and Horse is a
taxon called Mammalia. The characteristics shared by all mammals (i.e. taxa connected
to the Mammalia node) are the presence of hairs and of mammary glands, among others.

Biologists usually work in their own domain of expertise. This domain is centered on
the studied taxonomic group and also depends on the source of data: some taxonomists use
molecular data, others use morphological data, or behavioural, ecological, physiological
data etc. Each phylogenetic tree that is published is a particular view.

In spite of several initiatives to publish open data (e.g., Scratchpads, Dryad, EU-
BrazilOpenBio and TreeBASE) and to combine phylogenetic trees (e.g., Open Tree of
Life), there is still a high amount of latent knowledge hidden in potentially linkable data,
which are fragmented in several heterogeneous datasources. In this paper, we focus on
the interconnection of phylogenetic information with the observations and descriptions
of living (extant and extinct) beings, aiming at comparing this phylogenetic information

19

20 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

(such as homology hypotheses, characters and trees), related to its source, that is namely
the observations and descriptions of taxa.

This heterogeneous multitude of resources can be seen as a dataspace [21], where
pieces of data maintain unexploited potential links. This work addresses this problem in
a specific scenario. We gather together in a graph database data coming from distinct
sources, containing phenotype descriptions and phylogenetic trees. This graph subsidizes
links discovery, aimed at supporting biologists in the analysis and comparison of phylo-
genetic information (such as homology hypotheses, characters and trees) of hypothetical
phylogenetic trees. The graph model was designed to afford publication on the Web in
a Linked Data approach. Moreover, in a previous work [2], we showed that the latent
semantics of data resulting from an organic work, collectively produced by a community
on the Web, can be exploited to expand and review ontologies. Linking data in graphs is
a first step towards ontologies.

This paper is organized as follows: Section 3.2 summarizes the foundations and related
work; Section 3.3 presents our three layer method and the architecture of our system;
Section 3.4 presents our graph-based model; Section 3.5 shows a practical implementation
and our approach to discover links based on similarity; Section 3.6 presents concluding
remarks.

3.2 Foundations and Related Work

Several initiatives aim at facilitating the interchange of scientific data. Dryad (http://
datadryad.org/) is an online repository to share files associated with published research
papers. In the biodiversity domain, the EDIT Platform for Cybertaxonomy (http://wp5.e-
taxonomy.eu/) and the Scratchpads (http://scratchpads.eu/) are two types of platform to
store and publish more or less structured data. The EUBrazilOpenBio project (http://www.
eubrazilopenbio.eu/) is developing “an open-access platform from the federation and in-
tegration of existing European and Brazilian infrastructures and resources” for the biodi-
versity scientific community. The BioVel project is a Biodiversity Virtual e-Laboratory. It
stores both data and workflows, allowing to process data from cross-disciplinary sources.
Phylogenetic trees and related data (e.g., data matrices) published in research papers can
be gathered and stored in the online repository TreeBASE (http://treebase.org/). The
Open Tree of Life project (http://opentreeoflife.org/), still under development, intends to
produce the first-draft of a complete tree that will combine existing smaller trees with
phylogenetic and taxonomic knowledge of every taxa [50].

3.2. Foundations and Related Work 21

3.2.1 Building Phylogenetic Trees

In order to build taxonomic classifications (such as phylogenetic trees), biologists gather
information about taxa of their interest and structure this information upon the character
/ character-state (C,CS) formalism. Under this formalism, a character is a statement
about an entity (e.g. an organ, an anatomical feature, a part of the organism etc.). This
entity is described under a particular property that can take multiple values. For instance,
the statement “shape of the leaf” is a character in which the entity is the “leaf” and the
property is the “shape”. The values (i.e. character-states) that the shape can take might
be, for example, “elongated”, “bilobed”, “trilobed” among others. This information is
usually organized in data matrices [52], in which operational taxonomic units (OTUs)
are listed in rows, characters are columns and the cells contain a numeric code for a
specific character-state.

Some biologists use unordered character-states to apply phylogenetic analysis, whereas
others prefer to relate the character-states prior to the analysis. In the latter case, the
character-states can be related following some punctual order, or hierarchy. These re-
lationships represent hypotheses about homology of the described entities [10, 35]. For
instance, “trilobed” and “bilobed” leaves can be hypothesized to be homologous as “lobed
leaves”, i.e. they are the same despite their variety of form. In other words, “trilobed”
and “bilobed” leaves are more closely related than they are to “elongated” leaves. The
relationship among entities (here, leaves) can be extended among taxa: all taxa bearing
lobed leaves (either “trilobed” or “bilobed”) are more closely related than they are to taxa
with other leaf shapes such as elongated leaves. Each character defined in the context of
a phylogenetic study relies on a distinct homology hypothesis. Different hypotheses can
yield conflictual relationships among taxa. In the context of morpho-anatomical studies,
phylogenetic methods aim to minimize this conflict based on the parsimony criterion. The
method of maximum parsimony can be applied to unordered and ordered character-states
[51, 46, 10]. For hierarchical characters, the method based on three-item statements (i.e.
elementary hierarchies including three taxa) is applied. This is called three-item analysis
(3ia) [36]. Other methods are available – such as Bayesian or Maximum likelihood anal-
yses (based on probabilities) – and can be applied to molecular characters. The output
of a phylogenetic analysis is one or several phylogenetic tree(s).

3.2.2 Standards for Phenotype Description

There is a wide variety of representation formats for phenotype description adopted by in-
formation systems and open standards, which represent differently the same information.
In [34] we analyze four of them – Xper2, SDD, Nexus and NeXML – looking for a com-
mon denominator which is the foundation for our graph-based model. SDD, Nexus and

22 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

NeXML are widely adopted open standards. Xper2 (http://lis-upmc.snv.jussieu.fr/lis/)
is a management system adopted by the systematist community, for the storing, editing
and analyzing of phenotype descriptive data. It focuses mainly on taxonomic descrip-
tions, allowing creation, sharing and comparison of identification keys [47, 48]. Xper2

was developed in the Laboratoire Informatique & Systématique of the University Pierre
et Marie Curie and this work is part of a bigger project in collaboration with this lab.
Therefore, Xper2 was adopted for our practical implementation.

In order to transform phenotype observations to digital records and generalize them
– e.g., devising general characters and states observed in a genus of monitor lizards – the
biologist may use a tool as Xper2. Phenotype descriptions can be stored in the Xper2

native format or can be exported to the SDD open format. The Structured Descriptive
Data (SDD) (http://wiki.tdwg.org/SDD) is a platform and application-independent XML-
based standard developed by the Biodiversity Information Standards (historic acronym:
TDWG) for recording and exchanging descriptions of biological and biodiversity data of
any type [26]. SDD is adopted by several other phenotype description tools – e.g., Lucid
Central (http://www.lucidcentral.org) and Linnaeus II (http://www.eti.uva.nl/).

We further introduce some key elements of the SDD format, which are recurrent in the
formats confronted in [34]. A SDD description comprises, in a single file, a domain schema
and its instances. Figure 3.1 shows a diagram with a fragment of a SDD file containing
the description of a varanus lizard. A (C,CS) description in SDD has two main blocks:
(i) defines the characters involved and their possible states – Figure 3.1 top; (ii) describes
an Operational Taxonomic Unit (OTU) using the characters defined in (i) – Figure 3.1
bottom. OTU is a biology term which refers to a given taxon at the rank adopted to the
study – e.g., a specimen, a species, a genus etc.

<CategoricalCharacter>s and their <States> (shown in Figure 3.1 top) are primi-
tives to describe an OTU [26]. Each <CategoricalCharacter> has its <Representation>

– comprising a label and a description as plain texts – and a set of <StateDefinition>

elements with their possible states. <CategoricalCharacter> and <StateDefinition> el-
ements defined here will be referred throughout the XML document by their ids. The
<CodedDescription> (Figure 3.1 bottom) links the described OTU to States of each
<CategoricalCharacter>. It has two essential items: (i) the described OTU, where its
name and description are listed in natural language under <Representation>; (ii) a set of
character and values (<Categorical> and <State>), which address the characters defined
in the previous section through the ref attribute. It is possible and usual to attribute mul-
tiple character-states for a given OTU (i.e. in case of polymorphism). A first integration,
problem observed here is that each character or OTU described does not have a global
unique identification among documents. Therefore, the description can only be used by
the document where it was declared and it is not possible to guarantee the equivalence of

3.2. Foundations and Related Work 23

CategoricalCharacter
id=“c6”

States StateDefinition
id=“s12”

“well round”

“Nostrils look like a ...”

Label

Detail

StateDefinition
id=“s13”

“oval or split-like”

“Nostrils are not perf...”

Label

Detail

“nostrils' form”

“Monitors' nostrils may have different forms...”

Label

Detail
Representation

Dataset

Datasets

“V. albiguralis”

“White-throated monitor. Distribution: Africa...”

Label

Detail
Representation

CodedDescription
id=“D1”

SummaryData
Categorical

ref=“c6”

State
ref=“s13”

Figure 3.1: Fragment of SDD Schema with Instances

two or more <CategoricalCharacters>.
At this stage it is important to define which SDD primitive would better correspond

to the character / character-state (C,CS) formalism. Pimentcl and Riggins [41] defined
character as “a feature of organisms that can be evaluated as a variable with two or more
mutually exclusive and ordered states”. The SDD States primitive, as shown in Figure
3.1, fits in the character definition and the SDD StateDefinition primitive fits in the
character-state.

3.2.3 Phylogenetic Trees and the 3ia Method

The present paper also draws upon phylogenetic trees generated from LisBeth (http://lis-
upmc.snv.jussieu.fr/lis/). LisBeth is a cladistic software for phylogenetics and biogeog-
raphy [5] that implements the three-item analysis (3ia) method of phylogenetic inference
[37], mentioned in the previous subsection. It minimizes the conflictual relationships
within a set of characters, or maximizes the compatible relationships so as to reconstruct
one or several optimal tree(s). The LisBeth model for the representation of characters
is a hierarchy: characters are represented as rooted trees. Grand et al. [25] compared
hierarchical characters with ordered and unordered character-states and showed, with
simulated data, that the hierarchical treatment of characters results in the greatest re-
solving power (i.e. amount of correct relationships within the phylogenetic tree). Their
results did not show, for most of them, statistically significant differences considering the

24 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

artefactual resolution rate (i.e. amount of incorrect relationships).
Williams and Ebach [52] pointed out that the data matrix have limitations to represent

the relationship among character-states accordingly. Williams and Ebach [52] mentioned
the BPA method (Brooks Parsimony Analysis [11, 12, 13]) that promotes a different
structurisation of data within a matrix, in order to represent branchings. Each column
of a BPA matrix is a node, each row is a taxon. The values entered in the cell are the
absence/presence of a taxon at a given node. However, Ebach et al. [20] showed that
incorrect relationships can be reconstructed from a BPA matrix that is given as input
for phylogenetic programs. As a consequence, a BPA matrix is not optimal to represent
relationships among character-states. Other researchers order their character-states and
represent the relationship among character-states as unrooted trees or as cyclic graphs
using step matrices. In every case, the character-states are entered in a matrix. The
three-item analysis (3ia) is the only phylogenetic method that does not rely on a matrix
representation. Characters are represented directly as rooted trees, i.e. the relationship
among character-states is the inclusion. This representation presents the advantage to
distinguish missing data from inapplicable data [53], since the taxa with missing data
are truly absent from the characters. This distinction is not implemented in phylogenetic
programs that rely on matrices, since every matrix cell has to be filled and programs do
not distinguish between the symbols “?” (missing) and “NA” (non applicable). Zaragüeta
et al. [14] suggested to enhance a character matrix with an additional row, providing the
hierarchy of states for every character column. Such enhanced matrices can be imported
in the 3ia program LisBeth.

The present work follows the same approach proposed in [52] and forsake the use of
data matrices, since the hierarchical representation has proven to be relevant [25, 53].
As we will detail in Section 3.4, this hierarchical representation is not only aligned with
our unifying graph model, but also takes advantage of the richer relations compared to
matrices.

3.3 Three Layer Method and System Architecture
Figure 3.2 illustrates our three layer method, which is the major goal of this project. In
this method, a graph database mediates the evolvement process from fragmentary data
sources to accomplish full integration descriptions as ontologies. Our approach remodels
sources from the dataspace to a graph representation, in which the data can be unified and
linked, subsidizing the discovery of latent knowledge, which raises from the relations. The
graph model was designed to be published on the Web in a Linked Data approach. Graph
transformations will be applied for the transition from representations in the dataspace
to a more formalized representation through ontologies. This work focuses in the graph

3.4. Unified Graph data model 25

representation as an intermediary step towards ontologies and its application to support
an analytical tool to compare data across studies.

Ontology

Dataspace

Linked Graph

Figure 3.2: Three layer method diagram

Figure 3.3 summarizes the general architecture of our system. From a set of hetero-
geneous data sources (1), we ingest and transform data in a graph (2) stored in a graph
database (3). In this stage of the research, we are interested in phenotype descriptions and
phylogenetic trees, but the architecture was designed to afford smooth future extensions
to other kinds of biological data. In step (3) each data source will result in a distinct
graph. We apply LSIDs to unify Operational Taxonomic Units (OTUs) in the graph
referring to the same real world object (4). LSID is a persistent, location-independent
resource identifier, whose purpose is to uniquely identify biological resources [16]. In
order to find a valid LSID, we adopted the Global Names Resolver (GNR) web service
(http://resolver.globalnames.org/) that executes exact or fuzzy matching against canon-
ical forms of scientific names in 170 distinct data sources. In step (4), we are developing
algorithms to discover relations and find similarities among nodes in the graph, which are
made explicit by adding new nodes in the graph. This step is detailed in Section 3.5. The
resulting graph can be locally analyzed by a researcher; can be published on the Web in
a Linked Data approach to be remotely exploited (6); and will subsidize the expansion
and enrichment of ontologies in the future (7).

3.4 Unified Graph data model
In this section we will present an overview of our proposed graph model. A significant
factor to consider is determinig which graph data model should be used. Angles [3]
pointed out that a graph data model provides an abstraction layer, which is more modeling

26 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

Figure 3.3: General System Architecture.

intuitive, as well as its query languages and algorithms to store, retrieve and manipulate
data. Real world data can usually be represented in terms of nodes and edges only.
The ease of modeling has a collateral effect on the interpretation, since sometimes it
will not be easy to visualize and understand data in such a simple model [4]. From the
numerous graph data models proposed – see [3, 4, 44] for more details – the property graph
model was adopted in the present work. In a property graph, nodes and relationships can
maintain extra metadata as a set of key/value pairs. Moreover, relationships are typed,
enabling to create multi-relational networks with heterogeneous sets of edges. Different
from single-relational networks, in which edges are of the same type, multi-relational
networks are more appropriate to represent complex domain models, due to the variety

3.5. Link Discovery 27

of relationship types in the same graph [45]. For example: relationships may either
represent membership in a social group (family membership) or professional relationships
(employer-worker relationship) simultaneously in the same network.

Figure 3.4 shows our graph data model. The tables below the nodes/edges represent
their types and metadata. We mapped the SDD format to the graph model as follows:
OTUs are entities (e.g., “Varanus prasinus”) and, therefore, were mapped to nodes. A
future target of this project is to enrich our model by associating identifiable entities
to ontology concepts. One may consider to map Characters and Characters-States to
key/value pairs, to be related to OTU nodes. However, we decided to map Characters
to nodes, in order to unify in the same node equivalent characters observed in several
OTUs and, in a future work, to relate the unified characters with ontologies. Finally, the
Character-state makes a semantic bridge (relationship) between OTUs and Characters.
Thus, a statement like “Varanus gouldi ventral pattern is randomly scattered dark spots”
is represented in our model as Varanus gouldi (node) → randomly scattered dark spots
(edge) → ventral pattern (node). This part of the model, is a common denominator of
phenotype descriptions, conceived in our previous work [34].

