

FERNANDA CREMASCO

"VARIABILITY OF PERIPAPILAR NERVE FIBER LAYER MEASUREMENTS WITH SPECTRAL DOMAIN OCT"

"VARIABILIDADE DE MEDIDAS DE ESPESSURA DA CAMADA DE FIBRAS NERVOSAS PERIPAPILAR UTILIZANDO SPECTRAL DOMAIN OCT"

CAMPINAS 2013

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE CIÊNCIAS MÉDICAS

FERNANDA CREMASCO

"VARIABILITY OF PERIPAPILAR NERVE FIBER LAYER MEASUREMENTS WITH SPECTRAL DOMAIN OCT"

Orientador: Prof. Dr. Vital Paulino Costa

"VARIABILIDADE DE MEDIDAS DE ESPESSURA DA CAMADA DE FIBRAS NERVOSAS PERIPAPILAR UTILIZANDO SPECTRAL DOMAIN OCT"

Tese de Doutorado apresentada à Pós-graduação da Faculdade de Ciência Médicas da Universidade Estadual de Campinas para a obtenção do Título de **Doutora em Ciências Médicas**, Área de Concentração Oftalmologia.

Doctorate thesis presented to the Postgraduation Programme of the School of Medical Sciences of the University of Campinas to obtain the **Ph.D** (MSc) grade in Medical Sciences, Area of Concentration Ophthalmology.

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA FERNANDA CREMASCO E ORIENTADA PELO PROF. DR. VITAL PAULINO COSTA.

Assinatura do orientador ____

CAMPINAS

2013

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Faculdade de Ciências Médicas Maristella Soares dos Santos - CRB 8/8402

 Cremasco, Fernanda, 1979-Variabilidade de medidas de espessura da camada de fibras nervosas peripapilar utilizando spectral domain OCT / Fernanda Cremasco. -- Campinas, SP : [s.n.], 2013.
Orientador : Vital Paulino Costa. Tese (Doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas.
1. Glaucoma. 2. Fibras nervosas. 3. Tomografia de coerência óptica. I. Costa, Vital Paulino. II. Universidade Estadual de Campinas. Faculdade de Ciências Médicas. III. Título.

Informações para Biblioteca Digital

Título em inglês: Variability of peripapillary retinal nerve fiber layer measurements with spectral domain OCT Palavras-chave em inglês: Glaucoma Nerve fibers Tomography, Optical coherence Área de concentração: Oftalmologia Titulação: Doutora em Ciências Médicas Banca examinadora: Vital Paulino Costa [Orientador] Keila Miriam Monteiro de Carvalho José Paulo Cabral de Vasconcellos Jayter Silva de Paula Newton Kara José Júnior Data da defesa: 22-07-2013 Programa de Pós-Graduação: Ciências Médicas

BANCA EXAMINADORA DA DEFESA DE DOUTORADO

FERNANDA CREMASCO

Orientador (a) PROF(A). DR(A). VITAL PAULINO COSTA

MEMBROS:
1. PROF(A). DR(A). VITAL PAULINO COSTA More Reulens Copte
2. PROF(A). DR(A). KEILA MIRIAM MONTEIRO DE CARVALHO
3. PROF(A). DR(A). JOSÉ PAULO CABRAL DE VASCONCELLOS
4. PROF(A).DR(A). JAYTER SILVA DE PAULA
5. PROF(A).DR(A). NEWTON KARA JOSÉ JUNIOR

Programa de Pós-Graduação em Ciências Médicas da Faculdade de Ciências Médicas da Universidade Estadual de Campinas

DEDICATÓRIA

Aos meus pais, Ruth e Walter, pelo amor e dedicação à minha formação. Ao meu esposo Marcelo, pelo companheirismo e apoio incessantes. Aos meus irmãos, Letícia e Walter Filho, pelo carinho e amizade inestimáveis. À Deus, pelo dom da vida.

Aos meus pais, que carinhosamente me educaram na ética e no trabalho.

Ao meu esposo Marcelo e sua família, pelo amor, apoio e incentivo.

Ao meu orientador, Prof. Dr. Vital Paulino Costa, por seus ensinamentos na área acadêmica e profissional e pelo exemplo de dedicação à ciência.

À Prof. Dra. Keila Miriam Monteiro de Carvalho, pela ajuda na conclusão deste projeto.

A todo o staff do setor de glaucoma da Unicamp, José Paulo Cabral de Vasconcellos, Rui Barroso Schimiti, Luciana Bernardi e Rodrigo Rezende Gomes Avelino, pelo estímulo e ajuda no aprendizado do glaucoma.

Aos meus colegas da pós-graduação, Vanessa Gonçalves Vidotti Pimenta, Graziela Massa Resende, Fabrício da Silva Reis, Alana Mendonça de Santana e Kleyton Barella, pelo companheirismo e cumplicidade em toda esta trajetória.

Ao Dr. Álvaro Pedroso de Carvalho Lupinacci, pelo apoio estatístico.

Aos amigos Karina Peixoto e Lauro Vieira Perdigão Neto, pela ajuda na revisão da tese.

A todos os professores, médicos contratados, funcionários e voluntários da clínica oftalmológica do Hospital das Clínicas da UNICAMP, pelo estímulo profissional ao longo dos anos.

As Sras. Sílvia Alves Ramos F. Silva e Márcia Aparecida D. Silva, técnicas em oftalmologia da Unicamp, pelo auxílio na realização dos exames de campo visual.

Aos pacientes, motivo para a busca de novos horizontes na medicina.

A todos que direta ou indiretamente estiveram ao meu lado na conquista deste objetivo.

ix

PÁG.

RESU	MO	xxix		
ABST	RACT	xxxiii		
1- IN	FRODUÇÃO	37		
1.1-	Conceito de Glaucoma	39		
1.2-	Epidemiologia do Glaucoma	39		
1.3-	Diagnóstico de Glaucoma	40		
1.4-	Anatomia do Disco Óptico	42		
1.4.1-	O Disco Óptico normal	42		
1.4.2-	O Disco Óptico glaucomatoso	44		
1.5-	Anatomia da Camada de Fibras Nervosas da Retina Peripapilar			
	(CFNRP)	47		
1.5.1-	A CFNRP em olhos normais	47		
1.5.2-	A CFNRP em olhos glaucomatosos	48		
1.6-	Métodos de análise do Disco Óptico	50		
1.6.1-	Oftalmoscopia	50		
1.6.1.1	- Reprodutibilidade da Oftalmoscopia	51		
1.6.1.2	- Acurácia diagnóstica da Oftalmoscopia	52		
1.6.2-	Fotografias do Disco Óptico	52		
1.6.2.1	- Reprodutibilidade da análise de Fotografias do Disco Óptico	53		
1.6.2.2	- Acurácia diagnóstica da análise das Fotografias do Disco			
	Óptico	54		
1.6.3-	Oftalmoscopia Confocal de Varredura a Laser	55		
1.6.3.1	- Reprodutibilidade da Oftalmoscopia Confocal de Varredura a			
	Laser	58		
1.6.3.2- Acurácia diagnóstica da Oftalmoscopia Confocal de Varredura				
	a Laser	59		
1.7-	Métodos de análise da CFNRP	60		

1.7.1- Fo	tografias da CFNRP
1.7.1.1-	Reprodutibilidade da análise das Fotografias da CFNRP
1.7.1.2-	Acurácia diagnóstica da análise das Fotografias da CFNRP
1.7.2- Po	larimetria de Varredura a Laser
1.7.2.1-	Reprodutibilidade da Polarimetria de Varredura a Laser
1.7.2.2-	Acurácia diagnóstica da Polarimetria de Varredura a Laser
1.8- To	omografia de Coerência Óptica
1.8.1- Hi	stórico
1.8.2- Té	cnica
1.8.2.1-	Tomografia de Coerência Óptica de Domínio Temporal
1.8.2.2-	Tomografia de Coerência Óptica de Domínio Espectral
1.9- Ju	stificativa
1.10- Ol	ojetivos
2- MATH	ERIAL E MÉTODOS
2.1- Ca	suística
2.1.1- Cr	itérios de inclusão
2.1.1.1-	Grupo Glaucoma
2.1.1.2-	Grupo Saudável
2.1.2- Cr	itérios de exclusão
2.1.3- Da	ndos Demográficos
2.2- M	étodos
2.2.1- Ex	ame Oftalmológico
2.2.2- M	edidas de Espessura da CFNRP
2.3- Ar	nálise Estatística
3- RESU	LTADOS
3.1- Da	idos demográficos
3.2- Ar	nálise da Variabilidade de Medidas de Espessura da CFNRP
3.2.1- Va	ariabilidade Intrasessão
3.2.2- Va	ariabilidade Intersessão
3.2.3- Va	nriabilidade Interexaminador
4- DISCU	USSÃO

5-	CONCLUSÕES	105
6-	REFERÊNCIAS BIBLIOGRÁFICAS	109
7-	ANEXO	143
8-	APÊNDICES	147

CCI	Coeficiente de correlação intraclasse
CFNRP	Camada de fibras nervosas da retina peripapilar
CGR	Célula ganglionar da retina
CDV	Coeficiente de variação
COV	Coefficient of variation
CPSD	Corrected Pattern Standard Deviation
CV	Campo visual
D	Dioptria
dB	Decibel
DCA	Dispositivo de carga acoplada
DDLS	Disk Damage Likelihood Scale
DO	Disco óptico
DP	Desvio padrão
ECC	Enhanced Corneal Compensation
EE	Equivalente esférico
EUA	Estados Unidos da América
F	Sexo feminino
FCC	Fixed Corneal Compensation
G	Grupo com Glaucoma
Ga	Grupo com glaucoma avançado
GHT	Glaucoma Hemifield Test
Gl	Grupo com glaucoma leve
Gm	Grupo com glaucoma moderado
GPAA	Glaucoma primário de ângulo aberto
GPAF	Glaucoma primário de ângulo fechado
GPS	Glaucoma progression analisys
НО	Hipertensão Ocular
HRT	Heidelberg Retina Tomograph

IC	Intervalo de confiança
ICC	Intraclass correlation coefficient
ISNT	Inferior – Superior – Nasal – Temporal
kHz	Kilohertz
LogMAR	Logaritmo do mínimo ângulo de resolução
<i>l</i> _r	Comprimento do braço de referência
l_s	Comprimento do braço de amostra
Μ	Sexo Masculino
máx	Máximo
MD	Mean Deviation
min	Mínimo
mm	Milímetro
mm ²	Milímetro quadrado
mmHg	Milímetro de mercúrio
MRA	Moorfields regression analisys
n	Número
Ν	Grupo com Neuropatia Óptica Isquêmica Anterior Não-Arterítica
NFI	Nerve fiber indicator
nm	Nanômetro
NO	Nervo óptico
NOIA NA	Neurite óptica isquêmica anterior não arterítica
OCVL	Oftalmoscopia confocal de varredura a laser
OR	Odds ratio
р	Probabilidade estatística
PIO	Pressão intraocular
PRA	Padrão de retardo atípico
PRNFL	Peripapillary retinal nerve fiber layer
PSD	Pattern Standard Deviation
PVL	Polarimetria de varredura a laser
ROC	Reciever operator characteristics
S	Grupo de indivíduos saudáveis

SITA	Swedish Interactive Threshold Algoritm
тсо	Tomografia de coerência óptica
TCO-DE	Tomografia de coerência óptica de domínio espectral
TCO-DT	Tomografia de coerência óptica de domínio temporal
UNICAMP	Universidade Estadual de Campinas
VCC	Variable Corneal Compensation
0	Grau
≥	Maior ou igual a
≤	Menor ou igual a
+	Mais
±	Mais ou menos
-	Menos
>	Maior que
<	Menor que
%	Por cento
X	Vezes

PÁG.

Quadro 1 -	Descrição dos sistemas de TCO-DE disponíveis										
	comercialmente	67									
Quadro 2 -	Principais diferenças entre o Cirrus HD-OCT e o Stratus	80									
Tabela 1 - Características demográficas de pacientes com glaucoma e d											
	indivíduos saudáveis incluídos na análise de variabilidade										
	intrasessão	88									
Tabela 2 -	Média e desvio padrão, CCI e CDV das cinco medidas de										
	espessura da CFNRP obtidas no primeiro dia, dos pacientes										
	com glaucoma e dos indivíduos saudáveis, que participaram da										
	análise de variabilidade intrasessão	90									
Tabela 3 -	Média e desvio padrão, CCI e CDV das medidas de espessura										
	da CFNRP obtidas em cinco dias diferentes, dos pacientes com										
	glaucoma e dos indivíduos saudáveis, que participaram da										
	análise de variabilidade intersessão	92									
Tabela 4 -	Média e desvio padrão, CCI e CDV das medidas de espessura										
	da CFNRP, obtidas por dois examinadores, dos pacientes com										
	glaucoma e dos indivíduos saudáveis, que participaram da										
	análise de variabilidade interexaminador	94									
Quadro 3 -	Reprodutibilidade/variabilidade das medidas de espessura da										
	CFNRP obtidas com diferentes tomógrafos de coerência óptica										
	de domínio espectral	101									

PÁG.

Figura 1	Divisões do disco óptico. I: Retina. II: Coróide. III: Esclera. A:							
	Camada Superficial de Fibras Nervosas. B: Região Pré-laminar.							
	C: Região Laminar. D: Região Retrolaminar	43						
Figura 2	Distribuição das fibras nervosas retinianas	48						
Figura 3	Defeito localizado na camada de fibras nervosas da retina	49						
Figura 4	Princípio da Oftalmoscopia Confocal de Varredura a Laser	56						
Figura 5	Princípio da Polarimetria de Varredura a Laser	62						
Figura 6	Interferômetro de Michelson. l_r e l_s representam os comprimentos							
	dos braços de referência e de amostra, respectivamente	68						
Figura 7	Cirrus HD-OCT. A: Aparelho Cirrus HD-OCT. B: Paciente							
	posicionado para realização do exame	79						
Figura 8	Impresso de Cirrus HD-OCT. A: Informações sobre o paciente e o							
	exame. B: Protocolo utilizado. C: Mapa topográfico da espessura							
	CFNRP em esquema de cores. Ao centro, dados relacionados à							
	espessura média e simetria da CFNRP e a dados topográficos do							
	DO. D: Mapa de desvio da espessura CFNRP em relação ao banco							
	de dados do aparelho. Ao centro Gráfico do perfil de espessura da							
	rima neuroretiniana e sua classificação, em escala de cores, em							
	relação ao percentil de distribuição do banco de dados do aparelho.							
	E: Imagens de B-scans. Os limites da Membrana Limitante Interna							
	e da Escavação do DO estão representados na linha vermelha. Os							
	limites do Epitélio Pigmentar da Retina e do DO estão							
	representados na linha preta. Ao centro encontram-se o Gráfico do							
	perfil de espessura da CFNRP e sua classificação, em escala de							
	cores, em relação ao percentil de distribuição do banco de dados							
	do aparelho; Gráficos com valores de espessura médias nos							
	quadrante e setorial nas horas de relógio, classificadas de acordo							

com	a	escala	de	cores	de	distribuição	dentro	do	percentil	do	
banc	0 C	le dado	s	• • • • • • • • • • •						•••••	82

RESUMO

Esta pesquisa teve por finalidade avaliar a variabilidade intrasessão, intersessão e interexaminador das medidas de espessura da camada de fibras nervosas da retina peripapilar (CFNRP) com a Tomografia de Coerência Óptica de Domínio Espectral (TCO-DE). Foi incluído no estudo apenas um olho de 32 indivíduos saudáveis e de 34 pacientes com glaucoma. As medidas da CFNRP foram obtidas com o Cirrus HD-OCT 4000 (Carl Zeiss Meditec, Dublin, Califórnia, EUA) cinco vezes no mesmo dia, por um único examinador, para avaliação da variabilidade intrasessão. O mesmo examinador realizou medidas de espessura da CFNRP nos mesmos sujeitos em cinco dias diferentes, para avaliação da variabilidade intersessão. Um segundo examinador realizou medidas da espessura da CFNRP nos mesmos pacientes para avaliação da variabilidade interexaminador. O coeficiente de variação (CDV) e o coeficiente de correlação intraclasse (CCI) foram obtidos para os seguintes parâmetros: espessura média, espessura nos quadrantes e espessuras setoriais. Em relação à variabilidade intrasessão, em pacientes com glaucoma, os CDVs variaram de 4,51% a 11,84% e os CCIs variaram de 0,74 a 0,99; em indivíduos saudáveis, os CDVs variaram de 2,92% a 6,99% e os CCIs variaram de 0,89 a 0,98. Na análise da variabilidade intersessão observou-se que, em pacientes com glaucoma, os CDVs variaram de 3,68% a 10,50% e os CCIs variaram de 0,82 a 0,99; em indivíduos saudáveis, os CDVs variaram de 3,13% a 6,92% e os CCIs variaram de 0,87 a 0,99. Em relação à variabilidade interexaminador, em pacientes com glaucoma, os CDVs variaram de 2,62% a 14,94% e os CCIs variaram de 0,55 a 0,98; em indivíduos saudáveis, os CDVs variaram de 2,04% a 7,31% e os CCIs variaram de 0,86 a 0,98. Estes resultados indicam que as medidas de espessura da CFNRP com a TCO-DE apresentam reprodutibilidade excelente, com baixa variabilidade intrasessão, intersessão e interexaminador.

PALAVRAS-CHAVE: Tomografia de Coerência Óptica; Domínio Espectral; Reprodutibilidade; Espessura da Camada de Fibras Nervosas da Retina.

ABSTRACT

The purpose of this study was to evaluate the intrasession, intersession and interexaminer variabilities of peripapillary retinal nerve fiber layer (PRNFL) thickness measurements with Spectral Domain Optical Coherence Tomography. One eye of 32 healthy individuals and 34 patients with glaucoma were included in the study. The PRNFL measurements were obtained with the Cirrus HD-OCT Model 4000 (Carl Zeiss Meditec, Dublin, Califórnia, USA) five times during the same sitting by one examiner to assess intrasession variability. The same examiner performed PRNFL measurements in the same patients in five different days to assess intersession variability. A second examiner performed PRNFL measurements in the same patients to assess interexaminer variability. The coefficient of variation (COV) and the intraclass correlation coefficient (ICC) were obtained for the following parameters: average thickness, quadrant thickness and clockhour thickness measurements. The analysis of the intrasession variability, in glaucoma patients, showed that COVs ranged from 4.51% to 11.84% and ICCs varied from 0.74 to 0.99, whereas in healthy individuals, COVs ranged from 2.92% to 6.99% and ICCs varied from 0.89 to 0.98. Regarding the intersession variability, in glaucoma patients COVs ranged from 3.68% to 10.50% and ICCs varied from 0.82 to 0.99; whereas in healthy individuals, COVs ranged from 3.13% to 6.92% and ICCs varied from 0.87 to 0.99. In interexaminer variability, between glaucoma patients, COVs ranged from 2.62% to 14.94% and ICCs varied from 0.55 to 0.98, whereas in healthy individuals, COVs ranged from 2.04% to 7.31% and ICCs varied from 0.86 to 0.98. These findings indicate that PRNFL measurements with Spectral Domain Optical Coherence Tomography display excellent reproducibility, with low intrasession, intersession and interexaminer variabilities.

KEY WORDS: Optical Coherence Tomography; Spectral Domain; Reproducibility; Retinal Nerve Fiber Layer Thickness.
1-INTRODUÇÃO

1.1- Conceito de Glaucoma

Glaucoma refere-se a um grupo de desordens oculares que têm em comum uma neuropatia óptica crônica, progressiva e irreversível; caracterizada por alterações estruturais típicas no nervo óptico (NO) e na camada de fibras nervosas da retina peripapilar (CFNRP) e por defeitos de campo visual (CV) característicos (1, 2). O principal fator de risco associado ao glaucoma é a pressão intraocular (PIO) elevada (3, 4, 5, 6, 7, 8).

1.2- Epidemiologia do Glaucoma

Segundo dados da Organização Mundial de Saúde, existem cerca de 285 milhões de pessoas com deficiência visual no mundo: 39 milhões estão cegas e 246 milhões têm baixa visão. O glaucoma representa a segunda maior causa de cegueira mundial, sendo a principal causa de cegueira irreversível (9). Estima-se que, em 2020, cerca de 79,6 milhões de indivíduos, o que corresponde a 2,65% da população mundial acima dos 40 anos, terão glaucoma e que, dentre esses, 5,9 milhões estarão cegos bilateralmente (10).

A prevalência de glaucoma aumenta com a idade e varia dependendo da raça e de características socioeconômicas da população estudada (10, 11, 12, 13). O glaucoma primário de ângulo aberto (GPAA), tipo mais comum e responsável por mais de 70% de todos os casos de glaucoma (10), é mais prevalente em negros, que apresentam prevalência cerca de três vezes maior que a de indivíduos da raça branca (OR: 2,82; 95% IC, 2,14-3,72) (11). A prevalência de GPAA, ajustada para idade e sexo, em latinos/hispânicos é comparável à prevalência em negros, sendo três a quatro vezes mais alta que a prevalência observada em indivíduos da raça branca (12). O glaucoma primário de ângulo fechado (GPAF) representa cerca de um terço de todos os casos de glaucoma primário do mundo e é mais prevalente em indivíduos do sexo feminino (10, 14, 15, 16, 17, 18). Existe grande variabilidade em relação à prevalência de GPAF em diferentes etnias, com relatos de prevalência em esquimós (19), em residentes no sudeste asiático (20, 21, 22), em japoneses (23) e em indianos (24, 25, 26, 27) maiores que em caucasianos (20).

A população brasileira, constituída de cerca de 190 milhões de habitantes (28), representa aproximadamente um terço dos 603 milhões de habitantes da América

Latina (29). Entretanto, há poucas informações sobre a prevalência de glaucoma no Brasil. Sakata et al. conduziram um estudo populacional para avaliar a prevalência de glaucoma em indivíduos com mais de 40 anos, em dois distritos no Paraná. Com base em critérios diagnósticos estabelecidos pela Sociedade Internacional de Oftalmologia Geográfica e Epidemiológica, encontrou-se uma prevalência de glaucoma de 3,4%, sendo 2,4% de GPAA e 0,7% de GPAF. Os autores também observaram que a prevalência de glaucoma aumentou com a idade e em indivíduos que se definiram como não pertencendo à raça branca (30).

1.3- Diagnóstico de Glaucoma

O glaucoma é caracterizado pela perda de células ganglionares da retina (CGRs), que resulta em alterações estruturais na CFNRP e no NO (31). Associada às alterações estruturais, observa-se perda progressiva e irreversível do CV (32, 33), com impacto negativo na qualidade de vida dos pacientes (34, 35). O diagnóstico precoce e o início imediato do tratamento dos pacientes podem retardar e até prevenir a progressão da lesão no NO e a perda de CV (3, 4, 7, 36). Entretanto, diagnosticar precocemente o glaucoma é, muitas vezes, um desafio na prática clínica. Por ser uma doença assintomática, especialmente nos estágios iniciais; por existir baixa consciência pública sobre o glaucoma e seus fatores de risco; e pela inexistência de um teste de triagem efetivo; a maioria dos indivíduos com glaucoma permanece sem diagnóstico, até que ocorra perda de CV extensa e geralmente bilateral (12, 37, 38, 39, 40). No Brasil, Sakata et al. observaram que aproximadamente 90% dos sujeitos com glaucoma primário não tinham consciência de seu diagnóstico (30).

Quigley et al. analisaram olhos de indivíduos com diagnóstico de glaucoma, doados por bancos de olhos, e compararam as características histológicas das CGRs com parâmetros clínicos, como acuidade visual, aparência do NO e CV com o perímetro de Goldmann. Os autores observaram que a perda de axônios das CGRs ocorria previamente aos defeitos de CV (32, 41, 42, 43), com o maior acometimento sofrido pelas CGRs de maior diâmetro. As regiões com diminuição de 5dB e 10dB de sensibilidade no CV, dentro dos 30° centrais, estavam associadas à redução de cerca de 20% e 40% da quantidade total das CGRs, respectivamente (41).

Em um estudo publicado posteriormente (33), o mesmo grupo de pesquisadores estudou, também em pacientes com glaucoma, a relação entre as alterações nas CGRs e no CV obtido com o perímetro automático Humphrey. Os autores observaram correlação significativa entre a intensidade da perda de CGRs e a alteração perimétrica, além do maior acometimento de células com maior diâmetro, achado previamente descrito (42, 44, 45, 46, 47, 48, 49). Observou-se associação da perda de 25% a 35% das CGRs com o surgimento de anormalidades estatisticamente significantes na perimetria automatizada.

Harwerth et al. (50) investigaram, em um modelo experimental de glaucoma com macacos *rhesus*, a relação entre a lesão nas CGRs e os defeitos de CV. O glaucoma foi induzido com aplicação de laser de argônio no trabeculado dos olhos direitos; os olhos esquerdos foram usados como controles. Os macacos foram treinados para realizar exames de CV com o perímetro Humphrey. Alguns dias após a realização do último exame de CV, os olhos dos animais foram enucleados para análise histológica. Os autores observaram que a perda de 30 a 50% das CGRs estava associada ao decréscimo de cerca de 6 dB de sensibilidade no CV.

As evidências encontradas nos diversos estudos suscitaram o interesse em métodos de diagnóstico precoce, baseados na detecção da lesão estrutural inicial do glaucoma. Nas últimas décadas, houve grande avanço no desenvolvimento e aprimoramento de instrumentos computadorizados com capacidade de fornecer avaliação quantitativa e objetiva do NO e da CFNRP (51, 52, 53, 54, 55, 56, 57). As diversas tecnologias empregadas se fundamentam em diferentes propriedades estruturais da retina. Os dados fornecidos por esses diferentes métodos são condensados subsequentemente em impressos, que incluem gráficos e índices numéricos, com o intuito de fornecer uma maior quantidade de informações descritivas e de facilitar a interpretação e a conduta clínica.

1.4- Anatomia do Disco Óptico

1.4.1- O Disco Óptico normal

O NO é formado a partir da convergência de 1,2 a 1,5 milhões de axônios das CGRs (58, 59, 60). Na porção visível do NO, chamada de disco óptico (DO), os axônios estão agrupados em aproximadamente 1000 fascículos ou feixes e são apoiados por astrócitos (61). Na superfície do DO, esses axônios inclinam-se para deixar o globo ocular através de um canal escleral fenestrado, chamado de lâmina cribrosa. No DO são identificadas duas estruturas: a escavação e a rima neuroretiniana (62, 63). A escavação é uma depressão central do DO que não apresenta axônios e promove a exposição parcial da lâmina cribrosa. A rima neuroretiniana, situada perifericamente, é composta de axônios, neuroglia, astrócitos e capilares (63).

O DO pode ser dividido em quatro camadas (Figura 1):

a. Camada superficial de fibras nervosas

A porção mais anterior do DO é constituída predominantemente de axônios das CGRs, que são contínuos com a camada de fibras nervosas da retina. Em macacos *rhesus*, essa camada é composta de 94% de axônios das CGRs e de 5% astrócitos. (64).

b. Região pré-laminar

Imediatamente posterior à camada de fibras nervosas está a região prélaminar. Essa região também é conhecida como porção anterior da lâmina cribrosa. As estruturas predominantes neste nível são axônios das CGRs e astrócitos, com aumento significante na quantidade de tecido astroglial (65).

c. Região laminar

Essa camada proporciona o apoio principal para o NO, assim que este deixa o globo ocular, ao penetrar na camada escleral. A região laminar (ou lâmina cribrosa) consiste de lamelas de tecido conectivo fenestrado que permitem o trânsito de fibras neurais através da camada escleral. Os feixes de tecido conectivo são compostos primariamente por colágeno. Outros componentes da matriz extracelular incluem elastina, laminina e fibronectina. As fenestrações da lâmina cribrosa podem ser frequentemente vistas na oftalmoscopia, na base da escavação do DO.

d. Região retrolaminar

A região retrolaminar se situa posterior à lâmina cribrosa. É caracterizada pela diminuição de astrócitos e pelo início da mielinização axonal. Está rodeada pela leptomeninge do sistema nervoso central.

Figura 1: Divisões do disco óptico. **I:** Retina. **II:** Coróide. **III:** Esclera. **A:** Camada Superficial de Fibras Nervosas. **B:** Região Pré-laminar. **C:** Região Laminar. **D:** Região Retrolaminar

Há variação considerável das características do DO nos diferentes estudos (61, 66, 98), principalmente em relação à avaliação clínica e medidas observadas em estudos *post-mortem*. Geralmente a estimativa clínica é menor, pois os fatores de magnificação utilizados para o cálculo do tamanho do DO podem subestimar as dimensões reais do NO (67).

Quigley et al. estudaram o tamanho e a configuração dos olhos de 60 adultos saudáveis, doados por banco de olhos. Os diâmetros médios verticais e horizontais encontrados foram 1,88 mm e 1,77 mm, respectivamente. Esses autores observaram que os DOs de negros eram maiores e mais ovais que os de caucasianos, entretanto essa diferença não foi estatisticamente significante (67). A área do disco varia de 0,80 mm² a 6,00 mm² na população normal (12, 66, 67,68, 69, 70, 71, 72, 73, 74, 75, 76, 77); o valor médio se situa em torno de 2,94 mm² em negros e 2,63 mm² em caucasianos (76).

A rima neuroretiniana correlaciona-se com a área do DO (70, 71). A área média da rima neurorretinia em indivíduos normais é $1,97 \pm 0,50 \text{ mm}^2$ (73), não apresenta diferenças significativas entre negros e brancos (12) e não é influenciada pelo sexo, idade, refração ou lateralidade (73). A rima é significantemente maior no pólo inferior do disco óptico, seguido pelo pólo superior, borda nasal e região temporal (73).

1.4.2- O Disco Óptico glaucomatoso

As alterações que ocorrem no NO podem ser consideradas como as principais características no processo do glaucoma. Desde as observações iniciais do NO em seres humanos por Helmholtz, há 150 anos, a aparência do DO tem sido usada para avaliação clínica do glaucoma (78). Avaliações histológicas em humanos demonstraram que o desenvolvimento da lesão glaucomatosa está relacionado com a perda progressiva de células ganglionares retinianas e seus axônios, vasos sanguíneos e células da glia (81, 82, 83). Estudos experimentais com olhos de primatas expostos à elevação crônica da PIO sugerem que a lesão glaucomatosa esteja associada ao deslocamento posterior e lateral da lâmina cribrosa, o que levaria à compressão de axônios, interrompendo o fluxo axoplasmático (79, 80).

Devido à grande variabilidade das características anatômicas em indivíduos normais (84), muitas vezes fica difícil diferenciar um DO normal de um glaucomatoso, principalmente em fases iniciais da doença. As alterações do DO são tipicamente progressivas e assimétricas, e se apresentam sob diversas formas clínicas. Numerosos sinais sugestivos da neuropatia óptica glaucomatosa foram descritos na literatura:

• Atrofia focal da rima neuroretiniana

Ocorre desrespeitando o padrão decrescente de espessura em discos ópticos normais: Inferior > Superior > Nasal > Temporal (84,85). Geralmente, nos estágios iniciais, ocorre primeiramente na região temporal inferior e, em menor escala, no setor temporal superior, levando ao aumento da escavação na direção vertical (86, 87, 88, 89, 90, 91). Com a continuação do processo, a rima temporal é tipicamente envolvida após os polos verticais, seguida por último do acometimento da rima nasal (85). Entretanto, em alguns pacientes esse padrão não é respeitado. O afilamento inicial da rima nasal, presente em alguns pacientes, é altamente sugestivo de glaucoma (92).

• Aumento na escavação do DO (90, 93)

Discos maiores geralmente apresentam escavações maiores, e escavações levemente aumentadas em discos ópticos pequenos podem ser consideradas como suspeitas de glaucoma (68, 91, 94, 95, 96). A presença de uma relação escavação/disco horizontal maior que 0,3 ocorre em 82% da população glaucomatosa e em 18% de indivíduos normais. Entretanto, uma relação escavação/disco de 0,7 ocorre em apenas 5% de olhos normais (97).

Devido à dificuldade na diferenciação de escavações fisiológicas aumentadas e glaucoma, é importante a avaliação e comparação com o olho contralateral, em busca de assimetrias. Em indivíduos normais, a assimetria de escavação geralmente é observada quando existe diferença no tamanho dos DOs. Armaly identificou que apenas 1% da população normal apresentava assimetria de escavação entre DOs maior que 0,2. Em contrapartida, esse sinal esteve presente em 25% dos olhos com glaucoma (93). Jonas et al. observaram a presença de assimetria de escavação maior que 0,2 em 4% dos indivíduos normais, e maior que 0,3 em apenas 1% (84); valores semelhantes aos encontrados em outros estudos (12, 98).

• Aprofundamento da escavação do DO e presença de estrias na lâmina cribrosa

Descreve-se que 64% dos olhos com glaucoma apresentam estrias na lâmina cribrosa. Em contrapartida, sua presença estaria restrita a 12% dos olhos de indivíduos saudáveis. Entretanto, é importante ressaltar que DOs grandes e com escavação aumentada fisiologicamente também podem apresentar essa característica (99).

• Fosseta adquirida do DO

Ocorre mais frequentemente em pacientes com glaucoma de pressão normal (100). Pode ser considerada como uma ectasia posterior na lâmina cribrosa, com perda da arquitetura normal dessa região (100, 101, 102, 103).

• Atrofia coriorretiniana peripapilar

Ao redor do DO pode existir uma região de afilamento e degeneração do tecido coriorretiniano, chamada de atrofia coriorretiniana peripapilar. Esta área pode ser dividida em duas zonas: alfa e beta. A zona alfa apresenta-se como uma área de hipo e hiperpigmentação irregular, diferenciando-se da zona beta, de coloração esbranquiçada, vasos coroidais amplos e aparentes, e esclera visível. Quando estão presentes simultaneamente, a zona beta é sempre a mais próxima do DO. Ambas as zonas são maiores e mais frequentes no setor temporal, seguido pelas áreas temporal inferior e temporal superior (104). A zona alfa está presente na maioria dos olhos normais, enquanto a zona beta está presente em 15% a 20% dos indivíduos normais e em 70% dos pacientes com glaucoma. Além disso, a zona beta é mais extensa em olhos com glaucoma (58, 104, 105).

• Hemorragia de Disco Óptico

Estão frequentemente associadas ao surgimento ou à progressão do defeito de CV no glaucoma (106) e podem preceder os defeitos na CFNRP (107). Sua prevalência varia em diferentes estudos, ocorrendo com maior frequência na região temporal inferior, em indivíduos com glaucoma de pressão normal (108, 109). Raramente são encontradas em indivíduos normais, mas podem ocorrer associadas a outras doenças, como diabetes ou hipertensão arterial (109, 110).

Alterações Vasculares

• Desnudamento do vaso circulinear (111, 112, 113); ocorre devido à perda de tecido neural, que o deixa isolado da rima neural.

• Vaso em Baioneta; ocorre devido à deflexão do vaso sanguíneo na borda da escavação aumentada.

• Vaso em Passarela (106); ocorre quando há perda de tecido de sustentação na região central do DO, dando a impressão que o vaso está flutuando.

 Anasalamento dos Vasos (86); ocorre em olhos com escavação fisiologicamente aumentada ou devido ao glaucoma, não sendo, portanto, um sinal importante na diferenciação entre olhos normais e glaucomatosos.

1.5- Anatomia da Camada de Fibras Nervosas da Retina Peripapilar (CFNRP)

1.5.1- A CFNRP em olhos normais

A CFNRP é composta pelos axônios das células ganglionares da retina, neuroglia e astrócitos (114). Os axônios das CGRs têm comprimento aproximado de 50 mm e se direcionam ao DO, assumindo um padrão de distribuição característico (Figura 2). As fibras periféricas temporais se originam de ambos os lados da linha divisória horizontal, conhecida como rafe mediana, e seguem um trajeto arqueado. As fibras originárias da mácula (feixe papilomacular) e da região nasal assumem um padrão mais radial em direção ao NO (115, 116). As fibras arqueadas estão mais susceptíveis à lesão glaucomatosa inicial, por isso observamos a ocorrência frequente de escotomas arqueados no CV de indivíduos com glaucoma. (117, 118). Os feixes axonais são separados por células da glia e se tornam mielinizados pelos oligodendrócitos, atrás da lâmina cribrosa (117).

Os vasos sanguíneos situam-se na porção mais interna da CFNRP, são cobertos por feixes de fibras nervosas, o que os torna com aspecto ligeiramente obscurecido quando avaliados à oftalmoscopia (119). A espessura da CFNRP diminui com a idade (120), com taxa de perda de axônios estimada em 4000 fibras/ano (59, 121, 122).

Figura 2: Distribuição das fibras nervosas retinianas

1.5.2- A CFNRP em olhos glaucomatosos

Existem duas formas de defeito na CFNRP causados pelo glaucoma: localizado e/ou difuso. Os defeitos localizados foram inicialmente descritos por Hoyt (123, 124, 125), como áreas bem definidas, de aspecto triangular (em cunha), com ápice voltado para o DO; que se irradiam do NO e se estendem perifericamente. Na maioria dos casos, são acompanhados de defeito correspondente no NO. Aparecem nas fotografias com filtro *red free* ou na oftalmoscopia como áreas escuras entre o brilho normal das estrias da CFNRP (Figura 3). O defeito localizado tem sido reportado em 20% dos pacientes com glaucoma (126).

A perda difusa da CFNRP ocasiona a diminuição da visibilidade desta camada, que pode ser difícil de detectar, especialmente em olhos com opacidade de meios. Outra indicação da perda de fibras nervosas é o aumento na visibilidade dos vasos sanguíneos (127). Desta forma, para um melhor diagnóstico da perda difusa da CFNRP, é importante avaliar o limite dos vasos (principalmente na segunda e terceira ramificações) e a ocorrência da perda do padrão estriado da CFNRP.

Figura 3: Defeito localizado na camada de fibras nervosas da retina.

1.6- Métodos de análise do Disco Óptico

1.6.1-Oftalmoscopia

As alterações glaucomatosas características do DO podem ser identificadas e acompanhadas por meio de exame clínico cuidadoso realizado com o oftalmoscópio direto ou através da biomicroscopia indireta em lâmpada de fenda com lentes auxiliares, preferencialmente sob midríase (128).

A oftalmoscopia direta apresenta a vantagem da alta magnificação (aumento de 15x), entretanto fornece pequeno campo de visão e não possibilita estereopsia. A avaliação estereoscópica via biomicroscopia em lâmpada de fenda, documentada por desenhos ou por descrição no prontuário do paciente, é realizada com o auxilio de lentes especiais de 66 D, 78 D ou 90 D, lente de Hruby ou com a lente de contato de Goldmann. Cada uma dessas lentes oferece uma magnificação diferente do fundo do olho (129), o que ocasiona uma pequena distorção na imagem: as lentes de 66 D, 78 D, 90 D e a lente de Goldmann levam a uma diminuição aparente na profundidade das estruturas, enquanto a lente de Hruby causa um pequeno aumento (130).

