
Bruno Cardoso Lopes

“Design and evaluation of compact ISAs”

“Estudo e avaliação de conjuntos de instruções
compactos”

CAMPINAS
2014

i

ii

University of Campinas
Institute of Computing

Universidade Estadual de Campinas

Instituto de Computação

Bruno Cardoso Lopes

“Design and evaluation of compact ISAs”

Supervisor:
Orientador(a):

Prof. Dr. Rodolfo Jardim de Azevedo

“Estudo e avaliação de conjuntos de instruções

compactos”

PhD Thesis presented to the Post Gradu-
ate Program of the Institute of Computing
of the University of Campinas to obtain a
Doutor degree in Computer Science.

Tese de Doutorado apresentada ao Programa de
Pós-Graduação em Ciência da Computação do
Instituto de Computação da Universidade Es-
tadual de Campinas para obtenção do t́ıtulo de
Doutor em Ciência da Computação.

This volume corresponds to the fi-

nal version of the Thesis defended

by Bruno Cardoso Lopes, under the

supervision of Prof. Dr. Rodolfo

Jardim de Azevedo.

Este exemplar corresponde

`

a vers

˜

ao fi-

nal da Tese defendida por Bruno Car-

doso Lopes, sob orientaç

˜

ao de Prof. Dr.

Rodolfo Jardim de Azevedo.

Supervisor’s signature / Assinatura do Orientador(a)

CAMPINAS
2014

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Maria Fabiana Bezerra Muller - CRB 8/6162

 Lopes, Bruno Cardoso, 1985-
 L881d LopDesign and evaluation of compact ISAs / Bruno Cardoso Lopes. – Campinas,

SP : [s.n.], 2014.

 LopOrientador: Rodolfo Jardim de Azevedo.
 LopTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Lop1. Arquitetura de computador. 2. Sistemas embutidos de computador. 3.

Compressão de dados (Computação). 4. Compiladores (Computadores). I.
Azevedo, Rodolfo Jardim de,1974-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Estudo e avaliação de conjuntos de instruções compactos
Palavras-chave em inglês:
Computer architecture
Embedded computer systems
Data compression (Computer science)
Compiling (Electronic computers)
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Rodolfo Jardim de Azevedo [Orientador]
Jorge Luiz e Silva
Roberto A Hexel
Guido Costa Souza de Araujo
Mario Lucio Cortes
Data de defesa: 14-03-2014
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

iv

http://www.tcpdf.org

Institute of Computing /Instituto de Computação
University of Campinas /Universidade Estadual de Campinas

Design and evaluation of compact ISAs

Bruno Cardoso Lopes1

March 14, 2014

Examiner Board/Banca Examinadora:

• Prof. Dr. Rodolfo Jardim de Azevedo (Supervisor/Orientador)

• Prof. Dr. Jorge Luis e Silva
ICMC - USP São Carlos

• Prof. Dr. Roberto A. Hexsel
DI - UFPR

• Prof. Dr. Guido Araújo
IC - UNICAMP

• Prof. Dr. Mário Lúcio Côrtes
IC - UNICAMP

1Financial support: CNPQ 131894/2008-0, CAPES 2009 and FAPESP 2009/02270-0

vii

Abstract

Modern embedded devices are composed of heterogeneous SoC systems ranging from low
to high-end processor chips. Although RISC has been the traditional processor for these
devices, the situation changed recently; manufacturers are building embedded systems
using both RISC - ARM and MIPS - and CISC processors (x86). New functionalities
in embedded software require more memory space, an expensive and rare resource in
SoCs. Hence, executable code size is critical since performance is directly affected by
instruction cache misses. CISC processors used to have a higher code density than RISC
since variable length encoding benefits most used instructions, yielding smaller programs.
However, with the addition of new extensions and longer instructions, CISC density in
recent applications became similar to RISC. In this thesis, we investigate compressibility
of RISC and CISC processors, namely SPARC and x86. We propose a 16-bit extension
to the SPARC processor, the SPARC16. Additionally, we provide the first methodology
for generating 16-bit ISAs and evaluate compression among different 16-bit extensions.
SPARC16 programs can achieve better compression ratios than other ISAs, attaining
results as low as 67%. SPARC16 also reduces cache miss rates up to 9%, requiring
smaller caches than SPARC processors to achieve the same performance; a cache size
reduction that can reach a factor of 16. Furthermore, we study how new extensions
are constantly introducing new functionalities to x86, leading to the ISA bloat at the
cost a complex microprocessor front-end design, area and energy consumption - the x86
ISA reached over 1300 different instructions in 2013. Moreover, analyzed x86 code from
5 Windows versions and 7 Linux distributions in the range from 1995 to 2012 shows
that up to 57 instructions get unused with time. To solve this problem, we propose a
mechanism to recycle instruction opcodes through legacy instruction emulation without
breaking backward software compatibility. We present a case study of the AVX x86 SIMD
instructions with shorter instruction encodings from other unused instructions to yield up
to 14% code size reduction and 53% instruction cache miss reduction in SPEC CPU2006
floating-point programs. Finally, our results show that up to 40% of the x86 instructions
can be removed with less than 5% of overhead through our technique without breaking
any legacy code.

ix

Resumo

Sistemas embarcados modernos são compostos de SoC heterogêneos, variando entre pro-
cessadores de baixo e alto custo. Apesar de processadores RISC serem o padrão para estes
dispositivos, a situação mudou recentemente: fabricantes estão construindo sistemas em-
barcados utilizando processadores RISC - ARM e MIPS - e CISC (x86). A adição de
novas funcionalidades em software embarcados requer maior utilização da memória, um
recurso caro e escasso em SoCs. Assim, o tamanho de código executável é cŕıtico, por-
que afeta diretamente o número de misses na cache de instruções. Processadores CISC
costumavam possuir maior densidade de código do que processadores RISC, uma vez que
a codificação de instruções com tamanho variável beneficia as instruções mais usadas, os
programas são menores. No entanto, com a adição de novas extensões e instruções mais
longas, a densidade do CISC em aplicativos recentes tornou-se similar ao RISC. Nesta tese
de doutorado, investigamos a compressibilidade de processadores RISC e CISC; SPARC
e x86. Nós propomos uma extensão de 16-bits para o processador SPARC, o SPARC16.
Apresentamos também, a primeira metodologia para gerar ISAs de 16-bits e avaliamos
a compressão atingida em comparação com outras extensões de 16-bits. Programas do
SPARC16 podem atingir taxas de compressão melhores do que outros ISAs, atingindo
taxas de até 67%. O SPARC16 também reduz taxas de cache miss em até 9%, podendo
usar caches menores do que processadores SPARC mas atingindo o mesmo desempenho;
a redução pode chegar à um fator de 16. Estudamos também como novas extensões cons-
tantemente introduzem novas funcionalidades para o x86, levando ao inchaço do ISA -
com o total de 1300 instruções em 2013. Além disso, 57 instruções se tornam inutilizadas
entre 1995 e 2012. Resolvemos este problema propondo um mecanismo de reciclagem
de opcodes utilizando emulação de instruções legadas, sem quebrar compatibilidade com
softwares antigos. Inclúımos um estudo de caso onde instruções x86 da extensão AVX são
recodificadas usando codificações menores, oriundas de instruções inutilizadas, atingindo
até 14% de redução no tamanho de código e 53% de diminuição do número de cache
misses. Os resultados finais mostram que usando nossa técnica, até 40% das instruções
do x86 podem ser removidas com menos de 5% de perda de desempenho.

xi

Agradecimentos

Dedico esta tese aos meus avós, meus grandes ı́dolos: João, Carmem, José Galino e Dulce.
Vocês me ensinaram a importância da humildade, da fé e da conexão entre as pessoas que
amamos. Esta conquista é um pedaço de cada um de vocês.

מלבדו עוד Nאי

א Não existem palavras suficientes para expressar a gratidão e admiração que tenho
pelos meus pais Salso e Ĺıdia e à minha irmã Ĺıvia. Meus espelhos. Vos agradeço
por tudo, especialmente por acreditarem em mim e me apoiarem por todo esse
caminho. Amo vocês. À Aninha, que participou de perto e carinhosamente sempre
me incentivou a seguir em frente. À toda minha famı́lia, tios e primos, por todo
carinho e suporte.

ב Ao meu irmão Thiago, que me introduziu à computação na infância, me mostrando
os primeiros hacks. Sem sua influência eu nunca teria me tornado um cientista.
Sem tua companhia, meu amigo, jamais haveria um primeiro passo em direção aos
degraus do Alt́ıssimo.

ג Ao Leonardo Ecco e ao Rafael Auler pela amizade e por toda dedicação ao trabalho
em equipe. Esta tese é fruto do nosso trabalho.

ד Aos meus amigos de laboratório: Ecco, Piga, Max, Gabs, Janjão, Auler, Baldas,
Klein, George, Nicácio, Raoni e Luiz. Aprendi e me diverti muito com vocês.

ה Aos meus amigos da Mansão Wayne: Thiago, João, Gabriel, Ferrugem e Dilly. De-
pois de tantos anos de conversas sinceras noite adentro, companheirismo e amizade,
mais um ciclo se fecha. Vocês me ensinaram muito, serei sempre grato, a lembrança
destes tempos será eterna.

ו Ao meu orientador Rodolfo, pela qualidade da orientação e por me ensinar a fazer
ciência. Às agências de fomento à pesquisa Capes 03/2009-06/2009 e Fapesp
2009/02270-0.

ז Às Nuvens Inviśıveis; não existe inspiração sem música.

xiii

Contents

Abstract ix

Resumo xi

Agradecimentos xiii

1 Introduction 1
1.1 RISC: SPARC16 . 2
1.2 CISC: The x86 recycling mechanism . 3
1.3 Contributions . 4
1.4 Organization . 5
1.5 Considerations . 5

2 Basic Concepts and Related Work 7
2.1 Definitions . 7
2.2 The SPARC Architecture . 8

2.2.1 Instructions . 8
2.2.2 Registers . 10
2.2.3 ABI . 11

2.3 The x86 ISA . 13
2.3.1 Instructions . 13
2.3.2 Execution Modes . 14
2.3.3 Registers . 14
2.3.4 ISA Extensions . 15
2.3.5 Implementation . 15

2.4 Code Compression . 16
2.4.1 Software . 16
2.4.2 Hardware . 17

2.5 ISA re-encoding . 19
2.5.1 Thumb and Thumb2 . 20

xv

2.5.2 MIPS16 and MicroMIPS . 21
2.6 Compiler Optimizations . 22
2.7 Compression techniques summary . 24

3 Motivation 29
3.1 Code Size Evaluations . 29
3.2 ISA aging problem . 31

4 A methodology to create 16-bit extensions 35
4.1 Methodology . 35
4.2 Static Analysis . 36

4.2.1 ISA Usage . 36
4.2.2 Immediate and Register Encoding 37

4.3 Dynamic analysis . 41
4.4 Integer Linear Programming Model . 41
4.5 Considerations . 45

5 SPARC16 47
5.1 Instructions . 47

5.1.1 Calls and Branches . 48
5.1.2 Load and Store . 48
5.1.3 Mode exchange . 49
5.1.4 The EXTEND mechanism . 50
5.1.5 SETHI instruction . 51
5.1.6 Alignment restrictions . 51

5.2 Registers . 51
5.3 Application Binary Interface . 52
5.4 Hardware . 53
5.5 Emulator . 54
5.6 Toolchain . 55

5.6.1 Compiler Frontend and Backend . 55
5.6.2 Linker . 55
5.6.3 C Library . 56
5.6.4 The compilation and execution flow 56

5.7 Compiler Optimizations . 57
5.7.1 Delay slots . 57
5.7.2 Instruction size reducer . 58
5.7.3 Assembler relaxation . 58
5.7.4 Mixed Stack Access . 59

xvii

5.8 Evaluation . 61
5.8.1 Compression Ratios . 61
5.8.2 Instruction Cache Behavior . 63
5.8.3 Performance Estimation . 64

5.9 Considerations . 67

6 The X86 Recycling Mechanism 69
6.1 Radical Approaches . 69

6.1.1 (A) Reduce all Operation Codes to 2 bytes 70
6.1.2 (B) Reduce all Operation Codes to 1 or 2 bytes 70
6.1.3 (C) Convert to a RISC-like ISA encoding 71
6.1.4 Evaluation . 71
6.1.5 Re-encoding and Backward Compatibility 72

6.2 Recycling mechanism . 73
6.2.1 Instruction lifetime cycle . 73
6.2.2 Operation Code Revisions and Orthogonality 74
6.2.3 Backward compatibility . 76
6.2.4 Revision Vector and Trap Mask . 76
6.2.5 Trap Mechanism . 78

6.3 Hardware . 80
6.3.1 Page Table extension . 80
6.3.2 Processor Front-end . 81
6.3.3 Verification . 82
6.3.4 ISA Domain Specialization . 82

6.4 Software . 82
6.4.1 Assembler and Linker . 82
6.4.2 Operating System Loader . 82
6.4.3 Emulation Routines . 83

6.5 Security implications . 83
6.6 Limitations . 84
6.7 Evaluation . 84

6.7.1 Methodology . 84
6.7.2 Static Analysis . 86
6.7.3 Dynamic Analysis . 88
6.7.4 Performance Impact . 89
6.7.5 Case study: AVX Re-encoding . 93

6.8 Considerations . 95

xix

7 Conclusion 97
7.1 Contributions . 98
7.2 Publications . 99
7.3 Future Work . 100

Bibliography 101

A Static Analysis 111
A.1 Instruction Usage By Group . 111

B SPARC16 ISA 115
B.1 List of SPARC16 Instructions . 115

B.1.1 ADDCCri, ADDCCri ext, ADDCCrr, ADDri, ADDri ext, ADDrr . 115
B.1.2 ADDFP, ADDFP ext . 116
B.1.3 ADDSP, ADDSP ext . 116
B.1.4 ADDXri, ADDXri ext, ADDXrr . 116
B.1.5 ANDri, ANDri ext, ANDrr . 117
B.1.6 ANDNrr . 117
B.1.7 BCC, BCC ext . 118
B.1.8 BA, BA ext . 118
B.1.9 BE, BE ext . 118
B.1.10 BNE, BNE ext . 119
B.1.11 CALL, CALL ext . 119
B.1.12 CALLR . 119
B.1.13 CALLRX . 119
B.1.14 CALLX, CALLX ext . 120
B.1.15 CMPri, CMPri ext, CMPrr . 120
B.1.16 JMPR . 120
B.1.17 JMPRX . 121
B.1.18 LDri, LDri ext, LDrr . 121
B.1.19 LDFP, LDFP ext . 121
B.1.20 LDSBri, LDSBri ext, LDSBrr . 122
B.1.21 LDSHri, LDSHri ext, LDSHrr . 122
B.1.22 LDSP, LDSP ext . 122
B.1.23 LDUBri, LDUBri ext, LDUBrr . 123
B.1.24 LDUHri, LDUHri ext, LDUHrr . 123
B.1.25 MOV, MOV ext . 124
B.1.26 MOV8to32, MOVrr . 124
B.1.27 MOV32to8 . 124

xxi

B.1.28 NEGrr . 124
B.1.29 NOP . 125
B.1.30 ORri, ORri ext, ORrr . 125
B.1.31 ORNri, ORNri ext, ORNrr . 125
B.1.32 RDY . 126
B.1.33 RESTORErr, RESTORErr ext . 126
B.1.34 RET . 126
B.1.35 RETL . 126
B.1.36 SAVEri, SAVEri ext . 126
B.1.37 SDIVri, SDIVri ext, SDIVrr . 127
B.1.38 SETHIi . 127
B.1.39 SLLri, SLLrr . 127
B.1.40 SMULri, SMULri ext, SMULrr . 128
B.1.41 SRAri, SRArr . 128
B.1.42 SRLri, SRLrr . 129
B.1.43 STri, STri ext, STrr . 129
B.1.44 STBri, STBri ext, STBrr . 129
B.1.45 STFP, STFP ext . 130
B.1.46 STHri, STHri ext, STHrr . 130
B.1.47 STSP, STSP ext . 131
B.1.48 SUBrr . 131
B.1.49 SUBXri, SUBXri ext, SUBXrr . 131
B.1.50 tRESTORE . 132
B.1.51 UDIVri, UDIVri ext, UDIVrr . 132
B.1.52 UMULri, UMULri ext, UMULrr . 132
B.1.53 WRY . 133
B.1.54 XNORri, XNORri ext, XNORrr . 133
B.1.55 XORri, XORri ext, XORrr . 133

xxiii

List of Tables

2.1 SPARC opcode field encoding . 9
2.2 SPARC load and store data types and alignment 9
2.3 SPARC call and branch target computation 9
2.4 SPARC register window addressing . 10
2.5 X86 instruction encoding example . 13
2.6 Software decompression summary . 24
2.7 CDM techniques summary . 25
2.8 PDC techniques summary . 26
2.9 ISA re-encoding techniques summary . 26
2.10 Code compaction techniques summary . 27

3.1 X86 default floating-point emission type among distinct compilers 33

4.1 SPARC instruction usage - top 4 groups in mediabench 37
4.2 SPARC register usage statistics . 40
4.3 SPARC most executed instructions in mediabench and MiBench 42
4.4 Description of ILP fields and inputs . 43

5.1 SPARC16 formats . 47
5.2 SPARC16 EXTEND formats . 50
5.3 SPARC16 SETHI instruction . 51
5.4 SPARC16 registers . 52
5.5 SPARC16 compression ratios in mediabench, MiBench and SPEC CINT2006 61
5.6 SPARC16 speedup values against SPARC in MiBench’s rijndael program

for 128 and 4k byte cache sizes . 67

6.1 List of x86 operating systems and software 85
6.2 Number of unused x86 operation codes by size. There were no unused 1

and 2 bytes operation codes. 86

A.1 Instruction usage by groups – mediabench 112

xxv

A.2 Instruction usage by groups – MiBench . 113
A.3 Instruction usage by groups – Linux Kernel 114

xxvii

List of Figures

1.1 Program sizes and Code Compression techniques 2

2.1 SPARC Format 1 . 8
2.2 SPARC Format 2 . 8
2.3 SPARC Format 3 . 8
2.4 SPARC overlapping windows (extracted from [87]) 11
2.5 SPARC stack frame delimited by fp and sp 12
2.6 SPARC procedure calling example . 12
2.7 Intel IA-32e and IA-32 instruction formats 13
2.8 X86 32-bit general purpose registers . 14
2.9 Intel IA-32e extended page table entry format 16
2.10 Thumb and ARM ADD instructions . 20
2.11 Mapping between MIPS and MIPS16 instruction fields 21
2.12 MicroMIPS LW32 and LW16 instruction formats 22
2.13 MIPS32 and MicroMIPS instruction alignment 22

3.1 SPEC CINT2006 program sizes for several architectures 30
3.2 SPEC CINT2006 code size evaluations across sequential x86 releases 31
3.3 Number of x86 instructions and operation code size increase over the years 32
3.4 Percentage of the code size growth of SPEC floating point programs when

compiled with SSE and AVX relative to IA-x87. 33

4.1 SPARC instructions usage by groups . 37
4.2 Immediate size usage for SPARC format 3 instructions 38
4.3 Immediate size usage for SPARC format 1 and 2 instructions - calls and

branches . 39
4.4 SPARC register usage coverage . 41

5.1 Assembly mode exchange from SPARC16 and SPARC 49
5.2 Assembly mode exchange from SPARC and SPARC16 49
5.3 SPARC branch with exchange instruction: sparcv8bx 50

xxix

5.4 SPARC jump and link with exchange: jmplx 50
5.5 Unaligned SPARC16 SETHI instruction . 51
5.6 SPARC16 decompression diagram . 53
5.7 SPARC16 program emulation steps in QEMU 54
5.8 SPARC16 compilation and execution flow 56
5.9 SPARC16 delay slot fulfillment . 58
5.10 SPARC16 instruction size reducer . 59
5.11 SPARC16 mixed fp and sp optimization 60
5.12 Effect of optimizations in code size reduction of SPARC16 programs 62
5.13 Compression ratio comparison between SPARC16, Thumb2 and Mips16 . . 63
5.14 MiBench - SPARC and SPARC16 cache miss ratios 65
5.15 mediabench - SPARC and SPARC16 cache miss ratios 66
5.16 SPEC CINT2006 - SPARC and SPARC16 cache miss ratios 66
5.17 SPARC16 speedup against SPARC in MiBench’s rijndael program for dis-

tinct cache sizes . 67
5.18 SPARC and SPARC16 cache sizes without performance degradation 67

6.1 Windows 7 and Ubuntu 12 re-encoded using instruction frequency from (i)
a collection of operating systems and (ii) SPEC2006 programs 70

6.2 SPEC CPU2006 re-encoded by 3 radical changes to the x86 encoding . . . 71
6.3 Windows 7 and Ubuntu 12 re-encoded by approaches A and B using most

used instructions from sources (i) and (ii) 72
6.4 X86 operation code (OC) reuse and lifetime 74
6.5 Operation Code Revision . 75
6.6 The x86 operation code (OC) orthogonality and OCR’s 75
6.7 CPU generated traps via Trap Masks . 78
6.8 General trap mechanism using the Active Revision Vector 79
6.9 Intel IA-32e page table entry extended with the code version information. . 81
6.10 Linux and Windows OC count and outdated OCs over time 87
6.11 Linux and Windows dynamic outdated instruction count over time 89
6.12 A dynamic instruction frequency histogram sorted with respect to Win-

dows 95 instructions usage, compared to Windows 7 instructions usage, in
logarithm scale. Spikes show differences in usage pattern. 89

6.13 Performance overhead relative to the percentage of the ISA that is emulated
with emulation penalty of 200 instructions. 90

6.14 Maximum ISA emulation ratio when tolerating up to 5% of overhead and
using different emulation penalties. 91

6.15 Emulation experiment using Linux kernel modules and patched executables 92

xxxi

6.16 Percentage of extension instructions executed in Windows and Linux dy-
namic traces. 93

6.17 Total code size of SPEC 2006 floating point programs in different scenarios,
relative to the original AVX floating point arithmetic version. 94

6.18 Instruction cache misses of SPEC 2006 floating point programs with shorter
AVX encodings, relative to the original AVX encoding. 95

xxxiii

Chapter 1

Introduction

Modern embedded devices are heterogeneous and can be divided into three main cate-
gories: low, mid and high-end devices [86]. Low-end micro-controllers cost less than a
dollar while mid-end chips can cost anywhere between one and ten dollars. High-end
microprocessors are the most expensive, ranging from ten to a hundred dollars. Each cat-
egory targets a specific market [83]; from smart-card chips to complex full-fledged mobile
phones. Nowadays, these chips tend to be all-in-one computer chips, namely System-on-
Chip [10] (SoC), containing a processing core, memory and integrated peripherals.

A production cost of a SoC is proportional to the chip area (cost ≈ area4) [46] and is
mitigated by decreasing the number of integrated peripherals or by reducing internal mem-
ory capacity - main memory and processor caches. Applications, by adding new features,
demand extra memory or need at least the same amount as before - performance degra-
dation happens otherwise. For instance, high-end devices increasingly requires responsive
user interfaces, high level languages support and multitasking while low-end devices are
already highly constrained and cost sensitive to additional hardware resources. There-
fore, to reduce production cost, manufacturers need alternative ways to produce chips
that support new modern software with the minimum increase in memory capacity as
possible.

Code compression is a solution capable of providing a reduced alternative represen-
tation to program instructions, mitigating overall program memory consumption - thus
allowing production of chips with the same area but able of running more complex soft-
ware. Compression techniques reduce instructions during or after compilation and decom-
press them during execution, as illustrated in Figure 1.1. The instruction compression
effectiveness depends on the ISA encoding entropy: variable length versus fixed length
encodings. The former is dense and compact - shorter encodings are attributed to most
common instructions - while the latter has lower density and more opportunity [29] for
compression. This is the first main distinction between CISC [91] and RISC [80] ISAs;

1

2 Chapter 1. Introduction

the former are composed by variable length instructions and the second by fixed length
ones.

2KB, No Associativity
Instruction Cache

Original
Program

2.5 KB

Compressed
Program

1.8 KB

CPUCPU

RISC or CISC
processor

Compulsory
cache misses only

Compulsory and Capacity
cache misses

Code
Compression
Techniques

Decompressor

Figure 1.1: Program sizes and Code Compression techniques

RISC processors are traditionally the default core used in embedded SoC devices and
have strong potential for running code compressed applications; ARM [7] and MIPS [76]
are examples of RISC architectures used in low, mid and high-end devices. On the other
hand, the Intel x86 [52] ISA also targets embedded CISC architectures with the high-end
Atom [45] and low-end Quark [51] processors. However, the x86 ISA lost its CISC variable
length encoding properties: short encoding instructions from old ISA releases are now
legacy and superseded by long encoding instructions introduced in late ISA extensions.
Recent work [20] shows that CISC and RISC ISAs in modern embedded systems are
equivalent in performance and energy efficiency.

In this thesis we study code compression opportunities for both RISC and CISC pro-
cessors. We explore the memory consumption space issue and propose novel techniques
to enhance compressibility and performance.

1.1 RISC: SPARC16
Code compression can be implemented both in software and hardware [17]. In a solely
- compression and decompression - software approach there is always an associated per-
formance degradation cost during decompression. The hardware approach focuses on
decompression speed, usually at the cost of code size reduction. There are two different
approaches for hardware decompression, one that compresses instructions or blocks of the

1.2. CISC: The x86 recycling mechanism 3

program in an ad-hoc manner and other that tries to create an alternative encoding for
the instructions in a smaller size; reducing a 32-bit RISC ISA to a well-defined 16-bit
format. This thesis focuses on the latter approach to find a new encoding to the SPARC
ISA [87].

16-bit ISA extensions exist for RISC architectures such as MIPS and ARM, with
more details given in Chapter 2. However, existing implementations are commercial
products [24, 6, 57, 77, 31, 40, 50] and no published research presents how such extensions
were designed. We show how 16-bit extensions can be designed based on a specific case
study; the creation of a 16-bit extension to the SPARC ISA, the SPARC16 [33]. The
method includes an extensive static and dynamic analysis of several benchmarks and
binaries to find intrinsic ISA compression inefficiencies and opportunities. Also, an Integer
Linear Programming (ILP) model optimally assists in the creation of formats and field
encodings for the new 16-bit extension. A general method can be abstracted from our
case study and applied to other architectures.

Our compiler toolchain is based on LLVM [64] and Binutils [42] Open Source projects
and provides SPARC16 support for the whole toolchain: Frontend, Backend, Assembler
and Linker. The linker is capable of linking object files from SPARC and SPARC16 to-
gether, allowing usage of existing SPARC libraries. Target specific optimizations enhance
final SPARC16 code compressibility by exploring intrinsic 16-bit instructions properties.

The SPARC16 instructions are translated to their 32-bit counterparts during execu-
tion time by an additional hardware decompressor placed between the processor and the
instruction cache - this mechanism was implemented into Leon3, a SPARC compliant pro-
cessor. A SPARC16 emulator was developed to enable the testing of SPARC16 programs
while providing information to allow instruction cache evaluation.

Finally, we evaluate compression and performance results for SPARC16 and compare
the results with other related work. We also present compression ratio results achieved
for SPARC16 programs, which can be lower than most popular 16-bit extensions such as
MicroMIPS and Thumb2.

1.2 CISC: The x86 recycling mechanism
Old CISC ISAs like the IA-32 [52] suffer from the ISA aging problem: it is necessary
to add new instructions in the already occupied opcode space, and eventually the ISA
runs out of space for new opcodes. CISCs handle this problem by increasing instruction
length, while RISC ISAs may need a new processor mode – one in which the opcode space
is interpreted differently. For instance, modern x86 uses both approaches: it introduces
additional instruction prefixes to expand the opcode space and also uses another mode,
the IA-32e [52], to interpret instructions differently in the context of 64-bit programs.

4 Chapter 1. Introduction

The instructions decoder occupies a significant fraction of the chip size. Borin et al. [23]
state that an Intel low power design estimation concluded that up to 20% of the die area
is used by the microcode ROM alone, a component responsible for decoding the more
complex instructions.

New processors with old ISAs bear an inherent disadvantage that goes beyond the
hardware overhead: the variable-length encoding benefits instructions no longer used
and penalizes recent additions, since the shortest encodings are already taken by the
instructions introduced first. The consequences of being biased to the past is that not
only modern code is larger, but it also reduces the number of instructions that fit into
the instruction cache, directly affecting performance.

We show how to overcome the harmful effects of expanding aged ISAs. We seek a
novel approach to maintain an ISA that is as efficient as a newly designed one in terms
of code compaction and decoder size, while still being backward compatible with older
software developed for it. To reach this goal, we propose the use of a recycling mechanism
for the IA-32 ISA that allows selected short opcodes to change their previous functionality
to serve a new, more useful, instruction.

This strategy also allows the elimination of deprecated instructions in order to sim-
plify the hardware and help reduce x86 microcode space used by such instructions, al-
lowing more efficient x86 hardware implementations of processors such as Atom [45] and
Quark [51]; Intel low-power processors for the embedded market.

1.3 Contributions
The main contributions of this thesis are:

• A method for designing 16-bit ISA extensions from 32-bit ISAs.

• A 16-bit extension for the SPARC architecture.

• A report of the IA-32 evolution over time that shows how opcode usage of programs
released from 1995 to 2012 evolved, and how several instructions stopped being
used, from the static and dynamic point of views.

• A recycling mechanism that enables the IA-32 ISA opcode space to be better ex-
ploited.

• An analysis of how much code compaction can be achieved in SPEC FP 2006 [47]
programs if we re-encode the newer IA-32 AVX extension with smaller opcodes, cur-
rently assigned to instructions that are not used anymore, and the ensuing beneficial
effects on the instruction cache misses.

1.4. Organization 5

• A performance impact estimation of the proposed recycling mechanism when exe-
cuting legacy code that uses re-encoded opcodes.

1.4 Organization
This PhD thesis is organized as follows:

• Chapter 2 describes related work on the area and basic concepts regarding the
SPARC and X86 architectures.

• Chapter 3 focuses on the opportunities for code compression among several archi-
tectures, providing the motivation for the thesis. It explains why SPARC and X86
are the selected RISC and CISC ISAs for analysis, showing code size evaluation for
several architectures while characterizing the ISA aging issue.

• Chapter 4 describes our method for generating 16-bit extensions, as a SPARC16 case
study. We evaluate the SPARC ISA, according to several code analyses for distinct
programs, both static and dynamic. We describe an Integer Linear Programming
(ILP) model, which assists in the definition of SPARC16 instruction formats.

• Chapter 5 presents the resulting SPARC16 formats and encodings. We give details
about the hardware implementation, emulators, compiler toolchain support and
compiler optimizations. Finally, we show the archived SPARC16 compression ratios,
compare them with other 16-bit extensions and provide performance results.