Our model comprises, in a single place, phenotype descriptions and phylogenetic trees.
For this reason a new node called HTU (Hypothetical Taxonomic Unit) is present in
it. HTUs are internal nodes in phylogenetic trees that represent an inferred ancestral
organism. HTUs are hypothetical common ancestors of OTU nodes and, therefore, can
only be connected to themselves (HTU → HTU) or to OTUs (HTU → OTU). For the
sake of modeling simplicity, only the TreeEdge relationship is allowed between HTU →
HTU and HTU → OTU.

3.5 Link Discovery
In order to illustrate the possibilities raised by the unification and linking of data of
phenotype descriptions with phylogenetic trees, we present a practical implementation
executed in our system, which involves the linking discovery among characters. Most of
existing literature related to morphological character description is expressed in textual
form, which are sometimes not consistent among authors. In general, researchers tend to
reuse characters already published in the literature, in large part to make their descriptions
comparable with other taxa. However, textual descriptions convey little semantics of the
character, which prevents the correct understanding of authors’ meaning. The analysis
of graphs combining phenotype and phylogenetic data enable us to discover links among
characters and their respective states even when they are part of descriptions developed
independently.

In order to illustrate our analysis, consider a practical scenario – illustrated in Figure

28 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

 T

ree
Edge

OTU

Type OTU

Label

Detail

Character

Type Character

Label

Detail

HTU

Type HTU Type TreeEdge

Character-State

Type Character-State

Label

Detail

Figure 3.4: Property Graph Model

3.5 as Scenario 1 – where two authors are working in different projects, but both are
describing extinct ferns. One author describes Pseudosporochnus in terms of “Extent
of the planated parts within the LBS” (Lateral Branching System, see [17]) (character)
and coded it as “restricted to the extremities” (character-state). In a different study
another author is analyzing a Pseudosporochnus fossil as well, and describes it in terms of
“Planation”(character) intending to mean “Extent of the planated parts within the LBS”
and also coded it as “restricted to the extremities” (character-state). In this scenario, two
characters with different labels have the same meaning. The opposite scenario – illustrated
in Figure 3.5 as Scenario 2 – might happen as well, in which two or more characters with
the same label (character) have different meanings. For example, one author uses the
character “Planation of vegetative leaves” and consider that Pseudosporochnus fossil has
no leaf and coded it as “inapplicable” (character-state). Another author uses the same
character “Planation of vegetative leaves” meaning “Extent of the planated parts within
the LBS” and consider that Pseudosporochnus planation is “restricted to the extremities”.

From the integration point-of-view, a machine will interpret the descriptions of Sce-
nario 1 as distinct, even though the two characters (that are different statements) have
the same meaning. In Scenario 2, two textual characters that are identical, and could be
interpreted in a string matching as equivalent, do not have the same meaning. Figure 3.5
shows the scenario presented above modeled in our proposed graph model.

3.5. Link Discovery 29

Scenario 1

Extent of the planated
parts within the LBS Pseudosporochnus restricted to the extremities

Author A

Planation Pseudosporochnus restricted to the extremities

Author B

Scenario 2

Planation of
vegetative leaves Pseudosporochnus inapplicable

Author C

Planation of
vegetative leaves Pseudosporochnus restricted to the extremities

Author D

Figure 3.5: Practical Scenario

3.5.1 Similarity Index
In this respect, we are proposing a heuristic similarity measure that computes the simi-
larity degree between two morphological character descriptions, which will represent how
closely related they are. The similarity index (Si) is based on 2 weighted aspects. 25%
of the index is calculated based on the taxa being described, i.e. it analyzes if two given
characters (C1 and C2) describe the same taxa. The other 75% are based on the mean-
ing of the character-states. This part checks if the state labels being used are the same.
This heuristic is still a work in progress. The weights assigned to parts of the index are
configurable and their values were calibrated based on observations.

Let G = (V (G), E(G)) be a directed graph with vertex-set V (G) = {v1, ..., vn} and
edge-set E(G) = {e1, ..., em} ⊂ {(vi, vj)|vi, vj ∈ V (G)}. Let C1, C2 ∈ V (G) be two
distinct vertices of G. We define the following sets:

NC1 = {vi ∈ V (G) | (vi, C1) ∈ E(G)} (3.1)
NC2 = {vi ∈ V (G) | (vi, C2) ∈ E(G)} (3.2)

S1 = |NC1 ∩NC2|
max{|NC1|, |NC2 |}

(3.3)

30 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

Let f : E(G) → Υ be a labeling function, where Υ is a set of labels, and f(e) ∈ Υ is
the label of edge e ∈ E(G). We define the following sets:

LC1 = {e | e = f((vi, C1)) ∈ Υ and (vi, C1) ∈ E(G) and vi ∈ V (G)} (3.4)
LC2 = {e | e = f((vi, C2)) ∈ Υ and (vi, C2) ∈ E(G) and vi ∈ V (G)} (3.5)

S2 = |LC1 ∩ LC2|
max{|LC1|, |LC2|}

(3.6)

Similarity Index(Si) = 0.25 ∗ S1 + 0.75 ∗ S2 (3.7)

S1 defines a rate of common OTU vertexes with edges for two given characters C1

and C2. The S1 result lies between 0 (no common OTUs) and 1 (all OTUs are common).
NC1 is the subset of incoming adjacent vertexes of C1 and NC2 is the subset of incoming
adjacent vertexes of C2. Incoming adjacent vertexes of both C1 and C2 are always OTU
vertexes, as shown in Figure 3.4. S2 defines a rate of common labels of the incoming
edges (character-states) for the characters C1 and C2. The S2 result also lies between 0
(no common character-states) and 1 (all character states are common). LC1 and LC2 are
the subset of incoming adjacent edge labels (character-states) of C1 and C2 respectively.

It is important to note that the character labels of C1 and C2 are not being taken
into account in the Si formula. This intends to avoid weighting in favor of two identical
textual characters that do not have the same meaning, and to avoid weighting against two
textual characters that are identical but do not have the same meaning. In practice, this
will make the solution independent of the label and applicable for both presented scenarios
(same label but different meanings and different labels and same meaning). Additionally,
the symmetric property of equality is satisfied.

3.5.2 Practical Implementation of the Similarity Measure
In order to present our Similarity Index (Si) working on top of the proposed graph data
model (see Section 3.4), consider two studies of distinct authors. Author 1 worked with
the fossils: Denglongia, Equisetum, Pseudosporochnus, Archeopteris, Ibyka, Iridopteris,
Ophioglossum and Polypodium, describing them in terms of “Cauline cladotaxy”, “Pro-
toxylem position within the cauline stele”, “Development of the LBS”, “Organotaxy of the
LBS”, “Presence of planated parts within the LBS”, “Extent of the planation”, “Xylem
configuration in the rachis”, “Xylem configuration in the leaflets” and “Branchiness”.
Author 2 described three fossils also analyzed by author 1: Equisetum, Ophioglossum
and Polypodium; plus described the fossils Marattia, Botryopteris, Psalixochlaena and
Cyathea. Author 2 described the fossils adopting four terms for characters equivalent to
author 1: “Cauline cladotaxy”, “Protoxylem position within the cauline stele”, “Xylem

3.6. Conclusion 31

configuration in the rachis”, “Xylem configuration in the leaflets” ; plus other character
terms: “Development of the foliar organ”, “Phyllotaxy”, “Planation” and “Branchiness of
the leaf”.

All of these data were managed in the Xper2 tool, first exported to the SDD format
and then imported to the graph. A software script was designed to calculate the Si for
all characters taken two by two. Figure 3.6 shows a screenshot of a visual tool still under
development that creates an edge between each 2 characters with Si greater or equal than
0.5. This is a simple but powerful visualization tool to present the similarity measure that
could play a pivotal role in supporting biologists to understand and detect correlation be-
tween characters. Indeed, Figure 3.6 shows a graph clique among the characters “Cauline
cladotaxy”, “Organotaxy of the LBS” and “Phyllotaxy”. All three characters refer to the
insertion mode of an organ on a bearer structure: “Cauline cladotaxy”means the insertion
mode of the stem ramifications on the main stem, “Organotaxy of the LBS” means the
insertion mode of the LBS on the main axis, and “Phyllotaxy” means the insertion mode
of the leaf on the main stem. All three characters share the same set of character-states,
and even if they do not refer to the same entities (i.e. stem versus LBS versus leaf) and
cannot be substituted for one another, they share a part of their meaning. Knowing that
they are similar to some extent can encourage the biologist to suggest identical relation-
ships among character-states for the foliar (or LBS) character and the cauline character,
for the sake of consistency.

3.6 Conclusion
Linking together descriptive data around the dynamic Tree of Life model is a complex
task because, although there are a lot of data available, these data are represented in
many standards not often interconnectable. In this respect, the present paper explores
this problem linking and coupling phylogenetic trees and phenotype descriptions through
a graph database model. Our unified model enabled us to discover and make explicit
the potential semantics raised by linking previously unconnected information. Our repre-
sentation in a graph database is aligned with a RDF graph-based representation, which
will be the next step to achieve the third layer. The challenge will be to map labels of
character/character-states in RDF properties/values. The unification of characters and
states, as shown on this preliminary work, is a first and high relevant step for this map-
ping. Since several ontologies related to phenotype descriptions are in OWL, the relations
discovered in our graph can subsidize a better matching of labels and concepts in OWL
ontologies by confronting relations. For example, to enhance the match of a character
label (in the graph database) with an OWL property (a character being an OWL prop-
erty), it is possible to consider the states allowed by the character, confronting them with

32 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

C
a
u
lin

e
 c

la
d
o
ta

xy

Pr
ot

ox
yle

m
 p

os
iti

on
 w

ith
in

 th
e

ca
ulin

e
st

el
e

Organotaxy of the LBS

Xylem configuration in the leaflets

Planation

D
e
v
e
lo

p
m

e
n
t

o
f

th
e
 f

o
lia

r
o
rg

a
n

Ph
yl

lo
ta

xy

Xylem configuration in the rachis

Extent of the planation

Presence of planated parts within the LBS

D
e
ve

lo
p
m

e
n
t o

f th
e
 LB

S

Figure 3.6: Practical Implementation

the property range (values allowed by the property).
The viability and the potential of our approach were tested by practical implementa-

tions in which 2 distinct author descriptions of fossils were inserted into a graph database
and analyzed by the similarity measure method proposed in this paper. A visual tool
to visualize how close related any two given characters are is being developed and some
preliminary results are presented. This tool has the potential to demonstrate how the
same characters recur in different studies and might support biologists to understand and
detect correlation between characters. Having the capability of integrating knowledge
around taxonomic units will enable, for instance, evolutionary biologists to generate new
research questions, gain predictive insight or confront evolutionary hypotheses. Further
developments will take into account the similarity among hierarchies of states for the
character comparisons.

Chapter 4

Linked biology technical aspects –
linking phenotypes and phylogenetic
trees

4.1 Introduction
In 1859 Charles Darwin published On the Origin of Species which is considered the foun-
dation of evolutionary biology. In his book, Darwin set forth the theory of evolution and
natural selection. It argues that all life is related and has descended from a common
ancestor. The Tree of Life is a metaphor to describe the relationships between living and
extinct organisms through their common ancestors. More precisely, it is an abstract form
to represent hypotheses about evolutionary relationships, in which all species that have
ever existed are taken together with relationships among them, describing their evolu-
tionary lineages. In this abstract representation, the taxa are the leaves of the tree and
the internal nodes are common ancestors, or hypothetical taxa.

This huge and complex tree is split into smaller branches, which are investigated
separately and then incorporated into the tree. Evolutionary biologists normally work
in relatively small chunks of the tree, analyzing a very specific subset of species. A
fundamental challenge in this scenario is the creation of a complete evolutionary Tree of
Life [39], assembling genomic and morphological data so as to congregate the phylogenetic
relationships among all known living or extinct organisms [15, 19, 33]. The integration
of these data may contribute to better understand how a morphological trait became
organized and evolved over time [29], how organisms interact and how life on Earth came
to be.

The main goal of this research is to design and implement a linked biology approach to
automatically connect and combine data from independent semi-structured resources of

33

34Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

phenotype descriptions and/or phylogenetic trees, exploiting their latent semantics. We
propose a graph data model that plays a crucial role, since it is the basis of our linking
discovery and combination process. It contributes assisting biologists in the exploration of
existing biology assets related to phenotype descriptions and their latent semantics. The
present work details algorithms, implementation aspects and the database model related
to our research.

The text is organized as follows. Section 4.2 synthesizes basic concepts necessary for
understanding the text. Section 4.3 discusses implementation details of our system and
presents some results. Section 4.4 presents concluding remarks. In the Appendix the
source code is provided with comments explaining its functionalities.

4.2 Basic concepts
In this section, we highlight basic concepts adopted in this text. Subsection 4.2.1 intro-
duces some key elements of XML formats for phenotype description. Subsection 4.2.2 we
details the Life Science Identifier which is one of the solutions for data interconnection.
Subsection 4.2.3 presents an overview of our proposed graph model.

4.2.1 Standards for Phenotype Description

There is a wide variety of representation formats for phenotype descriptions adopted by in-
formation systems and open standards, which represent differently the same information.
In [34] we analyze four of them – Xper2, SDD, Nexus and NeXML – looking for a com-
mon denominator which is the foundation for our graph-based model. SDD, Nexus and
NeXML are widely adopted open standards. Xper2 (http://lis-upmc.snv.jussieu.fr/lis/)
is a management system adopted by the systematist community, for storing, editing and
analyzing phenotype descriptive data. It focuses mainly on taxonomic descriptions, allow-
ing creation, sharing and comparison of identification keys [47, 48]. Xper2 was developed
in the Laboratoire Informatique & Systématique of the University Pierre et Marie Curie
and this work is part of a bigger project in collaboration with this lab. Therefore, Xper2

was adopted for our practical implementation.
In order to transform phenotype observations into digital records and generalize them

– e.g., devising general characters and states observed in a genus of monitor lizards – the
biologist may use a tool as Xper2. Phenotype descriptions can be stored in the Xper2

native format or can be exported to the SDD open format. The Structured Descriptive
Data (SDD) (http://wiki.tdwg.org/SDD) is a platform and application-independent XML-
based standard developed by the Biodiversity Information Standards (historic acronym:
TDWG) for recording and exchanging descriptions of biological and biodiversity data of

4.2. Basic concepts 35

any type [26]. SDD is adopted by several other phenotype description tools – e.g., Lucid
Central (http://www.lucidcentral.org) and Linnaeus II (http://www.eti.uva.nl/).

We further introduce some key elements of the SDD format, which are recurrent in the
formats confronted in [34]. A SDD description comprises, in a single file, a domain schema
and its instances. Figure 4.1 shows a diagram with a fragment of a SDD file containing
the description of a varanus lizard. A (C,CS) description in SDD has two main blocks:
(i) defines the characters involved and their possible states – Figure 4.1 top; (ii) describes
an Operational Taxonomic Unit (OTU) using the characters defined in (i) – Figure 4.1
bottom. OTU is a biology term which refers to a given taxon at the rank adopted to the
study – e.g., a specimen, a species, a genus etc.

CategoricalCharacter
id=“c6”

States StateDefinition
id=“s12”

“well round”

“Nostrils look like a ...”

Label

Detail

StateDefinition
id=“s13”

“oval or split-like”

“Nostrils are not perf...”

Label

Detail

“nostrils' form”

“Monitors' nostrils may have different forms...”

Label

Detail
Representation

Dataset

Datasets

“V. albiguralis”

“White-throated monitor. Distribution: Africa...”

Label

Detail
Representation

CodedDescription
id=“D1”

SummaryData
Categorical

ref=“c6”

State
ref=“s13”

Figure 4.1: Fragment of SDD Schema with Instances

<CategoricalCharacter>s and their <States> (shown in Figure 4.1 top) are primi-
tives to describe an OTU [26]. Each <CategoricalCharacter> has its <Representation>

– comprising a label and a description as plain texts – and a set of <StateDefinition>

elements with their possible states. <CategoricalCharacter> and <StateDefinition> el-
ements defined here will be referred throughout the XML document by their ids. The
<CodedDescription> (Figure 4.1 bottom) links the described OTU to States of each
<CategoricalCharacter>. It has two essential items: (i) the described OTU, where its
name and description are listed in natural language under <Representation>; (ii) a set of
character and values (<Categorical> and <State>), which address the characters defined
in the previous section through the ref attribute. It is possible and usual to assign multi-
ple character-states for a given OTU (i.e. in case of polymorphism). A first integration,

36Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

problem observed here is that each character or OTU described does not have a global
unique identification among documents. Therefore, the description can only be used by
the document where it was declared and it is not possible to guarantee the equivalence of
two or more <CategoricalCharacters>.