Desde 1969, tornou-se popular a classificação do DO por meio da avaliação da relação entre escavação/disco do NO (93). Essa escala de classificação avalia o diâmetro da escavação como porcentagem do diâmetro do disco. As vantagens desse método consistem na facilidade do uso e na ausência de artefatos de magnificação (131). Entretanto esse sistema não leva em consideração nem o tamanho do disco, nem afilamentos focais da rima neuroretiniana. Outro método eventualmente utilizado para avaliar o NO se baseia na regra ISNT. Esta regra sugere que, em nervos ópticos glaucomatosos, a distribuição da rima neuroretiniana não segue a ordem de espessura decrescente nos quadrantes, observada em indivíduos saudáveis: inferior > superior > nasal > temporal (73). Entretanto, evidências científicas mostram utilidade limitada dessa regra no diagnóstico de glaucoma (132).

Foram desenvolvidos alguns protocolos de descrição do NO, com o intuito de fornecer uma classificação diagnóstica, padronizada e reprodutível, da neuropatia glaucomatosa (84, 88, 133, 134, 135, 136, 137). Spaeth et al. (138) propuseram uma escala

de probabilidade de lesão do NO, considerando o diâmetro do DO e da rima neuroretiniana, chamada de escala de probabilidade de lesão de disco (DDLS; *Disk Damage Likelihood Scale*), com relatos de boa reprodutibilidade e capacidade diagnóstica (131, 139, 140, 141, 142). Entretanto, a aplicação desses protocolos demanda tempo e aprendizado devido a sua complexidade (137).

1.6.1.1- Reprodutibilidade da Oftalmoscopia

Observa-se variabilidade considerável na classificação diagnóstica do glaucoma por meio da oftalmoscopia, principalmente entre examinadores diferentes (140, 143, 144, 145) e mesmo entre especialistas em glaucoma (146); além de grande dificuldade na identificação de progressão da doença.

Varma et al. avaliaram a concordância intra e interobservador de seis especialistas em glaucoma em 75 olhos, sob condição mono e estereoscópica, na classificação da relação vertical escavação/disco. A concordância intraobservador encontrada foi alta (*kappa*: 0,76 - 0,79), entretanto a interobservador foi moderada (*kappa*: 0,50 - 0,67). Individualmente, os examinadores hiperestimaram a relação vertical escavação/disco ao fazerem a avaliação sob condição estereoscópica. Entre as análises mono e estereoscópica, houve divergência dos examinadores em aproximadamente 0,2 e 0,16 diâmetros de disco, respectivamente (144). Henderer et al. avaliaram a concordância de três examinadores na avaliação do NO de 34 olhos de pacientes com glaucoma. As concordâncias interobservadores utilizando a escala DDLS e a relação escavação/disco vertical de Armaly foram similares (70,1% e 67,6%, respectivamente) (140).

Arnalich-Montiel et al. determinaram, em 35 hipertensos oculares e em 56 pacientes com GPAA, a concordância entre três especialistas na avaliação da relação escavação/disco. O CCI (coeficiente de correlação intraclasse) para a relação vertical escavação/disco entre especialistas foi 0,87 e para relação horizontal foi 0,83 (147).

1.6.1.2- Acurácia diagnóstica da Oftalmoscopia

Em uma revisão sistemática conduzida por Burr et al. observou-se, ao se adotar um valor de corte maior ou igual a 0,7 para a relação vertical escavação/disco, sensibilidade de 60% (95% intervalo de confiança (IC), 34% - 82%) e especificidade de 94% (95% IC, 76% - 99%) para diagnóstico de glaucoma. A razão de chances de diagnóstico foi de 25.7 (95% IC, 5,79 – 109,50) (148).

Em um estudo recente, Abdul Majid et al. avaliaram a acurácia diagnóstica da escala DDLS, do CV e de vários parâmetros da tomografia de coerência óptica (TCO) em 149 olhos de 149 pacientes categorizados em normais, suspeitos ou com diagnóstico de glaucoma. Os autores encontraram maior área sob a curva ROC (*Reciever Operator Characteristics*) para a escala DDLS (0,917) em relação ao índice CPSD do CV (0,895) e ao parâmetro espessura média da CFNRP da TCO (0,864) (149).

1.6.2- Fotografias do Disco Óptico

As fotografias do DO são a técnica mais comumente utilizada para triagem e documentação de alterações estruturais no glaucoma (150, 151). Por evitarem a subjetividade de desenhos esquemáticos, as fotografias de DO permitem uma documentação mais objetiva, fornecendo a possibilidade de análise e comparação posteriores, o que facilita a detecção de modificações anatômicas que indiquem progressão da lesão glaucomatosa (54, 152, 153, 154, 155). Pode-se obter imagem colorida tridimensional (estereofotografia) ou bidimensional, esta última apresentando a vantagem da simplicidade e do baixo custo. Estereofotografias podem ser obtidas pelo reposicionamento manual horizontal ou pelo uso de um adaptador (Separador de Allen) (156). Entretanto, melhores imagens são obtidas com câmeras estereoscópicas de fundo de olho que utilizam o mesmo princípio do oftalmoscópio binocular indireto (câmara estereoscópica de Donaldson) (157).

Aspectos do DO, como tamanho do próprio disco e da escavação, forma, coloração e hemorragias peripapilares são relativamente bem caracterizados por esse método (158, 159). Entretanto, fotografias com alta qualidade nem sempre são fáceis de

serem obtidas, principalmente por dependerem da cooperação do paciente, de meios oculares transparentes, da midríase e de tempo para aquisição e revisão qualitativa das imagens.

1.6.2.1- Reprodutibilidade da análise de Fotografias do Disco Óptico

A reprodutibilidade da análise de fotografias do DO foi avaliada em diversos estudos, com ampla variação de resultados referentes à concordância dos examinadores na detecção de alterações no DO: para concordância intraexaminador observam-se valores da estatística *kappa* de 0,50 a 1,00 (160, 161, 162, 163) e para concordância interexaminador de 0,34 a 0,83 (160, 162, 163, 164).

Henderer et al. avaliaram a reprodutibilidade da escala DDLS em relação à avaliação clínica e a relação escavação/disco de Armaly, em 48 pares de estereofotografias. As concordâncias inter e intraexaminador pelo método teste-reteste, para a medida vertical da escala DDLS, foram maiores que as obtidas pela impressão clínica e medida da relação vertical escavação/disco de Armaly (interexaminador: 85%, 68% e 74%, respectivamente; intraexaminador variou de: 97 a 99%, 89 a 95%, 80 a 89%, respectivamente) (140).

Breusegem et al. compararam a concordância entre especialistas e não especialistas em glaucoma na detecção de alterações glaucomatosas do DO, por meio de estereofotografias. Três especialistas independentes avaliaram um conjunto de estereofotografias seriadas coloridas, obtidas em um intervalo de dois a sete anos, de 40 pacientes. Cada paciente foi classificado em com doença em progressão ou estável, por pelo menos dois de três especialistas (considerado padrão de referência). Trinta e sete oftalmologistas não especialistas avaliaram independentemente o mesmo conjunto de fotografias duas vezes. A segunda avaliação foi feita no mesmo dia, após treinamento em um conjunto separado de fotografias. A concordância interobservador encontrada entre não especialistas (*kappa*: 0,20; 95% IC, 0,19 a 0,21) do que a encontrada entre especialistas (*kappa*: 0,51; 95% IC, 0,33 a 0,69) (p<0,0001). Após o treinamento, a concordância interobservador entre não especialistas mostrou uma melhora

pequena, mas estatisticamente significante (*kappa* de 0,20 para 0,27 (95% IC, 0,26 a 0,28) (p<0,0001)) (165).

1.6.2.2- Acurácia diagnóstica da análise das Fotografias do Disco Óptico

Grande parte dos estudos na literatura reporta excelente acurácia para diagnóstico de glaucoma com a análise de fotografias do DO, com relatos de sensibilidade e especificidade variando entre 64 a 90,4% e 79,6 a 100%, respectivamente (164, 166, 167, 168).

Henderer et al. analisaram sequencialmente 83 pares de estereofotografias, separadas por um intervalo de cinco anos. As sensibilidades para detecção de alterações glaucomatosas foram 71,4%; 63,9%; 66,7% e 47,2% para escala DDLS, relação vertical escavação/disco, relação horizontal escavação/disco e relação escavação/disco máxima, respectivamente. As especificidades foram 70,9%; 51,1%; 40,4% e 48,9%, para os mesmos parâmetros, respectivamente. A maior área sob a curva ROC foi obtida com a escala DDLS (0,744) (169).

Danesh-Meyer et al. avaliaram o poder diagnóstico da escala DDLS, aplicada em fotografias do DO, em relação à avaliação da relação escavação/disco e à oftalmoscopia confocal de varredura a laser (OCVL) com o HRT (*Heidelberg Retina Tomograph*), em 110 olhos. A avaliação com a escala DDLS apresentou a maior área sob a curva ROC (0,95), seguida da avaliação da relação escavação/disco (0,84) e da análise MRA (*Moorfields Regression Analisys*) do HRT (0,68) (142). Deleón-Ortega et al. avaliaram a capacidade diagnóstica em 228 sujeitos da OCVL com o HRT II, da Polarimetria de Varredura a Laser (PVL) com o GDx-VCC, da TCO com o Stratus e da avaliação subjetiva de estereofotografias; por três examinadores independentes. A avaliação de estereofotografias obteve maior área sob a curva ROC e sensibilidade (0,903 e 77,22%, respectivamente) em relação ao melhor parâmetro de cada técnica: área global escavação/disco do HRT II (0,861 e 75,95%, respectivamente); NFI (*Nerve Fiber Indicator*) do GDx-VCC (0,836 e 68,35%, respectivamente); área vertical da rima do Stratus (0,854 e 73,42%, respectivamente) (170).

Andersson et al. compararam a acurácia diagnóstica das análises MRA e GPS (Glaucoma Progression Score) do HRT II com a classificação subjetiva de fotografias de DO, feita por oftalmologistas com experiência variável em glaucoma e por médicos residentes. A sensibilidade encontrada foi significativamente maior para ambas as análises MRA (87%) e GPS (79%) em relação à análise de todos os médicos (62%). As sensibilidades para especialistas em glaucoma, oftalmologistas gerais, oftalmologistas com outras especialidades e médicos residentes encontradas foram 72%, 59%, 53% e 66%, respectivamente. A especificidade variou de 86% (MRA) a 97% (classificação por todos os médicos), sem diferença estatisticamente significante (168).

1.6.3- Oftalmoscopia Confocal de Varredura a Laser

Os topógrafos de DO surgiram no mercado na década de 80 e, desde então, estão em constante aperfeiçoamento. O principal objetivo desta técnica é tornar a análise da morfologia do NO mais precisa e objetiva, detectando mudanças no DO sem a influência do examinador.

Na primeira linha de topógrafos desenvolvidos, estão o Analisador de Rodenstock (171), o Topcon Imagenet (PAR IS 2000) (172) e o Analisador Retiniano Humphrey (173). Esses dispositivos utilizavam métodos de fotografia convencional e programas de computação gráfica para criar imagens tridimensionais do DO. Com o Analisador de Rodenstock, imagens estereoscópicas eram obtidas por meio de processamento de dados referentes à profundidade relativa de diversos parâmetros do DO. (174, 175, 176). O Topcon Imagenet, denominado posteriormente de PAR IS 2000, utilizava uma câmera e um sistema de vídeo estereoscópicos para obter imagens do DO. Os dados eram salvos em um disco rígido capaz de armazenar grandes quantidades de dados (4000 imagens monocromáticas por disco). Essas imagens eram analisadas por um programa que gerava parâmetros estereoscópicos, mapas de contorno, mapas de palidez e profundidade e imagens tridimensionais da retina (172).

Essas técnicas forneciam imagens de baixa qualidade, devido à dispersão, pouca refletividade e baixo contraste da retina (177). Desta forma, esses instrumentos,

apesar de terem sido extensivamente estudados e utilizados, foram sendo gradualmente substituídos na prática clínica por novos aparatos (178).

A segunda geração de topógrafos passou a utilizar o sistema confocal de varredura a laser, que se baseia em diferente princípio para a obtenção de imagens, em relação às câmeras de fundo (179, 180). A técnica da OCVL requer que um estreito feixe de luz seja direcionado para o pólo posterior do olho, através de uma abertura reduzida. Apenas um pequeno sítio é iluminado e um volume de luz, chamado de *voxel*, é refletido. O *voxel* é coletado por um divisor de feixe, sendo então direcionado, focado e decodificado em um detector. Uma segunda abertura confocal fica localizada na frente do detector. Essa abertura age como um filtro e permite que apenas a luz refletida de determinado plano focal seja detectada. Quanto menor a abertura, melhor a resolução da imagem. A imagem bidimensional resultante representa o reflexo luminoso detectado em cada ponto (ou *pixel*) da estrutura examinada. Séries de imagens confocais são obtidas a partir de sucessivos planos de profundidade no tecido, formando uma imagem tridimensional (180) (Figura 4). O primeiro plano da imagem é referente aos vasos retinianos e o último à porção mais profunda da escavação.

Feixe de varredura

Figura 4 – Princípio da Oftalmoscopia Confocal de Varredura a Laser.

O protótipo dessa segunda geração de topógrafos foi o Tomógrafo de Varredura a Laser, desenvolvido em 1991 e não mais disponível comercialmente. Em 1995, surgiu o TopSS (Laser Diagnostic Technologies Inc., San Diego, Califórnia, EUA) (181, 182, 183, 184) e em 1997, o Tomógrafo de Retina Heidelberg (HRT; Heidelberg Engineering GmbH, Heidelberg, Alemanha) (185, 186).

O primeiro modelo do HRT (HRT I ou clássico) foi desenvolvido como um topógrafo para exame oftalmoscópico geral. Já o HRT II foi aperfeiçoado especificamente para o exame do disco óptico. Duas décadas depois, o HRT II e o *software* 3,0 (HRT III) representam uma versão mais atualizada, compacta e fácil de manusear, com captação e análise de dados mais automatizada e melhora na database e nas equações classificatórias de análise de regressão linear (187).

O HRT utiliza um laser de diodo com comprimento de onda de 670 nm e dois espelhos que direcionam o feixe nos sentidos horizontal e vertical, em diversos planos ao longo do eixo óptico. Isso permite uma boa precisão no plano focal, cuja profundidade é ajustada pela posição do orifício confocal e que gera, no HRT II, 384 x 384 *pixels* espalhados em uma área de 15° X 15°. Dessa forma, é possível analisar o tecido em camadas, que podem variar de 16 a 64, dependendo da profundidade da estrutura tridimensional final (188). O HRT tem a vantagem de não necessitar de midríase para obtenção de imagens e de trabalhar com variáveis que são de conhecimento de todos os oftalmologistas, facilitando consideravelmente a compreensão do exame.

Devido à impossibilidade do HRT em reconhecer tecidos diferentes, a demarcação dos limites do DO é feita de forma manual pelo examinador, o que representa a principal limitação do aparelho. O *software* do aparelho cria um plano de referência abaixo da superfície retiniana, que corresponde a 50 µm abaixo do feixe papilomacular, a partir do qual vários dados de medidas do paciente são calculados e fornecidos no impresso do instrumento (189, 190, 191). Assim, estruturas localizadas anteriormente ao plano de referência são consideradas pertencentes à rima neural e as localizadas posteriormente são consideradas como escavação. Essas informações são comparadas com um banco de dados de indivíduos normais do próprio aparelho, com ajustes para o tamanho do disco óptico e

para a idade. Uma avaliação setorial é então feita por meio de uma análise de regressão linear ou MRA (186, 192). A partir dessa análise, o instrumento fornece em seu impresso uma classificação final do exame.

A novidade introduzida na última versão do HRT é o GPS, calculado por inteligência artificial (193, 194). O GPS utiliza cinco parâmetros: três referentes ao NO (largura da escavação, profundidade da escavação, inclinação da rima) e dois referentes à CFNRP (curvatura horizontal CFNRP e curvatura vertical CFNRP). Faz-se então o cálculo da probabilidade estatística de haver lesão glaucomatosa, comparando-se a topografia tridimensional do DO e da CFNRP do paciente com a do banco de dados específico para idade e raça. Essa análise elimina a necessidade do desenho manual do contorno do DO e da escavação; e compara automaticamente as imagens iniciais com as de retornos subsequentes, apontando áreas de progressão estatisticamente significantes. Esse índice varia de 0 a 100% e, quanto mais elevado seu valor, maior a probabilidade do nervo em questão ser glaucomatoso (187).

1.6.3.1- Reprodutibilidade da Oftalmoscopia Confocal De Varredura a

Laser

A qualidade da imagem e a variação da altura do plano de referência são os principais fatores que influenciam a reprodutibilidade do HRT (195, 196, 197). A altura do plano de referência pode ser responsável por até 75% da variabilidade medida. Existem relatos indicando que as imagens do HRT podem ser influenciadas pelo tamanho da pupila (198), alterações da PIO (200, 201) e ciclo cardíaco (202). Acredita-se que idade, baixa acuidade visual, catarata e alto astigmatismo não interfiram diretamente na variabilidade das medidas, mas que estejam associados à má qualidade da imagem que, por sua vez, aumenta indiretamente a variabilidade das medidas (203, 204, 205).

Hatch et al. observaram excelente concordância de parâmetros do HRT obtidos em 50 pacientes com glaucoma por cinco examinadores, com valores do CCI de 0,73; 0,67; 0,94; 0,92 e 0,83 para volume da rima, área de disco, altura média da linha de contorno, forma da escavação e volume acima da superfície, respectivamente (206). Com o

HRT II, a variabilidade na maioria dos parâmetros obtidos em três exames do DO, em 20 sujeitos saudáveis, foi menor que 12% (207). Leung et al. avaliaram a variabilidade de medidas obtidas com o HRT III em 88 sujeitos, em três visitas separadas por um período de $8,8 \pm 1,2$ meses. Os valores de CCI e do CDV para a área global da rima foram 0,97 e 6,22%, respectivamente (208).

Taibbi et al. avaliaram a reprodutibilidade intrasessão do GPS em 20 sujeitos saudáveis e em 20 indivíduos com glaucoma, submetidos a dez exames no mesmo dia, com o HRT III. Os altos valores globais de CCI observados (0,86 a 0,96, respectivamente) indicam que existe pouca variação nos resultados de exames repetidos em curto intervalo de tempo. É importante observar, no entanto, que, na análise por grupos, os pacientes com glaucoma apresentaram uma variabilidade um pouco maior (CCI: 0,71 a 0,92) do que os sujeitos saudáveis (CCI: 0,90 a 0,98) (197).

1.6.3.2- Acurácia diagnóstica da Oftalmoscopia Confocal de Varredura

a Laser

As evidências sugerem que o GPS pode discriminar entre olhos saudáveis e glaucomatosos tão bem quanto a MRA, sem apresentar a necessidade de determinação manual da linha de contorno (194, 209). Evidências científicas relatam valores de sensibilidade para o GPS de 61% a 80% e para MRA de 21% a 77%. Em relação à especificidade, encontramos valores de 57% a 90% para o GPS e de 67% a 100% para MRA (209, 210, 211, 212, 213). Alguns estudos sugerem que em pacientes com glaucoma inicial, o GPS tem uma sensibilidade maior e especificidade menor que a MRA, enquanto em pacientes com glaucoma avançado, a MRA tem um desempenho melhor que o GPS (186, 209, 214). Entretanto, semelhante ao que ocorre com a MRA, observou-se uma alta taxa de falso-positivos para GPS em discos grandes e baixa sensibilidade em discos pequenos (194).

1.7- Métodos de análise da CFNRP

1.7.1- Fotografias da CFNRP

Os defeitos CFNRP podem ser identificados antes que a lesão no DO e a perda de CV se tornem aparentes (215, 216, 217, 218). Há mais de 35 anos, foi reportado, por meio da avaliação de fotografias de fundo seriadas, que a lesão na CFNRP era detectável cerca de cinco anos antes do desenvolvimento de lesão no CV (215).

A CFNRP pode ser examinada e documentada por meio de fotografias preto e branco de alto contraste, obtidas utilizando luz com filtro *red free*. A luz com comprimento de onda mais curto, como a luz verde, é quase totalmente refletida pelas camadas superficiais da retina. A luz vermelha, com grande comprimento de onda, atravessa a retina praticamente sem reflexão. Desta forma, quanto maior a quantidade de luz verde penetrando no olho, maior o realce da CFNRP (219, 220).

As fotografias da CFNRP podem fornecer boas informações qualitativas sobre indicadores de lesão glaucomatosa. Entretanto, a imagem da CFNRP por essa técnica só fornece informações sobre a localização e a largura dos defeitos, mas não sobre dados quantitativos específicos da profundidade ou da extensão da perda de tecido. Além disso, há grande variabilidade na aparência inicial e na forma da progressão da lesão glaucomatosa em pacientes com PIO não controlada (217).

A visualização de defeitos da CFNRP pode ser dificultada em olhos com fundo hipopigmentado e com miopia, nos quais há maior reflexão da luz e menor contraste (130). As estereofotografias não são muito úteis na avaliação da CFNRP, principalmente por causa da pouca visibilidade deste tecido em fotografias coloridas.

1.7.1.1- Reprodutibilidade da análise das Fotografias da CFNRP

Existe grande variabilidade na avaliação das características da CFNRP, mesmo entre examinadores experientes (221), uma vez que essa avaliação é subjetiva e qualitativa. Herrmann e Funk investigaram a concordância no julgamento de fotografias da CFNRP, por dois examinadores, em 91 pacientes com hipertensão ocular seguidos de 1991 a 2000. Os autores encontraram coeficiente de correlação de Kendall variando de 0,713 a 0,863 na análise intraexaminador, entretanto na análise interexaminador os valores para o coeficiente de Somer variaram de 0,541 a 0,581 (222).

1.7.1.2- Acurácia diagnóstica da análise das Fotografias da CFNRP

Medeiros et al. compararam as medidas da CFNRP obtidas com a PVL e a avaliação da CFNRP por meio de fotografias com filtro *red free* em 42 pacientes com GPAA, 32 suspeitos de glaucoma e 40 indivíduos saudáveis. Os autores encontraram maior área abaixo da curva ROC para o melhor parâmetro da PVL em relação à análise das fotografias, com diferença estatisticamente significante (0,91 e 0,84, respectivamente; p= 0,03) (223).

Hong et al. compararam a acurácia diagnóstica para o glaucoma com o perímetro Humphrey Matrix, com a PVL, com a TCO e com a análise de fotografias da CFNRP em 72 sujeitos com glaucoma e em 48 indivíduos saudáveis. Dois examinadores interpretaram as fotografias utilizando um sistema de escores, que levava em consideração a presença, intensidade, amplitude e localização do defeito na CFNRP. Os autores observaram menores áreas sob a curva ROC para as fotografias de CFNRP (0,75) em relação à perimetria computadorizada (0,99), à PVL (0,906) e à TCO (0,79). A sensibilidade e a especificidade encontradas com a avaliação das fotografias foram 58,3% e 95,8%, respectivamente (224).

Esses resultados sugerem que, devido à subjetividade e à análise basicamente qualitativa das fotografias da CFNRP, outros métodos de avaliação objetiva da CFNRP fossem desenvolvidos e aprimorados.

1.7.2- Polarimetria de Varredura a Laser

A PVL (GDx®, Laser Diagnostic Technologies, San Diego, Califórnia, EUA) foi um dos primeiros métodos desenvolvidos com a proposta de fornecer medidas

quantitativas da espessura da CFNRP (225, 226, 227, 228, 229, 230). A estimativa das medidas da espessura da CFNRP com esse método baseia-se no princípio que a birrefringência das camadas da retina induz um retardo na velocidade da passagem da luz polarizada, proporcional à espessura do tecido avaliado (231, 232), devido à disposição paralela dos microtúbulos e neurofilamentos axonais (233) (Figura 5).

Figura 5: Princípio da Polarimetria de Varredura a Laser

A PVL é constituída de um oftalmoscópio com um polarímetro integrado e incorpora também um compensador corneano, que tem como objetivo evitar erros de interpretação devido às propriedades birrefringentes da córnea (234, 235) e, numa extensão menor, do cristalino (236). As primeiras versões foram compostas de um compensador fixo (GDx-FCC Nerve Fiber Analyzer), que apresentou resultados inadequados na avaliação de muitos olhos (237, 238). Em 2002, foi introduzido no mercado um dispositivo com um

compensador variável (GDx-VCC Nerve Fiber Analyzer), que permitiu a compensação específica para cada olho, fornecendo medidas mais acuradas da CFNRP (52, 223).

Em olhos com glaucoma, a perda de fibras nervosas retinianas é observada à PVL como uma diminuição difusa e/ou localizada na quantidade de retardo comparado com o padrão de retardo normal. Em alguns casos, observou-se um padrão de retardo atípico (PRA), caracterizado por elevados valores de retardo que não correspondiam à distribuição anatômica de CFNRP (239, 240). Esse fenômeno ocorria em aproximadamente 10 a 25% dos olhos saudáveis e em 15 a 51% de olhos com glaucoma (241, 242, 243). Sugeriu-se que o PRA resultaria da baixa relação sinal/ruído, como consequência da diminuição da refletividade do epitélio pigmentado da retina (242). Götzinger et al. atribuíram a ocorrência de imagens com PRA ao aumento da penetração do feixe de luz na esclera, que possui fortes propriedades birrefringentes (246). Vários autores mostraram associação do PRA com aumento da idade, miopia e menor pigmentação de retina (243, 244, 245).

Com o objetivo de melhorar a relação sinal/ruído, mantendo a adequada compensação corneana, e diminuir artefatos associados ao PRA, foi desenvolvido um novo *software* para a PVL, chamado de compensação ampliada da córnea (GDx-ECC Nerve Fiber Analyzer) (247). Esse método pode ser incorporado à PVL (GDx-VCC Nerve Fiber Analyzer) sem a necessidade de troca do equipamento (241, 248, 247, 250). Alguns estudos sugerem melhora na avaliação da CFNRP por este novo método (55, 248, 259, 251), tanto na precisão diagnóstica quanto na correlação entre medidas funcionais e estruturais.

1.7.2.1- Reprodutibilidade da Polarimetria de Varredura a Laser

Vários artigos científicos demonstram boa reprodutibilidade da PVL, tanto com o GDx-ECC quanto com o GDx-VCC (250, 252, 253, 254). Iacono et al. avaliaram a reprodutibilidade intersessão de medidas de espessura da CFNRP com o GDx-VCC em uma amostra de 29 sujeitos saudáveis e 29 pacientes com glaucoma, com uma semana de intervalo. O CDV foi menor que 6% em ambos os grupos. O CCI variou de 0,79 a 0,90 em sujeitos saudáveis e de 0,94 a 0,97 em pacientes com glaucoma (253). Garas et al. avaliaram a influência da dilatação pupilar na reprodutibilidade da PVL em diferentes estágios de glaucoma. Um olho de cada um dos 37 participantes caucasianos (14 saudáveis e hipertensos oculares com índice MD maior que 2 dB; onze sujeitos com glaucoma moderado com MD entre -6 e -12 dB e doze sujeitos com glaucoma avançado com MD menor que -15 dB) foram submetidos a exame de imagem, cinco vezes com ambos GDx-VCC e GDx-ECC, antes e após dilatação pupilar. Nenhuma diferença estatisticamente significante foi encontrada para qualquer parâmetro entre os dois polarímetros. Os autores concluíram que a reprodutibilidade do GDx-VCC e GDx-ECC foi semelhante e satisfatória para propósitos clínicos, sendo minimamente influenciada pela midríase farmacológica (254).

1.7.2.2- Acurácia diagnóstica da Polarimetria de Varredura a Laser

A sensibilidade para detecção de glaucoma com parâmetros do GDx-VCC varia, de acordo com a literatura, de 28,3% a 93,3%. A menor especificidade reportada, com o parâmetro NFI, foi 52,9% (224, 255, 256, 257, 258, 259, 260).

Medeiros et al. (286) encontraram área sob a curva ROC significativamente maior para a avaliação com o GDx-ECC comparado com GDx-VCC (0,89 e 0,65, respectivamente; P<0,001) (261). Este resultado está de acordo com o encontrado em outros estudos (243, 262). Grewal et al. demonstraram que o GDx-ECC identificou mais casos de progressão de glaucoma do que o GDx-VCC (11,8% e 8,8%, respectivamente) (263).

Costa et al. avaliaram a influência da idade, sexo, erro refracional e topografia do disco óptico na sensibilidade e especificidade da PVL, em 88 indivíduos saudáveis e em 95 pacientes com glaucoma. Os autores encontraram valores de sensibilidade e especificidade de 82% e 83%, respectivamente, e não observaram influência da idade, sexo, raça e média do diâmetro ou área do disco. Os valores de sensibilidade apresentaram uma tendência a serem maiores em míopes (93%) que em emétropes (80%) e hipermetropes (71%) (p= 0,08). A sensibilidade foi maior em indivíduos com área de escavação maior que 0,96 mm² (89%), área da rima menor ou igual a 1,36 mm² (92%) e relação da área de escavação/disco maior que 0,45 (89%) (p< 0,05) (229).

1.8- Tomografia de Coerência Óptica

A TCO foi introduzida em 1991 como uma técnica de imagem não invasiva e *in vivo* que possibilitava a realização de imagens transversais dos tecidos, com alta resolução, por meio da medida da reflexão óptica (264). Muitos avanços foram incorporados a esta tecnologia desde então, melhorando as resoluções axial e transversal e diminuindo o tempo necessário para aquisição das imagens (265, 266, 267). A TCO encontrou ampla utilização na medicina, com aplicação em diferentes especialidades como gastroenterologia (268), dermatologia (269) e cardiologia (270). O impacto clínico mais significante da TCO ocorreu na oftalmologia, apresentando grande valor no diagnóstico e seguimento de doenças retinianas e do glaucoma (271, 272, 273).

1.8.1- Histórico

A TCO foi desenvolvida no Departamento de Engenharia Elétrica e Ciência da Computação do *Massachusetts Institute of Technology*. A primeira imagem da retina foi obtida em 1989 por David Huang e Joel S. Schuman. Em 1991, a revista *Science* publicou as primeiras imagens da retina e da artéria coronária *ex vivo*, que foram comparadas à análise histológica dos mesmos tecidos (264). Em 1993, Eric Swanson projetou o primeiro modelo de TCO de domínio temporal (TCO-DT) dedicado à oftalmologia, construído no laboratório de engenharia do *New England Eye Center*, *Tufs University School of Medicine* em Boston, Massachusetts, EUA. Nesse mesmo ano, as primeiras imagens *in vivo* foram apresentadas (274) e em 1994 a tecnologia foi patenteada e transferida a Carl Zeiss Meditec (Dublin, CA) (275). Entre 1994 e 1995, foram realizados vários estudos clínicos e publicadas as primeiras imagens de doenças retinianas (276).

A primeira versão, chamada de OCT 1000 (Carl Zeiss Meditec, Dublin, CA), foi comercializada em 1996. Essa tecnologia passou por dois aprimoramentos, resultando no OCT 2000, em 2000; e no OCT 3, conhecido como Stratus, que ficou disponível comercialmente em 2002. Em 2006, foi comercializado o primeiro dispositivo de TCO de alta velocidade e resolução, conhecido por TCO de domínio espectral (TCO-DE) ou de domínio Fourier.

Esse epônimo se refere ao cientista militar francês Jean-Baptiste-Joseph Fourier, que, no início de 1800, derivou uma equação para descrição da condução de calor em corpos sólidos (277). Após anos de pesquisa, Fourier desenvolveu esta poderosa ferramenta, nomeando-a de transformada de Fourier, que encontrou aplicação em diversas áreas: física e química quântica, teoria dos números, análise combinatória, processamento de sinal, processamento de imagem, teoria das probabilidades, estatística, criptografia, acústica, oceanografia, sísmica, óptica, geometria entre outras. Nos campos relacionados ao processamento de sinal, a transformada de Fourier é tipicamente utilizada para decompor um sinal em seus componentes de frequência e amplitude (278).

A aplicação desta fórmula proporcionou a medição simultânea pela TCO-DE de todos os ecos de luz refletidos da retina, tornando necessária a realização de apenas uma varredura transversal; diferentemente da medição sequencial, como faz a TCO-DT. Essa mudança aumentou significativamente a quantidade de dados adquiridos em cada sessão, o que resultou em uma redução significativa do tempo de aquisição das imagens e dos artefatos de movimento, e em um aumento da relação sinal/ruído quando comparada à TCO-DT (275). Devido ao fato do princípio básico da TCO-DE se basear mais na aplicação da fórmula de Fourier do que na tecnologia anteriormente patenteada, vários aparelhos de diferentes fabricantes com tecnologia de domínio espectral foram desenvolvidos e disponibilizados no mercado (Quadro 1) (279, 280). Embora cada dispositivo dependa da mesma tecnologia, as companhias responsáveis por cada aparelho têm se esforçado para tornar o seu produto diferenciado (279, 281).

Instrumento (Fabricante)	Descrição
3D-OCT 2000 (Topcon, Tokyo, Japão)	TCO-DE e câmera de fundo de alta resolução
	Resolução axial: 5µm
	Taxa de aquisição de A-scans: 27 kHz
Bioptigen SD-OCT (Bioptigen, Research	Desenhado para uso experimental e clínico
Triangle Park, NC)	Sonda manual e montagem em microscópio
	Resolução axial: 4µm
	Taxa de aquisição da A-scans: 20kHz
Cirrus HD-OCT (Carl Zeiss Meditec, Dublin,	Software inclui uma análise de progressão
Califórnia)	guiada para detecção de progressão
	Resolução axial: 5µm
	Taxa aquisição A-scans: 27kHz
RTVue-100 (Optovue, Fremont, CA)	Oferece vários protocolos de aquisição de scans
	para detecção de glaucoma, incluindo análise do
	complexo de CGRs
	Resolução axial: 5µm
	Taxa aquisição A-scans: 26kHz
SOCT Copernicus (Optopol, Zawiercie,	Software inclui análise de progressão que
Polônia)	incorpora a escala DDLS, assimetria entre DOs
	e espessura CFNRP
	Resolução axial: 6µm
	Taxa aquisição de A-scans: 27kHz
Spectral OCT SLO (Opko, Miami, Flórida)	Combina TCO-DE, OCVF e microperimetria
	Resolução axial: 6µm
	Taxa aquisição A-scans: 27kHz
Spectralis OCT (Heidelberg Engineering,	TCO-DE de alta velocidade com eye-tracking,
Heidelberg, Alemanha)	angiografia fluoresceínica, angiografia com
	Indocianina Verde e autofluorescente
	Resolução axial: 4µm
	Taxa aquisição A-scans: 40kHz
NIDEK RS-3000 (Nidek, Gamagori, Japão)	Combina TCO-DE de alta velocidade e OCVL
	Resolução axial: 4µm
	Taxa aquisição A-scans: 53kHz
TCO-DE: Tomografia de Coerência Óptica de Domínio Espectral. CGRs: Células Ganglionares de	
Retina; DDLS: Disk Damage Likelihood Scale. DOs: Discos Ópticos. CFNRP: Camada de Fibras	
Nervosas da Retina Peripapilar. OCVF: Oftalmoscopia Confocal de Varredura a Laser.	

Quadro 1: Descrição dos sistemas de TCO-DE disponíveis comercialmente.

1.8.2- Técnica

1.8.2.1- Tomografia de Coerência Óptica de Domínio Temporal

A TCO possui princípio básico análogo ao do ultrassom modo B, entretanto utiliza luz ao invés de ondas mecânicas sonoras (282). O uso da luz fornece algumas vantagens, dentre elas a de ser um método que não requer contato com o paciente.

A imagem é formada a partir da determinação do tempo de atraso e da intensidade da luz refletida pelas diversas interfaces que compõem os tecidos. Por ser a luz muito mais rápida que o som, o tempo de atraso da reflexão da luz que incide sobre as diferentes estruturas seria da ordem de fentosegundos, não podendo ser medido de forma direta. Desta forma, a TCO se baseia na interferometria de baixa coerência ou interferometria de luz branca, que foi inicialmente utilizada na oftalmologia para medidas *in vivo* do comprimento do eixo axial do globo ocular (283). Apesar da aplicação da interferometria de baixa coerência como ferramenta na área da saúde ser relativamente recente, sua teoria foi desenvolvida há aproximadamente um século, por Albert Abraham Michelson, através do interferômetro de Michelson (284). (Figura 6).

Figura 6: Interferômetro de Michelson. l_r e l_s representam os comprimentos dos braços de referência e de amostra, respectivamente.

O processo de geração de imagens se inicia com a incidência de uma fonte de luz de baixa coerência (830 nm de comprimento de onda). O feixe de luz formado se dirige a um divisor: metade da luz é direcionada a um espelho, a uma distância conhecida, em um braço de referência; a outra metade da luz é direcionada à retina, em um braço de amostra, onde é espalhada, absorvida e refletida por suas camadas. Após a reflexão nos diferentes braços de referência e de amostra, os feixes de luz retornam para o divisor e se combinam para formar um padrão de interferência, que representa a superposição das duas ondas num mesmo ponto. O sinal formado é direcionado a um fotodetector e só é detectado e analisado quando as reflexões do tecido e do espelho estiverem próximas de serem emparelhadas, ou seja, quando estiverem praticamente à mesma distância. Desta forma, para cada varredura axial, a posição do espelho de referência oscila para permitir aquisição da imagem de uma determinada profundidade no tecido. Cada *pixel* da imagem formada representará a intensidade da reflexão naquela posição. Um algoritmo automático baseado nas mudanças de refletividade entre as camadas da retina adjacente calcula a espessura da CFNRP (275).

A TCO-DT é assim chamada pois a resolução da imagem depende do tempo e da distância, ou seja, depende do tempo de atraso da luz refletida da retina em relação à luz refletida do espelho de referência, a uma distância conhecida. Os modelos iniciais desta tecnologia, OCT 1000 e OCT 2000 (Carl Zeiss Meditec, Humphrey Division, Dublin, Califórnia, EUA), apresentavam velocidade de aquisição de imagens de 100 *A-scans/s* e resolução óptica entre 12 e 15 μ m. O modelo Stratus mais avançado (Carl Zeiss Meditec, Humphrey Division, Dublin, CA) adquire 400 A-scans/s com resolução de 8 a 10 μ m (282).

