
Universidade Estadual de Campinas

Faculdade de Engenharia Elétrica e de Computação

Departamento de Comunicações

Contributions to the design and development process of

interactive applications for digital TV based on Ginga-NCL

(Contribuições para o desenvolvimento de aplicações

interativas para TV digital baseadas em Ginga-NCL)

Autor: Julio Humberto León Ruiz

Orientador: Prof. Dr. Yuzo Iano

Master’s Degree Dissertation presented to the
School of Electrical and Computer Engineering as
a requirement to obtain the degree of Master of Sci-
ence in Electrical Engineering. Area of Concentra-
tion: Telematics and Telecommunications

Jury Members

Prof. Dr. Yuzo Iano (Chair) — DECOM/FEEC/UNICAMP
Prof. Dr. Guillermo Kemper Vásquez — USMP – Lima, Peru
Prof. Dr. Luis César Martini — DECOM/FEEC/UNICAMP

Campinas – SP
August 2011

FICHA CATALOGRÁFICA ELABORADA PELA

BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

León Ruiz, Julio Humberto

L553c Contribuições para o desenvolvimento de aplicações

interativas para TV digital baseadas em Ginga-NCL /

Julio Humberto León Ruiz. – Campinas, SP: [s.n.], 2011.

Orientador: Yuzo Iano

Dissertação de Mestrado - Universidade Estadual de

Campinas. Faculdade de Engenharia Elétrica e de

Computação.

1. Televisão digital. I. Iano, Yuzo. II. Universidade

Estadual de Campinas. Faculdade de Engenharia Elétrica

e de Computação. III. Título

Título em Inglês: Contributions to the design and development process

of interactive applications for digital TV based on

Ginga-NCL

Palavras-chave em Inglês: Digital television

Área de concentração: Telecomunicações e Telemática

Titulação: Mestre em Engenharia Elétrica

Banca Examinadora: Guillermo Leopoldo Kemper Vásquez, Luiz César Martini

Data da defesa: 26-08-2011

Programa de Pós-Graduação: Engenharia Elétrica

ii

iii

iv

Abstract

Interactivity for digital television is, nowadays, a very important feature to stablish a communi-

cation pathway between users and broadcasters, due to digital television’s current status in Brazil.

The Ginga middleware, still in development status, presents an opportunity for achieving interacti-

vity via Ginga-NCL, a framework that allows application development and deployment using NCL

and Lua programming languages.

However, there are not standardised ways to develop applications, the currently available re-

ceivers in the market are very limited in hardware, and released applications will not be able to

always execute flawlessly without standards or guidelines to optimise them. The author’s work

offers a new perspective on graphical environment development for interactive applications with

techniques to optimise against the limiting factors, and presents an open-source library for imple-

menting a virtual keyboard in any Ginga-NCL application as well.

Keywords: Digital Television, ISDB-Tb, Interactivity, Ginga, NCL, NCLua, GUI Design, Virtual

Keyboard.

v

vi

Resumo

No entorno atual da televisão digital no Brasil, a interatividade é uma característica importante

para se estabelecer uma plataforma de comunicação entre os usuários e as emissoras. O middleware

Ginga, ainda em desenvolvimento, se apresenta como uma oportunidade para a interatividade

por meio do Ginga-NCL, um framework que permite o desenvolvimento de aplicações usando as

linguagens NCL e Lua.

Porém, as formas de se implementar aplicações não são padronizadas, uma vez que os recep-

tores no mercado são limitados em hardware e as aplicações nem sempre poderão ser executadas

sem seguir algumas regras ou restrições para se otimizar as aplicações. Este trabalho oferece uma

nova perspectiva sobre o desenvolvimento de gráfico de aplicações interativas, com técnicas para

se otimizar os parâmetros limitantes, além de uma biblioteca de código aberto para se implementar

um teclado virtual em qualquer aplicação Ginga-NCL.

Palavras-chave: Televisão Digital, ISDB-Tb, Interatividade, NCL.

vii

viii

Acknowledgements

I would like to thank my family, who gave me all their time, love, and support, which were essential

to me to accomplish this and all my achievements.

I am grateful to Prof. Yuzo Iano whose patience, guidance and wisdom enabled me to carry out

this work.

I am indebted to my colleagues Cibele and Ricardo, whose moral support and work together aided

me in obtaining results.

I would like to show my gratitude to my laboratory partners for their suggestions and criticism.

It is a pleasure to thank FAEPEX/CAPES for the financial support which made this thesis possible.

ix

x

Acknowledgements

I must express my gratitude to the CAPES RH-TVD (Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior) programme for the financial support and the academic incentive that enabled the

realisation of this thesis.

Agradeço ao programa CAPES RH-TVD da Coordenação de Aperfeiçoamento de Pessoal de Ní-

vel Superior tanto pelo apoio financeiro quanto pelo incentivo acadêmico para que este trabalho

pudesse ser realizado.

xi

xii

To God and my family

xiii

xiv

Published Papers

1. C. A. Makluf et al. Estudo de tecnologias 3G visando à estruturação do canal de retorno da TV digital.

In Proceedings of LatinDisplay 2010/IDRC 2010, São Paulo-SP, Brazil, 2010.

xv

xvi

Table of Contents

List of Figures xxi

List of Tables xxiii

List of Codes xxv

Glossary xxvii

CHAPTER 1 Introduction 1

1.1 Background . 1

1.2 Motivation and Objectives . 3

1.3 Chapter Organisation . 4

CHAPTER 2 Theoretical Review 9

2.1 Middleware . 9

2.2 Digital Television System . 11

2.3 Current Middleware Implementations . 13

2.3.1 DVB and MHP . 13

2.3.2 GEM . 15

2.3.3 ATSC and DASE . 16

2.3.4 ISDB-T and ARIB . 16

2.4 ISDB-Tb and the Ginga Middleware . 17

2.4.1 ISDB-Tb . 17

2.4.2 Ginga . 18

2.5 Interactivity . 21

xvii

xviii TABLE OF CONTENTS

2.5.1 Interactive Services . 23

2.6 MPEG-2 Transport Stream . 24

2.6.1 DSM-CC Protocol and Data Carousel . 25

2.6.2 Metadata Tables . 26

CHAPTER 3 Programming Languages and Development Tools for Ginga 27

3.1 Nested Context Model . 27

3.1.1 NCM Elements . 27

3.1.2 NCM Events . 31

3.2 Nested Context Language . 32

3.3 NCLua API . 34

3.4 Development Tools . 35

3.4.1 Composer . 35

3.4.2 Eclipse . 36

3.4.3 NCL Eclipse . 36

3.4.4 Lua Eclipse . 38

3.4.5 Ginga-NCL Virtual Set-top Box . 39

3.5 Related Projects . 41

3.5.1 LuaTV . 41

3.5.2 LuaComp . 42

3.5.3 MoonDo . 44

CHAPTER 4 GUI Design Techniques and Guidelines 47

4.1 Principles of UI Design . 48

4.1.1 Target Audience . 49

4.1.2 Constraints and Criteria . 51

4.2 Design Techniques and Guidelines . 52

4.2.1 The Golden Rules . 53

4.2.2 Grid-based design . 54

4.2.3 Gestalt Laws . 57

TABLE OF CONTENTS xix

4.2.4 Colours and Transparency . 61

4.2.5 Viewing Patterns . 62

4.2.6 Safe Areas . 63

4.3 Layout Creation Guidelines . 64

4.3.1 Sketching the Concept . 64

4.3.2 Drawing the Interface . 64

4.3.3 Marking Coordinates and Dimensions . 65

4.3.4 Implementation . 66

CHAPTER 5 NCLua Contributions 69

5.1 Object-Oriented Programming in Lua . 70

5.2 NCLua Virtual Keyboard . 72

5.2.1 Conception . 72

5.2.2 Class Description . 74

CHAPTER 6 Conclusions 83

Bibliography 87

APPENDIXA NCLua Virtual Keyboard 91

APPENDIX B Sample Application 99

xx TABLE OF CONTENTS

List of Figures

Figure 2.1 Multiplexing for Digital Television . 10

Figure 2.2 An interface problem with a simple solution . 10

Figure 2.3 Basic structure of the elements of a middleware 11

Figure 2.4 A generic digital television architecture . 12

Figure 2.5 A digital television system . 14

Figure 2.6 Relationship between GEM and GEM-based specifications 16

Figure 2.7 Different allocation cases for the 6 MHz band 18

Figure 2.8 Ginga Middleware Architecture . 19

Figure 2.9 Application Environment Structure . 19

Figure 2.10 Interactivity Context for Ginga-based Devices 21

Figure 2.11 Model of interactive digital television system 22

Figure 2.12 Example of an EPG . 23

Figure 2.13 Simplified Model of the MPEG-2 Transport and Program Stream Multiplexing 24

Figure 2.14 TS Packet Structure . 25

Figure 3.1 Overview of NCM class hierarchy . 28

Figure 3.2 Interfaces of an NCM Node . 30

Figure 3.3 NCM event state machine . 31

Figure 3.4 Multiple Views of the Composer Authoring Tool 35

Figure 3.5 Error Validation and Possible Corrections . 37

Figure 3.6 Program visualisation of the <region> element 37

Figure 3.7 Evaluating Lua scripts using the pre-configured interpreter 38

Figure 3.8 Ginga-NCL Virtual STB Interface . 40

xxi

xxii LIST OF FIGURES

Figure 3.9 LuaTV API context within Ginga architecture . 41

Figure 3.10 LuaTV API Widgets Package . 42

Figure 3.11 Different Views of the LuaComp tool . 44

Figure 3.12 MoonDo Graphic Components . 45

Figure 4.1 Remote Control for User Perception Tests . 49

Figure 4.2 Example of a Common Remote Control . 51

Figure 4.3 Different Television Aspect Ratios . 53

Figure 4.4 An Example of Grid-based Design . 56

Figure 4.5 Gestalt Law of Balance/Symmetry . 57

Figure 4.6 Gestalt Law of Continuity . 58

Figure 4.7 Gestalt Law of Closure . 58

Figure 4.8 Gestalt Law of Figure-Ground . 58

Figure 4.9 Gestalt Law of Focal Point . 59

Figure 4.10 Gestalt Law of Isomorphic Correspondence: A Help Icon 59

Figure 4.11 Gestalt Law of Prägnanz (Good Form) . 60

Figure 4.12 Gestalt Law of Proximity: Three Horizontal Rows 60

Figure 4.13 Gestalt Law of Similarity: Triangle inside a Square 60

Figure 4.14 Gestalt Law of Simplicity . 61

Figure 4.15 Gestalt Law of Unity/Harmony . 61

Figure 4.16 Typical Page Scanning “Z” Pattern . 62

Figure 4.17 BBCi Viewing Pattern . 63

Figure 4.18 Action-Safe and Graphic-Safe Areas for a Wide-Screen (16:9) format TV Screen 64

Figure 4.19 Layout Sketch for a Form Application . 65

Figure 4.20 Drawn Concept . 66

Figure 4.21 Marking Coordinates and Dimensions . 66

Figure 4.22 Flat vs. Blended Colours . 68

Figure 5.1 Virtual Keyboard, version 1 . 73

Figure 5.2 Virtual Keyboard Sample Application . 81

List of Tables

Table 2.1 DVB standards . 14

Table 4.1 Mandatory Remote Control Keys . 50

Table 4.2 Maximum bitrate values for each type of service 67

Table 5.1 Attributes of the KbElement class . 74

Table 5.2 Methods of the KbElement class . 75

Table 5.3 Attributes of the KeyBoard class . 75

Table 5.4 Methods of the KeyBoard class . 77

xxiii

xxiv LIST OF TABLES

List of Codes

Code 3.1 Sample NCL Code . 32

Code 5.1 Metatable-based Object Orientation . 70

Code 5.2 Defining Methods . 70

Code 5.3 Direct Access to Object Variables . 71

Code 5.4 Alternative Method for Object Orientation . 71

Code 5.5 Creating a layout content array . 80

Code 5.6 Multiple Keyboard Layouts . 80

xxv

xxvi LIST OF CODES

Glossary

8-VSB Eight Level Vestigial Sideband

AAC Advanced Audio Coding

AC Audio Coding

API Application Programming Interface

ARIB Association of Radio Industries and Business

ATSC Advanced Television Systems Committee

BST-OFDM Band-Segmented Transmission - Orthogonal Frequency Division Multiplexing

CAT Conditional Access Table

Codec Encoder/Decoder

COFDM Coded Orthogonal Frequency Division Multiplexing

DASE Digital Television Application Software Environment

DSM-CC Digital Storage Media – Command and Control

DVB Digital Video Broadcasting

EDTV Enhanced Definition Television

EPG Electronic Program Guide

GEM Globally Executable MHP

xxvii

xxviii Glossary

GUI Graphic User Interface

HD High Definition

HDTV High Definition Television

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IPTV Internet Protocol Television

ISDB Integrated Services Digital Broadcasting

ISDB-T Integrated Services Digital Broadcasting - Terrestrial

ISDB-Tb Integrated Services Digital Broadcasting - Terrestrial, version B

JPEG Joint Photographic Experts Group

JVM Java Virtual Machine

LCD Liquid Crystal Display

LED Light-Emitting Diode

MHEG Multimedia and Hypermedia Experts Group

MHP Multimedia Home Platform

Modem Modulator/Demodulator

MPEG Moving Picture Experts Group

NCL Nested Context Language

NCM Nested Context Model

NIT Network Information Table

Glossary xxix

NTSC National Television System Committee

OOP Object-Oriented Programming

OTT TV Over-the-top Television

PAL Phase Alternating Line

PAT Program Assosiation Table

PES Packetised Elementary Stream

PID Packet Identifier

PMT Program Map Table

PNG Portable Network Graphics

PS Program Stream

PSI Program Specific Information

PUC-RIO Pontifícia Universidade Católica do Rio de Janeiro

RTOS Real-Time Operating System

RTP Real-time Transport Protocol

SBTVD Sistema Brasileiro de Televisão Digital

SDTV Standard Definition Television

SECAM Séquentiel Couleur à Mémoire

SNR Signal-to-noise ratio

STB Set-Top Box

TDT Time and Date Table

TS Transport Stream

xxx Glossary

UFMA Universidade Federal do Maranhão

UNB Universidade de Brasília

WYSIWYG What-You-See-Is-What-You-Get

XML Extensible Markup Language

Chapter 1

Introduction

D
uring the last few years, digital television has started to get plenty of attention in the

media. Marketing campaigns were launched to get the masses to purchase new TV sets

and receivers, or set-top boxes (STBs), that support digital television in order to watch

the World Cup, or some new High Definition (HD) soap opera.

Before going any further, a brief look into the history of digital television and the development

of digital television in Brazil should be taken to have a better understanding of the work described

in this thesis and to analyse the quality of its contributions.

1.1 Background

In the course of the last century, analogue television was born and had huge commercial suc-

cess worldwide. Several companies conducted research and established standards for broadcasting,

displaying and content creating processes. The standards for analogue TV were developed in three

different parts of the world. In the United States of America, the National Television System Com-

mittee (NTSC) developed the analogue television system that was used in most of North and South

America, and some Asian countries. In Europe, in 1963, the Phase Alternating Line (PAL) system

was developed and adopted by most Western European countries as their analogue television colour

encoding system. However, France developed, in 1967, the Séquentiel Couleur à Mémoire (SECAM)

which is French for “Sequential Colour with Memory” and did not switch to PAL as the rest of

1

2 Chapter 1 - Introduction

Western Europe. Finally, in 1972, a fourth variant was developed in Brazil: PAL-M.

During the 90’s, the American, European, and Japanese major research centres worked together

to develop the foundations of digital television. Each of them developed their own standards

for digital television, as they did before for analogue television. These standards are known as

Advanced Television Systems Committee (ATSC), Digital Video Broadcasting (DVB) and Integrated

Services Digital Broadcasting (ISDB) for the American, European and Japanese respectively [1].