4.2.2 Life Science Identifiers (LSIDs)

One of the problems faced in life science is related to the identification of objects within
and across repositories [38]. More precisely, an object may refer to a taxon, gene, anatom-
ical feature, phenotypic description, geographical location etc. Integrating data from dif-
ferent sources is not straightforward and uniquely identifying these objects is undoubtedly
a key point for the success of our proposed solution.

During the 18th century, Carolus Linnaeus introduced the binomial nomenclature for
naming species that is the basis of modern classification [24]. This system basically
concatenates 2 Latim words, where the first part identifies the species genera and the
second one the species itself. The binomial nomenclature has been used for the last 250
years [24] and the biological information related to organisms is historically annotated by
species names. Hence, the binomial name would appear to be a logical candidate to index
information available about species. However, misspelling problems are often encountered
[1, 43], moreover, taxonomic names are not unique identifiers [27, 40] because scientists
may use (i) similar names to different species (homonyms) or (ii) multiple names for the
same specie (synonyms) [38, 9].

Furthermore, each organization has its own means of defining a key, which makes
the problem even harder to solve. For example, the species Aotus ericoides has the id
11479744 on the Catalogue of Life (CoL), id 42472 on the Australian Plant Name Index
(APN), id 643314 on the Encyclopedia of Life (EoL), id 129761-3 on the The International
Plant Names Index (IPNI), id 700844 on the Universal Biological Indexer and Organizer
(uBio) etc.

In order to address this issue, some organizations – e.g., Universal Biological In-
dexer and Organizer (uBio), Integrated Taxonomic Information System (ITIS), Cata-
logue of Life (CoL), The International Plant Names Index (IPNI), National Center for
Biotechnology Information (NCBI) etc. – incorporated into their projects the concept
of Life Science Identifiers (LSIDs), proposed by the Object Management Group (OMG)
(http://www.omg.org/). LSID is a persistent, location-independent resource identifier,
whose purpose is to uniquely identify biological resources [16]. The persistent property
refers to the fact that LSID identifiers are unique, can be assigned to only one object
forever and they never expire. The location-independent property specifies that each au-
thority locally creates LSIDs and they are the responsible to guaranteeing the uniqueness

4.2. Basic concepts 37

of LSIDs.

4.2.3 The proposed graph data model

In this section we will present an overview of our proposed graph model. From the
numerous graph data models proposed – see [3, 4, 44] for more details – the property graph
model was adopted in the present work. In a property graph, nodes and relationships can
maintain extra metadata as a set of key/value pairs. Moreover, relationships are typed,
enabling to create multi-relational networks with heterogeneous sets of edges. Different
from single-relational networks, in which edges are of the same type, multi-relational
networks are more appropriate to represent complex domain models, due to the variety
of relationship types in the same graph [45]. For example: relationships may either
represent membership in a social group (family membership) or professional relationships
(employer-worker relationship) simultaneously in the same network.

Figure 4.2 shows our graph data model. The tables below the nodes/edges represent
their types and metadata. We mapped the SDD format to the graph model as follows:
OTUs are entities (e.g., “Varanus prasinus”) and, therefore, were mapped to nodes. A
future target of this project is to enrich our model by associating identifiable entities
to ontology concepts. One may consider to map Characters and Characters States to
key/value pairs, to be related to OTU nodes. However, we decided to map Characters
to nodes, in order to unify in the same node equivalent characters observed in several
OTUs and, in a future work, to relate the unified characters with ontologies. Finally, the
Character-state makes a semantic bridge (relationship) between OTUs and Characters.
Thus, a statement like “Varanus gouldi ventral pattern is randomly scattered dark spots”
is represented in our model as Varanus gouldi (node) → randomly scattered dark spots
(edge) → ventral pattern (node).

Our model comprises, in a single place, phenotype descriptions and phylogenetic trees.
For this reason a new node called HTU (Hypothetical Taxonomic Unit) is present in this
model. HTUs are internal nodes in phylogenetic trees that represent an inferred ancestral
organism. HTUs are hypothetical common ancestors of OTUs nodes and, therefore, can
only be connected to themselves (HTU → HTU) or to OTUs (HTU → OTU). For the
sake of modeling simplicity, only the TreeEdge relationship is allowed between HTU →
HTU and HTU→ OTU. Finally, there is also a character-state relationship between HTU
nodes and character nodes that are strictly created by some algorithms.

38Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

 T

ree
Edge

OTU

Type OTU

Label

Detail

Character

Type Character

Label

Detail

HTU

Type HTU Type TreeEdge

Character-State

Type Character-State

Label

Detail

Character-State

Type Character-State

Figure 4.2: Property Graph Model

4.3 System Architecture and Implementation Details

In this section, we analyze the system architecture and its implementation details, in order
to present its main functionalities and operational features. The text is presented pro-
gressivelly. The core functionalities are shown in the first subsections and the algorithms
are presented later.

We have developed our platform on top of the Neo4j graph database (http://www.
neo4j.org/), mainly due to its widespread adoption. Our implementation uses the Python
programming language and Py2neo (http://book.py2neo.org/), which is an interface con-
necting Python and Neo4j via REST API. The adopted query language was Cypher, which
is a declarative graph query language.

4.3.1 SDD Parser

Our SDD Parser has all functionalities to parse an SDD file (for implementation details see
Appendix A.1) using the Python xml.dom.minidom, which is a minimal implementation
of the Document Object Model interface. Listing 4.1 shows an SDD fragment of a Varanus
knowledge base 1, of which Figure 4.1 is a simplified abstraction. In addition, all main
SDD structures presented in Figure 4.1 and Listing 4.1 – Representation, StateDefinition,

1Knowledge base of the genus Varanus
(http : //lis− upmc.snv.jussieu.fr/xper2/infosXper2Bases/details base.php?id base = 86)

4.3. System Architecture and Implementation Details 39

CategoricalCharacter, Categorical and CodedDescription – were processed to produce our
graph.

Listing 4.1: Varanus.sdd.xml
1 <Characters>

2 . . .
3 <CategoricalCharacter id="c6">

4 <Representation>

5 <Label>n o s t r i l s ’ form</Label>

6 <Detail>Monitors ’ n o s t r i l s mayhave d i f f e r e n t forms .& l t ; br&
gt ; Look at the head in s i d e view or d o r s a l view in
order to appre c i a t e t h i s c h a r a c t e r i s t i c .</Detail>

7 <MediaObject r e f="m40"/>

8 </Representation>

9 <States>

10 <StateDefinition id="s12">

11 <Representation>

12 <Label>we l l round</Label>

13 <Detail>N o s t r i l s look l i k e a qu i t e p e r f e c t c i r c l e .</
Detail>

14 </Representation>

15 </StateDefinition>

16 <StateDefinition id="s13">

17 <Representation>

18 <Label>ova l or s p l i t−l i k e</Label>

19 <Detail>N o s t r i l s are not p e r f e c t l y round : they are ova l
or they pre sent a s p l i t−l i k e form .</Detail>

20 </Representation>

21 </StateDefinition>

22 </States>

23 </CategoricalCharacter>

24 . . .
25 </Characters>

26 . . .
27 <CodedDescriptions>

28 <CodedDescription id="D1">

29 <Representation>

30 <Label>V. a l b i g u r a l i s</Label>

31 <Detail>White−throated monitor&l t ; br> ;& l t ; br> ;

40Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

D i s t r i b u t i o n : A f r i ca (West and South) .& l t ; br> ;& l t ; br&
gt ; CITES : appendix I I .</Detail>

32 <MediaObject r e f="m1"/>

33 </Representation>

34 <SummaryData>

35 . . .
36 <Categorical r e f="c6">

37 <State r e f="s13"/>

38 </Categorical>

39 . . .
40 </SummaryData>

41 </CodedDescription>

42 </CodedDescriptions>

4.3.2 Tree Output

The present work also draws upon phylogenetic trees generated from LisBeth (http://lis-
upmc.snv.jussieu.fr/lis/). LisBeth is a cladistics software for phylogenetics and biogeog-
raphy [5] that implements the three-item analysis (3ia) method of phylogenetic inference
[37]. It minimizes the conflictual relationships within a set of characters, or maximizes
the compatible relationships so as to reconstruct one or several optimal tree(s). We im-
plemented a TreeOutput class, which abstracts the functions of interacting with LisBeth
output files (for implementation details see Appendix A.2). Listing 4.2 displays two frag-
ments of a LisBeth output file, focusing in the elements processed in this work, i.e. taxons
with their ids and the retained tree – newick tree which is a way to represent a tree in
computer-readable form, using parentheses and commas. The TreeOutput main function
combines the retained tree with the taxon names, retrieved in previous steps, and returns
a root node to a tree that represents the retained tree. In this new tree, the internal nodes
are renamed to HTU and the leaf nodes to its respective taxon names (see Figure 4.3).

4.3. System Architecture and Implementation Details 41

V. gouldi V. panoptes V. rosenbergi

HTU

HTU

Figure 4.3: Retained Tree Example

Listing 4.2: LisBethOutput.3iz
1 . . .
2 −<D02>−
3 . . .
4 Taxa (3) :
5 . 3 V . gouldii
6 . 7 V . panoptes
7 . 12 V . rosenbergi
8 −<F02>−
9 . . .

10 −<D06>−
11 . . .
12

13 Retained trees : 1
14 . 1 : ((3 7) 12)
15 −<F06>−
16 . . .

4.3.3 Global Names Resolver (GNR)

In order to find a valid LSID, we adopted the Global Names Resolver (GNR) web service
(http://resolver.globalnames.org/) that executes exact or fuzzy matching against canon-
ical forms of scientific names in 170 distinct data sources. The Canonical form (cf) is
the simplest, most complete and unambiguous form of a name. The Canonical form of
scientific names consists of the genus and species – when applied – with no authorship,
rank, nomenclatural annotation or subgenus.

42Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

Our system used three of the six types of matching offered by the GNR resolver: (i)
exact matching; (ii) exact matching of canonical forms – this process reduces a given name
to its canonical form and checks it for an exact match; (iii) fuzzy matching of canonical
forms – uses a modified version of the TaxaMatch algorithm [43] and intends to work
around misspellings errors. It does a fuzzy match of the canonical form of a given name
– even with mistakes – against spellings considered correct. The GNR resolver reports
the matching quality (“confidence score”) for each match. The other three remaining
matching types are: (iv) exact matching of specific parts of names, (v) fuzzy matching of
specific parts of names and (vi) exact matching of genus part of names. They were not
adopted because we focused in complete names in their canonical form.

Our algorithm extracts all plain text taxon entities present in the SDD file and, for
each one, it uses the GNR to transform the taxon name to its canonical form. Only those
taxons with confidence score above of 0.988 are considered. After that, the algorithm
makes use of the GNR resolver to search for its LSID (for implementation details see
Appendix A.3) – only exact matches are considered. The GNR results have the output
field ”local id” which, in the case of uBio, is the LSID. Moreover, we prioritized the uBio
LSID, since it indexes and organizes until now more than 11 million names. But there
are cases in which the GNR resolver does not retrieve any result from the uBio. In these
cases, the algorithm makes use of the Integrated Taxonomic Information System (ITIS)
web services (http://www.usgovxml.com/DataService.aspx?ds=ITIS), in order to obtain
the LSID (for implementation details see Appendix A.5). ITIS is a reliable taxonomic base
for species, with more than 740 thousand common names and scientific names indexed. If
none of the services return a valid LSID, we also implemented a class to interact with the
CoL web service (http://www.catalogueoflife.org/col/webservice), attempting to obtain a
valid LSID (for implementation details see Appendix A.6).

4.3.4 Graph Importer

Graph Importer is an object class written in Python that is responsible for coupling
the phylogenetic trees and phenotype descriptions into the graph database. The insertion
process follows the sequence: (1) Starts parsing the SDD XML file and the LisBeth output
file – see Listing 4.1 and 4.2 respectively. (2) Creates a taxon node for each taxon present in
the SDD file – see Figure 4.1 bottom, tag <Representation>. In this process, it searches for
a valid LSID for each taxon node, using the GNR web service, ITIS web service or CoL web
service. If the LSID is not found, it creates a taxon node without LSID. (3) Joins the taxon
nodes to the tree structure, extracted from the LisBeth output file. (4) A node is created
for each character in the SDD file – see Figure 4.1 top, tag <Representation>. (5) The
taxon nodes are linked to the character nodes by their character-states – see Figure 4.1 top,

4.3. System Architecture and Implementation Details 43

tag <States>/<StateDefinition>. It will exist character-state relationships where exists
a pair <SummaryData>/<Categorical> and <SummaryData>/<Categorical>/<State>

– see Figure 4.1 bottom, tag <SummaryData>. For implementation details see Appendix
A.7. Figure 4.4 shows a visual representation of the retained tree combined with the
taxon nodes provided in Listing 4.2. The figure shows that the edges depart from taxon
nodes toward character nodes.

absent
Absent (Ultimate Units)

present

Present (leaflets)

branched

Present (leaflets)

pres
en

t

branched

pr
es

en
t

pr
es

en
t

unbranched
unbranched

root
Marattia

Pseudosporochnus

Zygopteris

Equisetum

Ophioglossum

Webbing within
the LBS

Webbing of the
terminal units

Branchiness of the
LBS

branched

0

1

Figure 4.4: Real Example

4.3.5 Graph Database

We implemented a GraphDB class, which abstracts and centralizes all database oper-
ations. We describe each function header, followed by a short description of the main

44Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

Cypher queries used in the system.

1 getNodeByLSID (LSID) :
2 // Returns a node f o r the supp l i ed LSID .
3 START n=node (∗)
4 WHERE n . lsid = ’LSID’
5 RETURN n
6

7 getOutgoingAdjacentNodes (GivenNode) :
8 // Returns a l l nodes to which the g iven node po in t s to .
9 START n=node (GivenNode . id)

10 MATCH (n)−−>(c)
11 RETURN DISTINCT c
12

13 getIncomingAdjacentNodes (GivenNode) :
14 // Returns a l l nodes that po in t s to the g iven node .
15 START n=node (GivenNode . id)
16 MATCH (c)−−>(n)
17 RETURN DISTINCT c
18

19 getIncomingAdjacentRelationships (GivenNode) :
20 // Returns a l l r e l a t i o n s h i p s incoming to a given node .
21 START n=node (GivenNode . id)
22 MATCH ()−[r]−>(n)
23 RETURN r
24

25 getIncomingAdjacentNodesWithRelationshipInBetween (GivenNode ,
GivenRelationship) :

26 // Returns a l l nodes , ordered by t h e i r l abe l , that po in t s to
a g iven node with a given r e l a t i o n s h i p in between .

27 START n=node (GivenNode . id)
28 MATCH (c) − [: GivenRelationship . label]−>(n)
29 RETURN c
30 ORDER BY c . label
31

32 getOutgoingRelationships (GivenNode) :
33 // Returns a l l r e l a t i o n s h i p s outgoing from a given node .
34 START n=node (GivenNode . id)

4.3. System Architecture and Implementation Details 45

35 MATCH (n)−[r]−>()
36 RETURN r
37

38 getDistinctRelationshipsInBetween (GivenNodeA , GivenNodeB) :
39 // Returns a l l d i s t i n c t r e l a t i o n s h i p s that e x i s t s between

nodes A and B.
40 START a=node (GivenNodeA . id) , b=node (GivenNodeB . id)
41 MATCH (a)−[r]−(b)
42 WITH COLLECT (DISTINCT TYPE (r)) as rels
43 RETURN rels
44

45 getDescriptionNodesOfATree (TreeRoot)
46 // Returns a l l d i s t i n c t d e s c r i p t i o n nodes id , cha rac t e r or

character−s t a t e s depending on the schema , that are
conected to a given t r e e .