• Chapter 6 further explores compression opportunities in the x86 CISC case study.
We propose three radical approaches to solve the ISA aging problem in x86 and then
present our recycling mechanism, proposing an implementation and experimental
results.

• We draw the thesis conclusion in Chapter 7.

1.5 Considerations
The work done in this thesis has contributions by two other students: Leonardo Ecco, a
former Master student from UNICAMP and current PhD student at Technische Univer-
sität Braunschweig, and Rafael Auler, a PhD student from UNICAMP. Their contributions
are described in details in Section 4.5, 5.9 and 6.8.

Chapter 2

Basic Concepts and Related Work

This Chapter presents the background in code compression and a brief description of
SPARC and x86 architectures. Section 2.1 defines all basic terms used in the text. Sections
2.2 and 2.3 describe x86 [52] and SPARC [87] architectural properties; such as registers,
instructions and instruction encoding.

We introduce code compression related work in Section 2.4, where we present soft-
ware and hardware compression mechanisms. In Section 2.5 we detail ISA re-encoding
methods and 16-bit extensions; Thumb/Thumb2 and MIPS16/MicroMIPS. Related work
on code compaction compiler optimizations is presented in Section 2.6. In Section 2.7 we
summarize of all techniques presented in this Chapter.

2.1 Definitions
Compression Ratio. We use the term Compression Ratio to represent code size re-
duction. Equation 2.1 shows how Compression Ratio should be calculated. Notice that,
lower means better. Example: a Compression Ratio of 56% means that the program is
reduced to 56% of its original size. All related overhead to implement compression must
be considered within the ratio computation, a rule not strictly followed by all related work
in the area.

Compression Ratio = Compressed Size + Overhead

Original Size
(2.1)

Operation Code. We define the term Operation Code or OC as the minimum necessary
bits in an instruction which distinguishes it from others. In RISC architectures, the
operation code is usually the same as the opcode. However, in CISC ISAs such as x86,
extra bits besides the opcode are necessary to maintain this distinction. This set of bits
will be henceforth referred as the operation code.

7

8 Chapter 2. Basic Concepts and Related Work

2.2 The SPARC Architecture
The Scalable Processor Architecture (SPARC) version 8 (v8) [87] is a published IEEE
1754-1994 [28] standard: it defines 72 instructions encoded in 32-bit formats and general
purpose, floating point, control and status registers. In this thesis we always refer to
SPARCv8 whenever the term SPARC is used.

The main SPARC characteristics include three available 32-bit instruction formats in
which opcode and registers field sizes are fixed across them. Memory access is given by
two registers or a register and immediate - arbitrary memory load and store is only done
by specific instructions. 8 fixed global registers are available while a variable 24 register
window (see Section 2.2.2) is always accessible from a large register bank1.

2.2.1 Instructions

Instructions in SPARC are encoded in 3 main 32-bit formats. The formats 1, 2 and 3 are
presented in Figure 2.1, 2.2 and 2.3 respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op disp30

Figure 2.1: SPARC Format 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rd op2 imm22
op a cond op2 disp22

Figure 2.2: SPARC Format 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rd op3 rs1 opf rs2
op rd op3 rs1 i=1 simm13
op rd op3 rs1 i=0 asi rs2

Figure 2.3: SPARC Format 3

Table 2.1 shows how the encoding of the op field determines the instruction format;
format 1 (op = 1) holds the CALL instruction whereas format 2 (op = 0) contains all
branch and the SETHI instructions. Format 3 is divided into two sub-formats: the first
(op = 3) encodes all memory access instructions (load and stores) and the second (op = 2)
has the logical, arithmetic, shift and all remaining instructions in the ISA.

1The number of windows within the register bank is implementation dependent - ranging from 2 to
32

2.2. The SPARC Architecture 9

Format op Instructions
1 1 CALL
2 0 Bicc, FBfcc, CBccc, SETHI
3 3 Memory access instructions
3 2 Logical, arithmetic, shift and other instructions

Table 2.1: SPARC opcode field encoding

Load and store. The load and store instructions in SPARC have a different opcode for
each distinct memory slot type size. For instance, ldub, lduh, ld and ldd instructions
load a byte, half, word and doubleword data types from memory. The memory addresses
accessed in load or store instructions must be aligned to the data type, otherwise a memory
not aligned trap is issued by the processor. Table 2.2 shows the alignment restriction for
each data type. For example, the lduh access 2 byte sized objects in the memory, and
their address are always 2 bytes aligned in memory.

Instructions Data Type Memory Address Alignment
ldub, ldsb, stb 1 byte –
lduh, ldsh, sth 2 byte 2 byte

ld, st 4 byte 4 byte
ldd, std 8 byte 8 byte

Table 2.2: SPARC load and store data types and alignment

Call and branches. Call and branch instructions compute targets relative to pc as
shown in Table 2.3. The immediates in disp30 and disp22 are encoded without the two
least significant bits - a 4 byte alignment enforcement. For example, consider a call
instruction to address 0x40 and pc = 0x00. The address 0x40 is encoded in disp30 with
the value 0x10. Hence, the final address is 0016 + (4× 1016) = 4016.

During the target calculation, the immediates in disp30 and disp22 are multiplied by
4, because the displacement is implied to be 4 byte aligned - this is done by the linker
during relocation. Therefore, the final target address is formed by the required alignment.

Instructions Format Target Address
call Format 1 (Figure 2.1) pc + (4 × disp30)

bne, be, ble,... Format 2 (Figure 2.2) pc + (4 × disp22)

Table 2.3: SPARC call and branch target computation

10 Chapter 2. Basic Concepts and Related Work

2.2.2 Registers
The main register types available in SPARC and of interest in this thesis are:

Control and Status Registers Register Y is used by multiply and divide instructions.
The higher 32-bit result of 32-bit multiplications are stored in the Y register, while in
a division, the 32-bit most significant bit from the divisor must be stored in Y prior
to computation. The program counters pc and npc holds the address of the current
instruction in execution and the address of the next instruction to be executed,
respectively. The psr register maintain a group of processor status information.

General Purpose There are two types of general purpose registers: integer and floating
point2. Integer general purpose registers names start with r. The integer unit
can contain 40 to 520 general purpose registers partitioned into 8 global registers
(globals, g0 to g7) and a variable number of 24 register sets. Each 24 register set is
divided into 8 input registers (ins, i0 to i7), 8 output registers (outs, i0 to i7) and
8 local registers (locals, l0 to l7).

Register address within the window Register address r
in[0] — in[7] r[24] — r[31]

local[0] — local[7] r[16] — r[23]
out[0] — out[7] r[8] — r[15]

global[0] — global[7] r[0] — r[7]

Table 2.4: SPARC register window addressing

At a given execution point, a program can access 8 global registers and a 24 r registers.
The r registers are mapped to the current register window according to Table 2.4. The set
of outs of the current window is an alias to the set of ins of the next window, as illustrated
in Figure 2.4. Note that locals are never shared among windows and globals are not part
of the window mechanism.

The current window pointer CWP is part of the psr and tracks the current window
using 5 bits (allowing up to 32 windows). CWP is incremented through the use of the
restore and rett instruction and decremented by the save instructions or by exceptions.
Window overflow and underflow generate exceptions which are handled by the operating
system.

The register g0 always returns the zero value when read. Register o7 is written with
the return address of the current function when the call instruction is executed. When
an exception occurs, l1 and l2 registers receive the values of the pc and npc registers.

2SPARC Floating point instructions are not considered in this thesis

2.2. The SPARC Architecture 11

Figure 2.4: SPARC overlapping windows (extracted from [87])

2.2.3 ABI

The Application Binary Interface (ABI) defines a set of conventions to be followed by
compilers and operating systems to make sure applications and libraries from different
sources might interact with each other. Examples of conventions described in the ABI in-
clude function calling sequence, object file headers, relocations and dynamic linking. The
SPARC ABI [53] defines set of rules, which must be followed by every SPARC compliant
compiler, operating system and libraries.

The registers o0 to o5 are used to pass arguments to callee functions whereas i0 to i5
receive the arguments in the function. If there are more than 6 arguments, the remaining
are passed on the stack.

The stack pointer (sp) and frame pointer (fp) registers determine a function stack
frame, as illustrated in Figure 2.5 - these register names are aliases to o6 and i6 respec-
tively. Function extra incoming arguments are fetched from the stack by positive offsets
against fp, while negative offsets give access to local variables on the stack. The save
instruction, is used on function entry (prologue) to adjust the stack frame and provide
local variables storage. On function exit (epilogue) the restore instruction unrolls the
stack to its previous frame. Note that, as explained before, these instructions also handle
the register window transitions.

Consider the C program in Figure 2.6b. In the equivalent assembly code from Fig-
ure 2.6a, the function sum is called from main with the first argument (the value 10) in
o0 and the second argument (value 20) in o1. Arguments in sum are read from i0 and

12 Chapter 2. Basic Concepts and Related Work

Stack Growth
Direction

Higher
Address

Lower
Address

Reserved

Incoming
Arguments

...

Local
Variables

Outgoing
Arguments

Reserved

...

Current
Stack Frame

fp

sp

Previous
Stack Frame

Figure 2.5: SPARC stack frame delimited by fp and sp

i1. Within sum’s prologue, the save instruction allocates a 96 byte stack frame, updates
fp and sp and changes the register window, remapping o0 to i0 and o1 to i1.

1 sum :
2 save %sp , −96, %sp ; pro logue
3 add %i0 , %i1 , %l 0 ; args in
4 mov %l0 , %i 0
5 ; e p i l o g u e
6 r e s t o r e ; r e s t o r e %g0 ,%g0 ,%g0
7 r e t ; jmpl %i 7 +8, %g0
8 nop ; de lay s l o t
9 . . .

10 main :
11 save %sp , −96, %sp ; pro logue
12 mov 10 , %o0 ; arg out
13 mov 20 , %o1 ; arg out
14 c a l l sum
15 nop ; de lay s l o t
16 . . .

(a) Assembly file

1
2 i n t sum(i n t a , i n t b) {
3 re turn a+b ;
4 }
5
6 i n t main () {
7 i n t a = 10 ;
8 i n t b = 20 ;
9 i n t r e s ;

10 r e s = sum(a , b) ;
11 . . .

(b) C source code

Figure 2.6: SPARC procedure calling example

The function return value must always be returned in i0; that is why the mov instruc-
tion in sum writes the function result in i0, prior to the epilogue. The restore instruction
unroll the stack frame and the ret instruction returns to the previous function using the
return address in o7.

2.3. The x86 ISA 13

2.3 The x86 ISA
The x86 instruction set family is the collection of all machine instructions derived from the
Intel 8086 family of CISC processors. The ISA is backwards compatible for all processor
families; recent machines can run old programs and libraries assembled back in 1978.

2.3.1 Instructions

The instructions in the x86 ISA have a variable length format, and the basic encoding to
represent a single instruction is usually determined via the opcode and prefix fields. Some
instructions further require the use of the ModR/M field to be decoded. The layout is
given in Figure 2.7.

Instruction
Prefixes

(Optional)
Opcode

ModR/M
(Optional)

SIB
(Optional)

Operands
(Optional)

1–4 Bytes 1–3 Bytes 1 Byte 1 Byte

Total size cannot exceed 15 bytes

Figure 2.7: Intel IA-32e and IA-32 instruction formats

For example, an instance of a logic or instruction between a 16-bit immediate and a
16-bit value held in memory that is indexed by the register rcx may be represented by
the assembly text form orw $12804, (%rcx). Table 2.5 depicts its equivalent encoding
in machine language.

Prefix Opcode ModR/M SIB Operands
Mod Reg/Opc R/M

66h 81h 00b 001b 001b N/A 04h 32h

Table 2.5: X86 instruction encoding example

The ModR/M byte is part of the opcode encoding in this instruction because its
subfield Reg/Opc is used as an opcode extension. Hence the instruction has 5 bytes:
3 bytes are used for opcode and prefix and 2-bytes for the immediate. To easily refer
to the necessary bits required to uniquely identify our definition of x86 instruction and
avoid confusion with the x86 opcode byte, we use the term operation code, as defined in
Section 2.1.

14 Chapter 2. Basic Concepts and Related Work

2.3.2 Execution Modes
Different execution modes are used to support different instruction encoding and also to
enable the execution of old instructions and legacy software, which depends on a memory
and register layout from obsolete versions of the x86 ISA.

There are four major execution modes in modern x86 processors: 64-bit long, 32-bit
protected, 16-bit protected and 16-bit real. The difference between protected and real
mode relies on the handling of memory segments. The former uses a descriptor table
to index physical pages while the later directly access memory with a fixed sized page
addressing.

The 64-bit long mode executes instructions from the x86 64, which defines larger
general registers, memory addressing and different encodings for some instructions. In
this thesis we focus on 32-bit protected mode and disconsider all other modes for being
out the scope of this thesis.

2.3.3 Registers
The x86 ISA has 4 register classes, namely:

General registers There are four 32-bit general purpose registers: eax, ebx, ecx and
edx. Historically, these registers had pre-assigned roles which became deprecated. 8-
bit and 16-bit access to part of those register is possible, as illustrated in Figure 2.8,
to maintain backward compatibility with old instructions which operate on those
register sizes.

0 31157

ahal

ax

eax 32-bit

16-bit

8-bit 8-bit

Figure 2.8: X86 32-bit general purpose registers

Segment registers Four registers to support segment addresses for code, data, stack
and extra uses. CS, DS, ES, FS, GS, SS. These registers are reserved and not
used by the compiler, and are set by using special instructions.

EFLAGS A register which holds processor state and information on instruction side ef-
fects. Arithmetic overflow, sign changes and zero results are examples of information
stored in EFLAGS.

2.3. The x86 ISA 15

2.3.4 ISA Extensions
The X86 ISA evolved from the initial 8086 revision and incorporated a number of new
instructions on each microarchitecture release over time.

The 80387 Also known as x87, the extension introduced floating-point support instruc-
tions to the regular x86 ISA. The FP instructions can access eight 80-bit floating point
registers, ST(0) to ST(7), organized as a stack and special instructions push and pop
values to and from it.

Multimedia extensions Intel introduced the MMX extension, a SIMD ISA for multi-
media processing. The extension added 8 64-bit registers (MM0 to MM7), which are aliased
to the x87 stack registers. The instructions work on packed data; the 64-bit registers are
used as two 32-bit, four 16-bit or eight 8-bit registers, allowing parallel data processing.
MMX provides only integer operations. AMD released 3DNow! in 1998, an enhanced
version of MMX, capable of processing 32-bit floating point data for common arithmetic
operations (add, subtract and multiply).

The next multimedia extension appeared in the Pentium III series with the SSE [52]
extension, adding 8 128-bit registers (XMM0 to XMM7) and 70 instructions, which can operate
on four 32-bit floating point and integer data packed in a 128-bit register. SSE was
extended in further releases from 2001 to 2013 with the introduction of SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX and AVX2. Each subsequent SSE version introduced new
instructions to operate on more fine-grained packed element sizes (e.g. sixteen 8-bit
data packed in a 128-bit register) for floating point and integer data. AVX and AVX2
extend the register sizes to 256-bit and 512-bit while supporting all previous instructions
operating on 128-bit registers.

Specific extensions for security, cryptography and virtualization were also incorporated
in microarchitecture releases but are out the scope of this thesis.

2.3.5 Implementation
Instructions in modern Intel x86 processors are translated into microcode operations by
the processor decoder front-end. The front-end is fast and decodes CISC x86 instructions
into RISC like microcode instructions, which are easier to process, demanding less control
logic while allowing for a more regular pipeline. Other benefits from microcode include
the possibility to change the micro-architecture while still providing a fixed interface via
CISC instruction decoding in the front-end.

In 32-bit mode, x86 supports 4GB virtual address space. The full address space is
visible to any process by using a paging system. The page mechanism provides isolation:

16 Chapter 2. Basic Concepts and Related Work

user and system pages are protected from each other while user pages are protected be-
tween different processes. The Physical Address Extension (PAE) extends the addressing,
allowing access up to 64GB. There are three paging levels; the special register cr3 points
to a first level table, where each entry points to a page directory. Each entry in the di-
rectory points to a page table entry. Figure 2.9 shows the current IA-32e 4KB PAE page
table entry format. All other page table entries have a similar structure.

63 62 59 58 52 51 M M-1 32

† M is an abbreviation for MAXPHYSADDR

X
D Ignored Ignored Reserved

Physical
Address

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical Address (cont.) Ignd G

P
A
T

D A

P
C
D

P
W

T

U
/
S

R
/
W

P

Figure 2.9: Intel IA-32e extended page table entry format

2.4 Code Compression
In code compression, programs are always compressed by software while there are several
decompression approaches: completely implemented in software, and assisted by specific
hardware. This section details these techniques. A direct approach to reduce code size is
to design a processor such as VAX [1] 850 and Borroughs [92] B1700. Both use a smaller
encoding for the most used instructions.

2.4.1 Software
Code compression using exclusively software techniques work by decompressing through
the use of an execution time decompressor module or interpreter.

Fraser [37] changed the compiler to issue a compact representation and a custom
interpreter to it instead of executable code. Ernst [35] followed up this approach by
proposing the wire code format, directed at systems where the bottleneck is the data
transfer (from a server providing programs to clients), not the execution.

Liao [73, 72] abstracts most executed instruction blocks into procedures and the orig-
inal code is replaced by a dictionary entry for the procedure.

Kirovski et al. [56] compress whole procedures and use a directory service called Pro-
cedure Cache to solve references: decompression is realized on demand in dedicated RAM
regions resulting in a 60% compression ratio and 10% performance loss.

2.4. Code Compression 17

Raeder [26] studies compression of Java bytecodes with a 70% compression ratio and
30% performance loss. Every compression approach in this section has performance degra-
dation penalties during execution.

2.4.2 Hardware

Two hardware models can be used for code decompression: Cache Decompressor Memory
(CDM) and Processor Decompressor Cache (PDC). In CDM, the hardware decompression
engine is placed between the cache and memory, whereas in PDC, it stays between proces-
sor and cache. Compression methods using PDC yield better performance [70, 16, 19, 78]
than CDM [93, 5]. In PDC, because the cache holds compressed code, the number of
cache hits increases, diminishing the number of accesses to the main memory.

CDM techniques. Wolfe [94] proposed in 1992 the Compressed Code RISC processor
(CCRP), using compile time Huffman [48] compressed cache lines. A Line Address Table
(LAT) is used to decompress the cache lines during execution by fetching the original cache
lines from main memory. The technique achieved 73% compression ratio. Benes [14, 15]
further improved on this work by using specific Huffman decoder circuitry, capable of
decompressing 32-bits in 25ns.

IBM released in 1998 the PowerPC 405 CodePack [55, 31, 40, 50], using a dictionary
method to compress instructions, a different approach from MIPS and ARM. Two dictio-
naries are used: each one is linked to a distinct 16-bit part of the original instruction and
are encoded separately. Each 16-bit part is encoded by a tag and an index; tags occupy 2
or 3 bits while indicies from 0 to 16 bits - the smallest possible encodings takes 7 bits and
the larger 38 bits. The compression ratio ranges from 60% to 65% and the performance
impact is ±10%.

Pannain [79] proposed the Pattern Based Compression (PBC) operand factorization
method. The PBC separates instruction expression trees into two components: tree pat-
terns containing opcode fragments and operand patterns with registers and immediates.
The components are compressed separately, yielding 43% and 48% compression ratios for
Huffman and Variable Length Code algorithms, respectively.

Centoducatte [25, 5] further introduced the Tree Based Compression (TBC), where ex-
pression trees are not decomposed in components, but grouped in classes and compressed
entirely. The ratio achieved reaches 60.7%.

Azevedo [9] proposes the Instruction Based Compression (IBC) where instructions are
grouped in classes and compressed, replacing the original instruction by references to the
instruction class and an index to an instruction table. Implementations for MIPS and
SPARC reached average compression ratios of 56% and 61.5% respectively. The SPARC

18 Chapter 2. Basic Concepts and Related Work

implementation has a 5.8% performance degradation penalty.

PDC techniques. Lefurgy [67, 68] presents a compression method similar to Liao’s;
instead of abstracting common code into procedures, codewords are used to represent such
sequences and to index into dictionary entries, allowing intermixing with uncompressed
code. Average compression ratios of 61%, 66% e 75% are obtained for PowerPC, ARM
and x86 processors.

Lekatsas [70, 71] compresses SPARC instructions by decomposing them into four
groups: (1) instructions using an immediate, (2) branch instructions, (3) fast access and
(4) not compressed. Each group is compressed by a different technique reaching an aver-
age 65% compression ratio, 28% power consumption reduction and 25% performance gain.
Another work [69] by Lekatsas uses a decompressor architecture capable of performing
an instruction decompression in one cycle without processor cycle-time degradation. The
method uses dictionaries, targeting the Xtensa-1040 processor. A 25% performance gain
together with 65% compression ratio is achieved in this approach.

Benini [16] uses a 32-bit 256 word dictionary to compress DLX processor instruc-
tions. The dictionary is built upon dynamic instruction usage and a 32 byte cache line
compression unit. A 72% compression ratio and a 30% power consumption is achieved.

Billo [19] and Wanderley [78] propose a compression mechanism for the SPARC ar-
chitecture and combine a PDC with dictionaries built upon static and dynamic usage of
instructions, achieving compression ratios from 72% to 88%, up to 45% performance gain
and 35% on power consumption reduction.

The use of a dictionary [27, 85, 44, 8, 62] to compress code tends to reduce energy
consumption and improves the performance and compression ratio. Using bitmask and
prefix based Huffman encoding [44], the compression ratio improves by 9–20%. Kumar [62]
analyzes compression for variable-length ISA RISC processors with two approaches: using
a bit-vector and using a reserved instruction to identify code words. Results demonstrate
an speed-up of up to 15%, code size reduction (up to 30%) and bus-switching activity (up
to 20%).

Bonny [21] uses hardware support to optimize the number of lookup tables generated
by statistic compression schemes and encoding [22] unused bits in the instruction opcode
space to improve the compression ratio. Compression ratios as low as 56% are achieved
for ARM, MIPS and PowerPC processors.

Qin [82] implemented a fast parallel hardware decompressor without compression effi-
ciency penalties. A code placement technique enables parallel decompression by splitting
a single bit-stream fetched from memory into multiple bit-streams; each is input to a dif-
ferent decoder. This approach improved decode bandwidth up to four times with minor
impact (less than 1%) on compression efficiency.

2.5. ISA re-encoding 19

Corliss [30] proposes a post-fetch decompressor using a Dynamic Instruction Stream
Editing (DISE) hardware, a programmable decoder that is used to add functionality to an
application by injecting custom code snippets into the fetched instruction stream. Thus,
program-specific dictionaries can be used, improving compressibility. The experimental
results show reduction in code size (up to 35%), improvements in performance (up to
20%) and energy (up to 10%).

Xu et al. [96] propose a memory compression architecture for the first Thumb ISA,
achieving a Thumb code size reduction from 15% to 20%. A high-speed hardware de-
compressor improves timing performance of the architecture, resulting in performance
overheads limited within 5% of the original application.

Krishnaswamy [61] creates the ThumbAX extension, prefixing 16-bit instructions with
an extra halfword to achieve equivalent functionality of a regular 32-bit ARM instructions,
without the need of mode exchange. The mechanism is similar to Mips16 EXTEND and
a very similar mechanism is present in Thumb2.

Santos [75] proposed the Pattern Based Instruction Word (PBIW) on the RVEX pro-
cessor; a mechanism that maps the assembly file generated by a compiler into an encoding
scheme of the target processor. Compression ratio ranges from 61% to 116% (program
increase) and improvements up to 59% in cache hits. In addition, the circuit shrinks the
total area by 15% on average while reducing dynamic power consumption.

2.5 ISA re-encoding
This section presents additional related work on generic and 16-bit ISA re-encoding.

Support for an existing ISA modification with the recycling goal has, to the best of
our knowledge, never been proposed before, although ISA randomization to avoid security
attacks has been studied [41, 12]. Flexible hardware-software interfaces, as opposed to a
fixed ISA, were studied by Barat et al. [11] in the context of reconfigurable instruction
set processors. Such systems share the same purpose of designing a functionality rich
ISA in a way such that application code can be densely encoded, reducing the total
number of executed instructions and increasing efficiency. However, these solutions focus
on reconfigurable hardware [54, 39] that is capable of adapting to software needs rather
than the redesign of an existing ISA.

The Altera Nios [3] processor architecture designed for use into Altera FPGAs is an
example of a flexible processor architecture that is capable of removing some instructions
from hardware to be emulated in software, sharing some similarities with our work. The
designer may want to allocate FPGA hardware resources to other hardware IPs that in-
creases the overall chip functionality rather than instantiating a resource-expensive pro-
cessor. Therefore, a design space tradeoff can be explored by reducing performance of

20 Chapter 2. Basic Concepts and Related Work

specific workloads, removing some instructions from hardware and reducing the processor
footprint.

The DLX architecture, created by Hennessy and Patterson [81], was the first 32 bits
architecture to have a 16 bit extension. The extension, called D16, had instructions
with 2 registers operands (the original had 3) and also smaller immediate field. This
configuration allowed a 62% compression ratio and 5% performance loss [24].

2.5.1 Thumb and Thumb2

ARM introduced Thumb [6] as the first 16-bit extension in ARM7. Later on, Thumb2
was released and superseded the initial Thumb, introducing additional features. Thumb2
enabled ARM processors are capable of running code in both 32 and 16 bits modes and
allow subroutines of both types to share the same address space. Mode exchange is
achieved during runtime through BX and BLX instructions; branch and call instructions
that flip the current mode bit in a special processor register.

001 10 Rd 8 bits immediate

Always
Execute

Major
Opcode

Minor
Opcode

Destination
and Source

Register

00 11110 1 Rd0 8 bits immediate0 0 Rd 0000010

015

031

Thumb

ARM

Figure 2.10: Thumb and ARM ADD instructions

The encoding of the Thumb extension has several constraints in contrast to the original
ISA in order to hold more opcodes - the reduction in register field size is a significant one
(Figure 2.10). A group of only 8 registers including the stack pointer and link registers
are visible (the Lo group), but the remaining registers can also be accessed implicitly (the
Hi group) or through other special instructions - mov and cmp instructions can move and
compare registers between both groups.

Results presented by ARM for Thumb, show a compression ratio ranging from 55%
to 70%, with an overall performance gain of 30% for 16 bit buses and 10% loss for 32 bit
buses.

2.5. ISA re-encoding 21

2.5.2 MIPS16 and MicroMIPS
The MIPS16 [57] ISA is the first 16-bit extension released for MIPS. It contains capabilities
to exchange between modes using the Jump and Link with Exchange JALX instruction,
share address space, has only 8 visible registers and reduced immediate size - from 16
bits to 5 (Figure 2.11). The MOV32R instruction move data between visible and hidden
registers, while special instructions access the hidden group implicitly.

Opcode
5 bits

Dst Reg
3 bits

Immediate
5 bits

015
Src Reg

3 bits

Opcode
6 bits

Immediate
16 bits

Src Reg
5 bits

Dst Reg
5 bits

031

MIPS16

MIPS-I

Figure 2.11: Mapping between MIPS and MIPS16 instruction fields

MIPS16 introduces the EXTEND instruction: an opcode and an immediate field that
is used to extend the immediate of the following instruction. New features introduced by
MIPS16 include:

SP relative addressing The stack pointer register SP is implicitly accessed by some
instructions, allowing the use of more bits in the immediate field (8 bits).

PC relative addressing The program counter register PC is implicitly accessed by load
instructions. The approach allows constants to be loaded using only one instruction
when placed in the text segment of nearby functions.

Load and Store offset shift The immediates representing offsets in load and store in-
structions are shifted right according to its alignment to discard unused bits. Thus,
shorter immediates are used and expanded to the original value during execution.

The instructions using relative SP and PC addressing can be combined to the offset
shift in load and stores, allowing an effective 1K address range without the need for the
EXTEND instruction. MIPS16 achieves a 60% compression ratio according to MIPS
technologies [57].

The MicroMIPS [77], released in 2009, is a new 16-bit ISA for MIPS and is not
compatible with MIPS16. It introduces 54 instructions and is supported as a distinct
mode from MIPS32 and MIPS64. While in MicroMIPS mode, each instruction has a
16-bit and 32-bit version (Figure 2.12) and no EXTEND instruction is required, a design
very similar to Thumb2. Additionally, 16-bit and 32-bit instruction can be mixed together
without any alignment restrictions, as shown in Figure 2.13.

22 Chapter 2. Basic Concepts and Related Work

 LW16
0 1 1 0 1 0

 LW32
1 1 1 1 1 1

rt base offset

 rt base offset

15 10 9 7 6 4 3 0

31 26 25 21 20 16 15 0

6 3 3 4

6 5 5 16

Figure 2.12: MicroMIPS LW32 and LW16 instruction formats

addius5

br16 lw32

lw32 addu16

...

lw

addu

lw

br

addiu

031 031

lw16

1516

... ...

Figure 2.13: MIPS32 and MicroMIPS instruction alignment

Results provided by MIPS technologies [77] report an average of 65% compression
rate for the CSiBE [18] benchmark and a 2% speed-up against MIPS32 for the Dhrystone
benchmark.

2.6 Compiler Optimizations
The use of 16-bit extensions does not always guarantee a smaller code size. Code for
loading large constants, for instance, is smaller and faster when using 32-bit instructions,
since there is more space to encode immediates and extra registers. Hence, compiler
code generators can apply optimizations to take advantage of mixed 16 and 32 bits ISAs
extensions like MicroMIPS and Thumb2.

Krishnaswamy [60] proposes a coarse grained approach where only one bit-width type
of instructions, 16 or 32-bit, could be emitted in each function. Profile information is used
to select hot functions and several heuristics to decide the bit-width of each function in
a program are evaluated: results range from 69% e 77% compression ratio against pure
16-bit code.

Edler [58] uses a compiler for ARCOMPAT, a mixed 16 and 32-bit ISA, to propose
a special instruction selection heuristic for mixed ISAs. The heuristic avoids the emis-
sion of 16-bit instructions when it is not profitable. First, only 16-bit instructions are
selected during instruction selection. Second, a special register allocator annotates all
places where the usage of 16-bit instructions are responsible for generating spills. Fi-
nally, the instruction selection is invoked again, but using annotated data, avoids using

2.6. Compiler Optimizations 23

16-bit instructions in the potential spill sites. The feedback-guided instruction selection
improves performance by 17% with 85% compression ratio.

The 32-bit ISA UniCore32 and its 16-bit ISA counterpart UniCore16 are analyzed by
Xianhua [95]. UniCore16 has regular instructions, such as add and mov, capable of mode
exchange. The compiler emits 32-bit instructions by default and heuristics may replace
them by 16-bit instructions during link-time when profitable. The compression ratio is
73% against pure UniCore16 without any performance drawback.