Besides the American, European, and Japanese, the Brazilian research centres also began studies

about digital television formats. This research was based in ATSC, DVB and ISDB, as those were

the most current standards at the time [2]. From those studies, the Brazilian government decided

to adopt ISDB-T (Integrated Services Digital Broadcasting - Terrestrial) as the Brazilian digital tele-

vision standard base. It was from that base that Brazil decided to implement several improvements

to satisfy the need for mobility, portability, low cost for consumers, interactivity and high definition

video [1].

These improvements led to the development of the new Brazilian-Japanese standard, ISDB-Tb

(Integrated Services Digital Broadcasting - Terrestrial, version B) also called Sistema Brasileiro de Tele-

visão Digital (SBTVD). The new ISDB-Tb was made from research carried out in Brazilian research

centres, with new features such as a new middleware Ginga, which is the platform for interactivity

and the use of a new compression standard, h.264 (ISO/IEC 14496-10 - MPEG-4 Part 10, Advanced

Video Coding) replacing MPEG-2 used in the Japanese version, achieving greater compression rates.

Digital television was the way to address certain problems present in analogue transmission

back then, such as random white noise, ghosting, and degenerative video quality. The loss in video

quality depends on the ratio between the signal and noise power, called signal-to-noise ratio (SNR)

[3].

Besides that, digital television provides the audience with very large image resolutions, resulting

in great image quality. This is known as High Definition Television (HDTV). However, HDTV is not

the only great benefit digital television has to offer; a digital television system offers much more

than just images and audio, beyond any analogue television scope. This special feature is what

allows a new level of possibilities by using digital television as a platform to provide one more

communication channel between the user and the broadcasters or content providers: interactivity.

Chapter 1 - Introduction 3

A non-linear programme is a TV show composed by video, audio and additional data that is

also transmitted along. This data contains other audio (different languages, director’s comments,

etc.) as well as images and text enclosed in an application that is linked to the programme in time

and space. This relationships between elements can be set to execute independently, or to wait for

the viewer’s command (thus, being an interactive application) [4].

The platform for interactivity in ISDB-Tb is called Ginga. It is the middleware, developed in

Brazil as an improvement over Japanese ISDB’s middleware, Association of Radio Industries and

Business (ARIB), and allows interactivity as well as other features that will be explained in detail in

Chapter 2 [5]. Besides ISDB-Tb, DVB also has a middleware that provides the user with interactivity.

1.2 Motivation and Objectives

The recent increase in demand for interactive services in various multimedia platforms (specially

with the inclusion of Internet connectivity to many devices, smartphones, etc.) and the rise of

the social networks started to create a certain urge for interactivity for everything by the users.

Television is no exception; therefore, design and development for these applications is becoming,

each time, more appealing for broadcasters and content providers.

During the initial research for this dissertation, several tests applications were developed as a

way to get familiarised with the Ginga middleware, in particular, the Ginga-NCL interactive plat-

form, and to obtain a deeper understanding of the tools and processes. The results were very ineffi-

cient, some of them did not even load properly in the STBs. Since the technology and the standard

are new and still in development, the need for certain guidelines or methods to design and develop

properly an application was imperative. This was the motivating factor for this dissertation.

When researching the possibilities for implementing interactive applications, and, in particular,

how to develop open-source tools for everyone to use, there was a certain topic that rose a particular

issue: there is no native object orientation in the Lua language (as will be explained in Section 5.1).

The experiments carried out had issues with object orientation for scalable parametric objects that

would later become the NCLua Virtual Keyboard presented in Section 5.2. Learning how to resolve

this and sharing it with other developers as a form of open-source library was a very important

4 Chapter 1 - Introduction

motivating factor as well.

The objectives of this work are focused on providing with a brief background about digital

television, the Ginga middleware and the return path for interactivity; introducing the current deve-

lopment tools and environments available at the current time of writing; proposing a set of Graphic

User Interface (GUI) design techniques to take the most advantage of the resources available and

to present the user with neat, tidy and useful interactive interfaces; and to present the open-source

NCLua Virtual Keyboard library, to aid in interactive application design and development, and to

motivate code sharing and open-source projects among researchers.

1.3 Chapter Organisation

This dissertation is organised as follows:

• Chapter 1 introduces the reader with a brief background about current digital TV standards

as well as the motivation for this work.

• In Chapter 2, presents a theoretical review about Ginga and the technologies involved around

the middleware.

• Chapter 3 brings an overview on the current development environments, as well as other

projects regarding frameworks and tools for Ginga-NCL.

• In Chapter 4, the proposed GUI design techniques are described, from basic GUI elements to

full example layouts. Common problems are described and workarounds are proposed.

• Chapter 5 presents an open-source virtual keyboard completely written in NCLua, describing

its classes and methods, and an example of usage in a real application.

• Finally, Chapter 6 presents the conclusions and proposes future projects.

Introdução

D
urante os últimos anos, a televisão digital começou a despertar a atenção da mídia.

Campanhas de marketing foram lançadas para que a população compre os novos re-

ceptores de TV, conhecidos como set-top box (STB), que suportam a televisão digital,

para assistir, por exemplo, a copa do mundo, ou uma novela em Alta Definição (HD). Para se

ter uma melhor compreensão do trabalho descrito e analisar as suas contribuições, primeiramente,

será feito um breve histórico da televisão digital e, em particular, do desenvolvimento da televisão

digital no Brasil.

Histórico

No decorrer do século passado, a televisão analógica nasceu e teve um grande sucesso comercial

ao redor do mundo. Várias empresas realizaram pesquisas a fim de estabelecer padrões para a

radiodifusão, exibição e criação de conteúdo. Os padrões de TV analógica foram desenvolvidos

em três partes diferentes do mundo. Nos Estados Unidos, o National Television System Committee

(NTSC) desenvolveu um sistema que foi utilizado na maioria do norte e sul da América, e também

alguns países da Ásia. Na Europa, em 1963, o sistema Phase Alternating Line (PAL) foi desenvolvido

e adotado pela maioria dos países da Europa Ocidental como o padrão de sistema de televisão

analógica a cores. No entanto, a França desenvolveu, em 1967, o Séquentiel Couleur à Mémoire

(SECAM), que em francês significa “Cor sequencial com memória” e não migraram para o padrão

PAL como o resto da Europa Ocidental. Finalmente, em 1972, uma quarta variante foi desenvolvida

no Brasil: PAL-M.

Durante a década de 90, os grandes centros de pesquisa americanos, europeus e japoneses tra-

5

6 Capítulo 1 - Introdução

balharam juntos para desenvolver os fundamentos da TV digital. Cada um deles desenvolveu o seu

próprio padrão para TV digital, como fizeram antes para a televisão analógica. Esses padrões são

conhecidos como Advanced Television Systems Committee (ATSC), Digital Video Broadcasting (DVB) e

Integrated Services Digital Broadcasting (ISDB) para os padrões americano, europeu e japonês respec-

tivamente [1].

Além dos centros de pesquisa americanos, europeus e japoneses, os centros brasileiros também

iniciaram estudos sobre os formatos de televisão digital. Os estudos foram baseados nos padrões

ATSC, DVB e ISDB, que eram os padrões mais atuais da época [2]. A partir desses estudos, o

governo brasileiro decidiu adotar o ISDB-T (Integrated Services Digital Broadcasting - Terrestrial) como

base para o padrão brasileiro. A partir desse padrão, o Brasil implementou várias melhorias para

satisfazer as necessidades de mobilidade, portabilidade, preços acessíveis, interatividade e vídeo de

alta definição [1].

Essas melhorias levaram ao desenvolvimento de um novo padrão denomidado nipo-brasileiro, o

ISDB-Tb (Integrated Services Digital Broadcasting - Terrestrial, versão B), também chamado de Sistema

Brasileiro de Televisão Digital (SBTVD). O novo padrão ISDB-Tb foi criado a partir de pesquisas

nos centros brasileiros, com novas funcionalidades como o novo middleware Ginga na plataforma

de interatividade. Além disso, o ISDB-Tb utiliza o novo padrão de compressão h.264 (ISO/IEC

14496-10 - MPEG-4 Part 10, Advanced Video Coding) ao invés do MPEG-2 usado na versão japonesa.

A televisão digital foi uma forma de abordar alguns problemas presentes na transmissão ana-

lógica, como o ruído branco aleatório, chuviscos, fantasmas e degeneração na qualidade de vídeo.

A perda de qualidade de vídeo depende da relação entre a potência do sinal e o ruído, conhecida

como relação sinal-ruído (SNR)[3].

Além disso, a televisão digital ofereceu ao público resoluções bem maiores e, portanto, maior

qualidade de imagem. Isto é conhecido como High Definition Television (HDTV). No entanto, HDTV

não é o único grande benefício que a televisão digital tem a oferecer. Esse sistema oferece muito

mais que imagem e áudio, além de qualquer contexto da televisão analógica. Essa característica

especial permite novas possibilidades, usando a televisão digital como plataforma para fornecer

um canal de comunicação entre os usuários e as empresas de radiodifusão ou fornecedores de

conteúdo: a interatividade.

Capítulo 1 - Introdução 7

Um programa não linear é um programa de TV formado por vídeo, áudio e dados que também

são transmitidos ao longo da programação. Esses dados contêm outros tipos de áudio (linguagens

diferentes, comentários do diretor, etc.) bem como imagens e texto incluídos em um aplicativo que

está ligado ao programa em tempo e espaço. Essas relações podem ser configuradas para serem

executadas de forma independente ou através de um comando do telespectador (assim, sendo uma

aplicação interativa) [4].

A plataforma de interatividade no ISDB-Tb é chamada de Ginga. Este é o middleware desenvol-

vido no Brasil como melhoria em relação ao middleware japonês, Association of Radio Industries and

Business (ARIB), e permite a interatividade, bem como outras características que serão explicadas

em detalhes no Capítulo 2 [5].

Objetivos e Motivações

O recente aumento na demanda por serviços interativos em várias plataformas multimídia (espe-

cialmente com a inclusão da conectividade à internet através de muitos dispositivos como smartpho-

nes) e o surgimento das redes sociais, despertaram o interesse dos usuários pela interatividade.

A televisão não é uma exceção e, portanto, o design e desenvolvimento dessas aplicações vêm se

tornando cada vez mais atraentes para as emissoras e provedoras de conteúdo.

Durante as pesquisas iniciais para esta dissertação, testes foram realizados em aplicativos de-

senvolvidos como uma forma de familiarização com o middleware Ginga; em particular, com a

plataforma interativa do Ginga-NCL, a fim de obter um entendimento mais aprofundado das fer-

ramentas e processos. Os resultados não foram satisfatórios, sendo que, em alguns casos, os STBs

nem conseguiram carregar de forma correta. Como a tecnologia e os padrões são novos e ainda

se encontram em desenvolvimento, a necessidade de certas diretrizes ou métodos para se projetar

e desenvolver apropriadamente uma aplicação é importantíssima. Esse foi o fator principal para

motivar esta dissertação.

Na hora de pesquisar informação e opções para implementar as aplicações interativas, surgiu um

problema intrigante: não há suporte para programação orientada a objetos na linguagem Lua (como

será explicado na Seção 5.1. Os testes realizados apresentaram dificuldades na implementação de

8 Capítulo 1 - Introdução

objetos parametrizados, que virariam o Teclado Virtual NCLua apresentado na Seção 5.2. O fato

de aprender resolver essa dificuldade e poder compartilhar o trabalho na comunidade como um

projeto de código aberto foi uma motivação importante neste trabalho.

Os objetivos do trabalho do autor estão focados em fornecer um breve histórico sobre a televisão

digital, o middleware Ginga e o canal de retorno para interatividade; introduzir as ferramentas

de desenvolvimento e os entornos atuais disponíveis para a autoria de aplicações; e propor um

conjunto de técnicas de design de entornos gráficos GUI (Graphic User Interface) para atingir o

máximo proveito de recursos disponíveis para apresentar, ao usuário de forma clara e organizada,

as interfaces interativas.

Organização dos Capítulos

Esta dissertação está organizada da seguinte forma:

• O Capítulo 1 introduz ao leitor um breve histórico sobre os atuais padrões de TV Digital, bem

como a motivação para este trabalho.

• No Capítulo 2, uma revisão teórica sobre o Ginga e as tecnologias envolvidas no middleware.

• O Capítulo 3 apresenta uma visão geral sobre os ambientes atuais de desenvolvimento, assim

como outros projetos sobre frameworks e ferramentas para Ginga-NCL.

• No Capítulo 4, as técnicas de desenvolvimento de GUIs propostas são descritas, desde os

elementos básicos até layouts completos. Os problemas mais comuns também são descritos e

as soluções propostas.

• O Capítulo 5 apresenta um teclado virtual de código aberto escrito em NCLua, descrevendo

suas classes e métodos, e apresentando um exemplo de uso em uma aplicação real.

• Finalmente, o Capítulo 6 apresenta as conclusões e propostas de projetos futuros.

Chapter 2

Theoretical Review

T
he whole concept of digital television is based in the middleware as a layer to integrate

standard-regulated features and conditions for any set-top box, independent of the oper-

ating system and hardware. This is a great feature that enables manufacturers to produce

different types of products without worrying of matching the hardware to the standard specifica-

tions for compatibility with a particular operating system [6].

2.1 Middleware

A middleware, by definition, is a software that joins or interfaces different systems together

[7]. A middleware also allows interoperability between different applications, allowing sharing of

information and functionalities between their systems. For instance, in a digital television perspect-

ive, the middleware allows interactivity between the users and the broadcaster or content provider.

This means that a system that interacts with users will interoperate with the digital television sys-

tem via a return path (which will be further explained over the next sections). Figure 2.1 shows

how the video, audio and interactive data signals are multiplexed into one single stream, where the

middleware acts as an interface between the interactivity and the multiplexer.

The necessity of a middleware to integrate all the different systems can be explained with the

following metaphor, as shown in Figure 2.2.

The metaphor relies on the multiple number of different mains connector plugs available world-

9

10 Chapter 2 - Theoretical Review

Figure 2.1: Multiplexing for Digital Television [6]

wide, which creates a great incompatibility issue between systems (mains jacks in this scenario).

One of the cheapest and portable solutions was to use adaptors to overcome this problem [7].

In broadcasting, the problem was alike: there were multiple possibilities for hardware, operating

systems, applications, and features, that just having to consider all of them on the design for an

application would turn the development really expensive, inefficient and time-consuming. A mid-

dleware solves this issues by serving as a multi-adaptor layer that communicates any application

and features with the resources of the system.

Figure 2.2: An interface problem with a simple solution [7]

As Figure 2.3 shows, applications and features can have access to resources, independent of

which hardware or operating system they are residing in, by a set of methods contained in an

Application Programming Interface (API) via middleware.

The basic structure of the elements of a middleware-based system is explained by [6] and can

be summarised as follows:

Chapter 2 - Theoretical Review 11

Figure 2.3: Basic structure of the elements of a middleware [6]

The bottom layer, being the layer that supports the entire system, is made by the hardware and

software available from the platform, which is the CPU, memory and a Real-Time Operating System

(RTOS). This layer depends entirely on the manufacturer and the platform’s design.

On top of the resources layer, the middleware layer acts as an operator between the applications

and the resources; only the middleware has access to the hardware and software resources of the

platform, and provides the applications with a simpler and standardised interface. The middleware

also manages all the running applications (it acts as a universal operating system for applications).

The API layer presents a set of standardised methods and functions for any application to use

to communicate with the middleware. For the application, this means access to the middleware’s

functionalities and services, such as video and audio streams, hardware resources and events. This

simplifies the level of system awareness the application designer must have in order to develop a

fully functional application, since the API enables those resources in a very transparent and simple

fashion.

2.2 Digital Television System

After describing the basic structure of a middleware, it is now possible to provide an overview

of a generic digital television system, and where does the middleware fit in. Figure 2.4 presents a

generic architecture for a digital television system.