1.8.2.2- Tomografia de Coerência Óptica de Domínio Espectral

O maior avanço na tecnologia da TCO ocorreu pelo uso do comprimento de onda ao invés do tempo de atraso para localizar a luz refletida, o que só foi possível devido à aplicação da transformada de Fourier. Na TCO-DT, para cada varredura axial, a posição do espelho de referência é ajustada para permitir que imagens de profundidades conhecidas sejam comparadas com as do tecido. A TCO-DE tem princípio similar à TCO-DT, porém o espelho de referência é estático e o padrão de interferência é dividido em seus componentes de frequência, sendo todos esses componentes simultaneamente detectados por um dispositivo de carga acoplada (DCA). O DCA possui uma variedade de fotodetectores, cada um sensível a uma faixa específica de frequência (265; 266, 267, 285). Cada frequência detectada corresponde a uma certa profundidade no tecido. Esses *A-scans* podem ser adquiridos ao longo de um plano transversal através do tecido e formar *B-scans*, como também ocorre na TCO-DT.

Devido a esse sistema de captação de imagem, a TCO-DE é 100 vezes mais rápida na aquisição dos dados, possibilitando a obtenção de 18000 a 40000 *A-scans/s*. Como consequência, a vulnerabilidade causada pelo movimento dos olhos é diminuída e uma amostra mais densa do tecido é captada, consistindo de várias centenas de varreduras de 200x200x1024 *pixels* em 2 segundos, com resolução de até 2 µm (286).

1.9- Justificativa

A utilidade clínica de novos instrumentos diagnósticos no glaucoma depende de sua capacidade de diferenciar entre olhos normais e glaucomatosos, e de monitorar a progressão da doença. Para correta análise dos resultados, é fundamental que as medidas obtidas por esses exames sejam reprodutíveis. Vários estudos investigaram a reprodutibilidade da TCO-DT (287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298). Este estudo foi proposto devido à importância de se avaliar a reprodutibilidade de medidas da camada de fibras nervosas obtidas com o Cirrus HD-OCT em indivíduos normais e em indivíduos com glaucoma. No momento da realização deste trabalho, havia alguns estudos avaliando a reprodutibilidade de alguns tomógrafos com tecnologia espectral (298, 299, 300, 301, 302, 303), entretanto poucos trabalhos avaliando a reprodutibilidade do Cirrus HD-OCT (298, 301). Além disso, não havia na literatura estudos avaliando a reprodutibilidade de exames obtidos com o Cirrus HD-OCT realizados por diferentes examinadores.

1.10- Objetivos

Os objetivos do presente estudo são:

- Avaliar a reprodutibilidade de medidas de espessura da camada de fibras nervosas da retina obtidas com o Cirrus HD-OCT, em indivíduos normais e em indivíduos com glaucoma, obtidas no mesmo dia (variabilidade intrasessão).
- Avaliar a reprodutibilidade de medidas de espessura da camada de fibras nervosas de retina obtidas com o Cirrus HD-OCT, em indivíduos normais e em indivíduos com glaucoma, obtidas em dias diferentes (variabilidade intersessão).
- Avaliar a reprodutibilidade de medidas de espessura da camada de fibras nervosas da retina obtidas com o Cirrus HD-OCT, em indivíduos normais e em indivíduos com glaucoma, obtidas por examinadores diferentes (variabilidade interexaminador).
2- MATERIAL E MÉTODOS

Este foi um estudo transversal, prospectivo, que incluiu 34 pacientes com glaucoma e 32 indivíduos saudáveis, realizado no Setor de Glaucoma do Departamento de Oftalmologia da Universidade Estadual de Campinas (UNICAMP).

Este estudo seguiu os princípios da Declaração de Helsinque e foi aprovado pelo Comitê de Ética da UNICAMP (ANEXO 1). Foi obtido consentimento informado por escrito de todos os participantes (APÊNDICE 1).

2.1- Casuística

Os pacientes incluídos no estudo foram recrutados do ambulatório do Setor de Glaucoma do Hospital das Clínicas da UNICAMP. Os indivíduos saudáveis foram selecionados entre os membros da Universidade, voluntários da equipe médica, familiares e amigos dos pacientes em seguimento em outros ambulatórios de Oftalmologia. Os sujeitos do estudo foram consecutivamente divididos em dois grupos: glaucoma e saudável. Todos os dados foram coletados entre maio de 2009 e julho de 2009.

2.1.1- Critérios de inclusão

Foram incluídos no estudo sujeitos que preenchessem os seguintes critérios:

- Acuidade visual corrigida melhor igual a 20/40;
- Capacidade de se submeter aos testes;
- Desejo de participar do estudo.

2.1.1.1- Grupo Glaucoma

Os sujeitos que foram incluídos no grupo Glaucoma deveriam ter como diagnóstico qualquer forma de glaucoma crônico de ângulo aberto estável, definido como a presença de anormalidades de DO consistentes com neuropatia óptica glaucomatosa, com ou sem perda de CV. Pelo menos duas das seguintes anormalidades de DO deveriam estar presentes, em exame estereoscópico de fundo de olho sob midríase, para que este fosse considerado glaucomatoso:

- Relação escavação/disco maior que 0,6 (97);
- Perda localizada de rima neuroretiniana (92);
- Hemorragias de disco óptico (106);
- Assimetria escavação/disco maior que 0,3 entre os dois olhos (93).

Foram considerados com glaucoma estável os sujeitos que apresentassem os seguintes critérios:

- Ausência de piora da lesão do DO nos últimos doze meses;
- PIO menor ou igual a 21mmHg com medicações, aferida com tonômetro de Goldmann;
- Ausência de progressão do CV, em dois campos consecutivos, definida como pelo menos um dos seguintes critérios no gráfico *Pattern Deviation* (304):
 - Defeito novo em área antes normal
 - Aparecimento de três pontos adjacentes não periféricos, com diminuição de sensibilidade de 5 dB ou mais
 - Aprofundamento ou expansão de defeito existente
 - Diminuição da sensibilidade em 10 dB ou mais em três pontos adjacentes, não periféricos, em área anteriormente alterada
 - Diminuição de 10dB ou mais em um ponto previamente normal nos 15° centrais ou em dois pontos quando fora dos 15° centrais, adjacentes a defeito prévio
 - o Depressão generalizada
 - Piora de 3 dB ou mais em todos os pontos

2.1.1.2- Grupo Saudável

Os sujeitos incluídos neste grupo deveriam preencher os seguintes critérios:

- Ausência de história de doenças oculares;
- Ausência de história familiar de glaucoma;
- PIO menor que 21 mmHg, aferida com tonômetro de Goldmann;
- Ângulo aberto ao exame de gonioscopia;

- Aparência normal do DO em exame estereoscópico de fundo de olho sob midríase (ausência de palidez ou afilamento localizado da rima neuroretiniana, ausência de edema de papila, relação escavação/disco menor ou igual a 0,6 e ausência de qualquer outro sinal sugestivo de neuropatia);
- Resultado normal dos índices GHT (*Glaucoma Hemifield Test*) e PSD (*Pattern Standard Deviation*) no exame de CV.

2.1.2- Critérios de exclusão

Sujeitos que apresentassem as seguintes características foram excluídos do estudo:

- Doenças sistêmicas ou oculares que pudessem interferir com as medidas de CFNRP (por exemplo, diabetes, doenças neurológicas, uveítes, neurites ópticas);
- Erro refracional maior que cinco dioptrias esféricas ou cinco dioptrias cilíndricas;
- Palidez de DO;
- Lesões coriorretinianas;
- Dificuldade persistente na realização do exame, caracterizada por perda de fixação, movimentação da cabeça ou dos olhos e intensidade do sinal da imagem menor que sete em dois exames consecutivos.

2.1.3- Dados Demográficos

Não foi estabelecida idade mínima ou máxima para inclusão no estudo. A raça foi definida pelo próprio participante do estudo como branca, parda, negra ou amarela.

2.2- Métodos

2.2.1- Exame Oftalmológico

Todos os indivíduos foram submetidos a exame oftalmológico completo, incluindo:

- Avaliação da acuidade visual corrigida, medida com a tabela de optotipos de Snellen e convertida posteriormente para análise estatística em LogMAR;
- Biomicroscopia com lâmpada de fenda;
- Tonometria de aplanação com tonômetro de Goldmann;
- Gonioscopia;
- Oftalmoscopia indireta;
- Avaliação do DO com lente de 78 D sob midríase;
- Exame de perimetria automatizada com estratégia "Full-Threshold" ou "Swedish Interactive Threshold Algoritm" (SITA) 30-2 ou 24-2 (Humphrey Visual Field Analyzer; Carl Zeiss Meditec, Dublin, Califórnia, EUA).

2.2.2- Medidas de Espessura da CFNRP

Um olho de cada sujeito do estudo foi selecionado, de forma aleatória, para se submeter a medidas de espessura da CFNRP com o Cirrus HD-OCT Model 4000 (Carl Zeiss Meditec, Dublin, Califórnia, EUA) (Figura 7A).

As medidas foram feitas sem que os sujeitos estivessem sob midríase. Os sujeitos foram sentados e posicionados confortavelmente; e o aparelho foi corretamente alinhado (Figura 7B). O sujeito foi então instruído a olhar para o ponto luminoso de fixação interna, com a finalidade de trazer a imagem do DO à visão do examinador na tela do aparelho. A operação do aparelho foi feita através de um visor de tela, que permite alinhamento sem a necessidade de movimento maior do *hardware*. A posição do círculo de medidas foi ajustada manualmente pelo examinador, de forma a se obter melhor foco e centralização. Se o sujeito se movesse, piscasse ou perdesse a fixação durante a medida, a imagem era excluída e retomada. O exame também era descartado e obtido novamente se a a intensidade do sinal de captação da imagem fosse menor que sete ou se houvesse falha do algoritmo do aparelho. Se o erro ou o sinal menor que sete persistisse, o sujeito era então excluído. Não foi utilizada a função de repetição do *scan*, que consiste no registro reconstituído, a partir de exame prévio, da posição de centralização do DO de cada paciente.

O protocolo utilizado foi o Cubo do Disco Óptico 200 x 200. No primeiro dia de avaliação, um único examinador realizou cinco medidas, sem reposicionar o sujeito entre cada exame, para a análise da variabilidade intrasessão. O mesmo examinador realizou mais quatro medidas, em dias diferentes, durante um período de três meses, para avaliação da variabilidade intersessão. Um segundo examinador realizou uma medida adicional nos mesmos sujeitos durante o primeiro dia. Nesse caso, houve reposicionamento do sujeito após a conclusão dos cinco primeiros exames realizados pelo primeiro examinador. Este exame, juntamente com o primeiro exame realizado pelo primeiro examinador, foi utilizado para se avaliar a variabilidade interexaminador.

Figura 7: Cirrus HD-OCT. **A:** Aparelho Cirrus HD-OCT. **B:** Paciente posicionado para realização do exame.

Cirrus HD-OCT

O Cirrus HD-OCT tem uma plataforma de domínio espectral que fornece escaneamento mais rápido, com velocidade de varredura de 27000 *A-scans* por segundo, e com melhor resolução axial (5 µm) que seu precursor, o Stratus. A fonte óptica utilizada é

um diodo supraluminescente de 840 nm de comprimento de onda. Por meio da tecnologia da TCO-DE, o Cirrus HD-OCT obtém um conjunto de dados significativamente mais denso (6 mm x 6 mm com profundidade de 2 mm, que equivale a um mapa de 200 x 200 pontos) comparado com o Stratus (círculo de 3,46 mm de diâmetro, que equivale a 768 pontos). O Stratus e o Cirrus HD-OCT realizam as medidas de espessura da CFNRP em localizações semelhantes, apesar de usarem tecnologias diferentes. O Stratus (protocolo FAST) mede a espessura da CFNRP ao longo de um círculo de 3,46 mm de diâmetro ao redor do DO, enquanto o Cirrus HD-OCT (protocolo Cubo do Disco Óptico 200x200) extrai uma mapa de espessura da CFNRP circular de 1,73 mm de raio, a partir de um conjunto de dados obtidos da área do cubo escaneado (305). No Quadro 2 encontram-se as principais diferenças entre o Cirrus HD-OCT e o Stratus.

	Stratus	Cirrus HD-OCT			
Tecnologia	TCO-DT	TCO-DE			
Velocidade	400 A-scans/s	27000 A-scans/s			
Resolução axial	10 µm	5 µm			
Área escaneada	Círculo de 3,4 mm de	Cubo 6 mm x 6 mm x 2 mm			
	diâmetro				
	768 pontos	40000 pontos			
TCO-DT: Tomógrafo de Coerência Óptica de Domínio Temporal. TCO-DE: Tomógrafo					
de Coerência Óptica de Domínio Espectral					

Quadro 2: Principais diferenças entre o Cirrus HD-OCT e o Stratus.

Com o objetivo de fornecer informações comparativas na avaliação dos pacientes, a Carl Zeiss Meditec coordenou um estudo prospectivo, multicêntrico, não randomizado para a construção do banco de dados de espessura da camada de fibras nervosas das regiões peripapilar e macular do Cirrus HD-OCT (306). Foram incluídos 284 indivíduos saudáveis, com idade média de 46,5 anos (18 a 84 anos). A partir dos exames desses indivíduos, foi criado o banco de dados para a análise dos protocolos macular e

Cubo do Disco Óptico 200 x 200. Foi feita uma análise de regressão para se estimar o limite normal de cada um dos parâmetros, ajustados pela idade. Os indivíduos foram agrupados em seis categorias, por idade:

- 18 a 29 anos;
- 30 a 39 anos;
- 40 a 49 anos;
- 50 a 59 anos;
- 60 a 69 anos;
- 70 anos ou mais.

Houve uma distribuição similar entre os sexos. Em relação à etnia, o banco de dados foi constituído da seguinte forma:

- 43% caucasianos;
- 24% asiáticos;
- 18% africano-americanos;
- 12% hispânicos;
- 1% indianos;
- 6% etnia mista.

De forma semelhante ao Stratus, os resultados de exames com o Cirrus HD-OCT de pacientes com mais de 70 anos devem ser interpretados com cautela, uma vez que foram incluídos no banco de dados apenas três indivíduos com 80 anos ou mais, e apenas 28 indivíduos com idade entre 70 e 79 anos. Não foi incluído nenhum sujeito com menos de 19 anos, nem com erro refracional superior a - 12,00 e + 8,00 dioptrias esféricas (306).

O algoritmo de análise da CFNRP faz a estimativa da espessura de 17 parâmetros da CFNRP: espessura média da CFNRP em área circular peripapilar de 1,73 mm de raio, média de espessura nos quatro quadrantes (temporal, superior, nasal e inferior) e média de espessura por setores, em cada uma das doze horas de relógio da circunferência peripapilar; além de dados topográficos do DO (Figura 8).

Figura 8: Impresso do Cirrus HD-OCT. **A:** Informações sobre o paciente e o exame. **B:** Protocolo utilizado. **C:** Mapa topográfico da espessura CFNRP em esquema de cores. Ao centro, dados relacionados à espessura média e simetria da CFNRP e a dados topográficos do DO. **D:** Mapa de desvio da espessura CFNRP em relação ao banco de dados do aparelho. Ao centro Gráfico de perfil de espessura da rima neuroretiniana de ambos os olhos permitindo avaliação de simetria. **E:** Imagens de *B-scans*. Os limites da Membrana Limitante Interna e da Escavação do DO estão representados na linha vermelha. Os limites do Epitélio Pigmentar da Retina e do DO estão representados na linha preta. Ao centro encontram-se o Gráfico do perfil de espessura da CFNRP e sua classificação, em escala de cores, em relação ao percentil de distribuição do banco de dados do aparelho; Gráficos com valores de espessura média nos quadrantes e setorial nas horas de relógio, classificadas de acordo com a escala de cores de distribuição em relação ao percentil do banco de dados.

2.3- Análise Estatística

Todos os dados foram analisados utilizando-se o pacote estatístico do "*Primer of Biostatistics Version 6.0*" (Glantz, SA®, McGraw-Hill, 2005). Foram incluídos tanto olhos esquerdos quanto direitos. Os olhos esquerdos foram considerados imagem em espelho dos olhos direitos. Desta forma, em todas as tabelas de horas de relógio, foram consideradas nasais as medidas das 12 h às 06 h, e temporais das 06 h às 12 h.

Foram calculados CDV e CCI, com 95% IC, para os seguintes parâmetros: espessura média, espessura nos quadrantes e espessura nas horas de relógio medidas. O CCI foi calculado com o modelo de análise de variância de dois fatores:

O CCI é um coeficiente estatístico que analisa a reprodutibilidade de medidas obtidas dentro de um mesmo grupo. O valor máximo do CCI é 1,0, enquanto o seu valor mínimo é, teoricamente, zero. Valores elevados de CCI sugerem pequenas flutuações entre as medidas repetidas dos indivíduos, indicando boa reprodutibilidade. Já valores baixos indicam grandes flutuações, caracterizando alta variabilidade. Valores acima de 0,75 são considerados excelentes, entre 0,4 e 0,75 satisfatórios e abaixo de 0,4 pobres (307).

O CDV, expresso em porcentagem, foi calculado como o desvio padrão dividido pela média de espessura da CFNRP das medidas repetidas. Os valores deste teste estatístico variam de 0 a 100%. Quanto menor for o seu valor, mais homogêneos são os dados (308).

$$CDV = [Desvio Padrão] x 100$$

[Média da espessura da CFNRP]

Variáveis categóricas foram analisadas com o teste Qui-quadrado de *Pearson*. Variáveis contínuas foram comparadas com o teste t de *Student* ou teste de *Mann-Whitney*. Valores de p menores que 0,05 foram considerados estatisticamente significantes.

Considerando um poder estatístico de 80% e um erro alfa de 0,05; o tamanho da amostra necessário para se detectar uma diferença de 0,1 no CCI acima de 0,6 foi 20.

3- RESULTADOS

3.1- Dados Demográficos

Foram incluídos 34 pacientes com glaucoma e 32 indivíduos saudáveis no estudo. Seis pacientes com glaucoma e dois indivíduos saudáveis foram excluídos da análise intersessão. Essas exclusões ocorreram devido ao não comparecimento a uma ou mais sessões. Quinze pacientes com glaucoma e doze sujeitos saudáveis foram excluídos da análise interexaminador, por não apresentarem exames realizados pelos dois examinadores. Todas as medidas obtidas para cada sujeito do estudo estão expostas no APÊNDICE 2.

Os pacientes do grupo glaucoma eram significativamente mais idosos (p<0,001) e, como esperado, apresentavam maiores valores de PIO (p=0,015) e PSD (p<0,001) e menores valores de MD (p=0,001) em relação ao grupo saudável. A porcentagem de negros foi significativamente maior no grupo glaucoma (p=0,008). Houve diferença estatisticamente significante no equivalente esférico entre os dois grupos do estudo (p=0,003) e os sujeitos do grupo saudável apresentaram melhor acuidade visual em relação ao grupo glaucoma (p=0,003). As características demográficas de ambos os grupos estão listadas na Tabela 1.

GLAUCOMA	SAUDAVEL	р
(n=34)	(n=32)	
11 (32,4): 23 (67,6)	13 (40,6): 19 (59,4)	0,487 *
25 (63,5): 9 (26,5)	31 (96,9): 1 (3,1)	0,008 *
$58,\!15\pm 10,\!64$	$39,96 \pm 10,92$	$<$ 0,001 $^{\perp}$
(28,0; 86,0)	(24,0; 57,0)	
5 (14,70)	0	
3 (8,82)	2 (6,25)	
3 (8,82)	0	
2 (5,88)	0	0,003*
4 (11,76)	0	
17 (50)	30 (93,75)	
$0,\!61 \pm 1,\!17$	$-0,15 \pm 1,14$	0,003 ŧ
(-2,25;+2,75)	(-2,87;+2,62)	
$14,\!44 \pm 2,\!99$	$12,7\pm1,97$	0,015 ‡
(8,0; 21,0)	(10,0; 18,0)	
$-6,08 \pm 7,37$	$-1,18 \pm 1,01$	0,001 ‡
(- 25,78;+ 1,41)	(- 3,29; 0,92)	
$4{,}79\pm4{,}14$	$1,50 \pm 0,40$	< 0,001‡
(0,97; 13,47)	(0,98; 2,58)	
	GLAUCOMA (n=34) 11 (32,4): 23 (67,6) 25 (63,5): 9 (26,5) 58,15 \pm 10,64 (28,0; 86,0) 5 (14,70) 3 (8,82) 3 (8,82) 2 (5,88) 4 (11,76) 17 (50) 0,61 \pm 1,17 (- 2,25; + 2,75) 14,44 \pm 2,99 (8,0; 21,0) - 6,08 \pm 7,37 (- 25,78;+ 1,41) 4,79 \pm 4,14 (0,97; 13,47)	GLAUCOMASAUDAVEL $(n=34)$ $(n=32)$ 11 (32,4): 23 (67,6)13 (40,6): 19 (59,4)25 (63,5): 9 (26,5)31 (96,9): 1 (3,1)58,15 ± 10,6439,96 ± 10,92(28,0; 86,0)(24,0; 57,0)5 (14,70)03 (8,82)2 (6,25)3 (8,82)02 (5,88)04 (11,76)017 (50)30 (93,75)0,61 ± 1,17 $-0,15 \pm 1,14$ ($-2,25; + 2,75$)($-2,87; + 2,62$)14,44 ± 2,9912,7 ± 1,97(8,0; 21,0)(10,0; 18,0) $-6,08 \pm 7,37$ $-1,18 \pm 1,01$ ($-25,78; + 1,41$)($-3,29; 0,92$)4,79 ± 4,141,50 ± 0,40(0,97; 13,47)(0,98; 2,58)

Tabela 1: Características demográficas de pacientes com glaucoma e de indivíduos saudáveis incluídos na análise de variabilidade intrasessão

* Teste Qui-Quadrado de Pearson

[⊥]Teste t de *Student*

[‡] Teste U de *Mann-Whitney*

PIO = Pressão Intraocular; máx = máximo; DP = Desvio Padrão; min = mínimo; n = número absoluto; PSD = Pattern Standard Deviation; EE = Equivalente Esférico; AV = Acuidade Visual

3.2- Análise de Variabilidade de Medidas de Espessura da CFNRP

3.2.1- Variabilidade Intrasessão

Dentre os pacientes do grupo glaucoma, os CDVs variaram de 4,51% (às 10 h) a 11,84% (no quadrante nasal). Os CCIs variaram de 0,74 (no quadrante nasal) a 0,99 (às 10 h). Dentre os indivíduos saudáveis, os CDVs variaram de 2,92% (espessura média) a 6,99% (às 4 h). Os CCIs variaram de 0,89 (espessura média) a 0,98 (às 9 h e às 10 h) (Tabela 2).

puritoipurui	$\frac{\text{In du diffuse de variation du de ma desessas}}{\text{GLAUCOMA (n = 34)}}$			SAUDÁVEL $(n = 32)$		
	Média ± DP	CCI	CDV	Média ± DP	CCI	CDV
	(µm)		(%)	(µm)		(%)
Espessura	$76{,}78 \pm 4{,}07$	0,92	5,31	$95,74 \pm 2,79$	0,89	2,92
Média						
Quadrante	$57,84 \pm 3,60$	0,94	6,23	$65,41 \pm 3,93$	0,95	6,01
Temporal						
Quadrante	$90,06 \pm 5,76$	0,93	6,40	$123,1 \pm 4,64$	0,97	3,77
Superior						
Quadrante	$66,14 \pm 7,83$	0,74	11,84	$73,\!14 \pm 3,\!70$	0,95	5,07
Nasal						
Quadrante	$92,37 \pm 4,95$	0,97	5,36	$123,26 \pm 5,34$	0,95	4,34
Inferior						
Setorial	$81,20 \pm 6,21$	0,96	7,65	$110,50 \pm 6,55$	0,96	5,93
1 hora						
Setorial	$75,97 \pm 7,67$	0,79	10,10	$88,02 \pm 4,71$	0,97	5,36
2 horas						
Setorial	$59,48 \pm 4,91$	0,86	9,02	$59,78 \pm 3,23$	0,97	5,41
3 horas						
Setorial	$63,36 \pm 4,27$	0,88	6,74	$70,39 \pm 4,92$	0,95	6,99
4 horas						
Setorial	$81,18 \pm 5,00$	0,97	6,16	$100,46 \pm 6,88$	0,94	6,85
5 horas						
Setorial	$104,54 \pm 1,02$	0,97	6,85	$131,30 \pm 7,03$	0,96	5,38
6 horas						
Setorial	$94,40 \pm 7,31$	0,98	7,75	$137,35 \pm 6,89$	0,92	5,02
7 horas						
Setorial	$56,96 \pm 2,89$	0,98	5,08	$68,29 \pm 4,26$	0,95	6,25
8 horas						
Setorial	$50,11 \pm 2,37$	0,98	4,74	$52,54 \pm 2,57$	0,98	4,91
9 horas						
Setorial	$64,25 \pm 2.89$	0,99	4,51	$75,80 \pm 2,58$	0,98	3,41
10 horas						
Setorial	$97,60 \pm 5.77$	0,97	5,92	$127,03 \pm 6,19$	0,96	4,88
11 horas	0011	0.0.5	_ · · -		0.07	
Setorial	$93,44 \pm 6,97$	0,96	7,46	$131,26 \pm 8,11$	0,97	6,18
12 horas						

Tabela 2: Média e desvio padrão, CCI e CDV das cinco medidas de espessura da CFNRP obtidas no primeiro dia, dos pacientes com glaucoma e dos indivíduos saudáveis, que participaram da análise de variabilidade intrasessão

CDV = Coeficiente de Variação; CCI = Coeficiente de Correlação Intraclasse; CFNRP = Camada de Fibras Nervosas da Retina Peripapilar

3.2.2- Variabilidade Intersessão

Dentre os pacientes do grupo glaucoma, os CDVs variaram de 3,68% (às 10 h) a 10,50% (às 12 h). Os CCIs variaram de 0,82 (no quadrante nasal) a 0,99 (às 7 h e às 10 h). Dentre os indivíduos saudáveis, os CDVs variaram de 3,13% (no quadrante nasal) a 6,92% (às 4 h). Os CCIs variaram de 0,87 (espessura média) a 0,99 (às 9 h) (Tabela 3).

participaram		SAUDÁVEL $(n = 30)$				
	<u>GLAUCOMA (II)</u> Mádia + DP	<u>– 20)</u> CCI	CDV (%)	$\frac{\text{SAUDAVEL}(II = 50)}{\text{Média + DP}}$	CCI	CDV
	(um)	CCI		(um)	CCI	(%)
Espessura	$76,43 \pm 3,98$	0,91	5,21	$96,02 \pm 3,09$	0,87	3,22
Média						
Quadrante	$56,81 \pm 2,27$	0,95	4,41	$65,35 \pm 3,04$	0,95	4,66
Temporal						
Quadrante	$89,32 \pm 3,93$	0,91	7,58	$123,98 \pm 5,77$	0,95	4,24
Superior						
Quadrante	$66,34 \pm 5,02$	0,82	9,37	$73,51 \pm 3,11$	0,98	3,13
Nasal						
Quadrante	$94{,}76\pm8{,}87$	0,98	4,00	$123,94 \pm 3,87$	0,97	4,01
Inferior						
Setorial	$79,37 \pm 7,98$	0,92	10,06	$109,83 \pm 6,69$	0,97	6,10
1 hora						
Setorial	$76,02 \pm 6,33$	0,84	8,33	$88,84 \pm 4,20$	0,98	4,73
2 horas						
Setorial	$59,77\pm5,79$	0,85	9,70	$60,78 \pm 2,66$	0,98	4,39
3 horas						
Setorial	$64,17 \pm 4,03$	0,94	6,29	$70,\!45 \pm 4,\!87$	0,96	6,92
4 horas						
Setorial	$81,78 \pm 4,64$	0,98	5,68	$100,59 \pm 6,69$	0,94	6,66
5 horas						
Setorial	$106,69 \pm 7,42$	0,97	6,96	$132,58 \pm 7,30$	0,96	5,51
6 horas						
Setorial	$9646 \pm 5,32$	0,99	5,52	137,91 ± 7,93	0,97	4,43
7 horas						
Setorial	$56,\!41 \pm 4,\!14$	0,95	7,35	$68,74 \pm 4,09$	0,96	5,95
8 horas						
Setorial	$48,50 \pm 2,15$	0,98	4,44	$52,22 \pm 1,93$	0,99	3,71
9 horas						
Setorial	$64,11 \pm 2,35$	0,99	3,68	$75,99 \pm 3,03$	0,97	4,19
10 horas						
Setorial	$98,25 \pm 6,87$	0,96	7,00	$128,\!46\pm 5,\!44$	0,98	4,24
11 horas						
Setorial	$91,57 \pm 9,61$	0,92	10,50	$132,27 \pm 7,63$	0,98	5,77
12 horas						

Tabela 3: Média e desvio padrão, CCI e CDV das medidas de espessura da CFNRP obtidas em cinco dias diferentes, dos pacientes com glaucoma e dos indivíduos saudáveis, que participaram da análise de variabilidade intersessão

CDV = Coeficiente de Variação; CCI = Coeficiente de Correlação Intraclasse; CFNRP = Camada de Fibras Nervosas da Retina Peripapilar

3.2.3- Variabilidade Interexaminador

Dentre os pacientes do grupo glaucoma, os CDVs variaram de 2,62% (espessura média) a 14,94% (à 1 h). Os CCIs variaram de 0,55 (às 3 h) a 0,98 (às 6 h). Dentre os indivíduos saudáveis, os CDVs variaram de 2,04% (espessura média) a 7,31% (às 4 h). Os CCIs variaram de 0,86 (às 4 h) a 0,98 (às 9 h e no quadrante temporal) (Tabela 4).

CDV (%) 2,04
(%) 2,04
2,04
/
2,57
3,70
2.50
3,59
3,35
4.05
4,85
1.0.6
4,86
4.00
4,33
7.01
7,31
4 40
4,42
5 1 4
5,14
1 (0
4,08
5 20
5,59
4.07
4,07
2 07
5,87
3 11
5,44
5 88
5,00
2 3 3 4 4 4 7 4 5 4 5 4 3 3 5

Tabela 4: Média e desvio padrão, CCI e CDV das medidas de espessura da CFNRP, obtidas por dois examinadores, dos pacientes com glaucoma e dos indivíduos saudáveis, que participaram da análise de variabilidade interexaminador

CDV = Coeficiente de Variação; CCI = Coeficiente de Correlação Intraclasse; CFNRP = Camada de Fibras Nervosas da Retina Peripapilar

4- DISCUSSÃO

A TCO-DE teve um grande impacto na oftalmologia clínica e experimental. Diferentemente da tecnologia de domínio temporal, cuja propriedade comercial pertenceu a apenas uma única companhia, diversos aparelhos de TCO-DE foram desenvolvidos por diferentes empresas, com capacidade de fornecer imagens transversais de alta resolução. Entretanto, o uso de um novo instrumento quantitativo, sem sua adequada validação, pode levar a decisões clínicas equivocadas. Desta forma, a estimativa da reprodutibilidade de novos instrumentos diagnósticos é essencial para a correta interpretação das menores alterações detectáveis.

A reprodutibilidade ou a precisão de um teste diz respeito à característica que ele deve possuir de medir sem erros. O CCI e o CDV estão entre as ferramentas estatísticas mais comumente utilizadas para se mensurar a reprodutibilidade de medidas. O conceito do CCI foi inicialmente introduzido por Fisher (309). O CCI avalia a correlação existente entre observações obtidas em diferentes aferições, em uma mesma população (310). Coeficientes de correlação intraclasse de diferentes populações, não podem ser diretamente comparados, pois são influenciados pela variabilidade da população em estudo. Medidas obtidas de grupos homogêneos, com menor variância entre os sujeitos, resultarão em maiores valores de CCI e medidas de grupos mais heterogêneos poderão fornecer menores valores de CCI (295). O coeficiente de variação é uma medida relativa de dispersão, útil para comparação do grau de concentração dos valores obtidos em torno de sua média (308). Este coeficiente também sofre influência das características da população em estudo, uma vez que seu cálculo depende da média dos valores aferidos (295).

Há uma grande variedade de estimativas de reprodutibilidade na literatura para PVL, OCVL e TCO. Apesar de estudos comparativos entre instrumentos de diferentes tecnologias na mesma população de pacientes serem escassos, acredita-se que essas técnicas provavelmente forneçam dados de similar reprodutibilidade. Leung et al. investigaram a reprodutibilidade de medidas obtidas com o HRT III, com a TCO-DT e com o GDx-VCC em uma mesma população e encontraram níveis de variabilidade similar, com valores de CCI de 0,97 (para área global de rima com o HRT III), 0,98 (para NFI com o GDx-VCC) e 0,97 (para espessura média da CFNRP com o TCO-DT) (208). A variabilidade das medidas de espessura da CFNRP com a TCO pode ser maior, dependendo de variáveis como movimento do paciente, piscar, fixação inadequada ou má centralização das estruturas oculares pelo operador. Acredita-se que o impacto desses fatores possa ser diminuído com o uso de *softwares* que interrompam o exame assim que os mesmos sejam detectados. Outros fatores como o maior tempo de aquisição das imagens, a colaboração do paciente, a experiência do examinador, as variações na intensidade do sinal das imagens (311), a densidade da amostra (312) e a opacidade de meios (295, 313) também podem influenciar a variabilidade das medidas. Wu et al. observaram que a baixa intensidade do sinal de captura da imagem pode levar a estimativas mais elevadas da CFNRP (311).

Vários estudos demonstraram a reprodutibilidade de medidas de diferentes gerações de TCO-DT (287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298). Schuman et al. realizaram medidas da CFNRP com a primeira geração de TCO, um protótipo do aparelho, em onze sujeitos normais e em dez pacientes com glaucoma, em cinco ocasiões distintas, durante um mês. Os valores de CCI encontrados, para um diâmetro de varredura de 3,4 mm, foram 0,56 e 0,52 para o grupo de sujeitos saudáveis e de glaucomatosos, respectivamente. Os autores concluíram que medidas de espessura CFNRP obtidas com a TCO eram reprodutíveis, particularmente quando a fixação era mantida com o olho testado (fixação interna) (287).

Blumenthal et al. avaliaram a reprodutibilidade do primeiro TCO comercialmente disponível, em dez sujeitos normais e em dez pacientes com glaucoma. Os CDVs para medidas de espessura média da CFNRP foram 7% e 13%, nos grupos normal e glaucoma, respectivamente. Os quadrantes nasal e temporal apresentaram maiores variabilidades, com valores de CDV de 28% e 17%, respectivamente. Nesse estudo, as medidas foram feitas por dois examinadores diferentes, entretanto a variabilidade interexaminador foi responsável por apenas 2% da variabilidade total (288). Jones et al., utilizando o mesmo modelo de OCT, reportaram CDV de 5% para espessura média da CFNRP. A reprodutibilidade no quadrante nasal encontrada também foi pior (20%) em relação aos valores de CDV para os outros parâmetros (289). Em 2003, Carpineto et al.

também avaliaram a reprodutibilidade dessa geração da TCO, em 24 pacientes com glaucoma, em cinco ocasiões diferentes, em um intervalo de duas semanas, e encontraram CCI de 0,50 para espessura média da CFNRP (290).

Nos últimos anos, vários estudos foram publicados reportando a reprodutibilidade do Stratus (291, 292, 293, 294, 295, 296, 297, 298). Considerando o parâmetro espessura média da CFNRP, os valores de CDV variam entre as publicações de 3,6% (298) a 9,6% (294); enquanto os valores de CCI variam de 0,79 (292) a 0,98 (293).

Desde que os tomógrafos com tecnologia de domínio espectral se tornaram comercialmente disponíveis, vários estudos investigaram sua reprodutibilidade (Quadro 3), entretanto a maioria deles foi publicada após a coleta de dados e publicação do presente estudo.

Leung et al. compararam a variabilidade de medidas obtidas com o Cirrus HD-OCT e o Stratus e encontraram valores de CDV menores que 6,4% e 12,8%, respectivamente. Os autores observaram que a variabilidade de medidas de espessura da CFNRP foi significativamente menor das duas às cinco horas e das oito às dez horas com o Cirrus HD-OCT em relação ao Stratus (298).

Ho et al. avaliaram a reprodutibilidade de duas medidas feitas no mesmo dia com diferentes tomógrafos de tecnologia espectral (Cirrus HD-OCT, RTVue-100, Topcon 3D-OCT) usando protocolo de espessura macular. Todos os aparelhos apresentaram excelente reprodutibilidade para a região foveal central. Os CCIs obtidos com o Cirrus Mac Cube, RTVue (E)MM5, RTVue MM6, Topcon 3D e Topcon Radial variaram de 0,62 a 0,95; de 0,78 a 0,93; de 0,24 a 0,95; de 0,21 a 0,96 e de 0,49 a 0,99; respectivamente. No entanto, este estudo não avaliou a reprodutibilidade das medidas de espessura da CFNRP (301).

Pierro et al. avaliaram a reprodutibilidade de medidas de espessura da CFNRP com sete tomógrafos de diferentes fabricantes, em 38 olhos de indivíduos saudáveis, feitas por dois examinadores. Cada examinador realizou duas medidas e foi feita análise de reprodutibilidade intraexaminador e interexaminador dos diferentes aparelhos. Os autores observaram melhor reprodutibilidade intraexaminador com o Stratus (CCI examinador 1: 0,97 e CCI examinador 2: 0,97; CDV examinador 1: 1,17% e CDV examinador 2: 1,16%). A pior reprodutibilidade intraexaminador foi obtida com o RTVue-100 (CCI examinador 1: 0,50 e CCI examinador 2: 0,42; CDV examinador 1: 7,35% e CDV examinador 2: 7,34%). O Spectralis apresentou a melhor reprodutibilidade interexaminador (CCI: 0,72 a 0,92 e CDV: 1,65% a 4,78%) (314).