Sutter [89, 90] applies link time optimizations to ARM binaries: reconstruction from
final executables is done through the creation of an augmented whole-program control-flow
graph (AWPCF), where all text and data sections are considered and optimizations such
as whole-program analyses, duplicate code and data elimination techniques are applied.
The mechanism reduces code size from 16% to 18%, provide 8% to 17% performance gain
and power consumption reduced by 8% to 16%.

Kumar [63] evaluates link time optimizations using a peephole technique with finite
state machines instead of string matching, achieving compression ratios from 98.9 to
99.1%.

24 Chapter 2. Basic Concepts and Related Work

2.7 Compression techniques summary
In this section we summarize the code compression related work into several tables; in
Table 2.6 we present the software decompression approaches, whereas in Table 2.7 and 2.8
the hardware based CDM and PDC methods. Table 2.9 contains a comparison between
16-bit extensions and Table 2.10 summarize the compiler related optimization techniques.

Software Decompression
Author Architecture Benchmarks Compression Performance

Ratio Ratio
Fraser e Proeb-
sting [37]

SPARC lcc e burg 50% 2000%

Kirovski [56] SPARC Mediabench 60% 110%
Liao [73, 72] TMS320C25 Aipint2,

bench,
compress,
dfx2hsh,
gnucrypt,
gzip, hill,
jpeg, rsaref,
rx, set

88% —

Table 2.6: Software decompression summary

2.7. Compression techniques summary 25

CDM
Author Architecture Benchmarks Compression Performance

Ratio Ratio
Wolfe &
Chanin [94]

MIPS lex, pswarp,
yacc, who,
eightq, ma-
trix25A,
loop01, xlisp,
espresso e
spim

73% —

IBM [31, 55] PowerPC — 60% —
Pannain [79] MIPS SPECint95 43% —
Centoducatte [25,
5]

MIPS SPECint95 60.7% —

Azevedo [9] MIPS SPECint95 53,6% —
Azevedo [9] SPARC SPECint95 61,4% 105,89%

Table 2.7: CDM techniques summary

26 Chapter 2. Basic Concepts and Related Work

PDC
Author Architecture Benchmarks Compression Performance Power

Ratio Ratio Reduction
Lekatsas [70,
71]

SPARCv8 compress,
diesel, i3d,
key, mpeg,
smo, trick

65% 75% -28%

Lekatsas [69] Xtensa 1040 compress,
diesel, i3d,
key, mpeg,
smo, trick

65% 75% —

Benini [16] DLX Ptolemy 72% — -30%
Lefurgy [67, 68] PowerPC SPECint95 61% — —
Lefurgy [67, 68] ARM SPECint95 66% — —
Lefurgy [67, 68] i386 SPECint95 75% — —
Billo [19] SPARCv8 susan,

search,
dijkstra, ad-
pcm, pegwit,
libmad

75% 78% -45%

Table 2.8: PDC techniques summary

ISA Re-encoding
Author Architecture Benchmarks Compression Performance

Ratio Ratio
D16 [24] DLX — 52% 105%
Thumb [6] ARM Eqntott,

Xlisp,
Espresso,
Dhrystone

55%∼70% 110%∼120%

Thumb2 [7] ARM — 5% < Thumb 102%
MIPS16 [57] MIPS — 60% —
MicroMIPS [77] MIPS CSiBE,

Dhrystone
65% 102%

Table 2.9: ISA re-encoding techniques summary

2.7. Compression techniques summary 27

Compiler Code Compaction Optimization
Author Architecture Benchmarks Compression Performance

Ratio Ratio
Krishnaswamy [60] ARM mediabench 69.5%∼77.2% —
Edler [58] ARCOMPAT EEMBC 1.1 85% 83%
UniCore16 [95] UniCore32 mediabench, Mesa 73% 100%
Sutter [89, 90] ARM mediabench, MiBench 82%∼84% 92%
Kumar [63] x86, ARM mediabench 98.9∼99.1% —

Table 2.10: Code compaction techniques summary

Chapter 3

Motivation

Our work is primarily concerned with the study of code compression opportunities in
ISAs. Our main motivations are:

• There are several 16-bit commercial ISA extensions available. However, there are no
academic work or publications regarding the process of creating such extensions. We
explore and expose the process of creating such 16-bit extensions with the SPARC16
case study.

• Old CISC ISAs like the x86 suffer from the ISA aging problem: as the interface
matures, it is necessary to add new instructions to an already occupied opcode
space, and eventually the ISA runs out of space for new opcodes. We investigate
how to overcome the harmful effects of expansion characteristic of aged ISAs. We
seek a novel approach to maintain an ISA that is as efficient as a newly designed
one in terms of code compaction while still being backward compatible with legacy
software.

In Section 3.1 we show a code size evaluation for several CISC and RISC architectures,
exposing the reasons why and how we selected SPARC and x86 as the targets of this
research. Additionally, in Section 3.2 we further explore how x86 became a concern, since
its ISA evolved to a situation in which its code density is not as high as it used to be,
opening room for code compression opportunities.

3.1 Code Size Evaluations
In order to apply and construct a method for generating a 16-bit ISA extension, we
need an architecture for evaluation; an intensive analysis of an original ISA is necessary.
Therefore we need to select an architecture with attractive compression opportunities.

29

30 Chapter 3. Motivation

We evaluated code size behavior of 15 ISAs using the SPEC CINT2006 benchmark [47].
The GCC [88] 4.2 cross compiler toolchain is used1 for each architecture with the follow-
ing arguments: -Os to compile for size (at the expense of speed) and -mcpu to select
architecture specific information (e.g. the core2 x86 sub-variant).

Figure 3.1 shows the code size evaluation for the 15 mentioned architectures. Results
are presented by total size, arithmetic and geometric means for each architecture. The
values are normalized against the smallest one within each category - arithmetic, geometric
and total.

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	

arm
(th
um
b)	

m6
8k
	

m6
8k
(cf
v4
e)	

i68
6	

i68
6(c
ore
2)	

x8
6_
64
(co
re2
)	

x8
6_
64
	

arm
	

sp
arc
v8
	

sp
arc
	

po
we
rpc
	

mi
ps
32
	

mi
ps
	

alp
ha
(ev
67
)	

alp
ha
	

N
or
m
al
iz
ed

	 R
es
ul
ts
	

ArithmeDc	 Mean	

Geometric	 Mean	

Total	 Size	

Figure 3.1: SPEC CINT2006 program sizes for several architectures

The architectures with smaller relative code sizes are Thumb, Motorola M68k and x86.
Thumb, the 16-bit ARM extension, has the higher code density, with smaller code size
than CISC x86 and M68k processors. The scenario gives the first hint about CISC com-
pressibility: there should be more room for shrinking x86 and M68k binaries. Additionally,
all the other RISC architecture in Figure 3.1 are 32-bit wide and have bigger programs
than any CISC. Alpha represents the lower code density and is the RISC ISA with more
compression potential. However, it was discontinued, available toolchains and libraries
are considered obsolete and it was never used in embedded systems. As mentioned in
Section 2.5, MIPS, ARM and PowerPC processors already have reduced bit-width ISA
extensions in their architectures; Thumb and Thumb2 for ARM, MIPS16 and MicroMIPS
for MIPS and CodePack for PowerPC. SPARC is left as the only 32-bit architecture with-
out a reduced bit-width ISA extension and has the following characteristics:

• Low code density, 40% bigger than higher density architectures - x86 and Thumb.

• The SPARC ISA is an IEEE 1754 standard and still widely used – there are 50
registered members in SPARC International nowadays.

• No previous 16-bit compression mechanism is available for SPARC.
1GCC 3.4 was used for Alpha and M68k

3.2. ISA aging problem 31

• Used in many academic projects as a testbed for compression algorithms.

• Up to date and stable software support: operating system kernel, libraries and
compilers.

Therefore, we selected the SPARC architecture as our target for RISC ISA exploration
and 16-bit ISA generation method case study.

3.2 ISA aging problem
A variable length encoding ISA is supposed to use smaller encodings to frequent instruc-
tions and hence achieve smaller programs than RISC ISAs. However, Figure 3.1 suggests
that the CISC x86 ISA may have more space for compression than ARM’s Thumb - x86
binaries are bigger than Thumb’s.

The x86 is a 30 year old architecture with more than fifteen ISA extension releases
until 2013; at each new release, new instructions and features were introduced. Since
x86 encoding is variable, the addition of new instruction demands the use of more bits
to encode an instruction. Therefore, as shown in Figure 3.2, the overall program size for
SPEC CINT2006 (2% to 11%) increases in some subsequent x86 processor revisions.

1.00	 0.99	
1.02	

0.99	
1.02	 1.02	 1.02	 1.00	 1.00	 1.00	

1.09	 1.08	
1.11	 1.11	

0.90	
0.95	
1.00	
1.05	
1.10	
1.15	

i48
6	

pe
n/
um
	

pe
n/
um
pro
	

pe
n/
um
-‐m
mx
	

pe
n/
um
2	

pe
n/
um
3	

pe
n/
um
-‐m
	

pe
n/
um
4	

i68
6(p
res
co
:)
	

i68
6(n
oc
on
a)	

i68
6(c
ore
2)	

x8
6_
64
(no
co
na
)	

x8
6_
64
(co
re2
)	

Ge
ne
ric
	 x8
6_
64
	 Re

la
%v

e	
Co

m
pr
es
si
on

	
Ra

%o
s	

Figure 3.2: SPEC CINT2006 code size evaluations across sequential x86 releases

The i6862 core23 processor is the most recent in Figure 3.2 and is also the biggest
code size against all x86 i686 architectures. In x86 64 (x86’s 64-bit mode) core2 program
sizes are also bigger than nocona4. The trend is that program size in x86 increases over
time. To further confirm this assumption we rely on two factors: (1) the total number
of instructions increases with x86 evolution and (2) the average operation code size also
expands. Figure 3.3a shows that since the introduction of MMX, a large number of new

232-bit x86, no x86 64 instruction included
3Intel Core2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support.
4Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX, SSE, SSE2 and SSE3 in-

struction set support.

32 Chapter 3. Motivation

instructions were added in every new release; there are about 800 new instructions that
were introduced from Pentium MMX to the Haswell, released in 2013.

416	
528	 536	 541	 602	 608	 612	 622	 657	

738	
814	

907	 939	 956	
1033	 1046	

1178	
1288	

400	
550	
700	
850	

1000	
1150	
1300	

19
78
	 -‐	 8
08
6	

19
80
	 -‐	 8
08
7	

19
82
	 -‐	 8
01
86
	

19
82
	 -‐	 8
02
86
	

19
85
	 -‐	 8
03
86
	

19
87
	 -‐	 8
03
87
	

19
89
	 -‐	 8
04
86
	

19
93
	 -‐	 P
en
0u
m	

19
95
	 -‐	 P
en
0u
m	
Pro
	

19
96
	 -‐	 P
en
0u
m	
II	 (
MM

X)	

19
99
	 -‐	 P
en
0u
m	
III	
(SS
E)	

20
01
	 -‐	 P
en
0u
m	
4	 (
SS
E2
)	

20
04
	 -‐	 P
res
co
>	 (
SS
E3
)	

20
06
	 -‐	 C
ore
	 (S
SS
E3
)	

20
07
	 -‐	 C
ore
	 Pe
nry
n	

20
08
	 -‐	 N
eh
ale
m	
(SS
E4
.2)
	

20
11
	 -‐	 S
an
dy
	 Br
idg
e	 (
AV
X)	

20
13
	 -‐	 H
asw

ell
	 (A
VX
2)	

To
ta
l	 N

um
be

r	 o
f	 I
ns
tr
uc
2o

ns
	

(a) x86 ISA growth over the years

1.9	 2.0	 1.8	

3.2	
2.5	

2.0	
2.4	 2.3	 2.5	

2.0	
2.7	 2.8	 3.1	 3.0	

3.6	
4.1	 4.1	

3.6	 3.8	

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	

80
86
	
80
87
	

80
18
6	

80
28
6	

80
38
6	

80
38
7	

80
48
6	

Pe
n0
um
	

Pe
n0
um
Pro
	

Pe
n0
um
2	

MM
X	 SS

E	
SS
E2
	
SS
E3
	

SS
SE
3	

SS
E4
.1	

SS
E4
.2	

AV
X	

AV
X2
	

Av
er
ag
e	
Si
ze
	 (b

yt
es
)	

(b) Average x86 operation code size

Figure 3.3: Number of x86 instructions and operation code size increase over the years

Moreover, Figure 3.3b shows that the average operation code size per instruction
increases - with SSE4.1 and SSE4.2 achieving the bigger operation codes. Also, the most
recent multimedia extensions AVX and AVX2 have 33% and 38% bigger operation codes
than instructions introduced with MMX.

As mentioned in Section 2.3.4, such multimedia extensions focused in adding vector
instructions that explore data parallelism. The first extensions to address floating-point
calculations were 8087 and 80387, but their operand addressing is stack based, a rather
old and inconvenient addressing method for modern compilers. Newer vector instructions,
starting with the MMX extension, have register operands which allows the compiler to
easily control register usage with established register allocation algorithms, and can per-
form multiple floating-point calculations at the same cycle. For these reasons, vector
instructions naturally superseded the old x87 instructions.

Table 3.1 shows that some compilers already use vector extensions to emit floating

3.2. ISA aging problem 33

point operations by default. ICC and Clang emit SSE as the default ISA for floating
point - it may only emit x87 instructions if the host target has no support for vector
operations. On the other hand, GCC and Visual Studio 2012 still emit x87 by default,
taking the more conservative approach, since they are very old and stable compilers.

Compiler Default FP Comments
Visual Studio 2012 x87 /arch:[IA32|SSE|SSE2|AVX] to switch

GCC 4.6.3 x86 -mfpmath=sse or -mfpmath=sse,387 to mix both usages
ICC 10.0 SSE Only use x87 if SSE not supported in the host
Clang 3.1 SSE Only use x87 if SSE not supported in the host

Table 3.1: X86 default floating-point emission type among distinct compilers

Coming back to Figure 3.3b we notice that vector extension instructions may have 1
to 2 extra bytes for operation code in comparison with the old IA-x87 extension. Since
compilers already started a transition to use multimedia instruction for floating point
operations, future floating point application are deemed to be bigger; Figure 3.4 shows
that for 7 SPEC CPU2006 floating-point programs, using vector extensions yields larger
executable binaries than the x87 ones.

In this analysis, we compiled the programs using GCC 4.7 with the -O2 optimization
flag and the -march=corei7-avx architecture tuning. To generate x87 instructions, we
used the -mfpmath=387 option, while to generate the SSE ones, we used -mfpmath=sse,
and finally we added the -mavx option when testing the AVX encoding5 for SSE instruc-
tions. Note that no vectorization optimizations were used.

1	
1.05	
1.1	
1.15	
1.2	
1.25	

41
0.b
wa
ve
s	

41
6.g
am
ess
	

43
3.m

ilc	

43
4.z
eu
sm
p	

43
5.g
rom

ac
s	

43
7.l
esl
ie3
d	

44
4.n
am
d	

44
7.d
ea
lII	

45
0.s
op
lex
	

45
3.p
ov
ray
	

45
4.c
alc
uli
x	

46
5.t
on
to	

47
0.l
bm
	

48
1.w

rf	

48
2.s
ph
inx
3	

Co
de

	 S
iz
e	

(R
el
a-

ve
	 to

	 x
87
)	

AVX	 SSE	

Figure 3.4: Percentage of the code size growth of SPEC floating point programs when
compiled with SSE and AVX relative to IA-x87.

The 470.lbm program is 20% and 15% bigger when using SSE and AVX against x87.
5Notice that the AVX introduced not only a new set of 256-bit vector instructions, but also new

encodings for all previous SSE instructions. A program compiled using AVX will have SSE instructions
encoded using the new operation codes provided by AVX.

34 Chapter 3. Motivation

Most programs are at least 5% bigger than x87 form, with some exceptions such as
482.sphinx3 and 481.wrf.

Therefore, in the course of 30 years:

• The number of x86 instructions increased three times its initial size, a direct impact
into front-end design.

• The operation code size doubled, a potential problem since this has an impact in
instruction cache ratios.

• The x86 extensions are increasing the overall program size - up to 11% in integer
and 20% in floating-point applications - opening a new opportunity for compression.

In Chapter 6, we present additional analysis on x86 code size and propose the recycling
mechanism, aimed at improving compressibility and operation code space cleanup.

Chapter 4

A methodology to create 16-bit
extensions

In this Chapter we propose a method to create 16-bit ISA extensions using a SPARC
based case study1. We use static and dynamic analysis from SPARC compiled programs
for several benchmarks and use a Integer Linear Programming (ILP) model to generate
16-bit instructions formats and select 16-bit instructions.

Section 4.1 describes our methodology. Section 4.2 details the information obtained
with the static analysis: Section 4.2.1 presents statistics about ISA coverage and Sec-
tion 4.2.2 explores immediate and register usage. Section 4.3 presents dynamic instruction
count information and the ILP method is described in Section 4.4.

4.1 Methodology

The first task in the design of a 16-bit extension is to define which instructions from
the regular 32-bit ISA must be present in the extension. The main concern is to be
representative enough to achieve good compression ratios. To find potential instructions
for the 16-bit extension, we organize our analysis as follows:

• Instructions never used by any analyzed program are removed from our selection
pool unless a constraint exists. For example, short functions may contain specific
instructions which are executed very often but have a low static count. The absence
of an instruction not necessarily means it is not used, it may only mean that the
search base is incomplete.

1A generic version of this method can be used to design ASIP ISAs and 16-bit extensions for other
RISC architectures

35

36 Chapter 4. A methodology to create 16-bit extensions

• Organize instructions in groups of similar functionality or operand needs and collect
statistics about the presence of each group in the analyzed programs. Most used
instructions within the same group tend to share similar formats and are candidates
to share a common 16-bit format. Less used instructions are likely to be discarded
unless proven worthy by other analysis.

• Usage count of each instruction in the ISA, both statically and dynamically2. The
most used instructions are directly responsible for final 16-bit compressibility and
must be the first candidates for inclusion, thus subject to fewer encoding restrictions
for their 16-bit format than the least used ones.

4.2 Static Analysis

Based on the criteria mentioned in Section 4.1, we performed a static analysis in all the
programs from the benchmarks MiBench [43], mediabench [66] and the Linux Kernel; all
compiled for SPARC by GCC 4.2 with floating point support disabled.

To statically analyze binaries, we used the objdump3 disassembler tool wrapped by
a python application which parses objdump assembly output recording several levels of
instruction information such as used and defined registers, immediate size and other
encoding properties.

4.2.1 ISA Usage

The total usage of SPARC ISA instructions by MiBench, mediabench and Linux Kernel is
42.8%, 42.3% and 62.7%. The later uses more instructions since it performs special tasks,
such as privileged instructions and hand crafted assembly code. Roughly, 40% of the ISA
instructions were never used, and this is an initial set of instructions to disregard.

We divide instructions by groups of similar functionality and obtain static usage by
each group. In Figure 4.1, top used instructions in mediabench, MiBench and Linux
Kernel are from the alu arith group; 22.4%, 22.6% and 17.2% respectively. Table 4.1 shows
alu arith in mediabench, some of the most used instructions are add imm, subcc imm,
add reg and subcc reg. Thus, as mentioned before, most used instructions within each
group are the main candidates to have 16-bit counterparts.

Tables A.1, A.2 and A.3 in Appendix A.1 contain the complete instruction usage by
groups for mediabench, MiBench and Linux Kernel, refer to that section for details.

2Inclusion of very frequent dynamic instructions may provide a good performance tradeoff
3The objdump is part of the Binutils[42] framework.

4.2. Static Analysis 37

0	

5	

10	

15	

20	

25	

	 ju
mp
	 	

	 re
t	

	 os
	 	

	 un
im
p	 	

	 no
p	 	

	 re
gw
ind
ow
	 	

	 br
an
ch
	 an
nu
l	 	

	 al
u_
sh
i:	
	

	 se
thi
	 	

	 ca
ll	 	

	 al
u_
log
ic	 	

	 st
ore
	 	

	 br
an
ch
	 	

	 m
ov
e	 	

	 lo
ad
	 	

	 al
u_
ari
th	
	

IS
A	
U
sa
ge
	 (%

)	

mediabench	 MiBench	 Linux	 Kernel	

Figure 4.1: SPARC instructions usage by groups

Usage Group Instructions

22.42% alu arith (29.59%)add imm
(28.49%)subcc imm
(15.93%)add reg
(12.28%)subcc reg
(05.68%)sub reg
(02.37%)smul reg

(01.45%)addcc imm
(01.28%)subx imm
(01.22%)addx imm
(00.33%)umul reg
(00.32%)smul imm
(00.28%)udiv reg

(00.20%)subx reg
(00.17%)addcc reg
(00.16%)sdiv reg
(00.14%)addx reg
(00.04%)udiv imm
(00.04%)sub imm

(00.02%)smulcc reg
(00.01%)udivcc reg
(00.00%)sdivcc reg

15.00% load (61.16%)ld imm
(16.69%)ld reg
(05.59%)ldub reg

(04.46%)lduh imm
(03.54%)ldd imm
(01.85%)ldub imm

(01.71%)ldsb reg
(01.70%)lduh reg
(01.41%)ldsh imm

(00.71%)ldsb imm
(00.65%)ldsh reg
(00.54%)ldd reg

12.14% move (71.93%)or reg (28.07%)or imm

11.76% branch (32.66%)ba
(22.71%)be
(13.58%)bne
(07.86%)ble

(06.06%)bl
(04.79%)bleu
(04.27%)bg
(02.91%)bgu

(02.76%)bge
(00.80%)bcs
(00.67%)bcc
(00.58%)bpos

(00.35%)bneg

Table 4.1: SPARC instruction usage - top 4 groups in mediabench

4.2.2 Immediate and Register Encoding

The fields needed when encoding instructions are opcode, immediate and registers. The
opcode bit-width is determined by the number of instructions in the ISA and by consid-
ering a good compromise between available functionality and opcode space occupation.
We must avoid opcode space waste by refusing to include infrequent functionalities. Ad-
ditionally, we must consider that a large opcode field restricts the size of immediate and
register fields.

Immediates usually occupy most part of an instruction and are the main target for
compression. Thus, as mentioned in Section 2, 16-bit extensions – Thumb, MIPS16
and MicroMIPS – are designed with instructions containing restrained immediate fields.
SPARC – as described in Section 2.2.1 and in Figures 2.1, 2.2 and 2.3 – has the following
immediate field sizes across three formats: 30, 22 and 13 bits. For instance, the top used

38 Chapter 4. A methodology to create 16-bit extensions

instruction groups (Figure 4.1) alu arith, load, move, store and alu logic are composed of
instructions using the SPARC format with 13-bit immediate field.

Figure 4.2 shows the number of bits needed to encode the immediate in all arithmetic,
logic, shift, load and store instructions for the mediabench, MiBench and Linux Kernel.
Notice that, although the immediate field is 13-bits wide, for the three cases in Figure ??,
more than 80% of the arithmetic instructions require 6 bits or less. Also, near 80% of the
load and store instructions can be represented with 9 or less immediate bits.

0"

20"

40"

60"

80"

100"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

O
ve
ra
ll'
Im

m
ed

ia
te
'

Co
ve
ra
ge
'(%

)'

Number'of'Bits'to'Encode'Immediate'

Load" Store" Arith" Logic" Shi9"

(a) mediabench

0"

20"

40"

60"

80"

100"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

O
ve
ra
ll'
Im

m
ed

ia
te
'

Co
ve
ra
ge
'(%

)'

Number'of'Bits'to'Encode'Immediate'

Load" Store" Arith" Logic" Shi9"

(b) MiBench

0"

20"

40"

60"

80"

100"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13"

O
ve
ra
ll'
Im

m
ed

ia
te
'

Co
ve
ra
ge
'(%

)'

Number'of'Bits'to'Encode'Immediate'

Load" Store" Arith" Logic" Shi9"

(c) Linux Kernel

Figure 4.2: Immediate size usage for SPARC format 3 instructions

Figure 4.3 represents the immediate usage for calls and branches. 80% of call instruc-
tions (30-bit immediate field size) can be encoded using 14-bits (Figure 4.3a) in media-

4.2. Static Analysis 39

bench and MiBench whereas the Linux kernel needs 19-bits. 80% of branch instructions
(Figure 4.3b) need only 8 bits out of 22 in the three benchmarks.

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

O
ve
ra
ll	
Im

m
ed

ia
te
	

Co
ve
ra
ge
	 (%

)	

Number	 of	 Bits	 to	 Encode	 Immediate	

mediabench	 MiBench	 Linux	 Kernel	

(a) Calls

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	

O
ve
ra
ll	
Im

m
ed

ia
te
	

Co
ve
ra
ge
	 (%

)	

Number	 of	 Bits	 to	 Encode	 Immediate	

mediabench	 MiBench	 Linux	 Kernel	

(b) Branches

Figure 4.3: Immediate size usage for SPARC format 1 and 2 instructions - calls and
branches

Register fields are smaller than immediate ones but also important, since they are an
intrinsic part of an instruction. Section 2.2.1 contains detailed information on register
encoding format and Section 2.2.2 describes all SPARC registers and their associated
functions.

Immediate field sizes may vary among instructions, but register field sizes are fixed,
allowing all instructions to have the same set of register visibility. In SPARC, fp and
sp are always visible and accessible by all instructions accessing registers. Furthermore,
those registers are only referenced during load and store to local variables (by ld imm
and st imm instructions), function frame allocation (save and restore) and stack frame
addresses copies (add imm). Hence, both registers are reserved and never used by the
compiler register allocator.

Table 4.2a shows that fp is the fifth most used register; 30.7% and 26.53% of all
ld imm and st imm instructions, as shown in Table 4.2b; suggesting that we may have
16-bit specific load, store and save instructions to implicitly access such registers, hiding

40 Chapter 4. A methodology to create 16-bit extensions

them from regular instructions, which leaves extra room for encoding regular registers,
decreasing register allocation pressure.

We also analyzed immediates within ld imm and st imm instructions using fp and no
immediate can be encoded with less than 5-bits4, as illustrated in Table 4.2c; such in-
structions highly demand large immediate fields. Note that the stack access in ld imm and
st imm is always 4 byte aligned to the accessed data type (as explained in Section 2.2.1)
and the encoding of the two least significant bits is needless. Hence, besides implicitly
accessing fp and sp, we can save more space by avoiding to encode such two bits in the
16-bit instruction. A similar approach can be applied to add imm, save imm and restore
instructions using sp or fp.

Registers Usage
g1 16.77%
i0 9.15%
o0 8.97%
o5 6.46%

i6/fp 6.31%
(a) Overall top 5 used
registers

Instructions Usage - fp or sp
ld imm 30.75%
st imm 26.53%

save imm 13.54%
add imm 13.18%
std imm 3.64%

(b) Top fp or sp usage in instructions

Bits Coverage
1-4 0%
5 12.34%
6 36.89%
7 52.40%
8 79.43%

(c) ld imm with fp:
Necessary bits to en-
code immediates

Table 4.2: SPARC register usage statistics

The data in Figure 4.4a disregard fp and sp usage and show that 8 distinct registers
are responsible for 62%, 64% and 81% of the total register usage in instructions from
mediabench, MiBench and Linux Kernel respectively. In Figure 4.4b, 67%, 69% and
85% of the total registers defined in all instructions are represented by only 8 distinct
registers. The result show that using 3-bits for register fields in the 16-bit extension is a
good tradeoff: although 4-bits could be used, we reduce by a factor of four the number of
registers and cover roughly 65% of all register usage5, leaving one more bit for opcode or
immediate.

Furthermore, 27% and 37% of three address instructions in alu arith and alu shift
groups behave like two-address instructions, where one of the source registers is the same
as destination. In fact, even for instructions addressing only two registers in the alu arith
group, 26% of them use the same source and destination register. Hence, two-address
16-bit instructions can be created based on instructions with these profiles.

4SPARC ABI reserves a 16 byte space closer to fp which had no use in any analyzed binary
5Applications needing more registers are likely to have extra spill code, a potential drawback partially

mitigated by switching to 32-bit mode

4.3. Dynamic analysis 41

0	

20	

40	

60	

80	

100	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	

O
ve
ra
ll	
Re

gi
st
er
	

U
sa
ge
(%

)	

Number	 of	 Registers	

mediabench	 MiBench	 Kernel	

(a) Registers Used in a Instruction

0	

20	

40	

60	

80	

100	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	
Number	 of	 Registers	

mediabench	 MiBench	 Linux	 Kernel	

(b) Registers Defined in a Instruction

Figure 4.4: SPARC register usage coverage

4.3 Dynamic analysis
We analyzed the execution of SPARC binaries to dynamically collect information about
the overall utilization of instructions. We executed all programs from the MiBench [43]
and mediabench [66] benchmarks in the ArchC 2.16 [84] simulator through user process
simulation. ArchC has support for SPARC and provides a GCC 3.4 SPARC toolchain.
Note that programs are compiled without floating point support, targeting the SPARC
ISA.

Table 4.3 shows the list of most executed instruction in mediabench and MiBench
benchmarks. In mediabench, or reg, or imm and add reg are the top three most executed
instructions while or reg, add reg and ld imm in MiBench. Comparing the static ISA
usage from Section 4.2 and the dynamic information obtained, we find some instructions
with a low static but high execution count; as mentioned in Section 4.1, we might weight
such instructions for possible inclusion in the 16-bit extension - mitigating a potential
performance degradation.

For instance, xor reg represents 10% of all executed instruction in MiBench but only
0.1% from all total static count in the same benchmark. The bpos instruction is in the
same category: 0.03% on static count but 5.3% of the executed instructions in the same
benchmark. Other instructions have the same profile and must be specially considered in
the inclusion for the 16-bit extension.