The abbreviations in Figure 2.4 are as follows [4]:

• EPG – Electronic Program Guide

12 Chapter 2 - Theoretical Review

Figure 2.4: A generic digital television architecture [8]

• T – Television

• DASE – Digital Television Application Software Environment

• MHP – Multimedia Home Platform

• ARIB – Association of Radio Industries and Business

• MPEG – Moving Picture Experts Group

• BC – Backwards Compatible (with MPEG-1)

• AAC – Advanced Audio Coding

• AC – Audio Coding

• SDTV – Standard Definition Television

• HDTV – High Definition Television

• COFDM – Coded Orthogonal Frequency Division Multiplexing

• 8-VSB – Eight Level Vestigial Sideband

Chapter 2 - Theoretical Review 13

Each of the layers shown in Figure 2.4 have a fundamental part in the digital television system.

The lowest layer, modulation, is in charge of the following three services [4, 9]:

• Transmission and reception services which amplify the signal at the transmitter and tunes the

signal at the receiver.

• Modulation and demodulation (modem) services, responsible for modulating and demodu-

lating the encoded transport stream.

• Encoding and decoding (codec) services, which will encode and decode the transport stream.

Above the modulation layer, the transport layer has two purposes; from the broadcaster side, it

is in charge of multiplexing the video, audio and data signals into a single transport stream. From

the receiver side, it demultiplexes the signals into three different streams to be displayed [4, 9].

On top of the transport layer, the compression layer uses different algorithms (depending on

the standard) to compress and decompress the audio and video signals. The middleware layer, as

described earlier in Section 2.1, is a software layer that provides the application layer with stand-

ardised methods to access the lower layers.

A more detailed diagram on a digital television system is presented by [2], in Figure 2.5.

Figure 2.5 shows essentially the same features displayed in Figure 2.4. However, Figure 2.5

presents the digital television architecture divided in two parts: the transmitter or broadcaster side

and the receiver or spectator side. Note that the middleware has its own channel to interact with the

application server (content provider of the broadcaster). This interactivity channel is also known as

the return path, or return channel, and will be discussed in Section 2.5.

In the next section, different middleware implementations (for DVB, ATSC and ISDB) will be

described.

2.3 Current Middleware Implementations

2.3.1 DVB and MHP

The DVB standard is known as the European standard for digital television. It is a forum created

by a group of European companies to define transmission-related standards for the digital television

14 Chapter 2 - Theoretical Review

Figure 2.5: A digital television system [2]

services [4]. DVB, actually, has different variants, depending on the broadcasting method used, as

shown in Table 2.1.

Table 2.1: DVB standards [8]

Standard Broadcast Method

DVB-T Terrestrial
DVB-S Satellite
DVB-C Cable

These standards have been defined by the DVB forum, which started officially in 1993 [8].

Nowadays, that forum is composed by more than 300 members from 35 different countries. Also,

besides Europe, other countries have adopted DVB-T as their terrestrial digital television standard,

such as Australia, Malaysia, Hong Kong, India, etc. [8].

The middleware implementation in DVB is MHP (Multimedia Home Platform). MHP is a mid-

dleware with a Java Virtual Machine-based core with the advantage that it does not compete with

HTML or MHEG (Multimedia and Hypermedia Experts Group) standards; thus, future improve-

ments, in case of new requirements arising, such as updating a MHP application, is straight-forward

and simple [10].

The origins of MHP date back in 2000, where the digital television community realised that

Chapter 2 - Theoretical Review 15

content providers, without a way to develop applications that would be compatible with any set-

top box, would fail to achieve commercial success. MHP was launched in 2001, with the aim of

providing an interactive TV environment independent of the platform’s resources, being an open

standard, and fully compatible with digital television set-top boxes [8].

To present the applications, MHP uses the DVB-HTML as its declarative environment and DVB-J

(J for Java) as the imperative environment. DVB-HTML is contained within DVB-J, and DVB-J is

known as the Java API for developing applications [4, 8, 10].

The DVB-J applications have the ability to perform the following tasks:

• Download interactive applications through an interactivity channel

• Store applications in persistent memory (such as a Flash Memory, or a Hard Drive)

• Access to smart card readers

• Manage Internet-related applications (such as web browsers)

DVB-T, besides MHP, now adopts the MHEG-5 standard (ISO/IEC 13522-5) as the most current

middleware for terrestrial broadcasting. This middleware allows interactivity between the user and

the content, and can be used to present applications such as electronic program guides (EPGs)

[8]. This is one of the many improvements the DVB project is proposing, with the adoption of the

MPEG-4 (H.264 and MPEG-4 AAC) as the main compression algorithm.

However, the problem with different middlewares is that the applications wouldn’t be standard-

ised if there is a different type of middleware for each digital television system. Therefore, a new

idea arose, proposing a set of standardised methods to define compatibility between middlewares:

the GEM (Globally Executable MHP) specification.

2.3.2 GEM

GEM, as defined in [11], is the abstraction of common concepts shared between various televi-

sion systems. It represents an open middleware standard, with different flavours to be adapted to

target-specific applications. Originally, GEM was conceived as a joint project between the DVB pro-

ject and CableLabs (company that develops specifications for the cable market in North America).

16 Chapter 2 - Theoretical Review

The main advantage of GEM is that GEM-based interactive applications can execute indepen-

dently of the broadcast signalling, as shown in Figure 2.6.

Figure 2.6: Relationship between GEM and GEM-based specifications [11]

GEM provides a set of APIs so that application developers can use the middleware to create

interactive content that is usable independent of the broadcast standard. GEM also is offered in

four versions: GEM for broadcast (terrestrial, cable or satellite), GEM for IPTV (Internet Protocol

Television), GEM for OTT (Over-the-top TV), and GEM for packaged media [11].

2.3.3 ATSC and DASE

The ATSC group proposed the DTV Application Software Environment (DASE) as their middle-

ware layer for their digital television set-top boxes. The DASE middleware is based in a Java Virtual

Machine and allows the use of HTML and JavaScript, as MHP [5].

The DASE middleware, also like MHP, has converged into adopting the GEM middleware spe-

cifications. This convergence is shown in the newAdvanced Common Application Platform (ACAP)

which is a GEM-based alternative to DASE for digital television middleware [8].

2.3.4 ISDB-T and ARIB

The ISDB-T digital television system operates with the ARIB middleware. It is composed by

several standards, such as ARIB STD-B24 (Data Coding and Transmission Specification for Digital

Broadcasting), the ARIB STD-B23 (Application Execution Engine Platform for digital Broadcasting),

based in DVB-MHP [4, 8]. This is also an initiative to standardise the middleware by complying

with GEM standards.

Chapter 2 - Theoretical Review 17

In ARIB, the audio, video and data signals are multiplexed and transmitted via radio broadcast

in a MPEG-specified transport stream (MPEG-2 TS). It supports three forms of data transmission

[12, 13]:

• Data stored as a packet stream inside the PES (Packetised Elementary Stream)

• Data stored inside the Data Storage Services

• Data stored directly inside the transport stream’s payload

The MPEG-2 transport stream will be described in Section 2.6.

2.4 ISDB-Tb and the Ginga Middleware

2.4.1 ISDB-Tb

In Brazil, the SBTVD forum evaluated each of the current digital television standards to decide

which standard would be the most suitable for the Brazilian reality. Due to its technical advantages,

specially in the mobility and robustness, and that ISDB-T came to Brazil as shared knowledge

between Japan and Brazil without any royalties to be paid [14], ISDB-T was selected as the standard

to be adopted for Brazil [1].

However, Brazilians had more ideas in mind to be implemented on top of the current ISDB-T

standard. Interactivity was, in fact, one of them. Several research centres conducted different kinds

of research in the area to come up with improvements for the standard. One of the main contri-

butions made to the standard was the Ginga middleware, to replace current ARIB, but maintaining

backwards compatibility in order to comply with the ISDB-T standard [1, 2, 4].

Another important improvement over the ISDB-T standard was the use of MPEG-4 H.264 codec

for video compression. This codec presents gains of up to 50% compression gains over MPEG-2

[15]. This compression was vital to achieve full 1920×1080 HDTV resolution in the 6 MHz band

per channel [1]. It also allows to take advantage of the 6 MHz band in a different way, transmitting

several SDTV channels, or a mixture between EDTV (Enhanced Definition Television), and SDTV,

as shown in Figure 2.7.

18 Chapter 2 - Theoretical Review

Figure 2.7: Different allocation cases for the 6 MHz band [1]

Figure 2.7 shows only a few examples of how the 6 MHz band can be allocated. The entire

band is divided for an entire HDTV programme and data services (first example), or an EDTV

programme alongside a SDTV programme and data services (second example), or a set of up to

four SDTV programmes and data services. The final form is up to the broadcaster and the country’s

policies on band administration. For instance, in Brazil, even though ISDB-Tb allows transmission

of several SDTV programmes, it depends on the government’s policies whether the transmission of

multiple programmes will be allowed or not for private entities.

The transmission layers of the ISDB-T standard were improved by implementing the BST-OFDM

modulation for transmission, as an evolution to OFDM, in order to achieve greater robustness. The

coding layer remained using the current Reed Solomon code used in ISDB-T [1].

2.4.2 Ginga

The Ginga middleware is the product of the Brazilian research centres’ efforts in the digital tele-

vision research; it is a middleware capable of allowing the execution applications in both declarative

and procedural programming languages. The middleware can be divided into three different mo-

dules: the Ginga Common Core (Ginga-CC), the Presentation Engine (Ginga-NCL) and the Execution

Engine (Ginga-J). Figure 2.8 shows in detail the architecture of the Ginga middleware.

Figure 2.8 is, in fact, an implementation of the recommendation by the ABNT 15606-1 standard

[13] shown in Figure 2.9.

The application environment structure recommended in the ABNT standard [13] considers how

the whole system, based in the middleware, should function. There are a Hardware and an Oper-

ating System layers beneath the middleware. Then it proposes a lower middleware layer with the

basic services such as Network, Service Information, Events, Video, etc. over which the Presentation

and Execution Engines will be running.

Chapter 2 - Theoretical Review 19

Figure 2.8: Ginga Middleware Architecture [2]

Figure 2.9: Application Environment Structure [13]

The Ginga middleware architecture shown in Figure 2.8 focuses on both layers of the middle-

ware. It shows the lower layer as the Ginga Common Core which, besides the services mentioned

earlier, also hosts the media player’s APIs and the Java Virtual Machine (JVM). The JVM is an essen-

tial element for the Ginga-J Execution Engine, as Ginga-J is entirely based in executing applications

on top of the JVM.

The top layer of the Ginga middleware is also described in detail. Firstly, the most important

element, besides the Presentation and the Execution Engines, is the bridge between them. This

20 Chapter 2 - Theoretical Review

bridge is a form of interface between Ginga-NCL descriptive applications and Ginga-J procedural

applications, where one can have access to variables and data from the other [2].

The Presentation Engine is also called the NCL Formatter (since it works with Nested Context

Language, NCL), as a declarative language. It is responsible for the processing of NCL descriptive

documents, that can alter the way to display a particular programme, adapt the content depending

on user interaction and has many more functionalities [1].

The NCL Formatter also includes modules for XHTML, which supports Cascading Style Sheets

(CSS), and an ECMAScript interpreter; and a Lua programming language engine. This Lua engine

provides support for procedural scripts (based in Lua language) without the use of an Execution

Engine and provides pure NCL with the ability to manipulate variables via procedural code [1].

The Ginga middleware supports NCL and Lua as its official languages due to their lower re-

source demands. Ginga-J requires a better hardware for it to function properly, since it requires

more CPU and RAM memory to support the Java Virtual Machine.

Originally, Ginga-J was not going to be part of the Ginga middleware, because, to be a viable

option, the Ginga middleware had to be royalty-free. Since Java was property of Sun Microsystems

(now Oracle), the SBTVD forum signed an agreement with Sun Microsystems to fully develop the

Ginga-J specification entirely based on open standards [14]. This allowed Ginga-J to be considered

official as well, although many entry-level interactive set-top boxes do not support it yet.

The Ginga middleware is also conceived as the interface between the content providers and

the interactive devices in mobile devices, such as cellphones and Personal Digital Assistants (PDA).

Since providing interactivity to mobile devices is one of the main objectives of theGingamiddleware,

it becomes apparent that, besides data transmission, it is important that Ginga offers reception and

data interpretation for different devices [1]. Figure 2.10 shows the interactivity context for Ginga-

based devices.

Figure 2.10 illustrates the features of the Ginga middleware for Ginga-compatible devices. The

Ginga devices must be able to receive any type of broadcasted TV signal (via radio waves, cable,

satellite, IPTV, etc.) and be able to display the media as well as deliver the interactive applications

and data to the users if the devices support interactivity. Also, the Ginga-based devices must be able

to receive and interpret user events and send them to the content providers via a return path [1].

Chapter 2 - Theoretical Review 21

2.5 Interactivity

So far it has been mentioned that interactivity is a prime feature of digital television. The whole

concept of watching television, and its advantages will be revolutionised with interactive television

(with applications such as T-Government, T-Banking, T-Learning, etc.). However, it has yet to be

defined what interactivity is, and how does it work in the Ginga middleware-based ISDB-Tb.

To be interactive, according to the Merriam-Webster English dictionary and Encyclopædia Bri-

tannica, is defined as follows:

“Interactive adjective: involving the actions or input of a user; especially of, relating to, or

being a two-way electronic communication system (as a telephone, cable television, or a

computer) that involves a user’s orders (as for information or merchandise) or responses

(as to a poll).” [16]

This definition is accurate for the interactivity requirement that digital television has: it needs

a middleware able to be a bidirectional system that answers to user interaction and communicates

with the content provider. However, full interactivity is often confused with a system that a user

interacts with, yet it does not send data to a content provider to display customised content. This

is called local interactivity, and it is the very basic form of digital television interactivity, where

the user is not required to exchange information with the broadcaster after the download of the

interactive application. The digital television requirement for full interactivity demands a return

path to the broadcaster or content provider.

This standard requirement is translated into a technological requirement: the TV sets and Ginga-

enabled devices must support interactivity and must provide at least one form of return path [6].

This represented a great problem for low-cost digital television: Ginga enabled TV sets were scarce

Figure 2.10: Interactivity Context for Ginga-based Devices [1]

22 Chapter 2 - Theoretical Review

and very expensive a few years ago. Even today they are not as cheap as for everyone to acquire

one. Therefore, the set-top box came out as a viable low-cost alternative. These set-top boxes

allow any TV set to display and provide interactivity at a low cost (specially in countries where

the government sets subsidies for STBs to promote the inclusion of digital television). Figure 2.11

illustrates a generic interactive digital television system based in set-top boxes.

Figure 2.11: Model of interactive digital television system [6]

There are three levels of interactivity defined for digital television: in the basic level, as seen

before, the user is not required to exchange data with the broadcaster with applications such as the

noughts and crosses game (better known as tic-tac-toe in the United States and as Jogo da Velha in

Brazil). Then, a deeper level of interactivity is required when there is a need of data exchange from

the user to the broadcaster (unidirectional). This is the case of a classic poll interactive application,

such as the voting system for reality shows. Finally, the highest level of interactivity is defined

by having a full dedicated bidirectional channel between the user and the broadcaster. A good

example for this is, perhaps, the t-banking applications where user data is confidential and must be

sent through a separate channel for security reasons [6].

One important factor about interactivity is that, even though the broadcaster can send the in-

teractive content (the application, not the data) through the broadcast channel, it is not mandatory;

the broadcaster may choose to send the interactive content via interactive channel as well. ISDB-Tb

sets a maximum data rate of 20 Mbps per channel for interactive data and services via broadcast

network [6]. This is a very important factor in the design of applications, as will be seen over the

Chapter 2 - Theoretical Review 23

next chapters.

2.5.1 Interactive Services

Some of the interactive services available (or soon to be available) for digital television in Brazil

are [6]:

• Electronic Programming Guide (EPG): It is a menu that allows the user to have information

about the programming of several channels at the same time, and allowing to change the

channel accordingly.