Estudo	Sujeitos	TCO-DE	Análise	CCI	CDV
Alasil et al.,	39 saudáveis	RTVue -100	Intrasessão	S: 0,86 – 0,97	S: 2,16% - 8,0%
2008 (299)	22 NOIA NA			N: 0,95 – 0,99	N: 2,87% - 7,58%
Menke et al.,	38 saudáveis	Topcon 3D	Intrasessão	0,80 - 0,96	1,9% - 6,7%
2008 (300)					
González-Garcia	30 saudáveis	RTVue-100	Intrasessão	S: 0,91 – 0,97	S: 1,54% - 3,88%
et al., 2009 (302)	38 glaucoma			G: 0,86 – 0,97	G: 1,9% - 4,72%
Leung et al.,	16 saudáveis	Cirrus	Intrasessão	0,88 - 0,97	1,89 % - 5,57%
2009 (298)	31saudáveis		Intersessão	0,80 - 0,98	1,79% - 6,38%
Vizzeri et al.,	32 saudáveis	Cirrus	Intrasessão	S: 0,81 – 0,98	S: 1,5% - 6,6%
2009 (315)	78 glaucoma			G: 0,84 – 0,98	G: 1,6% - 5,2%
Garas et al.,	14 saudáveis/	RTVue-100			S: 1,39% - 12,18%
2010 (313)	НО		Intrasessão	0,81 – 0,99	Gm: 2,28% - 10,47%
	23 glaucoma				Ga: 2,18% - 13,38%
			Intersessão	0,92 - 0,98	2,53% - 6,26%
Lee et al.,	98 saudáveis	Spectral	Intrasessão	S: 0,96 – 0,98	S: 1,9% - 5,0%
2010 (316)	79 glaucoma	OCT/SLO		G: 0,95 – 0,99	G:2,0% - 5,3%
Li et al.,	89 saudáveis	RTVue-100	Intrasessão	S: 0,94 – 1,00	S: 2,54% - 13,62%
2010 (317)	63 glaucoma			Gl:0,94 – 1,00	Gl: 0,17% - 18,81%
				Gm: 0,87–1,00	Gm: 0,37% - 20,0%
				Ga: 0,77 – 1,00	Ga: 0,38% - 40,0%
Mwanza et al.,	55 glaucoma	Cirrus	Intrasessão	0,83 - 0,98	1,9% - 10,0%
2010 (305)					
Mansoori et al.,	61 saudáveis	Spectral	Intrasessão	S: 0,97 – 0,99	S: 1,2% - 3,8%
2011 (318)		OCT/SLO		G:0,98 – 0,99	G: 1,3% - 5,1%
	41 glaucoma		Intersessão	S: 0,67 – 0,98	S: 3,96% - 9,56%
				G: 0,83 – 0,98	G: 3,28% - 13,39%
Langenegger et	56 saudáveis	Spectralis	Intrasessão	S: 0,83 – 0,99	S: 1,0% - 7,4%
al., 2011 (319)	47 glaucoma			G:0,84 – 0,99	G: 1,3% - 10,5%
Wu et al.,	45 saudáveis	Spectralis	Intrasessão	S: 0,97 – 0,99	S: 1,45% - 2,59%
2011 (320)	33 glaucoma			G:0,98 – 0,99	G: 1,74% - 3,22%

Quadro 3: Reprodutibilidade/variabilidade das medidas de espessura da CFNRP obtidas com diferentes tomógrafos de coerência óptica de domínio espectral

Estudo	Sujeitos	TCO-DE	Análise	CCI	CDV
Hong et al.,	75 saudáveis	Spectral	Intrasessão	0,81 - 0,97	1,75% - 5,72%
2012 (321)		OCT/SLO	Intersessão	0,80 - 0,96	1,89% - 5,58%
Tan et al.,	50 saudáveis	Cirrus	Inter-OCT	Cirrus:	Cirrus:
2012 (322)		Spectralis		0,87 - 0,97	4,05% - 15,0%
				Spectralis:	Spectralis:
				0,95 - 0,98	4,82% - 9,11%
Töteberg-	50 saudáveis	Spectralis	Intrasessão	S: 0,96 – 0,99	S: 0,3% - 1,00%
Harms et al.,	22 glaucoma			G: 0,99	G: 0,9% - 2,3%
2012 (323)			Intersessão	S: 0,70 – 0,93	ND
				G: 0,87 – 0,97	
Pierro et al., 2012 (314)	38 saudáveis	Spectral OCT/SLO Topgon 3D	Inter OCTs	RTVue- 100: 0,42	Stratus: 1,16%
		RS-3000	Inter-OC18	a	a
		Cirrus RT-Vue-100 Spectralis Stratus OCT		Stratus: 0,97	RTVue: 7,35%
		Spectral OCT/SLO	Interexaminador	0,71 – 0,87	2,89% - 7,32%
		Topcon 3D	Interexaminador	0,54 - 0,81	3,18% - 8,29%
		RS-3000	Interexaminador	0,62 - 0,94	2,46% - 7,29%
		Cirrus	Interexaminador	0,64 - 0,92	2,20% - 4,99%
		RT-Vue-100	Interexaminador	0,46-0,86	3,35% - 7,95%
		Spectralis	Interexaminador	0,72 - 0,92	1,65% - 4,78%
Roh et al., 2013 (145)	102 glaucoma	Cirrus	Intersessão	0,69 - 0,99	3,1% - 10,7%
TCO-DE = Tomografia de Coerência Óptica de Domínio Espectral; CCI = Coeficiente de Correlação					

Quadro 3: Reprodutibilidade/variabilidade das medidas de espessura da CFNRP obtidas com diferentes tomógrafos de coerência óptica de domínio espectral

TCO-DE = Tomografia de Coerência Óptica de Domínio Espectral; CCI = Coeficiente de Correlação Intraclasse; CDV = Coeficiente de Variação; NOIA NA = Neuropatia Óptica Isquêmica Anterior Não-Arterítica; S = Grupo Saudável; N = Grupo com Neuropatia Óptica Isquêmica Anterior Não-Arterítica; G = Grupo com Glaucoma; HO = Hipertensão Ocular; GI = Glaucoma leve; Gm = Glaucoma moderado; Ga = Glaucoma avançado; ND: não disponível No presente estudo, encontramos excelente reprodutibilidade das medidas de espessura da CFNRP com o Cirrus HD-OCT. Na análise de variabilidade intrasessão, os CDVs variaram de 4,51% a 11,84% e os CCIs variaram de 0,74 a 0,99 no grupo glaucoma; enquanto no grupo saudável os CDVs variaram de 2,92% a 6,99% e os CCIs variaram 0,89 a 0,98. Na análise de variabilidade intersessão, no grupo glaucoma, os CDVs variaram de 3,68% a 10,50% e os CCIs variaram de 0,82 a 0,99; enquanto no grupo saudável, os CDVs variaram de 3,13% a 6,92% e os CCIs variaram 0,87 a 0,99. Em relação à análise de variabilidade interexaminador, no grupo glaucoma, os CDVs variaram de 2,62% a 14,94% e os CCIs variaram de 0,55 a 0,98 e no grupo saudável, os CDVs variaram de 2,04% a 7,31% e os CCIs variaram entre 0,86 a 0,98.

Os valores observados de CCI e CDV no presente estudo estão de acordo com os resultados descritos previamente para o Cirrus HD-OCT. Para análise intrasessão observamos na literatura CCIs variando de 0,81 (315) a 0,98 (305, 315) e CDVs variando de 1,5% (315) a 10% (305). Para análise intersessão observamos valores de CCI entre 0,69 (147) e 0,99 (145) e de CDV entre 1,79% (298) e 10,8% (305).

Os CCIs ($\geq 0,82$) e CDVs ($\leq 10,5\%$) para medidas intersessão foram excelentes e similares aos valores obtidos na análise intrasessão (CCI $\geq 0,74$ e CDV \leq 11,84%), sugerindo que houve pouca variabilidade adicional com diferentes sessões ao longo do tempo. A baixa variabilidade demonstrada pela tomografia de domínio espectral pode ser um reflexo do menor tempo de aquisição de imagem, da melhora na resolução da imagem e do uso do oftalmoscópio de scan linear para detectar movimento sacádico do olho durante a aquisição das imagens.

A espessura média da CFNRP apresenta, em geral, melhor reprodutibilidade entre os parâmetros de espessura da CFNRP (293, 294, 295, 296). As evidências na literatura apontam valores de CCI para medidas de espessura média da CFNRP variando de 0,95 (300, 320) a 0,99 (305; 313, 316, 318, 319). Adicionalmente, o CDV para medidas de espessura média CFNRP variou de 1,6% (315) a 4,0% (318). No presente estudo também encontramos baixos valores de CDV para esse parâmetro nas análises intrasessão em indivíduos saudáveis (2,92%) e interexaminador em indivíduos saudáveis (2,04%) e glaucomatosos (2,62%). Esse fato pode ser explicado porque com o aumento da área medida, mais informações individuais são adicionadas na média daquele parâmetro (295).

O quadrante nasal apresentou uma tendência a valores mais baixos de CCIs no grupo glaucoma (0,74, 0,82 e 0,65; para análise intrasessão, intersessão e interexaminador, respectivamente), o que é consistente com estudos prévios (288, 293, 294, 295). Alguns investigadores sugerem que isso possa ocorrer devido ao ângulo de incidência do feixe de iluminação, que torna a imagem da CFNRP mais escura no lado nasal. Desta forma, os limites da CFNRP são mais dificilmente identificados, o que leva ao aumento da variabilidade (295).

Os CDVs apresentaram uma tendência a maiores valores no grupo glaucoma em relação ao grupo saudável. Alguns autores também encontraram maior variabilidade de medidas de CFNRP em olhos glaucomatosos (293, 295, 300, 302, 305, 323). Como já discutido anteriormente, a menor espessura da CFNRP no grupo glaucoma pode influenciar os valores dos CDVs. Além disso, a fixação menos estável em sujeitos com glaucoma pode prejudicar as medições nas mesmas posições (323).

À época da realização deste estudo, a reprodutibilidade interexaminador da TCO-DE não havia sido testada. Os achados deste estudo demonstraram bons valores de CCI ($\geq 0,55$) e CDV ($\leq 14,4\%$), e indicam que medidas de espessura CFNRP obtidas por diferentes examinadores podem ser comparadas. Esse fato é especialmente importante no seguimento de pacientes com glaucoma, que necessitam de longo acompanhamento. Na maioria dos casos, não há possibilidade de todos os exames serem realizados pelo mesmo examinador.

5- CONCLUSÕES

Este estudo nos permite concluir que:

- A reprodutibilidade das medidas de espessura da CFNRP obtidas com o Cirrus HD-OCT, na análise intrasessão, em indivíduos normais e glaucomatosos, foi excelente, com valores de CDV entre 2,92% e 11,84% e de CCIs entre 0,74 a 0,99.
- A reprodutibilidade das medidas de espessura da CFNRP obtidas com o Cirrus HD-OCT, na análise intersessão, em indivíduos normais e glaucomatosos, foi excelente, com CDVs variando de 3,13% a 10,50% e com os CCIs variando de 0,82 a 0,99.
- A reprodutibilidade das medidas de espessura da CFNRP obtidas com o Cirrus HD-OCT, na análise interexaminador, em indivíduos normais e glaucomatosos, foi excelente, com CDVs variando de 2,04% a 14,94% e CCIs variando de 0,55 a 0,98.
6- REFERÊNCIAS BIBLIOGRÁFICAS

1. Douglas GR, Drance SM, Schulzer M. A correlation of fields and discs in open angle glaucoma. Can J Ophthalmol. 1974 9(4):391-8.

2. Drance SM. Correlation between optic disc changes and visual Field defects in chronic open-angle glaucoma. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976; 81(2):224-6.

3. Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998; 126(4):487–97.

4. The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000; 130(4):429–40.

5. Lichter PR, Musch DC, Gillespie BW, Guire KE, Janz NK, Wren PA et al. CIGTS Study Group Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001; 108(11):1943–53.

6. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. Ocular Hypertension Treatment Study Group The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002; 120(6):701–13, discussion 829–30.

7. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E et al. Factors for glaucoma progression and the effect of treatment: the early glaucoma manifest trial. Arch Ophthalmol. 2003; 121(1):48-56.

8. Coleman AL, Caprioli J. The logic behind target intraocular pressure. Am J Ophthalmol. 2009; 147(3):379-80.

9. World Health Organization. Global data on visual impairments 2010, p. 3. Disponível em: http://www.who.int/blindness/GLOBALDATAFINALforweb.pdf.

10. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90(3):262–7.

11. Friedman DS, Wolfs RC, O'Colmain BJ, Klein BE, Taylor HR et al., Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol. 2004; 122(4):532-8.

12. Varma R, Ying-Lai M, Francis BA, Nguyen BB, Deneen J, Wilson MR et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino Eye Study. Ophthalmology. 2004; 111(8):1439–48.

13. Friedman DS, Jampel HD, Muñoz B, West SK. The prevalence of open-angle glaucoma among blacks and whites 73 years and older: the Salisbury Eye Evaluation Glaucoma Study. Arch Ophthalmol. 2006; 124(11):1625–30.

14. Foster PJ. The epidemiology of primary angle closure and associated glaucomatous optic neuropathy. Semin Ophthalmol. 2002; 17(2):50-8.

15. Congdon N, O'Colmain B, Klaver CC, Klein R, Muñoz B, Friedman DS et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004; 122(4):477–85.

16. He M, Foster PJ, Johnson GJ, Khaw PT. Angle-closure glaucoma in East Asian and European people. Different diseases? Eye. 2006; 20(1):3-12.

17. Yip JL, Foster PJ. Ethnic differences in primary angle-closure glaucoma. Curr Opin Ophthalmol. 2006; 17(2):175-80.

18. Stein JD, Kim DS, Niziol LM, Talwar N, Nan B, Musch DC et al. Differences in rates of glaucoma among Asian Americans and other racial groups, and among various Asian ethnic groups. Ophthalmology. 2011; 118(6):1031–7.

19. Arkell SM, Lightman DA, Sommer A, Taylor HR, Korshin OM, Tielsch JM. The prevalence of glaucoma among Eskimos of northwest Alaska. Arch Ophthalmol. 1987; 105(4):482–5.

20. Foster PJ, Baasanhu J, Alsbirk PH, Munkhbayar D, Uranchimeg D, Johnson GJ. Glaucoma in Mongolia: a population-based survey in Hövsgöl province, northern Mongolia. Arch Ophthalmol 1996; 114(10):1235–41.

21. Foster PJ, Johnson GJ. Glaucoma in China: how big is the problem? Br J Ophthalmol 2001; 85(11):1277–82.

22. Bourne RR, Sukudom P, Foster PJ, Tantisevi V, Jitapunkul S, Lee PS et al. Prevalence of glaucoma in Thailand: a population based survey in Rom Klao district, Bangkok. Br J Ophthalmol 2003; 87(9):1069–74.

23. Yamamoto T, Iwase A, Araie M, Suzuki Y, Abe H, Shirato S et al. The Tajimi Study report 2: Prevalence of primary angle closure and secondary glaucoma in a Japanese population. Ophthalmology. 2005; 112(10):1661–9.

24. Jacob A, Thomas R, Koshi SP, Braganza A, Muliyil J. Prevalence of primary glaucoma in an urban south Indian population. Indian J Ophthalmol. 1998; 46(2):81–6.

25. Dandona L, Dandona R, Mandal P, Srinivas M, John RK, McCarty CA et al. Angleclosure glaucoma in an urban population in southern India: the Andhra Pradesh Eye Disease Study. Ophthalmology. 2000; 107(9):1710–6.

26. Ramakrishnan R, Nirmalan PK, Krishnadas R, Thulasiraj RD, Tielsch JM, Katz J et al. Glaucoma in a rural population of southern India. The Aravind Comprehensive Eye Survey. Ophthalmology. 2003; 110(8):1484–90.

27. Vijaya L, George R, Arvind H, Baskaran M, Paul PG, Ramesh SV et al. Prevalence of angle-closure disease in a rural southern Indian population. Arch Ophthalmol. 2006; 124(3):403–9.

28. Instituto Brasileiro de Geografia e Estatística. Censo Demográfico. Disponível em: URL: http://www.ibge.gov.br.

29. Anuário Estatístico da América Latina e Caribe. Disponível em: http://www.andi.org.br/infancia-e-juventude/documento/anuario-estatistico-da-americalatina-e-caribe-2011

30. Sakata K, Sakata LM, Sakata VM, Santini C, Hopker LM, Bernardes R et al. Prevalence of glaucoma in a South Brazilian Population: Projeto Glaucoma. Invest Ophthalmol Vis Sci. 2007; 48(11):4974-79.

31. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004; 363(9422):1711-20.

32. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma, III: quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, disc edema, and toxic neuropathy. Arch Ophthalmol. 1982; 100(1):135–46.

33. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000 41(3):741-8.

34. Freeman EE, Muñoz B, West SK, Jampel HD, Friedman DS. Glaucoma and quality of life: the Salisbury Eye Evaluation. Ophthalmology. 2008; 115(2):233-8.

35. McKean-Cowdin R, Wang Y, Wu J, Azen SP, Varma R; Los Angeles Latino Eye Study Group. Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2008; 115(6):941-8.

36. Collaborative Normal-Tension Glaucoma Study Group: The effectiveness of intraocular pressure reduction in the treatment of normal tension glaucoma. Am J Ophthalmol 1998; 126(4):498—505.

37. de Voogd S, Ikram MK, Wolfs RC, Jansonius NM, Hofman A, de Jong PT. Incidence of open-angle glaucoma in a general elderly population: the Rotterdam Study. Ophthalmology. 2005; 112(9): 1487–93.

38. Tielsch JM, Sommer A, Katz J, Royall RM, Quigley HA, Javitt J. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA. 1991; 266(3):369–74.

39. Quigley HA, West SK, Rodriguez J, Munoz B, Klein R, Snyder R. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol. 2001; 119(12): 1819–26.

40. Mitchell P, Smith W, Attebo K, Healey PR. Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmology. 1996; 103(1):1661–1669.

41. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107:453–464.

42. Quigley HA, Dunkelberger GR, Baginski TA, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 1988; 95(3):357–63.

43. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Am J Ophthalmol. 1983; 95(5):673-91.

44. Quigley HA, Sanchez RM, Dunkelberger GR, L'Hernault NL, Baginski TA. Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Visual Sci. 1987; 28:913–20.

45. Asai T, Katsumori N, Mizokami K. Retinal ganglion cell damage in human glaucoma, 2: studies on damage pattern (in Japanese). Nippon Ganka Gakkai Zasshi. 1987; 91(12):1204–13.

46. Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci.1993; 34 (2):395–400.

47. Chaturvedi N, Hedley–Whyte ET, Dreyer EB. Lateral geniculate nucleus in glaucoma. Am J Ophthalmol. 1993; 116(2):182–188.

48. Vickers JC, Schumer R, Podos SM, Wang RF, Morrison JH. Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma. Brain Res.1995; 680(1-2):23–35.

49. Desatnick H, Quigley HA, Glovinsky Y. Study of central retinal ganglion cell loss in experimental glaucoma in monkey eyes. J Glaucoma. 1996; 5(1):46–53.

50. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML et al. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999; 40(10):2242-50.

51. Mohammadi K, Bowd C, Weinreb RN, Medeiros FA, Sample PA, Zangwill LM et al. Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol. 2004; 138(4):592-601.

52. Reus NJ, Lemij HG. Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology. 2004; 111(10):1860-5.

53. Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol. 2006; 142:576-82.

54. Shah NN, Bowd C, Medeiros FA, Weinreb RN, Sample PA, Hoffmann EM et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology. 2006; 113(9):1593-602.

55. Lemij HG, Reus NJ. New developments in scanning laser polarimetry for glaucoma. Curr Opin Ophthalmol. 2008; 19(2):136-40.

56. Da Pozzo S, Marchesan R, Ravalico G. Scanning laser polarimetry e a review. Clin Experiment Ophthalmol. 2009; 37(1):68-80.

57. Zangwill L, Bowd C, Medeiros FA. Optic disc imaging. In: Shaaraway TM, Sherwood MB, Hitchings RA, et al, eds. Glaucoma, Medical Diagnosis and Therapy. Philadelphia: Saunders Elsevier, 2009.

58. Sanchez RM, Dunkelberger GR, Quigley HA. The number and diameter distribution of axons in the monkey optic nerve. Invest Ophthalmol Vis Sci. 1986; 27(9):1342-50.

59. Jonas JB, Muller-Bergh JA, Schlotzer-Schrehardt UM, Naumann GO.
Histomorphometry of the human optic nerve. Invest Ophthalmol Vis Sci. 1990; 31(4): 736-44.

Go. Jonas JB, Schmidt AM, Muller-Bergh JA, Schlotzer-Schrehardt UM, Naumann GO.
Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci. 1992; 33(6):
2012-8.

61. Kronfeld PC. Normal variations of the optic disc as observed by conventional ophthalmoscopy and their anatomic correlations. Trans Am Acad Ophthalmol Otolaryngol. 1976; 81(2): 214-6.

62. Gloster J. Examination of the optic disc in glaucoma. In Glaucoma, Cairns JE, editor. Orlando, Grune, Stratton. 1986; pp.1:17-36.

63. Bowd C, Weinreb RN, Zangwill LM. Evaluating the optic disc and retinal nerve fiber layer in glaucoma. I: clinical examination and photographic methods. Semin Ophthalmol. 2000; 15(4): 194–205.

64. Minckler DS, McLean IW, Tso MO. Distribution of axonal and glial elements in the rhesus optic nerve head studied by electron microscopy. Am J Ophthalmol. 1976; 82(2):179-87.

65. Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969; 82(6):800-14.

66. Jonas JB, Gusek GC, Guggenmoos-Holzmann I, Naumann GO. Variability of the real dimensions of normal human optic discs. Graefes Arch Clin Exp Ophthalmol. 1988; 226(4): 332-6.

67. Quigley HA, Brown AE, Morrison JD, Drance SM. The size and shape of the optic disc in normal human eyes. Arch Ophthalmol. 1990; 108(1):51-57.

68. Bengtsson B. The variation and covariation of cup and disc diameters. Acta Ophthalmol (Copenh). 1976; 54(6): 804-18.

69. Beck RW, Messner DK, Musch DC, Martonyi CL, Lichter PR. Is there a racial difference in physiologic cup size? Ophthalmology. 1985 Jul; 92(7):873-6.

70. Britton RJ, Drance SM, Schulzer M, Douglas GR, Mawson DK. The area of the neuroretinal rim of the optic nerve in normal eyes. Am J Ophthalmol. 1987; 103(4): 497-504.

71. Caprioli J, Miller JM. Optic disc rim area is related to disc size in normal subjects. Arch Ophthalmol. 1987; 105(12): 1683-5.

72. Ogden TE, Duggan J, Danley K, Wilcox M, Minckler DS. Morphometry of nerve fiber bundle pores in the optic nerve head of the human. Exp Eye Res. 1988; 46(4): 559-68.

73. Jonas JB, Gusek GC, Naumann GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci. 1988; 29(7):1151-8.

74. Chi T, Ritch R, Stickler D, Pitman B, Tsai C, Hsieh FY. Racial differences in optic nerve head parameters. Arch Ophthalmol. 1989 Jun; 107(6):836-9.

75. Tomita G, Takamoto T, Schwartz B. Glaucomalike disks without increased intraocular pressure or visual field loss. Am J Ophthalmol. 1989; 108(5):496-504.

76. Varma R, Tielsch JM, Quigley HA, Hilton SC, Katz J, Spaeth GL, Sommer A. Race-, age-, gender-, and refractive error-related differences in the normal optic disc. Arch Ophthalmol. 1994; 112(8):1068-76.

77. Ramrattan RS, Rolfs RCW, Hofman A. Are gender differences in disk and rim area due to differences in refractive error or height? The Rotterdam study. [ARVO Abstract]. Invest Ophthalmol Vis Sci, 1997; 38:S824.

78. Millington EC. History of the Young-Helmholtz theory of colour vision. Ann Sci. 1942; 5:167–176.

79. Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci. 1980; 19(2):137-52.

80. Quigley HA, Flower RW, Addicks EM, McLeod DS. The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 1980 19(5):505-17.

Vrabec F. Glaucomatous cupping of the human optic disk: a neuro-histologic study.
 Allbrecht von Graefes Arch Klin Exp Ophthalmol. 1976; 198(3): 223-234.

82. Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979; 86(10):1803-30.

83. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981; 99(4):635-649.

84. Jonas JB, Gusek GC, Naumann GO. Optic disc morphometry in chronic primary open-angle glaucoma. II. Correlation of the intrapapillary morphometric data to visual field indices. Graefes Arch Clin Exp Ophthalmol. 1988; 226(6):531–8.

85. Jonas JB, Fernandez MC, Sturmer J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology. 1993; 100(1):63-8.

86. Kirsch RE, Anderson DR. Clinical recognition of glaucomatous cupping. Am J. Ophthalmol. 1973; 75(3):442-54.

Weisman RL, Asseff CF, Phelps CD, Podos SM, Becker B. Vertical elongation of the optic cup in glaucoma. Trans Am Acad Ophthalmol Otolaryngol. 1973; 77(2):OP157-61.

88. Read RM, Spaeth GL. The practical clinical appraisal of the optic disc in glaucoma: the natural history of cup progression and some specific disc-field correlations. Trans Am Acad Ophthalmol Otolaryngol. 1974; 78(2):OP255-74.

89. Hitchings RA, Spaeth GL. The optic disc in glaucoma. I. Classification. Br J Ophthalmol. 1976; 60(11):778-85.

90. Spaeth GL, Hitchings RA, Sivalingam E. The optic disc in glaucoma: pathogenetic correlation of five patterns of cupping in chronic open-angle glaucoma. Trans Am Acad Ophthalmol Otolaryngol. 1976; 81(2):217-23.

91. Garway-Heath DF, Ruben ST, Viswanathan A et al. Vertical cup/disc ratio in relation to optic disc size: its value in the assessment of the glaucoma suspect. Br J Ophthalmol. 1998; 82(10): 1118-24.

92. Susanna R Jr, Medeiros FA. The Optic Nerve in Glaucoma. Rio de Janeiro: Cultura Médica; 2003, p.24-5.

93. Armaly M, Sayegh R. The cup/disc ratio. Arch Ophthalmol. 1969; 82(2):191–6.

94. Jonas JB, Zach FM, Gusek GC, Naumann GO. Pseudoglaucomatous physiologic large cups. Am J Ophthalmol. 1989; 107(2): 137-44.

95. Healey PR, Mitchell P, Smith W, Wang JJ. Relationship between cup-disc ratio and optic disc diameter: the Blue Mountains Eye Study. Aust N Z J Ophthalmol. 1997; Suppl 1:S99-101.

96. Jonas JB, Fernandez MC, Naumann GO. Glaucomatous optic nerve atrophy in small discs with low cup-to-disc ratios. Ophthalmology 1990; 97(9): 1211-5.

97. Becker B. Cup-disk ratio and topical corticosteroid testing. Am J Ophthalmol. 1970;70(5):681-5.

98. Ong LS, Mitchell P, Healey PR, Cumming RG. Asymmetry in optic disc parameters: the Blue Mountains Eye Study. Invest Ophthalmol Vis Sci 1999; 40(5): 849-57.

99. Susanna R Jr. The lamina cribrosa and visual field defects in open-angle glaucoma. Can J Ophthalmol. 1983; 18(3): 124-6.

100. Javitt JC, Spaeth GL, Katz LJ, Poryzees E, Addiego R. Acquired pits of the optic nerve. Increased prevalence in patients with low-tension glaucoma. Ophthalmology. 1990; 97(8): 1038-43; discussion 43-4.

101. Radius RL, Maumenee AE, Green WR. Pit-like changes of the optic nerve head in open-angle glaucoma. Br J Ophthalmol. 1978; 62(6): 389-93.

102. Nduaguba C, Ugurlu S, Caprioli, J. Acquired pits of the optic nerve in glaucoma: prevalence and associated visual field loss. Acta Ophthalmol Scand. 1998; 76(3): 273-7.

103. Ugurlu S, Weitzman M, Nduaguba C, Caprioli J. Acquired pit of the optic nerve: a risk factor for progression of glaucoma. Am J Ophthalmol. 1998; 125(4): 457-64.

104. Jonas JB, Nguyen XN, Gusek GC, Naumenn GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci. 1989; 30(5): 908-18.

105. Jonas JB, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci 1989; 30(5): 919-26.

106. Krönfeld PC. The Optic Nerve. Symposium on Glaucoma. St. Louis: Mosby, 1967, p.62.

107. Airaksinen PJ, Mustonen E, Alanko HI. Optic disc haemorrhages precede retinal nerve fibre layer defects in ocular hypertension. Acta Ophthalmol (Copenh). 1981; 59(5):627-41.

108. Airalsinen PJ, Mustonen E, Alanko HI. Optic disc hemorrhages. Analysis of stereophotographs and clinical data of 112 patients. Arch Ophthalmol. 1981; 99(10): 1795-801.

109. Jonas JB, Xu L. Optic disk hemorrhages in glaucoma. Am J Ophthalmol. 1994;118(1): 1-8.

110. Healey PR, Mitchell P, Smith W, Wang JJ. Optic disc hemorrhages in a population with and without signs of glaucoma. Ophthalmology. 1998; 105(2): 216-23.

111. Herschler J, Osher RH. Baring of the circumlinear vessel. An early sign of optic nerve damage. Arch Ophthalmol. 1980, 98(5): 865-9.

112. Osher RH, Herschler, J. The significance of baring of the circumlinear vessel. A prospective study. Arch Ophthalmol. 1981; 99(5): 817-8.

113. Kasner O, Balazsi AG. Glaucomatous optic nerve atrophy: the circumlinear vessel revisited. Can J Ophthalmol. 1991; 26(5): 264-9.

114. Mikelberg FS, Drance SM, Schulzer M, Yidegiligne HM, Weis MM. The normal human optic nerve. Axon count and axon diameter distribution. Ophthalmology. 1989; 96(9):1325-8.

115. Radius RL, Anderson DR. The course of axons through the retina and optic nerve head. Arch Ophthalmol. 1979; 97(6): 1154-8.

116. Minckler DS. The organization of nerve fiber bundles in the primate optic nerve head. Arch Ophthalmol. 1980; 98(9): 1630-6.

117. Hoyt WF, Luis O. Visual fiber anatomy in the infrageniculate pathway of the primate. Arch Ophthalmol. 1962 Jul; 68:94-106.

118. Mikelberg FS, Drance SM, Schulzer M, Yidegiligne HM, Weis MM. The normal human optic nerve. Axon count and axon diameter distribution. Ophthalmology. 1989; 96(9):1325-8.

119. Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol 1982; 100(5):807-14.

120. Toprak AB, Yilmaz OF. Relation of optic disc topography and age to thickness of retinal nerve fibre layer as measured using scanning laser polarimetry, in normal subjects. Br J Ophthalmol. 2000; 84(5):473-8.

121. Balazsi AG, Rootman J, Drance SM, Schulzer M, Douglas GR. The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol. 1984; 97(6): 760-6.

122. Morrison JC, Cork LC, Dunkelberger GR, Brown A, Quigley HA. Aging changes of the rhesus monkey optic nerve. Invest Ophthalmol Vis Sci. 1990; 31(8):1623-7.

123. Hoyt WF, Newman NM. The earliest observable defect in glaucoma? Lancet. 1972;1(7752): 692-3.

124. Hoyt WF, Schlicke B, Eckelhoff RJ. Fundoscopic appearance of a nerve-fibrebundle defect. Br J Ophthalmol. 1972; 56(8): 577-83.

125. Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol. 1973; 12(11): 814-29

126. Jonas JB, Schiro D. Localised wedge shaped defects of the retinal nerve fiber layer in glaucoma. Br J Ophthalmol. 1994; 78(4):285–90.

127. Jonas JB, Dichtl A. Evaluation of the retinal nerve fiber layer. Surv Ophthalmol. 1996; 40(5):369-78.

128. Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 1999; 43(4): 293-320.

129. Bagga H, Greenfield DS. Clinical Assessment of the Optic Nerve and Peripapillary Retinal Nerve Fiber Layer. Techniques in Ophthalmology. 2003; 1(2):98-105.

130. Spaeth GL (1993). Direct Ophthalmoscopy. In: Varmag L, Spaeth GL (Eds): The Optic Nerve in Glaucoma, J. B. Lippincott Company, Philadelphia. pp. 127-35.

131. Henderer JD. Disc damage likelihood scale. Br J Ophthalmol. 2006; 90:395–6.

132. Morgan JE, Bourtsoukli I, Rajkumar KN, Ansari E, Cunliffe IA, North RV et al. The accuracy of the inferior > superior > nasal > temporal neuroretinal rim area rule for diagnosing glaucomatous optic disc damage. Ophthalmology. 2012; 119(4):723-30.

133. Shiose Y. Quantitative analysis of "optic cup" and its clinical application. III. A new diagnostic criterion for glaucoma using "quantitative disc pattern" (Shiose) (author's transl). Nippon Ganka Gakkai Zasshi. 1975; 79(5):445–461.

134. Richardson KT. Glaucoma and glaucoma suspects. In: Richardson KT, ed.Glaucoma: Conceptions of a Disease, Pathogenesis, Diagnosis, Therapy. Philadelphia:W.B. Saunders; 1978; pp.2–6.

135. Nesterov AP, Listopadova NA. Classification of physiological and glaucomatous extraction of the optic disk. Vestn Oftalmol. 1981; (2)17–22.

136. Spaeth GL, Lopes JF, Junk AK, Grigorian AP, Henderer J. Systems for staging the amount of optic nerve damage in glaucoma: a critical review and new material. Surv Ophthalmol. 2006; 51:293–315.

137. Brusini P, Zeppieri M, Tosoni C, Parisi L, Salvetat ML. Optic Disc Damage Staging System. J Glaucoma. 2010; 19(7):442-9.

138. Spaeth GL, Henderer J, Liu C, Kesen M, Altangerel U, Bayer A et al. The disc damage likelihood scale: reproducibility of a new method of estimating the amount of the optic nerve damage caused by glaucoma. Trans Am Ophthalmol Soc. 2002; 100:181–6.

139. Bayer A, Harasymowycz P, Henderer JD, Steinmann WG, Spaeth GL. Validity of a new disk grading scale for estimating glaucomatous damage: correlation with visual field damage. Am J Ophthalmol. 2002; 133(6):758–63.

140. Henderer JD, Liu C, Kesen M, Altangerel U, Bayer A, Steinmann WC. Reliability of the disk damage likelihood scale. Am J Ophthalmol. 2003; 135(1): 44–48.

141. Spaeth GL, Henderer J, Steinmann W. The disc damage likelihood scale: its use in the diagnosis and management of glaucoma. Highlights Ophthalmol. 2003; 31:4–16.

142. Danesh-Meyer HV, Gaskin BJ, Jayusundera T, Donaldson M, Gamble GD. Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomography in the diagnosis of glaucoma. Br J Ophthalmol. 2006; 90(4):437–441.

143. Tielsch JM, Katz J, Quigley HA, Miller NR, Sommer A. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology. 1988; 95(3):350–6.

144. Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992; 99(2):215–21.

145. Roh KH, Jeoung JW, Park KH, Yoo BW, Kim DM. Long-Term Reproducibility of Cirrus HD Optical Coherence Tomography Deviation Map in Clinically Stable Glaucomatous Eyes. Ophthalmology. 2013; 120(5):969-77.

146. Gaasterland DE, Blackwell B, Dally LG, Caprioli J, Katz LJ, Ederer F et al. The Advanced Glaucoma Intervention Study (AGIS): 10. Variability among academic

glaucoma subspecialists in assessing optic disc notching. Trans Am Ophthalmol Soc. 2001; 99:177–84.

147. Arnalich-Montiel F, Muñoz-Negrete FJ, Rebolleda G, Sales-Sanz M, Cabarga C. Cup-to-disc ratio: agreement between slit-lamp indirect ophthalmoscopic estimation and stratus optical coherence tomography measurement. Eye (Lond). 2007 Aug; 21(8):1041-9.

148. Burr JM, Mowatt G, Hernández R, Siddiqui MA, Cook J, Lourenco T et al. The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. Health Technol Assess. 2007; 11(41): iii-iv, ix-x, 1-190.

149. Abdul Majid AS, Kwag JH, Jung SH, Yim HB, Kim YD, Kang KD. Correlation between disc damage likelihood scale and optical coherence tomography in the diagnosis of glaucoma. Ophthalmologica. 2010; 224(5):274-82.

150. Wang F, Quigley HA, Tielsch JM. Screening for glaucoma in a medical clinic with photographs of the nerve fiber layer. Arch Ophthalmol. 1994; 112:796-800.

151. Fingeret M, Medeiros FA, Susanna R Jr, Weinreb RN. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry. 2005; 76(11):661–8.

152. Dichtl A, Jonas JB, Mardin CY. Comparison between tomographic scanning evaluation and photographic measurement of the neuroretinal rim. Am J Ophthalmol. 1996; 121(5):494-501.

153. Jayasundera T, Danesh-Meyer HV, Donaldson M, Gamble G. Agreement between stereoscopic photographs, clinical assessment, Heidelberg retina tomograph and digital stereoscopic optic disc camera in estimating vertical cup:disc ratio. Clin Experiment Ophthalmol. 2005; 33(3):259-63.

154. Arthur SN, Aldridge AJ, De León-Ortega J, McGwin G, Xie A, Girkin CA. Agreement in assessing cup-to-disc ratio measurement among stereoscopic optic nerve head photographs, HRT II, and Stratus OCT. J Glaucoma. 2006; 15(3):183-9.

155. Reus NJ, de Graaf M, Lemij HG. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Br J Ophthalmol. 2007; 91(3):313-8.

156. Allen L. Ocular fundus photography: Suggestion for achieving consistently good pictures and instruction for stereoscopic photography. Am J Ophthalmol. 1964; 57:13-28.

157. Donaldson DD. A new camera for stereoscopic fundus photography. Arch Ophthalmol. 1965; 73:253-67.

158. Gloster J, Parry DG. Use of photographs for measuring cupping in the optic disc. Br J Ophthalmol. 1974; 58(10): 850-62.

159. Hitchings RA, Genio C, Anderton S, Clark P. An optic disc grid: its evaluation in reproducibility studies on the cup/disc ratio. Br J Ophthalmol. 1983; 67(6): 356-61.

160. Tielsch JM, Katz J, Quigley HA, Miller NR, Sommer A. Intraobserver and interobserver agreement in measurements of optic disc characteristics. Ophthalmology. 1988; 95(3):350–6.

161. Burgoyne CF, Quigley HA, Varma R. Comparison of clinician judgment with digitized image analysis in the detection of induced optic disk change in monkey eyes. Am J Ophthalmol. 1995; 120(2):176–83.

162. Azuara-Blanco A, Katz LJ, Spaeth GL, Nicholl J, Lanzl IM. Detection of changes of the optic disc in glaucomatous eyes: clinical examination and image analysis with the Topcon Imagenet system. Acta Ophthalmol Scand. 2000; 78(6):647–50.

163. Zeyen T, Miglior S, Pfeiffer N, Cunha-Vaz J, Adamsons I, European Glaucoma Prevention Study Group. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology. 2003; 110(2):340-4.

164. Parrish RK 2nd, Schiffman JC, Feuer WJ, Anderson DR, Budenz DL, Wells-Albornoz MC. Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol. 2005; 140(4):762–4.

165. Breusegem C, Fieuws S, Stalmans I, Zeyen T. Agreement and accuracy of nonexpert ophthalmologists in assessing glaucomatous changes in serial stereo optic disc photographs. Ophthalmology. 2011; 118(4):742-6.

166. Deleon-Ortega JE, Arthur SN, McGwin G Jr, Xie A, Monheit BE, Girkin CA. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative

imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci. 2006; 47(8):3374–80.