47 START root=node (TreeRoot . id)
48 MATCH (root) −[∗..]−>(d)
49 WHERE d . type = ’description’
50 RETURN DISTINCT ID (d)
51

52 deleteNodeRelationshipsExceptLabel (GivenNode ,
RelationshipLabel) :

53 // De l e t e s a l l node r e l a t i o n s h i p s except f o r a g iven
r e l a t i o n s h i p l a b e l .

54 START n=node (GivenNode . id)
55 MATCH n−[r]−>()
56 WHERE NOT (r . label = ’RelationshipLabel’) AND NOT (r . type =

’TreeEdge’)
57 DELETE r
58

59 deleteRelationshipsTypeFromNode (GivenNode , RelationshipType
) :

60 // De l e t e s a l l node r e l a t i o n s h i p s o f a g iven type .
61 START n=node (GivenNode . id)
62 MATCH n−[r]−>()
63 WHERE r . type = ’RelationshipType’
64 DELETE r

46Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

4.3.6 Similarity Index
We are proposing a heuristic similarity measure that computes the similarity degree be-
tween two morphological character descriptions. This measure will represent how closely
related they are. The similarity index (Si) is based on 2 weighted aspects. 25% of the
index is calculated based on the taxa being described, i.e. it analyzes if two given charac-
ters (C1 and C2) describe the same taxa. The other 75% are based on the meaning of the
character-states. It checks if the state labels being used are the same. This heuristic is
still a work in progress. The weights assigned to parts of the index are configurable and
their values were calibrated based on observations.

Let G = (V (G), E(G)) be a directed graph with vertex-set V (G) = {v1, ..., vn} and
edge-set E(G) = {e1, ..., em} ⊂ {(vi, vj)|vi, vj ∈ V (G)}. Let C1, C2 ∈ V (G) be two
distinct vertices of G. We define the following sets:

NC1 = {vi ∈ V (G) | (vi, C1) ∈ E(G)} (4.1)
NC2 = {vi ∈ V (G) | (vi, C2) ∈ E(G)} (4.2)

S1 = |NC1 ∩NC2|
max{|NC1|, |NC2|}

(4.3)

Let f : E(G) → Υ be a labeling function, where Υ is a set of labels, and f(e) ∈ Υ is
the label of edge e ∈ E(G). We define the following sets:

LC1 = {e | e = f((vi, C1)) ∈ Υ and (vi, C1) ∈ E(G) and vi ∈ V (G)} (4.4)
LC2 = {e | e = f((vi, C2)) ∈ Υ and (vi, C2) ∈ E(G) and vi ∈ V (G)} (4.5)

S2 = |LC1 ∩ LC2|
max{|LC1|, |LC2|}

(4.6)

Similarity Index(Si) = 0.25 ∗ S1 + 0.75 ∗ S2 (4.7)

S1 defines a rate of common OTU vertices with edges for two given characters C1 and
C2. The S1 result lies between 0 (no common OTUs) and 1 (all OTUs are common).
NC1 is the subset of incoming adjacent vertexes of C1 and NC2 is the subset of incoming
adjacent vertexes of C2. Incoming adjacent vertexes of both C1 and C2 are always OTU
vertexes, as shown in Figure 4.2. S2 defines a rate of common labels of the incoming
edges (character-states) for the characters C1 and C2. The S2 result also lies between 0
(no common character-states) and 1 (all character states are common). LC1 and LC2 are
the subset of incoming adjacent edge labels (character-states) of C1 and C2 respectively.

It is important to note that the character labels of C1 and C2 are not being taken
into account in the Si formula. This intends to avoid weighting in favor of two identical

4.3. System Architecture and Implementation Details 47

textual characters that do not have the same meaning, and to avoid weighting against two
textual characters that are identical but do not have the same meaning. In practice, this
will make the solution independent of the label and applicable for both presented scenarios
(same label but different meanings and different labels and same meaning). Additionally,
the symmetric property of equality is satisfied.

Practical Implementation of the Similarity Measure

Our system is able to draw a chart as illustrated in Figure 4.5, whose algorithm is inspired
by the hierarchical edge bundling example (http://mbostock.github.io/d3 /talk/20111116/
bundle.html) of D3.js (http://d3js.org/) library. D3.js is a JavaScript library for manipu-
lating documents and it has a wide variety of powerful visualization components. In the
case of the hierarchical edge bundling example, it is necessary to provide only a “name”
for each node and, inside a related “imports” sentence, the node name to where an edge
must be created to. Listing 4.3 shows the JSON file that encodes the data used to generate
Figure 4.5 (for implementation details see Appendix A.8).

Listing 4.3: RealExample.json
1 [
2 {”name” : ”root . Cauline cladotaxy” , ”imports” : [”root . Cauline

cladotaxy” , ”root . Phyllotaxy”] } ,
3 {”name” : ”root . Protoxylem position within the cauline stele”

, ”imports” : [”root . Protoxylem position within the cauline
stele”] } ,

4 {”name” : ”root . Organotaxy of the LBS” , ”imports” : [”root .
Cauline cladotaxy” , ”root . Phyllotaxy”] } ,

5 {”name” : ”root . Xylem configuration in the leaflets” , ”
imports” : [] } ,

6 {”name” : ”root . Planation” , ”imports” : [] } ,
7 {”name” : ”root . Development of the foliar organ” , ”imports” :

[] } ,
8 {”name” : ”root . Phyllotaxy” , ”imports” : [] } ,
9 {”name” : ”root . Xylem configuration in the rachis” , ”imports”

: [] } ,
10 {”name” : ”root . Cauline cladotaxy” , ”imports” : [] } ,
11 {”name” : ”root . Protoxylem position within the cauline stele”

, ”imports” : [] } ,
12 {”name” : ”root . Xylem configuration in the rachis” , ”imports”

: [] } ,

48Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

13 {”name” : ”root . Extent of the planation” , ”imports” : [] } ,
14 {”name” : ”root . Presence of planated parts within the LBS” , ”

imports” : [] } ,
15 {”name” : ”root . Xylem configuration in the leaflets” , ”

imports” : [] } ,
16 {”name” : ”root . Development of the LBS” , ”imports” : [”root .

Development of the foliar organ”] }
17]

C
a
u
lin

e
 c

la
d
o
ta

xy

Pr
ot

ox
yle

m
 p

os
iti

on
 w

ith
in

 th
e

ca
ulin

e
st

el
e

Organotaxy of the LBS

Xylem configuration in the leaflets

Planation

D
e
v
e
lo

p
m

e
n
t

o
f

th
e
 f

o
lia

r
o
rg

a
n

Ph
yl

lo
ta

xy

Xylem configuration in the rachis

Extent of the planation

Presence of planated parts within the LBS

D
e
ve

lo
p
m

e
n
t o

f th
e
 LB

S

Figure 4.5: Practical Implementation

4.3. System Architecture and Implementation Details 49

4.3.7 Tracing the Evolutionary History

The TraceEvolutionaryHistory class abstracts an important algorithm that traces a phy-
logenetic history of traits changes (for implementation details see Appendix A.9). This
algorithm was built on top of our graph data model. It searches in a given tree for traits
(characters) that might be the “responsible” for a tree branching, in which branching is
considered as any division from a particular ancestor. For example, Figure 4.4 has two
Hypothetical Taxonomic Units (HTU), in which the least nested one after the root has
the Pseudosporochnus node and another HTU node as children. A typical question that
motivated us to create such an algorithm was: What differentiates Pseudosporochnus from
the other nodes?

The algorithm is divided into two recursive methods that are invoked in sequence. The
first one BottomUpAggregation starts from a given point in the tree and goes down until
it reaches Operational Taxonomic Unit (OTU) nodes. At this point, the method retrieves
all outgoing relationships from the OTU node and starts going back towards the root.
While the method is traversing internal HTU nodes (currentHT U) from the leaves back
towards the root, it performs an union operation with the outgoing relationships of all
children nodes – one occurrence for each type of relationship – and then, for each type of
relationship of the resulting union, the method creates an edge departing from the current
HTU (currentHT U) towards the original ending point of the relationship. In the end, the
method returns all relationships outgoing from all nodes, including the intermediary HTU
nodes (currentHT U). Figure 4.6 shows the result of BottomUpAggregation method being
applied on the graph of Figure 4.4.

The second part of the algorithm is called TopDownRefining. This method is triggered
after the BottomUpAggregation method, going to the same starting node provided in the
BottomUpAggregation method. It starts from a given node (noden) traversing down the
three and, in every HTU it reaches, it subtracts the set of character-states that starts in
its children nodes (nodechildren) and points to a given character (nodecharacter), from the
set of character-states starting from itself (noden) pointing to the same character node
(nodecharacter).

For example, in Figure 4.6, consider the least nested node (node0), just after the root
and linked to the Webbing within the LBS character node (nodewebbingLBS). There are
two edges connecting the node0 and the nodewebbingLBS with values present and absent.
The present edge comes from the most nested part of the tree, composed of the nodes
Zygopteris, Marattia, Equisetum and Ophioglossum, nested by node 1 (node1) – see Figure
4.4. The absent comes from Pseudosporochnus node – see Figure 4.4.

When the algorithm reaches node0 it will subtracts the set of character-states (edges)
outgoing from Pseudosporochnus toward nodewebbingLBS from the set of outgoing character-
states (edges) outgoing from node0 toward nodewebbingLBS. This set subtraction will be

50Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

Webbing within
the LBS

Webbing of the
terminal units

Branchiness of the
LBS

root

branched

present
present

Present (leaflets)

Absent (Ultimate Units)

branched

Marattia

Pseudosporochnus

Zygopteris

Ophioglossum

unbranched

unbranched

Equisetum

Present (leaflets)

absent

0

1

Figure 4.6: Bottom Up Aggregation

{present, absent} – {absent} = {present}. If the set subtraction result is not empty, it cre-
ates an edge called “EvolvedTrait” from itself (node0) toward the character (nodewebbingLBS)
as shown in Figure 4.7.

Also, the algorithm will subtracts the set of character-states (edges) outgoing from
node1 toward nodewebbingLBS from the set of character-states (edges) outgoing from node0

toward nodewebbingLBS. This set subtraction will also not be empty ({present, absent} –
{present} = {absent}) but the “EvolvedTrait” edge is created only once between node0

and nodewebbingLBS.
In a second iteration, the algorithm will reach node1 and it will individually sub-

tracts node1 children nodes (Zygopteris, Marattia, Equisetum and Ophioglossum) outgo-
ing character-states toward nodewebbingLBS from the set of character-states outgoing from

4.3. System Architecture and Implementation Details 51

Marattia

Webbing within
the LBS

Webbing of the
terminal units

Branchiness of the
LBS

Pseudosporochnus

Zygopteris

Equisetum

Ophioglossum

EvolvedTrait

root

EvolvedTrait

EvolvedTrait

EvolvedTrait

0

1

Figure 4.7: Top Down Refining

node1 toward nodewebbingLBS. All those set subtractions will be {present} – {present} = ∅.
In such a case (empty set, ∅), no “EvolvedTrait” edge is created, as can be seen in Figure
4.7.

Finally there is a visual tool that presents to the user the tree structure with all
characters flagged with the “EvolvedTrait” edge, i.e. the characters that the algorithm
“suspect” of being responsible for the branching. Figure 4.8 is a screenshot of our visual
tool.

52Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

Figure 4.8: Evolved Traits Visualization

4.4 Conclusion

In this technical report we showed the main functionalities and operational features of
the system. We mapped the SDD format to the graph model, remodeling semi-structured
descriptions to a graph abstraction, in which the data are linked enabling coupling phy-
logenetic trees and phenotype descriptions. We drilled down the interconnection process
through LSID unification, showing the required steps to obtain a valid LSID and imple-
mentation details of the services used in this process. We presented details regarding a
visualization tool implemented on top of the D3.js, to visualize our proposed similarity
measure. Such a solution will not only help discovering characters similarity, but will be
very important in the next stage of this project, which is the mapping from the graph
towards ontologies. Furthermore, an algorithm to trace the phylogenetic history of traits

4.4. Conclusion 53

changes has been shown. Finally, Cypher database queries and the main classes and
methods of the system were provided with detailed comments for each method.

Chapter 5

Conclusions and Extensions

5.1 Contributions
This work is a starting point to understand and address the broader problem of integrat-
ing biological knowledge, in the context of phenotype description and phylogenetic tree
reconstruction, which are heterogeneous in model and representation. We argue that an
intermediate step between semi-structured data and ontologies, based on graph databases,
can be exploited to emphasize relations among data elements.

We proposed a graph data model to congregate phenotype descriptions and phyloge-
netic trees. This model is a central part of this work. On top of it, we presented two
approaches to progressively reflect the integration process via the graph structure. The
first approach integrates knowledge around taxonomic units, the second one suggests cor-
relations among characters. The correspondly algorithms have the potential to simplify
mappings to ontologies, as they support linking correlated terms.

The feasibility and potential of our approach were tested by practical implementations.
In the first implementation, we showed the integration around the taxonomic units, in
which states for a given character were unified across different description files. In the
second implementation, two distinct descriptions of fossils were inserted into the graph
and analyzed by the similarity measure proposed.

There are several extensions for this work including:

• The incorporation of morphological descriptions stored in other knowledge bases,
e.g., MorphoBank (http://morphobank.org/), TreeBASE (http://treebase.org/) or
Dryad (http://datadryad.org/). We consider that the integration with these bases
can enhance the algorithms to find correlations, providing better insights.

• Further investigations around the similarity measure. A possible extension would
be to consider the similarity among hierarchies of states.

55

56 Chapter 5. Conclusions and Extensions

• For the next stage of this project – which involves mapping the graph towards
ontologies – the analysis of correlations can be extended to the relation between
character nodes and ontology terms.

• This approach can be integrated with related work [2] concerning exploiting social
knowledge to enrich ontologies.

Bibliography

[1] Peter H Adler and Roger W Crosskey. World blackflies (diptera: Simuliidae): a
comprehensive revision of the taxonomic and geographical inventory [2013], 2013.
Accessed on July 08 2013.

[2] Hugo Alves and André Santanchè. Folksonomized Ontology and the 3E Steps Tech-
nique to Support Ontology Evolvement. Journal of Web Semantics, 18(1):19–30,
2013.

[3] R. Angles. A comparison of current graph database models. In Data Engineering
Workshops (ICDEW), 2012 IEEE 28th International Conference on, pages 171–177,
2012.

[4] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Com-
puting Surveys (CSUR), 40(1):1, 2008.

[5] René Zaragüeta Bagils, Visotheary Ung, Anäıs Grand, Régine Vignes-Lebbe,
Nathanaël Cao, and Jacques Ducasse. Lisbeth: New cladistics for phylogenetics
and biogeography. Comptes Rendus Palevol, 11(8):563 – 566, 2012.

[6] James P. Balhoff, Wasila M. Dahdul, Cartik R. Kothari, Hilmar Lapp, John G.
Lundberg, Paula Mabee, Peter E. Midford, Monte Westerfield, and Todd J. Vision.
Phenex: Ontological annotation of phenotypic diversity. PLoS ONE, 5(5):e10500, 05
2010.

[7] Jonathan BL Bard and Seung Y Rhee. Ontologies in biology: design, applications
and future challenges. Nature Reviews Genetics, 5(3):213–222, 2004.

[8] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,
323(5919):1297–1298, 2009.

[9] F.A. Bisby. The quiet revolution: biodiversity informatics and the internet. Science,
289(5488):2309–2312, 2000.

57

58 BIBLIOGRAPHY

[10] WJ Bock. Comparative morphology in systematics. Systematic biology, 411:441–448,
1969.

[11] Daniel R Brooks. Hennig’s parasitological method: A proposed solution. Systematic
Biology, 30(3):229–249, 1981.

[12] Daniel R Brooks. Historical ecology: a new approach to studying the evolution of
ecological associations. Annals of the Missouri Botanical Garden, pages 660–680,
1985.

[13] Daniel R. Brooks, Marco G. P. Van Veller, and Deborah A. McLennan. How to do
bpa, really. Journal of Biogeography, 28(3):345–358, 2001.