Figure 2.12: Example of an EPG [1]

• Enhanced Television: it is basically the same interactive television that once existed (such as

reality show voting), only without the need for the user to reach another medium in order

to use the interactivity (like sending SMS messages from their cellphones to vote, and voting

directly on the TV instead).

• Web Browsing: this service allows the user to browse the web via a Ginga-NCL or Ginga-J web

browser application.

• Interactive Commercials: Commercials can increment their detail levels by offering informa-

tion about the products on demand, and even offer the user to purchase products directly on

TV.

24 Chapter 2 - Theoretical Review

2.6 MPEG-2 Transport Stream

The ISDB-Tb standard, as well as ISDB and DVB, utilises the MPEG-2 Transport Stream to

multiplex and broadcast the audio, video and data signals. This section presents a brief description

of the MPEG-2 Transport Stream.

Whenever it is spoken about MPEG, it is usually referring to compression and quality of video.

The MPEG-2 standard goes beyond that scope, and the MPEG-2 Transport Stream and Program

Stream define the ways the MPEG-2 content (audio/video/data) is delivered [17].

It is important to note that the MPEG-2 Program Stream is a way of storing content (such as

a media file in a computer) while the Transport Stream is made for transmission (even though

some transmission software allows multiplexing in Program Stream). The Transport Stream is more

appropriate for transmission since it is more robust (and less prone to errors), and can allow one or

multiple content channels inside. This is specially useful for Cable operators that provide content

via satellite, since they have to send every channel through the same Transport Stream [17].

Figure 2.13: Simplified Model of the MPEG-2 Transport and Program Stream Multiplexing [9]

Figure 2.13 shows a simplified model of the MPEG-2 multiplexing scheme for Transport and

Program Streams. Both the audio and video raw data signals are encoded using an appropriate

encoder (in ISDB-Tb’s case, MPEG AAC and h.264 respectively). After the audio and video are en-

coded, they pass through a packeting process (part of the MPEG-2 specification) and are converted

into Packetised Elementary Streams (PES). These PES (audio, video and data) are then multiplexed

Chapter 2 - Theoretical Review 25

together by the Transport Stream Multiplexer (since this dissertation is about broadcast terrestrial

television, the Program Stream will be discussed no further, as it goes beyond the scope of this

section).

The bit-stream of the MPEG-2 Transport Stream packet is described in Figure 2.14. Each packet

contains 188 bytes, with 184 bytes of payload and the other 4 bytes of header [17].

Figure 2.14: TS Packet Structure [18]

The PID, or Packet Identifier, is a 13-bit key that is part of the 4-byte header of the TS packet, as

shown in Figure 2.14. It associates each PES with the TS packet by assigning the same PID number

to each of the same PES packets (for instance, all audio packets of the same audio stream will have

the same PID number). When no video, audio or data PES packets are available, the TS Multiplexer

uses TS packets with no PID as a form of buffer control to maintain the bit-rate constant [8, 17, 18].

2.6.1 DSM-CC Protocol and Data Carousel

The DSM-CC (Digital Storage Media – Command and Control) protocol, was developed as part

of the MPEG-2 Standard [9] as a way to control the video flow of video-on-demand servers in a

network. It was defined in MPEG-2 (ISO/IEC 13818-6) part 6, and represents a series of methods to

provide additional functionalities for later multimedia technologies to come.

The original concept of DSM-CC was focused on a network-based utilisation, where the media

objects would be inside the network, and users could request content on demand. However, for the

current digital television scheme, users are not able to request media to the content provider. To

overcome this difficulty, DSM-CC retransmits every object of the transport stream in a cyclic way,

hence the name Carousel. The carousel is a method of transmitting DSM-CC segments in a repeated

routine, allowing digital television receivers to access the media at any time.

The DSM-CC protocol specifies exactly how the data carousel should operate, how data should

be transmitted, stored, etc. The following section presents the metadata tables contained in the

26 Chapter 2 - Theoretical Review

transport stream, specified by the DSM-CC protocol.

2.6.2 Metadata Tables

The MPEG-2 Transport Stream is based on several metadata tables, called Program Specific

Information tables (PSI). These tables structure and organise which packets belong to which service

and which programme. The PSI tables is divided into five different tables, each with its own Packet

Identifier (PID) and functions:

• PAT (Program Assosiation Table): in charge of keeping track of the programmes and their

associated PID numbers.

• CAT (Conditional Access Table): it is accessed only when the TS is scrambled for security

purposes.

• PMT (Program Map Table): associates the PID of the elementary streams with specific types

of services.

• NIT (Network Information Table): contains information regarding the channel frequencies

and other transmission channel related aspects.

• TDT (Time and Date Table): provides the date and time for the receivers to set their local time

and allow synchronisation with the EPG.

This chapter focused on defining the main concepts about middleware, the specific Ginga mid-

dleware, interactivity, and the way the content is transmitted through the MPEG-2 Transport Stream.

The following chapter will now introduce the development tools and environments for Ginga-NCL

and describe how NCL and Lua languages work for Ginga.

Chapter 3

Programming Languages and

Development Tools for Ginga

S
ince the beginning of the studies in Brazil to improve ISDB-T, the major research centres

focused a great amount of resources in the Gingamiddleware development. However, some

of the research was also focused on how to write and deploy applications. This chapter

introduces the reader with the concepts of Nested Context Language and the NCLua API and then

gives an overview on the current (and outdated) development tools and environments.

3.1 Nested Context Model

The Nested Context Language is a declarative language based in the Nested Context Model

(NCM) [19]. It was chosen by the SBTVD group to be the declarative language for the Brazilian

digital television system. This section will describe the structure of the Nested Context Model and

then explain the elements of the Nested Context Language.

3.1.1 NCM Elements

The NCM is based in the context of nodes and links. The nodes contain information (such as

media objects) and the links stablish the relationships between them. Each NCM-based application

is an Entity, and each Entity has properties and elements. Figure 3.1 shows a basic NCM structure.

27

28 Chapter 3 - Programming Languages and Development Tools for Ginga

Figure 3.1: Overview of NCM class hierarchy [19]

The essence of the NCM-based application is the Entity. It represents itself and the entire context

where it is executed. The Entity has different elements, as shown in Figure 3.1. The basic elements

of the Entity are the Descriptor, the Connector, the Link and the Node (DescriptorSwitch is a type

of descriptor that allows multiple scenarios for media display, as will be explained further in this

section).

The Node is the most important element of the Entity. There can be many nodes existing at the

same time, and each of them contains some sort of information. It is also called an NCM object,

and is composed of an identifier, its content (the information per se), and a set of anchors [3].

It is important to mention that NCM is a structure-based model and not a media-based one (like

XHTML) [3, 19, 20]. This means that the programming will be independent of the contents of the

nodes, since the model operates on relationships between nodes and not between media. However,

this does not mean that NCM disregards the types of media; on the contrary, it classifies each media

node in subclasses depending on the type of media contained by the Node (i. e. text, image, audio,

Chapter 3 - Programming Languages and Development Tools for Ginga 29

video, Lua objects, Java objects, HTML objects, etc.).

Nodes are classified by their specialisation: nodes containing media are called media nodes, or

content nodes. However, two other types of nodes as well: the composite nodes and the context nodes.

The composite nodes are those whose contents are a combination or composition of several content

nodes. These types of nodes are important, as they allow creation and adaptability of content in

time by combining different types of content nodes.

The other kind of node is the context node. It is a type of composite node that contains various

content or context nodes, defining a context where one or more nodes will interact according to

Descriptors. The advantage of context nodes relies on creating independent multi-node processes

that can be triggered by a single starting point (the context node itself) [3].

The anchors, which are part of the Node, are properties that describe how the Node will display

its content. For instance, in a media node that contains a video, an anchor could be a property that

defines a segment of the video (from time 01:03 to 01:10, for example). Since NCM is structured-

based, as mentioned earlier, the anchors are completely independent of the content, and are defined

separately as well.

Besides the Node, the other elements of the NCM entity are the Descriptor, the Connector and

the Link. In a general way (disregarding, for now, how the nodes operate between themselves), a

Descriptor is a property of the NCM entity that rules how a node will be displayed (where and

when). It has the capability of assigning certain region of the screen, and can decide when it will

be displayed (space-time synchronisation) [20].

Following the Descriptor, the Connector is a key element as well, since it creates roles and

bindings to rule the program flow. It designs the state machine defining each state and how the

program will go from one state to another. Finally, the Link element will place in motion the

Connector’s rules. It is in charge of assigning those roles and bindings to the nodes, so that they

obey the designed state machine [3].

The Entity’s elements have been described so far, and how they relate with each other. However,

the relationship between them does not depend exclusively on the Entity’s elements. As mentioned

earlier, the Node has anchors that rule its content’s behaviour. Nonetheless, the Node presents other

types of properties that better define itself, as well as its behaviour. These are called Interfaces, and

30 Chapter 3 - Programming Languages and Development Tools for Ginga

are illustrated in Figure 3.2 [3, 19].

Figure 3.2: Interfaces of an NCM Node [3, 19]

The Node’s interfaces may be of different types, depending on its specialisation. Content nodes

(or media nodes) are classified by its type of information contained (video, audio, text, etc.), as

mentioned before. These nodes have the anchors as interfaces with the Entity. The first type of

anchor is the content anchor (or area anchor) whose primary attribute is the region attribute. The

region anchor associates a node with an specific context (called region), which represents the whole

content of the Node [19].

There is another type of anchor called attribute anchor. This type of anchor holds to a property

of the Node, as defined in the Descriptor associated with it. These anchors are the ones in charge

of positioning in time and space the presentation of the content of the Nodes [19].

Chapter 3 - Programming Languages and Development Tools for Ginga 31

3.1.2 NCM Events

The events in NCM are the behavioural part of the declarative environment. They are the basis

of the NCM state machine, and allow NCM-based languages (such as NCL) to define certain states

for different nodes, and the presentation can adapt according to the current nodes’ states.

The basic events defined by NCM are the following ones [19]:

• Presentation Event: it is an event that represents the exhibition of a content node depending

on an specific descriptor and an specific situation. This means that different descriptors and

different situations may apply for unique Presentation Events.

• Composition Event: it is the event that presents the composite map (for emphcomposite

nodes).

• Selection Event: it is an event, similar to the Presentation Event, that triggers by user input. In

the context of digital television, this could be a remote control.

• Attribution Event: it is an event that triggers with a node’s specific anchors.

Each event has its own state machine as defined by NCM. Each event may have the following

states: sleeping, occurring or paused [19]. Figure 3.3 shows a generic NCM event state machine, with

the processes involved in changing states.

Figure 3.3: NCM event state machine [19]

The life cycle of an event starts at the sleeping state. It will go into the occurring state (after a start

trigger) when displaying its content and will stay until any of the following occur: a stop trigger

32 Chapter 3 - Programming Languages and Development Tools for Ginga

(might be the natural end of the media as well) or an abort trigger. The abort trigger will take any

state into the sleeping state regardless of the conditions.

Besides the occurring state, there is also the paused state as well, that happens whenever the

exhibition is temporarily suspended and the event was in the occurring state (this would classify as

a pause trigger. A resume or start trigger will return the event to its occurring state.

With the Nested Context Model described, the next section will illustrate the relationships

between the NCL tags and the NCM elements. Since this thesis focuses on application design

rather than low-level NCL description, explaining the NCM in further detail escapes the scope of

this thesis. Nevertheless, the already presented context suffices for a good understanding of the

NCL language and the reader may refer to [19–21] for more in-depth explanation on the NCM.

3.2 Nested Context Language

In this section, the relationships between the NCM elements from the last section and the XML

Schemas [22], or tags, from the NCL will be presented in Code 3.1. This code serves the basic

structure of a NCL document.

Code 3.1: Sample NCL Code

<?xml version="1.0" encoding="ISO-8859-1"?>

<ncl id="ncl-sample-code" xmlns="http://www.ncl.org.br/NCL3.0/EDTVProfile">

<head>

<regionBase>

<region id="rgBackground" width="1280" height="720" zIndex="1">

<region id="rgLua" width="600" height="550" left="50" top="120" zIndex="2"/>

</region>

</regionBase>

<descriptorBase>

<descriptor id="dBackground" region="rgBackground" />

<descriptor id="dLua" region="rgLua"/>

</descriptorBase>

<connectorBase>

<causalConnector id="onBeginStart">

<simpleCondition role="onBegin"/>

<simpleAction role="start"/>

</causalConnector>

<causalConnector id="onEndStop">

<simpleCondition role="onEnd"/>

<simpleAction role="stop" max="unbounded"/>

</causalConnector>

</connectorBase>

</head>

Chapter 3 - Programming Languages and Development Tools for Ginga 33

<body>

<port id="startPort" component="background"/>

<media id="background" src="background.png" type="image/png" descriptor="dBackground"/>

<media id="luascript" src="luascript.lua" descriptor="dLua"/>

<link xconnector="onBeginStart">

<bind role="onBegin" component="background"/>

<bind role="start" component="luascript"/>

</link>

</body>

</ncl>

The most noticeable aspect of the sample NCL code in Code 3.1 is, perhaps, the fact that it is

a XML-based document. NCL is a declarative language based on the NCM model, but following

XML schema for compatibility between systems and the Internet [19, 22]. This is shown in the

header of the NCL file.

The preamble of the NCL document (everything between the <head> and </head> tags) con-

tains the bases for the region anchors (defining position and size anchors for future assigning

to content nodes), and for the descriptor and connector elements as well. The tags <regionBase>

<descriptorBase> and <connectorBase> represent the environments where the region, descriptor

and connector elements reside.

In Code 3.1, the regions describe the areas on-screen where the media contents will be displayed;

the descriptors assign the “background” and “luascript” media nodes to the regions (actually, the me-

dia nodes are linked to the regions via the descriptors); and the connectors define the rules (conditions

and actions) to bind the nodes (as components). These bindings and region assigning can be seen

clearly in the <body> section of Code 3.1. This section represents the core of the NCL document,

containing the ports, contexts, media nodes and the links.

The link property of the NCM Entity is present as well, with the <link> tag. The xconnector

summons a specific connector defined in the connector base, and applies the rules as bindings to the

nodes. This is the way to link nodes and force them to follow the event state machine rules.

34 Chapter 3 - Programming Languages and Development Tools for Ginga

3.3 NCLua API

The Ginga middleware consists of a presentation engine and an execution engine, as was men-

tioned earlier in Section 2.4.2. This does not mean, however, that both the presentation and the

execution engines (based in Xlets for Ginga-J) must execute together at all times for an application

to be presented. The Ginga-NCL presentation engine offers execution of procedural code by the use

of the Lua Player [23].

The Lua Player is an engine that processes NCLua (Lua scripts made for the NCL language)

objects (which are the contents of a media node containing the script). It is based on the Lua

standard library, and provides the programmer with 5 other modules for content presentation (the

NCLua API). Since the Lua language is very well known and has become a standard in video game

programming, this thesis will not present the Lua language per se, but rather the NCLua API and its

modules. The creator of Lua, Roberto Ierusalimschy, has published the lua.org website containing

detailed information on the language, as well as a book with the same contents [24].

The NCLua API include the following modules [23]:

• ncledit module: it allows NCLua applications to modify the NCL document.

• canvas module: it is the NCLua module for manipulating images and drawing on-screen.

• event module: it provides the NCLua applications to communicate with the NCL Player

through NCL events.

• settings module: it exports a table with variables for the NCLua application to fetch.

• persistent module: it presents the NCLua API with variables that persist after the application

finishes.

These modules are required by the ABNT NBR 15606-2 standard [23] to be included in the

Ginga middleware. Unfortunately, current Ginga implementations still lack the ncledit, settings and

persistent modules, and only custom implemented middleware (that are not following the standard)

have them available. Therefore, the only API modules fully implemented are the canvas and event,

which will be key in efficient GUI design. An extensive documentation on the canvas and event

module methods for Lua script are presented in [23, 25, 26].