167. Morgan JE, Sheen NJ, North RV, Goyal R, Morgan S, Ansari E et al. Discrimination of glaucomatous optic neuropathy by digital stereoscopic analysis. Ophthalmology. 2005; 112(5):855–62.

168. Andersson S, Heijl A, Bengtsson B. Optic disc classification by the Heidelberg Retina Tomograph and by physicians with varying experience of glaucoma. Eye (Lond). 2011; 25(11):1401-7.

169. Henderer J, Wang Y, Bayer A, Altangerel U, Schwartz L, Schmidt C. Evaluating a new disc staging scale for glaucomatous damage: the ability to detect change over time. Eur J Ophthalmol. 2009; 19(3):404-10.

170. Deleón-Ortega JE, Arthur SN, McGwin G Jr, Xie A, Monheit BE, Girkin CA. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci. 2006; 47(8):3374-80.

171. Mikelberg FS, Douglas GR, Schulzer M, Cornsweet TN, Wijsman K. Reliability of optic disk topographic measurements recorded with a video-ophthalmograph. Am J Ophthalmol. 1984; 98(1): 98-102.

172. Varma R, Spaeth GL. The PAR IS 2000: a new system for retinal digital image analysis. Ophthalmic Surg. 1988; 19(3): 183-92.

173. Dandona L, Quigley HA, Jampel HD. Reliability of optic nerve head topographic measurements with computerized image analysis. Am J Ophthalmol. 1989; 108(4): 414-21, 1989.

174. Shields MB, Martone JF, Shelton AR, Ollie AR, Macmillan J. Reproducibility of topographic measurements with the optic nerve head analyzer. Am J Ophthalmol. 1987; 104(6): 581-6.

175. Shields MB, Tiedeman JS, Miller KN, Hickingbotham D, Ollie AR. Accuracy of topographic measurements with the Optic Nerve Head Analyzer. Am J Ophthalmol. 1989; 107(3): 273-9.

176. Miller E, Caprioli J. Regional and long-term variability of fundus measurements made with computer-image analysis. Am J Ophthalmol. 1991; 112(2): 171-6.

177. Webb R. Scanning laser ophthalmoscope, In: Master B, ed. Noninvasive diagnostic techniques. New York: Springer-Verlag. 1990; pp.438-50.

178. Stürmer J, Schaer-Stoller F, Gloor B. Measuring the optic papilla with planimetry and the optic nerve head analyzer in glaucoma and suspected glaucoma. II. Correlations of the results of both methods with changes in the visual field, studied with the Octopus automatic perimeter. Klin Monbl Augenheilkd. 1990; 196(3):132-42.

179. Plesch A, Klingbeil U, Bille J. Digital laser scanning fundus camera. Appl Opt.1987; 26(8):1480-6.

180. Manivannan A, Sharp PF, Phillips RP, Forrester JV. Digital fundus imaging using a scanning laser ophthalmoscope. Physiol Meas. 1993; 14(1):43-56.

181. Geyer O, Michaeli-Cohen A, Silver DM, Versano D, Neudorfer M, Dzhanov R et al. Reproducibility of topographic measures of the glaucomatous optic nerve head. Br J Ophthalmol. 1998; 82(1): 14-7.

182. Ahn BS, Kee C. Ability of a confocal scanning laser ophthalmoscope (TopSS) to detect early glaucomatous visual field defect. Br J Ophthalmol. 2000; 84(8): 852-5.

183. Cullinane AB, Waldock A, Diamond JP, Sparrow JM. Optic disc cup slope and visual field indices in normal, ocular hypertensive and early glaucomatous eyes. Br J Ophthalmol. 2002; 86(5): 555-9.

184. Magacho L, Marcondes AM, Costa VP. Correlation between optic disc topography and retinal nerve fibre layer measurements in glaucoma. Acta Ophthalmol Scand. 2005; 83(3):322-7.

185. Mikelberg FS, Parfitt CM, Swindale NV, Graham SL, Drance SM, Gosine R. Ability of the Heidelberg Retina Tomograph to Detect Early Glaucomatous Visual Field Loss. J Glaucoma. 1995; 4(4): 242-7.

186. Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology. 1998; 105(8):1557-63.

187. Strouthidis NG, Garway-Heath DF. New developments in Heidelberg retina tomograph for glaucoma. Curr Opin Ophthalmol. 2008;19:141–8.

188. Rao HL, Babu GJ, Sekhar GC. Comparison of the diagnostic capability of the Heidelberg Retina Tomographs 2 and 3 for glaucoma in the Indian population. Ophthalmology. 2010; 117(2):275-81.

189. Bartz-Schmidt KU, Jonescu-Cuypers CP, Thumann G, Frucht J, Krieglstein GK. Effect of the contour line on cup surface using the Heidelberg Retina Tomograph. Klin Monatsbl Augenheilkd. 1996; 209(5):292-7.

190. Garway-Heath DF, Poinoosawmy D, Wollstein G, Viswanathan A, Kamal D, Fontana L, et al. Inter- and intraobserver variation in the analysis of optic disc images: comparison of the Heidelberg retina tomograph and computer assisted planimetry. Br J Ophthalmol. 1999; 83(6):664-9.

191. Burk RO, Vihanninjoki K, Bartke T, Tuulonen A, Airaksinen PJ, Völcker HE et al. Development of the standard reference plane for the Heidelberg retina tomography. Graefes Arch Clin Exp Ophthalmol. 2000; 238(5): 375-84.

192. Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology. 2000; 107(12):2272-7.

193. Swindale NV, Stjepanovic G, Chin A, Mikelberg FS. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci. 2000; 41(7): 1730-42.

194. Coops A, Henson DB, Kwartz AJ, Artes PH. Automated analysis of Heidelberg retina tomography optic disc images by glaucoma probability score. Invest Ophthalmol Vis Sci. 2006; 47(12):5348-55.

195. Bathija R, Zangwill L, Berry CC, Sample PA, Weinreb RN. Detection of early glaucomatous structural damage with confocal scanning laser tomography. J Glaucoma. 1998; 7(2): 121-7.

196. Caprioli J, Park HJ, Ugurlu S, Hoffman D. Slope of the peripapillary nerve fiber layer surface in glaucoma. Invest Ophtahlmol Vis Sci. 1998; 39(12): 2321-8.

197. Taibbi G, Fogagnolo P, Orzalesi N, Rossetti L. Reproducibility of the Heidelberg Retina Tomograph III Glaucoma Probability Score. J Glaucoma. 2009; 18(3):247-52.

198. Tomita G, Honbe K, Kitazawa Y. Reproducibility of measurements by laser scanning tomography in eyes before and after pilocarpine treatment. Graefes Arch Clin Exp Ophthalmol. 1994; 232(7):406-8.

199. Zangwill LM, Berry CC, Weinreb RN. Optic disc topographic measurements after pupil dilation. Ophthalmology. 1999; 106(9):1751-5.

200. Azuara-Blanco A, Harris A, Cantor LB. Reproducibility of optic disk topographic measurements with the Topcon ImageNet and the Heidelberg Retina Tomograph. Ophthalmologica. 1998; 212(2):95-8.

201. Bowd C, Weinreb RN, Lee B, Emdadi A, Zangwill LM. Optic disk topography after medical treatment to reduce intraocular pressure. Am J Ophthalmol. 2000; 130(3):280-6.

202. Chauhan BC, McCormick TA. Effect of the cardiac cycle on topographic measurements using confocal scanning laser tomography. Graefes Arch Clin Exp Ophthalmol. 1995; 233(9):568-72.

203. Owen VM, Strouthidis NG, Garway-Heath DF, Crabb DP. Measurement variability in Heidelberg Tomograph imaging of neuroretinal rim area. Invest Ophthalmol Vis Sci. 2006; 47(12):5322-30.

204. Strouthidis NG, White ET, Owen VM, Ho TA, Garway-Heath DF. Improving the repeatability of Heidelberg retina tomography and Heidelberg retina tomography II rim area measurements. Br J Ophthalmol. 2005; 89 (11): 1433-7.

205. Sihota R, Gulati V, Agarwal HC, Saxena R, Sharma A, Pandey RM. Variables affecting test-retest variability of Heidelberg Retina Tomograph II stereometric parameters. J Glaucoma. 2002; 11(4):321-8.

206. Hatch WV, Flanagan JG, Williams-Lyn DE, Buys YM, Farra T, Trope GE. Interobserver agreement of Heidelberg retina tomograph parameters. J Glaucoma. 1999; 8(4):232-7.

207. Verdonck N, Zeyen T, Van Malderen L, Spileers W. Short-term intra-individual variability in heidelberg retina tomograph II. Bull Soc Belge Ophtalmol. 2002;(286):51-7.

208. Leung CK, Cheung CY, Lin D, Pang CP, Lam DS, Weinreb RN. Longitudinal variability of optic disc and retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4886-92.

209. Zangwill LM, Jain S, Racette L, Ernstrom KB, Bowd C, Medeiros FA et al. The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. Invest Ophthalmol Vis Sci. 2007; 48(6):2653-60.

210. Harizman N, Zelefsky JR, Ilitchev E, Tello C, Ritch R, Liebmann JM. Detection of glaucoma using operator-dependent versus operator-independent classification in the Heidelberg retinal tomograph-III. Br J Ophthalmol. 2006; 90(11):1390-2.

211. Moreno-Montañés J, Antón A, García N, Mendiluce L, Ayala E, Sebastián A. Glaucoma probability score VS Moorfields classification in normal, ocular hypertensive, and glaucomatous eyes. Am J Ophthalmol. 2008; 145(2):360-8.

212. Oddone F, Centofanti M, Rossetti L, Iester M, Fogagnolo P, Capris E et al. Exploring the Heidelberg Retinal Tomograph 3 diagnostic accuracy across disc sizes and glaucoma stages: a multicenter study. Ophthalmology. 2008; 115(8):1358-65, 65 e1-3.

213. Oddone F, Centofanti M, Iester M, Rossetti L, Fogagnolo P, Michelessi M et al. Sector-based analysis with the Heidelberg Retinal Tomograph 3 across disc sizes and glaucoma stages: a multicenter study. Ophthalmology. 2009; 116(6):1106-11, e1-3.

214. Ferreras A, Pablo LE, Pajarín AB, Larrosa JM, Polo V, Pueyo V. Diagnostic ability of the Heidelberg Retina Tomograph 3 for glaucoma. Am J Ophthalmol. 2008; 145(2): 354-9.

215. Sommer A, Miller NR, Pollack I, et al. The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol. 1977;95: 2149–2156.

216. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.

217. Tuulonen A, Airaksinen PJ. Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression. Am J Ophthalmol. 1991;111:485–490.

218. Tuulonen A, Lehtola J, Airaksinen PJ. Nerve fiber layer defects with normal visual fields. Do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? Ophthalmology. 1993;100:587–597.

219. Quigley HA, Reacher M, Katz J, et al. Quantitative grading of nerve fiber layer photographs. Ophthalmology. 1993; 100(12):1800–7.

220. Niessen AG, van den Berg TJ, Langerhorst CT, Bossuyt PM. Grading of retinal nerve fiber layer with a photographic reference set. Am J Ophthalmol. 1995; 120(5):577–86.

221. Varma R, Spaeth GL. The PAR IS 2000: a new system for retinal digital image analysis. Ophthalmic Surg. 1988; 19(3): 183-92.

222. Herrmann J, Funk J. Diagnostic value of nerve fibre layer photography in glaucoma. Ophthalmologe. 2005; 102(8):778-82.

223. Medeiros FA, Zangwill LM, Bowd C, Mohammadi K, Weinreb RN. Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol. 2004; 122(5):698-704.

224. Hong S, Ahn H, Ha SJ, Yeom HY, Seong GJ, Hong YJ. Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography. Ophthalmology. 2007; 114(2):210-5.

225. Weinreb RN, Shakiba S, Zangwill L. Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes. Am J Ophthalmol. 1995; 119(5):627-36.

226. Zangwill L, Berry CA, Garden VS, Weinreb RN. Reproducibility of retardation measurements with the nerve fiber analyzer II. J Glaucoma. 1997; 6(6):384-9.

227. Hoh ST, Ishikawa H, Greenfield DS, Liebmann JM, Chew SJ, Ritch R. Peripapillary nerve fiber layer thickness measurement reproducibility using scanning laser polarimetry. J Glaucoma. 1998; 7(1):12-5.

228. Lauande-Pimentel R, Carvalho RA, Oliveira HC, Gonçalves DC, Silva LM, Costa VP. Discrimination between normal and glaucomatous eyes with visual field and scanning laser polarimetry measurements. Br J Ophthalmol. 2001; 85(5):586-91.

229. Costa VP, Lauande-Pimentel R, Fonseca RA, Magacho L. The influence of age, sex, race, refractive error and optic disc parameters on the sensitivity and specificity of scanning laser polarimetry. Acta Ophthalmol Scand. 2004 82(4):419-25.

230. Garas A, Tóth M, Vargha P, Holló G. Comparison of repeatability of retinal nerve fiber layer thickness measurement made using the RTVue Fourier-domain optical coherence tomograph and the GDx scanning laser polarimeter with variable or enhanced corneal compensation. J Glaucoma. 2010; 19(6):412-7.

231. Weinreb RN, Dreher AW, Coleman A, Quigley H, Shaw B, Reiter K. Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness. Arch Ophthalmol. 1990; 108:557–70.

232. Weinreb RN, Zangwill L, Berry CC, Bathija R, Sample PA. Detection of glaucoma with scanning laser polarimetry. Arch Ophthalmol. 1998; 116(12): 1583–9.

233. Zhou Q, Knighton RW. Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer. Appl Opt. 1997; 36(10):2273-85.

234. Greenfield DS, Knighton RW, Huang XR. Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry. Am J Ophthalmol. 2000; 129(6):715–22.

235. Knighton RW, Huang XR. Linear birefringence of the central human cornea. Invest Ophthalmol Vis Sci. 2002; 43:82–6.

236. Kremmer S, Garway-Heath DF, De Cilla S, Steuhl KP, Selbach JM. Influence of cataract surgery with implantation of different intraocular lenses on scanning laser tomography and polarimetry. Am J Ophthalmol. 2003 136(6):1016-21.

237. Reus NJ, van Koolwijk LM, Lemij HG. Effects of inadequate anterior segment compensation on measurements with scanning laser polarimetry. Ophthalmic Surg Lasers Imaging. 2006; 37:54–57.

238. Vetrugno M, Sisata D, Trabucco T et al. Is there still a clinical use for scanning laser polarimetry with fixed corneal compensator? Ophthalmologica. 2006; 220:296–301.

239. Bowd C, Medeiros FA, Weinreb RN, Zangwill LM. The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci. 2007; 48(1): 223–227.

240. Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Susanna Jr R, Weinreb RN. Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation. Am J Ophthalmol. 2009; 148(1): 155–163, e151.

241. Tóth M, Holló G. Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol. 2005; 89(9):1139-42.

242. Bagga H, Greenfield DS, Feuer WJ. Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am J Ophthalmol. 2005; 139:437–446.

243. Mai TA, Reus NJ, Lemij HG. Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation. Ophthalmology. 2007; 114:1988–93.

244. Orlev A, Horani A, Rapson Y, Cohen MJ, Blumenthal EZ. Clinical characteristics of eyes demonstrating atypical patterns in scanning laser polarimetry. Eye. 2008; 22(11):1378-83.

245. Qiu K, Leung CK, Weinreb RN, Liu S, Chueng CY, Li H et al. Predictors of atypical birefringence pattern in scanning laser polarimetry. Br J Ophthalmol. 2009; 93:1191-4.

246. Götzinger E, Pircher M, Baumann B, Hirn C, Vass C, Hitzenberger CK. Analysis of the Origin of Atypical Scanning Laser Polarimetry Patterns by Polarization-Sensitive Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2008; 49(12): 5366–72.

247. Reus NJ, Zhou Q, Lemij HG. Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci. 2006; 47(9):3870-7.

248. Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2007; 48(7): 3146–53.

249. Tóth M, Holló G. Increased Long-term measurement variability with scanning laser polarimetry employing enhanced corneal compensation: an early sign of glaucoma progression. J Glaucoma. 2008; 17(7):571-7.

250. Mai TA, Reus NJ, Lemij HG. Retinal nerve fiber layer measurements repeatability in scanning laser polarimetry with enhanced corneal compensation. J Glaucoma. 2008; 17(4):269-274.

251. Bowd C, Tavares IM, Medeiros FA, Zangwill LM, Sample PA, Weinreb RN. Retinal nerve fiber layer thickness and visual sensitivity using scanning laser polarimetry with variable and enhanced corneal compensation. Ophthalmology. 2007; 114(7):1259-65.

252. Sehi M, Guaqueta DC, Greenfield DS. An enhancement module to improve the atypical birefringence pattern using scanning laser polarimetry with variable corneal compensation. Br J Ophthalmol. 2006; 90:749–53.

253. Iacono P, Da Pozzo S, Fuser M, Marchesan R, Ravalico G. Intersession reproducibility of retinal nerve fiber layer thickness measurements by GDx-VCC in healthy and glaucomatous eyes. Ophthalmologica. 2006; 220(4):266-71.

254. Garas A, Tóth M, Vargha P, Holló G. Influence of pupil dilation on repeatability of scanning laser polarimetry with variable and enhanced corneal compensation in different stages of glaucoma. J Glaucoma. 2010; 19(2):142-8.

255. Kanamori A, Nagai-Kusuhara A, Escaño MF, Maeda H, Nakamura M, Negi A. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage. Graefes Arch Clin Exp Ophthalmol. 2006; 244(1):58-68.

256. Badalà F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Caprioli J. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol. 2007; 144(5):724-32.

257. Parikh RS, Parikh SR, Kumar RS, Prabakaran S, Babu JG, Thomas R. Diagnostic capability of scanning laser polarimetry with variable cornea compensator in Indian patients with early primary open-angle glaucoma. Ophthalmology. 2008; 115(7):1167-72.e1.

258. Pueyo V, Polo V, Larrosa JM, Pablo LE, Ferreras A, Honrubia FM. Ability of optical imaging devices to detect early structural damage in ocular hypertension. Ann Ophthalmol. 2009; 41(3-4):150-6.

259. Zeppieri M, Brusini P, Parisi L, Johnson CA, Sampaolesi R, Salvetat ML. Pulsar perimetry in the diagnosis of early glaucoma. Am J Ophthalmol. 2010; 149(1):102-12.

260. Pablo LE, Ferreras A, Schlottmann PG. Retinal nerve fibre layer evaluation in ocular hypertensive eyes using optical coherence tomography and scanning laser polarimetry in the diagnosis of early glaucomatous defects. Br J Ophthalmol. 2011 95(1):51-5.

261. Medeiros FA, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry. Am J Ophthalmol. 2010; 149(6):908-15.

262. Sehi M, Ume S, Greenfield DS. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2007; 48(5):2099-104.

263. Grewal DS, Sehi M, Greenfield DS. Detecting glaucomatous progression using GDx with variable and enhanced corneal compensation using Guided Progression Analysis. Br J Ophthalmol. 2011; 95(4):502-8.

264. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al. Optical coherence tomography. Science. 1991; 254(5035):1178-81.

265. Wojtkowski M, Srinivasan V, Ko T, Fujimoto JG, Kowalczyk A, Duker J. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express. 2004; 12(11):2404–22.

266. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002; 7(3):457-63.

267. Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt. 2004; 9(1):47-74.

268. Testoni PA, Mangiavillano B. Optical coherence tomography in detection of dysplasia and cancer of the gastrointestinal tract and bilio-pancreatic ductal system. World J Gastroenterol. 2008; 14(42):6444-52.

269. Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K. Applications of optical coherence tomography in dermatology. J Dermatol Sci. 2005; 40(2):85-94.

270. Bezerra HG, Costa MA, Guacliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography a comprehensive review: clinical and research applications. JACC Cardiovasc Interv. 2009; 2(11):1035-46.

271. Sayegh RR, Pineda R. Practical applications of anterior segment optical coherence tomography imaging following corneal surgery. 2nd. Semin Ophthalmol. 2012; 27(5-6):130-7.

272. Wong JJ, Chen TC, Shen LQ, Pasquale LR. Macular Imaging for Glaucoma Using Spectral-domain Optical Coherence Tomography: A Review. Semin Ophthalmol. 2012; 27(5-6):165-71.

273. Nukada M, Hangai M, Mori S, Takayama K, Nakano N, Morooka S et al. Imaging of Localized Retinal Nerve Fiber Layer Defects in Preperimetric Glaucoma Using Spectraldomain Optical Coherence Tomography. J Glaucoma. 2012 Oct 10.

274. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In vivo optical coherence tomography. Am J Ophthalmol. 1993; 116(1):113-4.

275. Schuman JS. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans Am Ophthalmol Soc. 2008;106:426-58.

276. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995; 102(2):217-29.

277. Fourier J. Théorie analytique de la chaleur. In: Paris: Firmin Didot Père et Fils,1822.

278. Bracewell, R. The Fourier Transform and its Applications, 3rd. ed. New York: McGraw-Hill, 2000; Cap. 2, pp. 5 e 6.

279. Gabriele ML, Wollstein G, Ishikawa H, Kagemann L, Xu J, Folio LS et al. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011; 52(5):2425-36.

280. Firat PG, Ozsoy E, Demirel S, Cumurcu T, Gunduz A. Evaluation of peripapillary retinal nerve fiber layer, macula and ganglion cell thickness in amblyopia using spectral optical coherence tomography. Int J Ophthalmol. 2013; 6(1):90-4.

281. Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol. 2010; 149(1):18-31.

282. Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995; 6(2):89-95.

283. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988; 13(3):186-188.

284. Michelson AA. Studies in Optics. Editora Dover, Mineola, NY, 1995.

285. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003; 21(11):1361–7.

286. Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 2001; 7(4):502-7.

287. Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996; 103(11):1889-98.

288. Blumenthal EZ, Williams JM, Weinreb RN, Girkin CA, Berry CC, Zangwill LM. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology. 2000; 107(12):2278-82.

289. Jones AL, Sheen NJ, North RV, Morgan JE. The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study of the normal human retinal nerve fibre layer. Br J Ophthalmol. 2001; 85(6):673-7.

290. Carpineto P, Ciancaglini M, Zuppardi E, Falconio G, Doronzo E, Mastropasqua L. Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology. 2003; 110(1):190-5.

291. Gürses-Ozden R, Teng C, Vessani R, Zafar S, Liebmann JM, Ritch R. Macular and retinal nerve fiber layer thickness measurement reproducibility using optical coherence tomography (OCT-3). J Glaucoma. 2004; 13(3):238-44.

292. Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci. 2004; 45(6):1716-24.

293. Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2005; 46(7):2440-3.

294. Pueyo V, Polo V, Larrosa JM, Mayoral F, Ferreras A, Honrubia FM. Reproducibility of optic nerve head and retinal nerve fiber layer thickness measurements using optical coherence tomography. Arch Soc Esp Oftalmol. 2006; 81(4):205-11.

295. Budenz DL, Fredette MJ, Feuer WJ, Anderson DR. Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. Ophthalmology. 2008; 115(4):661-6.e4.

296. Cettomai D, Pulicken M, Gordon-Lipkin E, Salter A, Frohman TC, Conger A et al. Reproducibility of optical coherence tomography in multiple sclerosis. Arch Neurol. 2008; 65(9):1218-22.

297. Antón A, Castany M, Pazos-Lopez M, Cuadrado R, Flores A, Castilla M. Reproducibility of measurements and variability of the classification algorithm of Stratus OCT in normal, hypertensive, and glaucomatous patients. Clin Ophthalmol. 2009; 3:139-45.

298. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009; 116(7): 1257-63.

299. Alasil T, Tan O, Lu AT, Huang D, Sadun AA. Correlation of Fourrier domain optical coherence tomography retinal nerve fiber layer maps with visual fields in nonarteritic ischemic optic neuropathy. Ophthalmic Surg Lasers Imaging. 2008; 39(4 Suppl):S71-9.

300. Menke MN, Knecht P, Sturm V, Dabov S, Funk J. Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT. Invest Ophthalmol Vis Sci. 2008; 49(12):5386-91.

301. Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG. Assessment of Artifacts and Reproducibility across Spectral- and Time-Domain Optical Coherence Tomography Devices. Ophthalmology. 2009; 116(10):1960-70.

302. González-Garcia AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue Retinal Nerve Fiber Layer Thickness and Optic Disc Measurements and Agreement with Stratus Optical Coherence Tomography Measurements. Am J Ophthalmol. 2009; 147(6):1067-74.

303. Menke MN, Dabov S, Knecht P, Sturm V. Reproducibility of Retinal Thickness Measurements in Healthy Subjects Using Spectralis Optical Coherence Tomography. Am J Ophthalmol. 2009; 147(3):467-72.

304. Schimiti RB, Costa VP. Análise de Progressão dos Defeitos. Perimetria Computadorizada. Um guia Básico de Interpretação. 3ª Ed. Rio de Janeiro: Cultura Médica: Guanabara Koogan, 2009; p. 164.

305. Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with Cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010; 51(11):5724-30.

306. Kiernan DF, Hariprasad SM. Normative Databases in SD-OCT: A Status Report. Retinal Physician. 2010; 7(3): 16-8, 20-6, 28-9.

307. Menz HB, Latt MD, Tiedemann A, Mun San Kwan M, Lord SR. Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture. 2004; 20(1):20-5.

308. Motta VT. Medidas de dispersão. In: Motta VT. Bioestatística 2ª. Edição. Caxias do
Sul: Educs, 2006; p.40.

309. Fisher RA. Statistical methods for research workers. New York: Hafner Press; 1925.

310. Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing reliability. Psychological Bulletin. 1979; vol. 86, n° . 2; p. 420-8.

311. Wu Z, Vazeen M, Varma R, Chopra V, Walsh AC, LaBree LD et al . Factors associated with variability in retinal nerve fiber layer thickness measurements obtained by optical coherence tomography. Ophthalmology. 2007; 114(8):1505–12.

312. Gürses-Ozden R, Ishikawa H, Hoh ST, Liebmann JM, Mistlberger A, Greenfield DS et al. Increasing sampling density improves reproducibility of optical coherence tomography measurements. J Glaucoma. 1999; 8(4):238–41.

313. Garas A, Vargha P, Holló G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010; 117(4):738-46.

314. Pierro L, Gagliardi M, Iuliano L, Ambrosi A, Bandello F. Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. Invest Ophthalmol Vis Sci. 2012; 53(9):5912-20.

315. Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA et al. Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 2009; 93(6):775-81.

316. Lee SH, Kim SH, Kim TW, Park KH, Kim DM. Reproducibility of retinal nerve fiber thickness measurements using the test-retest function of spectral OCT/SLO in normal and glaucomatous eyes. J Glaucoma. 2010; 19(9):637-42.

317. Li JP, Wang XZ, Fu J, Li SN, Wang NL. Reproducibility of RTVue retinal nerve fiber layer thickness and optic nerve head measurements in normal and glaucoma eyes. Chin Med J (Engl). 2010 123(14):1898-903.

318. Mansoori T, Viswanath K, Balakrishna N. Reproducibility of peripapillary retinal nerve fibre layer thickness measurements with spectral domain optical coherence tomography in normal and glaucomatous eyes. Br J Ophthalmol. 2011; 95(5):685-8.

319. Langenegger SJ, Funk J, Töteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 2011; 52(6):3338-44.

320. Wu H, de Boer JF, Chen TC. Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma. 2011; 20(8):470-6.

321. Hong JT, Sung KR, Cho JW, Yun SC, Kang SY, Kook MS. Retinal nerve fiber layer measurement variability with spectral domain optical coherence tomography. Korean J Ophthalmol. 2012; 26(1):32-8.

322. Tan BB, Natividad M, Chua KC, Yip LW. Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. J Glaucoma. 2012; 21(4):266-73.

323. Töteberg-Harms M, Sturm V, Knecht PB, Funk J, Menke MN. Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT. Graefes Arch Clin Exp Ophthalmol. 2012; 250(2):279-87.

7- ANEXO
ANEXO 1: PARECER DO COMITÊ ÉTICA

FACULDADE DE CIÊNCIAS MÉDICAS COMITÊ DE ÉTICA EM PESQUISA

S www.fcm.unicamp.br/pesquisa/etica/index.html

CEP, 14/04/09. (Grupo III)

PARECER CEP: N° 173/2009 (Este n° deve ser citado nas correspondências referente a este projeto) CAAE: 0127.0.146.000-09

I - IDENTIFICAÇÃO:

PROJETO: **"VARIABILIDADE DE MEDIDAS DE ESPESSURA DE CAMADA DE** FIBRAS NERVOSAS PERIPAPILAR UTILIZANDO SPECTRAL-DOMAIN OCT". PESQUISADOR RESPONSÁVEL: Fernanda Cremasco. INSTITUIÇÃO: Hospital das Clínicas/UNICAMP APRESENTAÇÃO AO CEP: 10/03/2009 APRESENTAR RELATÓRIO EM: 14/04/10 (O formulário encontra-se no *site* acima)

II - OBJETIVOS

Determinar a reprodutibilidade e variabilidade intrasessão e intersessão de medidas de espessura de camada de fibras nervosas peripapilares em pacientes glaucomatosos e em indivíduos saudáveis, utilizando o Cirrus OCT.

III - SUMÁRIO

Projeto de Tese de mestrado que será realizado no HC - UNICAMP, onde serão incluídos no estudo dois grupos: o primeiro composto de 30 pacientes acompanhados no setor de glaucoma do Hospital das Clínicas da UNICAMP e o segundo de 30 indivíduos saudáveis voluntários. Todos serão submetidos a exame oftalmológico completo. Serão incluídos no grupo de glaucoma indivíduos com diagnóstico de qualquer forma de glaucoma crônico, definido como anormalidades de nervo óptico consistentes com dano glaucomatoso, com ou sem perda de campo visual. Apenas pacientes com pressão intraocular estável serão incluídos. Outros critérios de inclusão serão: acuidade visual corrigida melhor que 20/40, <5D esféricas e < 3D cilindricas, ausência de história de doenças oculares ou sistêmicas que possam interferir nos resultados dos testes ou na acuidade visual que possam causar confusão no reconhecimento de alterações devidas somente ao glaucoma: capacidades de realizar o exame e vontade expressa de participar do estudo. Os sujeitos do grupo normal serão voluntários. Os critérios de inclusão serão: ausência de história de doenças oculares; ausência de história de glaucoma na família; pressão intraocular < 21mmHg medida por tonometroGoldman; acuidade visual corrigida de 20/40, ou melhor; ângulo aberto à gonioscopia, aparência normal do nervo óptico, GHT e PSD dentro dos limites de normalidade à perimetria automatizada. Todos os sujeitos do estudo serão submetidos a medidas de espessura de camadas de fibras nervosas com o Cirrus HD-OCT 5 vezes durante o mesmo dia por um único examinador e em mais 4 dias diferentes. Os testes serão realizados sem necessidade de dilatação pupilar. Exame de campo visual e fotografia do fundo do olho também serão realizados. As fotografias serão realizadas utilizando o aparelho Cirrus OCT, cinco vezes no mesmo dia e em mais quatro dias adicionais. Estes procedimentos são normalmente realizados em qualquer exame oftalmológico.

IV - COMENTÁRIOS DOS RELATORES

1

Comité de Ética em Pesquisa - UNICAMP Run: Tessália Vicira de Camargo, 126 Caixa Postal 6111 13083-887 Campinas - SP

FONE (019) 3521-8936 FAX (019) 3521-7187 cep@fcm.unicamp.br

- 1 -

FACULDADE DE CIÊNCIAS MÉDICAS COMITÊ DE ÉTICA EM PESQUISA

S www.fcm.unicamp.br/pesquisa/etica/index.html

Após respostas às pendências, o projeto encontra-se adequadamente redigido e de acordo com a Resolução CNS/MS 196/96 e suas complementares, bem como o Termo de Consentimento Livre e Esclarecido.

V - PARECER DO CEP

O Comitê de Ética em Pesquisa da Faculdade de Ciências Médicas da UNICAMP, após acatar os pareceres dos membros-relatores previamente designados para o presente caso e atendendo todos os dispositivos das Resoluções 196/96 e complementares, resolve aprovar sem restrições o Protocolo de Pesquisa, bem como ter aprovado o Termo do Consentimento Livre e Esclarecido, assim como todos os anexos incluídos na Pesquisa supracitada.

O conteúdo e as conclusões aqui apresentados são de responsabilidade exclusiva do CEP/FCM/UNICAMP e não representam a opinião da Universidade Estadual de Campinas nem a comprometem.

VI - INFORMAÇÕES COMPLEMENTARES

O sujeito da pesquisa tem a liberdade de recusar-se a participar ou de retirar seu consentimento em qualquer fase da pesquisa, sem penalização alguma e sem prejuízo ao seu cuidado (Res. CNS 196/96 – Item IV.1.f) e deve receber uma cópia do Termo de Consentimento Livre e Esclarecido, na íntegra, por ele assinado (Item IV.2.d).

Pesquisador deve desenvolver a pesquisa conforme delineada no protocolo aprovado e descontinuar o estudo somente após análise das razões da descontinuidade pelo CEP que o aprovou (Res. CNS Item III.1.z), exceto quando perceber risco ou dano não previsto ao sujeito participante ou quando constatar a superioridade do regime oferecido a um dos grupos de pesquisa (Item V.3.).

O CEP deve ser informado de todos os efeitos adversos ou fatos relevantes que alterem o curso normal do estudo (Res. CNS Item V.4.). É papel do pesquisador assegurar medidas imediatas adequadas frente a evento adverso grave ocorrido (mesmo que tenha sido em outro centro) e enviar notificação ao CEP e à Agência Nacional de Vigilância Sanitária – ANVISA – junto com seu posicionamento.

Eventuais modificações ou emendas ao protocolo devem ser apresentadas ao CEP de forma clara e sucinta, identificando a parte do protocolo a ser modificada e suas justificativas. Em caso de projeto do Grupo I ou II apresentados anteriormente à ANVISA, o pesquisador ou patrocinador deve enviá-las também à mesma junto com o parecer aprovatório do CEP, para serem juntadas ao protocolo inicial (Res. 251/97, Item III.2.e)

Relatórios parciais e final devem ser apresentados ao CEP, de acordo com os prazos estabelecidos na Resolução CNS-MS 196/96.

VI I- DATA DA REUNIÃO

Homologado na III Reunião Ordinária do CEP/FCM, em 24 de março de 2009.

Profa. Dra. Carmen Silvia Bertuzzo PRESIDENTE DO COMITÊ DE ÉTICA EM PESQUISA FCM/UNICAMP

Comitê de Ética em Pesquisa - UNICAMP Rua: Tessália Vicira de Camargo, 126 Caixa Postal 6111 13083-887 Campinas - SP

FONE (019) 3521-8936 FAX (019) 3521-7187 cep@fcm.unicamp.br

146

-2-

8- APÊNDICES

APÊNDICE 1: TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

APÊNDICE 2: DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS EM PACIENTES COM GLAUCOMA E EM INDIVÍDUOS SAUDÁVEIS

APÊNDICE 3: PUBLICAÇÃO DA TESE: "Intrasession, Intersession and Interexaminer Variabilities of Retinal Nerve Fiber Layer Measurements with Spectral Domain OCT"; European Journal of Ophthalmology. 2011; 21(3):264-70.

APÊNDICE 1: TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

Nome do projeto:	Variabilidade o	de medidas	de espessura	da camada	de fibras
nervosas peripapila	r utilizando Sp	ectral-domai	in OCT		
Responsável pela conduç	ção da pesquisa:				
Dra.Fernanda Cremasco	/ Dr. Álvaro Pedr	oso Lupinacci	Dra. Graziela M	lassa Resende/	Dra. Vanessa
Gonçalves Vidotti/ Dr. V	ital Paulino Costa				
Nome:					
Idade:	RG				
НС					
Endereço					

Eu, ______, autorizo minha participação na pesquisa: Variabilidade de medidas de espessura da camada de fibras nervosas peripapilar utilizando Spectral-domain OCT. O objetivo da pesquisa é determinar se os valores das medidas de espessura da camada de fibras nervosas obtidas com o Cirrus OCT são reprodutíveis em diferentes testes realizados no mesmo dia e em dias diferentes, tanto em indivíduos normais quanto em indivíduos com glaucoma. Sei que serei submetido (a) a consulta oftalmológica completa, exame de campo visual e a cinco testes com OCT no primeiro dia de consulta e em mais quatro dias não necessariamente consecutivos. Na consulta oftalmológica as pupilas serão dilatadas após instilação de colírio e, durante algumas horas, poderá haver embaçamento para perto e sensibilidade à luz. Não será divulgada a identificação dos participantes e não haverá despesas pessoais para o participante além do custo com o transporte para a consulta. Também não haverá compensação financeira com a participação no projeto. Aceito e concordo em participação não irá interferir no atendimento caso mantenha acompanhamento ambulatorial no serviço de oftalmologia do hospital das Clínicas da UNICAMP.