[14] Nathanaël Cao, R Zaragüeta Bagils, Régine Vignes-Lebbe, et al. Hierarchical repre-
sentation of hypotheses of homology. Geodiversitas, 29(1):5–15, 2007.

[15] Francesca D Ciccarelli, Tobias Doerks, Christian Von Mering, Christopher J Creevey,
Berend Snel, and Peer Bork. Toward automatic reconstruction of a highly resolved
tree of life. Science, 311(5765):1283–1287, 2006.

[16] T. Clark, S. Martin, and T. Liefeld. Globally distributed object identification for
biological knowledgebases. Briefings in bioinformatics, 5(1):59–70, 2004.

[17] Adèle Corvez, Véronique Barriel, and Jean-Yves Dubuisson. Diversity and evolution
of the megaphyll in euphyllophytes: Phylogenetic hypotheses and the problem of
foliar organ definition. Comptes Rendus Palevol, 11(6):403–418, 2012.

[18] Wasila M. Dahdul, James P. Balhoff, Jeffrey Engeman, Terry Grande, Eric J. Hilton,
Cartik Kothari, Hilmar Lapp, John G. Lundberg, Peter E. Midford, Todd J. Vi-
sion, Monte Westerfield, and Paula M. Mabee. Evolutionary characters, phenotypes
and ontologies: Curating data from the systematic biology literature. PLoS ONE,
5(5):e10708, 05 2010.

[19] Frédéric Delsuc, Henner Brinkmann, and Hervé Philippe. Phylogenomics and the
reconstruction of the tree of life. Nature Reviews Genetics, 6(5):361–375, 2005.

[20] Malte C Ebach, Christopher J Humphries, and David M Williams. Phylogenetic
biogeography deconstructed. Journal of Biogeography, 30(9):1285–1296, 2003.

[21] Michael Franklin, Alon Halevy, and David Maier. From databases to dataspaces: a
new abstraction for information management. SIGMOD Rec., 34(4):27–33, December
2005.

BIBLIOGRAPHY 59

[22] Cynthia Gibas and Per Jambeck. Developing bioinformatics computer skills. O’Reilly
Media, Inc., 2001.

[23] Georgios Gkoutos, Eain Green, Ann-Marie Mallon, John Hancock, and Duncan
Davidson. Using ontologies to describe mouse phenotypes. Genome Biology, 6(1):R8,
2004.

[24] H.C.J. Godfray et al. Challenges for taxonomy. Nature, 417(6884):17–19, 2002.

[25] A Grand, LM Duque, Velez, A Corvez, and M Laurin. Data from: Phylogenetic
inference using discrete characters: performance of ordered and unordered parsimony
and of three-item statements. Biological Journal of the Linnean Society, 2013.

[26] Gregor Hagedorn. Structuring Descriptive Data of Organisms – Requirement Analysis
and Information Models. PhD thesis, Universität Bayreuth,Fakultät für Biologie,
Chemie und Geowissenschaften, 11 2007.

[27] J. Kennedy, R. Kukla, and T. Paterson. Scientific names are ambiguous as identi-
fiers for biological taxa: Their context and definition are required for accurate data
integration. In 2nd Intl. Workshop on Data Integration in the Life Sciences (DILS),
LNCS 3615, pages 80–95, July 2005.

[28] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 233–246. ACM, 2002.

[29] Paula M Mabee. Integrating evolution and development: the need for bioinformatics
in evo-devo. BioScience, 56(4):301–309, 2006.

[30] Paula M Mabee, Michael Ashburner, Quentin Cronk, Georgios V Gkoutos, Melissa
Haendel, Erik Segerdell, Chris Mungall, and Monte Westerfield. Phenotype ontolo-
gies: the bridge between genomics and evolution. Trends in ecology & evolution,
22(7):345–350, 2007.

[31] David R. Maddison, David L. Swofford, and Wayne P. Maddison. Nexus: An ex-
tensible file format for systematic information. Systematic Biology, 46(4):590–621,
1997.

[32] F Manola and E Miller. RDF Primer – W3C Recommendation. Technical report,
W3C, 2004.

60 BIBLIOGRAPHY

[33] Mark A Miller, Wayne Pfeiffer, and Terri Schwartz. Creating the cipres science gate-
way for inference of large phylogenetic trees. In Gateway Computing Environments
Workshop (GCE), 2010, pages 1–8. IEEE, 2010.

[34] Eduardo Miranda and André Santanchè. Unifying phenotypes to support semantic
descriptions. In Proceedings of the 6th Seminar on Ontology Research in Brazil,
volume 1041, pages 154–165, 09 2013.

[35] Gareth Nelson. Homology and systematics. Homology: the hierarchical basis of
comparative biology, pages 101–149, 1994.

[36] Gareth Nelson and Norman I Platnick. Three-taxon statements: A more precise use
of parsimony? Cladistics, 7(4):351–366, 1991.

[37] Gareth Nelson and Norman I. Platnick. Three-taxon statements: A more precise use
of parsimony? Cladistics, 7(4):351–366, 1991.

[38] R.D.M. Page. Biodiversity informatics: the challenge of linking data and the role of
shared identifiers. Briefings in Bioinformatics, 9(5):345–354, 2008.

[39] Cynthia S Parr, Robert Guralnick, Nico Cellinese, and Roderic DM Page. Evolu-
tionary informatics: unifying knowledge about the diversity of life. Trends in ecology
& evolution, 27(2):94–103, 2012.

[40] D.J. Patterson, J. Cooper, PM Kirk, RL Pyle, and D.P. Remsen. Names are key to
the big new biology. Trends in ecology & evolution, 25(12):686–691, 2010.

[41] Richard A. Pimentcl and Rhonda Riggins. The nature of cladistic data. Cladistics,
3(3):201–209, 1987.

[42] Dennis Quan. Improving life sciences information retrieval using semantic web tech-
nology. Briefings in bioinformatics, 8(3):172–182, 2007.

[43] Tony Rees. Taxamatch, a ”fuzzy” matching algorithm for taxon names, and potential
applications in taxonomic databases. In Anna Weitzman and Lee Belbin, editors, Pro-
visional Abstracts of the 2008 Annual Conference of the Taxonomic Databases Work-
ing Group, Fremantle, Australia, 2008. Biodiversity Information Standards (TDWG)
and the Missouri Botanical Garden.

[44] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly Media,
Inc., 2013.

BIBLIOGRAPHY 61

[45] Marko A. Rodriguez and Joshua Shinavier. Exposing multi-relational networks to
single-relational network analysis algorithms. Journal of Informetrics, 4(1):29 – 41,
2010.

[46] Joseph B Slowinski. “unordered” versus “ordered” characters. Systematic Biology,
42(2):155–165, 1993.

[47] Visotheary Ung, Florian Causse, and Régine Vignes Lebbe. Xper2: managing de-
scriptive data from their collection to e-monographs. 2010.

[48] Visotheary Ung, Guillaume Dubus, René Zaragüeta-Bagils, and Régine Vignes-
Lebbe. Xper2: introducing e-taxonomy. Bioinformatics, 26(5):703–704, 2010.

[49] Rutger A Vos, James P Balhoff, Jason A Caravas, Mark T Holder, Hilmar Lapp,
Wayne P Maddison, Peter E Midford, Anurag Priyam, Jeet Sukumaran, Xuhua Xia,
et al. Nexml: rich, extensible, and verifiable representation of comparative data and
metadata. Systematic Biology, 61(4):675–689, 2012.

[50] Myrna E Watanabe. Assembling an online tree of life of two million species. Bio-
Science, 63(1):64, 2013.

[51] Mark Wilkinson. Ordered versus unordered characters. Cladistics, 8(4):375–385,
1992.

[52] David M Williams and Malte C Ebach. The data matrix. Geodiversitas, 28(3):409–
420, 2006.

[53] René Zaragüeta-Bagils and Estelle Bourdon. Three-item analysis: Hierarchical repre-
sentation and treatment of missing and inapplicable data. Comptes Rendus Palevol,
6(6):527–534, 2007.

Appendix A

Demonstration

In this section we present the source code of the system, according to the graph data
model presented in previous sections. The code is modularized in files and each file has a
class with methods, all with comments explaining their functionality.

A.1 SDDParser.py

1 import os , sys
2

3 from xml . dom import minidom
4 from collections import OrderedDict
5

6 from Representation import ∗
7 from StateDefinition import ∗
8 from CategoricalCharacter import ∗
9 from Categorical import ∗

10 from CodedDescription import ∗
11

12 class SDDParser :
13

14 def __init__ (self , SDDFile) :
15

16 self . CategoricalCharacters = self .
__parseCategoricalCharacter (SDDFile)

17 self . CodedDescriptions = self . __parseCodedDescription (
SDDFile)

63

64 Appendix A. Demonstration

18

19 def __parseRepresentation (self , Repr) :
20 ”””
21 Representat ion i s a p l a i n text l a b e l and d e s c r i p t i o n block

found i n s i d e Categor i ca lCharacte r , S t a t e D e f i n i t i o n and
CodedDescr ipt ion b locks .

22 Args : A XML Representat ion block and i t s content .
23 Returns : A SDD Representat ion ob j e c t .
24 ”””
25

26 label = ’’
27 detail = ’’
28

29 if Repr :
30

31 if 0 < Repr . getElementsByTagName (’Label’) . length :
32 label = Repr . getElementsByTagName (’Label’) [0] . childNodes

[0] . nodeValue . strip ()
33

34 if 0 < Repr . getElementsByTagName (’Detail’) . length :
35 detail = Repr . getElementsByTagName (’Detail’) [0] .

childNodes [0] . nodeValue . strip ()
36

37 return Representation (label , detail)
38

39

40 def __parseStateDefinitions (self , StateDefinitions) :
41 ”””
42 S t a t e D e f i n i t i o n has i t s own id and a Representat ion block .

I t i s d e f i n e i n s i d e the Categor i ca lCharac te r / Sta t e s
b lock in which the Sta t e s groups toge the r a l l p o s s i b l e
s t a t e s (S t a t e D e f i n i t i o n) observed at a g iven
Cat ego r i c a l Character .

43 Args : Al l XML S t a t e D e f i n i t i o n b locks o f a p a r t i c u l a r
Categor i ca lCharac te r / Sta t e s b lock .

44 Returns : A d i c t i o n a r y o f S t a t e D e f i n i t i o n ob j e c t .
45 ”””
46

A.1. SDDParser.py 65

47 # Dict ionary with a l l s t a t e d e f i n i t i o n nodes
48 SStateDefinitionsDictionary = {}
49

50 for State in StateDefinitions :
51

52 Id = State . getAttributeNode (’id’) . nodeValue
53

54 Repr = State . getElementsByTagName (’Representation’) [0]
55

56 Representation = self . __parseRepresentation (Repr)
57

58 # Add node to Dic t ionary
59 SStateDefinitionsDictionary [Id] = StateDefinition (Id ,

Representation)
60

61 return SStateDefinitionsDictionary
62

63

64 def __parseStates (self , States) :
65 ”””
66 State i s d e f i n e i n s i d e CodedDescr ipt ion /SummaryData/

Cat ego r i c a l and i t l i n k s a taxon Categor i ca lCharac te r
to i t s p o s s i b l e S ta t e s through the r e f parameters .

67 Args : Al l XML State b locks o f a p a r t i c u l a r
CodedDescr ipt ion /SummaryData/ Cat ego r i c a l b lock .

68 Returns : An array with S t a t e D e f i n i t i o n s r e f e r e n c e s .
69 ”””
70

71 # Array with r e f e r e n c e s to S t a t e D e f i n i t i o n s
72 StatesDictionary = []
73

74 for state in States :
75

76 ref = state . getAttributeNode (’ref’) . nodeValue
77 StatesDictionary . append (ref)
78

79 return StatesDictionary
80

66 Appendix A. Demonstration

81

82 def __parseSummaryData (self , Categoricals) :
83 ”””
84 Catego r i c a l i s a r e f e r e n c e to a Categor i ca lCharac te r

ob j e c t and i s composed by a l i s t o f r e f e r e n c e s to
p o s s i b l e s t a t e s that a g iven taxon can take .

85 Args : Al l XML Catego r i c a l b locks o f a p a r t i c u l a r
CodedDescr ipt ion /SummaryData block .

86 Returns : A d i c t i o n a r y o f Cat ego r i c a l o b j e c t s .
87 ”””
88

89 # Dict ionary o f Cat ego r i c a l o b j e c t s
90 SummaryDataDictionary = {}
91

92 for c in Categoricals :
93

94 ref = c . getAttributeNode (’ref’) . nodeValue
95

96 s = c . getElementsByTagName (’State’)
97

98 States = self . __parseStates (s)
99

100 SummaryDataDictionary [ref] = Categorical (ref , States)
101

102 return SummaryDataDictionary
103

104

105 def __parseCategoricalCharacter (self , SDDFile) :
106 ”””
107 Categor i ca lCharac te r has i t s own id , a Representat ion

block and a Sta t e s b lock .
108 Args : A SDD f i l e name .
109 Returns : A d i c t i o n a r y with a l l Catego r i ca lCharac t e r s

o b j e c t s in the g iven f i l e .
110 ”””
111

112 CC = SDDFile . getElementsByTagName (’CategoricalCharacter’)
113

A.1. SDDParser.py 67

114 # Dict ionary with a l l Catego r i ca lCharac t e r s o b j e c t s
115 CategoricalCharacters = {}
116

117 for Character in CC :
118

119 Id = Character . getAttributeNode (’id’) . nodeValue
120

121 States = Character . getElementsByTagName (’StateDefinition’
)

122 Repr = Character . getElementsByTagName (’Representation’) [
0]

123

124 Representation = self . __parseRepresentation (Repr)
125 SStateDefinitionsDictionary = self .

__parseStateDefinitions (States)
126

127 CategoricalCharacters [Id] = CategoricalCharacter (Id ,
SStateDefinitionsDictionary , Representation)

128

129 return CategoricalCharacters
130

131

132 def __parseCodedDescription (self , SDDFile) :
133 ”””
134 CodedDescr ipt ion has i t s own id , a Representat ion block

and a SummaryData block .
135 Args : A SDD f i l e name .
136 Returns : A d i c t i o n a r y with a l l CodedDescr ipt ion o b j e c t s in

the g iven f i l e .
137 ”””
138

139 CD = SDDFile . getElementsByTagName (’CodedDescription’)
140

141 # Dict ionary with a l l CodedDescr ipt ions o b j e c t s
142 CodedDescriptions = {}
143

144 for Description in CD :
145

68 Appendix A. Demonstration

146 Id = Description . getAttributeNode (’id’) . nodeValue
147

148 SD = Description . getElementsByTagName (’Categorical’)
149 Repr = Description . getElementsByTagName (’Representation’)

[0]
150

151 Representation = self . __parseRepresentation (Repr)
152 SummaryDataDictionary = self . __parseSummaryData (SD)
153

154 CodedDescriptions [Id] = CodedDescription (Id ,
SummaryDataDictionary , Representation)

155

156 return CodedDescriptions
157

158

159 def getAllSates (self) :
160 ”””
161 Returns a d i c t i o n a r y o f a l l ’ S t a t e D e f i n i t i o n s ’ e lements .
162 ”””
163

164 States = {}
165

166 for key , CategoricalCharacter in self .
CategoricalCharacters . iteritems () :

167

168 States . update (CategoricalCharacter . States)
169

170 OrderedStates = OrderedDict (sorted (States . items ()))
171

172 return OrderedStates
173

174

175 def getAllTaxons (self) :
176 ”””
177 Returns a l i s t o f a l l taxons e lements .
178 ”””
179

180 Taxons = []

A.1. SDDParser.py 69

181

182 for key , CodedDescription in self . CodedDescriptions .
iteritems () :

183

184 Taxons . append (CodedDescription . Representation)
185

186 return Taxons
187

188

189 def getAllCharacters (self) :
190 ”””
191 Returns a d i c t i o n a r y o f a l l ’ Categor i ca lCharac te r ’

e lements .
192 ”””
193

194 Characters = {}
195

196 for key , CategoricalCharacter in self .
CategoricalCharacters . iteritems () :

197

198 Characters [CategoricalCharacter . id] = (
CategoricalCharacter . Representation)

199

200 OrderedCharacters = OrderedDict (sorted (Characters . items
()))

201

202 return OrderedCharacters

70 Appendix A. Demonstration

A.2 TeeOutput.py

1 import re
2 import shlex
3 import mmap
4 import sys
5

6 from TreeNode import ∗
7 from NodeTypes import ∗
8

9 class TreeOutput :
10

11 def __init__ (self , _TreeOutputFile) :
12

13 self . TreeOutputFile = _TreeOutputFile
14

15

16 def __parseNewickTree (self , NewickTree , parentNode) :
17 ”””
18 Newick t r e e format (New Hampshire t r e e format) i s a way o f

r e p r e s e n t i n g t r e e s in computer−r eadab le form us ing
parenthese s and commas .