Chapter 3 - Programming Languages and Development Tools for Ginga 35

3.4 Development Tools

This section will introduce the development tools used in the creation of digital television in-

teractive applications. Some of the tools are outdated and no longer supported, while others are

constantly getting updated and have great community support.

3.4.1 Composer

The Composer software is a hypermedia authoring tool developed by the TeleMídia Laboratory

from the Informatics Department at the Pontifícia Universidade Católica do Rio de Janeiro, PUC-RIO

[27]. This tool, based in Java, presents the programmer with four different views to generate NCL

code, as shown in Figure 3.4.

Figure 3.4: Multiple Views of the Composer Authoring Tool [27]

Figure 3.4 illustrates the four visualisation modes available for code authoring in Composer:

1. Structural View: Presents the nodes and links, and allows to add media and context nodes,

define their properties and stablish the links between them.

36 Chapter 3 - Programming Languages and Development Tools for Ginga

2. Layout View: Presents the regions on-screen where the media nodes will display their content.

It allows creation and resizing of the regions and their dimensions and positions by using the

mouse.

3. Temporal View: Shows the time synchronisation between the media nodes, and establishes

the time anchors for triggering events.

4. Text View: Edits the NCL code and highlights the NCL syntax.

One of the most interesting features of Composer is that the four views are synchronised; that

is, each time a view is modified, the rest of the views will adapt (hence, auto-generating NCL code).

Unfortunately, the Composer authoring tool has been discontinued and is no longer updated [28].

3.4.2 Eclipse

The Eclipse Java IDE (Integrated Development Environment) is an open-source software de-

velopment environment with a great plug-in capability. It originally started as a Java IDE, but it

has several plug-ins that allow programming in PHP, C/C++, HTML and many more languages.

Eclipse is based on Java, therefore, it is cross-platform and has versions for Microsoft Windows,

Linux and Mac OSX [29].

Since it is open-source, the plug-in development is encouraged and very well received by the

community. The Eclipse IDE by itself allows project management, syntax highlight and code com-

pletion (for Java), and has a message log for warnings and errors in compilation. Plug-in developers

have taken advantage of these features to create suitable plug-ins for their specific languages. This

is the case of the NCL Eclipse plug-in, developed by a partnership between the Universidade Federal

do Maranhão and the PUC-RIO.

3.4.3 NCL Eclipse

The NCL Eclipse is a plug-in for the Eclipse IDE aimed at aiding the creation of NCL documents

for digital television. Its main features included NCL syntax highlighting, code folding (to hide or

show parts of the source code), wizards, auto-formatting, error validation and code completion [30]

in its first version (1.0).

Chapter 3 - Programming Languages and Development Tools for Ginga 37

Figure 3.5: Error Validation and Possible Corrections [30]

Figure 3.5 shows the error validation feature (thanks to the NCL Validator independent library,

also developed by the same research team). It is able to detect, besides syntax errors, missing fields

or empty callbacks.

After improvements over versions of NCL Eclipse, there were more features regarding visua-

lisation and media previews implemented. The improved plug-in offered program visualisation,

as shown in Figure 3.6. A small tool-tip presents the program visualisation of the regions when

hovering over the code, without having to rely on new windows (distracting the programmer from

the source code itself).

Figure 3.6: Program visualisation of the <region> element [30]

Up until 2010, based on the download numbers, it could be argued that NCL Eclipse is, maybe,

the most used tool for NCL developing [30]. It is a very robust plug-in, and has a very large

community that provides feedback.

38 Chapter 3 - Programming Languages and Development Tools for Ginga

3.4.4 Lua Eclipse

The other most relevant add-on for the Eclipse IDE is the Lua Eclipse plug-in. This tool provides

an environment with code-completion, syntax highlighting, code folding like NCL Eclipse as well.

Moreover, it provides an interface for fast debugging using a pre-configured interpreter (since Lua

is not a compiled language, but a parsed one, it does not have a compiler, but rather an interpreter).

The Lua Eclipse is available at the luaeclipse.luaforge.net website, and it is free as well.

It does provide code completion for the standard Lua syntax, but is not prepared for the NCLua

modules and their methods (such as canvas and event). Nevertheless, it is really useful for writing

NCLua code, and the interpreter can help in debugging and testing the standard Lua parts of the

code. For the interpreter plug-in to work, the Lua Interpreter must be installed as well (also free).

Figure 3.7 illustrates an example of the plug-in interacting with the pre-configured interpreter.

Figure 3.7: Evaluating Lua scripts using the pre-configured interpreter

luaeclipse.luaforge.net

Chapter 3 - Programming Languages and Development Tools for Ginga 39

3.4.5 Ginga-NCL Virtual Set-top Box

The Ginga-NCL Virtual Set-top Box is a free STB emulator developed by the TeleMidia Labo-

ratory at PUC-RIO. It is a VMWare Linux virtual appliance running a modified Ubuntu Linux

distribution with the most current Ginga-NCL reference implementation. Currently, its most up-to-

date version is v.0.12.3, released on August 1st, 2011 at the Brazilian Public Software Website (Portal

do Software Público Brasileiro) [31]. The user must have installed the VMWare Player (free software)

to be able to run the Ginga-NCL Virtual Set-top Box.

Figure 3.8 illustrates the interface of the Ginga-NCL Virtual STB in different phases. When

booting up, the user is presented with the Linux GNU GRUB (GNU Grand Unified Bootloader)

menu (Figure 3.8a), which offers the user with different versions of the STB (differing, basically, in

the framebuffer resolution). Choosing the same (or closest possible) resolution to the application to

be executed is highly recommended, as lower resolutions might conceal regions or malfunction.

After selecting the desired resolution, the virtual machine will boot to the operating system,

and, after the boot sequence finishes, the user will be presented with the screen in Figure 3.8b. The

figure displays a few tips on how to deploy an application and execute it, and on what input keys

are mapped to the remote controller’s buttons. At this point, the SSH (Secure Shell) server and

the SFTP (Secure File Transfer Protocol) server are enabled and running. The user can login to the

virtual machine via a SSH client and can upload files via an SFTP or SCP client as well.

Some of the latest version’s (v.0.12.3) features include resolutions to emulate portable devices;

standardisation according to the ITU-T and ABNT standards (multi-device presentation [21]; NCL

object transparency, and remote object look-up via HTTP (HyperText Transfer Protocol) and RTP

(Real-time Transport Protocol). It also supports playing MPEG-4 h.264 encoded videos and MPEG-1

Layer 3 (MP3) and AAC encoded audio files to simulate an environment. However, it is important

to note that in an application to a real target (a set-top box or a Ginga-NCL enabled TV set), it is

impossible to send video or audio files according to the standard [32] (since the only way to get

those are from the MPEG-2 Transport Stream itself).

40 Chapter 3 - Programming Languages and Development Tools for Ginga

(a)

(b)

Figure 3.8: Ginga-NCL Virtual STB Interface: (a) GRUB Menu (b) Main Screen

Chapter 3 - Programming Languages and Development Tools for Ginga 41

3.5 Related Projects

The current digital television scenario has given path to several research groups to contribute to

the Ginga-NCL software development, either in the form of programming aids (such as frameworks

and developing tools) or in the form of embedded APIs. This section will present the LuaTV API

[33], which is a set of extended features for the NCLua API, and two frameworks for application

development: LuaComp and MoonDo [34, 35].

3.5.1 LuaTV

The LuaTV API was developed by the Universidade Federal de Paraíba (UFPB) and the PUC-RIO

research centres. It is an API designed to be embedded and part of the Ginga-NCL specification,

providing the users with extended features such as multi-user applications and better mechanisms

for UI development, metadata access and security in communications [33].

Figure 3.9: LuaTV API context within Ginga architecture [33]

Figure 3.9 shows the context of the LuaTV API in the Gingamiddleware. It lies as a Ginga specific

service, along with the NCL, NCLua and XHTML APIs. The NCL Formatter has complete access

to the LuaTV API, and it is completely transparent, as the access to NCL, NCLua and XHTML is.

42 Chapter 3 - Programming Languages and Development Tools for Ginga

Even though the API is not part of the current Ginga-NCL specification yet, as it is still under im-

provements and test scenarios, it is worth mentioning that it is based in four different independent

APIs: the Widgets, HAN, Metadata and Security packages. This thesis will present the Widgets

package, as it is the only package related to GUI design (further information on the LuaTV API can

be found in [33]).

Figure 3.10: LuaTV API Widgets Package [33]

The LuaTV Widgets package provides three modules as shown in Figure 3.10. The Window

module fills a specific canvas with local or remote URL content; the cursor module support pointers

(based on images) to be displayed on canvas; and the textinput module provides methods to capture

user input text and show it in canvas. These modules are not fully interactive, but are aids in

application development.

3.5.2 LuaComp

The LuaComp authoring tool was developed as a capstone project for undergraduate studies at

the Universidade de Brasília (UNB). It is a Java-based framework for developing interactive NCLua

applications, based, in some extent, on the LuaTV API. It was created based on the following criteria

[34]:

• The use of the tool should not involve much source code alteration.

• From the developer’s perspective, it defines clearly the boundaries between NCL and NCLua

programming environments.

Chapter 3 - Programming Languages and Development Tools for Ginga 43

• From the designer’s perspective, modifications on one environment should not affect the other

one (NCL related modifications must not affect the NCLua environment.

• Use XML files as a form of project and repository management.

• Allow template creation and reuse.

• Provide a What-You-See-Is-What-You-Get (WYSIWYG) development interface.

• Ease the on-screen layout design process.

The LuaComp tool generates NCL and Lua source code automatically by the use of the tool, and

provides the developer with three views (somewhat alike the Composer tool). These views are the

structural, layout, and text view. The first view allows the project management, with connections

between different files. The layout view is the main view of the LuaComp tool, as it allows the GUI

design of the applications in a WYSIWUG style. Finally, the last view (text) displays the source code

for fine tuning. Figure 3.11 illustrates three different views of the same application.

44 Chapter 3 - Programming Languages and Development Tools for Ginga

(a) (b)

(c)

Figure 3.11: Different Views of the LuaComp tool [34]: (a) Structural (b) Layout (c) Text

3.5.3 MoonDo

The MoonDo framework was also conceived as a capstone project at the Universidade Federal

de Pernambuco (UFPE) for an undergraduate course. It differs to LuaComp as MoonDo provides

the user with an embedded framework of GUI classes to be summoned by the Lua scripts, and

Chapter 3 - Programming Languages and Development Tools for Ginga 45

does offer pre-made components to be instantiated as objects. This is a very particular topic in Lua

programming, because the Lua language was not conceived to be an object-oriented programming

language [35].

MoonDo offers several programming classes with components such as panels, labels, image

frames, menus and many others. These classes allow the user to create larger and more complex

applications with little care on the maintenance of the variables, as they become self-maintained

objects. Figure 3.12 shows a demonstration of the graphic components available in the MoonDo

framework.

Figure 3.12: MoonDo Graphic Components [35]

This chapter has presented the reader with the concepts of the Nested Context Model to under-

stand the reasons and benefits of the Nested Context Language as the main declarative language

for the Ginga middleware. Besides that, the NCLua has been presented with its current modules

to demonstrate a complete procedural environment outside of Ginga-J. Finally, a variety of deve-

lopment tools have been presented, as well as some related projects to this thesis. However, all

of the related work presented focus on aiding the programmer to develop faster and easier his or

her applications. The following chapter introduces the proposal of this work: a method to design

efficiently graphic applications.

46 Chapter 3 - Programming Languages and Development Tools for Ginga

Chapter 4

GUI Design Techniques and Guidelines

O
ne of the most appealing features of digital television is, without doubts, interactivity.

Interactive television brings an entire new form of connectivity for spectators; actually,

they stop being just spectators and become active agents in their own experience with

television. Interactive applications such as T-Government or T-Banking sound very promising and

will integrate a great part of the Brazilian population which currently doesn’t count with an Inter-

net connection at home, as social inclusion was part of the requirements for implementing digital

television in Brazil [1]. However, the success of the reception of interactive applications from the

spectators depends on some very important factors, such as how attractive the applications are for

the spectators; how easy and intuitive to use are they; and if the low-end digital television receivers

will be capable of loading and displaying the application fast and smoothly.

These factors are so critical that the entire success of the application may depend on them; even

if the content has great quality, if it is not well presented or simple enough to use, it will just

plummet. Moreover, the situation is even more critical, in this particular moment in time, since

interactivity in digital television is just starting to emerge. If the spectators find interactivity a nuis-

ance, they will most likely not want to try new (and more efficiently designed) applications in the

future, which would drastically slow down –or even kill- the acceptance of interactive television.

This work proposes the concept of efficient graphic user interface (GUI) design as the process of cre-

ating aesthetically attractive, simple-to-use, and lightweight graphic user interfaces for interactive

applications for digital television.

47

48 Chapter 4 - GUI Design Techniques and Guidelines

Nowadays, most literature on user interface (UI) design is based on computer UI design; that

is, design for applications that will be displayed in a computer’s screen. This is called a 2-foot UI

design approach (as the average distance from the user to the monitor is 2 feet, or approximately 61

cm), and it focuses on showing plenty of information with small elements to take better advantage

of the high display resolution. The average distance from an spectator to a TV set, considered an

across-the-room distance, is 10 feet (or roughly 3 metres). Thus, UI design for television is often

called 10-foot UI design.

Nevertheless, there are UI design concepts that apply for both 10-foot and 2-foot design ap-

proaches, focusing on intuitive learning of new interfaces, simplicity of usability, visual clarity and

some other elements. Section 4.1 will cover this topic in detail.

Most of the techniques proposed in this work are aimed at universal UI design (for both 10-foot

and 2-foot viewing distance, and even for mobile devices). There are, however, a few techniques

exclusive for 10-foot UI design. Section 4.2 will present a set of conceptual and practical techniques

and guidelines for interactive UI design.

4.1 Principles of UI Design

The ultimate purpose of graphic design is to communicate a message [36]. However, it is not a

simple task at all. A user interface designer must take into consideration many factors, constraints

and criteria from the moment of the conception of the idea until the final details. Before beginning

the design process, the designer must try to answer the following questions:

1. Who is the application targeted to?

2. What level of interactivity will be required?

3. What is the objective of the application?

These questions may define the entire style of the application, as well as its design process, func-

tionality and complexity.The first question is, perhaps, the most essential of all. Having information

such as age group, gender, education level, etc. about the target audience is fundamental in the

Chapter 4 - GUI Design Techniques and Guidelines 49

design process. There are studies entirely focused on user reception on interactive user interfaces

for television based in age group segmentation [37].

4.1.1 Target Audience

The hypothesis of these studies is that consumer product UI (such as digital television) design

is completely different from software UI design, and therefore it is not appropriate to target it

to experienced users. The research made by the Samsung research centre in Korea on American

participants gathered test subjects from two different age groups: kids (ages 8 to 13) and elderly

(ages 54 to 62). The test included an interview with the tests subjects on how they learned to use

an specific set of interactive applications, Internet TV usage patterns, favourite feature and interface

visual attribute comparison [37].

The result shows that neither the kids nor the elderly groups liked to be segmented into ste-

reotypes. They, however, showed responses likely to be expected from their age groups. The kids

showed great learning capacity, easily penetrating complex visual displays. They didn’t show con-

cern on making mistakes either, but their interest dropped very fast if the interfaces weren’t visually

stimulating (they prefer pictures and animations to keep them interested, as well as cheerful and

bold colours). Regarding the input device, the kids showed problems with the overall size of the

remote control, since their hands are relatively small and the interaction demanded them to cons-

tantly extend their main control finger. Figure 4.1 shows a picture of the remote control used for

the tests.

Figure 4.1: Remote Control for User Perception Tests [37]

The elderly, on the other hand, were extremely sensitive to colours. They prefer the interface as

50 Chapter 4 - GUI Design Techniques and Guidelines

simple and clear as possible, and favour white spaces in the design. They also appreciate images,

but only when they could be useful. The test results also found that the elderly lost dexterity and

showed difficulty in finding the correct buttons in the remote control, mainly because the size of

the keys is too small.