Posso esclarecer qualquer dúvida que venha a ter entrando em contato com o pesquisador, Fernanda Cremasco, pelos telefones: 19 81288616 ou 19 33428716

Em caso de queixa ligar para o Comitê de Ética em Pesquisa (19 35218936)

Assinatura do participante ou responsável

Assinatura do pesquisador

Local e data:

APÊNDICE 2: DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS EM PACIENTES COM GLAUCOMA E EM INDIVÍDUOS SAUDÁVEIS

	DISTRIBUIÇÃO DE DADOS DEMOGRAFICOS INDIVIDUAIS DA ANALISE INTRASESSÃO NO GRUPO GLAUCOMA											
No	Iniciais	Idade	Sexo	Raça	Olho	Acuidade Visual	Refração					
1	HMV	86	F	B	D	0,7	-1,00-1,25 70					
2	ESP	62	F	В	Е	0,5	0,25-1,50 175					
3	RAF	58	М	В	D	0,9	+1,50 -0,25 145					
4	JPN	79	Μ	В	Е	0,5	-1,00-2,25 90					
5	JFC	48	F	В	D	1,0	PL					
6	MJL	62	F	В	D	1,0	+2,75 -0,75 100					
7	MCL	60	F	В	Е	0,5	+1,75					
8	FTJ	58	F	В	D	0,9	-0,50					
9	HSCV	62	F	Ν	D	1,0	+1,75					
10	AC	57	Μ	В	D	1,0	PL					
11	RFM	28	Μ	В	D	1,0	PL					
12	AJLC	62	F	Ν	E	0,6	PL					
13	JGS	55	F	Ν	E	0,7	+1,50-1,00 105					
14	MIMSP	66	F	В	D	1,0	PL					
15	MGS	59	F	Ν	D	0,7	+0,75					
16	MFV	58	F	Ν	D	1,0	+1,25					
17	MLRE	61	F	В	D	1,0	+0,75					
18	MCSP	51	F	В	D	1,0	+1,50-0,50 80					
19	GFC	64	F	Ν	D	0,6	+1,50					
20	RG	46	F	В	D	1,0	PL-0,50 10					
21	GM	68	Μ	В	D	0,6	+1,00					
22	VLMM	51	F	Ν	D	0,8	+2,50-3,00 20					
23	MPS	48	F	В	D	1,0	+1,50					
24	JDS	53	F	В	D	1,0	+1,75-0,50 90					
25	IAL	64	Μ	В	D	1,0	-1,00					
26	JN	55	Μ	В	D	0,9	+0,25					
27	JDS	55	F	В	D	1,0	PL					
28	ASF	62	F	В	D	0,5	-2,25-2,00 120					
29	JGT	58	Μ	Ν	D	0,9	2,25 -1,25 180					
30	SAA	63	М	Ν	E	1,0	+0,75					
31	APS	39	Μ	В	E	0,5	1,50 -3,50 18					
32	MG	74	F	В	E	0.8	1,00 -1,25 95					
33	OR	59	F	В	E	1.0	+0,75 -0,50 170					
34	VR	46	Μ	В	D	1.0	-1,75-0,50 80					

		Inibidor				Pattern	
	Beta	Anidrase	Alfa	Análogos de	Mean	Standard	Pressão
No	Bloqueador	Carbônica	Agonistas	Prostaglandinas	Deviation	Deviation	Intraocular
1	X		-	X	-7,52	6,59	12
2				Х	-4,64	1,45	15
3	Х	Х		Х	-3,43	3,73	13
4	Х	Х	Х	Х	-13,89	10,86	12
5	Х				-0,46	1,13	15
6	Х	Х	Х	Х	-0,65	1,67	15
7				Х	-10,66	10,77	13
8	Х			Х	-1,55	1,86	18
9	Х	Х	Х	Х	-4,06	2,36	18
10			Х	Х	-3,17	5,03	19
11		Х			-4,99	2,95	12
12		Х			-25,78	10,3	9
13	Х			Х	-1,47	1,64	12
14	Х				0,05	1,54	13
15	Х	Х	Х		-22,98	10,13	16
16	Х	Х	Х	Х	-9,25	9,61	12
17		Х		Х	-2,88	2,49	18
18	Х			Х	0,11	1,49	16
19				Х	-22,22	13,08	8
20	Х		Х		-4,4	3,46	16
21	Х	Х			-3,45	2,45	14
22	Х				-2,88	1,49	20
23		Х	Х	Х	-5,49	5,69	18
24	Х				-3,64	6,02	16
25	Х	Х	Х	Х	1,41	2,06	12
26	Х			Х	0,83	1,59	15
27	Х				-14,17	13,47	15
28	Х	Х	Х	Х	-3,8	2,27	12
29				Х	-0,02	1,44	15
30	Х				-0,4	1,59	12
31			Х		-20,2	12,73	12
32				Х	-2,38	2,39	12
33	Х			Х	-4,09	5,17	21
34	Х	Х		Х	-1,4	-0,97	15

DISTRIBUIÇÃO DE DADOS DEMOGRÁFICOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO NO GRUPO GLAUCOMA

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T1	T1	T1	T1	T1	T1
1	8	103	124	76	142	69
2	8	77	87	70	88	54
2	8	74	86	66	86	58
4	7	50	54	56	51	40
5	8	84	101	50 65	99	70
6	8	90	101	65	116	76
7	8	53	58	50	69	35
8	9	54	50 62	52	99	52
9	7	54 74	02 74	65	99	56
10	9	93	111	63	138	58
11	8	62	76	65	57	52
12	8	63	64	57	60	52 70
13	7	80	98	63	110	51
14	, 7	80	100	68	100	71
15	8	71	73	69	73	71
16	8	70	91	58	82	48
17	7	73	77	70	86	61
18	8	69	88	6	84	48
19	8	67	77	67	88	37
20	8	79	86	72	94	63
21	7	92	112	73	121	62
22	8	94	116	83	115	64
23	8	75	82	67	89	63
24	9	89	121	75	97	62
25	8	85	101	77	114	50
26	8	81	98	66	102	57
27	9	61	86	68	58	34
28	7	81	99	77	96	52
29	8	76	95	59	95	56
30	8	83	108	70	106	47
31	7	66	70	64	66	65
32	8	78	89	73	94	55
33	8	99	108	79	126	82
34	7	59	70	49	61	55

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO GLAUCOMA NA PRIMEIRA SESSÃO

GLAUCOMA NA PRIMEIRA SESSÃO										010		
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T 1
1	117	97	58	73	124	165	136	68	59	79	137	118
2	77	87	78	67	55	96	112	46	53	63	107	77
3	68	74	64	61	75	84	97	74	46	55	93	98
4	58	59	56	54	54	41	59	47	34	39	50	53
5	86	83	56	56	69	86	140	71	46	94	129	88
6	76	82	53	61	82	139	127	76	65	85	130	100
7	55	55	44	51	50	82	76	33	36	37	67	53
8	80	36	54	66	104	97	97	50	43	62	29	30
9	57	75	61	59	85	119	91	55	48	65	76	90
10	96	78	50	55	122	169	124	45	49	80	138	99
11	47	78	61	55	39	65	97	48	59	49	117	63
12	68	60	59	52	52	81	48	64	77	68	58	66
13	97	79	57	54	95	108	126	54	43	56	92	103
14	74	72	56	75	72	10	123	80	46	85	131	94
15	72	84	57	65	77	85	56	77	85	51	59	89
16	100	68	51	57	90	99	56	57	39	49	78	94
17	50	67	74	68	75	95	87	63	51	70	89	92
18	83	69	44	57	70	106	76	43	49	50	84	98
19	71	71	63	66	92	99	73	44	28	40	87	71
20	69	79	65	73	101	110	73	62	54	74	83	105
21	111	83	64	72	117	148	99	60	51	74	96	130
22	95	115	68	65	74	137	133	62	56	74	143	110
23	74	74	64	62	63	92	111	56	55	79	113	60
24	119	91	59	74	89	87	115	65	47	74	116	129
25	88	89	71	71	87	142	114	45	44	60	105	109
26	87	76	65	56	91	117	100	52	48	69	122	84
27	55	80	58	67	69	62	43	28	33	42	86	116
28	81	82	76	73	82	115	91	53	48	55	86	130
29	89	61	52	63	68	110	106	66	49	53	69	126
30	118	85	59	66	84	142	91	38	48	56	97	110
31	63	63	69	60	62	74	63	59	64	72	64	83
32	79	75	62	82	86	107	88	41	55	68	103	86
33	122	100	69	69	93	120	167	100	55	90	127	76
34	58	58	38	50	52	57	75	63	47	56	70	82

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO
GLAUCOMA NA PRIMEIRA SESSÃO

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T2	T2	T2	T2	T2	T2
1	9	103	122	79	142	69
2	9	81	80	80	91	74
3	8	74	85	69	84	59
4	7	51	50	57	58	38
5	8	86	102	60	107	75
6	8	91	103	68	119	75
7	8	54	60	51	71	34
8	9	80	94	68	106	52
9	8	74	75	64	98	57
10	8	91	102	64	138	59
11	8	61	70	66	59	51
12	7	62	63	58	56	72
13	7	80	96	62	113	50
14	9	90	111	72	108	68
15	8	59	60	43	71	61
16	8	71	95	60	80	48
17	8	73	70	75	83	65
18	8	67	86	57	82	43
19	7	66	78	68	79	38
20	8	78	85	72	93	63
21	7	94	118	76	122	62
22	7	96	116	81	124	64
23	7	75	84	67	88	61
24	9	115	73	112	62	107
25	8	86	103	73	119	50
26	8	81	100	67	102	57
27	8	60	87	58	59	34
28	7	80	93	81	95	52
29	7	78	97	65	96	55
30	8	86	111	74	110	50
31	8	68	73	64	70	66
32	8	74	83	75	84	54
33	8	92	122	65	107	74
34	8	61	75	50	62	55

	GLAUCOMA NA SEGUNDA SESSÃO											010
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2
1	112	105	59	75	126	165	135	68	59	79	128	127
2	76	84	75	80	68	87	119	78	70	75	112	52
3	70	73	69	66	73	86	93	72	46	58	90	94
4	65	60	58	53	62	45	66	46	31	37	44	42
5	85	75	53	51	74	90	157	78	48	100	136	86
6	79	88	56	59	87	145	126	75	65	86	129	99
7	56	80	46	49	52	83	79	32	34	36	69	54
8	90	71	61	73	117	100	101	49	42	64	103	91
9	65	78	54	60	86	118	90	56	50	66	75	85
10	90	78	56	58	129	179	108	42	49	86	129	89
11	40	71	65	61	40	68	69	46	52	55	122	48
12	68	60	59	56	51	64	54	62	85	68	58	64
13	96	77	56	53	102	112	125	55	42	54	84	108
14	83	82	60	75	82	112	131	82	47	75	136	115
15	42	34	43	53	68	96	51	67	75	40	55	84
16	113	74	51	56	89	99	53	55	40	49	72	101
17	44	65	76	82	70	92	87	60	50	86	98	68
18	75	72	48	51	63	101	81	41	39	49	86	98
19	74	72	62	69	83	96	58	35	29	51	91	67
20	70	78	70	67	90	113	76	60	54	76	82	104
21	120	93	67	68	124	147	94	61	52	74	102	131
22	98	107	68	68	89	153	130	60	58	73	139	111
23	73	76	62	62	62	94	107	56	52	75	114	63
24	107	92	59	69	109	103	125	60	49	77	113	125
25	95	86	62	71	96	150	112	45	44	60	106	109
26	99	78	65	57	94	118	94	51	48	71	122	80
27	54	72	45	58	60	71	45	32	30	40	89	118
28	73	82	79	82	81	111	94	52	47	56	85	122
29	96	68	57	72	75	115	99	63	48	53	69	126
30	115	80	74	69	88	151	92	41	49	59	104	114
31	62	62	68	62	66	79	65	60	61	77	70	88
32	70	81	62	81	86	94	73	40	54	68	105	74
33	122	79	56	61	83	106	130	86	51	86	150	94
34	65	59	40	52	54	56	76	63	46	55	76	86

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T3	Т3	Т3	Т3	Т3	Т3
1	9	105	129	82	139	70
2	7	77	83	77	86	63
3	8	74	85	68	85	60
4	7	51	54	58	53	40
5	8	86	103	63	107	73
6	9	92	107	68	120	75
7	8	57	62	62	69	36
8	8	84	102	69	112	54
9	7	71	69	63	94	57
10	9	94	112	64	138	60
11	8	63	77	60	62	46
12	7	63	65	59	56	74
13	7	82	99	60	114	52
14	8	88	103	68	101	78
15	8	69	72	67	76	59
16	8	70	95	60	77	48
17	8	72	71	75	78	65
18	8	70	92	57	84	48
19	7	65	78	69	76	37
20	8	79	86	69	95	64
21	7	94	116	76	120	64
22	7	83	114	39	119	61
23	8	76	88	71	87	60
24	9	89	112	77	105	64
25	8	99	76	119	48	91
26	8	101	66	103	58	94
27	8	58	82	57	59	36
28	7	80	92	81	95	53
29	8	80	99	63	99	57
30	7	83	107	74	105	48
31	8	69	69	66	65	58
32	7	74	86	72	86	52
33	9	91	118	61	103	82
34	7	61	74	49	58	63

	GLAUCOMA NA TERCEIRA SESSÃO										010	
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T3	T3	T3	T3	T3	T3	T3	T3	T3	T3	Т3	Т3
1	122	107	66	74	109	166	141	71	59	80	141	124
2	84	83	70	77	66	68	125	57	63	70	104	62
3	69	71	67	68	77	84	93	75	48	58	94	90
4	58	61	58	54	58	42	61	47	33	39	52	53
5	86	80	55	55	75	95	150	74	48	97	134	87
6	81	84	58	61	85	148	126	75	66	83	136	104
7	64	70	60	57	52	83	74	32	37	37	67	56
8	97	70	61	76	121	106	108	51	43	66	111	99
9	52	80	54	56	82	114	87	58	51	61	69	85
10	102	81	53	60	212	168	126	44	49	88	135	99
11	42	75	62	57	42	75	70	43	45	48	122	68
12	69	61	59	57	48	69	51	68	78	75	61	65
13	95	80	61	54	103	111	128	56	43	57	97	106
14	70	71	59	76	78	98	127	97	48	90	144	95
15	69	83	55	63	70	102	56	64	66	45	53	95
16	110	76	52	52	87	92	51	58	38	47	70	104
17	47	74	76	74	64	88	83	59	53	82	101	67
18	84	73	44	55	67	107	79	42	52	50	83	107
19	71	72	64	70	88	89	51	38	28	45	90	73
20	67	74	66	66	98	109	77	62	55	76	87	105
21	118	89	67	72	111	148	101	62	54	77	101	130
22	84	26	29	63	86	163	110	55	57	71	138	120
23	87	79	69	63	62	92	105	57	51	73	114	63
24	114	104	91	59	80	96	122	61	52	78	116	114
25	91	86	69	72	97	148	111	45	42	59	96	109
26	94	75	67	56	92	117	101	53	49	71	124	84
27	49	69	45	58	60	71	45	34	36	38	93	103
28	77	80	84	78	76	113	94	52	49	57	82	116
29	94	67	54	67	80	115	103	67	50	54	71	134
30	109	83	69	70	95	147	71	38	49	58	99	113
31	58	66	74	69	66	70	61	60	58	76	66	83
32	74	76	59	83	91	95	73	38	51	66	93	91
33	121	77	51	54	58	104	148	102	54	90	141	91
34	58	54	39	53	52	52	71	63	65	62	79	85

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T4	T4	T4	T4	T4	T4
1	9	105	125	80	145	69
2	7	78	85	71	88	67
3	8	74	84	71	84	57
4	7	54	58	58	59	41
5	8	84	100	63	100	72
6	9	91	101	66	120	76
7	8	57	63	63	70	33
8	8	82	99	69	107	53
9	7	73	72	62	96	59
10	9	91	104	66	134	60
11	7	61	72	63	59	52
12	7	59	63	57	54	62
13	7	80	99	60	111	52
14	8	88	109	69	107	66
15	8	70	72	67	77	64
16	8	71	94	63	80	47
17	8	74	79	72	85	62
18	9	68	86	57	83	46
19	8	65	81	68	76	34
20	8	77	82	72	91	61
21	7	91	112	66	123	62
22	7	94	116	78	116	64
23	7	74	87	68	82	59
24	9	87	111	74	102	61
25	8	86	103	77	115	49
26	8	82	99	67	105	58
27	9	49	85	20	60	32
28	7	79	87	81	95	52
29	8	78	94	65	98	57
30	7	82	111	72	99	48
31	8	66	69	66	69	60
32	7	76	85	74	90	53
33	8	97	121	73	117	77
34	7	60	74	48	59	57

	GLAUCOMA NA QUARTA SESSÃO											010
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4
1	123	103	59	78	128	169	139	70	57	79	130	122
2	83	75	71	67	60	68	135	62	66	72	105	68
3	70	77	69	68	74	84	93	70	48	54	89	92
4	59	60	57	55	55	62	60	49	33	41	60	53
5	83	81	56	53	76	85	140	80	46	90	129	88
6	80	85	55	59	87	146	126	76	66	84	127	95
7	67	76	58	56	52	84	75	32	35	34	67	55
8	99	72	58	77	116	100	104	52	43	65	107	92
9	59	80	49	58	82	117	88	57	60	61	74	84
10	95	84	56	57	126	167	109	42	51	87	127	89
11	42	76	62	50	39	71	68	48	57	50	113	60
12	68	58	59	55	46	68	47	55	71	59	59	62
13	88	68	59	53	106	107	119	56	42	56	97	112
14	82	78	58	71	82	116	123	77	46	74	130	116
15	74	82	54	67	75	99	56	74	71	49	58	83
16	113	82	52	55	87	99	55	56	38	46	70	99
17	50	76	70	70	69	96	89	61	51	74	100	88
18	82	75	47	50	63	102	85	45	45	48	81	95
19	74	73	63	69	83	86	60	33	26	45	89	81
20	69	81	69	68	96	105	73	58	54	71	80	96
21	122	76	57	65	115	156	98	59	52	74	85	130
22	93	102	66	65	79	138	132	61	57	74	145	111
23	80	77	67	61	57	86	102	52	51	73	117	64
24	99	95	57	71	100	94	113	60	48	75	115	118
25	92	94	67	69	90	144	112	45	42	60	107	111
26	86	75	66	58	93	122	99	53	50	71	125	86
27	52	50	40	31	65	67	47	29	30	36	79	124
28	67	79	82	83	79	111	94	51	48	56	86	109
29	91	70	57	67	76	108	109	69	50	53	65	124
30	121	80	65	70	86	136	76	40	48	56	94	117
31	63	66	69	64	67	77	62	57	58	65	63	81
32	71	82	62	76	91	106	74	41	54	66	93	91
33	131	93	61	66	94	110	146	88	56	86	143	88
34	59	55	37	52	52	52	75	61	49	61	78	86

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T5	T5	T5	T5	T5	T5
1	8	101	123	73	139	69
2	9	81	80	80	91	74
3	8	70	84	56	85	54
4	7	51	55	57	54	38
5	9	87	107	64	103	74
6	8	95	109	74	124	73
7	7	55	59	58	69	34
8	8	83	103	72	104	53
9	8	101	123	73	139	69
10	8	91	102	64	139	59
11	8	61	73	63	60	47
12	7	62	64	59	58	65
13	7	80	100	60	108	52
14	8	89	108	72	107	68
15	7	66	67	66	72	58
16	8	70	93	62	77	47
17	8	74	79	71	81	63
18	9	69	89	57	83	48
19	8	66	76	70	85	31
20	8	79	90	73	91	63
21	7	94	117	71	126	61
22	7	96	119	78	123	63
23	8	76	87	68	86	63
24	8	95	128	76	115	62
25	7	85	104	71	117	48
26	8	81	100	64	104	56
27	9	61	89	58	58	38
28	7	78	95	73	95	51
29	7	77	92	62	96	56
30	8	84	111	73	103	49
31	8	67	73	68	69	59
32	7	74	83	70	91	53
33	8	92	118	65	107	81
34	7	59	70	49	61	55

	GLAUCOMA NA QUINTA SESSÃO											
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5
1	106	100	54	66	113	163	140	73	58	76	130	134
2	76	84	75	80	68	87	119	78	70	75	112	52
3	62	61	49	70	78	89	88	65	46	52	92	97
4	62	59	57	55	55	44	64	45	32	37	50	52
5	88	80	57	54	75	90	144	78	48	95	140	94
6	94	109	55	59	93	154	125	73	71	74	116	117
7	59	60	54	59	53	82	73	31	35	36	64	53
8	99	80	63	75	113	93	107	49	43	66	106	103
9	106	100	54	66	113	163	140	73	58	76	130	134
10	90	78	56	58	129	179	108	42	49	86	129	89
11	42	71	59	59	41	72	68	43	48	49	119	58
12	69	61	61	58	48	72	54	60	72	62	60	64
13	86	71	53	57	101	107	117	55	42	58	97	116
14	82	83	57	74	82	112	125	83	48	75	130	112
15	64	77	58	64	65	103	50	60	66	48	52	84
16	109	79	51	56	86	94	52	55	41	46	72	97
17	48	67	73	74	71	92	81	62	52	75	101	89
18	87	74	45	52	64	101	84	44	49	51	85	95
19	72	75	68	66	89	103	63	29	27	39	88	67
20	70	83	68	70	100	103	71	61	51	76	90	109
21	126	85	59	70	118	157	102	59	51	75	94	129
22	97	104	66	63	88	152	127	60	58	73	141	119
23	82	80	61	64	64	86	108	61	51	75	111	68
24	118	92	63	73	107	109	130	59	50	77	117	148
25	97	76	61	76	96	140	115	45	40	58	106	110
26	95	68	66	58	95	121	96	52	45	71	119	85
27	56	71	45	62	61	66	46	33	40	42	85	127
28	75	83	65	70	79	116	90	49	47	58	85	125
29	86	65	57	65	76	107	103	66	49	54	68	123
30	120	82	70	67	85	144	79	37	50	59	96	116
31	61	72	69	63	63	75	68	59	58	62	68	90
32	75	76	60	74	85	109	78	41	51	66	95	79
33	123	83	64	61	83	102	130	90	51	90	150	90
34	58	58	38	50	52	57	75	63	47	56	70	82

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO

	DISTRIBUIÇÃO DE DADOS DEMOGRÁFICOS INDIVIDUAIS DA ANÁLISE											
		IN	TRASE	SSÃO	NO GRI	JPO SAUDÁVEL						
No	Iniciais	Idade	Sexo	Raça	Olho	Acuidade Visual	Refração					
35	MIGA	44	F	В	D	1,0	+2,75-0,25 100					
36	LM	26	Μ	В	D	1,0	-1,25					
37	CRS	52	F	В	D	1,0	+0,25-1,75 180					
38	TFM	49	F	В	D	1,0	+1,25-1,00 90					
39	AMS	49	F	В	D	1,0	PL					
40	AEOF	54	F	В	D	1,0	PL					
41	MSS	42	F	В	D	1,0	PL					
42	SARS	44	F	В	D	1,0	-0,50					
43	RRA	34	Μ	В	D	1,0	PL					
44	GM	28	F	В	D	1,0	-2,75					
45	FR	30	Μ	В	D	1,0	-0,50-1,25 125					
46	EA	35	Μ	В	D	1,0	PL					
47	VPC	43	Μ	В	D	1,0	PL					
48	IC	29	F	В	D	1,0	-0,50					
49	MG	28	F	В	D	1,0	PL					
50	MS	52	F	В	D	1,0	+0,50					
51	CS	40	Μ	В	D	1,0	PL					
52	GGL	24	Μ	В	D	1,0	PL					
53	RBS	25	Μ	В	D	1,0	-2,75					
54	ERC	52	Μ	В	D	0,6	-2,75-0,25 180					
55	VGV	27	F	В	D	1,0	-0,50 180					
56	MFSA	47	F	В	D	1,0	-0,25 85					
57	CC	57	F	В	D	1,0	+1,25					
58	EES	51	F	В	E	0,6	+1,00					
59	ASM	45	F	Ν	D	1,0	PL					
60	CRSM	36	F	В	D	1,0	+0,25-0,50 80					
61	EF	25	Μ	В	D	1,0	PL					
62	JJM	50	Μ	В	D	1,0	+0,50-0,50 15					
63	MF	26	F	В	D	1,0	PL					
64	APF	44	Μ	В	D	1,0	-0,25-1,00 5					
65	JPV	46	Μ	В	D	1,0	PL					
66	AAP	51	Μ	В	D	1,0	+4.0 -0,25 90					
67	ALH	34	F	В	D	1.0	PL					

		Inibidor				Pattern	
	Beta	Anidrase	Alfa	Análogos de	Mean	Standard	Pressão
No	Bloqueador	Carbônica	Agonistas	Prostaglandinas	Deviation	Deviation	Intraocular
35					-2,34	1,41	13
36					-1,35	1,35	14
37					-2,04	2,21	12
38					-3,29	2,49	12
39					-0,79	1,38	12
40					-2,97	2,58	10
41					0,92	0,98	12
42					-1,51	1,61	13
43					-1,38	1,21	12
44					-0,44	1,61	14
45					-1,45	1,41	15
46					-0,34	1,46	17
47					-0,74	1,15	13
48					-1,36	1,44	13
49					-0,29	1,5	14
50					0,86	1,06	16
51					-1,08	1,19	12
52					-1,75	1,58	12
53					0,37	1,2	14
54					-2,93	1,29	18
55					-0,91	1,37	15
56					-1,98	1,79	12
57					-0,95	2	13
58					0,02	1,05	12
59					-0,56	1,66	12
60					-0,93	1,24	13
61					-2,01	1,48	14
62					0,38	1,22	18
63					-1,12	1,19	12
64					-0,97	1,38	11
65					-0,34	2,01	15
66					-1,58	2,02	12
67					-1,54	1,2	12

DISTRIBUIÇÃO DE DADOS DEMOGRÁFICOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO NO GRUPO SAUDÁVEL

	Sinal	Espessura Media		Nacal	Inferior	Temporal
No	T1	T1		T1	T1	T emporar T1
25	0	02	115	60	11	67
33 26	9	92	115	69	110	07 60
30 27	ð	90	125	69	115	60
31 20	ð	95	114	82	110	03
38 20	8	104	121	99	134	61 52
39 40	9	//	87	62 75	106	52
40	9	84	99	/5	110	54
41	9	95	123	87	117	54
42	9	80	102	58	102	59
43	8	107	163	11	119	6/
44	8	102	130	60	123	95
45	8	90	118	67	116	58
46	8	93	120	65	113	73
47	8	75	99	53	97	52
48	9	91	131	65	108	61
49	9	104	140	83	128	65
50	9	101	123	86	125	72
51	8	106	117	74	136	95
52	9	111	170	58	143	72
53	7	101	141	79	117	66
54	7	91	123	78	100	63
55	8	110	110	81	156	94
56	8	95	120	65	131	65
57	7	107	140	99	134	56
58	9	91	119	54	126	67
59	8	111	131	77	165	70
60	9	85	109	63	115	53
61	9	116	168	96	131	66
62	8	10	121	73	159	67
63	8	104	124	83	144	66
64	7	89	103	86	109	57
65	8	101	124	74	144	61
66	9	85	101	72	107	58
67	9	98	147	63	117	64

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO SAUDÁVEL NA PRIMEIRA SESSÃO

SAUDÁVEL NA PRIMEIRA SESSÃO											010	
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1
35	107	68	61	76	93	121	135	62	56	83	128	111
36	112	73	75	60	98	126	121	55	37	60	122	141
37	93	97	71	76	87	131	130	61	46	61	138	109
38	86	130	79	87	117	136	149	64	45	75	135	142
39	71	81	48	59	85	124	109	49	45	61	97	91
40	72	70	75	80	92	125	113	51	45	66	130	95
41	98	101	77	83	93	140	120	53	37	74	156	114
42	94	82	43	48	82	109	115	58	47	73	133	78
43	173	81	60	89	109	103	146	84	46	72	125	193
44	107	75	49	54	82	113	174	95	68	122	176	106
45	106	75	46	79	110	140	99	53	51	69	113	134
46	101	79	48	67	79	107	153	71	57	92	163	96
47	93	65	38	55	80	100	111	54	41	62	102	103
48	106	72	55	69	84	94	145	72	44	68	142	145
49	126	110	64	73	111	133	140	69	54	72	125	168
50	104	105	75	77	99	135	141	77	55	85	140	124
51	127	96	60	67	111	141	157	90	125	72	77	146
52	174	72	42	61	119	152	158	81	60	76	104	233
53	117	113	64	59	75	128	147	83	43	72	153	152
54	103	94	61	79	81	101	117	62	51	76	122	145
55	98	120	64	59	125	173	169	97	75	109	145	88
56	107	77	52	64	105	135	152	74	46	75	111	141
57	142	108	92	96	121	148	133	59	38	70	11	163
58	107	73	43	4	100	135	142	59	60	82	162	90
59	123	103	63	66	138	206	150	70	56	84	110	161
60	85	71	48	69	89	135	122	53	43	64	119	123
61	149	98	73	119	127	141	127	67	49	83	162	193
62	116	75	69	76	157	200	121	64	62	76	121	127
63	87	94	63	91	127	156	149	80	45	74	143	142
64	94	98	64	95	76	104	146	64	39	67	112	102
65	115	93	68	60	107	167	159	70	46	65	123	133
66	104	90	58	68	96	84	140	65	48	66	108	91
67	128	81	46	63	106	107	139	61	52	80	129	186

	~	SAUDA	VEL NA SEGUI	NDA SESSAC)	
	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	Τ2	Τ2	Τ2	Τ2	Τ2	Τ2
35	8	88	109	68	113	63
36	8	89	125	70	113	50
37	8	94	115	85	117	60
38	8	105	127	93	139	60
39	8	79	88	64	111	53
40	9	79	93	67	105	53
41	9	96	122	87	120	56
42	9	79	99	55	101	60
43	9	113	169	81	135	69
44	8	102	146	58	107	95
45	7	88	118	64	113	58
46	8	92	118	64	112	73
47	9	76	99	53	95	55
48	9	92	132	66	107	61
49	9	101	134	75	130	66
50	9	102	127	84	125	73
51	8	106	115	78	135	96
52	9	110	164	58	146	72
53	7	100	138	76	123	64
54	7	89	120	78	97	62
55	8	110	130	78	143	87
56	8	93	119	62	125	65
57	7	107	144	103	125	55
58	8	89	113	54	124	67
59	9	110	128	81	161	70
60	9	90	111	68	124	55
61	9	115	155	83	146	76
62	8	104	118	74	157	67
63	10	105	124	91	143	64
64	7	89	106	84	108	60
65	9	101	132	73	135	64
66	9	86	110	73	101	61
67	8	99	151	61	117	65

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO SAUDÁVEL NA SEGUNDA SESSÃO

SAUDÁVEL NA SEGUNDA SESSÃO												
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2
35	106	69	61	75	90	120	128	60	56	74	113	108
36	108	74	72	63	95	122	121	54	37	58	126	141
37	97	105	73	77	91	133	127	57	48	77	135	112
38	87	126	77	77	119	141	157	64	43	74	139	155
39	76	82	53	55	83	132	120	50	46	62	100	89
40	62	61	64	75	98	113	103	45	46	67	121	98
41	99	97	77	87	94	136	130	54	38	76	150	115
42	88	78	41	46	79	105	120	57	48	74	120	89
43	179	87	65	92	129	119	157	82	51	72	130	196
44	127	74	46	54	78	86	158	107	64	115	179	132
45	106	68	47	77	105	138	96	52	51	70	114	134
46	98	76	47	68	80	108	148	69	58	92	163	95
47	91	62	41	56	77	98	110	55	43	67	103	104
48	109	73	56	70	86	94	142	72	46	66	141	144
49	132	108	56	62	105	133	153	72	55	70	117	154
50	107	101	74	78	98	133	142	76	54	88	142	134
51	124	102	59	73	110	142	151	96	124	69	76	145
52	172	70	44	59	121	156	159	79	60	75	102	219
53	118	108	60	58	81	136	153	77	43	72	146	151
54	106	96	64	74	81	95	114	63	48	75	115	138
55	119	103	63	68	107	139	183	107	61	93	153	119
56	107	72	51	63	103	128	144	73	46	77	111	138
57	163	125	91	92	113	135	127	59	39	67	110	157
58	102	72	46	43	100	134	138	61	61	79	148	88
59	126	112	65	65	141	200	143	70	56	85	112	147
60	83	79	51	74	93	145	134	57	44	65	124	127
61	127	88	69	92	132	149	18	78	62	88	165	173
62	111	76	71	74	156	192	124	65	60	77	122	123
63	90	105	61	106	137	152	140	80	43	68	130	151
64	99	99	59	95	71	104	148	72	40	69	113	104
65	125	90	69	59	83	161	161	77	46	69	127	143
66	119	91	59	69	79	80	142	68	46	69	104	105
67	127	75	48	61	106	106	141	63	54	79	138	186

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO

	Sinal	Espessura Media	EL NA TERU	EIKA SESSAU Nasal	J	Temporal
No	T3	T3	T3	T3	T3	ТЗ
25	8	80	106	67	115	64
35	0	00	100	68	113	04 50
30 37	0	00 02	120	08 70	113	50
20	0	92	113	101	114	03 62
20	9	108	124	101 61	140	02 54
39 40	0	19	90	01	115	54
40	9	82 07	94 125	75 96	100	50
41	9	97	125	80 56	121	57
42	9	110	98	30 72	102	59
43	9	101	141	12	159	09
44	9	101	125	61 (5	125	94 57
45	/	89	119	65	114	57
46	8	91	118	64 52	112	/1
47	9	/0	101	53	96	54
48	9	91	129	0/	104	62
49	9	102	125	/4	141	68 70
50	10	102	129	83	124	12
51	8	104	111	/5 ()	131	98
52	9	109	162	60	143	/1
53	/	99	138	74	119	6/
54	/	89	119	/9	96	64
55	9	110	110	82	155	92
56	8	94	120	63	127	66
57	9	109	139	101	141	56
58	8	90	115	54	123	67
59	9	112	140	78	161	71
60	9	88	110	67	120	56
61	9	108	156	79	120	78
62	9	103	116	66	158	73
63	9	103	151	81	104	75
64	7	85	94	79	106	61
65	9	101	128	75	137	63
66	9	88	108	78	106	61
67	8	100	141	65	126	67

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO SALIDÁVEL NA TERCEIRA SESSÃO

SAUDÁVEL NA TERCEIRA SESSÃO											010	
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T3	T3	Т3	T3	T3	T3	Т3	T3	Т3	T3	Т3	Т3
35	96	66	62	75	91	125	128	59	55	77	113	108
36	101	68	74	62	96	121	123	54	37	59	121	139
37	97	95	67	76	85	131	125	60	47	83	136	105
38	84	130	82	91	129	147	161	63	46	78	142	147
39	80	76	52	54	84	131	123	51	47	63	104	86
40	81	73	73	73	89	123	105	52	47	70	123	79
41	101	95	79	84	93	137	132	55	38	79	159	114
42	85	82	41	46	82	110	114	55	48	74	122	86
43	143	98	48	69	143	168	166	69	60	79	139	141
44	104	77	50	57	88	115	172	96	68	118	169	101
45	107	73	45	78	106	141	96	52	51	69	111	137
46	103	77	49	65	77	112	146	67	55	91	156	97
47	95	65	38	56	77	99	112	55	43	66	100	108
48	102	78	57	66	85	96	132	73	45	67	141	143
49	103	100	55	67	120	149	153	66	64	74	134	136
50	109	101	77	71	95	132	145	78	54	83	145	132
51	116	95	61	68	108	135	151	92	134	68	80	136
52	175	75	44	61	116	149	163	79	58	75	103	210
53	115	107	56	60	76	132	148	81	44	75	152	147
54	104	99	60	78	75	96	116	66	54	72	115	137
55	97	109	74	62	127	174	164	93	72	109	143	92
56	107	75	50	63	106	128	146	74	46	77	110	143
57	155	123	86	93	125	162	136	60	41	67	109	152
58	102	71	47	43	96	129	145	63	59	79	153	88
59	135	106	63	65	139	196	148	72	56	85	122	162
60	85	79	50	71	89	134	137	60	42	67	121	125
61	139	88	66	84	103	121	136	93	58	84	154	174
62	108	72	70	56	121	203	150	72	64	84	128	112
63	132	98	54	91	72	102	138	108	54	64	150	169
64	83	89	62	86	77	100	140	66	45	72	108	91
65	125	92	69	65	92	160	158	75	46	69	123	136
66	118	81	70	83	89	86	143	67	47	70	112	94
67	118	78	52	63	118	119	141	61	56	84	147	157

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO

	C: 1	SAUDA	VEL NA QUAR	N ₁ 1	T. f.	T 1
N	Sinal	Espessura Media	Superior	Nasal	Interior	Temporal
No	14	14	14	14	14	14
35	8	91	110	72	117	64
36	8	90	126	69	112	40
37	8	90	106	82	112	60
38	8	108	130	92	148	61
39	9	78	91	60	109	53
40	8	80	82	74	111	53
41	9	99	123	90	128	57
42	9	79	100	56	102	60
43	9	110	144	72	156	69
44	9	102	127	61	127	94
45	8	88	115	67	115	57
46	8	91	115	63	114	72
47	8	77	103	103	55	95
48	10	90	125	69	106	60
49	8	101	134	75	133	63
50	9	102	127	83	124	72
51	8	106	117	69	131	106
52	8	111	166	60	149	69
53	9	102	142	80	120	66
54	7	89	116	78	96	64
55	9	109	124	79	142	90
56	8	92	117	63	123	65
57	9	109	139	103	133	61
58	9	89	108	57	124	68
59	9	110	131	75	162	73
60	9	89	107	67	125	56
61	9	111	171	77	119	77
62	9	109	120	82	169	64
63	10	103	117	89	135	70
64	7	89	103	86	109	59
65	9	102	135	75	134	62
66	9	90	109	78	111	62
67	7	98	143	63	121	65

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO SAUDÁVEL NA QUARTA SESSÃO

SAUDÁVEL NA QUARTA SESSÃO												
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4
35	123	70	62	84	94	129	128	59	58	75	101	105
36	108	73	71	65	97	120	117	53	37	65	125	144
37	93	95	74	75	88	129	118	55	47	78	124	101
38	84	124	76	77	130	151	163	61	45	76	144	162
39	79	79	47	55	84	125	117	52	45	61	98	95
40	68	68	74	81	102	128	103	46	45	68	117	61
41	99	104	75	90	95	147	141	55	38	77	152	117
42	89	80	42	46	83	108	116	58	48	73	124	86
43	149	92	54	71	139	162	168	72	57	77	138	145
44	108	77	47	58	80	116	180	95	69	117	174	99
45	103	76	47	78	110	142	93	52	51	68	108	134
46	98	78	48	64	79	111	151	70	55	92	154	94
47	92	66	40	58	77	98	109	55	43	68	105	113
48	96	75	60	71	87	100	132	69	45	66	140	139
49	119	100	58	67	113	140	146	63	53	73	131	150
50	106	102	76	73	97	134	142	75	55	86	143	130
51	122	91	57	60	108	132	151	97	141	80	82	148
52	177	74	44	62	126	167	154	73	61	74	102	218
53	120	112	61	67	80	131	150	79	44	74	154	151
54	103	95	61	78	75	95	117	65	50	75	117	137
55	111	117	59	62	106	143	177	102	67	101	151	110
56	105	74	52	64	104	128	138	72	46	77	109	138
57	142	119	96	93	114	141	144	69	43	69	121	155
58	94	80	50	42	97	131	146	66	59	78	142	87
59	123	101	61	62	137	200	149	72	59	87	118	152
60	79	80	54	68	93	146	135	56	43	69	125	116
61	152	89	55	86	101	121	134	89	58	85	161	200
62	113	86	73	88	189	206	112	58	59	75	121	127
63	83	97	65	104	116	140	150	86	47	76	139	130
64	94	96	61	101	72	104	150	70	40	67	109	107
65	137	97	66	62	92	160	151	74	46	65	120	148
66	124	83	69	82	96	90	146	64	49	72	107	96
67	128	79	47	62	113	113	139	61	53	81	138	164