19 Args :
20 NewickTree : A NewickTree s t r i n g . For example : (((((((1 2

18) 22) 13) 3) 7) 30) (23 25))
21 parentNode : A node to where NewickTree t r e e w i l l be

attached to .
22 ”””
23

24 opened = False
25 substring = NewickTree
26

27 i = j = begin = end = 0
28

29 for c in NewickTree :
30

31 if c == ’(’ :
32 i += 1

A.2. TeeOutput.py 71

33

34 if not opened :
35 begin = j
36

37 opened = True
38

39 elif c == ’)’ :
40 i −= 1
41

42 if opened and i == 0 :
43 # (opened and i == 0) means that opening round bracket

’ (’ and the cor re spond ing c l o s i n g round bracket ’) ’
was found .

44 # I t w i l l r e c u r s i v e l y c a l l parseNewickTree with
bracket s content . Also , i t w i l l remove parenthese s
b lock and content from NewickTree .

45

46 opened = False
47

48 childrenWithBrackets = NewickTree [begin : j + 1]
49 childrenWithNoBrackets = NewickTree [begin + 1 : j]
50

51 child = TreeNode (None)
52 parentNode . appendChild (child)
53

54 self . __parseNewickTree (childrenWithNoBrackets , child)
55

56 substring = substring . replace (childrenWithBrackets , ""
)

57

58 j += 1
59

60 if "(" not in substring :
61 # When t h i s cond i t i on i s s a t i s f i e d , i t means that

sub s t r i ng w i l l only have l e a v e s nodes or i t i s empty .
62

63 my_splitter = shlex . shlex (substring , posix = True)
64 my_splitter . whitespace += ’,’

72 Appendix A. Demonstration

65 my_splitter . whitespace_split = True
66

67 for n in my_splitter :
68 parentNode . appendChild (TreeNode (n))
69

70

71 def getNewickTree (self) :
72 ”””
73 This method looks in to the f i l e in search o f the Newick

Tree and re tu rn s i t .
74 The proce s s i s p re t ty s t r a i g h t f o r w a r d :
75 1 . Set the f i l e ’ s cur r ent p o s i t i o n to the o occurence o f

’ Retained t r e e s ’
76 2 . Reads t h i s l i n e and d i s c a r d s i t
77 3 . Reads the next l i n e , which supposedly should conta in

the Newick Tree
78 4 . Get the Newick Tree
79 ”””
80

81 _file = open (self . TreeOutputFile)
82 memorymap = mmap . mmap (_file . fileno () , 0 , access = mmap .

ACCESS_READ)
83

84 RetainedTreesPosition = memorymap . find ("Retained trees")
85 memorymap . seek (RetainedTreesPosition)
86 memorymap . readline ()
87 FirstRetainedTreeLine = memorymap . readline ()
88 memorymap . close ()
89

90 # F i r s t occurence o f ’) ’
91 begin = FirstRetainedTreeLine . find (’(’)
92

93 # Last occurence o f ’ (’
94 end = FirstRetainedTreeLine . rfind (’)’)
95

96 NewickTree = FirstRetainedTreeLine [begin : end + 1]
97

98 return NewickTree

A.2. TeeOutput.py 73

99

100

101 def getTaxons (self) :
102 ”””
103 Get a l l taxons l i s t e d r i g h t be l low ’Taxa (# taxons) ’

i n s i d e −<D02>− block and return a l l those taxons .
104 ”””
105

106 _file = open (self . TreeOutputFile)
107 memorymap = mmap . mmap (_file . fileno () , 0 , access = mmap .

ACCESS_READ)
108

109 BlockBegin = memorymap . find ("<D02>")
110 BlockEnd = memorymap . find ("<F02>")
111

112 TaxaPosition = memorymap . find ("Taxa" , BlockBegin ,
BlockEnd)

113

114 memorymap . seek (TaxaPosition)
115 TaxaLine = memorymap . readline ()
116 TotalTaxa = int (re . search (re . escape (’(’) + "(.*?)" +

re . escape (’)’) , TaxaLine) . group (1))
117

118 TaxonsDictionary = {}
119

120 for i in range (TotalTaxa) :
121

122 line = memorymap . readline ()
123

124 index = line [1 : 21] . strip ()
125 taxon = line [22 :] . strip ()
126

127 TaxonsDictionary [index] = taxon
128

129 memorymap . close ()
130

131 return TaxonsDictionary
132

74 Appendix A. Demonstration

133

134 def __RenameTreeNodes (self , subTree , TaxonsDictionary) :
135

136 ”””
137 In a rooted phy logene t i c t ree , each node i s c a l l e d a

taxonomic un i t . I n t e r n a l nodes are g e n e r a l l y c a l l e d
hypo the t i c a l taxonomic un i t s (HTUs) as they cannot be
d i r e c t l y observed .

138 Args :
139 subTree : I s a branch o f the t r e e .
140 TaxonsDictionary : A l i s t o f taxons pre sent in the 3 i z

f i l e .
141 ”””
142

143 if subTree . nodes :
144

145 subTree . value = str (NodeTypes . HTU)
146

147 for n in subTree . nodes :
148 self . __RenameTreeNodes (n , TaxonsDictionary)
149

150 else :
151 subTree . value = TaxonsDictionary [subTree . value]
152

153

154 def getTaxonsTreeStructure (self) :
155 ”””
156 I t parse the NewickTree s t r i n g in to a t r e e s t r u c t u r e with

Hypothet i ca l Taxonomic Units as i n t e r n a l nodes and the
c o r r e c t Taxon name as the l e a v e s .

157 ”””
158

159 NewickTree = self . getNewickTree ()
160 TaxonsDictionary = self . getTaxons ()
161

162 root = TreeNode (None)
163 self . __parseNewickTree (NewickTree , root)
164

A.2. TeeOutput.py 75

165 self . __RenameTreeNodes (root , TaxonsDictionary)
166

167 return root

76 Appendix A. Demonstration

A.3 GlobalNamesResolver.py

1 from bs4 import BeautifulSoup
2 from GNRResultObject import ∗
3 import urllib2
4 from enumerator import ∗
5

6 class GlobalNamesResolver :
7

8 def __init__ (self) :
9 self . url = ’http://resolver.globalnames.org/name_resolvers

.xml?names=’
10

11 # Names Data Sources <http :// r e s o l v e r . globalnames . org /
data source s >

12 # ID Source
13 # 169 uBio NameBank
14 # 1 Catalogue o f L i f e
15 # 3 ITIS
16 self . DataSources = enum (CatalogueOfLife = 1 , ITIS = 3 ,

uBioNameBank = 169)
17

18 self . DataSourceIds = [self . DataSources . CatalogueOfLife ,
self . DataSources . ITIS , self . DataSources . uBioNameBank]

19

20

21 def getResultsObjects (self , ScientificName) :
22

23 ScientificName = ScientificName . replace (’ ’ , ’%20’)
24

25 url = self . url + ScientificName
26

27 if len (self . DataSourceIds) > 0 :
28 url = url + ’&data_source_ids=’
29

30 for _id in self . DataSourceIds :
31 url = url + str (_id) + ’|’
32

A.3. GlobalNamesResolver.py 77

33 try :
34 GNRServiceUrlResponse = urllib2 . urlopen (url) . read ()
35

36 except urllib2 . HTTPError , e :
37 print "HTTP error: %d" % e . code
38 except urllib2 . URLError , e :
39 print "Network error: %s" % e . reason . args [1]
40

41 SoupGNRResponse = BeautifulSoup (GNRServiceUrlResponse)
42

43 results = SoupGNRResponse . findAll (’result’)
44

45 GNRResultObjects = []
46

47 for result in results :
48

49 DataSourceId = result . find (’data-source -id’ , {’type’ :
’integer’})

50 DataSourceTitle = result . find (’data-source -title’)
51 gniUUID = result . find (’gni-uuid’)
52 NameString = result . find (’name-string’)
53 CanonicalForm = result . find (’canonical -form’)
54 TaxonId = result . find (’taxon-id’)
55 LocalId = result . find (’local-id’)
56 MatchType = result . find (’match-type’ , {’type’ : ’

integer’})
57 Prescore = result . find (’prescore’)
58 Score = result . find (’score’ , {’type’ : ’float’}

)
59

60 DataSourceId = DataSourceId . contents [0] if
DataSourceId else ""

61 DataSourceTitle = DataSourceTitle . contents [0] if
DataSourceTitle else ""

62 gniUUID = gniUUID . contents [0] if gniUUID
else ""

63 NameString = NameString . contents [0] if
NameString else ""

78 Appendix A. Demonstration

64 CanonicalForm = CanonicalForm . contents [0] if
CanonicalForm else ""

65 TaxonId = TaxonId . contents [0] if TaxonId
else ""

66 LocalId = LocalId . contents [0] if LocalId
else ""

67 MatchType = MatchType . contents [0] if
MatchType else ""

68 Prescore = Prescore . contents [0] if Prescore
else ""

69 Score = Score . contents [0] if Score
else ""

70

71 obj = GNRResultObject (DataSourceId , DataSourceTitle ,
gniUUID , NameString , CanonicalForm , TaxonId , LocalId ,
MatchType , Prescore , Score)

72

73 GNRResultObjects . append (obj)
74

75 return GNRResultObjects
76

77

78 def getCanonicalForm (self , ScientificName) :
79 ”””
80 Returns the canon i ca l forms o f a g iven s c i e n t i f i c name .
81 ”””
82

83 objects = self . getResultsObjects (ScientificName)
84

85 CanonicalForms = set ([])
86

87 for obj in objects :
88

89 match = int (obj . MatchType)
90

91 # 1 − Exact match
92 # 2 − Exact match by canon i ca l form
93 # 3 − Fuzzy match by canon i ca l form

A.3. GlobalNamesResolver.py 79

94 if match == 1 or match == 2 or match == 3 :
95

96 if 0 . 988 <= float (obj . MatchType) :
97

98 # Add canon i ca l form to the s e t
99 CanonicalForms = CanonicalForms | set ([obj .

CanonicalForm])
100

101 if 1 == len (CanonicalForms) :
102

103 return sorted (CanonicalForms) [0]
104

105 return None
106

107

108 def getLSIDFromCanonicalForm (self , CanonicalForm) :
109 ”””
110 Returns the LSID o f a g iven Canonical Form . Only uBio

NameBank LSID are r e t r i e v e d and s t i l l only i f a exact
match occur .

111 ”””
112

113 ResultsObjects = self . getResultsObjects (CanonicalForm)
114

115 for obj in ResultsObjects :
116

117 if int (obj . MatchType) == 1 :
118

119 if int (obj . DataSourceId) == self . DataSources .
uBioNameBank :

120

121 return obj . LocalId
122

123 return None

80 Appendix A. Demonstration

A.4 GNRResultObject.py

1 class GNRResultObject :
2

3 def __init__ (self , _DataSourceId , _DataSourceTitle , _gniUUID
, _NameString , _CanonicalForm , _TaxonId , _LocalId ,
_MatchType , _Prescore , _Score) :

4

5 # The id o f the data source where a name was found .
6 self . DataSourceId = _DataSourceId
7

8 # The data source t i t l e where a name was found .
9 self . DataSourceTitle = _DataSourceTitle

10

11 # An i d e n t i f i e r f o r the found name s t r i n g used in Global
Names .

12 self . gniUUID = _gniUUID
13

14 # The name s t r i n g found in t h i s data source .
15 self . NameString = _NameString
16

17 # A ” canon i ca l ” v e r s i on o f the name generated by the Global
Names par s e r

18 self . CanonicalForm = _CanonicalForm
19

20 # Tree path to the root i f a name s t r i n g was found with in a
data source c l a s s i f i c a t i o n .

21 # s e l f . C l a s s i f i c a t i o n P a t h
22

23 # s e l f . C la s s i f i ca t i onPathRanks
24

25 # Same t r e e path us ing taxon id s
26 # s e l f . C l a s s i f i c a t i o n P a t h I d s
27

28 # An i d e n t i f i e r supp l i ed in the source Darwin Core Archive
f o r the name s t r i n g record

29 self . TaxonId = _TaxonId
30

A.4. GNRResultObject.py 81

31 # Shows id l o c a l to the data source (i f provided by the
data source manager)

32 self . LocalId = _LocalId
33

34 # Expla ins how r e s o l v e r found the name . I f the r e s o l v e r
cannot f i n d names cor re spond ing to the e n t i r e quer i ed
name s t r i ng , i t s e q u e n t i a l l y removes te rmina l po r t i on s
o f the name s t r i n g u n t i l a match i s found .

35 # 1 − Exact match
36 # 2 − Exact match by canon i ca l form o f a name
37 # 3 − Fuzzy match by canon i ca l form
38 # 4 − P a r t i a l exact match by s p e c i e s part o f canon i ca l form
39 # 5 − P a r t i a l fuzzy match by s p e c i e s part o f canon i ca l form
40 # 6 − Exact match by genus part o f a canon i ca l form
41 self . MatchType = _MatchType
42

43 # Disp lays po in t s used to c a l c u l a t e the s co r e de l im i t ed by
’ | ’ −− ”Match po in t s |Author match po in t s | Context po in t s
” . Negative po in t s dec r ea s e the f i n a l r e s u l t .

44 self . Prescore = _Prescore
45

46 # A con f idence s co r e c a l c u l a t e d f o r the match .
47 # 0.5 means an uncer ta in r e s u l t that w i l l r e q u i r e

i n v e s t i g a t i o n .
48 # Resu l t s h igher than 0 .9 correspond to ’ good ’ matches .
49 # Resu l t s between 0 .5 and 0 .9 should be taken with caut ion .
50 # Resu l t s l e s s than 0 .5 are l i k e l y poor matches .
51 # The s c o r i n g i s de s c r ibed in more d e t a i l s on http ://

r e s o l v e r . globalnames . org /about
52 self . Score = _Score

82 Appendix A. Demonstration

A.5 ITISServices.py

1 import suds
2

3 class ITISServices :
4

5 url = "http://www.itis.gov/ITISWebService.xml"
6 client = None
7

8 def __init__ (self) :
9 self . client = suds . client . Client (self . url)

10

11

12 def getTSNfromScientificName (self , ScientificName) :
13 ”””
14 Taxonomic S e r i a l Number (TSN) which i s the primary key f o r

the s c i e n t i f i c name . This method re tu rn s a TSN i f the
provided Sc i ent i f i cName i s found and None otherw i se .

15 ”””
16

17 self . client . service . searchByScientificName (ScientificName
)

18

19 ScientificNamesResponse = self . client . last_received () .
getChild ("soapenv:Envelope") . getChild ("soapenv:Body") .
getChild ("ns:searchByScientificNameResponse") . getChild ("
ns:return") . getChildren ("ax21:scientificNames")

20

21 for sn in ScientificNamesResponse :
22

23 tsn = sn . getChild ("ax21:tsn")
24

25 if tsn != None :
26 return tsn . getText ()
27

28 return None
29

30

A.5. ITISServices.py 83

31 def getLSIDfromTSN (self , tsn) :
32 ”””
33 Given a TSN t h i s method r e tu rn s a LSID i f found and None

otherw i s e .
34 ”””
35

36 self . client . service . getLSIDFromTSN (tsn)
37

38 LSID = self . client . last_received () . getChild ("soapenv:
Envelope") . getChild ("soapenv:Body") . getChild ("ns:
getLSIDFromTSNResponse") . getChild ("ns:return") . getText ()

39

40 if LSID :
41 return LSID
42

43 return None

84 Appendix A. Demonstration

A.6 CoLServices.py

1 from BeautifulSoup import BeautifulSoup
2 import urllib2
3

4 class CoLServices :
5 ”””
6 This c l a s s conta in s the main methods to i n t e r a c t with the

CoL web s e r v i c e .
7 ”””
8

9 def getCoLUrl (self , ScientificName) :
10 ”””
11 This method uses a XML scrap ing technique to get the URL

of the g iven S c i e n t i f i c Name from the webserv i ce
re sponse .