The problem with remote controls is that there is not one single standardised model only. In

SBTVD, however, there is an example of a common remote control to serve as a guideline. However,

any remote control must comply the mandatory requirements shown in Table 4.1.

Table 4.1: Mandatory Remote Control Keys [13]

Number Functions

Item Function Full-seg Description Comments

1 0...9 Mandatory Numeric functions

These functions permit:
• direct access to the channels
• after the middleware appropriates these

keys, the applications can use them.
Interactive function

2 Back Mandatory Return Command
3 Exit Mandatory Exit Command

4 ⇐⇒ Mandatory

• Left/Right arrow commands shall be
passed to Ginga applications

• Navigation in receiver’s proprietary
graphical interface

5 ⇑⇓ Mandatory

• Up/Down arrow commands shall be
passed to Ginga applications

• Navigation in receiver’s proprietary
graphical interface

6 OK Mandatory
• OK command shall be passed to Ginga

Other possible labels are Enter or Confirmapplications
• Confirm Operation

7 VM Mandatory Red function Coloured Function
8 VD Mandatory Green Function Coloured Function
9 AM Mandatory Yellow Function Coloured Function
10 AZ Mandatory Blue Function Coloured Function

The interactive application design must contemplate these input keys as mandatory. However, it

should also consider the layout of the keys for ergonomic reasons. Figure 4.2 shows an example of a

remote control, proposed in [13]. The standard does not specify this particular layout as mandatory,

but many manufacturers are basing their designs in the same pattern. The order of the coloured

buttons, however, is standard. This can be particularly useful for the kids and elderly groups; the

kids like bright colours and would prefer to use them, and the elderly can find the coloured keys

without much effort (as for reading the labels from the other keys).

Chapter 4 - GUI Design Techniques and Guidelines 51

Figure 4.2: Example of a Common Remote Control [13]

4.1.2 Constraints and Criteria

After dealing with the first, and most important, question, two more questions still remain:

“What level of interactivity will be required?” and “What is the objective of the application?”.

These two questions are, actually, very related to each other. An application that is meant for

information such as extra content on a soap opera (synopses, cast and crew, etc.) should require a

basic level of interactivity, as defined in Section 2.5.

In the particular case of digital television, the following criteria is critical in UI design [38]:

52 Chapter 4 - GUI Design Techniques and Guidelines

• With the small screen space available and the large viewing distance, the user interface gra-

phics and elements must share screen space with the TV programme. This requires using

large font sizes (compared to the ones used in 2-foot UI designs) as well as reducing and

segmenting the content into screen-sized pages.

• Although navigation is understandable for displaying more content on a single UI, the users

will not tolerate large amounts of navigation done with the remote control.

• Digital television interactive applications are not the same as Internet applications. Navigating

through hyper-links in a web page may be difficult with the remote control, since it basically

offers the keys shown in Table 4.1.

• The fault tolerance for television is lower than for a personal computer. Specially in elder

people, where watching television has been a passive activity for many years, failing in com-

pleting the tasks required by interactivity may lead to frustration.

• The programme context must be preserved. Interactivity must be conceived as extra content,

and must not interfere with the main TV programme.

The designer must also consider the aspect ratio of the screen the application will be displayed

on. Nowadays, it is seldom to find a 4:3 aspect ratio TV set in the stores, since the technology has

brought to the market the LCD, Plasma and LED displays at very affordable prices for the majority

of the population worldwide. These new TV sets are all based in a wide-screen aspect ratio (16:9).

The differences between a 4:3 and a 16:9 display are quite significant, specially since high defi-

nition displays come only in 16:9 format. Figure 4.3 illustrates the differences between the 4:3 and

16:9 aspect ratios.

4.2 Design Techniques and Guidelines

Studies on how to improve and create efficient designs for user interfaces have been going on for

quite some time already, albeit not focused on television. Nevertheless, there are some important

guidelines –or golden rules, as mentioned in [39]– that were conceived back then and still apply in

today’s digital television scenario.

Chapter 4 - GUI Design Techniques and Guidelines 53

Figure 4.3: Different Television Aspect Ratios [36]

4.2.1 The Golden Rules

The following guidelines are not meant for blind following but rather for guiding lights for sen-

sible interface design [39]. They are considered golden rules because they apply to many contexts

and are not device or technology-dependent.

1. Place users in control of the interface: The user must feel that he or she is in control. Forcing

the user to follow the designer’s concepts disregarding this aspect (i. e. an application that

doesn’t allow the user to go back in previous choices until completing a series of forms) can

be detrimental in the success and reception of the application.

2. Reduce users’ memory load: Although as a play of words, the author would like to present

this rule as “Reduce the memory load from the users’ set-top boxes”. In the Brazilian digital

television scenario, this is key. The vast majority of homes with access to digital television will

have low-end set-top boxes (as they are the least expensive, and probably will be subsidised

by the government as a social inclusion policy). Having applications that execute properly in

high-end receivers but poorly, if executing at all, in entry-level ones is definitely not going to

be well received.

3. Make the user interface consistent: Most users like consistency. It makes their life easier,

and that is why they want to watch television. A consistent interface, provides the user with

54 Chapter 4 - GUI Design Techniques and Guidelines

prediction possibilities and, thus, lets the user feel the interface more intuitive.

Placing users in control of the interface

As mentioned earlier, the user must feel he or she is in total control and not being forced into any

option, dialogue or action. The recommended way to accomplish this is to follow certain principles

that allow users to be in control. This next series of items are principles extracted from [39] and

adapted to the context of digital television.

• Display descriptive messages and text: Use messages and dialogues (the latter only if re-

quired) to show the user his/hers available options. The terms used should be understandable

by the target audience (see Section 4.1.1) rather than advanced system or developer terms.

• Provide immediate and reversible actions: This is a very important aspect of perception of

control by the user. A user must be allowed to go back to check his/hers previous options (in

case of a multi-screen form, for instance).

• Provide meaningful paths and exits: the user must never be in charge of keeping track of how

many levels deep into the navigation he/she is going to. The designer must place ways for the

user to quickly return to the top-level menu (escape keys), to change layout, etc. Besides that, it

is important no to restrict the user in the ways he/she will navigate between different screens

(even though it makes sense, restricting the user by forcing him/her to go from screen 1

through screen 2 in order to get to screen 3 can make it frustrating in slow-responsive set-top

boxes).

Besides placing the user in control, the designer must also consider reducing the memory load

of the total application and creating consistent applications. The following sections will present

concepts that deal directly with these issues.

4.2.2 Grid-based design

Grid-based design is one of the pillars of effective information systems [36]. Grids are the core of

any visual design that is to be perceived as effective, as they promote consistency and predictability,

Chapter 4 - GUI Design Techniques and Guidelines 55

which are very important aspects for efficient design, as was mentioned in Section 4.2.1. The grid

aids the user in finding information and resources in the expected place every time.

Karyn Lu, at the Georgia Institute of Technology, mentions some practical features that grids

offer [36]. The first and most important feature is repeatability. One of the most important aspects

valued by users is the ability to find material in the expected place. Repeatability gives the user this

element of predictability and consistency, and can be achieved, for example, by maintaining layouts

similar in multi-page designs or by giving several single-page designs certain look or style to give

the appearance of unity or “Corporate Identity”.

Besides that, Lu considers that the purpose of graphic design is delivering the message. The

grid brings positive communicative aspects such as, finding information elements in the same place

and rely on the designer to deliver important information that requires more attention by arranging

these information elements in different spaces, or varying the font size and type (in case of text

elements). Figure 4.4 shows an example of a grid-based UI design. Figure 4.4a illustrates the

displayed application for the user while Figure 4.4b shows the same image in the designer’s view,

with the grid enabled to demonstrate its application.

56 Chapter 4 - GUI Design Techniques and Guidelines

(a)

(b)

Figure 4.4: An Example of Grid-based Design: (a) Presented View (b) Design View (showing grids)

Chapter 4 - GUI Design Techniques and Guidelines 57

4.2.3 Gestalt Laws

Having grids enables to align UI objects and distribute them in a tidy fashion. However, the

definition of tidy may vary according to different people and their perception of order. Several psy-

chologists around the world who study visual perception, specially for computer interface designs,

base their studies in the Gestalt Theory to achieve effective visual results [36, 40].

The Gestalt Theory emphasises that people perceive objects as well-organised patterns rather

than independent discrete parts [36]. Generally, the Gestalt Theory is presented as a set of laws

uniformly applied by all designers. However, not all designers apply all the laws, and literature

usually shows a subset of the total number of laws. According to Chang [40], eleven laws can be

identified as principles for effective design.

1. Law of Balance/Symmetry. This law states that a visual object will appear as incomplete if

the object is not visually balanced or symmetrical. Figure 4.5a illustrates a visually balanced

picture while Figure 4.5b displays visual imbalance.

(a) (b)

Figure 4.5: Gestalt Law of Balance/Symmetry: (a) Balance (b) Imbalance

2. Law of Continuity: Objects in a line are more likely to be perceived as members of a whole,

as the eye’s instinct is to follow the line pattern. Figure 4.6 illustrates three starting points

converging into point X. The elements in the segment AXB appear to belong to one group,

and the elements in CX appear excluded, as they break the continuity of segment AXB.

3. Law of Closure: Open shapes give the impression of incompleteness. Thanks to the great

complexity of the human mind, though, the user tends to complete the images or patterns.

This distracts the user and dissipates his/hers attention. Figure 4.7 shows the word “GINGA”

disturbed by an interrupted pattern.

58 Chapter 4 - GUI Design Techniques and Guidelines

Figure 4.6: Gestalt Law of Continuity

Figure 4.7: Gestalt Law of Closure

4. Law of Figure-Ground: Different foreground and background colours can completely change

the perception of the image. For instance, Figure 4.8a, with a white background, shows a

vase while Figure 4.8b is the same picture with a black background and a white foreground,

showing two faces.

(a) (b)

Figure 4.8: Gestalt Law of Figure-Ground: (a) Vase (b) Two Faces

5. Law of Focal Point: The focal point is the centre of interest of a particular visual presentation.

Whenever a particular shape or form out-stands among other elements, it is due to draw more

attention, as can be seen in Figure 4.9.

Chapter 4 - GUI Design Techniques and Guidelines 59

Figure 4.9: Gestalt Law of Focal Point

6. Law of Isomorphic Correspondence: The images do not represent the same ideas to every-

one; most of any individual’s perception comes from that individual’s past experiences. For

example, if the icon in Figure 4.10 were to be seen in a computer screen, even though a user

might not know Greek (and the Greek word βoηθεια, meaning “help”), the user might under-

stand the concept by associating the question mark with the concept of “help” from previous

experiences.

Figure 4.10: A Help Icon

7. Law of Prägnanz (Good Form): A simple design or symmetrical layout gives a concept of well

organised. Chang presents an example based on the IBM company logo [40] in Figure 4.11.

8. Law of Proximity: This law states that objects placed near each other appear to belong to

a group. Figure 4.12 shows an example of a 12-element arrangement. The human mind

perceives this arrangement three horizontal rows.

60 Chapter 4 - GUI Design Techniques and Guidelines

Figure 4.11: Gestalt Law of Prägnanz (Good Form): IBM Logo [40]

Figure 4.12: Gestalt Law of Proximity: Three Horizontal Rows

9. Law of Similarity: Chang also states that similar objects tend to be counted as the same group.

This is a technique used to draw the user’s attention. In Figure 4.13, the user can recognise

the triangle inside the square because its elements look similar and, thus, appear to belong to

the same form.

Figure 4.13: Gestalt Law of Similarity: Triangle inside a Square

10. Law of Simplicity: A graphical message can be better understood if it is presented as simple

as possible. However, a complex and ambiguous message may have unexpected results when

trying to simplify it. For instance, an e-learning application that tries to teach about astronomy

and the southern cross may have better results presenting Figure 4.14a then the cluttered

Figure 4.14b.

Chapter 4 - GUI Design Techniques and Guidelines 61

(a) (b)

Figure 4.14: Gestalt Law of Simplicity [40]:
(a) Southern Cross (b) Southern Cross and other Stellar Objects

11. Law of Unity/Harmony: Related objects that appear to have any visual connection are felt

as belonging together. If the related objects do not appear to be within the same form, they

will be perceived as unrelated by the user. Figure 4.15 illustrates two examples of unity and

non-unity in visual presentations.

(a) (b)

Figure 4.15: Gestalt Law of Unity/Harmony:
(a) Unified Visual Presentation (b) Non-unified Visual Presentation

Taking into consideration these principles into the design process can help in creating user

interfaces that are more aesthetically pleasing, functional and efficient. The Gestalt Laws described

earlier can be applied to the user interface design for any device, as they are general guidelines and

not device-specific ones.

4.2.4 Colours and Transparency

Colours have a very important role in aesthetics and functionality. Besides their organisation

benefits (using colours to organise the content will make it easier for the user to find and use the

resources available), they also aid in the structure and clarify ambiguity between visual elements

[36].

62 Chapter 4 - GUI Design Techniques and Guidelines

Human perception of colours is a very subjective topic which requires extensive studies to un-

derstand. However, Lu states that colours such as blue and green (also called cold colours) are

unobtrusive and low-key effect, making them suitable for background colours to provide a quiet

and calm framework. On the other hand, colours like red and orange (warm colours), have cheerful

and activating effects. They should be used with caution, since they are dominant and loud [36].

Besides the choice of colours, the designer counts with a great feature when designing for

Ginga-NCL: transparency. The Ginga-NCL player supports transparency for every object, allowing

the designer with the possibility of presenting more than one content or idea in the same screen

space, at the same time. The use of transparency (in the range of 50-70% opacity level) is highly

recommended for content frames, as they take valuable space. As a rule of thumb, if the frame will

appear on top of the main TV programme, it should include, at most, an 80% opacity level (100%

opacity means 0% transparency). Figure 4.4a displays an 80% opacity level on the frames.

4.2.5 Viewing Patterns

The designer can also take advantage of the user’s viewing patterns when presenting infor-

mation. In western culture, the reading patterns are left-to-right, top-to-bottom oriented; and this

greatly influences the way people look at a screen (where they look first, and how they follow). For

example, for web pages in a web browser, people tend to follow a “Z” pattern scan as illustrated in

Figure 4.16.

Figure 4.16: Typical Page Scanning “Z” Pattern [36]

Chapter 4 - GUI Design Techniques and Guidelines 63

In the case of digital television, there is also a scan pattern designers can exploit. Figure 4.17

shows a viewing pattern for a sample BBCi interactive application.

Figure 4.17: BBCi Viewing Pattern [36]

4.2.6 Safe Areas

The designer task is to provide efficient and aesthetically attractive interfaces. So far, it has

been mentioned how to achieve functional and attractive designs by exploiting the human percep-

tion. However, there are technical specifications that must be considered as well when designing

applications for digital television to avoid mistakes.

Usually, user interface design assumes that the UI will count on 100% of the screen space and

will design appropriately. In TV sets, however, the TV frame may cover from 5% to 7% of the entire

perimeter. This means that UI elements in those regions may or may not be obstructed by the TV

frame. There are two kinds of safe areas for television. The first one, the action-safe area, is less

restrictive, and refers to the area required for the main TV programme to show entirely. However,

application graphics and UI must not be based in this action-safe area because elements of the UI

close to these borders may not be well perceived. The recommended safe area for UI design is

called graphics-safe area, and it is a 10% perimeter area around the screen. Every element inside

the graphics-safe area will be well presented, without cut-offs. Figure 4.18 presents the safe areas

for UI design.

64 Chapter 4 - GUI Design Techniques and Guidelines

Figure 4.18: Action-Safe and Graphic-Safe Areas for a Wide-Screen (16:9) format TV Screen [36]

4.3 Layout Creation Guidelines

This section presents the reader with practical tips to sketch faster and arrive to a full design

concept to be implemented in a real interactive TV application.

4.3.1 Sketching the Concept

When designing an application, it is very important to define the concept before drawing at all.