4.4 Integer Linear Programming Model
We developed an Integer Linear Programming (ILP) model to represent the problem of
finding the best field sizes for every instruction format in the 16-bit extension. The ILP

6ArchC does not support running the Linux Kernel

42 Chapter 4. A methodology to create 16-bit extensions

mediabench MiBench

(11.49%)or reg
(7.48%)or imm
(6.37%)add reg
(5.90%)ld imm
(5.12%)subcc reg
(5.0%)srl imm
(5.0%)add imm
(4.98%)subcc imm
(4.03%)sethi
(3.54%)st imm
(3.01%)and imm
(2.98%)std imm
(2.91%)bleu
(2.71%)be
(2.36%)ldd imm
(2.35%)sll imm
(1.94%)bne
(1.84%)ba
(1.83%)and reg
(1.35%)jmpl imm

(1.34%)save imm
(1.34%)restore reg
(1.32%)ldub imm
(0.86%)bneg
(0.82%)ld reg
(0.78%)addcc imm
(0.73%)ldd reg
(0.69%)bgu
(0.67%)st reg
(0.64%)sra imm
(0.63%)andcc imm
(0.61%)sub reg
(0.57%)bl
(0.51%)ble
(0.48%)addx imm
(0.40%)orcc reg
(0.40%)bge
(0.40%)bg
(0.38%)ldub reg
(0.33%)nop

(0.29%)addcc reg
(0.25%)umul reg
(0.25%)rd reg
(0.18%)xor reg
(0.16%)ldsh reg
(0.15%)smul reg
(0.14%)bpos
(0.11%)subx imm
(0.10%)xnor reg
(0.10%)ldsh imm
(0.09%)sth reg
(0.09%)lduh reg
(0.07%)lduh imm
(0.06%)stb reg
(0.05%)subx reg
(0.05%)std reg
(0.03%)sth imm
(0.03%)andcc reg
(0.01%)wr imm
(0.01%)stb imm

(20.29%)or reg
(13.14%)add reg
(10.18%)ld imm
(10.0%)xor reg
(8.87%)add imm
(6.47%)sll imm
(5.88%)srl imm
(5.30%)bpos
(5.30%)addcc imm
(4.16%)ld reg
(3.10%)st imm
(2.21%)and reg
(1.22%)st reg
(1.06%)subcc imm
(0.74%)andn reg

(0.41%)or imm
(0.30%)bgu
(0.15%)sethi
(0.09%)nop
(0.09%)jmpl imm
(0.08%)call
(0.08%)bleu
(0.05%)bne
(0.05%)be
(0.05%)andcc imm
(0.04%)save imm
(0.04%)restore reg
(0.04%)bg
(0.01%)lduh imm
(0.0%)wr reg

Table 4.3: SPARC most executed instructions in mediabench and MiBench

solution assisted in the creation and definition of SPARC16 instruction formats.
An input instance to the ILP model consists of a tuple (S, F, I, c). Each element s ∈ S

is a set of fields. Table 4.4a shows the fields for each of the sets s ∈ S. A field can be a
primary opcode, a secondary opcode, a register or an immediate. The primary opcode is
mandatory for every s ∈ S. Secondary opcodes and immediates are optional, but limited
to one per s ∈ S. Each register in s ∈ S is restricted to three bits, but its inclusion in a
format is optional.

An assignment of size to each of the fields of an element s ∈ S corresponds to a
format. Formats follow two rules: the sum of sizes of each of its fields equals sixteen and
the size of a register field is always three. For each s ∈ S, we generated every possible
format following the aforementioned rules and placed them into the set F . For example,
Table 4.4b presents generated formats for the RRI set - containing one primary opcode,
two registers and an immediate. The maximum opcode size is 7 bits which can encode
128 different instructions; usage of more bits to opcode field would reduce available bits
to encode registers and immediates.

The set I contains SPARC16 candidate instructions. We took as candidates SPARC in-
structions and pseudo-instructions. Pseudo-instructions were included because we wanted
to hide the existence of certain registers, such as g0,sp,fp and ra. Not only does this
approach mitigate the impact of having only three bits to index the register bank, but also
to increase the size of immediate fields, since the pseudo-instructions reference registers

4.4. Integer Linear Programming Model 43

Fields
s ∈ S 1st Opcode 2nd Opcode Register(s) Imm
I opc1 imm1
RI opc1 reg1 imm2
RRI opc1 reg1, reg2 imm3
RR opc1 reg1, reg2
RRR opc1 reg1, reg2, reg3
I2 opc1 opc2 imm4
RI2 opc1 opc3 reg1 imm5
RRI2 opc1 opc4 reg1, reg2 imm6
RR2 opc1 opc5 reg1, reg2
RRR2 opc1 opc6 reg1, reg2, reg3

(a) Fields s ∈ S

Field sizes (bits)
Formats opc1 reg1 reg2 imm3

F1 1 3 3 9
F2 2 3 3 8
F3 3 3 3 7
F4 4 3 3 6
F5 5 3 3 5
F6 6 3 3 4
F7 7 3 3 3

(b) Possible RRI formats

Table 4.4: Description of ILP fields and inputs

implicitly. The U
The cost function c : I × F → I specifies the cost of mapping i ∈ I to format

f ∈ F . Certain mappings are invalid, as for instance, associating an instruction which
needs an immediate to a format that does not have an immediate field. The c function
disregards those. The costs were calculated using static analysis data from instructions
in mediabench and MiBench programs. For every instruction in those programs, we
identified an equivalent in I, and attributed the cost of associating it to every valid
format taking into account factors such as the immediate field size being large enough to
accommodate constants and attempts to represent three-addresses instructions as two-
addresses instructions, forcing a register to be simultaneously as source and destination
of an operation.

In order to allow the ILP to discard candidate instructions, the special format 0
was created. The cost of associating i ∈ I to 0 represents the cost of not supporting
i in SPARC16. We calculated that by estimating the number of supported SPARC16
instructions that would have to be executed to achieve the same effect as i. Obviously,
this is an speculative value, since the SPARC16 ISA is yet to be determined.

Therefore, the ILP problem can be formulated to the problem of mapping every in-
struction to a single format while minimizing the total cost incurred in this mapping.
The mapping is subject to several constraints that guarantee that the obtained mapping

44 Chapter 4. A methodology to create 16-bit extensions

makes sense - i.e. that the primary opcode has the same number of bits in every chosen
format, and that the number of bits attributed to the opcode fields affects the number of
instructions that can be placed in a format. Below we describe the ILP model.

We have binary variables xif that indicate if instruction i is going to be mapped to
format f or not. We also have binary variables yf that specify if the format f is going
to be used. A format can have at most two opcode fields (a primary and a secondary).
There are at most K opcode fields identified by OP1, OP2, . . . , OPK . The primary opcode
(OP1) is shared amongst every s ∈ S, while the secondary opcodes (OP2, . . . , OPK) are
exclusive. Each opcode has at most L bits. There are binary variables opkl indicating that
the k-th opcode uses l bits. There is a special integer variable T that specifies the number
of primary opcode available slots. For each k ∈ {2, . . . , K} and l ∈ {1, . . . , L} we create
integer variables Gkl that state the number of primary opcode slots, among the total T ,
that will be occupied by instructions mapped to a format that has the k-th opcode with
l bits as its secondary opcode. Notice that we can map at most 2lGkl instructions to the
format in question. The integer variable G1 represents the number of primary opcode
slots occupied by instructions mapped to a format that has no secondary opcode. We
use f ∈ s to denote that a format f ∈ F was generated from a set s ∈ S. We use i ∈ f
to denote that instruction i ∈ I can be mapped to format f ∈ F and we call the set of
formats to which i can be mapped Fi.

Min
∑
i∈I

∑
f∈Fi

c(i, f)xif (4.1)

We solve the Equation 4.1, subject to:

∑
f∈s yf ≤ 1, for s ∈ S (1)

xif − yf ≤ 0, for i ∈ I and f ∈ Fi (2)∑
f∈Fi

xif = 1, for i ∈ I (3)
yf + yf ′ ≤ 1, for f, f ′ ∈ F inconsistent (4)∑

l≤L opkl = 1, for k ≤ K (5)
yf − opkl ≤ 0, for each k and l, f has opkl (6)
T −∑

l≤L 2lop1l ≤ 0 (7)
G1 + ∑K

k=2
∑

l≤L Gkl − T ≤ 0 (8)
Gkl − 2Lopkl ≤ 0, for each k and l (9)∑

(i,f)∈G1 xif −G1 ≤ 0 (10)∑
(i,f)∈Gkl

xif − 2lGkl ≤ 0, for each k and l (11)

Constraint (1) assures that at most one format f ∈ F of each set s ∈ S is chosen.
Constraint (2) establishes that an instruction is assigned to a format only if the format

4.5. Considerations 45

is chosen. Constraint (3) guarantees that each instruction is assigned to a format (recall
that every instruction can be mapped to format 0). Constraint (4) assures that incon-
sistent formats, i.e. formats that attributed different sizes to the same field, cannot be
used together. For example, this guarantees that all the chosen formats will have the
same number of bits dedicated to the primary opcode (since OP1 is shared amongst all
formats). Constraint (5) establishes that each opcode field will have a fixed size of l
of bits. Constraint (6) says that one format with the k-th opcode using l bits, can be
used only if the solution uses that opcode with l bits. Constraint (7) calculates the total
amount T of slots for the primary opcode. Constraint (8) guarantees that the number of
slots of the primary opcode that are spread among the groups is at most T . Constraint
(9) assures that group Gkl is going to be used only if in the solution, opcode k uses l bits.
Constraints (10) and (11) limit the number of instructions that can be assigned to each
format. For these constraints, (i, f) ∈ G1 refers to instructions i ∈ I mapped to a format
f ∈ F with no secondary opcode, while (i, f) ∈ Gkl refers to instructions i ∈ I mapped
to a format that has k with l bits as its secondary opcode.

4.5 Considerations
The ILP solution produces an initial set of formats; each holds one or more instructions.
We also manually introduce other formats and add special instructions which are not con-
sidered by the ILP method. For instance, the RI2 format was created to hold instructions
dealing with the stack pointer; LDFP, LDSP, STSP, STFP, ADDFP and ADDSP. Moreover,
mode exchange instructions (e.g. CALLX) are introduced into ILP generated I format.
Additional information on instructions and formats can be found in Chapter 5.

The method described in this thesis was developed together with the former University
of Campinas Master student Leonardo Ecco. His Master thesis [32] describes the same
method presented here. We both designed and determined the ILP restrictions and the
rest of the work was divided as follows: the author implemented the tools necessary for
dynamic and static analysis whereas Leonardo Ecco executed and collected the solutions
to the ILP method.

Chapter 5

SPARC16

In this Chapter we describe the SPARC16 ISA, the related tools and evaluate the exten-
sion. First, SPARC16 instructions are described in Section 5.1; including detail on mode
exchange, the EXTEND mechanism and code alignment restrictions.

Section 5.2 explains how original SPARC registers are visible in SPARC16; based
on that, the resulting SPARC16 ABI is presented in Section 5.3. Sections 5.4 and 5.5
details the hardware implementation and the emulation tools used for SPARC16. The
SPARC16 toolchain is presented in Section 5.6, with further implemented optimizations
in Section 5.7. Finally, we evaluate the SPARC16 extensions in Section 5.8.

5.1 Instructions
The SPARC16 instructions formats are illustrated in Table 5.1. Every format is uniquely
identified by a 5-bit major opcode (op). Additionally, a secondary opcode (op2) is used
in some formats and increases the total number of available instructions.

Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RR op op2 rs rd
RRI op imm rs rd
I op imm
LDST op op2 imm rs rd
I2 op op2 imm
RI2 op op2 imm rd
RRR op op2 rs2 rs1 rd
RRI2 op op2 imm rs rd
RI op imm rd

Table 5.1: SPARC16 formats

All SPARC16 instructions, their respective encodings and assembly syntax are de-
scribed in Appendix B.1.

47

48 Chapter 5. SPARC16

The RRR format does not have an immediate field and is used to encode instructions
that operate on three registers - two sources and one destination - such as ADDrr (B.1.1)
and SUBrr (B.1.48). Two-address instructions, like ADDXrr (B.1.4) and ORNrr (B.1.31),
are encoded in the RR format.

Arithmetic and logic instructions with immediates use the RRI format, examples:
ADDCCri (B.1.1), ANDri (B.1.5) and SLLri (B.1.39).

The RRI2 format, very similar to RRI, represents instructions with a low usage rate in
original analyzed SPARC programs. SDIVri (B.1.37) and SMULri (B.1.37) are examples
of division and multiplication instructions encoded in this format.

The ADDFP (B.1.2) and ADDSP (B.1.3) instructions implicitly use the fp and sp registers,
to provide stack offset computations. Both instructions are encoded in RI2 format.

The SAVEri (B.1.36), defined in I2 format, implicitly uses and defines sp optimizing
the very common SPARC stack frame allocation pattern SAVE %sp,imm,%sp.

5.1.1 Calls and Branches
The I format is used to accommodate the CALL (B.1.11) instruction, which requires a
large immediate field, but no registers. It also holds some branches; branch always (BA -
B.1.8), if equal (BE - B.1.9) and if not equal (BNE - B.1.10), with the annul [87] field in bit
10. Format I2 is used to encode branches with other condition codes.

SPARC calls and branches, as described in Table 2.3 (Section 2.2.1), assume 4 byte
aligned target and hence discard the two least significant immediate bits before encoding.
In SPARC16, such instructions assume 2 byte aligned target, only discarding the least
significant immediate bit prior to encoding.

5.1.2 Load and Store
The load word (LDri - B.1.18) and store word (STri - B.1.43) instructions are encoded in
the RRI format. Byte, half, and double loads and stores are encoded in the LDST format.

The load and store instructions in the SPARC architecture follow alignment rules,
as described in Table 2.2 (Section 2.2.1). The SPARC16 extension enforces the same
alignment restrictions by encoding offsets while discarding unnecessary bits. For instance,
to load a word from the address reg + 0x8, the immediate 0x8 is encoded as 0x2, since
the word alignment discards the least 2 significant bits from the address displacement.
The offset is shifted back accordingly, prior to execution, in order to produce the right
address. This encoding strategy reduces the number of bits to encode the immediate.

The LDFP (B.1.19), LDSP (B.1.22), STFP (B.1.45) and STSP (B.1.47) load and store
instructions implicitly uses fp and sp as source registers, both are encoded in the RI2
format.

5.1. Instructions 49

5.1.3 Mode exchange
Special instructions are used to alternate between SPARC and SPARC16 modes.

From SPARC16 to SPARC code. Two special instructions can switch from SPARC16
to SPARC: Call with Exchange (CALLX - B.1.14) or Branch with Exchange (BX16). Chang-
ing from SPARC16 to SPARC is useful when: (1) an operation is faster or smaller using
SPARC instructions or (2) to reuse SPARC libraries. Figure 5.1a shows how to switch
mode using CALLX, while in Figure 5.1b, BX16 is used to switch modes.

1 sparc16 code :
2 . . .
3 c a l l x p r i n t f
4 nop
5 . . .
6
7 ; sparc v8 code
8 p r i n t f :
9 . . .

(a) Using callx

1 sparc16 code :
2 . . .
3 bx16 sparcv8 code
4 nop
5 . . .
6
7 sparcv8 code :
8 . . .

(b) Using bx16

Figure 5.1: Assembly mode exchange from SPARC16 and SPARC

From SPARC to SPARC16 code. Conversely, Jump and Link with Exchange (JMPLX)
and Branch with Exchange (SPARCV8BX) instructions are used to switch from SPARC to
SPARC16 - see Figure 5.2a and 5.2b.

1 sparcv8 code :
2 . . .
3 s e t h i %hi (sparc16 code) , %l 0
4 or %l0 , %l o (sparc16 code) , %l 0
5 jmplx %l0 , 0 , %o7
6 nop
7 . . .
8
9 sparc16 code :

10 . . .

(a) Using jmplx

1 sparcv8 code :
2 . . .
3 sparcv8bx sparc16 code
4 nop
5 . . .
6
7 sparc16 code :
8 . . .

(b) Using sparcv8bx

Figure 5.2: Assembly mode exchange from SPARC and SPARC16

In Figure 5.3 and Figure 5.4 we show the encoding of both instructions in the SPARC
opcode space; they were added to the SPARC ISA by using reserved and unused opcodes.
The least significant bit in the 32-bit target address determines the target routine’s mode
– 0 means SPARC and 1 means SPARC16.

50 Chapter 5. SPARC16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op unused sparcv8bx imm19

Figure 5.3: SPARC branch with exchange instruction: sparcv8bx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rd jmplx rs1 i = 1 imm

Figure 5.4: SPARC jump and link with exchange: jmplx

5.1.4 The EXTEND mechanism

The use of large immediates in SPARC16 instructions is an expensive operation in terms
of code size. The reduced immediate field forces the use of several instructions, resulting
in a final code size equal or worse than performing the same operation with SPARC
instructions. At the same time, the penalty of a SPARC mode exchange to perform a
simple constant load is prohibitive.

The SPARC16 define a 16-bit EXTEND instruction - a mechanism similar to MIPS16
EXTEND [57] - used to increase bit availability when encoding large immediates. It
is encoded by a reserved opcode, preceding a regular 16-bit instruction (i.e. not other
EXTEND) and containing unused extra bits for use by the following instruction.

For example, the MOV (B.1.25) instruction has a 8-bit immediate field and can only
load constant values up to 255; mov16 0xff, $i0. Using the extended version MOV ext
(B.1.25), increases the immediate field to 13-bits, allowing constants up to 8191; emov16
0x1fff, $i0.

Table 5.2 shows all SPARC16 formats augmented with the EXTEND instruction prefix.
For instance, formats I and I2 provide ten extra immediate bits to improve target dis-
placement encoding. The mechanism is also used to provide additional registers for some
instructions, a functionality not present in MIPS16. For instance, the extended format RR
transforms a two-address instruction into three address, allowing an additional register
source.

Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND I2 0 1 0 1 1 imm op op2 imm
EXTEND I 0 1 0 1 1 imm op imm
EXTEND RI 0 1 0 1 1 0 0 0 0 0 0 imm op imm rd
EXTEND RR 0 1 0 1 1 0 0 0 0 0 0 0 0 rsext op op2 rs rd
EXTEND RRI2 0 1 0 1 1 imm op op2 imm rs rd
EXTEND LDST 0 1 0 1 1 0 0 imm op op2 imm rs rd
EXTEND RRI 0 1 0 1 1 0 0 0 imm op imm rs rd
EXTEND RI2 0 1 0 1 1 0 0 0 imm op op2 imm rd

Table 5.2: SPARC16 EXTEND formats

5.2. Registers 51

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SETHI unused imm rd

Table 5.3: SPARC16 SETHI instruction

5.1.5 SETHI instruction
Additionally, we provide other means of loading large immediates. SPARC16 provides
the 32-bit SETHI instruction (Figure 5.1.5). The instruction functionality is similar to
the one available in SPARC: it loads a 22 bit constant into the higher register bits. To
load a constant using the EXTEND instruction, we have the maximum of 19 bits and SETHI
provides a clear benefit over it.

5.1.6 Alignment restrictions
The SPARC16 design and implementation guarantees that EXTEND, SETHI and all other
SPARC16 instructions can be used interchangeably with the minimum 2 byte code align-
ment restriction; whereas in SPARC, the required instruction alignment is 4 byte. Thus,
as shown in Figure 5.5, the 4 byte SPARC16 SETHI instruction respects a 2 byte alignment
but is not 4 byte aligned.

Instruction Memory
...

Address SPARC16 Instruction SETHI[31:16]
Address + 4 SETHI[15:0] SPARC16 Instruction

...

Figure 5.5: Unaligned SPARC16 SETHI instruction

5.2 Registers
The SPARC16 maintain the 32-bit registers from SPARC but only 8 are visible and can be
explicitly referenced. To access hidden registers, two special instructions are provided –
MOV8to32 (B.1.26) and MOV32to8 (B.1.27). The former moves data from a visible register
to a hidden one and the latter performs its inverse operation. The I2 format is used by
these instructions with a three bit field reg8, used to index a SPARC16 visible register,
and a five bit field reg32, used to index one of the 32 registers from the SPARC register
bank. These instructions are also used to move function arguments into specific registers
and to compute more elaborate arithmetic involving sp or fp. Table 5.4 summarizes
register visibility in SPARC16.

52 Chapter 5. SPARC16

Register Visibility ABI description
%i0 Visible Input Register
%i1 Visible Input Register
%i2 Visible Input Register
%o0 Visible Output Register
%o1 Visible Output Register
%o2 Visible Output Register
%l0 Visible Local Register
%g1 Visible Global Register
%g0 Hidden Zero Value
%fp Hidden Frame pointer
%sp Hidden Stack pointer
%ra Hidden Return address

Table 5.4: SPARC16 registers

Some of the already mentioned SPARC16 instructions include implicit access to reg-
isters sp, fp, g0 and ra, mitigating the handicap of a small set of visible registers. Also,
an implicit register reference means three free bits to encode a larger immediate or more
opcodes. Examples of such instructions are LDFP, LDSP, ADDFP and ADDSP.

5.3 Application Binary Interface
The Application Binary Interface (ABI) defines a set of conventions to be followed by
compilers and operating systems to make sure applications and libraries from different
sources can interact with each other. Function calling sequence, ELF headers, object files
relocations and dynamic linking are examples of conventions defined in an ABI.

The SPARC16 ABI is an extension of the SPARC ABI [53] and inherits most of its
conventions. The o0-o5 and i0-i5 group of registers are used to pass and receive the first
six arguments within a function call, while the remainder arguments are passed on the
stack. MOV8to32 and MOV32to8 instructions move the arguments to and from the hidden
registers o3-o5 and i3-i5. The stack layout remains the same, including the reserved
space on the stack for variable arguments.

Regarding the calling convention, no modifications need to be implemented to support
interoperability between SPARC16 and SPARC. The only necessary ABI addition relates
on the definition of relocations. SPARC16 preserves all relocation definitions from SPARC
and additionally defines its own group. Hence, the linker can link between modes since it
understands relocations from either SPARC or SPARC16.

5.4. Hardware 53

5.4 Hardware
SPARC16 is an extension to the SPARC instruction set and it is meant to execute on
a regular SPARC pipeline. The SPARC16 instructions are translated to their 32-bit
counterparts at execution time by placing a PDC decompressor between the instruction
cache and the SPARC pipeline, as shown in Figure 5.6. A PDC design yields more
performance than other mechanisms (see Section 2) and is adopted by Thumb [6] and
MIPS16 [57].

Fetch
stage

Decode stage

Mux

32-bit data

16

16

16

SPARCv8
 Pipeline

 SPARC16
Decompressor
 Engine

Current
 Mode

PC[1]

32-bit data

SPARCv8
Instruction
 Decoder

Figure 5.6: SPARC16 decompression diagram

The decompressor is integrated into a SPARC processor Leon3 [38]. The implemen-
tation [32] focused on three key factors:

• Integrate the decompressor with the minimum hardware overhead into the Leon3
processor.

• No processor cycle time degradation after integration.

• Guarantees that SPARC16 code is reachable through jumps and calls, even if the
target is not 4-byte aligned.

We avoid overhead and cycle time degradation by carefully choosing the bit encoding
for each 16-bit instruction, simplifying the conversion between SPARC16 and SPARC.

54 Chapter 5. SPARC16

More details on the hardware design and implementation are provided by Leonardo Ecco
in his Master thesis [32].

The implementation is incomplete and was not used in this thesis to test and validate
SPARC16 compiled programs.

5.5 Emulator

In order to validate SPARC16 instructions by running real programs and to collect extra
information about execution, we used the QEMU emulator [13].

QEMU is a system virtual machine capable of emulating several guest and host archi-
tectures. QEMU employs dynamic binary translation as its emulation technique and it
first converts fragments of code from the guest application into an intermediate represen-
tation. Afterwards, it converts them into native code. Thus, the emulation in QEMU can
be divided in three parts, as shown in Figure 5.7: the front-end, the Tiny Code Generator
(TCG) and the back-end.

SPARC16 Front-end
Sparc16
Program

eor16 %o0, 351, %i0

(1) SPARC16 instruction
decoding

TCG

00111…..001001…00

(2) Translation from SPARC16
SPARCv8 instruction

or %o0, 351, %i0

(3) SPARCv8 Front-end
translates instruction into

TCG

Back-end
Native Code

(4) TCG converted to native
instructions by the back-end

Host
Processor

(5) Execution

SPARC Front-end

Figure 5.7: SPARC16 program emulation steps in QEMU

The front-end is composed of several target specific functions to parse and translate
guest binary instructions into the generic and target independent TCG representation.
The TCG is further processed and optimized to eliminate any redundancy. Next, the
back-end for the underlying host target is invoked and host instructions are generated
from TCG and executed. There are front-ends for several targets, such as ARM, MIPS,
PowerPC, SPARC, x86 and x86 64. To run and emulate programs on a desktop, the most
relevant back-ends are x86 and x86 64.

5.6. Toolchain 55

We developed and integrated a SPARC16 front-end into QEMU. The integration allows
the execution of SPARC16 compiled programs, the extraction of execution traces and
interoperability with SPARC code mode exchange instructions are fully supported. The
QEMU based emulator was also used to evaluate all SPARC16 programs described in this
thesis, allowing fast program execution and debugging.

5.6 Toolchain

A toolchain consists of a compiler front-end, back-end, assembler, linker and libraries to
compile applications for a given architecture. We developed a SPARC16 toolchain based
on LLVM 3.2 [64] from front-end to assembler; GNU Binutils 2.22 [42] for the linker and
the uClibc [4] C library compiled for SPARC.

5.6.1 Compiler Frontend and Backend

The LLVM, acronym for Low Level Virtual Machine, consists of a compiler infrastructure
composed of several tools and libraries. The project is composed by the Clang C/C++
front-end, the LLVM intermediate representation (LLVM IR) and target back-ends. The
LLVM uses the pass concept where transformations and optimizations passes are plugged
in a central Pass Manager, which controls and schedule compilation phases.

Unlike GCC, LLVM allows programs to be compiled and assembled without the need
of an external assembler. Once a source code is provided for compilation, the Clang driver
invokes the front-end and converts it into the LLVM IR. The LLVM IR is processed by
target back-ends, generating assembly or object files.

We implemented SPARC16 support in the LLVM front-end and back-end. The Clang
C/C++ front-end was adapted to support SPARC16 since the C language is not target
independent - hence the need to express SPARC16 constraints. A complete SPARC16
target back-end library was developed and it is capable of generating SPARC16 object
code and assembly files and also to apply SPARC16 specific optimizations.

5.6.2 Linker

The GNU Binutils project contains an assembler, linker and disassembler tools. Target
information is unified and used by all tools through the BFD library; hence all target
instructions are described using similar data structures which are linked against those
tools. We implemented the SPARC16 linker by providing such data structures to Binutils
and by writing custom functions to support SPARC16 specific constraints. The data

56 Chapter 5. SPARC16

structures were automatically generated from a SPARC16 ArchC [84] description but
other changes were manually introduced.

The approach used considers all external module calls as SPARC code. We manage
multiple SPARC16 binaries by merging them, prior to code generation, as explained in
Section 5.6.4. Thumb2 and MicroMIPS toolchains provide different mechanisms to allow
a similar linking behavior between different modes. Using a custom implementation for
SPARC16, we can reuse SPARC compiled libraries in our toolchain.

5.6.3 C Library
A C library provides a set of common functionality to C and C++ programs by known
functions and interfaces; printf and strcmp for example, are widely used functions pro-
vided by stdio.h and stdlib.h library interfaces. That said, a C library is essential to
any toolchain. The uClibc C library is aimed at embedded Linux devices, is smaller than
the GNU C Library and was the chosen C library for our toolchain.

We use uClibc and compile it for the SPARC architecture; every time a call for a
function in the C library occurs from SPARC16 code, we use a mode exchange instruction
to accomplish the change. During link time, we rely on our linker to successfully link
together the SPARC compiled uClibc and SPARC16 code.

5.6.4 The compilation and execution flow
The SPARC16 linker can link one SPARC16 object file with multiple SPARC object
files or libraries. However, since during compilation, all external calls are considered as
mode exchange, the linker does not support linking several SPARC16 object files. LLVM
mitigates this restriction by providing the llvm-link; a tool that links multiple LLVM IR
files prior to back-end invocation and only one object file is generated. The compilation
and execution of SPARC16 programs is illustrated in Figure 5.8. The commands are:

.c

IR .o

.c

.c

IR

IR

IR

SP16

Executable

SPARCv8
libraries

Objectclang

clang

clang

llc

(1) LLVM Link: llvm-link(2)

(3)

Final Link Phase: ld(4)

QEMU

(5)
qemu-sparc

Figure 5.8: SPARC16 compilation and execution flow

5.7. Compiler Optimizations 57

1. Each source code file is consumed by the compiler front-end and a LLVM IR file is
generated.
$ sparc16-clang -c a.c -flto -o a.bc
$ sparc16-clang -c b.c -flto -o b.bc

2. Multiple LLVM IR files are linked together by the llvm-link tool into a final LLVM
IR module.
$ llvm-link a.bc b.bc -o final.linked.bc

3. The final LLVM IR is consumed by the target back-end and object code is emitted.
The assembler is integrated into the back-end.
$ sparc16-llc final.linked.bc -o final.linked.o

4. The resulting object code is linked with libraries and the final executable is produced;
the executable binary needs to be statically linked to all necessary libraries.
$ sparc16-clang -static final.linked.o -o final

5. The executable and its arguments are passed via command line to the qemu-sparc
emulator.
$ qemu-sparc final

5.7 Compiler Optimizations

The LLVM SPARC16 compiler back-end minimizes program code size by using a set of
SPARC16 target specific optimizations. Using the LLVM pass interface, optimizations are
registered in different phases of the compiler back-end, specially placed where they can
extract the best results. In each of the following sections we describe such optimizations
and the problem they solve.

5.7.1 Delay slots

The SPARC architecture defines that branches and call instructions require a following
delay slot instruction [87]. The delay slot can be filled with any instruction without data
or control hazards, or by a simple no-operation NOP instruction. In SPARC16, the delay
slots are 2 bytes wide and do not support the presence of EXTEND instructions.

Problem. The use of NOP instructions is suboptimal since other program instructions
can be placed in the delay slot, yielding a smaller final program.

58 Chapter 5. SPARC16

Solution. A dedicate SPARC16 pass calculates potential hazards and candidates for
the delay slot: program instructions are moved to occupy the slots whenever it is safe,
NOP instructions are used otherwise.

1 f :
2 mov %o0 , %g1
3 cmp %g1 , %o1
4 sub %o0 , %o1 , %o0
5 b l e . LL5
6 nop
7 add %o1 , %g1 , %o0
8 . LL5 :
9 . . .

(a) Regular NOP usage

1 f :
2 mov %o0 , %g1
3 cmp %g1 , %o1
4 b l e . LL5
5 sub %o0 , %o1 , %o0
6 add %o1 , %g1 , %o0
7 . LL5 :
8 . . .

(b) Delay slot optimization

Figure 5.9: SPARC16 delay slot fulfillment

Figure 5.9a shows a regular NOP placement whereas in Figure 5.9b the SUBrr instruc-
tion is moved into the delay slot.

5.7.2 Instruction size reducer

All the instructions containing immediates – arithmetic, logic, load, stores, branches and
calls – are conservatively emitted by the code generator with the EXTEND form; this ap-
proach guarantees that instructions supporting bigger constants are selected earlier during
code generation.

Problem. It is suboptimal to use EXTEND when the immediate can fit in a regular 16
bit instruction.

Solution. In a late, post register allocation pass, the EXTEND instructions are removed
whenever 16-bit instructions have enough immediate bits to represent the entire immedi-
ate. The optimization cannot to reduce the sizes of calls and branches because computing
targets and relocations is only possible at assembly and linking time.

5.7.3 Assembler relaxation

The optimization described in Section 5.7.2 cannot handle branches and calls. Since their
immediates are used to hold the target displacement relative to the pc, one change in the
branch or call instruction size, triggers changes in the displacement of all other branches
and calls.