		SAUDA	VEL NA QUIN	TA SESSAU		
	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T5	T5	T5	T5	T5	T5
35	7	88	106	68	114	64
36	8	90	126	70	114	51
37	9	94	116	84	118	61
38	8	105	123	95	143	60
39	9	77	85	61	109	52
40	9	74	93	39	110	54
41	9	100	129	92	122	55
42	9	80	97	56	106	59
43	9	111	147	69	156	70
44	9	104	137	62	124	93
45	8	88	116	67	114	57
46	8	91	116	62	113	72
47	9	78	102	58	94	56
48	9	91	124	70	107	64
49	10	104	138	82	136	61
50	9	103	129	83	128	73
51	8	106	114	73	138	99
52	8	111	166	58	149	69
53	9	102	138	81	122	66
54	7	90	119	76	100	64
55	9	111	176	67	94	106
56	7	92	118	61	123	65
57	9	110	141	104	137	57
58	9	91	111	60	128	67
59	8	109	131	76	157	71
60	8	89	109	69	122	55
61	9	111	169	77	124	75
62	9	105	122	68	161	71
63	10	100	127	86	120	69
64	7	88	100	86	109	58
65	8	101	135	75	132	61
66	9	88	107	76	110	59
67	8	98	141	62	122	65

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO SAUDÁVEL NA OUINTA SESSÃO

		lçi lo D	00 211	SAUI	DÁVEL	NA QU	INTA S	ESSÃC)		Doon	010
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5
35	104	66	59	78	86	125	130	60	55	76	109	104
36	108	74	71	64	98	117	127	55	37	59	124	145
37	101	98	73	79	91	137	126	58	46	78	133	113
38	80	127	77	82	129	145	155	60	45	74	133	156
39	72	83	49	52	86	127	113	51	46	58	96	87
40	67	25	33	58	93	130	106	48	45	68	124	86
41	111	111	77	87	94	143	130	56	37	73	148	128
42	84	81	41	47	89	115	115	55	47	73	124	84
43	148	86	54	67	134	163	172	72	59	80	143	152
44	120	79	48	60	90	114	169	93	68	117	178	113
45	105	75	46	80	106	136	99	52	50	69	107	136
46	96	76	51	61	77	110	152	70	56	90	158	93
47	92	66	47	61	75	97	110	58	43	69	108	107
48	104	80	60	69	87	94	142	78	46	69	135	134
49	120	111	59	75	125	144	139	61	50	72	125	170
50	108	103	72	74	99	134	149	78	60	86	148	131
51	127	92	57	69	118	145	151	99	123	76	75	140
52	171	71	44	60	125	164	159	75	60	72	100	227
53	115	115	62	67	79	134	152	80	44	75	152	147
54	105	89	62	77	80	97	123	60	51	75	113	140
55	171	77	53	69	78	72	132	147	85	87	159	199
56	107	72	49	61	100	126	143	74	46	76	109	137
57	155	131	93	89	119	151	141	62	42	68	111	156
58	93	85	49	45	101	134	148	65	60	76	150	89
59	124	105	59	64	137	191	144	72	57	83	114	154
60	84	79	55	72	97	142	126	53	45	68	121	123
61	161	93	61	78	103	129	139	87	57	82	150	197
62	109	72	64	68	158	196	128	68	64	83	135	122
63	91	96	62	101	96	120	145	86	46	74	137	152
64	91	96	64	97	75	104	146	68	40	67	105	102
65	137	99	66	60	87	159	151	75	45	64	117	152
66	113	90	62	77	93	93	144	62	47	67	110	98
67	118	77	46	64	118	111	136	57	55	83	145	161

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTRASESSÃO DO GRUPO

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T1	T1	T1	T1	T1	T1
1	8	103	124	76	142	69
2	8	77	87	77	88	54
3	8	74	86	66	86	58
4	7	50	54	56	51	40
5	8	84	101	65	99	70
6	8	90	102	65	116	75
7	8	53	58	50	69	35
8	9	54	12	52	99	52
9	7	74	74	65	99	56
10	9	93	111	63	138	58
11	8	62	76	65	57	52
12	8	63	64	57	60	70
13	7	80	98	63	110	51
14	7	80	100	68	100	71
15			EXCLUÍE	00		
16	8	70	91	58	82	48
17	7	73	77	70	86	61
18	8	69	88	6	84	48
19	8	67	77	67	88	37
20	8	79	86	72	94	63
21	7	92	112	73	121	62
22	8	94	116	83	115	64
23	8	75	82	67	89	63
24			EXCLUÍE	00		
25	8	85	101	77	114	50
26	8	81	98	66	102	57
27			EXCLUÍE	00		
28	7	81	99	77	96	52
29	8	76	95	59	95	56
30	8	83	108	70	106	47
31			EXCLUÍE	00		
32			EXCLUÍD	00		
33			EXCLUÍD	00		
34	7	59	70	49	61	55

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO	
GLAUCOMA NA PRIMEIRA SESSÃO	

	GLAUCOMA NA PRIMEIRA SESSÃO							010				
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1
1	117	97	58	73	124	165	136	68	59	79	137	118
2	77	87	78	67	55	96	112	46	53	63	107	77
3	68	74	64	61	75	84	97	74	46	55	93	98
4	58	59	56	54	54	41	59	47	34	39	50	53
5	86	83	56	56	69	86	140	71	46	94	129	88
6	76	82	53	61	82	139	127	76	65	85	130	100
7	55	55	44	51	50	82	76	33	36	37	67	53
8	80	36	54	66	104	97	97	50	43	62	29	30
9	57	75	61	59	85	119	91	55	48	65	76	90
10	96	78	5	55	122	169	124	45	49	80	138	99
11	47	78	61	55	39	65	97	48	59	49	117	63
12	68	60	59	52	52	81	48	64	77	68	58	66
13	97	79	57	54	95	108	126	54	43	56	92	103
14	74	72	56	75	72	10	123	80	46	85	131	94
15						EXC	LUÍDO					
16	100	68	51	57	90	99	56	57	39	49	78	94
17	50	67	74	68	75	95	87	63	51	70	89	92
18	83	69	44	57	70	106	76	43	49	50	84	98
19	71	71	63	66	92	99	73	44	28	40	87	71
20	69	79	65	73	101	110	73	62	54	74	83	105
21	111	83	64	72	117	148	99	60	51	74	96	130
22	95	115	68	65	74	137	133	62	56	74	143	110
23	74	74	64	62	63	92	111	56	55	79	113	60
24						EXC	LUÍDO					
25	88	89	71	71	87	142	114	45	44	60	105	109
26	87	76	65	56	91	117	100	52	48	69	122	84
27						EXC	LUÍDO					
28	81	82	76	73	82	115	91	53	48	55	86	130
29	89	61	52	63	68	110	106	66	49	53	69	126
30	118	85	59	66	84	142	91	38	48	56	97	110
31						EXC	LUÍDO					
32						EXC	LUÍDO					
33						EXC	LUÍDO					
34	58	58	38	50	52	57	75	63	47	56	70	82

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T2	T2	T2	T2	T2	T2
1	7	101	119	78	137	70
2	8	77	80	77	90	59
3	9	77	85	74	90	58
4	7	52	55	55	57	43
5	8	85	106	63	99	72
6	8	87	95	68	109	76
7	8	55	61	57	67	33
8	8	82	69	107	55	102
9	8	72	70	61	96	59
10	8	93	107	65	141	59
11	8	64	79	70	63	46
12	8	62	64	58	59	69
13	8	84	97	62	124	51
14	8	88	108	68	107	68
15			EXCLU	ÍDO		
16	8	70	95	62	76	45
17	8	73	76	71	81	62
18	8	67	90	52	82	45
19	8	67	76	69	91	34
20	8	79	94	74	89	60
21	8	91	115	69	116	64
22	8	97	120	86	120	62
23	8	77	89	69	89	63
24			EXCLU	ÚDO		
25	8	84	106	73	109	49
26	9	82	99	68	102	57
27			EXCLU	ÍDO		
28	7	78	91	80	92	51
29	8	79	97	65	96	58
30	7	87	112	76	110	50
31			EXCLU	ÍDO		
32			EXCLU	ÍDO		
33			EXCLU	ÍDO		
34	8	61	76	49	60	57

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO GLAUCOMA NA SEGUNDA SESSÃO

GLAUCOMA NA SEGUNDA SESSÃO												
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2
1	106	101	59	74	111	159	140	74	58	77	125	125
2	68	86	76	69	64	78	128	54	59	66	103	70
3	72	76	74	72	78	92	99	70	48	56	94	88
4	61	54	54	57	61	41	68	51	36	41	51	52
5	86	79	55	54	70	86	142	73	46	98	138	93
6	70	83	58	64	81	131	117	75	64	86	122	93
7	64	65	54	52	52	75	74	32	32	34	63	57
8	102	76	64	68	108	102	112	56	45	64	97	95
9	54	77	52	55	86	113	89	60	53	65	74	82
10	93	84	60	50	110	172	141	48	47	80	135	92
11	44	79	65	67	40	72	76	45	43	49	125	67
12	64	58	61	56	47	72	58	67	76	63	65	64
13	91	72	59	55	121	127	124	56	42	55	99	103
14	88	80	59	67	84	116	123	83	48	74	126	111
15						EXC	LUÍDO					
16	112	81	51	56	86	92	51	52	37	47	72	102
17	49	68	71	75	68	94	82	60	53	74	98	80
18	84	65	41	50	61	105	81	43	43	51	84	103
19	67	71	64	73	94	104	74	41	26	36	90	70
20	79	84	70	68	92	105	72	59	51	70	92	112
21	104	74	59	74	125	133	89	62	52	77	103	138
22	104	113	72	73	89	141	131	60	56	71	130	126
23	89	78	63	67	64	99	102	53	53	82	121	56
24						EXC	LUÍDO					
25	101	90	64	66	92	121	114	46	42	60	104	114
26	90	79	66	59	92	118	97	51	47	72	125	82
27						EXC	LUÍDO					
28	72	80	81	78	84	110	80	51	46	56	83	117
29	91	65	57	72	72	112	109	69	51	54	68	131
30	121	89	71	68	86	151	92	44	49	58	98	118
31						EXC	LUÍDO					
32						EXC	LUÍDO					
33						EXC	LUÍDO					
34	63	60	42	46	51	52	76	70	44	58	75	91

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO
GLAUCOMA NA SEGUNDA SESSÃO

No
1
1
2
3
4
5
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO GLAUCOMA NA TERCEIRA SESSÃO

GLAUCOMA NA TERCEIRA SESSÃO												
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T3	Т3	T3	T3	T3	T3	Т3	T3	T3	Т3	T3	T3
1	106	101	59	74	111	159	140	74	58	77	125	125
2	68	86	76	69	64	78	128	54	59	66	103	70
3	72	76	74	72	78	92	99	70	48	56	94	88
4	61	54	54	57	61	41	68	51	36	41	51	52
5	86	79	55	54	70	86	142	73	46	98	138	93
6	70	83	58	64	81	131	117	75	64	86	122	93
7	64	65	54	52	52	75	74	32	32	34	63	57
8	102	76	64	68	108	102	112	56	45	64	97	95
9	54	77	52	55	86	113	89	60	53	65	74	82
10	93	84	60	50	110	172	141	48	47	80	135	92
11	44	79	65	67	40	72	76	45	43	49	125	67
12	64	58	61	56	47	72	58	67	76	63	65	64
13	91	72	59	55	121	127	124	56	42	55	99	103
14	88	80	59	67	84	116	123	83	48	74	126	111
15						EXC	LUÍDO					
16	112	81	51	56	86	92	51	52	37	47	72	102
17	49	68	71	75	68	94	82	60	53	74	98	80
18	84	65	41	50	61	105	81	43	43	51	84	103
19	67	71	64	73	94	104	74	41	26	36	90	70
20	79	84	70	68	92	105	72	59	51	70	92	112
21	104	74	59	74	125	133	89	62	52	77	103	138
22	104	113	72	73	89	141	131	60	56	71	130	126
23	89	78	63	67	64	99	102	53	53	82	121	56
24						EXC	LUÍDO					
25	101	90	64	66	92	121	114	46	42	60	104	114
26	90	79	66	59	92	118	97	51	47	72	125	82
27						EXC	LUÍDO					
28	72	80	81	78	84	110	80	51	46	56	83	117
29	91	65	57	72	72	112	109	69	51	54	68	131
30	121	89	71	68	86	151	92	44	49	58	98	118
31						EXC	LUÍDO					
32						EXC	LUÍDO					
33						EXC	LUÍDO					
34	63	60	42	46	51	52	76	70	44	58	75	91

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO
GLAUCOMA NA TERCEIRA SESSÃO

	C :1	GLAUCO	JMA NA QUA	Nazz1	J	T
NT	Sinal	Espessura Media	Superior	Nasal	Interior	Temporal
No	14	14	14	14	14	14
1	8	104	122	85	136	73
2	9	82	92	83	92	63
3	8	68	80	58	78	56
4	7	54	59	58	58	41
5	9	88	105	63	108	74
6	8	88	95	68	116	72
7	8	54	57	58	66	33
8	8	84	102	69	111	52
9	7	73	74	67	96	56
10	9	93	106	64	142	61
11	8	64	77	68	65	46
12	7	63	61	58	58	74
13	9	85	107	64	117	51
14	9	93	115	76	110	72
15			EXCLU	ÍDO		
16	8	69	88	59	80	48
17	8	76	77	80	83	64
18	9	68	89	57	82	45
19	7	68	76	66	90	39
20	8	80	90	73	90	65
21	8	91	114	74	115	61
22	7	91	109	78	118	60
23	7	77	91	70	85	60
24			EXCLU	ÍDO		
25	8	86	102	75	118	50
26	8	81	93	70	102	59
27			EXCLU	ÍDO		
28	7	77	88	73	96	50
29	7	77	92	66	95	56
30	8	84	110	69	109	50
31			EXCLU	ÍDO		
32			EXCLU	ÍDO		
33			EXCLU	ÍDO		
34	7	59	75	48	59	54

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO GLAUCOMA NA QUARTA SESSÃO

GLAUCOMA NA QUARTA SESSÃO												
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4
1	107	121	68	66	97	162	150	85	57	76	117	143
2	80	94	77	78	65	94	117	62	59	69	128	68
3	62	64	55	55	71	79	85	66	48	54	91	86
4	65	61	59	54	63	45	67	50	32	43	55	56
5	88	78	57	54	80	94	151	78	47	98	138	89
6	75	76	56	71	102	137	110	63	61	92	130	80
7	59	67	54	52	50	68	81	34	32	33	54	59
8	102	70	59	79	122	109	102	48	43	64	109	94
9	58	78	63	61	84	113	91	57	48	63	71	92
10	90	78	57	58	133	180	114	44	50	90	135	94
11	41	73	67	66	45	77	72	44	42	51	132	58
12	67	60	59	54	48	73	52	68	88	65	59	58
13	94	75	56	60	119	116	115	54	44	55	105	122
14	85	87	61	80	85	116	130	81	50	84	144	115
15						EXC	LUÍDO					
16	105	75	50	51	84	105	52	57	40	46	65	93
17	50	78	78	84	72	93	83	57	54	81	114	67
18	78	70	49	54	63	96	86	42	40	52	90	101
19	67	68	61	68	87	113	70	50	29	38	91	71
20	69	86	61	73	93	107	70	64	53	79	92	109
21	106	75	62	86	119	135	90	57	52	75	104	131
22	94	99	65	70	88	148	118	57	56	71	140	92
23	85	84	64	63	64	86	104	56	52	73	111	77
24						EXC	LUÍDO					
25	95	86	68	73	94	144	115	46	43	60	103	108
26	78	76	73	61	90	114	102	55	48	73	120	80
27						EXC	LUÍDO					
28	74	71	69	77	83	113	92	48	46	57	78	112
29	87	65	61	70	70	116	97	63	49	54	70	118
30	120	84	61	62	93	139	96	45	46	57	89	120
31						EXC	LUÍDO					
32						EXC	LUÍDO					
33						EXC	LUÍDO					
34	57	56	38	50	54	52	72	63	43	56	78	88

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO
GLAUCOMA NA OUARTA SESSÃO

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T5	T5	T5	T5	T5	T5
1	8	104	126	77	141	71
2	8	79	80	77	90	67
3	9	76	86	70	88	61
4	7	54	61	57	57	41
5	8	88	105	63	109	75
6	8	92	103	75	118	74
7	8	55	61	56	69	34
8	8	84	102	74	108	54
9	8	76	77	71	98	57
10	9	94	108	64	145	60
11	7	63	81	66	61	46
12	7	62	65	58	58	68
13	7	81	98	62	115	51
14	8	88	103	72	108	68
15			EXCLU	ÍDO		
16	8	67	88	58	74	46
17	8	75	76	77	84	62
18	9	69	88	58	82	47
19	7	66	72	63	89	42
20	8	80	90	73	90	65
21	7	88	107	70	113	61
22	8	86	102	75	118	50
23	8	76	87	68	86	63
24			EXCLU	ÍDO		
25	8	87	104	78	115	49
26	8	80	97	67	102	56
27			EXCLU	ÍDO		
28	7	79	92	77	95	53
29	9	60	47	34	101	57
30	7	92	120	86	113	50
31			EXCLU	ÍDO		
32			EXCLU	ÍDO		
33			EXCLU	ÍDO		
34	7	59	74	49	60	54

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO GLAUCOMA NA QUINTA SESSÃO

	GLAUCOMA NA QUINTA SESSÃO												
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12	
No	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	
1	117	98	58	73	125	162	136	71	59	83	133	129	
2	70	89	68	75	61	104	105	67	60	73	121	51	
3	72	73	69	67	79	87	98	74	50	58	93	94	
4	68	60	57	55	63	40	70	48	31	43	54	59	
5	92	80	53	54	84	93	149	77	49	100	137	87	
6	80	99	63	61	84	142	127	76	65	83	128	101	
7	67	67	53	49	52	80	76	33	34	35	65	52	
8	100	78	61	81	116	107	102	53	44	64	106	99	
9	57	86	66	61	85	115	92	59	48	64	73	102	
10	94	77	55	59	134	185	117	43	49	88	136	94	
11	41	72	61	64	42	72	69	45	43	49	132	69	
12	70	60	60	53	49	76	49	64	77	63	59	65	
13	88	74	53	59	116	116	111	52	43	56	98	109	
14	78	82	58	76	84	113	128	81	47	77	127	104	
15						EXC	LUÍDO						
16	100	70	48	56	84	87	50	51	40	48	70	95	
17	49	76	72	83	71	98	83	56	55	76	97	81	
18	83	67	49	57	64	102	81	47	45	49	83	97	
19	63	65	59	65	95	104	66	46	34	45	87	66	
20	69	86	61	73	93	107	70	64	53	79	92	109	
21	94	78	56	76	111	134	94	58	53	73	96	131	
22	95	86	68	73	94	144	115	46	43	60	103	108	
23	82	80	61	64	64	86	108	61	51	75	111	68	
24						EXC	LUÍDO						
25	92	90	68	75	94	139	113	46	43	59	108	110	
26	95	74	66	60	97	115	95	49	46	72	115	81	
27						EXC	LUÍDO						
28	72	72	80	80	78	113	93	53	46	59	89	116	
29	36	41	5	56	72	125	107	66	50	54	66	39	
30	135	98	75	84	107	150	82	43	48	60	97	128	
31						EXC	LUÍDO						
32						EXC	LUÍDO						
33						EXC	LUÍDO						
34	60	59	37	51	52	55	75	60	44	58	76	87	

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T1	T1	T1	T1	T1	T1
35	9	92	115	69	116	67
36	8	90	125	69	115	60
37	8	93	114	82	116	63
38	8	104	121	99	134	61
39	9	77	87	62	106	52
40	9	84	99	75	110	54
41	9	95	123	87	117	54
42	9	80	102	58	102	59
43	8	107	163	77	119	67
44	8	102	130	60	123	95
45	8	90	118	67	116	58
46	8	93	120	65	113	73
47	8	75	99	53	97	52
48	9	91	131	65	108	61
49	9	104	140	83	128	65
50	9	101	123	86	125	72
51	8	106	117	74	136	95
52	9	111	170	58	143	72
53	7	101	141	79	117	66
54	7	91	123	78	100	63
55	8	110	110	81	156	94
56	8	95	120	65	131	65
57	7	107	140	99	134	56
58	9	91	119	54	126	67
59	8	111	131	77	165	70
60	9	85	109	63	115	53
61	9	116	168	96	131	66
62	8	10	121	73	159	67
63	8	104	124	83	144	66
64	7	89	103	86	109	57
65	8	101	124	74	144	61
66			EXCLU	JÍDO		
67	9	98	147	63	117	64

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO SAUDÁVEL NA PRIMEIRA SESSÃO

	SAUDÁVEL NA PRIMEIRA SESSÃO											
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1
35	107	68	61	76	93	121	135	62	56	83	128	111
36	112	73	75	60	98	126	121	55	37	60	122	141
37	93	97	71	76	87	131	130	61	46	61	138	109
38	86	130	79	87	117	136	149	64	45	75	135	142
39	71	81	48	59	85	124	109	49	45	61	97	91
40	72	70	75	80	92	125	113	51	45	66	130	95
41	98	101	77	83	93	140	120	53	37	74	156	114
42	94	82	43	48	82	109	115	58	47	73	133	78
43	173	81	60	89	109	103	146	84	46	72	125	193
44	107	75	49	54	82	113	174	95	68	122	176	106
45	106	75	46	79	110	140	99	53	51	69	113	134
46	101	79	48	67	79	107	153	71	57	92	163	96
47	93	65	38	55	80	100	111	54	41	62	102	103
48	106	72	55	69	84	94	145	72	44	68	142	145
49	126	110	64	73	111	133	140	69	54	72	125	168
50	104	105	75	77	99	135	141	77	55	85	140	124
51	127	96	60	67	111	141	157	90	125	72	77	146
52	174	72	42	61	119	152	158	81	60	76	104	233
53	117	113	64	59	75	128	147	83	43	72	153	152
54	103	94	61	79	81	101	117	62	51	76	122	145
55	98	120	64	59	125	173	169	97	75	109	145	88
56	107	77	52	64	105	135	152	74	46	75	111	141
57	142	108	92	96	121	148	133	59	38	70	115	163
58	107	73	43	4	100	135	142	59	60	82	162	90
59	123	103	63	66	138	206	150	70	56	84	110	161
60	85	71	48	69	89	135	122	53	43	64	119	123
61	149	98	73	119	127	141	127	67	49	83	162	193
62	116	75	69	76	157	200	121	64	62	76	121	127
63	87	94	63	91	127	156	149	80	45	74	143	142
64	94	98	64	95	76	104	146	64	39	67	112	102
65	115	93	68	60	107	167	159	70	46	65	123	133
66						EXCI	LUÍDO					
67	128	81	46	63	106	107	139	61	52	80	129	186

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T2	T2	T2		T2	
25	12	<u> </u>	110	72	112	62
33 26	9	89 00	110	12	112	62
30 27	8	90	111	00	123	01
31	8	92	110	82	105	70 62
38	9	110	127	100	152	62 52
39	9	/9	84	64	116	52
40	9	84	96	//	112	51
41	9	96	124	87	117	56
42	9	82	103	59	107	60
43	8	110	156	77	138	70
44	8	102	132	58	125	92
45	8	87	116	66	111	56
46	9	93	117	65	116	75
47	9	76	102	57	93	53
48	8	91	133	65	104	62
49	8	103	139	75	133	64
50	9	102	126	85	125	74
51	7	95	110	70	119	81
52	8	104	154	58	135	69
53	8	102	141	77	125	66
54	8	93	125	80	100	67
55	9	110	105	86	162	87
56	10	98	123	67	133	68
57	9	108	139	99	137	58
58	8	91	111	58	124	68
59	8	110	136	76	158	70
60	9	89	115	64	122	54
61	9	111	169	77	124	75
62	9	108	121	77	165	67
63	9	104	146	82	117	71
64	8	89	97	84	111	62
65	9	102	134	77	136	61
66			EXCLU	JÍDO		
67	8	91	111	58	124	68

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO SAUDÁVEL NA SEGUNDA SESSÃO

	SAUDÁVEL NA SEGUNDA SESSÃO											
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2
35	109	70	62	84	90	126	120	55	55	75	115	104
36	76	67	69	63	98	138	133	58	45	80	138	117
37	97	100	73	74	73	113	129	75	50	84	133	100
38	75	127	87	86	36	160	161	55	49	80	153	153
39	74	85	58	48	88	136	123	51	46	59	92	87
40	72	70	80	81	100	125	110	50	42	62	117	99
41	105	105	73	84	88	133	132	54	39	76	149	119
42	82	87	43	47	83	114	123	60	46	72	126	100
43	161	88	64	81	127	126	161	83	53	75	138	169
44	109	71	48	55	85	118	174	91	69	117	181	105
45	104	74	47	78	105	132	95	50	47	70	108	136
46	94	73	49	72	82	120	145	68	60	96	165	91
47	95	74	41	58	80	94	105	53	42	63	97	114
48	107	75	54	67	83	94	136	73	44	68	146	145
49	137	101	59	67	113	144	143	66	56	69	129	153
50	107	105	75	75	94	132	150	80	55	86	139	132
51	101	84	58	68	109	127	121	81	100	62	88	141
52	172	74	46	54	115	142	147	78	59	70	92	199
53	117	104	58	68	83	136	155	73	44	81	165	140
54	107	99	61	80	75	97	127	67	54	78	122	148
55	90	118	74	66	140	184	163	84	71	107	137	87
56	114	82	55	63	108	134	157	83	47	75	112	144
57	139	113	90	94	121	148	143	62	42	71	119	160
58	97	80	54	42	94	132	147	68	58	78	148	89
59	132	98	64	66	133	195	145	70	56	84	115	160
60	79	70	50	71	94	148	123	52	43	67	133	133
61	161	93	61	78	103	129	139	87	57	82	150	197
62	118	81	69	81	172	202	121	63	60	79	119	127
63	118	89	58	98	84	124	144	97	46	71	146	172
64	83	91	63	97	80	103	151	70	41	75	113	94
65	130	98	68	65	100	159	151	68	47	68	128	144
66						EXC	LUÍDO					
67	107	99	61	80	75	97	127	67	54	78	122	148

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T3	T3	T3	T3		T3
25	10	13	111	70	13	13
35	10	90	111	/0	117	63
36	8	88	118	68	113	53
37	9	93	114	84	111	62
38	9	107	129	96	143	62
39	10	80	92	66	109	54
40	8	83	97	73	111	53
41	8	96	120	89	121	56
42	8	79	100	57	101	58
43	8	109	157	74	136	68
44	8	100	128	54	120	99
45	9	87	116	67	110	57
46	9	92	117	65	113	73
47	9	74	99	55	88	53
48	9	93	126	66	112	69
49	8	97	126	72	129	63
50	8	103	124	90	123	73
51	8	98	112	74	124	82
52	8	103	157	57	128	69
53	8	101	136	77	126	63
54	8	93	126	82	100	65
55	9	111	157	81	117	88
56	9	96	120	66	129	68
57	8	110	139	101	143	55
58	7	88	106	56	126	64
59	9	111	133	75	166	71
60	10	92	118	67	126	58
61	9	115	159	78	141	81
62	9	112	124	88	170	64
63	10	105	125	87	145	64
64	7	86	96	82	107	59
65	10	102	130	77	126	61
66			EXCLU	ÍDO		
67	9	91	101	58	120	69

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO SAUDÁVEL NA TERCEIRA SESSÃO

	SAUDÁVEL NA TERCEIRA SESSÃO											
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	Т3	Т3	T3	T3	T3	Т3	T3	Т3	T3	Т3	Т3	Т3
35	110	71	60	78	89	131	131	57	54	78	111	110
36	98	68	74	62	98	126	115	54	40	66	129	128
37	98	96	73	82	86	127	120	56	48	81	136	109
38	85	125	80	84	125	145	158	60	47	79	151	151
39	80	87	57	53	81	123	122	55	46	61	104	92
40	73	68	75	75	92	126	115	52	44	62	119	100
41	107	108	72	86	93	142	128	54	38	74	141	113
42	84	77	45	48	81	106	117	57	47	71	123	91
43	162	86	57	78	122	122	163	81	50	73	136	171
44	106	63	44	56	82	108	172	96	74	127	174	102
45	102	76	49	75	101	132	96	52	48	69	109	136
46	95	77	51	68	81	105	153	72	57	90	163	94
47	82	63	44	59	72	89	104	56	42	62	103	112
48	95	79	58	62	88	97	152	87	47	73	153	131
49	123	95	57	63	98	138	150	65	54	70	122	135
50	108	111	81	77	93	130	145	81	57	82	134	131
51	107	94	60	68	114	129	131	81	100	65	85	146
52	170	71	45	54	107	136	142	79	59	70	96	207
53	115	107	58	66	88	137	152	70	43	77	157	136
54	110	102	62	81	80	102	119	63	55	79	125	144
55	166	110	62	72	89	97	164	122	61	80	145	159
56	110	79	59	60	102	130	157	87	44	72	106	145
57	158	128	88	88	122	154	152	58	39	69	112	147
58	94	85	45	40	96	133	149	65	56	72	134	90
59	129	100	64	62	135	199	162	70	56	87	118	153
60	87	78	52	70	96	144	138	56	45	73	140	128
61	142	87	64	81	120	147	157	92	63	88	163	173
62	117	82	74	107	208	199	103	53	62	79	123	134
63	88	98	66	97	128	154	152	77	43	73	134	151
64	88	94	60	92	73	106	143	63	41	72	108	92
65	120	98	68	70	100	159	151	68	47	68	128	145
66						EXC	LUÍDO					
67	109	99	70	80	75	97	127	67	54	78	122	150

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO

DI	STRIBUIÇ	ÇÃO DOS DADOS INE	DIVIDUAIS DA	ANÁLISE IN	ITERSESSÃO I	DO GRUPO
		SAUDÁ	VEL NA QUAF	RTA SESSÃO		
	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T4	T4	T4	T4	T4	T4
35	8	90	111	70	112	66
36	8	91	125	68	115	54
37	8	91	107	83	113	62
38	9	106	122	95	146	60
39	9	78	88	63	106	53
40	8	81	95	74	104	52
41	7	98	123	86	127	56
42	8	80	101	54	107	59
43	9	107	173	73	110	72
44	9	102	131	62	125	92
45	9	88	125	64	106	57
46	7	93	119	63	118	73
47	8	73	99	54	85	53
48	9	90	131	63	107	60
49	9	101	126	81	135	63
50	8	100	124	81	123	70
51	7	97	107	71	124	88
52	9	105	160	56	134	72
53	9	102	140	81	121	65
54	8	92	122	81	102	65
55	9	111	136	84	135	89
56	9	94	116	64	126	69
57	8	110	143	98	141	57
58	7	91	110	60	126	67
59	9	112	137	77	164	71
60	9	84	103	62	116	54
61	9	113	169	82	126	76
62	9	105	125	75	156	65
63	8	104	116	89	146	65
64	9	86	99	82	109	65
65	10	105	133	77	130	61
66			EXCLU	ÚDO		
67	8	91	101	59	123	72

	SAUDÁVEL NA QUARTA SESSÃO											
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4	T4
35	108	71	62	77	90	123	124	57	59	82	109	115
36	103	72	71	62	98	126	120	55	38	69	135	138
37	93	98	72	79	87	129	123	59	46	81	130	98
38	76	121	90	75	120	151	167	63	44	73	133	156
39	71	88	52	49	81	117	121	55	46	60	94	98
40	78	78	70	72	85	118	107	47	46	64	115	91
41	101	107	72	80	92	153	136	54	40	73	147	120
42	80	76	39	46	87	115	118	57	47	72	128	96
43	186	82	56	82	98	94	138	96	48	72	124	209
44	111	77	52	55	86	114	174	94	68	113	177	104
45	108	72	47	72	96	122	101	54	46	72	120	147
46	97	74	48	67	79	129	145	67	59	94	166	94
47	85	62	41	57	69	85	100	55	41	62	99	113
48	102	68	55	66	86	94	142	72	43	66	145	144
49	135	110	66	68	108	149	147	64	55	70	113	132
50	107	101	74	69	92	134	143	72	53	84	137	129
51	110	88	58	66	109	123	138	81	113	68	76	134
52	165	67	44	58	111	140	150	83	59	73	100	216
53	117	113	62	68	82	131	151	76	43	77	157	146
54	104	100	61	81	80	97	128	68	52	75	122	139
55	125	124	64	66	106	124	174	110	63	94	159	124
56	110	78	54	59	103	124	151	87	49	70	102	137
57	156	124	80	89	119	159	144	61	41	70	113	161
58	102	86	52	41	92	130	155	69	58	74	134	95
59	141	107	62	61	136	199	155	74	56	82	112	159
60	76	69	49	68	91	135	123	56	43	63	115	118
61	165	95	61	91	109	127	142	91	56	81	145	197
62	117	82	67	76	148	188	131	68	55	73	119	139
63	78	100	66	101	130	156	151	75	44	77	142	129
64	88	97	60	92	73	106	143	63	41	72	108	92
65	129	98	68	70	100	159	150	68	47	68	105	147
66						EXC	LUÍDO					
67	106	89	70	80	75	97	125	67	54	78	119	145

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO

	Sinal	Espessura Media	Superior	Nacal	Inferior	Temporal
No	T5	T5	T5	T5	T5	T5
35	8	90	116	71	111	64
36	8	89	123	69	111	52
37	8	94	115	85	117	52 60
38	9	107	129	92	145	61
39	9	77	87	62	104	56
40	9	83	100	73	101	50 52
41	7	94	121	86	115	54
42	9	80	102	57	104	59
43	8	108	156	71	137	69
44	8	100	130	59	122	89
45	8	88	188	66	114	56
46	8	93	120	66	112	73
47	8	72	95	52	88	55
48	8	95	132	70	112	64
49	8	99	127	77	128	62
50	9	104	129	86	129	71
51	8	103	113	69	135	95
52	9	110	167	56	144	71
53	8	101	137	79	123	64
54	7	91	120	83	97	66
55	8	111	129	84	142	88
56	10	96	122	66	128	67
57	8	110	145	99	138	57
58	7	88	104	58	121	69
59	9	114	139	79	165	72
60	9	91	115	67	125	55
61	9	113	165	81	125	80
62	9	108	124	77	165	67
63	8	106	117	83	157	69
64	7	83	99	82	110	64
65	9	103	133	77	129	67
66			EXCLU	JÍDO		
67	8	92	101	59	125	70

		3 -		SAUI	DÁVEL	NA QU	INTA S	ESSÃO)			
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5
35	112	66	62	83	84	122	128	59	54	78	124	110
36	108	73	72	60	102	123	116	52	38	65	129	133
37	97	105	73	77	91	133	127	57	48	77	135	112
38	89	128	78	68	119	153	164	60	46	76	143	154
39	71	85	54	46	84	111	117	59	47	61	93	98
40	75	65	75	78	92	126	106	49	43	64	118	106
41	100	97	74	86	93	136	115	51	38	73	146	116
42	82	78	42	50	87	109	117	58	48	71	127	98
43	164	89	51	73	122	126	162	83	52	74	134	169
44	113	72	47	58	85	117	163	83	69	113	172	104
45	104	75	47	77	106	137	98	51	49	69	112	136
46	96	75	50	72	78	106	152	70	56	93	165	97
47	80	59	40	56	69	92	103	54	43	67	106	98
48	112	80	57	73	89	101	146	75	45	72	145	140
49	127	107	57	66	102	138	144	62	55	69	119	136
50	111	111	74	72	102	137	148	77	52	84	143	134
51	111	84	57	66	113	137	154	96	117	71	84	146
52	176	68	44	57	116	159	156	78	59	76	104	220
53	113	106	61	70	85	136	149	74	43	75	154	144
54	97	103	63	82	80	95	118	67	52	78	119	143
55	123	120	65	66	109	141	176	106	65	92	150	115
56	107	76	54	68	105	130	149	73	46	81	118	142
57	155	115	91	91	119	152	142	61	40	70	112	168
58	97	85	49	41	84	125	153	77	56	76	131	84
59	137	108	62	67	146	207	141	70	58	88	118	161
60	84	81	50	72	101	143	132	57	43	65	131	130
61	159	97	61	86	102	126	146	100	59	81	139	197
62	127	82	69	79	174	201	119	61	61	78	126	120
63	79	94	70	83	140	170	160	82	46	80	133	139
64	88	97	60	94	73	105	143	63	50	70	108	94
65	125	98	68	70	100	159	150	68	48	68	105	148
66						EXC	LUÍDO					
67	104	89	70	83	75	99	125	67	55	78	119	150

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS DA ANÁLISE INTERSESSÃO DO GRUPO

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T1	T1	T1	T1	T1	T1
1			EXCLUÍD	00		
2			EXCLUÍE	00		
3			EXCLUÍD	00		
4	7	50	54	56	51	40
5			EXCLUÍD	00		
6	8	90	102	65	116	75
7			EXCLUÍD	00		
8	9	54	62	52	99	52
9	7	74	74	65	99	56
10	9	93	111	63	138	58
11			EXCLUÍE	00		
12	8	63	64	57	60	70
13	7	80	98	63	110	51
14			EXCLUÍE	00		
15			EXCLUÍE	00		
16	8	70	91	58	82	48
17			EXCLUÍE	00		
18	8	69	88	6	84	48
19			EXCLUÍE	00		
20	8	79	86	72	94	63
21	7	92	112	73	121	62
22	8	94	116	83	115	64
23	8	75	82	67	89	63
24	9	89	121	75	97	62
25	8	85	101	77	114	50
26	8	81	98	66	102	57
27			EXCLUÍE	00		
28			EXCLUÍE	00		
29			EXCLUÍE	00		
30			EXCLUÍE	00		
31	7	66	70	64	66	65
32			EXCLUÍE	00		
33	8	99	108	79	126	82
34	7	59	70	49	61	55