12 ”””
13

14 url = ’http://www.catalogueoflife.org/col/webservice?name=
’

15

16 ScientificName = ScientificName . replace (’ ’ , ’%20’)
17

18 try :
19 CoLWebServiceUrlResponse = urllib2 . urlopen (url +

ScientificName) . read ()
20 except urllib2 . HTTPError , e :
21 print "HTTP error: %d" % e . code
22 except urllib2 . URLError , e :
23 print "Network error: %s" % e . reason . args [1]
24

25 SoupCoLWebServiceResponse = BeautifulSoup (
CoLWebServiceUrlResponse)

26

27 tagresult = SoupCoLWebServiceResponse . findAll (’result’)
28

29 CoLUrl = tagresult [0] . find (’url’) . contents [0]
30

A.6. CoLServices.py 85

31 if CoLUrl :
32 return CoLUrl
33

34

35 def getCoLSpecieID (self , ScientificName) :
36 ”””
37 This method uses a XML scrap ing technique to get the ID o f

the g iven S c i e n t i f i c Name from the webserv i ce re sponse
.

38 ”””
39

40 url = ’http://www.catalogueoflife.org/testcol/webservice?
name=’

41

42 ScientificName = ScientificName . replace (’ ’ , ’%20’)
43

44 try :
45 CoLWebServiceUrlResponse = urllib2 . urlopen (url +

ScientificName) . read ()
46 except urllib2 . HTTPError , e :
47 print "HTTP error: %d" % e . code
48 except urllib2 . URLError , e :
49 print "Network error: %s" % e . reason . args [1]
50

51 SoupCoLWebServiceResponse = BeautifulSoup (
CoLWebServiceUrlResponse)

52

53 result = SoupCoLWebServiceResponse . find (’result’)
54

55 if result :
56 findID = result . find (’id’)
57

58 if findID :
59 SpecieID = findID . contents [0]
60

61 if SpecieID :
62 return SpecieID
63

86 Appendix A. Demonstration

64 return None
65

66

67 def getLSIDfromSpecieID (self , SpecieID) :
68 ”””
69 This method uses a HTML screen−s c rap ing technique to get

the LSID o f the g iven SpecieID .
70 ”””
71

72 url = ’http://www.catalogueoflife.org/testcol/details/
species/id/’

73

74 try :
75 SpecieDetailsCoLUrlResponse = urllib2 . urlopen (url +

SpecieID) . read ()
76 except urllib2 . HTTPError , e :
77 print "HTTP error: %d" % e . code
78 except urllib2 . URLError , e :
79 print "Network error: %s" % e . reason . args [1]
80

81 SoupSpecieDetailsCoLUrlResponse = BeautifulSoup (
SpecieDetailsCoLUrlResponse)

82

83 LSID = SoupSpecieDetailsCoLUrlResponse . find (’span’ , {’
class’ : ’lsid’}) . contents [0]

84

85 return LSID
86

87

88 def getLSIDfromSpecieUrl (self , SpecieUrl) :
89 ”””
90 This method uses a HTML screen−s c rap ing technique to get

the LSID o f the g iven Spec i eUr l .
91 ”””
92

93 try :
94 SpecieDetailsCoLUrlResponse = urllib2 . urlopen (SpecieUrl) .

read ()

A.6. CoLServices.py 87

95 except urllib2 . HTTPError , e :
96 print "HTTP error: %d" % e . code
97 except urllib2 . URLError , e :
98 print "Network error: %s" % e . reason . args [1]
99

100 SoupSpecieDetailsCoLUrlResponse = BeautifulSoup (
SpecieDetailsCoLUrlResponse)

101

102 LSID = SoupSpecieDetailsCoLUrlResponse . find (’span’ , {’
class’ : ’lsid’}) . contents [0]

103

104 return LSID

88 Appendix A. Demonstration

A.7 GraphImporter.py

1 from py2neo import rest , neo4j , cypher
2

3 from SDDParser import ∗
4 from TreeOutput import ∗
5 from GlobalNamesResolver import ∗
6 from GraphDB import ∗
7 from NodeTypes import ∗
8 from RelationshipTypes import ∗
9 from ITISServices import ∗

10 from CoLServices import ∗
11

12 class GraphImporter :
13

14 SDDFilename = None
15 TreeFilename = None
16

17 def __init__ (self , _SDDFilename , _TreeFilename ,
_IgnoreTreeFilename) :

18

19 self . SDDFilename = _SDDFilename
20 self . TreeFilename = _TreeFilename
21 self . IgnoreTreeFilename = _IgnoreTreeFilename
22

23

24 def __CreateTaxonsNodes (self , CodedDescriptions) :
25 ”””
26 Add to the Graph DB a l l taxons e lements as nodes . In case

the taxon node a l r eady e x i s t s , i t uses the node in
GraphDB rathe r than c r e a t e a new one .

27 Args : CodedDescr ipt ions : A l i s t o f a l l Coded D e s c r i p t i on s
e lements .

28 Returns : A d i c t mapping keys to the cor re spond ing added
nodes . Each tup l e i s r ep r e s en ted as (Taxon Name , node)

where the f i r s t element o f the tup l e i s the taxon name
and the l a s t one i s the node i t s e l f .

29 Example :

A.7. GraphImporter.py 89

30 {u ’ Equisetum ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /
node /142 ’)] ,

31 u ’ Maratt ia ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /node
/131 ’)] ,

32 u ’ Bot ryopte r i s ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /
node /222 ’)]}

33 ”””
34

35 gdb = GraphDB ()
36 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()
37

38 if GDBConn is not None :
39

40 # Dict ionary f o r a l l taxons nodes
41 TaxonsNodes = {}
42

43 GNR = GlobalNamesResolver ()
44 ITIS = ITISServices ()
45 CoL = CoLServices ()
46

47 for key , CodedDescription in CodedDescriptions . iteritems
() :

48

49 node = None
50

51 taxonName = CodedDescription . Representation . label
52 taxonNameCF = GNR . getCanonicalForm (taxonName)
53

54 lsid = GNR . getLSIDFromCanonicalForm (taxonNameCF)
55

56 if lsid == None :
57 tsn = ITIS . getTSNfromScientificName (taxonNameCF)
58 lsid = ITIS . getLSIDfromTSN (tsn)
59

60 if lsid == None :
61 SpecieID = CoL . getCoLSpecieID (taxonNameCF)
62 lsid = CoL . getLSIDfromSpecieID (SpecieID)
63

90 Appendix A. Demonstration

64 n = gdb . getNodeByLSID (lsid)
65

66 if n is None :
67

68 # Create taxon node
69 node = GDBConn . create ({ ’label’ : taxonNameCF ,
70 ’detail’ : CodedDescription . Representation .

detail ,
71 ’sourceId’ : CodedDescription . id ,
72 ’type’ : str (NodeTypes . OTU) ,
73 ’LSID’ : lsid })
74 else :
75 node = n
76

77 # Add node to Dic t ionary
78 TaxonsNodes [CodedDescription . Representation . label] =

node
79

80 return TaxonsNodes
81

82 else :
83 print msg
84 return None
85

86

87 def __CreateStateDefinitionNodes (self , StateDefinitions) :
88 ”””
89 Add to the Graph DB a l l s t a t e d e f i n i t i o n e lements as nodes

.
90 Args :
91 S t a t e D e f i n i t i o n s : A d i c t i o n a r y o f a l l ’ S t a t e D e f i n i t i o n s ’

e lements .
92 Returns :A d i c t mapping keys to the cor re spond ing added

nodes . Each tup l e i s r ep r e s en ted as (Id , node) where
the f i r s t element o f the tuple , Id (For example : s54)
i s the SDD.XML S t a t e D e f i n i t i o n ID and the l a s t one i s
the node i t s e l f .

93 Example :

A.7. GraphImporter.py 91

94 {u ’ s54 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /node /142 ’)
] ,

95 u ’ s43 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /node /131 ’)
] ,

96 u ’ s46 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /node /222 ’)
]}

97 ”””
98

99 gdb = GraphDB ()
100 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()
101

102 if GDBConn is not None :
103

104 # Dict ionary f o r a l l s t a t e d e f i n i t i o n nodes
105 StateDefinitionsNodes = {}
106

107 for key , State in StateDefinitions . iteritems () :
108

109 # Create s t a t e d e f i n i t i o n node
110 node = GDBConn . create ({ ’label’ : State . Representation .

label ,
111 ’detail’ : State . Representation . detail ,
112 ’sourceId’ : State . id ,
113 ’type’ : str (NodeTypes . description) })
114

115 # Add node to Dic t ionary
116 StateDefinitionsNodes [State . id] = node
117

118 return StateDefinitionsNodes
119

120 else :
121 print msg
122 return None
123

124

125 def __CreateCharacterNodes (self , Characters) :
126 ”””
127 Add to the Graph DB a l l c h a r a c t e r s e lements as nodes .

92 Appendix A. Demonstration

128 Args :
129 Characters : A d i c t i o n a r y o f a l l ’ Characters ’ e lements .
130 Returns : A d i c t mapping keys to the cor re spond ing added

nodes . Each tup l e i s r ep r e s en ted as (Id , node) where
the f i r s t element o f the tuple , Id (For example : c19)
i s the SDD.XML Categor i ca lCharac te r ID and the l a s t one

i s the node i t s e l f .
131 Example :
132 {u ’ c19 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /node /396 ’)

] ,
133 u ’ c18 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /node /395 ’)

] ,
134 u ’ c5 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/ data /node /400 ’)

]}
135 ”””
136

137 gdb = GraphDB ()
138 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()
139

140 if GDBConn is not None :
141

142 # Dict ionary f o r a l l c h a r a c t e r s nodes
143 CharactersNodes = {}
144

145 for ID , Character in Characters . iteritems () :
146

147 # Create s t a t e d e f i n i t i o n node
148 node = GDBConn . create ({ ’label’ : Character . label ,
149 ’detail’ : Character . detail ,
150 ’sourceId’ : ID ,
151 ’type’ : str (NodeTypes . description) })
152

153 # Add node to Dic t ionary
154 CharactersNodes [ID] = node
155

156 return CharactersNodes
157

158 else :

A.7. GraphImporter.py 93

159 print msg
160 return None
161

162

163 def __JoinTaxonsNodesTreeStructureRecursion (self ,
TaxonsNodes , subTree , parentNode) :

164

165 gdb = GraphDB ()
166 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()
167

168 if GDBConn is not None :
169

170 if subTree . nodes :
171

172 # Create Hypothet i ca l Taxonomic Unit node
173 htuNode , = GDBConn . create ({ ’label’ : str (NodeTypes . HTU

) ,
174 ’type’ : str (NodeTypes . HTU) })
175

176 # Join Hypothet i ca l Taxonomic Unit node to i t s parent
node

177 parentNode . create_relationship_to (htuNode , str (
RelationshipTypes . TreeEdge) , { "type" : str (
RelationshipTypes . TreeEdge) })

178

179 for n in subTree . nodes :
180 self . __JoinTaxonsNodesTreeStructureRecursion (

TaxonsNodes , n , htuNode)
181

182 else :
183 # Get Taxonomic Unit (taxon name) a l r eady created ,

passed through TaxonsNodes d i c t i o n a r y
184 tuNode = TaxonsNodes [subTree . value] [0]
185

186 # Join Taxonomic Unit node to i t s parent node
187 parentNode . create_relationship_to (tuNode , str (

RelationshipTypes . TreeEdge) , { "type" : str (
RelationshipTypes . TreeEdge) })

94 Appendix A. Demonstration

188

189 else :
190 print msg
191 return None
192

193

194 def __JoinTaxonsNodesTreeStructure (self , TaxonsNodes , Tree
) :

195 ”””
196 Join taxons nodes with the Newick t r e e s t r u c t u r e .
197 ”””
198

199 gdb = GraphDB ()
200 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()
201

202 if GDBConn is not None :
203

204 self . __JoinTaxonsNodesTreeStructureRecursion (TaxonsNodes
, Tree , gdb . getRootNode ())

205

206 else :
207 print msg
208 return None
209

210

211 def ImportUsingTaxonCharacterStateSchema (self) :
212 ”””
213 Schema : Taxon(Node) −> Categor i ca lCharac te r (Edge) −>

S t a t e D e f i n i t i o n (Node)
214 ”””
215

216 # Parse the SDD−XML f i l e
217 SDDFile = minidom . parse (self . SDDFilename)
218

219 SDD = SDDParser (SDDFile)
220

221 CategoricalCharacters = SDD . CategoricalCharacters
222 CodedDescriptions = SDD . CodedDescriptions

A.7. GraphImporter.py 95

223

224 # Create Taxons nodes in the Graph DB
225 TaxonsNodes = self . __CreateTaxonsNodes (SDD .

CodedDescriptions)
226

227 # Join Taxons nodes in a t r e e s t r u c t u r e
228 treeOutput = TreeOutput (self . TreeFilename)
229 tree = treeOutput . getTaxonsTreeStructure ()
230 self . __JoinTaxonsNodesTreeStructure (TaxonsNodes , tree)
231

232 # Create State D e f i n i t i o n nodes in the Graph DB
233 StateDefinitionsNodes = self . __CreateStateDefinitionNodes (

SDD . getAllSates ())
234

235 for key , CodedDescription in CodedDescriptions . iteritems ()
:

236

237 # Check i f the g iven key e x i s t s in the d i c t i o n a r y .
Otherwise does not proceed by c r e a t i n g the
r e l a t i o n s h i p

238 if CodedDescription . Representation . label in TaxonsNodes :
239

240 for key , SummaryData in CodedDescription . SummaryData .
iteritems () :

241

242 States = CategoricalCharacters [SummaryData . ref] . States
243

244 for StateRef in SummaryData . States :
245

246 # Check i f the g iven key e x i s t s in the d i c t i o n a r y .
Otherwise does not proceed by c r e a t i n g the
r e l a t i o n s h i p

247 if StateRef in StateDefinitionsNodes :
248

249 taxonNode = TaxonsNodes [CodedDescription .
Representation . label] [0]

250 StateDefinitionsNode = StateDefinitionsNodes [
StateRef] [0]

96 Appendix A. Demonstration

251

252 CategoricalCharacter = CategoricalCharacters [
SummaryData . ref] . Representation

253 CategoricalCharacterDetail = CategoricalCharacter .
detail if CategoricalCharacter . detail else ""

254 relationshipType = CategoricalCharacter . label .
replace (’ ’ , ’_’)

255

256

257 # Join Taxon nodes to State D e f i n i t i o n node us ing
Categor i ca lCharac te r . l a b e l as r e l a t i o n s h i p

258 taxonNode . create_relationship_to (
StateDefinitionsNode , relationshipType , { "label
" : relationshipType ,

259 "type" : str (
RelationshipTypes . descriptor
) ,

260 "Detail" :
CategoricalCharacterDetail }
)

261

262

263 def ImportUsingTaxonStateCharacterSchema (self) :
264 ”””
265 Schema : Taxon (Node) −> S t a t e D e f i n i t i o n (Edge) −>

Categor i ca lCharac te r (Node)
266 ”””
267

268 # Parse the SDD−XML f i l e
269 SDDFile = minidom . parse (self . SDDFilename)
270

271 SDD = SDDParser (SDDFile)
272

273 CategoricalCharacters = SDD . CategoricalCharacters
274 CodedDescriptions = SDD . CodedDescriptions
275

276 # Create Taxons nodes in the Graph DB

A.7. GraphImporter.py 97

277 TaxonsNodes = self . __CreateTaxonsNodes (SDD .
CodedDescriptions)

278

279 # Join Taxons nodes in a t r e e s t r u c t u r e
280 treeOutput = TreeOutput (self . TreeFilename)
281 tree = treeOutput . getTaxonsTreeStructure ()
282 self . __JoinTaxonsNodesTreeStructure (TaxonsNodes , tree)
283

284 # Create Characters nodes in the Graph DB
285 CharactersNodes = self . __CreateCharacterNodes (SDD .

getAllCharacters ())
286

287 for key , CodedDescription in CodedDescriptions . iteritems ()
:

288

289 # Check i f the g iven key e x i s t s in the d i c t i o n a r y .
Otherwise does not proceed by c r e a t i n g the
r e l a t i o n s h i p .