5.7. Compiler Optimizations 59

1 f :
2 eadd %g1 , 3 , %g1
3 eadd %g1 , 2 , %g1
4 eand %g1 , 2 , %g1
5 eor %g1 , 11 , %g1
6 . . .

(a) Suboptimal EXTEND instructions

1 f :
2 add %g1 , 3 , %g1
3 add %g1 , 2 , %g1
4 and %g1 , 2 , %g1
5 or %g1 , 11 , %g1
6 . . .

(b) 16-bit instructions equivalent

Figure 5.10: SPARC16 instruction size reducer

An assembler relaxation algorithm is capable of solving this problem by iterating
indefinitely over functions and reducing instructions sizes. The iteration ends whenever
the size of instructions stops changing from one iteration to another.

Problem. EXTEND calls and branches are suboptimal in cases where the displacement
size is enough to fit in a regular 16-bit instruction.

Solution. The LLVM SPARC16 assembler uses a pass [49] to relax all possible branch
and call instructions in a module and reduce their instruction sizes to 16-bit whenever
the target displacement fits.

Note that external calls - those issuing mode exchange - to other modules have un-
known displacements until the link stage and therefore are not covered by the assembler
relaxation algorithm.

5.7.4 Mixed Stack Access

Immediate field sizes are heterogeneous across SPARC16 instructions and the EXTEND is
always used to increase constant coverage. When the immediate needs more bits than
EXTEND may provide, a SETHI plus ORri ext is used, an approach similar to SPARC. We
name this group of instructions SethiEOr.

However, the use of instructions from SethiEOr increases code size and must only be
used if no other large approach is found. For instance, when the constant load is related
to big stack offsets, additional instructions must be inserted to copy the stack pointer, as
illustrated in the unoptimized fragment from Figure 5.11a.

Problem. The loading of large stack offsets is expensive in number of instructions: LDFP
and STFP cannot encode such immediates and extra instructions must be used to obtain
copies from the stack frame pointer and SethiEOr to load the large immediates.

60 Chapter 5. SPARC16

Unoptimized
; Save visible on hidden
mov8to32 %l6, %o2
; Load offset
mov32to8 %fp, %o0
sethi32 4194273, %o2
eor16 %o2, 192, %o2
; Final stack address
add16 %o2, %o0, %o0
; Restore visible
mov32to8 %l6, %o2
; Use final stack address
st %i0, [%o0]

Optimized

; Use final stack address
stsp %i0, [24]

(a) Unoptimized vs Optimized

%fp

%sp

Stack Growth
Direction

Lower Address

Higer Address

W
Y

A
B

...
Z

...

∆Wsp

∆Wfp
addr(W)

...

(b) SPARC16 Stack Frame

∆Wfp = abs(addr(Y) - %fp)
∆Wsp = abs(addr(Y) - %fp)
if (∆Wsp < ∆Wfp)
 Use %sp
else
 Use %fp

(c) Stack computation

Figure 5.11: SPARC16 mixed fp and sp optimization

Solution. We propose an optimization to this scenario, by accessing stack locations
from closer locations when possible, avoiding the use of many instructions. The result is
shown in the optimized fragment from Figure 5.11a.

The optimization is accomplished by using the nearer available stack pointer register:
fp or sp. In SPARC16, fp points to the first stack position while sp to the stack end.
Suppose the current compiled function accesses the element W from the stack. The access
to W is usually done by computing the offset between W and fp such that ∆Wfp =
abs(offset(W)−%fp).

The ∆Wfp is encoded into the LDFP or STFP instruction immediate field, and W is
loaded or stored to the stack. Our optimization, computes ∆Wsp, the W element offset
from sp, and if ∆Wsp < ∆Wfp, uses LDSP or STSP instructions instead. Figure 5.11b and
5.11c illustrates the stack and optimization offset computation.

The approach is limited to functions which preserve the frame pointer register fp, do
not use stack alloca functions and perform no dynamic stack reallocation.

5.8. Evaluation 61

5.8 Evaluation

We evaluate SPARC16 with respect to three key aspects: code compression ratios, in-
struction cache miss ratios and performance estimation.

5.8.1 Compression Ratios

We measured SPARC16 compression ratio for programs in the mediabench, MiBench and
SPEC CINT2006 benchmarks. We compile each program using LLVM based toolchains
for SPARC16 (Section 5.6) and SPARC. The compiler flag -Os, which enables a set of
code size optimizations, is used for all programs.

Program Ratio
rawcaudio 71.8%
rawdaudio 72.1%
g271 68.7%
gsm 77.3%
jpeg 68.1%
mpeg2decode 75.1%
GeoMean 72.09%

(a) mediabench

Program Ratio Program Ratio
basicmath 81.8% bitcount 68.7%
susan 81.9% jpeg 71.0%
lame 82.3% dijkstra 75.9%
patricia 67.1% stringsearch 69.2%
blowfish 71.8% rijndael 77.6%
sha 72.4% CRC32 69.6%
fft 80.3% adpcm 72.1%
gsm 77.3% GeoMean 74.43%

(b) MiBench

Program Ratio
400.perlbench 71.7%
401.bzip2 72.9%
429.mcf 71%
456.hmmer 74.1%
462.libquantum 69.3%
GeoMean 71.78%

(c) SPEC CINT2006

Table 5.5: SPARC16 compression ratios in mediabench, MiBench and SPEC CINT2006

In mediabench (Table 5.5a), the best compression ratio is 68.1% for jpeg and the worst
case 77.3% for gsm. Table 5.5b shows that MiBench ratios are heterogeneous, ranging
from 67.1% in patricia to 82.3% in lame. Programs from SPEC CINT2006 have a very
homogeneous compression ratio, Table 5.5c shows a geometric mean of 71.78%.

The optimizations mentioned in Section 5.7 perform an important role in the com-
pression ratios achieved. The optimizations are responsible, in average, for reducing code
size by 20% from SPARC16 programs. Note that we maintain a fair comparison against
SPARC since the optimizations applied are only aimed at avoiding compiler mis-usage

62 Chapter 5. SPARC16

of EXTEND and 16-bit instructions. Moreover, every LLVM target independent code com-
paction optimization applied to SPARC16 is also applied to SPARC.

Figure 5.12 shows the overall code size reduction achieved by applying optimizations
to unoptimized SPARC16 programs. The size reducer and assembler relaxation cause a
greater reduction in most analyzed programs, whereas the mixed sp and fp approach
is effective in programs with functions containing large stack frames and many stack
accesses.

In mediabench, shown in Figure 5.12a, relaxation reduces code size by an average
7% and the size reducer by 10%. This is roughly the same reduction caused by both
optimizations in SPEC CINT2006 (Figure 5.12c) and MiBench (Figure 5.12b). The mixed
sp and fp optimization causes a 2.1% and 2.8% code size reduction in 401.bzip2 and
456.hmmer programs from SPEC CINT2006 while blowfish, susan and lame from MiBench
are reduced by 16%, 3.5% and 2.2% respectively.

50%	

60%	

70%	

80%	

90%	

100%	

raw
cau

dio
	

raw
dau

dio
	

g72
1en

cod
e	

toa
st	

cjpe
g	

mp
eg2

dec
ode

	

Co
de

	 S
iz
e	
Re

du
c,
on

	

Final	 Relaxa?on	 Mixed	 SP/FP	 Size	 Reducer	

(a) mediabench

50%	

60%	

70%	

80%	

90%	

100%	

ba
sic
ma
th	

bit
co
un
t	

su
san
	
jpe
g	
lam

e	

dij
kst
ra	

pa
tri
cia
	

str
ing
sea
rch
	

blo
wfi
sh
	

rijn
da
el	 sh

a	

CR
C3
2	 C

	

ad
pc
m	 gsm

	

Co
de

	 S
iz
e	
Re

du
c,
on

	

Final	 RelaxaFon	 Mixed	 SP/FP	 Size	 Reducer	

(b) MiBench

50%	

60%	

70%	

80%	

90%	

100%	

400
.pe

rlbe
nch

	

401
.bzi

p2	

429
.mc

f	

456
.hm

me
r	

462
.libq

uan
tum

	

Co
de

	 S
iz
e	
Re

du
c,
on

	

Final	 Relaxa@on	 Mixed	 SP/FP	 Size	 Reducer	

(c) SPEC CINT2006

Figure 5.12: Effect of optimizations in code size reduction of SPARC16 programs

Comparison with Thumb2 and MIPS16. We also evaluate SPARC16 compression
ratios against Cortex-A9 ARM/Thumb2 and Mips32/Mips16 by compiling programs for
both architectures using LLVM 3.3. Figure 5.13 compares mediabench, MiBench and

5.8. Evaluation 63

50%	

60%	

70%	

80%	

90%	

raw
ca
ud
io	

raw
da
ud
io	

en
co
de
	

toa
st	

cjp
eg
	

mp
eg
2d
ec
od
e	

Ge
oM
ea
n	

Co
m
pr
es
si
on

	 R
a-

o	

SPARC16	 Thumb2	 Mips16	

(a) mediabench

50%	

60%	

70%	

80%	

90%	

ba
sic
ma
th	

bit
co
un
t	

jpe
g	

dij
kst
ra	

pa
tri
cia
	

str
ing
sea
rch
	

blo
wfi
sh
	

rijn
da
el	 sh

a	

CR
C3
2	

FF
T	

ad
pc
m	 gsm

	

Ge
oM
ea
n	

Co
m
pr
es
si
on

	 R
a-

o	

SPARC16	 Thumb2	 Mips16	

(b) MiBench

50%	

60%	

70%	

80%	

pe
rlb
en
ch
	

bz
ip2
	

mc
f	

hm
me
r	

lib
qu
an
tum

	

Ge
oM
ea
n	

Co
m
pr
es
si
on

	 R
a-

o	

SPARC16	 Thumb2	 Mips16	

(c) SPEC CINT2006

Figure 5.13: Compression ratio comparison between SPARC16, Thumb2 and Mips16

SPEC CINT2006 benchmarks; the geometric mean of all programs shows that SPARC16
achieves similar compression ratios to Thumb2 and Mips16.

Actually, SPARC16 yields better compression ratios than MIPS16 for 50% of Media-
Bench programs, and better than Thumb2 for 50% of MiBench programs. For instance,
with the adpcm program, SPARC16 compression ratio is 15% smaller than Thumb2.
Hence, SPARC16 reaches a compression ratio very similar to that of Mips16 and Thumb2,
a very interesting result in itself, given the characteristics of both extensions:

• Mips16 and Thumb2 code generation in LLVM are production quality and stable
back-end implementations, capable of generating compacted code.

• Both extensions can address PC relative immediates (see Section 2.5.1 and 2.5.2),
allowing constants to be placed near functions or in delay slots. This feature allows
loading of 4 or 8 byte constants with only one 16-bit instruction.

5.8.2 Instruction Cache Behavior
We evaluate SPARC16 performance by measuring and comparing the impact of SPARC16
and SPARC code on the instruction cache. The reduction of instruction cache misses

64 Chapter 5. SPARC16

improves performance and at the same time reduces power consumption.
We collected1 execution traces of several programs and analyzed the traces using the

Dinero IV [34] cache simulator. We simulated cache sizes from 128 bytes to 32 kbytes, in
a 2-way, 32 bytes per cache line2.

The dynamic instruction count for SPARC16 is usually higher than SPARC. The
SPARC version of cjpeg, for instance, dispatches 18M cache demand fetches against 23M
in SPARC16 - a 22% increase in the number of executed instructions. As noted, comparing
the absolute miss count values would be misleading; thus, we used the cache miss rates.

Figure 5.14, 5.15 and 5.16 compare instruction cache miss rates between SPARC16
and SPARC for the MiBench, mediabench and SPEC CINT2006 benchmarks. In the
rijndael program, a reduction of 5% in the cache miss rates happens in any cache size
between 128 and 4k bytes. Additionally, in a 128 byte cache size configuration, the cache
miss rates for dijkstra and gsm programs are reduced by 9% and 8% respectively.

Two SPARC16 programs have slightly worse miss rates than SPARC: basicmath and
CRC32. The absence of alignment restriction between regular 2 byte and extended in-
structions in SPARC16 may generate more demand misses; whenever a extended instruc-
tion is present across cache lines, an extra cache miss is generated.

5.8.3 Performance Estimation

Using Equation 5.1 we estimate SPARC16 performance against SPARC.

Cycles = (Fetches−Misses) +Misses ∗ Penalty
Speedupsp16 = Cyclesv8/Cyclessp16 (5.1)

We chose the rijndael program as our case study to investigate speedup estimation.
As shown in Figure 5.14, rijndael cache miss rates differs significantly between SPARC
and SPARC16 for several cache sizes.

Figure 5.17 shows the speedup estimation obtained for different penalty values and
instruction cache sizes for the rijndael program. In Table 5.6 we present the performance
speedup for lines (1) and (2). Line (1), with a 128 byte cache, slows down rijndael by 6%
with a 10 cycle miss penalty. As we increase the miss penalty from 30 to 150 cycles, a
speedup in the range of 4% to 13% is achieved. Line (2), with a 4k byte cache, presents
better results; a 1% slow down for a 10 cycle miss penalty and 22% to 48% speedup with
the miss penalty in the 30 to 150 cycle range.

1Measured using SPARC16 and SPARC support in QEMU
2This cache configuration is similar to the cache configuration options available in SPARC Leon3

implementation

5.8. Evaluation 65

adpcm basicmath bitcount

blowfish CRC32 dijkstra

fft gsm jpeg

lame patricia rijndael

sha stringsearch susan

5.0

7.5

10.0

12.5

15.0

17.5

0

5

10

15

0

1

2

3

0

5

10

15

0

5

10

15

20

0

3

6

9

0

5

10

15

0

5

10

15

0

2

4

6

0

5

10

15

20

4

8

12

0

5

10

0

1

2

3

0.0

2.5

5.0

7.5

10.0

0.0

0.2

0.4

12
8
25

6
51

2 1k 2k 4k 8k 16
k
32

k
12

8
25

6
51

2 1k 2k 4k 8k 16
k
32

k
12

8
25

6
51

2 1k 2k 4k 8k 16
k
32

k

Instruction Cache Size (bytes)

M
is

s
ra

te
 (

%
)

SPARC Sparc16

Figure 5.14: MiBench - SPARC and SPARC16 cache miss ratios

The memory access delay is the main reason why SPARC16 performs better than
SPARC in several scenarios. In lines (3) and (4), we see a linear relation between speedup
and penalty, showing cases where SPARC16 has no cache misses at all.

Moreover, in the 32k - line (5) - configuration, the entire rijndael program fits in the
cache for both architectures - no capacity cache misses in neither architectures. Since
the compulsory number of misses is bigger in SPARC16, it always performs worse than
SPARC.

Using the performance estimations, we might design SPARC16 processors with smaller
caches; an effective measure to lower the overall chip cost [46]. For instance, the SPARC

66 Chapter 5. SPARC16

cjpeg encode mpeg2decode

rawcaudio rawdaudio toast

0

2

4

6

8

0

3

6

9

12

0

5

10

15

20

0

5

10

15

0

5

10

15

0

5

10

15

12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k
12

8
25

6
51

2 1k 2k 4k 8k 16
k

32
k

12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Instruction Cache Size (bytes)

M
is

s
ra

te
 (

%
)

SPARC Sparc16

Figure 5.15: mediabench - SPARC and SPARC16 cache miss ratios

400.perlbench 429.mcf 456.hmmer

0

5

10

15

20

0

5

10

15

0

5

10

15

12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k
12

8
25

6
51

2 1k 2k 4k 8k 16
k

32
k

12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Instruction Cache Size (bytes)

M
is

s
ra

te
 (

%
)

SPARC Sparc16

Figure 5.16: SPEC CINT2006 - SPARC and SPARC16 cache miss ratios

processor is present in ASIC cores [74] used in space applications [59, 2]. Hence, such
systems are likely to benefit from a 16-bit extension to reduce memory footprint and chip
cost.

We illustrate, in Figure 5.18, how small a SPARC16 cache can be when compared
to SPARC cache configurations, in order to run the same programs without any perfor-
mance degradation. Our evaluation considers programs from MiBench, mediabench and
SPEC2006; in a 50 cycle penalty miss scenario, 4 programs can run in a 128 byte cache
SPARC16 processor with the same performance as that the same 4 programs yield in a
256 byte SPARC processor - a reduction of 50% in size.

The reduction can achieve a factor of 16: one program in 150 cycle penalty configu-
ration can use a 128 byte SPARC16 processor against a 2k byte in SPARC. Therefore,
SPARC16 is one alternative for shipping devices with less memory while avoiding perfor-
mance degradation.

5.9. Considerations 67

(1)

(2)

(3)

(4)

(5)
0.75

1.00

1.25

1.50

1.75

1 50 150 250 350 450 550 650 750

Cache Miss Penalty (cycles)

S
p

ee
d

u
p

(S

P
A

R
C

1
6

 x
 V

8
)

Cache Sizes: 128 4k 8k 16k 32k

Figure 5.17: SPARC16 speedup against SPARC in MiBench’s rijndael program for distinct
cache sizes

Miss penalty (cycles) 10 30 50 70 90 110 130 150
128 byte cache -6% 4% 8% 10% 11% 12% 12% 13%
4k byte cache -1% 22% 32% 38% 42% 44% 46% 48%

Table 5.6: SPARC16 speedup values against SPARC in MiBench’s rijndael program for
128 and 4k byte cache sizes

Miss Penalty: 50 cycles Miss Penalty: 150 cycles Miss Penalty: 250 cycles Miss Penalty: 350 cycles

128
256
512

1k
2k
4k
8k

25
6

51
2 1k 2k 4k 8k 16

k
25

6
51

2 1k 2k 4k 8k 16
k

25
6

51
2 1k 2k 4k 8k 16

k
25

6
51

2 1k 2k 4k 8k 16
k

V8 Cache Size (bytes)

S
P

A
R

C
1

6
 C

a
ch

e
S

iz
e

(b
y
te

s)

Number of Programs: 1 2 3 4 5

Figure 5.18: SPARC and SPARC16 cache sizes without performance degradation

5.9 Considerations

SPARC16 programs can achieve better compression ratios than other extensions, attaining
compression results as low as 67%. SPARC16 also reduces cache miss rates by up to 9%,
requiring smaller caches than SPARC processors to achieve the same performance; a cache
size reduction that can reach a factor of 16. For several applications, SPARC16 is faster,
requires smaller instruction cache size and is a feasible alternative to SPARC and other
16 bit architectures.

As mentioned in Section 4.5, the SPARC16 ISA definition is shared work. The same
is valid for the instruction and register design decisions presented in Sections 5.1 and

68 Chapter 5. SPARC16

5.2. Moreover, details on the PDC decompressor design and evaluation can be found in
Leonardo Ecco [32] Master’s work.

Finally, the ABI definition (Section 5.3), emulation (Section 5.5), toolchain (Sec-
tion 5.6), optimizations (Section 5.7) and evaluation (Section 5.8) were done uniquely
by the thesis author.

Chapter 6

The X86 Recycling Mechanism

The IA-32 [52] suffers from the ISA aging problem: as the instruction set matures, it is
necessary to add new instructions in the already occupied opcode space, and eventually
the ISA runs out of space for new opcodes. Also, new processors with old ISAs bear
an inherent disadvantage: the variable-length encoding benefits instructions no longer
used and penalizes recent additions, since the shortest encodings are already taken by the
instructions introduced first.

We shows how to overcome the harmful effects of expansion characteristic of aged ISAs.
We seek a novel approach to maintain an ISA that is as efficient as a newly designed one
in terms of code compaction and decoder size, while still being backwards compatible
with the oldest software developed for it. To reach this goal, we propose in this Chapter
the use of a recycling mechanism for the IA-32 ISA that allows selected short opcodes to
change their previous functionality to serve a new, more popular, instruction.

We start our analysis in Section 6.1 by radically re-encoding the x86 ISA using three
different approaches. The general recycling mechanism is described in Section 6.2; the
hardware and software implementations are described in Sections 6.3 and 6.4. In Sections
6.5 and 6.6 we discuss security implications and limitations of our approach. The mech-
anism evaluation is presented in Section 6.7, showing the experimental results. Finally,
specific considerations about the research are given in Section 6.8.

6.1 Radical Approaches

In this section, we evaluate radical approaches to create space in an old ISA: completely
re-encoding it, possibly removing unused instructions. We will discuss such alternatives
for the x86 ISA and the impact they would have.

69

70 Chapter 6. The X86 Recycling Mechanism

6.1.1 (A) Reduce all Operation Codes to 2 bytes
Instead of having a variable size operation code, we encode all operation codes into 2
bytes, still leaving space for future improvements. Notice that registers and immediates
remain with the original encoding. The net result is an ISA with up to 64K instructions
with plenty of room for future improvements.

6.1.2 (B) Reduce all Operation Codes to 1 or 2 bytes
Similar to the previous approach, but uses 1-byte to the 240 most used instructions and
2-bytes for the others. We specifically chose the 240 1-byte instructions after evaluating
the resulting compression ratios when changing the number of 1-byte instructions from 1
to 255, for different program sets.

As shown in Figure 6.1, we re-encode all programs1 in Ubuntu 12 and Windows 7
operating systems using two different sources for most used instructions:

(i) A collection of Operating Systems: Ubuntu 4, 6, 7, 8, 10 and 12 and Windows 95,
98, XP, Vista and 7

(ii) The SPEC2006 benchmark.

In both scenarios we found that the diminishing return point is around 50 1-byte
instructions; we decided to use 240 because instead of the maximum number allowed
(256) to leave encoding space for future expansion.

ubuntu12 win7

100

125

150

0 50 100 150 200 0 50 100 150 200

Number of 1−byte opcodes

C
o
m

p
re

ss
io

n
 r

a
te

 (
%

)

Collection of OSs SPEC2006

Figure 6.1: Windows 7 and Ubuntu 12 re-encoded using instruction frequency from (i) a
collection of operating systems and (ii) SPEC2006 programs

1All libraries, kernel and application code available in a standard OS release

6.1. Radical Approaches 71

As previously stated, the registers and immediates as encoded as originally. The net
result is an ISA with up to 4336 instructions, with plenty of room for future improvements.

6.1.3 (C) Convert to a RISC-like ISA encoding
This extremely radical change will lead to all instructions having a 32-bit encoding. For
the sake of simplicity, we consider the ARM instruction set as a the evaluation ISA here;
we use GCC 4.7 for the ARMv7 architecture instead of x86 compilers.

6.1.4 Evaluation
All three encoding schemes will create binary compatibility problems. We present them
here as exploratory evaluation. Maintaining binary compatibility would require a huge
effort on virtual machine, binary translation, and compiler infrastructure, just to mention
a few challenges.

70.00	

80.00	

90.00	

100.00	

110.00	

120.00	

pe
rlb
en
ch
	

bz
ip2
	

gcc
	

mc
f	

go
bm
k	

hm
me
r	

sje
ng
	

lib
qu
an
tum

	

h2
64
ref
	

om
ne
tpp
	

ast
ar	

xa
lan
cb
mk
	

GE
O_
IN
T	

Co
de

	 S
iz
e	
(%

)	

A	 (all	 2-‐byte)	 B	 (240	 1-‐byte	 and	 2-‐byte)	 C	 (ARM)	

(a) CINT2006

70.00	

80.00	

90.00	

100.00	

110.00	

120.00	

bw
av
es	

ga
me
ss	

mi
lc	

zeu
sm
p	

gro
ma
cs	

ca
ctu
sA
DM

	

les
lie
3d
	

na
md
	

de
alI
I	

so
ple
x	

po
vra
y	

ca
lcu
lix	

Ge
ms
FD
TD
	

ton
to	 lbm

	
wr
f	

sp
hin
x3
	

GE
O_
FP
	

Co
de

	 S
iz
e	
(%

)	

A	 (all	 2-‐byte)	 B	 (240	 1-‐byte	 and	 2-‐byte)	 C	 (ARM)	

(b) CFP2006

Figure 6.2: SPEC CPU2006 re-encoded by 3 radical changes to the x86 encoding

We evaluated the three proposed methods with the SPEC 2006 benchmark2. In Fig-
2In the compiled SPEC2006 programs using the (B) approach, we consider the most used instructions

coming from (ii)

72 Chapter 6. The X86 Recycling Mechanism

ure 6.2, we show the compression ratio of re-encoded programs in scenarios (A), (B) and
(C) against the original x86 encoded programs - 100% baseline.

The main finding is that x86 code size is larger than its ARM counterpart for most
of the programs, giving to ARM the status of a RISC ISA with a smaller footprint than
a CISC. Approach (B) shows that a variable operation code size can still yield a better
encoding than a simple RISC (ARM) and the current ISA, but requires 1 byte operation
codes. We re-encoded 5 SPEC 2006 programs using (B) and simulated the I-cache impact
using a 32KB-4way3 configuration in the Dinero IV [34]. The cache miss reductions were:
7% for mcf, 5% for omnetpp, 49% for lbm, 6% for astar, and 19% for milc.

We also evaluated operation code re-encoding of all programs in Windows 7 and
Ubuntu Linux 12. Figure 6.3 shows the operation code reduction when considering the
(A) and (B) CISC re-encoding scenarios with the most used instructions coming from (i)
and (ii).

169.8	 169.8	 164.8	 164.8	

85.3	
95.3	

82.7	 83.2	

70.0	

90.0	

110.0	

130.0	

150.0	

170.0	

190.0	

Win7	 (i)	 Win7	 (ii)	 Ubuntu12	 (i)	 Ubuntu12	 (ii)	

Co
de

	 S
iz
e	
(%

)	

A	 (all	 2-‐byte)	 B	 (240	 1-‐byte	 and	 2-‐byte)	

Figure 6.3: Windows 7 and Ubuntu 12 re-encoded by approaches A and B using most
used instructions from sources (i) and (ii)

6.1.5 Re-encoding and Backward Compatibility

Applying a re-encoding method such as the approach (B) would increase x86 compress-
ibility; with the positive effect of cleaning up the operation code space while improving
instruction cache usage. However, the approach requires a complete backward compatibil-
ity breakage with older x86 compliant processors, a prohibitive side effect. In Section 6.2
we propose the recycling mechanism; a re-encoding approach that maintains backward
compatibility.

3An usual cache configuration available in Intel Core-i7 processors

6.2. Recycling mechanism 73

6.2 Recycling mechanism
This section discusses the concepts required to implement a recycling mechanism, imple-
mentation details will be given in Sections 6.3 and 6.4. The removal of outdated and
unused instructions in CISC has two important advantages:

1. Opens room for encoding new instructions with less bits, improving program size
and cache utilization;

2. Reduces the complexity of the processor implementation.

We introduce the term processor revision (PR) to denote a specific version of a CPU
implementation and software revision (SR) to identify the PR a program is compiled for.

6.2.1 Instruction lifetime cycle
An OC4 is an intrinsic part of a processor and is not expected to change across processor
revisions. An instruction is considered transient and can be imagined as incarnating an
OC, for a short or long period of time, but always eligible to be removed or replaced by
a new one. The time frame in which a specific instruction uses an OC is called lifetime.

The recycling mechanism is the process when an instruction departs from an OC,
ending its lifetime, and is subsequently replaced by a new one. Hence, we provide OC
reuse throughout sequential processor revisions. The process can repeat multiple times,
with an OC spanning several different lifetimes. Recycling is the only way to change a
PR, for example, the x86 ISA only has one PR throughout its history, since no OC was
ever recycled.

An outdating stage - a time-frame dedicated to officially announce the departure of
an instruction from an OC - must happen towards the end of an instruction lifetime. It
guarantees enough development time to compiler writers and operating system vendors to
properly update their products. This stage is not strictly necessary regarding the imple-
mentation process, but is highly encouraged. Figure 6.4 details the lifetime of instructions
and the recycling process, highlighting the three key components, namely:

Creation: a new instruction incarnates an OC in an arbitrary PRX . The OC may come
from an invalid or reserved opcode – never used by any instructions – or previously freed
from an instruction. The adoption of a new instruction takes time: usage by compiler
intrinsics, vendor libraries and staging new compiler back-ends. After a long software
evolution cycle, the new instruction is incorporated into programs shipped to the users.

4Operation Code

74 Chapter 6. The X86 Recycling Mechanism

Industry warns
software vendorsCPU

PRA

Software
SRA

0111101
0010100
0101010
1001010

OC 14h
AAA

CPU
PRB

Software
SRB

0111101
0010100
0101010
1001010

OC 14h
VADD

ISA Evolution

2010: ISA15 2012: ISA16 2015: ISA17

Outdating Recycling
1978: ISA0

Instruction AAA
incarnates OC

14h

Creation

Figure 6.4: X86 operation code (OC) reuse and lifetime

Outdating: at a given time, industry propose new features, which may superseded pre-
vious functionalities provided by older instructions. Also, some highly specific processor
capability – like the IA32 AAA instruction – becomes obsolete. Thus, somewhere between
PRA and PRB, the manufacturer chooses to deprecate the instruction and announces it
to the community. After this announcement, compiler manufacturers remove the support
for that instruction, and operating systems vendors start working on emulation routines
for that instruction.

Recycling: an instruction is removed from the OC in PRB, and a new one is inserted
for an incarnation, re-using the same OC. Note that recycling and creation steps occur
together and in the same processor revision.

6.2.2 Operation Code Revisions and Orthogonality

Processors employ thousands of OCs internally. Operation codes are independent between
each other and each has its own Operation Code Revision (OCR). The OCR keeps track
of how many instructions or set of lifetimes the OC spanned throughout its existence.
In Figure 6.5, the OC 14h (OC14h) has an OCR14h = 0 prior to any recycle, whereas
OCR14h = 3 after its incarnated by VADD512.

This brings orthogonality to the whole mechanism since different OCs can be reused at
any given time, by any new instruction, without any dependence or constraints between
each other. Moreover, we define the OCR as responsible for changing PRs; at least one
OCR is necessary to be changed in order to increase a processor revision. Instructions

6.2. Recycling mechanism 75

14h

OC

OCR14h

0

1

2

3

AAA

VADD

VADD256

VADD512

Processor
Revision
(PR)

Evolution
13h12h...

...

Figure 6.5: Operation Code Revision

incarnating an OC for the first time do not change the OCR.
Consider, in Figure 6.6, that the instruction AAA is recycled in PRB, after an outdating

period in PRA. When recycled, the OC14h is released from AAA in PRA and the instruction
VADD incarnates. The OCR14h value, which is 0 in PRA, is updated to 1 in PRB.