By following the guidelines described in Section 4.1, and then the techniques mentioned in the last

section, the designer will arrive with a general concept. It is imperative that the designer sketches,

in paper and by hand, a rough layout of each of the pages (if a multi-page design). When drawing,

the grid may be drawn lightly as well to give a sense of order. Figure 4.19 shows a sample sketch

for a form application.

4.3.2 Drawing the Interface

After the sketching process, the practical part of the graphic design begins. There are several

commercial software for image editing, such as Adobe Photoshop, Adobe Illustrator, Adobe Fire-

works, Corel Draw, Microsoft Paint, etc. This work’s philosophy, as well as the SBTVD’s and the

Ginga community’s, believes in open-source and free software. The author recommends the usage

of free open-source image editing software, such as GIMP, which was use for all the images found

Chapter 4 - GUI Design Techniques and Guidelines 65

Figure 4.19: Layout Sketch for a Form Application

in this dissertation.

Regardless of the software used, the designer should create a drawing consistent with his/hers

original concept sketch. Minor modifications may be included, but the designer should not start

creating concept using the software, as this defeats the purpose of the sketch. Figure 4.20 illustrates

a very basic concept drawn in GIMP.

4.3.3 Marking Coordinates and Dimensions

Following the drawn concept, the next step is to mark where each element is positioned, and

what dimensions they have. This step is crucial before the implementation of the design into the

application, as skipping it would drastically reduce implementation times (since the developer will

have to consult the designer or measure him/herself each element). The GIMP image editing

software provides a tool for measurements; however, the user can also rely on the rulers for this

matter. Figure 4.21 shows a 1280×720 application layout with dimensions and coordinates marked.

Note that this marking is only for the developer’s reference and is not part of the application’s

artwork.

66 Chapter 4 - GUI Design Techniques and Guidelines

Figure 4.20: Drawn Concept

Figure 4.21: Marking Coordinates and Dimensions

4.3.4 Implementation

Finally, after having the concept sketched, then drawn, and then marked all the elements’ di-

mensions and coordinates, it is time for the implementation. The designer’s primary task ends here,

Chapter 4 - GUI Design Techniques and Guidelines 67

and it is his/her job to wait for a functional demonstration to test the design. There may be some

functional flaws not contemplated during the initial sketch design, which might lead the designer

to re-evaluate his/her concepts and adapt them as necessary.

The developer will then implement this design into the application. In the Brazilian scenario

for digital television, the Ginga middleware is the main target for the designs and, thus, two possi-

bilities for implementation arise. Both Ginga-NCL and Ginga-J can benefit from the guidelines and

techniques mentioned in this chapter. However, only the Ginga-NCL scenario was tested during this

work, since it is less hardware-demanding and the Ginga-J implementations are not yet completely

available in entry-level set-top boxes.

In order to implement these designs for the Ginga-NCL scenario, the developer must choose

(depending on his project), if the graphic elements will reside in the NCL document, or rather inside

an NCLua object as an NCL node. Independently of the choice made, the positions and dimensions

marked in Section 4.3 are key for creating the corresponding regions (in NCL) or canvas regions (in

NCLua), and the static results will be similar.

There is one extra criteria that the developer needs to consider though: the size of the applica-

tion. The Ginga specification sets the maximum transfer rate for MPEG-2 Transport Stream packets,

and for data services inside the TS (shown in Table 4.2).

Table 4.2: Maximum bitrate values for each type of service [23]

Types of Media Service Detail Bit-rate (Mbps)

Digital Television Service

1080i 21

720p 21

480p 12

480i 11

Multi-Camera 21

Data Service - - - - 2.2

As specified in [23], the maximum bitrate for data services (including Ginga interactive appli-

cations) is 2.2 Mbps. However, this data rate still includes TS and PES headers, which reduce the

effective bitrate for an specific Ginga application. Besides that, the 2.2 Mbps bitrate is a maximum

boundary; this means that the broadcaster may choose to utilise that bandwidth in any way, res-

68 Chapter 4 - GUI Design Techniques and Guidelines

tricting even more the available bandwidth for Ginga applications. Even in the hypothetical case

of having the entire 2.2 Mbps, without headers, for Ginga application transmission, 2.2 Mbps is

275 KB/s, meaning that it would take around 4 seconds for a 1 MB application. For interactive

commercials, each second on air is worth money, and having to wait 4 seconds may not be worth

the cost of interactive on air fees (specially considering that the user may tune into the commercial

after it has already begun). Therefore, optimising the application size is mandatory.

The optimisation of the application to reduce application size relies heavily on the developer,

but there are certain tricks the designer can do to aid in the process. One of the largest bottlenecks

in application size reduction is the fact that the imagery forms most of it. Removing imagery when

possible, and avoiding colour blending greatly reduces application size (while using compression

algorithms such as JPEG). Storing the images in JPEG or PNG (Portable Network Graphics) will

compress the images, but the compression obtained depends on how many different colours are

there. Using flat colours (as shown in Figure 4.20) will achieve great compression. Figure 4.22

illustrates an example, with two 400×400 PNG files (the borders are just for illustration purposes).

Figure 4.22a is a flat colour rectangle with 1.1 KB size while Figure 4.22b has blended colour and

is 82.1 KB large. This represents around a 1:75 application size reduction ratio just by avoiding

blending.

(a) (b)

Figure 4.22: Flat vs. Blended Colours: (a) Flat Colour (b) Blended Colour

The following chapter presents the other great contribution of this work, aimed at optimising

application size and memory load reduction while targeting a specific design situation: text input.

Chapter 5

NCLua Contributions

D
eveloping applications for Ginga-NCL is not a trivial task, as it requires knowledge of

the ISDB-Tb broadcast system, the hardware limitations of the most popular STBs in

the market, and the benefits of both the NCL and the NCLua languages. It is often

discussed in community forums and digital television lectures if the NCL document should be

used for its potential, or if it should rather be just a wrapper for a procedural NCLua object. The

literature available presents NCL as a great language for digital television interactive application

development (along with some NCLua scripts to back it up), but it never emphasises whether the

last statement is true.

The test applications developed in the writing of this work showed that it is harder to integrate

NCLua scripts with the NCL document while trying to execute event-driven processes in NCL with

procedural script in Lua, as the developer has to keep track of how each event in NCL executionmay

affect the Lua functions. Besides that, NCL screen transitions in multi-page applications showed

high latency in screen refresh, perhaps as a buffering issue. When executing the exact same screen

transition, but implemented as Lua code, the screen refresh was instant and the latency was not

perceived. Therefore, all the following work related to developing applications was based on an

NCL wrapper document that would only execute the main Lua script, which consisted on the

entire application, including the graphic interface implementation.

69

70 Chapter 5 - NCLua Contributions

5.1 Object-Oriented Programming in Lua

The Lua language is not an Object-Oriented Programming (OOP) language, or at least it was not

conceived with that purpose. However, it is often useful to create self-aware, independent objects

that have their own variables and methods.

Many OOP languages have the concept of class, which is a template for object creation. Each

object is an instance of that specific class with its defined behaviour and properties. In Lua, however,

there is not this concept; objects are not based in classes, but are stand-alone and independent.

The Lua documentation recommends a metatable-based approach to address object orientation

[24], creating a first object as a prototype for other objects (as instances of the prototype “class”).

Code 5.1: Metatable-based Object Orientation

Account = {balance = 0}

function Account:new(o)

o = o or {} -- create object if user does not provide one

setmetatable(o, self)

self.__index = self

return o

end

Code 5.1, as an example code, is proposed in [24] as a metatable-based approach to emulating

object orientation in Lua. Some of the projects mentioned in Section 3.5, such as LuaComp, base

their object orientation in this metatable approach. It has the benefits of having a syntax pretty

similar to most OOP languages, such as C++ and Java. Code 5.1 shows the constructor method for

the Account class. Creating other methods for the same class has a similar syntax, with the colon

symbol to call the method (class:method). Code 5.2, also as part of the example [24], illustrates

how to create more methods for the same class.

Code 5.2: Defining Methods

function Account:deposit(v)

self.balance = self.balance + v

end

function Account:withdraw(v)

if v > self.balance then error "insufficient funds" end

self.balance = self.balance - v

end

Chapter 5 - NCLua Contributions 71

This approach is suitable for small projects where privacy is not essential. Even though in-

stantiating more than one object from the same class creates one metatable for each object, those

metatables are public and accessible from any part of the code. This breaks the privacy concept

a class should have (with private and/or protected methods and variables) and, therefore, is not

suitable for automatic object generation (as the virtual keyboard in the next section requires).

The main problem of having a class with only public methods and variables does not provide

scalability for larger programs, or option for multiple developers to work on the same application.

For example, if one developer focuses on a particular class, he will not be able to protect his class

by giving only public getter and setter methods to the other developers, and will be giving the

entire class structure. Code 5.2 illustrates the creation of two methods to alter the balance from an

Account object. However, a direct access to the object’s variable is also possible, completely altering

the contents of the metatable without any protection whatsoever, as shown in Code 5.3.

Code 5.3: Direct Access to Object Variables

b = Account:new{balance = 100}

b = Account:new()

print(b.balance) --> 100

-- b.deposit(v), an instance of the ‘‘class’’ Account:deposit(v), yields the same result as:

b.balance = b.balance + v

Nevertheless, there is another way to deal with privacy, albeit not orthodox. The Lua docu-

mentation also presents the concept [24], but the rest of the literature does not seem to mention it

(perhaps the majority of object-oriented Lua programmers are not in need for privacy).

Code 5.4: Alternative Method for Object Orientation

function newAccount(initialBalance)

local self = {balance = initialBalance}

local withdraw = function (v)

self.balance = self.balance - v

end

local deposit = function (v)

self.balance = self.balance + v

end

local getBalance = function () return self.balance end

return {

withdraw = withdraw,

deposit = deposit,

getBalance = getBalance

72 Chapter 5 - NCLua Contributions

}

end

Code 5.4 shows an alternative for object orientation. The concept relies on storing the informa-

tion and method callbacks in different tables, one being a local “self” or “this”, and the other as an

interface to the outside. The “self” table would be the equivalent to the protected variable environ-

ment found in other OOP languages while the interface table would be the public environment.

In Code 5.4, all the variables are stored in the local self table. The class methods are also defined

as local (so different classes can have the same name for methods, and different objects would not

have privacy problems). Finally, the return callback provides access to the public methods to the

newly created object. This method was used for the development of the NCLua virtual keyboard

presented in the next section.

5.2 NCLua Virtual Keyboard

5.2.1 Conception

One of the main contributions of this work is the development of an open-source virtual key-

board based in NCLua. Many Ginga-NCL developers, when discovering the great potential of

interactive television and the possibility of user-targeted customisation, were in need of some sort

of text input form to capture user information via return path. However, this is no easy task, and

demands the developer to focus a great amount of time in designing an ad-hoc text input method.

When the author arrived with this problem, the initial thoughts were to utilise the remote con-

troller’s numeric pad as a form of text input similar to a cellphone text input system. However,

the set-top boxes used to test this idea did not respond very well to this: the delay was not pre-

dictable and depended on the application’s memory load as well (some applications were faster

while others were slower). Besides that, the delay between keys was not constant, rendering the

method non-viable. The capture of the keys had to be done in NCLua (via events) in order to be

able to process the text inside the procedural environment. Having the keys captured in NCL was

not viable either, since each key would require its own node, and moving the cursor from a node to

another required many links, thus, being inefficient.

Chapter 5 - NCLua Contributions 73

(a)

(b)

Figure 5.1: Virtual Keyboard, version 1: (a) No keys selected (b) ‘M’ key selected

The next idea, based more in design and aesthetics rather than functionality, was to create a

matrix containing the key values, and a set of images representing keyboard positions with current

selected keys. When capturing the arrow keys (for cursor movement), the program would look up

in the matrix and load the new corresponding image. Figure 5.1 illustrates the first version of the

virtual keyboard design.

For the reasons described in Section 4.3, this first version was completely inefficient. Containing

an image similar to Figure 5.1b for each key (with colour blending and several colours), the sample

application containing the keyboard had a size of 5 MB. Besides that, two out of three set-top boxes

hung from the intensive memory load when moving the cursor.

These set of problems motivated the author to propose a solution able to overcome these diffi-

culties. Also, besides just overcoming them, the new keyboard should be parametric, enabling any

developer to adapt it to his/her own needs. The new proposed keyboard was designed entirely in

NCLua, with no external images to achieve a very low application size. It also is packaged in the

form of a Lua library that can be included into any NCLua application.

74 Chapter 5 - NCLua Contributions

5.2.2 Class Description

The NCLua Virtual Keyboard is based on one single file, keyBoard.lua, and it is based on two

different classes: the KeyBoard class and the KbElement class. The complete source code is available

in Appendix A, and a complete NCLua sample application is presented in Appendix B.

The KbElement class is the basic element of the Virtual Keyboard. It represents a single key,

as the KeyBoard class basically creates a matrix of KbElements. The KbElement are presented in

Table 5.1 and Table 5.2. Following the description of the KbElement class, Table 5.3 and Table 5.4

describe the attributes and methods for the KeyBoard class.

Table 5.1: Attributes of the KbElement class

Type Name Description

integer width Specifies the width of the KbElement in pixels.

integer height Specifies the height of the KbElement in pixels.

integer x0, y0 Specify the position of the upper left corner of the KbElement in

pixels.

string text Specifies the text label of the KbElement.

array font An array with the form of {string font-face, integer font-size,

string font-style}, specifying the font family, size and style of the

text attribute (bold, italic, etc.).

string or

array

BGColour,

FGColour

Specify the Background and Foreground colours of the KbEle-

ment respectively. They can be a string (’blue’, ’red’, etc.) with

no transparency, a 3-element array (R,G,B) with no transparency,

or a 4-element array (R,G,B,α). R, G, B and α are of integer type

and have values between 0 and 255.

boolean border Specifies whether the KbElement will have a border (with FG-

Colour) or not. Values accepted are true or false.

Chapter 5 - NCLua Contributions 75

Table 5.2: Methods of the KbElement class

string KbElement:getText(void)

Returns the text parameter from the KbElement object.

void KbElement:config(struct arg)

Sets the object’s self table parameters with the ones in arg. The arg structure

must contain the following parameters: width, height, x0, y0, text, font, BGColour,

FGColour, border.

void KbElement:setColour(string or array colour)

Calls the NCLua canvas:attrColormethod with a string or array colour vari-

able.

void KbElement:draw(boolean focus)

Using the attributes defined, draws the KbElement in the current canvas by

calling the NCLua canvas:drawRect and canvas:drawText methods. The focus

argument switches BGColourwith FGColour, to give the impression of a selected

key.

Table 5.3: Attributes of the KeyBoard class

Type Name Description

integer kWidth Specifies the width of each KbElement in pixels.

integer kHeight Specifies the height of each KbElement in pixels.

integer x, y Specify the position of the upper left corner of the KeyBoard in

pixels.

Continued on Next Page. . .

76 Chapter 5 - NCLua Contributions

Table 5.3 – Continued from Previous Page

array content Contains the layout matrices.

array font An array with the form of {string font-face, integer font-size,

string font-style}, specifying the font family, size and style of the

text attribute (bold, italic, etc.) to be passed to the KbElement

objects.

string or

array

BGColour,

FGColour

Specify the Background and Foreground colours of the KbEle-

ment respectively. They can be a string (’blue’, ’red’, etc.) with

no transparency, a 3-element array (R,G,B) with no transparency,

or a 4-element array (R,G,B,α). R, G, B and α are of integer type

and have values between 0 and 255.

boolean border Specifies whether the KbElement will have a border (with FG-

Colour) or not. Values accepted are true or false.

integer currentLayout Specifies the index of the current selected layout in content.

array keys Dynamic table containing the KbElement objects. Repopulates

itself with the KeyBoard:create method.

integer currentX,

currentY

Specify the current cursor position of the KeyBoard.

boolean wrap Specifies whether the KeyBoard will enable cursor wrapping.