290 if CodedDescription . Representation . label in TaxonsNodes :
291

292 for key , SummaryData in CodedDescription . SummaryData .
iteritems () :

293

294 # Check i f the g iven key e x i s t s in the d i c t i o n a r y .
Otherwise does not proceed by c r e a t i n g the
r e l a t i o n s h i p .

295 if SummaryData . ref in CharactersNodes :
296

297 States = CategoricalCharacters [SummaryData . ref] .
States

298

299 for StateRef in SummaryData . States :
300

301 taxonNode = TaxonsNodes [CodedDescription .
Representation . label] [0]

302 CharacterNode = CharactersNodes [SummaryData . ref] [0]
303

304 StateDefinition = States [StateRef] . Representation

98 Appendix A. Demonstration

305 StateDefinitionDetail = StateDefinition . detail if
StateDefinition . detail else ""

306 relationshipType = StateDefinition . label . replace (’ ’
, ’_’)

307

308 # Join Taxon nodes to Cat ego r i c a l Character node
us ing S t a t e D e f i n i t i o n . l a b e l as r e l a t i o n s h i p

309 taxonNode . create_relationship_to (CharacterNode ,
relationshipType , { "label" : relationshipType ,

310 "type" : str (RelationshipTypes .
descriptor) ,

311 "Detail" : StateDefinitionDetail }
)

A.8. SimilarityIndex.py 99

A.8 SimilarityIndex.py

1 from __future__ import division
2 import codecs
3 from py2neo import rest , neo4j , cypher
4 from GraphDB import ∗
5 from NodeAndRelationshipTypes import ∗
6

7 class SimilarityIndex :
8

9 def CalculateIndex (self , gdb , n1 , n2) :
10

11 TAaux = gdb . getIncomingAdjacentNodes (n1)
12 TBaux = gdb . getIncomingAdjacentNodes (n2)
13

14 TA = []
15 for n in TAaux : TA . append (n [0])
16

17 TB = []
18 for n in TBaux : TB . append (n [0])
19

20 setTA = set (TA)
21 setTB = set (TB)
22

23 S1 = len (setTA & setTB) / max (len (setTA) , len (setTB
))

24

25 TE1aux = gdb . getIncomingAdjacentRelationships (n1)
26 TE2aux = gdb . getIncomingAdjacentRelationships (n2)
27

28 TE1 = []
29 for r in TE1aux : TE1 . append (r [0] ["label"])
30

31 TE2 = []
32 for r in TE2aux : TE2 . append (r [0] ["label"])
33

34 setTE1 = set (TE1)
35 setTE2 = set (TE2)

100 Appendix A. Demonstration

36

37 S2 = len (setTE1 & setTE2) / max (len (setTE1) , len (
setTE2))

38

39 SI = (0 . 25 ∗ S1 + 0 . 75 ∗ S2)
40

41 return SI
42

43

44 def CompareStudies (self , TreeRootStudyA , TreeRootStudyB ,
LowerBoundary , JSONFilename) :

45 ”””
46 I t c a l c u l a t e s the S i m i l a r i t y Index f o r a l l c h a r a c t e r s

between two s t u d i e s tak ing them two by two . Only SI
g r e a t e r or equal to LowerBoundary are exported in to the
g iven Json f i l e .

47 Args :
48 TreeRootStudyA : Study A t r e e root .
49 TreeRootStudyB : Study B t r e e root .
50 LowerBoundary : Lower Boundary cond i t i on .
51 JSONFilename : Filename where the JSON data should be saved .
52 ”””
53

54 gdb = GraphDB ()
55

56 rangeA = gdb . getDescriptionNodesOfATree (TreeRootStudyA)
57 rangeB = gdb . getDescriptionNodesOfATree (TreeRootStudyB)
58

59 Similarity = SimilarityIndex ()
60

61 JSON = "["
62

63 for i in rangeA :
64

65 ni = gdb . getNode (i)
66

67 JSON = JSON + "\n" + ’{’ + "\"name\": \"{0}\" , \"imports
\": [" . format ("root." + ni ["label"])

A.8. SimilarityIndex.py 101

68

69 imports = False
70

71 for j in rangeB :
72

73 nj = gdb . getNode (j)
74

75 SI = Similarity . CalculateIndex (gdb , ni , nj)
76

77 if LowerBoundary <= SI :
78 JSON = JSON + "\"{0}\", " . format ("root." + nj ["label"])
79 imports = True
80

81 if imports :
82 # Remove the l a s t comma
83 JSON = JSON [:−2]
84

85 JSON = JSON + "]},"
86

87 for j in rangeB :
88 nj = gdb . getNode (j)
89 JSON = JSON + "\n" + ’{’ + "\"name\": \"{0}\" , \"imports

\": []" . format ("root." + nj ["label"]) + ’},’
90

91 # Remove the l a s t comma
92 JSON = JSON [:−1]
93

94 JSON = JSON + "\n]"
95

96 text_file = open (JSONFilename , "w")
97 text_file . write (JSON)
98 text_file . close ()

102 Appendix A. Demonstration

A.9 TraceEvolutionaryHistory.py

1 import codecs
2

3 from py2neo import rest , neo4j , cypher
4 from GraphDB import ∗
5 from NodeAndRelationshipTypes import ∗
6

7 class TraceEvolutionaryHistory :
8

9 def BottomUpAggregation (self , gdb , node) :
10 ”””
11 This method s t a r t s from anywhere in the t r e e and goes down

u n t i l reach Operat iona l Taxonomic Unit (OTU) nodes .
When i t happens , the method b a s i c a l l y r e t r i e v e s a l l
outgoing r e l a t i o n s h i p s from the reached OTU node and
s t a r t going back toward the root . When the method i s
t r a v e r s i n g i n t e r n a l nodes (Hypothet i ca l Taxonomic Units
) from the l e a v e s back toward the root i t per forms an
union opera t i on with a l l c h i l d r e n nodes outgoing
r e l a t i o n s h i p s − i . e . , r e l a t i o n s h i p s o f the same type
are ignored − and then f o r each r e l a t i o n s h i p in the
union the method c r e a t e s a r e l a t i o n s h i p o f the same
type changing the s t a r t i n g node to i t s e l f and the end
node remains the same . In the end , the method r e tu rn s
a l l r e l a t i o n s h i p s outgoing from the given node .

12 Returns : Outgoing r e l a t i o n s h i p s o f the g iven node . In case
the g iven node i s an OTU, i t r e tu rn s only the

character−s t a t e s r e l a t i o n s h i p s from the given node to
cha rac t e r nodes .

13 In case the g iven node i s an HTU, the method re tu rn s a l l
outgoing r e l a t i o n s h i p s r e s u l t e d from the union o f i t s
c h i l d r e n nodes outgoing r e l a t i o n s h i p s .

14 ”””
15

16 if node ["type"] != NodeTypes . OTU and node ["type"] !=
NodeTypes . description :

17

A.9. TraceEvolutionaryHistory.py 103

18 NeighborsNodes = gdb . getOutgoingAdjacentNodes (node)
19

20 relationships = []
21

22 for neighbor in NeighborsNodes :
23

24 rels = self . BottomUpAggregation (gdb , neighbor [0])
25

26 relationships . append (rels)
27

28 # At t h i s po int we have a l l c h i l d r e n nodes r e l a t i o n s h i p s .
In such a case , we can implement the f i r s t part o f

the a lgor i thm which i s d u p l i c a t e a l l r e l a t i o n s h i p s (
union o f c h i l d r e n nodes r e l a t i o n s h i p s) in the g iven
node .

29

30 for rels in relationships :
31

32 if rels is not None :
33

34 for rel in rels :
35

36 if rel [0] ["type"] == str (RelationshipTypes .
descriptor) :

37

38 relType = rel [0] . type . encode (’ascii’ , ’ignore’)
39

40 startNode = node
41 endNode = rel [0] . end_node
42

43 # c r e a t i n g new r e l a t i o n s h i p s only where nece s sa ry
44 gdb . getPy2neoGraphDatabaseService () [0] .

get_or_create_relationships ((startNode , relType
, endNode , { "type" : str (RelationshipTypes .
descriptor) }))

45

46

47 return gdb . getOutgoingRelationships (node)

104 Appendix A. Demonstration

48

49

50 def TopDownRefining (self , gdb , node) :
51 ”””
52 This method e s s e n t i a l l y should be c a l l e d j u s t a f t e r the

BottomUpAggregation method pass ing the same s t a r t i n g
node provided in BottomUpAggregation method . I t s t a r t s
from the g iven node (gn) back down the t r e e and in
every HTU i t t r a v e r s e s i t compare the character−s t a t e s
s t a r t i n g from i t s e l f (gn) and po in t ing to a given
cha rac t e r (chaN) with every character−s t a t e s that
s t a r t s in i t s c h i l d r e n nodes (chiN) and po in t s to the
same charac t e r node (chaN) f o r a l l cha rac t e r nodes i t (
gn) po in t s to . In case the comparation r e s u l t i s not
empty − i . e . the s e t d i f f e r e n c e between the chatacter−
s t a t e s s t a r t i n g from the g iven node (gn) and the s e t o f

character−s t a t e s s t a r t i n g from the c h i l d r e n node (chiN
) i s not empty − i t c r e a t e s a edge c a l l e d ’ EvolvedTrait
’ from i t s e l f (gn) to the g iven cha rac t e r (chaN) .

53 ”””
54

55 if node ["type"] != NodeTypes . OTU and node ["type"] !=
NodeTypes . description :

56

57 NeighborNodes = gdb . getOutgoingAdjacentNodes (node)
58

59 tuNeighborNodes = []
60 descriptionNeighborNodes = []
61

62 for n in NeighborNodes :
63

64 if n [0] ["type"] == NodeTypes . HTU or n [0] ["type"] ==
NodeTypes . OTU :

65

66 tuNeighborNodes . append (n)
67

68 elif n [0] ["type"] == NodeTypes . description :
69

A.9. TraceEvolutionaryHistory.py 105

70 descriptionNeighborNodes . append (n)
71

72 for tu in tuNeighborNodes :
73

74 for desc in descriptionNeighborNodes :
75

76 # Set Semantics
77 # http ://www. itmaybeahack . com/book/python−2.6/ html/p02/

p02c06 s e t s . html
78

79 nodeOutgoingRelationshipTypes = set (gdb .
getDistinctRelationshipsInBetween (node , desc [0])

)
80 descOutgoingRelationshipTypes = set (gdb .

getDistinctRelationshipsInBetween (tu [0] , desc [0])
)

81

82 # d i f f w i l l have e lements that e x i s t in
nodeOutgoingRelat ionshipTypes and does not e x i s t s in

descOutgoingRelat ionshipTypes
83 diff = nodeOutgoingRelationshipTypes −

descOutgoingRelationshipTypes
84

85 # Removes EvolvedTrait r e l a t i o n s h i p
86 Difference = diff − set ([str (RelationshipTypes .

EvolvedTrait)])
87

88 if 0 < len (Difference) :
89

90 # Creates a new type o f r e l a t i o n s h i p (EvolvedTrait)
which are the t r a i t s that changed from node to htu

91 startNode = node
92 endNode = desc [0]
93 relType = str (RelationshipTypes . EvolvedTrait)
94

95 gdb . getPy2neoGraphDatabaseService () [0] .
get_or_create_relationships ((startNode , relType ,
endNode , { "type" : relType }))

106 Appendix A. Demonstration

96

97

98 gdb . deleteRelationshipsTypeFromNode (node , str (
RelationshipTypes . descriptor))

99

100

101 for tu in tuNeighborNodes :
102 self . TopDownRefining (gdb , tu [0])
103

104

105 def __JSONencodingRecursion (self , gdb , node , TraitNodes ,
nesting) :

106 ”””
107 I t i s part o f the JSONencoding method .
108 Args :
109 node : Given node .
110 TraitNodes : I s the l i s t o f cha rac t e r nodes that node ’ s

parent has a ’ EvolvedTrait ’ edge po in t ing to .
111 ne s t i ng : I s the space (padding) on the l e f t .
112 Returns : JSON s t r i n g .
113 ”””
114

115 if node ["type"] != NodeTypes . OTU and node ["type"] !=
NodeTypes . description :

116

117 EvolvedTraitNodes = gdb .
getIncomingAdjacentNodesWithRelationshipInBetween (
node , str (RelationshipTypes . EvolvedTrait))

118

119 NeighborNodes = gdb .
getIncomingAdjacentNodesWithRelationshipInBetween (
node , str (RelationshipTypes . TreeEdge))

120

121 json = ’’
122 json = json + "\n" + ’ ’ . ljust (nesting) + "{"
123

124 json = json + "\n" + ’ ’ . ljust (nesting + 2) + "\"{0}\"
: \"{1}\"," . format ("otu" , NodeTypes . OTU)

A.9. TraceEvolutionaryHistory.py 107

125 json = json + "\n" + ’ ’ . ljust (nesting) + "\"parents\"
: ["

126

127 for nn in NeighborNodes :
128

129 result = self . __JSONencodingRecursion (gdb , nn [0] ,
EvolvedTraitNodes , nesting + 2)

130

131 json = json + result + ","
132

133 # Remove the l a s t comma
134 json = json [:−1]
135

136 json = json + "\n" + ’ ’ . ljust (nesting) + "]"
137 json = json + "\n" + ’ ’ . ljust (nesting) + "}"
138

139 return json
140

141 elif node ["type"] == NodeTypes . OTU :
142

143 json = ’’
144 json = json + "\n" + ’ ’ . ljust (nesting) + "{"
145 json = json + "\n" + ’ ’ . ljust (nesting + 2) + "\"{0}\"

: \"{1}\"," . format ("otu" , node ["label"])
146

147 i = 0
148 for trait in TraitNodes :
149

150 descriptions = gdb . getDistinctRelationshipsInBetween (
node , trait [0])

151

152 for desc in descriptions :
153

154 json = json + "\n" + ’ ’ . ljust (nesting + 2) + "
\"{0}{1}\" : \"{2}\"," . format (RelationshipTypes .
descriptor , str (i) , trait [0] ["label"] . encode (’
ascii’ , ’ignore’))

108 Appendix A. Demonstration

155 json = json + "\n" + ’ ’ . ljust (nesting + 2) + "
\"{0}{1}\" : \"{2}\"," . format (NodeTypes . description

, str (i) , desc . encode (’ascii’ , ’ignore’) . replace ("_
" , " "))

156 i = i + 1
157

158 # Remove the l a s t comma
159 json = json [:−1]
160

161 json = json + "\n" + ’ ’ . ljust (nesting) + "}"
162

163 return json
164

165

166 def JSONencoding (self , JSONFilename , startNode) :
167 ”””
168 I t expor t s to a JSON format the t r e e s t r u c t u r e with a l l

c h a r a c t e r s the a lgor i thm f l ag g ed with ’ EvolvedTrait ’
edge .

169 Args :
170 JSONFilename : Filename where the JSON data should be

saved .
171 startNode : Node from where the data s t a r t being c o l l e c t e d

.
172

173 ”””
174

175 gdb = GraphDB ()
176

177 json = self . __JSONencodingRecursion (gdb , startNode , [] ,
0)

178

179 text_file = open (JSONFilename , "w")
180 text_file . write (json)
181 text_file . close ()