ISA EvolutionISA15:PRA ISA16:PRA ISA17:PRB

OC CChOCR: 0
INT3

OCR: 0
INT3

OCR: 0
INT3

OC 23hOCR: 0
UNIMP

OCR: 0
VEXTR

OCR: 0
VEXTR

Creation

Recycling

OC 14hOCR: 0
AAA

OCR: 0
AAA

OCR: 1
VADD

Outdating

Figure 6.6: The x86 operation code (OC) orthogonality and OCR’s

Since OCs are orthogonal, OCCCh, OC14h and OC23h can incorporate different in-
structions regardless of other OCs. Note that OCs incarnated by the first time do not
have their OCR updated. For instance, OC23h is unimplemented in ISA15:PRA but is
incarnated by VEXTR in ISA16:PRA; the OCR and PR value is unchanged.

Sequential integers are used to illustrate the OCR concept, but these are not necessary
by the implementation. More details are presented in Section 6.3.

76 Chapter 6. The X86 Recycling Mechanism

6.2.3 Backward compatibility
The execution of old software may lead to compatibility problems in processors using
recycled operation codes. In the example from Figure 6.4, if a program in SRA is executed
in CPU PRB a problem arises: whenever the OC14h is fetched, it is executed as the VADD
instruction, not AAA, breaking backwards compatibility.

Our mechanism solves this problem by providing the old instruction behavior using
a software emulation mechanism via CPU generated traps. The SR is added in each
software binary, always matching the desired target PR during compilation time. Thus,
back to our example, when SRA is executed in PRB, an emulation routine implements
AAA behavior; the routine is called by a trap handler whenever OC14h if fetched during
program execution.

Section 6.4 describes the necessary software support for emulation.

6.2.4 Revision Vector and Trap Mask
The Revision Vector (RV) is the set of OCRs that uniquely identify a PR. Given PRx,
RVx, the Revision Vector RVx is defined in Equation 6.1, where each element OCRi,
denotes the current OCR value in PRx for OCi.

RVx = {OCR0, . . . , OCRN} (6.1)

The 	 operator, in Equation 6.2, defines an exclusive or between two elements.
{
A	B = 0 if A = B

A	B = 1 if A 6= B
(6.2)

The ⊗ operator, in Equation 6.3, defines an exclusive or between elements in the same
position from different sets:

X ⊗ Y = {x0, . . . , xn} ⊗ {y0, . . . , yn}
= {x0 	 y0, . . . , xn 	 yn}

(6.3)

Applying the operator ⊗ between two RVs, yields the 	 difference between each pair
of elements. The result is called the Trap Mask (TM), defined in Equation 6.4.

TMx,y = RVx ⊗RVy

= {OCRx,0, . . . , OCRx,n} ⊗ {OCRy,0, . . . , OCRy,n}
= {OCRx,0 	OCRy,0, . . . , OCRx,n 	OCRy,n}

(6.4)

6.2. Recycling mechanism 77

The Revision Vector and Trap Mask are used to implement the emulation mechanism.
TMx,y gives the list of all OCs that require emulation when running SRx in PRy, where
x < y.

The algorithm that decides whether a trap is needed by a given OCw in SRx against
PRy is listed in Algorithm 1.

Data: Given, SRx, PRy and OCw

if x < y then
TMx,y = RVx ⊗RVy;
if TMx,y[w] = 1 then

OCw needs emulation
end

end
Algorithm 1: Trap mechanism algorithm

Example. Consider, for simplicity, an ISA with only 3 OCs; 0, 1, 2. Two sequential
revisions A and B, have the following revision vectors: RVA = {3, 0, 4} and RVB =
{3, 1, 4}. To check whether emulation is needed when running SRA in PRB, the TMA,B

is computed:

TMA,B = RVA ⊗RVB

= {3, 0, 4} ⊗ {3, 1, 4}
= {3	 3, 0	 1, 4	 4}

TMA,B = {0, 1, 0}

Thus, when software with SRA is executed in PRB, the trap mask TMA,B indicates
by TMA,B[1] = 1, that the OC1 needs emulation and a trap is generated. The software
handling the trap is then responsible for providing emulation routines. By carefully choos-
ing the instructions to retire, manufacturers can keep this emulation overhead low. The
mechanism is also illustrated in Figure 6.7.

Additional Definitions. The operator ⊕ is defined as a logical or between two bits.
Given two sequential but not successive PRs, PRa and PRe, the operator Pack is defined
as:

Pack(PRa, PRe) = TMa,e ⊕ TMb,e ⊕ . . .⊕ TMd,e

= {ae0 ⊕ be0 ⊕ . . .⊕ de0, . . .}
(6.5)

We also define the operation |S| on set S, which counts all non zero elements in set S.

78 Chapter 6. The X86 Recycling Mechanism

Software
SRA

CPU
PRB

Trap Mask
Selector

Revision
Mismatch

SRA
Opcode

0h
...

14h
...

Trap?
N
...
Y
...

Trap Mask: Revision A x B

...

...

Execution hits
opcode 14h

Processor Front-end

Figure 6.7: CPU generated traps via Trap Masks

6.2.5 Trap Mechanism

For a given PRy, all SRx where x < y, need proper emulation support. A feasible
implementation approach is to efficiently support the most recent SRs, and older ones at
a higher cost. In Section 6.7.4 we evaluate the trap mechanism performance.

Effective Revision Index and Active Revision Vector. We use 4 bits, called the
Effective Revision Index (ERI), to select the right trap mask for any given SRx executed
in PRy, where x < y. Although we described how TMx,y can be computed for given x

and y, we store all supported trap masks and reference them by using the Active Revision
Vector (ARV).

The ERI is used to index into the ARV and select the right trap mask. Since the ERI
is 4-bit wide, it can only address the current revision, 14 previous ones, and all the other
collapsed. The Algorithm 2 describes the trap mechanism using ERI and ARV.

Revisions older than the previous 15 ones, are collapsed into the same ARV position,
ARV [15]. Hence, the ARV [15] points to a trap mask which is a superset of all trap masks
from older and currently unsupported revisions. The trap mask superset is computed with
the Pack operator, defined in Equation 6.5. The cost of emulation for older revisions via
ARV [15] is higher, since |Pack| is large, thus more instructions to emulate.

Example. In Figure 6.8, we execute a program with SR50 in a processor with revision
PR60. The computed ERI yields ERI = 60 − 50 = 10, the position to index into ARV:
ARV [10]. The returned trap mask is TM50,60. Additionally, if we execute SR40 in the

6.2. Recycling mechanism 79

Data: Given, SRx, PRy and OCw

if x < y then
ERIx,y = y − x;
/* ERI is 4-bit wide */
if ERIx,y > 15 then

ERIx,y = 15
end
TMx,y = AV R[ERIx,y];
if TMx,y[w] = 1 then

OCw needs emulation
end

end
Algorithm 2: Trap mechanism algorithm with ERI and ARV

Current
Revision

PR60 ERI

SR50 SR40

ERI50 = 60-50 = 10
ERI40 = 60-40 = 20 => 15

… X...0 TM50,60

0 10 15

ARV

X = TM40,60 = TM Rev < 46,60 = Pack(0,45)

Overflow

Figure 6.8: General trap mechanism using the Active Revision Vector

80 Chapter 6. The X86 Recycling Mechanism

same processor, the computed ERI is ERI = 60 − 40 = 20. However, since the limit is
16 ARV positions, the effective result is ERI = 15, indexing into the last ARV position,
ARV [15]. The resulting trap mask for ARV [15] is the collapsed trap masks of all old and
unsupported revisions: TM40,60 = Pack(PR0, PR60−15=45).

In the ERI and ARV scheme proposed above, TMs are pre-computed and hardwired
into the mechanism. A more flexible implementation can allow the OS itself to provide
TMs to ARV and to specify which revisions must be mapped to each ARV position.

6.3 Hardware
This section proposes one hardware implementation to the instruction recycling mecha-
nism and discusses its implications. We use the x86 ISA as the case study and the previous
experience on the 32-bit version to exemplify some important facts. The presented ideas
can be applied to other architectures.

We must design the processor hardware with enough information to allow the processor
to decide whether an instruction should be emulated or not. To accomplish this, the
processor must be aware of the version associated with the currently running software
and decide whether to use the trap mechanism.

There are many ways to implement, ranging from the creation of a new instruction
– informing the processor the version of the next instructions (instruction granularity) –
to a modified virtual memory architecture that embeds the version information in each
memory page (page granularity). The instruction granularity implies the usage of a
custom instruction just to signal the processor that new code is about to run. Thus, to
avoid the necessity of adding glue code between each library call that potentially changes
the software version, we present here the virtual memory approach.

6.3.1 Page Table extension

We expand page table entries to include the SR of the code in the ERI form along
with access protection bits – translation look-aside buffers (TLB) must also cache this
information. Linkers, then, can request to the loader the allocation of different pages for
code with different revisions.

Figure 6.9 shows the current IA-32e 4KB page table entry format modified to support
revision numbers (see Figure 2.9 for the original format). The figure shows that we can
use bits 62 down to 59, to encode a 4-bit version number because these bits are currently
ignored. Even though we could use more bits, ERI 4 bits are enough to encode the ISA
version because we can always merge revisions through their TM. The instruction TLB
must also expand each entry to hold the new 4-bit version number. For example the Intel

6.3. Hardware 81

63 62 59 58 52 51 M M-1 32

† M is an abbreviation for MAXPHYSADDR

X
D SW

Rev
Ignored Reserved

Physical
Address

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical Address (cont.) Ignd G

P
A
T

D A

P
C
D

P
W

T

U
/
S

R
/
W

P

Figure 6.9: Intel IA-32e page table entry extended with the code version information.

Core i7-920 has 71 first-level instruction TLB entries plus 512 second-level shared TLB
entries, requiring 2332 extra bits. We estimate that the inclusion of the version number in
each entry would require a TLB size increase of 6% for a 40-bit physical address computer.

6.3.2 Processor Front-end

The trap checking hardware should use the current ERI that is updated from the TLB
with the virtual memory mechanism and use the TM to identify instructions to trap.
Trap checking can be done in two different ways.

The first uses every bit from the TM to support the trap for each affected OC. This
is the more flexible method and allow any kind of non-sequential architecture evolution
like Intel vs AMD disputes over new extensions. In dispute scenarios, both vendors could
allow emulation of each other’s instructions through the same mechanisms. Notice that
TM does not need to consider instructions that have never been removed.

The second mechanism stores only changed OCRs between revisions in the trap masks,
instead of bits for each one. In both mechanisms, the size of the extra hardware is propor-
tional to the total number of recycled OCs in all supported revisions. Neither approaches
make the decoder smaller, because it still needs to recognize old instructions and instead
of, for example, handing over the control to the µROM sequencer, it generates a trap
µop. Nevertheless, both have the advantage of considerably reducing the µROM [23]
by removing old instruction implementations from hardware and transferring them to
software.

In the case of speculative out-of-order pipelines, an alternate approach would be to
check for traps only at the execution or the retirement phase. Although the trap is
delayed, the verification process is pushed out of the critical path, allowing a simpler
decoder. Using either approach, recycling old instructions in hardware yields benefits
(µROM reduction, code compaction, and instruction cache miss reduction) that surpasses
the additional hardware costs needed to make it possible.

82 Chapter 6. The X86 Recycling Mechanism

6.3.3 Verification
Any new piece of hardware increases the verification effort. It is not different with in-
struction recycling but the mechanism itself can reduce the overall verification effort by
reducing the µROM size. However, verification must now considers ERI and ARV. Also,
by tackling the ISA increase over the time, we are saving future efforts on front-end
verification.

6.3.4 ISA Domain Specialization
By carefully removing instructions and creating a new revision, it is possible to drastically
reduce the ISA size, allowing the entrance in new markets where the x86 complexity is
considered too big. Alternatively, ISA extensions could be created for specific domains
without bloating other processors in the family by providing a simple emulation library
to OS vendors.

6.4 Software
The software portion is most notably composed of the emulation code layer that supports
the execution of removed instructions, but is not restricted to it. Linkers, loaders and the
system call API need to be aware of code versions in order to correctly fill out modified
page table entry structures. The SR should be annotated in the file, in a field in the ELF
file header. All unannotated files should be considered as SR0.

6.4.1 Assembler and Linker
The Assembler must be updated to support the new instruction using recycled OCs. The
system Linker must keep track of the code version of each linked module used to build the
final executable. If there is a SR mismatch between two different modules to be linked
together into the final executable, the linker must allocate them to different pages, each
one augmented with its own SR. No modules with different SR can be put together into
the same page. To ease this task, intermediary object files should bear this distinction as
well, and assemblers should recognize a new directive that specifies the module’s SR.

6.4.2 Operating System Loader
The Loader recognizes the SR information for each loadable segment present in the binary
envelope (PE, ELF, etc.) and allocates memory pages with page table entries are marked
with the corresponding SR. To this extent, memory page allocation system calls must also

6.5. Security implications 83

be expanded with the SR parameter. Finally, the absence of SR information assumes the
most recent revision.

6.4.3 Emulation Routines

Emulation routines mimic the behavior of removed instructions, with important restric-
tions: the use of outdated and removed instructions must be avoided, emulation cannot
implement the behavior of instructions that change internal processor registers, including
instructions bearing special characteristics, such as atomicity, which cannot be reproduced
via software. For instance, clflush, the flush cache line instruction, cannot be emulated
and thus cannot be replaced. However, the number of such instructions is small.

Aside from how the emulation routines are implemented, another important problem is
where the routines reside. It is possible to place the emulation code either in the machine
firmware (system BIOS) or in emulation drivers that are loaded as early as possible by
operating systems. The first alternative has the advantage to emulate old instructions
from the operating system itself, since the routines do not rely on the operating system
to be loaded, but are already present in the firmware.

In this thesis we chose to use the operating system to handle the emulation traps.
After receiving the emulation trap, the operating system decodes the instruction, checks
for the software revision, and dispatches the execution to the instruction implementation.
We expect, as briefly mentioned in Section 6.2.1, that every operating system uses the
same implementation for the same instruction and this implementation should be made
available by the processor manufacturers to guarantee compatibility.

On the other hand, really old operating systems would not be able to run on new
processors because they may use removed instructions. We do not expect this to be a
problem because neither are current platforms capable to run old operating systems for a
similar reason: they lack drivers to support modern hardware. As we pointed out before,
modern hardware manufacturers, such as Asus, Gigabyte and Evga, do not provide drivers
for old operating systems.

Notice that, by emulating instructions in software, in the long term, we may end up
having more emulated instructions than real ones, which is not a problem since removed
instructions will be seldom used.

6.5 Security implications

By changing the ERI/SR of one page or file, one can change the behavior of software.
Notice that changing a memory page or tampering with a file may already require higher

84 Chapter 6. The X86 Recycling Mechanism

privileges on a machine, allowing the user to harm the system in other ways. We leave
the security implication of the proposed method to be analyzed in future work.

6.6 Limitations
One limitation of this mechanism is the place to store the emulation libraries and how to
distribute them. We have discussed alternatives through firmware and operating system
and both requires a good communication channel to provide new implementations of recy-
cled instructions to guarantee backward compatibility. By relying on software vendors, it
is also possible for them to deliberately not support one specific revision on their systems,
restricting the software to run in that OS. Last, there may appear intellectual property
issues when moving one implementation from hardware to software.

6.7 Evaluation
This section presents - through an extensive static and dynamic analysis of x86 executa-
bles, a study of the instructions that stopped being used over time and how this provides
input to the recycling mechanism. We show the benefits of this improved operation code
space with an analysis of the decrease in the code size and instruction cache misses when
frequent AVX instructions are re-encoded into smaller, recycled operation codes, and fi-
nally concludes with an investigation of the performance impact of emulating instructions
that were removed from hardware.

6.7.1 Methodology
We measured and generated the x86 data for the static analysis using two different dis-
assemblers: the Agner’s object file converter [36] tool and the disassembler library of the
Bochs virtual machine [65]. We used them as libraries in a higher level tool designed for
the purposes of our measurements. To collect dynamic execution data, we used the Bochs
virtual machine.

We organized a number of virtual machines, each containing a complete 32-bit x86
software environment from a specific year. Table 6.1 depicts the software systems release
date and contents. We focused on analyzing common software used by people at home or
in the office, and we studied static and dynamic frequencies of x86 instructions of different
types and their evolution in time both in Windows and Linux desktops.

For example, our first Windows-based environment uses the Windows 95 operating
system, the Internet Explorer 3 browser, and the Office 95 productivity suite to show how
x86 software from 1995 to 1996 used the IA-32 instruction set.

6.7. Evaluation 85

Static Dynamic Release Operating System Additional Software
Yes Yes 1996-1997 Slackware Linux 3 Netscape 4.0.1, StarOffice 3.1
Yes Yes 2003-2004 Ubuntu 4.10 Firefox 0.9.2, OpenOffice 1.1.2
Yes No 2005-2006 Ubuntu 6.10
Yes No 2006-2007 Ubuntu 7.10
Yes Yes 2007-2008 Ubuntu 8.10 Firefox 3.0.3, OpenOffice 2.4
Yes No 2009-2010 Ubuntu 10.10
Yes Yes 2011-2012 Ubuuntu 12.04 Firefox 11, LibreOffice 3.5
Yes Yes 1995-1996 Windows 95 I.E. 3, Office 95
Yes Yes 1998-2000 Windows 98 SE I.E. 5, Office 2000
Yes Yes 2001-2004 Windows XP SP2 I.E. 6, Office 2003
Yes Yes 2007-2009 Windows Vista I.E. 7, Office 2007
Yes Yes 2010-2012 Windows 7 SP1 I.E. 8, Office 2010

Table 6.1: List of x86 operating systems and software

The static analysis uses an instruction crawler that analyzes the entire virtual machine
disk image for executable files; we also focus on 32-bit mode x86 and not on 64-bit
instructions. In the static analysis, single instructions are cataloged even though they
may never execute.

On the other hand, for the task of dynamic instruction frequency measurement, we
established a common set of activities to be performed by an user and the virtual machines
were executed with a modified version of Bochs that records a histogram for executed
instructions. A detailed list of the executed tasks used to obtain the execution traces
follows:

1. Operating system boot;

2. Start a text processing application and perform a systematic set of text formatting
and editing actions on the Alice in the Wonderlands text document;

3. Start a spreadsheet application opening a CSV file with 10,000 lines per 20 columns
of floating-point data. Sort the rows, plot a scatter graph and perform linear and
log regressions;

4. Open an internet browser with a saved HTML file with contents from a news site;

5. Decompress a 90MB zip file;

6. Shutdown the system.

86 Chapter 6. The X86 Recycling Mechanism

Using the steps above, we captured how programs of different systems and releases
used the x86 ISA to perform common user activities. Our goal was to show the effect
of time in instruction type usage in order to detect operation codes no longer used and
present the instruction life cycle of a real instruction set. The dynamic analysis does not
consider Ubuntu 6, 7 and 10 because Bochs cannot ran them.

6.7.2 Static Analysis

We used static analysis to gather the following information about instructions:

• The total number of 32-bit mode operation codes present in all virtual machines
from Table 6.1.

• OCs that were never used in any of the analyzed binaries.

• Instructions that become obsolete over time.

Total Operation Codes Recorded in All Disks. The total number of unused oper-
ation codes in all disks is 505, Almost the size of the entire x86 ISA in 1993. This means
that considering all 1646 analyzed x86 prefix plus operation code combinations, about
30% of them were never found in any virtual machine disk we scanned. From this count,
we excluded 149 combinations that use the 48h prefix, which requires the 64-bit mode,
because our analysis focuses on 32-bits virtual machines.

Type Number of unused operation codes
3 Bytes 4 Bytes 5 Bytes 6 Bytes

AVX 3 61 5 0
SSE 74 238 7 1
Other 40 76 0 0
Total 117 375 12 1

Table 6.2: Number of unused x86 operation codes by size. There were no unused 1 and 2
bytes operation codes.

Table 6.2 shows the number of unused instruction operation codes by size. The Table
shows the number of these instructions that belong to vector extensions, because albeit
unused, there is a high chance these operation codes may be used in the future, as they
are still in adoption. SSE category includes all Intel SSE extensions and AMD SIMD
extensions. AVX considers AVX and AVX2 extensions. The others include the MMX
extension.

6.7. Evaluation 87

If we consider for reutilization an operation code that is never found in any of these
disks, we are limited to reuse operation codes of at least 3 bytes of a MMX instruction.
On the other hand, it is also valid to consider for recycling operation codes that may
appear in the disk but are never truly executed, and this will be discussed shortly, in the
dynamic analysis.

Usage of Instructions Over Time. In this analysis, vector extensions were not con-
sidered because they belong to a large category of instructions that are still in adoption,
and we need to present a separated analysis for them. We also did not consider privileged
instructions.

Figures 6.11a and 6.11b show the number of different operation codes used in Linux and
Windows systems over time. As expected, the number of used operation codes increases
because software is absorbing new instructions. Examples of instructions that were not
used before but started to appear in the disk at this time scale include: vmclear and
vmptrld virtualization instructions, xadd exchange and add instructions, which had its
usage increased thanks to the rise of multiprocessing systems, xchg, for the same reason,
and several cmov, conditional move, variants, which were first introduced in Pentium Pro.

450	
467	

495	
507	 507	

490	

531	

400	
420	
440	
460	
480	
500	
520	
540	

Slac
kwa

re3
.0	

Ubu
ntu

4.1
0	

Ubu
ntu

6.1
0	

Ubu
ntu

7.1
0	

Ubu
ntu

8.1
0	

Ubu
ntu

10.
10	

Ubu
ntu

12.
10	 N

um
be

r	 o
f	 I
ns
tr
uc
/o

ns
	

Fo
un

d	
in
	 L
in
ux
	

(a) Linux OC use count

521	
539	

579	
601	 599	

480	
500	
520	
540	
560	
580	
600	
620	

Wind
ows

95	

Wind
ows

98	

Wind
ows

XP	

Wind
ows

Vist
a	

Wind
ows

7	 N
um

be
r	 o

f	 I
ns
tr
uc
/o

ns
	

Fo
un

d	
in
	 W

in
do

w
s	

(b) Windows OC use count

12	

2	
4	

2	 3	 2	

12	

2	

5	
3	

5	
3	

1	 1	 2	 1	

0	
2	
4	
6	
8	
10	
12	
14	

Slac
kwa

re3
.0	

Ubu
ntu

4.1
0	

Ubu
ntu

6.1
0	

Ubu
ntu

7.1
0	

Ubu
ntu

8.1
0	

Ubu
ntu

10.
10	

Ubu
ntu

12.
10	

N
um

be
r	 o

f	 L
in
ux
	

O
ut
da

te
d	
In
st
ru
c5
on

s	

1byte	 2byte	 3byte	 Total	

(c) Linux outdated OCs

4	 4	

2	

6	

4	

0	

2	

4	

6	

8	

Wind
ows

95	

Wind
ows

98	

Wind
ows

XP	

Wind
ows

Vist
a	

Wind
ows

7	

N
um

be
r	 o

f	 W
in
do

w
s	

O
ut
da

te
d	
In
st
ru
c5
on

s	

3byte	 4byte	 Total	

(d) Windows outdated OCs

Figure 6.10: Linux and Windows OC count and outdated OCs over time

When the crawler sees an operation code in a given year, for example, 2004, and no
longer can find it in any other subsequent year (2006 up to 2012), it marks this OC as

88 Chapter 6. The X86 Recycling Mechanism

unused or outdated. Figure 6.10c and 6.10d shows the number of outdated OCs by its size
for Linux and Windows; the Slackware bar shows that 12 2-byte operation codes were last
seen in 1996. This means that future software releases stopped using these instructions.
Not surprisingly, some outdated operation codes discovered by our static analysis were
also deprecated in Intel IA-32e 64-bit mode, including les, load far pointer using ES,
push and pop using ES or CS. They were outdated starting with Ubuntu 7.

The most important OCs for recycling are the smallest ones because of their potential
for providing code compaction. As these chart shows, Ubuntu 6.10 was the last release to
use a 1-byte operation code instruction, the les instruction. It is specially important to
remove a 1-byte instruction, because we may use this opcode as an escape code to encode
256 new 2-byte instructions.

6.7.3 Dynamic Analysis

The dynamic analysis is less conservative than the static analysis. Even though the
dynamic analysis is powerful enough to count instructions generated by self-modifying
code as part of a JIT engine, for example, this category of instructions is small compared
to the amount of operation codes that are present in disk images but are never used at
runtime. Besides, the amount of used operation codes at runtime is tightly dependent
on the selected workload. For instance, the instruction rdtsc would never execute in
workloads that are not using any kind of self-performance measurement. Nevertheless,
the dynamic analysis is important to reveal which OCs run on a set of programs and input
activities. As in the previous static analysis, vector, privileged and 64-bit instructions are
not considered.

Figure 6.11 presents the same charts from the static analysis that indicate outdated
instructions over time, but this version shows the dynamic count of the number of OCs
that stopped being used in future releases. For example, the Windows 98 count revealed
that it used 38 operation codes that were not found in the dynamic traces of future
releases. Notice that in the dynamic analysis, the number of outdated instructions is
much larger than that found in the static analysis, suggesting that although instructions
may stop being used, they may still appear in software.

In Windows based systems, there were 10 1-byte operation codes that stopped being
used from Windows 95 to Windows 7. This gives much more room for recycling: we could
remove these instructions from hardware and encode an astonishing number of 2560 new 2-
byte OC instructions in their place, removing the need to have 3 to 6 bytes OCs. Another
option would be to encode 10 1-byte instructions with high compaction. Observe that
many operation codes that were not found to be outdated in the disk (static analysis)
in Windows, were outdated in the dynamic analysis. This suggests that Windows may

6.7. Evaluation 89

4	 4	
8	

5	
9	

22	

10	 9	

19	

0	

5	

10	

15	

20	

25	

Slac
kwa

re3
	

Ubu
ntu

4	

Ubu
ntu

8	

Tot
al	 L

inu
x	

N
um

be
r	 o

f	 L
in
ux
	

O
ut
da

te
d	
In
st
ru
c5
on

s	

1byte	 2byte	 3byte	

(a) Linux outdated instruction count

1	
5	

2	 2	

10	 11	

3	 2	

16	

1	

20	

4	 4	

29	

2	 2	
0	
5	
10	
15	
20	
25	
30	
35	

Wind
ows

95	

Wind
ows

98	

Wind
ows

XP	

Wind
ows

Vist
a	

Tot
al	 W

ind
ows

	 N
um

be
r	 o

f	 W
in
do

w
s	

O
ut
da

te
d	
In
st
ru
c5
on

s	
	

1byte	 2byte	 3byte	 4byte	

(b) Windows outdated instruction count

Figure 6.11: Linux and Windows dynamic outdated instruction count over time

keep many old libraries in disk for compatibility. For Linux based systems the results are
slightly more modest: 4 1-byte outdated operation codes from Slackware 3 to Ubuntu 12.

To show that instructions have a well-defined lifetime, in which programs frequently
use them in the past and then cease their usage afterwards, Figure 6.12 shows a dynamic
instruction frequency histogram in logarithm scale for 2 traces: the Windows 95 (1995)
workload and the Windows 7 (2010) workload.

New instrs. in Win7

Unused
portion
38%

Frequent only in Win95

100

105

1010

E
x
ec
u
ti
o
n
F
re
q
u
en
cy

Windows 95
Windows 7

Figure 6.12: A dynamic instruction frequency histogram sorted with respect to Windows
95 instructions usage, compared to Windows 7 instructions usage, in logarithm scale.
Spikes show differences in usage pattern.

The abscissa records different instruction types and the ordinate shows the usage
frequency of the instruction. The operation codes are ordered by frequency count in the
oldest workload. The fact that the Windows 7 frequencies appear spiked with many low
bars is evidence that many popular instructions in Windows 95 had a very different usage
pattern 15 years later. They either stopped being used or had their usage reduced.

6.7.4 Performance Impact
Using an analytical model and an execution experiment, we estimate how performance
degrades with the emulation of deprecated instructions.

90 Chapter 6. The X86 Recycling Mechanism

Analytical model. We built an analytical model based on dynamic execution traces
of several operating systems and SPEC CPU2006 benchmark. In this model, we add a
penalty, in number of instructions, for each occurrence of removed or recycled instructions
in these traces.

We define Itotal as the total number of executed OCs in these scenarios. Ilive is the set
of all executed instructions which are not candidate for removal or recycling and are not
subject to generating traps.

Itrap, described in Equation 6.6, is the total number of executed instructions with
penalty overhead P considered for each removed or recycled instruction. The number of
times a specific OCx is executed is given by the function E(OCx). T = t0, . . . , tn is the
set of each OCt that needs trap, for every t ∈ T .

Itrap = Ilive + P ×
∑
t∈T

E(OCt) (6.6)

The executed instructions increase ratio Rexec generated by the emulation is defined
in Equation 6.7.

Rexec = Itrap

Itotal

(6.7)

Assuming a penalty of 200 extra instructions (P = 200) for emulating each removed
instruction, Figure 6.13 shows how incrementally moving x86 instructions from hardware
to software emulation impacts performance while providing ISA operation code space
reuse.

Region I Region II Region III

100

101

102

20 26 40 50 60 80 100
Percentage of the ISA that is emulated (%)

E
x

ec
u

te
d

 I
n

st
ru

ct
io

n
s

In
cr

ea
se

 R
a
ti

o

Slackware 3
SPEC2006
Ubuntu 12
Ubuntu 4
Ubuntu 8
Windows 7
Windows 95
Windows 98
Windows Vista
Windows XP

Figure 6.13: Performance overhead relative to the percentage of the ISA that is emulated
with emulation penalty of 200 instructions.

We also sorted the abscissa in ascending order of the sum of the frequencies of all

6.7. Evaluation 91

traces so that the least used instructions are removed first, and the subsequent ones are
removed as the x axis increases, in a cumulative fashion that provides a total removed
percentage of the ISA. In this analysis we did not consider multimedia extensions because
it would incorrectly report them as a large percentage of unused instructions, when in
fact they are still in adoption by recent software.

For example if 50% of the x86 ISA is emulated in this fashion, the model shows that
the execution of the Windows 95 and 98 workloads would suffer a 50% increase in the
number of executed instructions – 1.5 ratio. These operating systems achieve higher ratios
prior to the others because they use instructions that we removed first.

Figure 6.13 is divided into three important regions: Region I ranges from 0% to 26%
and contains only instructions that do not appear in any investigated trace, Region II goes
up to 60% and is composed of instructions that may be removed with a tolerable over-
head depending on the emulation penalty, and the Region III encompasses only heavily
used instructions that would add an unacceptable amount of overhead regardless of the
emulation speed. In Region III, there is also a second order effect not considered in our
analytical model: as most of the ISA was removed, the emulation penalty becomes higher
because the emulation routines are constrained to use a restricted set of instructions.

2001501005020

40%

45%

40%
40.9%

42.1%

46.3%

49%

Emulation Penalty per Trap (Number of Instructions)

M
ax

.
E
m
u
l.
In
st
ru
ct
io
n
s

Figure 6.14: Maximum ISA emulation ratio when tolerating up to 5% of overhead and
using different emulation penalties.