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS NA ANALISE INTEREXAMINADOR NO
GRUPO GLAUCOMA DO FXAMINADOR 1

DI	STRIBU	JIÇAO I	DOS DA	ADOS I		DUAIS	NA ANA	ALISE I	INTER	EXAMI	NADOR	NO
	111	110	GR		ILAUCO					1110	TT11	1110
No	HI T1	H2 T1	H3	H4 T1		H6 T1	H/ T1		H9 T1	HIU T1		H12
	11	11	11	11	11			11	11	11	11	11
1						EXC	LUIDO					
2						EXC	LUIDO					
3	7 0	50	50	~ 4	5 4	EXC	LUIDO	47	24	20	50	52
4	58	59	56	54	54	41	59 UUÚDO	47	34	39	50	53
5	70	00	52	(1	00	EXCI	LUIDO	76	<i></i>	05	120	100
6	/6	82	53	61	82	139 EVC		/6	65	85	130	100
/	00	26	5 4	~	104	EXC		50	12	()	20	20
8	80	36	54	66 50	104	9/	97	50	43	62	29	30
9	5/	/5	61	59	85	119	91	55	48	65	/6	90
10	96	78	50	55	122	169	124 125	45	49	80	138	99
11	60	60	-			EXC	LUIDO	<i>c</i> 1		60	50	
12	68	60 70	59	52	52	81	48	64	17	68 5 c	58	66
13	97	79	57	54	95	108	126 126	54	43	56	92	103
14						EXC	LUIDO					
15						EXC	LUIDO		• •	4.5		
16	100	68	51	57	90	99	56	57	39	49	78	94
17						EXC	LUIDO				~ /	
18	83	69	44	57	70	106	76	43	49	50	84	98
19						EXC	LUIDO					
20	69	79	65	73	101	110	73	62	54	74	83	105
21	111	83	64	72	117	148	99	60	51	74	96	130
22	95	115	68	65	74	137	133	62	56	74	143	110
23	74	74	64	62	63	92	111	56	55	79	113	60
24	119	91	59	74	89	87	115	65	47	74	116	129
25	88	89	71	71	87	142	114	45	44	60	105	109
26	87	76	65	56	91	117	100	52	48	69	122	84
27						EXC	LUIDO					
28						EXC	LUIDO					
29						EXC	LUIDO					
30						EXC	LUÍDO					
31	63	63	69	60	62	74	63	59	64	72	64	83
32						EXC	LUÍDO					
33	122	100	69	69	93	120	167	100	55	90	127	76
34	58	58	38	50	52	57	75	63	47	56	70	82

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T2	T2	T2	T2	T2	T2
1			EXCLUÍDO			
2			EXCLUÍDO			
3			EXCLUÍDO			
4	6	49	52	51	49	42
5			EXCLUÍDO			
6	7	87	96	64	114	75
7			EXCLUÍDO			
8	8	86	105	73	114	52
9	7	75	74	65	99	60
10	8	95	113	66	142	57
11			EXCLUÍDO			
12	7	61	65	57	60	61
13	7	82	102	60	113	52
14			EXCLUÍDO			
15			EXCLUÍDO			
16	7	72	93	66	81	48
17			EXCLUÍDO			
18	9	67	87	55	80	45
19			EXCLUÍDO			
20	9	59	29	67	80	62
21	7	93	113	72	120	67
22	8	94	111	83	121	62
23	7	77	89	70	84	62
24	9	93	123	76	111	63
25	7	85	106	73	113	49
26	9	78	97	61	99	56
27			EXCLUÍDO			
28			EXCLUÍDO			
29			EXCLUÍDO			
30			EXCLUÍDO			
31	7	66	70	65	70	60
32			EXCLUÍDO			
33	8	91	118	63	108	76
34	8	59	69	50	62	56

DI	STRIBU	JIÇAO I	DOS DA	ADOS I LIPO G		DUAIS . DMA DI	ΝΑ ΑΝΑ Ο ΕΧΛΝ	ALISE I AINAD	INTER	EXAMI	NADOR	NO
	U 1	Ц2			LAUCO					U 10	U 11	Ш12
No	T2	T2	П3 Т2	T14 T2	ПЭ Т2	T2	П7 Т2	по т2	T2	T2	т <u>?</u>	T2
1	12	12	12	12	12	EXC		12	12	12	12	12
1						EXC						
2						EXC	LUÍDO					
4	56	49	50	54	56	38	54	49	35	42	51	49
5						EXC	LUÍDO					
6	70	81	51	60	86	139	117	71	66	86	125	92
7						EXC	LUÍDO					
8	112	76	62	80	128	112	102	47	44	66	103	101
9	57	80	58	56	87	112	98	63	54	64	69	97
10	102	81	56	62	134	181	110	40	49	83	141	97
11						EXC	LUÍDO					
12	74	58	56	57	52	73	54	63	68	53	54	67
13	97	71	56	53	104	109	125	57	43	55	95	113
14						EXC	LUÍDO					
15						EXC	LUÍDO					
16	115	83	57	57	85	102	56	58	38	48	70	94
17						EXC	LUÍDO					
18	75	63	48	53	61	96	82	42	41	53	91	96
19						EXC	LUÍDO					
20	38	80	65	55	67	104	70	59	55	71	49	50
21	104	80	63	73	108	151	102	63	55	81	106	129
22	88	112	69	68	90	145	129	62	54	71	132	112
23	84	88	65	58	58	89	105	52	59	77	119	65
24	112	94	65	68	99	99	133	69	47	73	116	139
25	95	87	63	70	90	140	109	46	42	59	112	111
26	87	75	54	53	89	111	96	52	46	69	120	84
27						EXC	LUÍDO					
28						EXC	LUÍDO					
29						EXC	LUÍDO					
30						EXC	LUÍDO					
31	67	65	68	62	67	81	62	59	60	61	60	83
32						EXC	LUÍDO					
33	119	71	53	66	84	104	138	83	54	92	148	87
34	58	57	38	56	53	56	76	66	47	55	70	80

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T1	T1	T1	T 1	T1	T1
35	9	92	115	69	116	67
36			EXCLU	JÍDO		
37	8	93	114	82	116	63
38			EXCLU	JÍDO		
39			EXCLU	JÍDO		
40	9	84	99	75	110	54
41			EXCLU	JÍDO		
42	9	80	102	58	102	59
43	8	107	163	77	119	67
44	8	102	130	60	123	95
45			EXCLU	JÍDO		
46	8	93	120	65	113	73
47	8	75	99	53	97	52
48			EXCLU	JÍDO		
49			EXCLU	JÍDO		
50	9	101	123	86	125	72
51			EXCLU	JÍDO		
52	9	111	170	58	143	72
53			EXCLU	JÍDO		
54	7	91	123	78	100	63
55	8	110	110	81	156	94
56	8	95	120	65	131	65
57	7	107	140	99	134	56
58	9	91	119	54	126	67
59	8	111	131	77	165	70
60	9	85	109	63	115	53
61			EXCLU	JÍDO		
62			EXCLU	JIDO		
63			EXCLU	JÌDO		
64			EXCLU	JÍDO		
65	8	101	124	74	144	61
66	9	85	101	72	107	58
67	9	98	147	63	117	64

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS NA ANÁLISE INTEREXAMINADOR NO GRUPO SAUDÁVEL DO EXAMINADOR 1

DI	STRIBU	JIÇAO I	JUS DA GF	ADOS I RUPO S	AUDÁ	VEL DO	NA ANA D EXAM	ALISE . [INAD(INTER OR 1	EXAMI	NADOR	NO
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1
35	107	68	61	76	93	121	135	62	56	83	128	111
36						EXC	LUÍDO					
37	93	97	71	76	87	131	130	61	46	61	138	109
38						EXC	LUÍDO					
39						EXC	LUÍDO					
40	72	70	75	80	92	125	113	51	45	66	130	95
41						EXC	LUÍDO					
42	94	82	43	48	82	109	115	58	47	73	133	78
43	173	81	60	89	109	103	146	84	46	72	125	193
44	107	75	49	54	82	113	174	95	68	122	176	106
45						EXC	LUÍDO					
46	101	79	48	67	79	107	153	71	57	92	163	96
47	93	65	38	55	80	100	111	54	41	62	102	103
48						EXC	LUÍDO					
49						EXC	LUÍDO					
50	104	105	75	77	99	135	141	77	55	85	140	124
51						EXC	LUÍDO					
52	174	72	42	61	119	152	158	81	60	76	104	233
53						EXC	LUÍDO					
54	103	94	61	79	81	101	117	62	51	76	122	145
55	98	120	64	59	125	173	169	97	75	109	145	88
56	107	77	52	64	105	135	152	74	46	75	111	141
57	142	108	92	96	121	148	133	59	38	70	11	163
58	107	73	43	4	100	135	142	59	60	82	162	90
59	123	103	63	66	138	206	150	70	56	84	110	161
60	85	71	48	69	89	135	122	53	43	64	119	123
61						EXC	LUIDO					
62						EXC	LUIDO					
63						EXC	LUIDO					
64	115	02	<i>c</i> 0	<u> </u>	107	EXC	LUIDO	-	4 -	~ -	100	100
65	115	93	68	60	107	167	159	70 77	46	65	123	133
66	104	90	58	68	96	84	140	65	48	66	108	91
6/	128	81	46	63	106	107	139	61	52	80	129	186

	Sinal	Espessura Media	Superior	Nasal	Inferior	Temporal
No	T2	T2	T2	T2	T2	T2
35	9	92	116	71	116	64
36			EXCLU	JÍDO		
37	9	98	123	89	117	65
38			EXCLU	JÍDO		
39			EXCLU	JÍDO		
40	9	101	127	90	130	57
41			EXCLU	JÍDO		
42	8	80	101	55	104	60
43	8	108	155	70	139	69
44	8	90	116	67	121	57
45			EXCLU	JÍDO		
46	10	77	103	55	97	54
47	8	101	112	70	128	94
48			EXCLU	JÍDO		
49			EXCLU	JÍDO		
50	8	104	154	58	135	69
51			EXCLU	JÍDO		
52	9	113	139	80	142	91
53			EXCLU	JÍDO		
54	8	96	122	66	128	68
55	8	112	144	102	144	57
56	7	88	108	55	123	66
57	9	87	110	66	116	55
58	8	116	170	86	128	78
59	9	109	126	77	170	65
60	8	87	98	84	107	59
61			EXCLU	JÍDO		
62			EXCLU	JIDO		
63			EXCLU	JIDO		
64			EXCLU	JIDO		
65	9	103	132	76	141	62
66	7	89	97	86	115	58
67	7	95	133	58	139	49

DISTRIBUIÇÃO DOS DADOS INDIVIDUAIS NA ANÁLISE INTEREXAMINADOR NO GRUPO SAUDÁVEL DO EXAMINADOR 2

GRUPO SAUDÁVEL DO EXAMINADOR 2												
	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
No	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2
35	112	65	63	85	94	128	127	57	57	78	121	114
36						EXC	LUÍDO					
37	103	104	77	85	91	132	128	64	49	80	136	130
38						EXC	LUÍDO					
39						EXC	LUÍDO					
40	111	104	78	90	98	154	138	54	40	75	150	118
41						EXC	LUÍDO					
42	91	77	43	45	86	105	121	59	48	73	127	87
43	164	89	53	70	125	124	167	85	49	73	130	170
44	103	80	47	73	109	146	108	55	47	69	105	140
45						EXC	LUÍDO					
46	100	64	40	61	77	103	110	53	43	66	106	103
47	115	86	56	67	111	136	136	96	119	68	78	142
48						EXC	LUÍDO					
49						EXC	LUÍDO					
50	172	74	46	54	115	142	147	78	59	70	92	199
51						EXC	LUÍDO					
52	132	118	58	63	110	132	184	114	63	97	154	130
53						EXC	LUÍDO					
54	113	81	57	60	103	127	154	86	44	75	106	148
55	155	120	90	97	128	166	136	55	40	75	118	159
56	95	72	48	44	91	132	146	65	59	76	145	84
57	85	81	56	62	78	136	133	59	43	62	121	125
58	155	97	70	92	111	131	143	90	59	85	157	199
59	124	87	72	71	167	210	133	64	58	73	117	138
60	90	95	62	95	72	106	143	64	42	71	107	98
61						EXC	LUÍDO					
62						EXC	LUÍDO					
63						EXC	LUÍDO					
64						EXC	LUÍDO					
65	128	98	68	62	103	160	159	71	47	68	128	141
66	106	110	70	79	86	113	145	56	48	69	106	81
67	157	75	49	50	121	193	103	42	45	60	84	158

ORIGINAL ARTICLE

Intrasession, intersession, and interexaminer variabilities of retinal nerve fiber layer measurements with spectral-domain OCT

Fernanda Cremasco, Graziela Massa, Vanessa Gonçalves Vidotti, Álvaro Pedroso De Carvalho Lupinacci, Vital Paulino Costa

Glaucoma Service, Department of Ophthalmology, University of Campinas, Campinas - Brazil

PURPOSE. To evaluate the intrasession, intersession, and interexaminer variabilities of retinal nerve fiber layer measurements (RNFL) with spectral-domain optical coherence tomography (OCT). METHODS. A total of 32 healthy individuals and 34 patients with chronic glaucoma underwent RNFL measurements with the Cirrus HD-OCT Model 4000 (Carl Zeiss Meditec, Dublin, CA, USA) 5 times during the same sitting by one examiner to assess intrasession variability. The same examiner performed RNFL measurements in the same patients on 5 different days to assess intersession variability. A second examiner performed RNFL measurements in the same patients to assess interexaminer variability. The coefficients of variation and intraclass correlation coefficients were obtained for the following parameters: average thickness, quadrant thickness, and Clock hour thickness measurements. RESULTS. Intrasession variability: In patients with glaucoma, coefficients of variation ranged from 4.51% to 11.84%. Intraclass correlation coefficients ranged from 0.74 to 0.99. In healthy individuals, coefficients of variation ranged from 2.92% to 6.99%. Intraclass correlation coefficients ranged from 0.89 to 0.98. Intersession variability: In patients with glaucoma, coefficients of variation ranged from 3.68% to 10.50%. Intraclass correlation coefficients ranged from 0.82 to 0.99. In healthy individuals, coefficients of variation ranged from 3.13% to 6.92%. Intraclass correlation coefficients ranged from 0.87 to 0.99. Interexaminer variability: In patients with glaucoma, coefficients of variation ranged from 2.62% to 14.94%. Intraclass correlation coefficients ranged from 0.55 to 0.98. In healthy individuals, coefficients of variation ranged from 2.04% to 7.31%. Intraclass correlation coefficients ranged from 0.86 to 0.98.

CONCLUSIONS. These findings indicate that RNFL measurements with spectral-domain OCT display excellent reproducibility, with low intrasession, intersession, and interexaminer variabilities.

KEY WORDS. Optical coherence tomography, Reproducibility, Retinal nerve fiber layer thickness, Spectral-domain OCT

Accepted: July 15, 2010

INTRODUCTION

Identification of optic nerve and retinal nerve fiber layer (RNFL) damage is important in the diagnosis and monitoring of glaucoma. Until recently, assessment of the optic nerve and RNFL has been largely subjective (1). New technologies have become available that provide quantitative, reproducible, and objective measurements of the optic nerve head and RNFL thickness, such as scanning laser polarimetry, confocal scanning laser ophthalmoscopy, and optical coherence tomography (OCT) (2-7).

Optical coherence tomography was introduced in 1991 as a noninvasive, cross-sectional imaging technique of the optic nerve and retina (8). In 1995, time-domain OCT (TD-OCT) was first used for imaging the retina in eyes with macular diseases (9, 10). Subsequently, OCT has been widely employed for RNFL thickness measurements in eyes with glaucoma (3, 4, 11).

Recently, spectral-domain OCT (SD-OCT) has entered clinical practice. Spectral-domain OCT uses light wavelengths instead of echo time delay, reducing the time spent for the acquisition of images. The result is a large increase in the amount of data that can be obtained during a given scan with better resolution and improved visualization of retinal structures (12-17). Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA) is a SD-OCT able to acquire data about 70 times faster (27,000 vs 400 A-scans per second) and with better resolution (5 µm vs 8-10 µm axial resolution in tissue) compared to time-domain technology (Stratus OCT, Carl Zeiss Meditec). Preliminary studies suggest some advantages of SD-OCT over TD-OCT, especially in eyes with poor media clarity (18), and in macular holes, improving the ability to visualize smaller structures such as the external limiting membrane and the photoreceptor inner segment (19).

One important prerequisite for meaningful interpretation of imaging results, both for the diagnosis and assessment of change over time, is a low variability between measurements obtained by the same observer, by different observers, and when repeated on different days (20). Although there has been considerable evidence favoring SD-OCT, the reproducibility and variability of the measurements should be determined before using this device for diagnosis and follow-up of patients.

The purpose of the current study is to determine the reproducibility of RNFL thickness measurements obtained with SD-OCT in patients with glaucoma and normal individuals.

MATERIALS AND METHODS

One randomly selected eye from 34 patients with glaucoma and from 32 healthy individuals were included in the study. All recruited subjects were examined in the Glaucoma Service, Department of Ophthalmology, University of Campinas, Brazil. Informed consent was obtained from all participants, and the study was approved by the Ethics Committee of the University of Campinas. This research followed the tenets of the Declaration of Helsinki.

All subjects underwent a complete ophthalmic examination including best-corrected visual acuity, silt-lamp examination, Goldmann applanation tonometry, gonioscopy, indirect ophthalmoscopy, optic disc evaluation with a 78-di opter lens, and standard full-threshold or SITA automate perimetry (30-2 or 24-2 mode, Humphrey Visual Field Ana lyzer; Carl Zeiss Meditec).

Subjects in the glaucoma group included those with any forr of chronic glaucoma, defined as the presence of optic dis abnormalities consistent with glaucomatous optic neuropathy with or without visual field loss. Two of the following optic dis abnormalities had to be present for the disc to be character ized as glaucomatous: c/d ratio >0.6, localized rim loss, opti disc hemorrhage, or c/d asymmetry >0.3. Optic discs wit excessive paleness or accompanied by retinal lesions wer excluded. Other inclusion criteria were best-corrected visua acuity ≥20/40, refractive error <5 spherical diopters and <3 cy lindrical diopters, no history of ocular or systemic diseases c surgery that might interfere with RNFL measurements, abilit to perform the tests, and willingness to participate as a subjec in the study.

Healthy individuals were selected among the staff and rela tives of patients followed at other services. Inclusion criteri for healthy individuals were no history of eye disease, nfamily history of glaucoma, intraocular pressure <21 mr Hg by Goldmann applanation tonometry, best-corrected vi sual acuity of 20/40 or better, refractive error <5 spherica diopters and <3 cylindrical diopters, open angle at gonios copy, and normal optic disc appearance based on clinica stereoscopic examination. A normal result on the glaucom hemifield test and pattern standard deviation within norma limits was required on visual field examinations.

OCT measurements

One eye per subject was randomly chosen to underg RNFL measurements with the Cirrus HD-OCT Model 400 (Carl Zeiss Meditec) 5 times during the same sitting by on examiner to assess intrasession variability. In the first day when one examiner obtained 5 scans, the subject wa not repositioned between the scans, except when it wa necessary. The same examiner performed RNFL measure ments using the optic disc cube 200×200 scan in th same patients on 5 different days within 3 months to as sess intersession variability. A second examiner performeone additional examination in the same patients during th first day to determine interexaminer variability.

Subjects were tested undilated for this study. Subject were seated with the chin comfortably positioned in a chi rest and the machine was properly aligned. The subject

Cremasco et al

was then instructed to look at the internal fixation target to bring the optic nerve head within view of the examiner. The position of the aiming circle was adjusted manually by the operator to match the optic nerve head best focus and centralization. If the subject moved, blinked, or lost fixation during the scan, the image was excluded and reacquired. Scans were discarded and retaken if the signal strength was less than 7 or if there were algorithm failures as well. If the error or the signal strength <7 persisted, the subject was excluded. The repeated scan function was not used. The RNFL analyses algorithm reports 17 RNFL thickness values: average RNFL thickness around the entire circumference, average thickness within the 4 quadrants (temporal, superior, nasal, and inferior), and average thickness in each of the 12 Clock hour sectors.

Statistical analysis

All data were analyzed using the statistical package of Primer of Biostatistics Version 6.0 (Glantz, SA®, McGraw-Hill, 2005).

Left and right eyes were included in the study. Left eyes were considered to be mirror images of the right eyes. Therefore, in all the tables of clock hours, we treated the hours from 12:00 to 6:00 as nasal, and those from 6:00 to 12:00 as temporal.

The coefficients of variation (COVs) and intraclass correlation coefficients (ICCs) with 95% confidence intervals were obtained for the following parameters: average thickness, guadrant thickness, and Clock hour thickness measurements. Intraclass correlation coefficients were calculated with the 2-way random effects model and with the consistency definition. The COV, expressed as a percentage, was calculated as the square root of the variance divided by the mean RNFL thickness of the repeated measures. The lower its value, the more homogeneous the data. The sample size necessary to obtain an ICC of 0.6 with a statistical power of 80% and an alpha error of 0.05 was 20. p Values less than 0.05 were considered statistically significant.

RESULTS

Thirty-four patients with glaucoma and 32 healthy individuals were included in the study. Six patients with glaucoma and 2 healthy individuals were excluded from the intersession analysis; 15 patients with glaucoma and 12 healthy individuals were excluded from the interexaminer analysis. All were excluded because they missed one or more sessions. The demographic characteristics of both groups are shown in Table I. Patients in the glaucoma group were significantly older, and, as expected, had significantly higher

TABLE I - DEMOGRAPHIC CHARACTERISTICS OF PATIENTS WITH GLAUCOMA AND HEALTHY INDIVIDUALS INCLUDED IN THE INTRASESSION ANALYSES

	Glaucoma (n=34)	Controls (n=32)	р
Gender, n (%) M:F	11 (32.4):23 (67.6)	13 (40.6):19 (59.4)	0.487*
Race, n (%) white:AA	25 (63.5):9 (26.5)	31 (96.9):1 (3.1)	0.008*
Age, y, mean ± SD (min; max)	58.15±10.64 (28.0; 86.0)	39.96±10.92 (24.0; 57.0)	<0.001†
VA (logMAR), n (%)	F (1 4 70)	0	
0.3 0.22 0.14 0.1 0.04 0	5 (14.70) 3 (8.82) 3 (8.82) 2 (5.88) 4 (11.76) 17 (50)	0 2 (6.25) 0 0 30 (93.75)	0.003*
SE, D, mean ± SD (min; max)	0.61±1.17 (-2.25; +2.75)	-0.15±1.14 (-2.87; +2.62)	0.003‡
IOP, mmHg, mean ± SD (min; max)	14.44±2.99 (8.0; 21.0)	12.7±1.97 (10.0; 18.0)	0.015‡
MD, dB, mean ± SD (min; max)	-6.08±7.37 (-25.78; 1.41)	-1.18±1.01 (-3.29; 0.92)	0.001‡
PSD, dB, mean ± SD (min; max)	4.79±4.14 (0.97; 13.47)	1.50±0.40 (0.98; 2.58)	<0.001‡

*Pearson chi-square.

+Student t test.

, Hann-Whitney U test. AA = African American; IOP = intraocular pressure; max = maximum; MD = mean deviation; min = minimum; n = absolute number; PSD = pattern standard deviation; SE = spherical equivalent; VA = visual acuity.

IOPs, lower mean deviation values, and higher pattern standard deviation values. Furthermore, the percentage of African Americans was significantly higher in the glaucoma group.

Intrasession variability

Among patients with glaucoma, COVs ranged from 4.51% (at 10 o'clock) to 11.84% (in the nasal quadrant). Intraclass correlation coefficients varied from 0.74 (in the nasal quadrant) to 0.99 (at 10 o'clock). Among healthy individuals, COVs ranged from 2.92% (average thickness) to 6.99% (at 4 o'clock). Intraclass correlation coefficients varied from 0.89 (average thickness) to 0.98 (at 10 and 11 o'clock) (Tab. II).

Intersession variability

Among patients with glaucoma, COVs ranged from 3.68% (at 10 o'clock) to 10.50% (at 12 o'clock). Intraclass correlation coefficients varied from 0.82 (in the nasal quadrant) to 0.99 (at 7 and 10 o'clock). Among healthy individuals, COVs ranged from 3.13% (in the nasal quadrant) to 6.92% (at 4 o'clock). Intraclass correlation coefficients varied from 0.87 (average thickness) to 0.99 (at 9 o'clock) (Tab. III).

Interexaminer variability

Among patients with glaucoma, COVs ranged from 2.62% (average thickness) to 14.94% (at 1 o'clock). Intraclass correlation coefficients varied from 0.55 (at 3 o'clock) to 0.98 (at 6 o'clock). Among healthy individuals, COVs ranged from 2.04% (average thickness) to 7.31% (at 4 o'clock). Intraclass correlation coefficients varied from 0.86 (at 4 o'clock) to 0.98 (at 9 o'clock and temporal quadrant) (Tab. IV).

DISCUSSION

A variety of studies have been published demonstrating the reproducibility of different TD-OCT generations (21-27). In a recent article, Budenz et al (27) reported low variabilities with the Stratus OCT 3, with ICCs ranging from 0.98 to 0.54 (intrasession variability), and from 0.98 to 0.76 (intersession variability).

Since SD-OCT has become recently available, there are some reports in the literature evaluating its reproducibility (28-33). There are some reports investigating the RT-Vue-100 (Optovue, Inc., Fremont, CA, USA) (28, 31, 32), the Topcon 3D-OCT 1000 (Topcon Medical Systems,

TABLE II -	MEAN RNFL	THICKNESS	AND STANDARI	DEVIATION:	ICC AND	COV OF	PATIENTS	WITH G	LAUCOMA	AND
	HEALTHY IND	DIVIDUALS W	HO PARTICIPATE	ED IN THE INT	RASESSI	ON ANAL	YSIS			

	Glauco	ma (n=34)		Contro	ols (n=32)	
	Mean ± SD (μm)	ICC	COV (%)	Mean ± SD (μm)	ICC	COV (%)
Average thickness	76.78±4.07	0.92	5.31	95.74±2.79	0.89	2.92
Temporal quadrant	57.84±3.60	0.94	6.23	65.41±3.93	0.95	6.01
Superior quadrant	90.06±5.76	0.93	6.40	123.1±4.64	0.97	3.77
Nasal quadrant	66.14±7.83	0.74	11.84	73.14±3.70	0.95	5.07
Inferior quadrant	92.37±4.95	0.97	5.36	123.26±5.34	0.95	4.34
Clock hour 1	81.20±6.21	0.96	7.65	110.50±6.55	0.96	5.93
Clock hour 2	75.97±7.67	0.79	10.10	88.02±4.71	0.97	5.36
Clock hour 3	59.48±4.91	0.86	9.02	59.78±3.23	0.97	5.41
Clock hour 4	63.36±4.27	0.88	6.74	70.39±4.92	0.95	6.99
Clock hour 5	81.18±5.00	0.97	6.16	100.46±6.88	0.94	6.85
Clock hour 6	104.54±1.02	0.97	6.85	131.30±7.03	0.96	5.38
Clock hour 7	94.40±7.31	0.98	7.75	137.35±6.89	0.92	5.02
Clock hour 8	56.96±2.89	0.98	5.08	68.29±4.26	0.95	6.25
Clock hour 9	50.11±2.37	0.98	4.74	52.54±2.57	0.98	4.91
Clock hour 10	64.25±2.89	0.99	4.51	75.80±2.58	0.98	3.41
Clock hour 11	97.60±5.77	0.97	5.92	127.03±6.19	0.96	4.88
Clock hour 12	93.44±6.97	0.96	7.46	131.26±8.11	0.97	6.18

COV = coefficient of variation; ICC = intraclass correlation coefficient; RNFL = retinal nerve fiber layer.

Cremasco et al

	Glau	icoma (n=28))	Controls (n=30)			
	Mean \pm SD (µm)	ICC	COV (%)	Mean \pm SD (µm)	ICC	COV (%)	
Average thickness	76.43±3.98	0.91	5.21	96.02±3.09	0.87	3.22	
Temporal quadrant	56.81±2.27	0.95	4.41	65.35±3.04	0.95	4.66	
Superior quadrant	89.32±3.93	0.91	7.58	123.98±5.77	0.95	4.24	
Nasal quadrant	66.34±5.02	0.82	9.37	73.51±3.11	0.98	3.13	
Inferior quadrant	94.76±8.87	0.98	4.00	123.94±3.87	0.97	4.01	
Clock hour 1	79.37±7.98	0.92	10.06	109.83±6.69	0.97	6.10	
Clock hour 2	76.02±6.33	0.84	8.33	88.84±4.20	0.98	4.73	
Clock hour 3	59.77±5.79	0.85	9.70	60.78±2.66	0.98	4.39	
Clock hour 4	64.17±4.03	0.94	6.29	70.45±4.87	0.96	6.92	
Clock hour 5	81.78±4.64	0.98	5.68	100.59±6.69	0.94	6.66	
Clock hour 6	106.69±7.42	0.97	6.96	132.58±7.30	0.96	5.51	
Clock hour 7	96.46±5.32	0.99	5.52	137.91±7.93	0.97	4.43	
Clock hour 8	56.41±4.14	0.95	7.35	68.74±4.09	0.96	5.95	
Clock hour 9	48.50±2.15	0.98	4.44	52.22±1.93	0.99	3.71	
Clock hour 10	64.11±2.35	0.99	3.68	75.99±3.03	0.97	4.19	
Clock hour 11	98.25±6.87	0.96	7.00	128.46±5.44	0.98	4.24	
Clock hour 12	91.57±9.61	0.92	10.50	132.27±7.63	0.98	5.77	

TABLE III - MEAN RNFL THICKNESS AND STANDARD DEVIATION: ICC AND COV OF PATIENTS WITH GLAUCOMA AND HEALTHY INDIVIDUALS WHO PARTICIPATED IN THE INTERSESSION ANALYSIS

COV = coefficient of variation; ICC = intraclass correlation coefficient; RNFL = retinal nerve fiber layer.

TABLE IV - MEAN RNFL THICKNESS AND STANDARD DEVIATION: ICC AND COV OF PATIENTS WITH GLAUCOMA AND HEALTHY INDIVIDUALS WHO PARTICIPATED IN THE INTEREXAMINER ANALYSIS

	Gla	aucoma (n=1	9)	Controls (n=20)			
	Mean \pm SD (µm)	ICC	COV (%)	Mean \pm SD (µm)	ICC	COV (%)	
Average thickness	77.92±2.04	0.87	2.62	96.95±1.97	0.96	2.04	
Temporal quadrant	58.21±1.71	0.94	2.93	64.42±1.66	0.98	2.57	
Superior quadrant	91.15±4.01	0.65	4.40	124.13±4.59	0.94	3.70	
Nasal quadrant	65.33±2.00	0.65	3.05	72.80±2.61	0.96	3.59	
Inferior quadrant	96.23±3.46	0.97	3.59	126.45±4.24	0.94	3.35	
Clock hour 1	81.15±12.13	0.63	14.94	118.72±5.76	0.96	4.85	
Clock hour 2	77.44±3.68	0.79	4.75	87.15±4.24	0.94	4.86	
Clock hour 3	57.34±4.50	0.55	7.85	59.52±2.58	0.96	4.33	
Clock hour 4	61.44±2.79	0.78	4.54	71.50±5.23	0.86	7.31	
Clock hour 5	83.86±5.54	0.92	6.61	104.72±4.63	0.96	4.42	
Clock hour 6	107.39±4.72	0.98	4.40	138.17±7.10	0.93	5.14	
Clock hour 7	96.86±4.80	0.97	4.95	136.47±6.39	0.91	4.68	
Clock hour 8	58.26±2.38	0.95	4.08	66.90±3.60	0.94	5.39	
Clock hour 9	50.63±1.71	0.96	3.37	52.92±2.15	0.98	4.07	
Clock hour 10	66.73±2.23	0.96	3.34	73.05±2.82	0.88	3.87	
Clock hour 11	96.68±4.76	0.88	4.92	120.90±4.17	0.97	3.44	
Clock hour 12	92.76±4.80	0.75	5.17	132.77±7.81	0.95	5.88	

COV = coefficient of variation; ICC = intraclass correlation coefficient; RNFL = retinal nerve fiber layer.

Inc., Paramus, NJ, USA) (29, 32), and the Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) (29), but few reports measuring the reproducibility of the Cirrus

HD-OCT (32, 33).

In a recent study, Ho et al (32) evaluated the reproducibility of 2 scans performed within the same day with different SD-OCT devices (Cirrus HD-OCT; RTVue-100; Topcon 3D-OCT-1000) using the macular thickness protocol. All devices demonstrated excellent reproducibility for the central foveal region. Intraclass correlation coefficients obtained with the Cirrus Mac Cube, RTVue (E)MM5, RTVue MM6, Topcon 3D, and Topcon Radial varied from 0.62 to 0.95, from 0.78 to 0.93, from 0.24 to 0.95, from 0.21 to 0.96, and from 0.49 to 0.99, respectively.

Leung et al (33) compared the Cirrus and Stratus OCTs and found COVs lower than 6.4% and 12.8%, respectively. The Morgan test revealed that the between-subject RNFL thickness variances were significantly lower in the Cirrus HD-OCT at 2 through 5 o'clock and at 8 through 10 o'clock compared with those of Stratus OCT. These results suggest that the new algorithm for 3-dimensional imaging of RNFL may provide a higher precision for longitudinal measurements.

In the present study, we found high ICC and low COV values for intrasession, intersession, and interexaminer analyses, which suggests an excellent reproducibility with the Cirrus OCT. Intraclass correlation coefficients (>0.82) and COVs (<10.5%) for intersession measurements were excellent and similar to intrasession values, suggesting that there was little variability added by having different sessions over time. The low variability shown by SD-OCT may be due to the shorter acquisition time, to improved image resolution, and to the use of a line-scanning ophthalmoscope to detect saccadic eye movements during OCT imaging.

The nasal quadrant tended to show lower ICCs in the intrasession and intersession analyses, which is consistent with some previous studies (26, 27, 33). Some investigators suggest that this may be due to the fact that the incidence angle of the illuminating beam makes RNFL image dimmer on the nasal side, so that the boundaries of the RNFL are less reliably identified (34).

The COVs tended to be higher in the glaucoma group compared to the control group. Measurements in a group of homogeneous normal controls, with a small between-subject variance, would be expected to be less variable than those derived from a group of patients with a wide range of disease, as in a glaucoma group. Although there was a significant difference between mean ages of both groups, we do not believe that this finding had an effect in any of our results.

Although our sample size was small, the statistical power to detect an ICC of 0.6 with an alpha error of 0.05 was higher than 80% for the intrasession and intersession analyses

and approximately 80% for the interexaminer analysis. To our knowledge, the interexaminer reproducibility of SD-OCT was not tested in previous studies. Our findings demonstrated good ICC (>0.55) and COV (<14.4%) results, indicating that RNFL measurements obtained by different examiners can be compared. Again, greater variabilities were found in the glaucoma group compared to the controls.

In conclusion, this study suggests an excellent reproducibility of RNFL measurements with the Cirrus OCT. The excellent ICC and COV results represent preliminary evidence that SD-OCT has the potential to improve RNFL evaluation. However, longitudinal studies with SD-OCT are needed to test the diagnostic accuracy and the ability to detect progression inpatients with glaucoma.

ACKNOWLEDGEMENTS

Vital P. Costa was supported by grant 07/51281-9 by FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo).

This study was presented in part as a poster at the American Academy of Ophthalmology meeting; San Francisco, California, USA; October 2009.

The authors report no proprietary interest.

Address for correspondence: Vital Paulino Costa, MD Director, Glaucoma Service University of Campinas Rua Bahia 1087 apto 21 São Paulo-SP Brazil vp.costa@uol.com.br

REFERENCES

- Jonas JB, Buddle WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 1999; 43: 293-320.
- Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 2004; 137: 156-69.
- Badala F, Nouri-Mahdavi K, Raoof DA, et al. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol 2007; 144: 724-32.
- 4. Greenfield DS, Weinreb RN. Role of optic nerve imaging in

Cremasco et al

glaucoma clinical practice and clinical trials. Am J Ophthalmol 2008; 145: 598-603.

- Sanchez-Galeana C, Bowd C, Blumenthal E, et al. Using optical imaging summary data to detect glaucoma. Ophthalmology 2001; 108: 1812-8.
- Shah NN, Bowd C, Medeiros FA, et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology 2006; 113: 1593-602.
- Schuman JS, Hee MR, Arya AV, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995; 6: 89-95.
- Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991; 254: 1178-81.
- Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995; 113: 325-32.
- Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995; 102: 217-29.
- Schuman JS. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans Am Ophthalmol Soc 2008; 106: 426-58.
- Drexler W, Morgner U, Kärtner FX, et al. In vivo ultra-high resolution optical coherence tomography. Opt Lett 1999; 24: 1221-3.
- Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultra-high resolution ophthalmic optical coherence tomography. Nat Med 2001; 7: 502-7.
- Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt 2004; 9: 47-74.
- 15. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003; 21: 1361-7.
- Wojtkowski M, Srinivasan V, Ko T, Fujimoto JG, Kowalczyk A, Duker J. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 2004; 12: 2404-22.
- Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002; 7: 457-63.
- Gupta V, Gupta P, Singh R, Dogra MR, Gupta A. Spectral-domain Cirrus high-definition optical coherence tomography is better than time-domain Stratus optical coherence tomography for evaluation of macular pathologic features in uveitis. Am J Ophthalmol 2008; 145: 1018-22.
- Ko TH, Fujimoto JG, Duker JS, et al. Comparison of ultrahigh and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 2004; 111: 2033-43.
- Barkana Y, Burgansky-Eliash Z, Gerber Y, et al. Inter-device variability of the Stratus optical coherence tomography. Am J Ophthalmol 2009; 147: 260-6.
- 21. Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using

optical coherence tomography. Ophthalmology 1996; 103: 1889-98.

- Blumenthal EZ, Williams JM, Wainreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 2000; 107: 2278-82.
- Jones AL, Sheen NJ, North RV, Morgan JE. The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study of the normal human retinal nerve fiber layer. Br J Ophthalmol 2001; 85: 673-7.
- Carpineto P, Ciancaglini M, Zuppardi E, et al. Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology 2003; 110: 190-5.
- Paunescu LA, Schuman JS, Price LL, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 2004; 45: 1716-24.
- Budenz DL, Chang RT, Huang X, et al. Reproducibility of retinal nerve fiber thickness measurements using the Stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005; 46: 2440-3.
- Budenz DL, Fredette MJ, Feuer WJ, Anderson DR. Reproducibility of peripapillary retinal nerve fiber thickness measurements with Stratus OCT in glaucomatous eyes. Ophthalmology 2008; 115: 661-6.
- Alasil T, Tan O, Lu AT, et al. Correlation of Fourier domain optical coherence tomography retinal nerve fiber layer maps with visual fields in nonarteritic ischemic optic neuropathy. Ophthalmic Surg Lasers Imaging 2008; 39: S71-9.
- Menke MN, Knecht P, Sturm V, et al. Reproducibility of nerve fiber layer thickness measurements using 3D Fourier-domain OCT. Invest Ophthalmol Vis Sci 2008; 49: 5386-91.
- Menke MN, Dabov S, Knecht P, Sturm V. Reproducibility of retinal thickness measurements in healthy subjects using Spectralis optical coherence tomography. Am J Ophthalmol 2009; 147: 467-72.
- González-Garcia AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol 2009; 147: 1067-74.
- Ho J, Sull AC, Vuong LN, et al. Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology 2009; 116: 1960-70.
- Leung CK, Cheung CY, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 2009; 116: 1257-63.
- Knighton RW, Qian C. An optical model of the human retinal nerve fiber layer: implications of directional reflectance for variability of clinical measurements. J Glaucoma 2000; 9: 56-62.