A closer look into the data represented in Region II from Figure 6.13, shows that when
admitting a maximum of 5% of overhead, 40% of the ISA can be emulated. We compute
the model for other penalty values P ∈ 20, . . . , 200 and show, in Figure 6.14, how much
percentage of the ISA we can emulate when tolerating a 5% overhead. The result also
indicates a tradeoff between more efficient emulation routines and the percentage of the
ISA that could be emulated.

Emulation experiment. We implemented a Linux kernel module that installs a x86
interrupt handler for interrupt 3h - used as a software debugging trap by issuing instruc-

92 Chapter 6. The X86 Recycling Mechanism

tion INT3 - to emulate the behavior of selected x86 instructions. We also patched the
SPEC CPU2006 binaries to replace the first byte of these selected instructions with the
INT3 opcode that uses only one byte, CCh. The selection contemplates variants of the
mov instruction that store immediate values in a register and the cmp instruction that
performs a comparison between the AL register and an 8-bit immediate value.

When running the SPEC programs and the next instruction is either the mov or cmp,
the processor generates a trap because the instruction was previously patched with the
INT3 opcode. Then the kernel module queries a shadow image of the binary that contains
all original instructions prior to the patching and retrieves the original instruction. We
used the Bochs decoder to detect the instructions, jump to and execute emulation routines
and return to the next instruction in the program. Figure 6.15 illustrates the emulation
mechanism.

Patched
Binary

CCh

Shadow
Copy

...

CPU

(1) Execution

(2) INT3 generates trapEmulation
Routine

(4) Resume program execution

(3) Retrieve Original
Instruction

Kernel Module

Patched
Instruction

Figure 6.15: Emulation experiment using Linux kernel modules and patched executables

After testing this approach with all SPEC CPU2006 programs, we found that the
average emulation time per trapped instruction was 160 processor cycles. We consider
our implementation to be naive because the decoder we used could be built to handle
only specific opcodes - in contrast to the full-fledged decoder ripped from Bochs - and
for this reason we present the emulation penalty we found as an upper bound for simple
x86 data processing instructions. Notice that not every instruction can be emulated in
software, but it is trivial to deprecate and emulate data processing instructions.

The analytical model considers a 200 cycle penalty whereas our experiment achieves
160 cycles in average. Thus, we estimate that 40% of the x86 ISA, even after exclud-
ing multimedia extensions, could be emulated with minor performance overhead in the
execution traces analyzed, that include operating systems from 1995 up to 2012.

6.7. Evaluation 93

6.7.5 Case study: AVX Re-encoding

As explained in Section 3.2, the IA-32 ISA recently had almost all new extensions focused
in adding vector instructions. Moreover, as shown in Figure 3.3b and 3.4, the average
operation code size of new instructions and the program size of SSE and AVX compiled
programs are increasing.

We can see in Figure 6.16 that our dynamic analysis indicates that the older IA-x87
floating point extensions are still widely used by modern software, showing no signs that
it can be outdated. This chart shows the percentage of instructions executed in the
dynamic frequency count, starting at 93%, which belongs to specific IA-32 extensions.
The data is presented from Windows 95 to Windows 7 and Slackware 3 to Ubuntu 12.
For example, over 4% of total instructions executed in our Windows 7 workload were
extensions instructions.

93%	

94%	

95%	

96%	

97%	

98%	

99%	

100%	

Wi
nd
ow
s9
5	

Wi
nd
ow
s9
8	

Wi
nd
ow
sX
P	

Wi
nd
ow
sV
ist
a	

Wi
nd
ow
s7
	

Sla
ckw

are
3	

Ub
un
tu4
	

Ub
un
tu8
	

Ub
un
tu1
2	

Fr
ac
%o

n	
of
	 th

e	
Dy

na
m
ic
	 T
ra
ce
	

16-‐bit	

X87	

SSE2	

SSE	

P6	

MMX	

486	

386	

Figure 6.16: Percentage of extension instructions executed in Windows and Linux dynamic
traces.

The outdating mechanism proposed in this thesis allows the recycling mechanism to
be used in outdated instructions found in our analysis to support a smooth transition to
eliminate old extensions. Thus, we analyzed the improvement on total program code size
and on instruction cache misses if AVX most frequent instructions had their encodings
changed in favor of using formerly removed, shorter, operation codes.

We considered 4 re-encoding scenarios where the AVX statically most frequent instruc-
tions were the target for re-encoding. Each scenario has the form AVX-(n,m) where n and
m represent the number of re-encoded 1-byte and 2-bytes operation codes, respectively.
For example, in the AVX-(5,6) scenario there are 5 1-byte and 6 2-byte recycled operation
codes used for AVX re-encoding.

Figure 6.17 presents the total code size of SPECfp programs in each scenario, using
their old AVX version as the baseline for comparison. The chart also shows the size of a
version of the program compiled using the old IA-x87 extension for floating point arith-

94 Chapter 6. The X86 Recycling Mechanism

metic. The original AVX version of these programs is, on average, 6% bigger than their
IA-x87 version in total code size. On small programs that have a higher percentage of
floating point instructions, as in the 470.lbm, the total code size can be 15% bigger. How-
ever, vectorization support is not available in the old IA-x87. The goal of this re-encoding
is to offer modern vectorization support with the similar code compaction achieved with
the first instructions introduced in the IA-32 ISA.

0.8	
0.85	
0.9	
0.95	

1	
1.05	

45
4.c
alc
uli
x	

44
4.n
am
d	

43
6.c
ac
tus
AD
M	

43
5.g
rom

ac
s	

48
2.s
ph
inx
3	

45
3.p
ov
ray
	

43
7.l
esl
ie3
d	

45
9.G
em
sFD

TD
	

44
7.d
ea
lII	

46
5.t
on
to	

45
0.s
op
lex
	

43
3.m

ilc	

41
6.g
am
ess
	

41
0.b
wa
ve
s	

43
4.z
eu
sm
p	

47
0.l
bm
	

48
1.w

rf	

Ge
oM
ea
n	 Re

la
%v

e	
Co

de
	 S
iz
e	

AVX-‐(5,6)	 AVX-‐(3,8)	 AVX-‐(1,10)	 AVX-‐(0,30)	 IA-‐x87	

Figure 6.17: Total code size of SPEC 2006 floating point programs in different scenarios,
relative to the original AVX floating point arithmetic version.

Even though AVX re-encoding may seem expensive in face of the high number of
instructions in this extension, in practice, it is enough to encode 5 of the most frequent
AVX instructions using 1-byte operation codes and 6 of the remaining most frequent AVX
instructions using 2-byte operation codes – the AVX-(5,6) scenario – to generate SPECfp
AVX executables, on average, 5.3% smaller than their old AVX versions, almost the code
compaction achieved if the user gives up modern vectorization support and uses the old
IA-x87 extension for floating point arithmetic.

If there is no 1-byte operation code available to encode the most frequent AVX in-
struction, the AVX-(0,30) scenario shows that even if there are 30 2-byte operation codes,
the total code size is, on average, only 3.2% smaller than the the old AVX version.

The most important benefit of re-encoding is the program size effect on the instruction
cache. Considering the AVX-(5,6) scenario, we used the dinero cache simulator [34] to
measure the instruction cache miss reduction impact of re-encoded AVX programs from
the SPECfp benchmark. Based on a recent Ivy Bridge Core i7 cache configuration, we set-
tled dinero to use a 32K instruction L1 cache, without L2, in two different configurations:
4-way and 8-way associative.

Figure 6.18 presents our results for the reduction of instruction cache misses when
long AVX operation codes are replaced with shorter reused operation codes. Since these
frequent instructions now use less space and the cache can hold more instructions, we can
expect a cache performance increase. This effect is shown by the graph, which compares

6.8. Considerations 95

45
4.
ca
lc
u
li
x

41
6.
ga
m
es
s

48
2.
sp
h
in
x
3

48
1.
w
rf

44
7.
d
ea
lI
I

46
5.
to
n
to

43
7.
le
sl
ie
3d

43
5.
gr
om

ac
s

44
4.
n
am

d

41
0.
b
w
av
es

43
4.
ze
u
sm

p

45
3.
p
ov
ra
y

45
0.
so
p
le
x

43
3.
m
il
c

47
0.
lb
m

G
eo
M
ea
n

40%

60%

80%

100%

Best: 47%

Mean: 84%

R
el
at
iv
e
C
a
ch
e
M
is
se
s

4-way
8-way

Figure 6.18: Instruction cache misses of SPEC 2006 floating point programs with shorter
AVX encodings, relative to the original AVX encoding.

the cache misses of the new encoding against the original, long, encoding, whose cache
misses were used as our baseline for comparison. For example, 416.gamess suffers 53%
less cache misses if the X86 AVX instruction set uses a more compact way to encode its
operation codes, representing our best case for cache miss reduction. In the worst case,
482.sphynx had only 0.4% less cache misses using the 8-way cache configuration. Although
470.lbm achieves a 85% compression ratio, no significant reduction in the number of cache
misses occurs because the original AVX encoded version already has a very small number
of cache misses.

Even though the cache misses reduction for the 8-way cache were more modest, in
some special cases, the 8-way cache had even greater reduction than the 4-way cache,
showing us that the cache effects, although difficult to predict, are always beneficial. On
average, there was 16% less cache misses using the 4-way cache and 15% less cache misses
using the 8-way cache.

6.8 Considerations
We showed in this Chapter that the x86 ISA is growing fast and reached more than 1300
different instructions in 2013; we analyzed x86 code from 5 Windows versions and 7 Linux
distributions from 1995 to 2012 and show that up to 57 instructions became unused with
time. We propose a mechanism to recycle instruction opcodes through legacy instruction
emulation without breaking backwards software compatibility. We also include a case
study of the AVX x86 SIMD instructions with shorter instruction encodings from other
unused instructions to yield up to 14% code size reduction and 53% instruction cache
miss reduction in SPEC CPU2006 floating-point programs. Our results show that up to
40% of the x86 instructions can be removed with less than 5% of overhead through our

96 Chapter 6. The X86 Recycling Mechanism

technique without breaking any legacy code.
The x86 recycling mechanism is a shared work with Rafael Auler, a PhD student

from University of Campinas. Rafael alone was responsible for the dynamic analysis,
performance estimation and hardware considerations for the recycling mechanism. We
divided the Linux kernel module work: he embedded the Bochs emulator and setup the
trap handler while the author wrote the tool to patch the binaries, implemented the
remaining part of the kernel module and run the benchmarks into a specially crafted
Linux machine. We also shared ideas about the research direction and by analyzing all
obtained data together. The author of the thesis solely designed the recycling mechanism
logic and evaluated the AVX re-encoding scenario and instruction cache results.

Chapter 7

Conclusion

In the research described in this thesis we extensively explored compressibility properties
of two CISC and RISC processors: the x86 and SPARC ISA.

We analyze some instructions from the x86 ISA family, an old but very popular CISC
ISA, stopped being used with time and how this fact can be used to reorganize the opera-
tion code space to provide a simpler processor hardware that implements less instructions
and offers new software an attractive code compaction rate, as good as when the ISA was
first proposed, while still providing backward compatibility. Our recycling mechanism is
a novel approach and in it we propose that outdated instructions be emulated in software,
removing ISA design mistakes from the past and providing increased hardware efficiency
for current software, allowing a smooth processor evolution.

We analyzed disk images of systems from 1995 to 2012. In Linux systems, 30 instruc-
tions disappeared from Slackware 1996 to Ubuntu 2012. For Windows, 10 instructions
disappeared. In a dynamic user-oriented workload, this number raised to 45 in Linux and
to 57 in Windows.

Re-encoding the AVX extension to use shorter 1-byte opcodes lead to an average 5.3%
overall code compaction in SPEC CPU2006 floating point programs compiled to use AVX
instructions, and reached up to 14% in lbm. The re-encoding also lead to a 53% instruction
cache miss reduction in 416.gamess and 16% on average. This is a similar result to the
best evaluated radical approach without any backwards compatibility break. Finally, we
implemented a Linux kernel driver that handles the emulation traps. After testing the
emulation of popular instructions of SPEC CPU2006 programs, the performance impact
experienced was, on average, 160 x86 instructions per emulated instruction. We then
estimated the overhead in several dynamic traces of old and new operating systems and
concluded that up to 40% of the x86 ISA could be emulated when tolerating 5% of
performance overhead.

We introduced a method to analyze and detect compression opportunities in RISC

97

98 Chapter 7. Conclusion

ISAs through the SPARC case study, followed by an extensive evaluation of SPARC
programs from different benchmarks and the Linux Kernel. An Integer Linear Program
uses extracted information from static analysis and assists in the selection of the best
16-bit instruction formats, minimizing the code size. We designed a complete 16-bit
instruction set extension for the SPARC architecture: the SPARC16.

An FPGA implementation, software emulation and compiler code generator support
were used to evaluate the SPARC16 extension. We achieve an average compression ratio of
72% for mediabench programs, 74% for MiBench and 72% for the SPEC2006. We showed
that some target specific compiler optimizations are crucial to allow code size reduction
benefits from using 16-bit instructions optimizations and can improve code compression
by 20%.

We achieved SPARC16 compression ratios similar to the ones obtained by production
quality MIPS and ARM 16-bit extensions, achieving better compression ratios than both
in several of the programs; better than MIPS16 for half of MediaBench programs, and
better than Thumb2 for half of MiBench programs. For instance, in the adpcm program,
SPARC16 compression ratio is 15% better than Thumb2.

We evaluated SPARC16 performance by analyzing effects of code size reduction in the
instruction cache. Although the execution of SPARC16 programs yields more instructions
than SPARC, lower cache miss ratios are achieved by SPARC16 compiled programs; the
best ratio achieves 9% reduction in dijkstra from MiBench.

Finally, we demonstrate how reduction in cache misses affects performance and that
SPARC16 is an alternative for shipping devices with reduced cache sizes, requiring smaller
caches than SPARC processors for the same set of programs, without performance degra-
dation; a 94% reduction in the cache size in the best scenario.

7.1 Contributions

The main contributions of this thesis are:

• A method for designing 16-bit ISA extensions from 32-bit ISAs.

• A 16-bit extension for the SPARC architecture and code compression evaluations.

• Compression ratio evaluation of three distinct 16-bit extensions.

• A report of the IA-32 evolution over time showing how opcode usage of programs
released from 1995 to 2012 evolved and how many instructions stopped being used
in static and dynamic.

7.2. Publications 99

• A recycling mechanism that allows for the IA-32 ISA opcode space to be better
exploited.

• An analysis of how much code compaction can be achieved in SPEC FP 2006 [47]
programs if we re-encode the newer IA-32 AVX extension with smaller opcodes,
currently assigned to instructions that are not used anymore, and the consequent
beneficial effects on the instruction cache misses.

• A performance impact estimation of the proposed recycling mechanism when exe-
cuting legacy code that uses removed instructions.

7.2 Publications
The list of publications derived from this thesis is:

• B.C. Lopes, R. Auler, E. Borin, R.J. Azevedo. ISA Anti-Aging: Recycling Old
Instructions and Reducing ISA Complexity. Intel Compiler, Architecture and Tools
Conference - (CATC) 2013. Haifa, Israel, Nov 19, 2013.

• B.C. Lopes, R. Auler, E. Borin, R.J. Azevedo. ISA Aging: A X86 case study.
Seventh Annual Workshop on the Interaction amongst Virtualization, Operating
Systems and Computer Architecture - WIVOSCA 2013. Tel Aviv, Israel, Jun 23,
2013.

• L. E. Luiz, B.C. Lopes. SPARC16: A New Compression Approach for the SPARC
Architecture. Computer Architecture and High Performance Computing, Sympo-
sium on, 2009, ISSN 1550–6533.

We also submitted, but these are not yet published work:

• Patent process on Recycling Mechanism for CISC Architectures.

• Patent process on SPARC16: a 16-bit ISA extension for the SPARC architecture.

• Submitted the work entitled Design and evaluation of compact ISA extensions to EL-
SEVIER Microprocessors and Microsystems: Embedded Hardware Design (MICPRO)
journal.

• Submitted the work entitled The x86 Recycling Mechanism to The 41st International
Symposium on Computer Architecture (ISCA14) conference.

100 Chapter 7. Conclusion

7.3 Future Work
The definition of SPARC16 has room for further research. The list of possible future
direction follows:

• SPARC16 lacks a feasible FPGA hardware implementation and only very simple
programs can be executed. Improving the hardware support would allow real eval-
uation of power consumption and performance in SPARC16.

• Apply the ILP method to other architectures.

• Evaluate floating point support into SPARC16.

• Port an operating system to run on SPARC16 and evaluate the benefits and draw-
backs.

• Apply linker code compaction techniques to SPARC16 programs.

• Evaluate code size and performance improvements of using SPARC16 hidden regis-
ters as spill slots rather than traditional stack locations.

• Explore how SPARC16 register window can be used to improve code compression
of SPARC16 programs.

The proposed x86 recycling mechanism is still in early stages of research. The next
items to be approached can be:

• We need a CISC hardware prototype or FPGA implementation to evaluate the real
impact that the recycling mechanism would have on microcode ROM space and in
the processor front-end. We also need the implementation of the mechanism into a
software stack: Operating System, Linker, Loader and Compiler, so the mechanism
could be completely evaluated.

• Evaluate other re-codification case studies besides AVX on SPEC2006.

• Increase the static analysis with more Operating System versions and programs.
The same goes for dynamic analysis, with the addition on running more programs
with different applications; games, photo and video editors and mobile applications.

• Analyze security implications further.

• Evaluate a firmware (BIOS) based trap mechanism handler.

Bibliography

[1] VAX Architecture Handbook. Digital Equipment Corp., 1979.

[2] D. Keymeulen A. Stoica, S. Katkoori R. Zebulum, M. Mojarradi, and T. Daud.
Adaptive and evolvable analog electronics for space applications. In Proceedings of
the 7th International Conference on Evolvable Systems: From Biology to Hardware,
ICES’07, pages 379–390, Berlin, Heidelberg, 2007. Springer-Verlag.

[3] Altera. Nios II Processor Reference Handbook, 2011.

[4] E. Andersen. uclibc, http://www.uclibc.org.

[5] G. Araujo, P. Centoducatte, R. Azevedo, and R. Pannain. Expression-tree-based
algorithms for code compression on embedded risc architectures. IEEE Trans. on
VLSI Systems, 8(5):530–533, Oct 2000.

[6] ARM. An Introduction to Thumb. Advanced RISC Machines Ltd., March 1995.

[7] ARM Limited. ARMv7-M Architecture Reference Manual. July 2012.

[8] N. Aslam, M. Milward, I. Nousias, T. Arslan, and A. Erdogan. Code compression
and decompression for instruction cell based reconfigurable systems. In IPDPS, pages
1–7, March 2007.

[9] R. Azevedo. Uma Arquitetura para Execução de Código Comprimido em Sistemas
Dedicados. PhD thesis, Instituto de Computação - UNICAMP, 2002.

[10] W. Badawy and G. A. Julien. System-on-Chip for Real-Time Applications. Springer,
2003.

[11] F. Barat, R. Lauwereins, and G. Deconinck. Reconfigurable instruction set processors
from a hardware/software perspective. IEEE Trans. Softw. Eng., 28(9):847–862,
September 2002.

101

102 BIBLIOGRAPHY

[12] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovic. Randomized instruction
set emulation. ACM Trans. Inf. Syst. Secur., 8(1):3–40, February 2005.

[13] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the
annual conference on USENIX Annual Technical Conference, ATEC ’05, pages 41–
41, Berkeley, CA, USA, 2005. USENIX Association.

[14] M. Benes, S. M. Nowick, and A. Wolfe. A fast asynchronous Huffman decoder
for compressed-code embedded processors. In Proceedings of the 4th International
Symposium on Advanced Research in Asynchronous Circuits and Systems, September
1998.

[15] M. Benes, A. Wolfe, and S. M. Nowick. A high-speed asynchronous decompression
circuit for embedded processors. In Proceedings of the 17th Conference on Advanced
Research in VLSI (ARVLSI ’97), September 1997.

[16] L. Benini, A. Macii, and A. Nannarelli. Code compression for cache energy minimiza-
tion in embedded systems. In IEE Proceedings on Computers and Digital Techniques,
149(4), pages 157–163, 2002.

[17] A. Beszèdes, R. Ferenc, T. Gyimothy, A. Dolenc, and K. Karsisto. Survey of code-size
reduction methods. ACM Comput. Surv., 35(3):223–267, 2003.

[18] Á. Beszédes, R. Ferenc, T. Gergely, T. Gyimóthy, G. Lóki, and L. Vidács. Csibe
benchmark: One year perspective and plans. Technical report, University of Szeged,
Hungary, 2004.

[19] E. Billo, R. Azevedo, G. Araujo, P. Centoducatte, and E. W. Netto. Design of a
decompressor engine on a sparc processor. In SBCCI ’05: Proceedings of the 18th
annual symposium on Integrated circuits and system design, pages 110–114, New
York, NY, USA, 2005. ACM.

[20] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. Power struggles:
Revisiting the risc vs. cisc debate on contemporary arm and x86 architectures. In
Proceedings of the 2013 IEEE 19th HPCA, HPCA ’13, pages 1–12, Washington, DC,
USA, 2013. IEEE Computer Society.

[21] T. Bonny and J. Henkel. Efficient code density through look-up table compression.
Design, Automation and Test in Europe Conference and Exhibition, 0:151, 2007.

[22] T. Bonny and J. Henkel. Instruction re-encoding facilitating dense embedded code.
Design, Automation and Test in Europe Conference and Exhibition, 0:770–775, 2008.

BIBLIOGRAPHY 103

[23] E. Borin, M. Breternitz, Y. Wu, and G. Araujo. Clustering-based microcode com-
pression. In Computer Design, 2006. ICCD 2006. International Conference on, pages
189 –196, oct. 2006.

[24] J. Bunda, D. Fussell, W. C. Athas, and R. Jenevein. 16-bit vs. 32-bit instructions for
pipelined microprocessors. SIGARCH Comput. Archit. News, 21(2):237–246, 1993.

[25] P. C. Centoducatte. Compressão de Programas Usando árvores de Expressão. PhD
thesis, Instituto de Computação, Universidade Estadual de Campinas, 1999.

[26] L. R. Clausen, U. P. Schultz, C. Consel, and G. Muller. Java bytecode compression for
embedded systems. Technical Report RR-3578, Inria, Institut National de Recherche
en Informatique et en Automatique, 1998.

[27] M. Collin and M. Brorsson. Two-level dictionary code compression: A new scheme
to improve instruction code density of embedded applications. IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, 0:231–242, 2009.

[28] C/MSC Microprocessor Standards Committee. 1754-1994 - IEEE Standard for a
32-bit Microprocessor Architecture. IEEE Computer Society, 1994.

[29] Keith D. Cooper and Nathaniel McIntosh. Enhanced code compression for embedded
risc processors. SIGPLAN Not., 34(5):139–149, May 1999.

[30] M. L. Corliss, E. C. Lewis, and A. Roth. The implementation and evaluation of
dynamic code decompression using dise. ACM Trans. Embed. Comput. Syst., 4(1):38–
72, 2005.

[31] IBM Microeletronics Division. The PowerPC 405 Core. International Business Ma-
chines (IBM) Corporation, 1998.

[32] L. L. Ecco. Sparc16: Uma nova visão de compressão para processadores sparc.
Master’s thesis, University of Campinas, 2010.

[33] L. L. Ecco, B. C. Lopes, E. C. Xavier, R. Pannain, P. Centoducatte, and R. Azevedo.
Sparc16: A new compression approach for the sparc architecture. In 21st Inter-
national Symposium on Computer Architecture and High Performance Computing,
2009. SBAC-PAD ’09., pages 169–176, 2009.

[34] J. Edler and M.D. Hill. Dinero iv trace-driven uniprocessor cache simulator, 2003.

[35] J. Ernst, C. W. Fraser, W. Evans, S. Lucco, and T. A. Proebsting. Code compression.
pages 358–365, June 1997.

104 BIBLIOGRAPHY

[36] A. Fog. Instructions for objconv, 2011. Version 2.11.

[37] C. W. Fraser and T. A. Proebsting. Custom instruction sets for code compression.
Proceedings of the ACM SIGPLAN’95 Conference on Programming Language Design
and Implementation (PLDI), 1995.

[38] J. Gaisler. The leon3 processor. online, 2008. http://www.gaisler.com.

[39] C. Galuzzi and K. Bertels. The Instruction-Set Extension Problem: A Survey. ACM
Trans. Reconfigurable Technol. Syst., 4(2):18:1–18:28, May 2011.

[40] M. Game and A. Booker. CodePack: Code Compression for PowerPC Processors.
International Business Machines (IBM) Corporation, 1998.

[41] S. K. Gaurav, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks
with instruction-set randomization. In CCS ’03, pages 272–280, 2003.

[42] GNU. Gnu binutils, http://www.gnu.org/software/binutils.

[43] M.R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark suite.
IEEE International Workshop on Workload Characterization, WWC-4, 2001, pages
3–14, Dec. 2001.

[44] S. I. Haider and L. Nazhandali. A hybrid code compression technique using bitmask
and prefix encoding with enhanced dictionary selection. In CASES ’07: Proceedings
of the 2007 international conference on Compilers, architecture, and synthesis for
embedded systems, pages 58–62, New York, NY, USA, 2007. ACM.

[45] T. R. Halfhill. Intel’s Tiny Atom: New Low-Power Microarchitecture Rejuvenates
the Embedded x86. Microprocessor Report, 2008.

[46] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quantitative Ap-
proach. Morgan Kaufmann, 2 edition, 1990.

[47] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 34(4):1–17, September 2006.

[48] D. A. Huffman. A method for construction of minimum redundancy codes. In
Proceedings of the IRE, volume 40, pages 1098–1101, 1952.

BIBLIOGRAPHY 105

[49] R. Hundt, E. Raman, M. Thuresson, and N. Vachharajani. Mao – an extensible
micro-architectural optimizer. In Proceedings of the 9th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO ’11, pages 1–10,
Washington, DC, USA, 2011. IEEE Computer Society.

[50] IBM. CodePack: PowerPC Code Compression Utility User’s Manual. Version 3.0.
International Business Machines (IBM) Corporation, 1998.

[51] Intel. Galileo Datasheet, 2013.

[52] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual, Volume 2:
Instruction Set Reference edition.

[53] Sparc International. SYSTEM V APPLICATION BINARY INTERFACE, SPARC
Processor Supplement. 1996.

[54] L. Jowiak, N. Nedjah, and M. Figueroa. Modern development methods and tools for
embedded reconfigurable systems: A survey. Integr. VLSI J., 43(1):1–33, January
2010.

[55] T.M. Kemp, R.M. Montoye, J.D. Harper, J.D. Palmer, and D.J. Auerbach. A de-
compression core for powerpc. IBM Journal of Research and Development, 42(6),
Nov 1998.

[56] D. Kirovski, J. Kin, and W. H. Mangione-Smith. Procedure based program com-
pression. In MICRO 30: Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, pages 204–213, Washington, DC, USA, 1997. IEEE
Computer Society.

[57] K. Kissell. MIPS16: High-density MIPS for the Embedded Market. Silicon Graphics
MIPS Group, 1997.

[58] T. J. K. E. Koch, I. Boehm, and B. Franke. Integrated instruction selection and regis-
ter allocation for compact code generation exploiting freeform mixing of 16 and 32-bit
instructions. In Proceedings of the 8th annual IEEE/ACM international symposium
on Code generation and optimization, CGO ’10, pages 180–189. ACM, 2010.

[59] Franck Koebel and Jean-Francois Coldefy. Scoc3: A space computer on a chip:
An example of successful development of a highly integrated innovative asic. In
Proceedings of the Conference on Design, Automation and Test in Europe, DATE
’10, pages 1345–1348. European Design and Automation Association, 2010.

106 BIBLIOGRAPHY

[60] A. Krishnaswamy and R. Gupta. Profile guided selection of arm and thumb instruc-
tions. In Proceedings of the Joint Conference on Languages, Compilers and Tools
for Embedded Systems: Software and Compilers for Embedded Systems, LCTES/S-
COPES ’02, pages 56–64, New York, NY, USA, 2002. ACM.

[61] A. Krishnaswamy and R. Gupta. Dynamic coalescing for 16-bit instructions. ACM
Trans. Embed. Comput. Syst., 4(1):3–37, 2005.

[62] R. Kumar and D. Das. Code compression for performance enhancement of variable-
length embedded processors. ACM Trans. Embed. Comput. Syst., 7(3):1–36, 2008.

[63] R. Kumar, A. Gupta, B. S. Pankaj, M. Ghosh, and P. P. Chakrabarti. Post-
compilation optimization for multiple gains with pattern matching. SIGPLAN Not.,
40(12):14–23, 2005.

[64] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO ’04: Proceedings of the International Symposium
on Code Generation and Optimization, page 75, Washington, DC, USA, 2004. IEEE
Computer Society.

[65] K. P. Lawton. Bochs: A Portable PC Emulator for Unix/X. Linux J., 1996(29es),
September 1996.

[66] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool for evaluating
and synthesizing multimedia and communicatons systems. In MICRO 30: Proceed-
ings of the 30th annual ACM/IEEE international symposium on Microarchitecture,
pages 330–335, Washington, DC, USA, 1997. IEEE Computer Society.

[67] C. Lefurgy. Efficient Execution of Compressed Programs. PhD thesis, University of
Michigan, June 2000.

[68] C. Lefurgy, P. Bird, I. Chen, and T. Mudge. Improving code density using compres-
sion techniques. Technical Report CSE-TR-342-97, EECS Department, University
of Michigan, 1997.

[69] H. Lekatsas, J. Henkel, and V. Jakkula. Design of an one-cycle decompression hard-
ware for performance increase in embedded systems. In DAC ’02: Proceedings of
the 39th conference on Design automation, pages 34–39, New York, NY, USA, 2002.
ACM.

[70] H. Lekatsas, J. Henkel, and W. Wolf. Code compression for low power embedded
system design. In DAC ’00: Proceedings of the 37th conference on Design automation,
pages 294–299, New York, NY, USA, 2000. ACM.

BIBLIOGRAPHY 107

[71] Haris Lekatsas, Jörg Henkel, and Wayne Wolf. Design and simulation of a pipelined
decompression architecture for embedded systems. In Proceedings of the 14th Inter-
national Symposium on Systems Synthesis, ISSS ’01, pages 63–68, New York, NY,
USA, 2001. ACM.

[72] S. Y. Liao. Code generation and optimization for embedded digital signal processors.
PhD thesis, 1996. Supervisor-Srinivas Devadas.

[73] S. Y. Liao, S. Devadas, and K. Keutzer. Code density optimization for embedded dsp
processors using data compression techniques. In ARVLSI ’95: Proceedings of the
16th Conference on Advanced Research in VLSI (ARVLSI’95), page 272, Washington,
DC, USA, 1995. IEEE Computer Society.

[74] B. Enoksson M. Ramström, J. Höglund and R. Svenningsson. Final Report - 32-bit
Microprocessor and Computer Development Programme. Saab Ericsson Space AB,
1997.

[75] R. Marks, F. Araujo, R. Santos, F. Yonehara, and R. Santos. Design and implemen-
tation of the pbiw instruction decoder in a softcore embedded processor. 2012 13th
Symposium on Computer Systems, 0:110–117, 2012.

[76] Inc. MIPS Technologies. MIPS32 Architecture For Programmer, Volume II: The
MIPS32 Instruction Set. MIPS Technologies, 2001.

[77] Inc. MIPS Technologies. micromips instruction set architecture, uncompromised per-
formance, minimum system cost. Technical report, MIPS Technologies, Inc., MIPS
Technologies, Inc. 955 East Arques Avenue Sunnyvale, CA 94085 (408) 530-5000,
2009.

[78] E. W. Netto, R. Azevedo, P. Centoducatte, and G. Araujo. Multi-profile based
code compression. In DAC ’04: Proceedings of the 41st annual conference on Design
automation, pages 244–249, New York, NY, USA, 2004. ACM.

[79] R. Pannain. Compressão de Código de Programa Usando Fatoração de Operandos.
PhD thesis, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual
de Campinas, 1999.

[80] D. Patterson and D. Sequin. RISC I: A Reduced Instruction Set VLSI Computer. In
Proceedings of the 8th Annual International Symposium on Computer Architecture,
ISCA ’81. IEEE Computer Society Press, 1981.

[81] D. A. Patterson and J. L. Hennessy. Computer architecture: a quantitative approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

108 BIBLIOGRAPHY

[82] X. Qin and P. Mishra. Efficient placement of compressed code for parallel decom-
pression. International Conference on VLSI Design, 0:335–340, 2009.

[83] Jan S. Rellermeyer, Seong-Won Lee, and Michael Kistler. Cloud platforms and em-
bedded computing: The operating systems of the future. In Proceedings of the 50th
Annual Design Automation Conference, DAC ’13, pages 75:1–75:6, New York, NY,
USA, 2013. ACM.

[84] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. Archc: a systemc-based
architecture description language. pages 66–73, Oct. 2004.

[85] S. Seong and P. Mishra. An efficient code compression technique using application-
aware bitmask and dictionary selection methods. Design, Automation and Test in
Europe Conference and Exhibition, 0:112, 2007.

[86] Shibu. Introduction To Embedded Systems. Tata McGraw-Hill Education, 2009.

[87] Inc. SPARC International. The SPARC architecture manual: version 8. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[88] R. Stallman. Using GCC: the GNU compiler collection reference manual. Free Soft-
ware Foundation, 2003.

[89] B. D. Sutter, B. D. Bus, and K. D. Bosschere. Link-time binary rewriting techniques
for program compaction. ACM Trans. Program. Lang. Syst., 27(5):882–945, 2005.

[90] B. D. Sutter, L. V. Put, D. Chanet, B. D. Bus, and K. D. Bosschere. Link-time
compaction and optimization of arm executables. ACM Trans. Embed. Comput.
Syst., 6(1):5, 2007.

[91] A. S. Tanenbaum. Structured Computer Organization. Prentice Hall, 5th edition
edition, 2005.

[92] W. T. Wilner. Burroughs b1700 memory utilization. In AFIPS ’72 (Fall, part I):
Proceedings of the December 5-7, 1972, fall joint computer conference, part I, pages
579–586, New York, NY, USA, 1972. ACM.

[93] A. Wolfe and A. Chanin. Executing compressed programs on an embedded risc
architecture. SIGMICRO Newsl., 23(1-2):81–91, 1992.

[94] A. Wolfe and A. Chanin. Executing compressed programs on an embedded RISC
architecture. 1992.

BIBLIOGRAPHY 109

[95] L. Xianhua, Z. Jiyu, and C. Xu. Efficient code size reduction without performance
loss. In Proceedings of the 2007 ACM symposium on Applied computing, SAC ’07,
pages 666–672, New York, NY, USA, 2007. ACM.

[96] X. H. Xu, C. T. Clarke, and S. R. Jones. High performance code compression ar-
chitecture for the embedded arm/thumb processor. In CF ’04: Proceedings of the
1st conference on Computing frontiers, pages 451–456, New York, NY, USA, 2004.
ACM.

Appendix A

Static Analysis

A.1 Instruction Usage By Group

111

112 Appendix A. Static Analysis

Usage Group Instructions

22.42% alu arith (29.59%)add imm
(28.49%)subcc imm
(15.93%)add reg
(12.28%)subcc reg
(05.68%)sub reg
(02.37%)smul reg

(01.45%)addcc imm
(01.28%)subx imm
(01.22%)addx imm
(0.33%)umul reg
(0.32%)smul imm
(0.28%)udiv reg

(0.20%)subx reg
(0.17%)addcc reg
(0.16%)sdiv reg
(0.14%)addx reg
(0.04%)udiv imm
(0.04%)sub imm

(0.02%)smulcc reg
(0.01%)udivcc reg
(0.00%)sdivcc reg

15.00% load (61.16%)ld imm
(16.69%)ld reg
(05.59%)ldub reg

(04.46%)lduh imm
(03.54%)ldd imm
(01.85%)ldub imm

(01.71%)ldsb reg
(01.70%)lduh reg
(01.41%)ldsh imm

(0.71%)ldsb imm
(0.65%)ldsh reg
(0.54%)ldd reg

12.14% move (71.93%)or reg (28.07%)or imm

11.76% branch (32.66%)ba
(22.71%)be
(13.58%)bne
(07.86%)ble

(06.06%)bl
(04.79%)bleu
(04.27%)bg
(02.91%)bgu

(02.76%)bge
(0.80%)bcs
(0.67%)bcc
(0.58%)bpos

(0.35%)bneg

08.69% store (64.02%)st imm
(15.20%)st reg

(06.62%)stb reg
(05.06%)sth imm

(03.14%)stb imm
(03.02%)std imm

(02.52%)sth reg
(0.42%)std reg

08.68% alu logic (31.58%)or imm
(29.42%)or reg
(10.92%)and imm
(09.04%)andcc imm

(04.51%)xor reg
(03.10%)andcc reg
(02.67%)and reg
(02.65%)orcc reg

(02.51%)xor imm
(01.56%)orcc imm
(01.18%)andn reg
(0.72%)xnor reg

(0.15%)andncc reg

04.77% call (87.38%)call (12.62%)jmpl reg

04.36% sethi (10.00%)sethi

04.33% alu shift (41.15%)sll imm
(25.29%)sra imm

(25.03%)srl imm
(04.81%)sll reg

(02.76%)srl reg
(0.95%)sra reg

02.06% branch annul (35.45%)be
(26.54%)bne
(08.54%)ba
(04.92%)bg

(04.42%)bl
(04.30%)ble
(04.15%)bgu
(03.74%)bge

(03.67%)bleu
(01.67%)bcs
(01.18%)bcc
(0.75%)bneg

(0.68%)bpos

01.64% registerwindow (49.17%)save imm (48.23%)restore reg (02.36%)restore imm (0.24%)save reg

01.50% nop (10.00%)nop

01.47% unimp (10.00%)unimp

0.75% ret from sub (10.00%)jmpl imm

0.17% os (67.96%)wr reg (32.04%)rd reg

0.16% ret from leaf sub (10.00%)jmpl imm

0.09% jump (70.65%)jmpl imm (29.35%)jmpl reg

Table A.1: Instruction usage by groups – mediabench

A.1. Instruction Usage By Group 113

Usage Group Instructions

22.63% alu arith (31.66%)subcc imm
(30.29%)add imm
(12.38%)subcc reg
(11.07%)add reg
(06.93%)sub reg

(01.91%)subx imm
(01.39%)ad-
dcc imm
(01.32%)addx imm
(0.98%)smul reg
(0.54%)umul reg

(0.51%)udiv reg
(0.35%)subx reg
(0.27%)addcc reg
(0.24%)addx reg
(0.07%)udiv imm

(0.03%)sub imm
(0.03%)smulcc reg
(0.03%)smul imm

15.00% move (80.84%)or reg (19.16%)or imm

13.42% branch (32.11%)ba
(22.54%)be
(15.41%)bne
(08.29%)ble

(05.30%)bleu
(05.07%)bg
(04.39%)bl
(03.36%)bgu

(01.71%)bge
(0.80%)bcs
(0.57%)bcc
(0.28%)bneg

(0.17%)bpos

11.50% load (57.69%)ld imm
(13.76%)ld reg
(09.34%)ldd imm

(05.25%)ldub reg
(05.12%)lduh imm
(04.65%)ldsb reg

(01.46%)ldd reg
(01.20%)ldsb imm
(01.00%)ldsh imm

(0.40%)ldub imm
(0.13%)ldsh reg

09.06% alu logic (29.44%)or reg
(23.62%)or imm
(15.69%)andcc imm
(09.83%)and imm

(04.51%)and reg
(04.47%)orcc reg
(04.09%)andcc reg
(03.21%)xor imm

(01.90%)andn reg
(01.69%)orcc imm
(01.10%)xor reg
(0.30%)xnor reg

(0.17%)andncc reg

07.94% store (60.07%)st imm
(19.32%)st reg

(06.74%)std imm
(06.17%)stb reg

(04.34%)sth imm
(02.02%)stb imm

(0.87%)sth reg
(0.48%)std reg

04.64% call (93.25%)call (06.75%)jmpl reg

03.25% sethi (10.00%)sethi

03.17% unimp (10.00%)unimp

02.86% alu shift (36.14%)srl imm
(32.66%)sll imm

(15.26%)sra imm
(08.43%)sll reg

(06.29%)srl reg
(01.20%)sra reg

02.15% branch annul (43.59%)be
(24.73%)bne
(05.87%)ba
(05.34%)bgu

(04.98%)bleu
(03.91%)bg
(02.85%)bge
(02.67%)bl

(02.14%)ble
(01.42%)bcs
(01.42%)bcc
(0.71%)bpos

(0.36%)bneg

01.56% registerwindow (49.39%)restore reg (48.65%)save imm (01.47%)restore imm (0.49%)save reg

01.56% nop (10.00%)nop

0.72% ret from sub (10.00%)jmpl imm

0.21% os (62.96%)wr reg (37.04%)rd reg

0.19% ret from leaf sub (10.00%)jmpl imm

0.15% jump (65.00%)jmpl imm (35.00%)jmpl reg

Table A.2: Instruction usage by groups – MiBench

114 Appendix A. Static Analysis

Usage Group Instructions

17.21% alu arith (33.87%)subcc imm
(25.75%)add imm
(18.27%)subcc reg
(09.67%)add reg
(04.45%)sub reg
(01.76%)addx imm

(01.59%)subx imm
(01.28%)mulscc reg
(01.13%)addcc imm
(0.66%)addcc reg
(0.63%)addxcc reg
(0.44%)addx reg

(0.28%)sub imm
(0.14%)subx reg
(0.04%)mulscc imm
(0.02%)subxcc reg
(0.00%)umul reg
(0.00%)udivcc imm

(0.00%)udiv reg
(0.00%)tad-
dcctv imm
(0.00%)smul reg
(0.00%)sdivcc reg
(0.00%)addxcc imm

16.08% load (73.05%)ld imm
(11.75%)ld reg
(05.22%)ldub imm
(04.48%)lduh imm

(02.48%)ldd imm
(01.12%)ldub reg
(0.54%)lduh reg
(0.52%)ldsb imm

(0.38%)ldsb reg
(0.28%)ldd reg
(0.17%)ldsh imm
(0.01%)ldsh reg

(0.00%)ldstub imm

13.15% move (66.27%)or reg (33.73%)or imm

10.89% branch (32.64%)be
(28.60%)ba
(21.24%)bne
(02.72%)bl

(02.72%)bgu
(02.43%)ble
(02.22%)bcs
(02.12%)bleu

(01.76%)bcc
(01.65%)bg
(01.11%)bge
(0.40%)bneg

(0.37%)bpos

10.24% alu logic (30.07%)or imm
(28.29%)or reg
(09.72%)andcc imm
(08.53%)and imm
(06.34%)and reg
(05.47%)orcc imm

(03.71%)andcc reg
(02.15%)orcc reg
(02.07%)xor reg
(01.36%)andn reg
(01.31%)xor imm
(0.52%)xnor reg

(0.29%)andncc reg
(0.05%)andn imm
(0.04%)xnor imm
(0.03%)andncc imm
(0.02%)orn reg
(0.01%)xorcc reg

(0.01%)xnorcc reg
(0.00%)xorcc imm
(0.00%)orncc reg

07.47% store (70.38%)st imm
(10.62%)st reg

(06.21%)stb imm
(06.16%)std imm

(04.41%)sth imm
(01.22%)stb reg

(0.56%)sth reg
(0.44%)std reg

06.85% call (94.37%)call (05.55%)jmpl reg (0.09%)jmpl imm

04.65% sethi (10.00%)sethi

03.07% nop (10.00%)nop

02.88% alu shift (51.45%)sll imm
(32.53%)srl imm

(08.82%)sra imm
(04.14%)sll reg

(02.23%)srl reg
(0.83%)sra reg

02.81% branch annul (32.16%)be
(30.20%)bne
(18.86%)ba
(04.11%)bgu

(02.76%)bcs
(02.45%)bg
(02.20%)bleu
(01.89%)bcc

(01.86%)bl
(01.29%)ble
(01.13%)bge
(0.61%)bneg

(0.47%)bpos
(0.02%)bvs

02.60% registerwindow (48.34%)restore reg (46.70%)save imm (04.82%)restore imm (0.14%)save reg

01.04% ret from sub (10.00%)jmpl imm

0.36% os (36.47%)rd reg
(19.57%)tne imm
(17.67%)te imm
(09.82%)ta imm
(06.31%)wr reg

(02.02%)tcs imm
(01.96%)wr imm
(01.25%)tle imm
(01.07%)tgu imm
(01.07%)tcc imm

(0.65%)rett imm
(0.54%)tl imm
(0.48%)rett
(0.36%)tge imm
(0.36%)flush reg

(0.18%)flush imm
(0.12%)tleu imm
(0.12%)tg imm

0.31% ret from leaf sub (10.00%)jmpl imm

0.23% unimp (10.00%)unimp

0.12% alternate (24.74%)sta
(23.68%)sta
(18.25%)lda

(14.56%)lda
(09.47%)stba
(04.74%)lduba

(02.11%)stda
(01.05%)stha
(01.05%)lduha

(0.18%)ldsha
(0.18%)ldda

0.03% jump (82.05%)jmpl reg (17.95%)jmpl imm

Table A.3: Instruction usage by groups – Linux Kernel

Appendix B

SPARC16 ISA

B.1 List of SPARC16 Instructions

B.1.1 ADDCCri, ADDCCri ext, ADDCCrr, ADDri, ADDri ext,
ADDrr

ADDCCri, Format: RRI, Assembly syntax: add16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 imm rs rd

ADDCCri ext, Format: EXTEND RRI, Assembly syntax: eadd16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 imm 0 0 0 1 0 imm rs rd

ADDCCrr, Format: RRR, Assembly syntax: add16 $rs1, $rs2, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 0 0 rs2 rs1 rd

ADDri, Format: RRI, Assembly syntax: add16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 imm rs rd

ADDri ext, Format: EXTEND RRI, Assembly syntax: eadd16 $rs, $imm, $rd

115

116 Appendix B. SPARC16 ISA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 imm 0 0 0 1 0 imm rs rd

ADDrr, Format: RRR, Assembly syntax: add16 $rs1, $rs2, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 0 0 rs2 rs1 rd

B.1.2 ADDFP, ADDFP ext
ADDFP, Format: RI2, Assembly syntax: addfp $addr, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 0 addr rd

ADDFP ext, Format: EXTEND RI2, Assembly syntax: eaddfp $addr, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 addr 1 0 0 1 1 0 0 0 addr rd

B.1.3 ADDSP, ADDSP ext
ADDSP, Format: RI2, Assembly syntax: addsp $addr, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 addr rd

ADDSP ext, Format: EXTEND RI2, Assembly syntax: eaddsp $addr, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 addr 1 0 0 1 1 0 1 1 addr rd

B.1.4 ADDXri, ADDXri ext, ADDXrr
ADDXri, Format: RRI2, Assembly syntax: addx16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 0 0 0 imm rs rd

B.1. List of SPARC16 Instructions 117

ADDXri ext, Format: EXTEND RRI2, Assembly syntax: eaddx16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 0 1 0 0 0 imm rs rd

ADDXrr, Format: RR, Assembly syntax: addx16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 0 1 0 0 rs rd

B.1.5 ANDri, ANDri ext, ANDrr

ANDri, Format: RRI, Assembly syntax: and16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 imm rs rd

ANDri ext, Format: EXTEND RRI, Assembly syntax: eand16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 imm 0 0 0 1 1 imm rs rd

ANDrr, Format: RRR, Assembly syntax: and16 $rs1, $rs2, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 1 0 rs2 rs1 rd

B.1.6 ANDNrr

Format: RR, Assembly syntax: andn16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 1 1 0 1 rs rd

118 Appendix B. SPARC16 ISA

B.1.7 BCC, BCC ext

BCC, Format: I2, Assembly syntax: b.cc.16 $brtarget

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 cc 0 brtarget

BCC ext, Format: EXTEND I2, Assembly syntax: eb.cc.16 $brtarget

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 brtarget 1 1 1 cc 0 brtarget

B.1.8 BA, BA ext

BA, Format: I, Assembly syntax: b16 $brtarget

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 brtarget

BA ext, Format: EXTEND I, Assembly syntax: eb16 $brtarget

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 brtarget 0 1 0 0 0 brtarget

B.1.9 BE, BE ext

BE, Format: I, Assembly syntax: be16 $brtarget

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 brtarget

BE ext, Format: EXTEND I, Assembly syntax: ebe16 $brtarget

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 brtarget 0 0 0 0 1 brtarget

B.1. List of SPARC16 Instructions 119

B.1.10 BNE, BNE ext

BNE, Format: I, Assembly syntax: bne16 $brtarget

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 brtarget

BNE ext, Format: EXTEND I, Assembly syntax: ebne16 $brtarget

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 brtarget 0 1 0 0 1 brtarget

B.1.11 CALL, CALL ext

CALL, Format: I, Assembly syntax: call16 $calltarget

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 calltarget

CALL ext, Format: EXTEND I, Assembly syntax: ecall16 $calltarget

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 calltarget 0 0 0 0 0 calltarget

B.1.12 CALLR

Format: RR, Assembly syntax: callr $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 1 1 0 0 0 rd

B.1.13 CALLRX

Format: RR, Assembly syntax: callrx $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 1 1 1 1 1 rd

120 Appendix B. SPARC16 ISA

B.1.14 CALLX, CALLX ext

CALLX, Format: I, Assembly syntax: callx $calltarget

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 calltarget

CALLX ext, Format: EXTEND I, Assembly syntax: ecallx $calltarget

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 calltarget 1 0 0 0 0 calltarget

B.1.15 CMPri, CMPri ext, CMPrr

CMPri, Format: RI, Assembly syntax: cmp16 $rd, $imm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 imm rd

CMPri ext, Format: EXTEND RI, Assembly syntax: ecmp16 $rd, $imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 imm 0 1 1 0 1 imm rd

CMPrr, Format: RR, Assembly syntax: cmp16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 1 0 0 rs rd

B.1.16 JMPR

Format: RR, Assembly syntax: jmpr $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 1 1 0 0 1 rd

B.1. List of SPARC16 Instructions 121

B.1.17 JMPRX

Format: RR, Assembly syntax: jmprx $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 1 1 1 1 0 rd

B.1.18 LDri, LDri ext, LDrr

LDri, Format: RRI, Assembly syntax: ld16 [$addr], $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 addr rd

LDri ext, Format: EXTEND RRI, Assembly syntax: eld16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 addr 1 1 0 0 0 addr rd

LDrr, Format: RRR, Assembly syntax: ld16 [$addr], $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 addr rd

B.1.19 LDFP, LDFP ext

LDFP, Format: RI2, Assembly syntax: ldfp [$imm], $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 0 imm rd

LDFP ext, Format: EXTEND RI2, Assembly syntax: eldfp [$imm], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 imm 1 0 0 1 1 0 1 0 imm rd

122 Appendix B. SPARC16 ISA

B.1.20 LDSBri, LDSBri ext, LDSBrr
LDSBri, Format: LDST, Assembly syntax: ldsb16 [$addr], $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 0 addr rd

LDSBri ext, Format: EXTEND LDST, Assembly syntax: eldsb16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 addr 1 0 1 0 0 0 addr rd

LDSBrr, Format: EXTEND RR, Assembly syntax: eldsb16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 0 0 addr 0 1 0 1 0 0 1 0 0 1 addr rd

B.1.21 LDSHri, LDSHri ext, LDSHrr
LDSHri, Format: LDST, Assembly syntax: ldsh16 [$addr], $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 0 addr rd

LDSHri ext, Format: EXTEND LDST, Assembly syntax: eldsh16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 addr 0 0 1 0 0 0 addr rd

LDSHrr, Format: EXTEND RR, Assembly syntax: eldsh16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 0 0 addr 0 1 0 1 0 0 1 0 1 0 addr rd

B.1.22 LDSP, LDSP ext
LDSP, Format: RI2, Assembly syntax: ldsp [$imm], $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 1 imm rd

B.1. List of SPARC16 Instructions 123

LDSP ext, Format: EXTEND RI2, Assembly syntax: eldsp [$imm], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 imm 1 0 0 1 1 1 0 1 imm rd

B.1.23 LDUBri, LDUBri ext, LDUBrr
LDUBri, Format: LDST, Assembly syntax: ldub16 [$addr], $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 addr rd

LDUBri ext, Format: EXTEND LDST, Assembly syntax: eldub16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 addr 1 0 1 0 0 1 addr rd

LDUBrr, Format: EXTEND RR, Assembly syntax: eldub16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 0 0 addr 0 1 0 1 0 0 0 0 0 1 addr rd

B.1.24 LDUHri, LDUHri ext, LDUHrr
LDUHri, Format: LDST, Assembly syntax: lduh16 [$addr], $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 addr rd

LDUHri ext, Format: EXTEND LDST, Assembly syntax: elduh16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 addr 0 0 1 0 0 1 addr rd

LDUHrr, Format: EXTEND RR, Assembly syntax: elduh16 [$addr], $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 0 0 addr 0 1 0 1 0 0 0 0 1 0 addr rd

124 Appendix B. SPARC16 ISA

B.1.25 MOV, MOV ext
MOV, Format: RI, Assembly syntax: mov16 $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 imm rd

MOV ext, Format: EXTEND RI, Assembly syntax: emov16 $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 imm 0 1 1 1 0 imm rd

B.1.26 MOV8to32, MOVrr
MOV8to32, Format: I2, Assembly syntax: movra $reg8, $reg32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 1 reg32 reg8

MOVrr, Format: I2, Assembly syntax: movra $reg8, $reg32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 1 reg32 reg8

B.1.27 MOV32to8
Format: I2, Assembly syntax: movrb $reg32, $reg8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 reg32 reg8

B.1.28 NEGrr
Format: RR, Assembly syntax: neg16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 0 1 rs rd

B.1. List of SPARC16 Instructions 125

B.1.29 NOP
Format: RR, Assembly syntax: nop

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0

B.1.30 ORri, ORri ext, ORrr
ORri, Format: RRI2, Assembly syntax: or16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 imm rs rd

ORri ext, Format: EXTEND RRI2, Assembly syntax: eor16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 1 0 1 0 0 imm rs rd

ORrr, Format: RRR, Assembly syntax: or16 $rs1, $rs2, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 1 1 rs2 rs1 rd

B.1.31 ORNri, ORNri ext, ORNrr
ORNri, Format: RRI2, Assembly syntax: orn16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 0 imm rs rd

ORNri ext, Format: EXTEND RRI2, Assembly syntax: eorn16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 1 0 1 1 0 imm rs rd

ORNrr, Format: RR, Assembly syntax: orn16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 0 0 rs rd

126 Appendix B. SPARC16 ISA

B.1.32 RDY

Format: RR, Assembly syntax: rd16 %y, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 1 1 1 1 0 0 0 rd

B.1.33 RESTORErr, RESTORErr ext

RESTORErr, Format: RR, Assembly syntax: restore16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 0 0 0 0 rs rd

RESTORErr ext, Format: EXTEND RR, Assembly syntax: erestore16 $rs, $rsext,
$rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 0 0 rsext 0 1 0 1 0 0 0 0 0 0 rs rd

B.1.34 RET

Format: RR, Assembly syntax: ret

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0

B.1.35 RETL

Format: RR, Assembly syntax: retl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0

B.1.36 SAVEri, SAVEri ext

SAVEri, Format: I2, Assembly syntax: savesp $imm

B.1. List of SPARC16 Instructions 127

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 0 1 imm

SAVEri ext, Format: EXTEND I2, Assembly syntax: esavesp $imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 0 imm 1 1 1 0 0 0 1 imm

B.1.37 SDIVri, SDIVri ext, SDIVrr
SDIVri, Format: RRI2, Assembly syntax: sdiv16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 0 0 1 imm rs rd

SDIVri ext, Format: EXTEND RRI2, Assembly syntax: esdiv16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 1 0 0 0 1 imm rs rd

SDIVrr, Format: RR, Assembly syntax: sdiv16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 0 1 1 1 rs rd

B.1.38 SETHIi
Format: EXTEND Sethi, Assembly syntax: sethi32 $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 imm rd

B.1.39 SLLri, SLLrr
SLLri, Format: RRI, Assembly syntax: sll16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 1 imm rs rd

128 Appendix B. SPARC16 ISA

SLLrr, Format: RR, Assembly syntax: sll16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 1 0 1 rs rd

B.1.40 SMULri, SMULri ext, SMULrr

SMULri, Format: RRI2, Assembly syntax: smul16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 0 0 0 imm rs rd

SMULri ext, Format: EXTEND RRI2, Assembly syntax: esmul16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 1 0 0 0 0 imm rs rd

SMULrr, Format: RR, Assembly syntax: smul16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 0 0 1 1 rs rd

B.1.41 SRAri, SRArr

SRAri, Format: RRI, Assembly syntax: sra16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 imm rs rd

SRArr, Format: RR, Assembly syntax: sra16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 1 1 1 rs rd

B.1. List of SPARC16 Instructions 129

B.1.42 SRLri, SRLrr
SRLri, Format: RRI, Assembly syntax: srl16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 0 imm rs rd

SRLrr, Format: RR, Assembly syntax: srl16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 1 1 0 rs rd

B.1.43 STri, STri ext, STrr
STri, Format: RRI, Assembly syntax: st16 $rd, [$addr]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 addr rd

STri ext, Format: EXTEND RRI, Assembly syntax: est16 $rd, [$addr]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 addr 0 1 1 0 0 addr rd

STrr, Format: RRR, Assembly syntax: st16 $rd, [$addr]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 addr rd

B.1.44 STBri, STBri ext, STBrr
STBri, Format: LDST, Assembly syntax: stb16 $rd, [$addr]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 addr rd

STBri ext, Format: EXTEND LDST, Assembly syntax: estb16 $rd, [$addr]

130 Appendix B. SPARC16 ISA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 addr 0 1 1 1 1 0 addr rd

STBrr, Format: EXTEND RR, Assembly syntax: estb16 $rd, [$addr]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 0 0 addr 0 1 0 1 0 0 0 1 0 1 addr rd

B.1.45 STFP, STFP ext

STFP, Format: RI2, Assembly syntax: stfp $rd, [$imm]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 1 imm rd

STFP ext, Format: EXTEND RI2, Assembly syntax: estfp $rd, [$imm]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 imm 1 0 0 1 1 0 0 1 imm rd

B.1.46 STHri, STHri ext, STHrr

STHri, Format: LDST, Assembly syntax: sth16 $rd, [$addr]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 addr rd

STHri ext, Format: EXTEND LDST, Assembly syntax: esth16 $rd, [$addr]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 addr 0 1 1 1 1 1 addr rd

STHrr, Format: EXTEND RR, Assembly syntax: esth16 $rd, [$addr]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 0 0 0 0 0 addr 0 1 0 1 0 0 0 1 1 0 addr rd

B.1. List of SPARC16 Instructions 131

B.1.47 STSP, STSP ext

STSP, Format: RI2, Assembly syntax: stsp $rd, [$imm]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 0 imm rd

STSP ext, Format: EXTEND RI2, Assembly syntax: estsp $rd, [$imm]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 0 imm 1 0 0 1 1 1 0 0 imm rd

B.1.48 SUBrr

Format: RRR, Assembly syntax: sub16 $rs1, $rs2, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 0 1 rs2 rs1 rd

B.1.49 SUBXri, SUBXri ext, SUBXrr

SUBXri, Format: RRI2, Assembly syntax: subx16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 0 0 1 imm rs rd

SUBXri ext, Format: EXTEND RRI2, Assembly syntax: esubx16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 0 1 0 0 1 imm rs rd

SUBXrr, Format: RR, Assembly syntax: subx16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 1 1 0 0 rs rd

132 Appendix B. SPARC16 ISA

B.1.50 tRESTORE
Format: RR, Assembly syntax: trestore

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0

B.1.51 UDIVri, UDIVri ext, UDIVrr
UDIVri, Format: RRI2, Assembly syntax: udiv16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 0 1 1 imm rs rd

UDIVri ext, Format: EXTEND RRI2, Assembly syntax: eudiv16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 1 0 0 1 1 imm rs rd

UDIVrr, Format: RR, Assembly syntax: udiv16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 0 1 0 rs rd

B.1.52 UMULri, UMULri ext, UMULrr
UMULri, Format: RRI2, Assembly syntax: umul16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 0 1 0 imm rs rd

UMULri ext, Format: EXTEND RRI2, Assembly syntax: eumul16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 1 0 0 1 0 imm rs rd

UMULrr, Format: RR, Assembly syntax: umul16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 0 0 1 rs rd

B.1. List of SPARC16 Instructions 133

B.1.53 WRY
Format: RR, Assembly syntax: wr16 %y, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 1 1 1 0 0 0 0 rd

B.1.54 XNORri, XNORri ext, XNORrr
XNORri, Format: RRI2, Assembly syntax: xnor16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 1 imm rs rd

XNORri ext, Format: EXTEND RRI2, Assembly syntax: exnor16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 1 0 1 1 1 imm rs rd

XNORrr, Format: RR, Assembly syntax: xnor16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 1 0 1 1 rs rd

B.1.55 XORri, XORri ext, XORrr
XORri, Format: RRI2, Assembly syntax: xor16 $rs, $imm, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 imm rs rd

XORri ext, Format: EXTEND RRI2, Assembly syntax: exor16 $rs, $imm, $rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 imm 1 1 0 1 0 1 0 1 imm rs rd

XORrr, Format: RR, Assembly syntax: xor16 $rs, $rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 0 1 1 rs rd