Chapter 5 - NCLua Contributions 77

Table 5.4: Methods of the KeyBoard class

void KeyBoard:getParams(void)

Debug function. Prints on console every attribute and value from the KeyBoard

instanced object.

void KeyBoard:config(struct arg)

Sets the object’s self table parameters with the ones in arg. The arg struc-

ture must contain the following parameters: kWidth, kHeight, x, y, content, font,

BGColour, FGColour, border, currentLayout, currentX, currentY, wrap.

void KeyBoard:create(void)

Creates a dynamic table with the dimensions of the current selected layout

and fills it with KbElement objects containing the corresponding KbElement text.

Each KbElement object’s position is iterated so that they can be drawn side by

side.

void KeyBoard:printKeys(void)

Debug function. Displays the text attributes of each KbElement object created by

KeyBoard:create.

void KeyBoard:draw(void)

Using the attributes defined, draws the each of the KbElement objects in the

keys in the current canvas by calling the KbElement:draw method.

Continued on Next Page. . .

78 Chapter 5 - NCLua Contributions

Table 5.4 – Continued from Previous Page

void KeyBoard:moveCursor(string dir)

Cursor control function. It receives a string from the “press” NCL type event to

redraw the current selected key as deselected, and draws the new selected key

as focused.

string KeyBoard:onPress(void)

It hides focus on the selected key by calling the KbElement:draw method, and

returns the content of the current layout at the current cursor position calling

the KbElement:getText method for further processing.

void KeyBoard:onRelease(void)

Used after the KeyBoard:onPress method, it returns focus to the selected key.

The use of both methods in sequence simulates a selection animation.

void KeyBoard:clear(void)

Clears the current canvas to transparency. The area cleared corres-

ponds only to the area used by the current layout. This method is

called by KeyBoard:nextLayout, and should be used if implementing a

KeyBoard:switchLayout method.

Continued on Next Page. . .

Chapter 5 - NCLua Contributions 79

Table 5.4 – Continued from Previous Page

void KeyBoard:nextLayout(void)

Clears the current canvas calling the KeyBoard:clear method, then recreates

the keys table with the next available layout in the content table using the

KeyBoard:createmethod. Finally, draws the newly created keyboard by calling

the KeyBoard:draw method.

integer KeyBoard:getCurrentXY(void)

Returns the current index of the cursor to two different variables. The syntax

would be x,y = getCurrentXY().

integer KeyBoard:getCurrentLayout(void)

Returns the current layout index.

The KeyBoard class was conceived as a class so that it can be instantiated having its own private

parameters. This allows the user to create more than one virtual keyboard at any time. Thanks to

the parametrisation level the class allows, the developer could use this class as navigation tabs, a

framework for noughts and crosses, a Sokoban game (would require modifying the KbElement class

to accept images besides the text attribute) or any application that requires a visual matrix.

One of the benefits of the implementation of the KeyBoard class is the fast layout creation. It

has, as attribute, a content array which contains different layout matrices. When the object calls

the KeyBoard:create() method (which is not the constructor), it loads up the current selected

layout from the content attribute, getting the layout dimensions to dynamically create the matrix

containing KbElement objects. Code 5.5 shows the syntax to create a layout content array while

Code 5.6 illustrates a multiple layout creation example.

80 Chapter 5 - NCLua Contributions

Code 5.5: Creating a layout content array

-- The content table should have the following structure:

content = {layout1, layout2, layout3, ...}

-- The layoutX table should have the following structure or similar:

layout1 = {}

layout1[1] = {’A’, ’B’, ’C’, ’D’, ’E’, ’F’}

layout1[2] = {’G’, ’H’, ’I’, ’J’, ’K’, ’L’}

layout1[3] = {’M’, ’N’, ’O’, ’P’, ’Q’, ’R’}

layout1[4] = {’S’, ’T’, ’U’, ’V’, ’W’, ’X’}

layout1[5] = {’Y’, ’Z’, ’_’, ’<’, ’[sym]’, ’OK’}

-- Or, preferably

layout1 =

{

{’A’, ’B’, ’C’, ’D’, ’E’, ’F’},

{’G’, ’H’, ’I’, ’J’, ’K’, ’L’},

{’M’, ’N’, ’O’, ’P’, ’Q’, ’R’},

{’S’, ’T’, ’U’, ’V’, ’W’, ’X’},

{’Y’, ’Z’, ’_’, ’<’, ’[sym]’, ’OK’}

}

Code 5.6: Multiple Keyboard Layouts

-- Layout1: chars

chars =

{

{’A’, ’B’, ’C’, ’D’, ’E’, ’F’},

{’G’, ’H’, ’I’, ’J’, ’K’, ’L’},

{’M’, ’N’, ’O’, ’P’, ’Q’, ’R’},

{’S’, ’T’, ’U’, ’V’, ’W’, ’X’},

{’Y’, ’Z’, ’_’, ’DEL’, ’[sym]’, ’OK’}

}

--Layout2: numbers

numbers =

{

{’0’, ’1’, ’2’, ’3’, ’4’, ’5’},

{’6’, ’7’, ’8’, ’9’, ’@’, ’#’},

{’_’, ’&’, ’~’, ’(’, ’)’, ’-’},

{’*’, ’[’, ’]’, ’DEL’, ’[abc]’, ’OK’}

}

-- Syntax: content = {layout1, layout2, layout3, ...}

content = {chars, numbers}

The sample application containing this NCLua Virtual Keyboard implementation is included in

Appendix B. Figure 5.2 illustrates two screen-shots of the sample application with different layouts

selected.

As a result of using the NCLua Virtual Keyboard open-source library, a simple application with

Chapter 5 - NCLua Contributions 81

(a)

(b)

Figure 5.2: Virtual Keyboard Sample Application: (a) Layout 1 Selected (b) Layout 2 Selected

the Virtual Keyboard has a size of 14.8 KB, instead of 5.0 MB from the first version Figure 5.1. Also,

besides the drastic application size reduction, the NCLua Virtual Keyboard approach, compared

to the separate image approach in Figure 5.1, provides much more flexibility in terms of multiple

82 Chapter 5 - NCLua Contributions

layout support and its great reuse value due to high adaptability (creation of new layouts just

require writing the matrices).

Moreover, the NCLua Virtual Keyboard library itself serves as a general-purpose matrix man-

ager; it is useful for several applications, such as an on-screen navigational menu, a checkers game,

etc. This work is based on the philosophy of open-source software, hence publishing the entire

source code in Appendix A. The author strongly encourages other developers to publish their work

and enable the source code, as it encourages the community to keep developing tools to improve

interactivity in digital television.

The next and final chapter presents the conclusions of this thesis.

Chapter 6

Conclusions

T
his work had, as its main purpose, to address the current problems designers and de-

velopers were having regarding interactive application design and development for di-

gital television in for the Ginga middleware. From the designer’s perspective, there was

not enough literature on guidelines and methods specifically designed for digital television, as

most of the literature is addressed at computer software design. Chapter 4 successfully described

the advantages of efficient GUI design in both aesthetics and functionality, based in solid human

perception theory known as the Gestalt Theory.

On the other hand, the developer’s perspective had an important problem with the overall

application size; in order to comply with the Ginga specification, the only possible option was to

optimise the application design and development process to achieve smaller application sizes. Some

techniques aimed at this purposed were presented as well in Section 4.3.

The open-source philosophy, adopted by this work, promotes intellectual collaboration between

colleagues to pursue knowledge and distribute it among everyone. Following this ideal, the concept

for the NCLua Virtual Keyboard library was conceived, as a result of community discussion and

common problem addressing. This work should serve as an example and encourage fellow re-

searchers to publish their work and source code as open-source, to promote community support

and development of tools for interactive television application design. Since one of the objectives

of the SBTVD is social inclusion through interactivity, this area is ought to be highly emphasised in

terms of research and tool development.

83

84 Chapter 6 - Conclusions

This work also presented the concept of object-oriented programming in Lua, with class privacy.

It is a very practical resource for code re-utilisation as well as big projects where multiple developers

are required. Based in OOP, the text input requirement problem was also addressed, presenting

current problems and proposing an free open-source solution.

After presenting the concepts of OOP in Lua language, and the NCLua Virtual Keyboard open

source library in Chapter 5, as well as the concepts of design in Chapter 4, it is possible to design and

develop efficient interactive applications based in the proposed guidelines, and using the proposed

library as a framework. As a result of using the NCLua Virtual Keyboard open- source library, a

simple application with text input support has a size of 14.8 KB, instead of 5.0 MB from the first

version, which would render it practical for transmission.

Suggestions for future work are to improve the NCLua Virtual Keyboard library to accept images

as content, so it can be used as an efficient visual matrix manager; and designing specific design

techniques for mobile applications, where screen space is even more crucial, and touch-screen inter-

faces may come into play. As this work has been done by the open-source philosophy, it is highly

encouraged, for all future work based in this one, to follow it as well.

Conclusões

O
objetivo principal deste trabalho foi focado nos problemas atuais que os designers e

desenvolvedores de aplicações encontram na hora de criar aplicações interativas para

televisão digital no middleware Ginga. Segundo o ponto de vista do designer, não tem

literatura suficiente sobre diretrizes e métodos desenvolvidos especialmente para televisão digital,

pois a maior parte da literatura está focada em design de software para computadores. No Capítulo 4

foram descritas as vantagens de uma interface gráfica eficiente tanto estética quanto funcionalmente,

e isto foi baseado na teoria de percepção humana chamada de Teoria de Gestalt.

No entanto, do lado do desenvolvedor, a perspectiva tinha um problema crítico com relação ao

tamanho total da aplicação. Para conseguir cumprir com as especificações do Ginga, a única opção

era os processos de design e desenvolvimento para atingir tamanhos menores. Sendo que, algumas

técnicas para conseguir este objetivo foram propostas na Seção 4.3.

Este trabalho baseou-se na filosofia de código aberto, promovendo a colaboração intelectual

e participação entre colegas para obter conhecimento e distribuí-lo entre todos. De acordo com

esta ideologia, o conceito do teclado virtual NCLua surgiu como resultado de discussões entre a

comunidade e soluções para um problema comum. Esta dissertação é útil também, como exemplo

e como motivação para outros pesquisadores para publicar seus trabalhos e códigos no formato

de código aberto para promover o suporte da comunidade e desenvolvimento de ferramentas para

design de aplicações interativas para televisão digital. Como um dos objetivos mais importantes do

SBTVD é a inclusão digital da população através da interatividade, o desenvolvimento nesta área

será cada vez mais importante em termos de pesquisa.

O conceito de programação orientada a objetos (POO) em Lua foi apresentado também na dis-

sertação, considerando a privacidade das classes. Este conceito possui muita praticidade para a

85

86 Capítulo 6 - Conclusões

reutilização do código e para desenvolvimento de projetos grandes onde vários desenvolvedores

trabalham juntos. O problema da entrada de texto também foi tratado, usando POO, propondo

uma solução gratuita e de código aberto ao problema.

Depois de apresentar os conceitos de POO em Lua, o teclado virtual NCLua no Capítulo 5 e os

conceitos de design no Capítulo 4, é possível desenvolver aplicações interativas eficientes baseando-

se nas diretrizes propostas e usando a biblioteca do teclado virtual como um framework. Na aplicação

de exemplo apresentada obteve-se, como resultado do uso da biblioteca do teclado virtual e as

diretrizes de design, um tamanho de aplicação de 14,8 KB ao invés de 5,0 MB da primeira versão.

Como sugestões para trabalhos futuros, propõe-se a melhoria da biblioteca do teclado virtual

para aceitar imagens como conteúdo, para poder ser usada como um gerenciador visual de matri-

zes eficiente; criar métodos de design de aplicações para dispositivos móveis, onde o espaço na tela

é ainda mais crítico e onde as telas touch-screen estão se tornando cada vez mais populares. Final-

mente, como o trabalho foi baseado na filosofia de código aberto, é muito importante promover que

todo o trabalho futuro faça continuidade nessa filosofia.

Bibliography

[1] C. A. Makluf, “Análise de tecnologias 3G visando à estruturação do canal de retorno da TV

digital,” Master’s thesis, Universidade Estadual de Campinas – UNICAMP, 2011.

[2] M. C. Q. Farias et al., “Digital television broadacsting in Brazil,” IEEE Multimedia, vol. 15,

pp. 64–70, April-June 2008. Sponsored by IEEE Computer Society.

[3] L. Soares and S. Barbosa, Programando em NCL 3.0. Elsevier Editora, 2009.

[4] E. Velarde, “Televisão digital móvel para aplicações de governo utilizando GINGA NCL,” Mas-

ter’s thesis, Universidade Estadual de Campinas – UNICAMP, 2009.

[5] R. V. Coelho, “Padrões de middleware para TV digital.” Last accessed on July 2011.

http://www.ncc.furg.br/publi/CRICTE_padroes_de_middleware_para_tv_digital.pdf.

[6] M. S. Alencar, Digital Television Systems, ch. 1. Cambridge University Press, 2009.

[7] EBU P/MDP Project Group, “The middleware report,” tech. rep., EBU Technical – Media Tech-

nology & Innovation, Geneva, 2005. Found at: http://tech.ebu.ch/docs/tech/tech3300.pdf.

[8] C. Montez and V. Becker, TV Digital Interativa: Conceitos, Desafios e Perspectivas para o Brasil.

Editora da UFSC, second ed., 2005.

[9] A. Megrich, Televisão Digital. Princípios e Técnicas. Editora Érica, 2009.

[10] DVB Project Office, “Multimedia Home Platform – open middleware for interactive TV,” tech.

rep., The DVB Project, May 2011.

87

http://www.ncc.furg.br/publi/CRICTE_padroes_de_middleware_para_tv_digital.pdf
http://tech.ebu.ch/docs/tech/tech3300.pdf

88 BIBLIOGRAPHY

[11] DVB Project Office, “Globally Executable Middleware – DVB’s open middleware for interactive

applications,” tech. rep., The DVB Project, May 2011.

[12] S. T. in Broadcasting, “Introdução à TV digital: Funcionamento do sistema e suas aplicações.”

http://www.stb.ind.br/catalogos/Apostila%20TV%20Digital%20ver1.2.pdf.

[13] ABNT NBR 15606-1:2007, Digital terrestrial television — Data coding and transmission specification

for digital broadcasting. Part 1: Data coding specification. ABNT, Rio de Janeiro-RJ, Brazil, 2007.

[14] T. dos Santos Ferreira, “Desemvolvimento de um aplicativo para integrar módulo de GPS e

receptor de TV digital,” tech. rep., Centro Universitário Saleciano de São Paulo, Campinas-SP,

2010. Trabalho de Graduação em Engenharia Elétrica.

[15] N. Kamaci and Y. Altunbasak, “Performance comparison of the emerging h.264 video coding

standard with the existing standards,” in IEEE International Conference on Multimedia and Expo

(ICME), pp. 6–9, 2003.

[16] Encyclopædia Britannica, “Interactive,” Encyclopædia Britannica, 2011. Found at:

http://www.britannica.com/bps/dictionary?query=interactive.

[17] VBrick Systems Inc., “MPEG-2 Transport vs. Program Stream,” tech. rep., VBrick Systems Inc.,

2009. Found at: http://www.vbrick.com/docs/VB_WhitePaper_TransportStreamVSProgramStream_rd2.pdf.

[18] ABNT NBR 15602-3:2008, Digital terrestrial television — Video coding, audio coding and multiplex-

ing. Part 3: Signal multiplexing systems. ABNT, Rio de Janeiro-RJ, Brazil, 2008.

[19] L. Soares and R. Rodrigues, “Nested Context Model 3.0: Part 1–NCM Core,” Relatório Técnico

de Pesquisa da série de Monografias do Departamento de Informática da PUC-Rio, 2005.

[20] L. Soares, R. Rodrigues, and M. Moreno, “Ginga-NCL: the declarative environment of the

Brazilian digital TV system,” Journal of the Brazilian Computer Society, vol. 12, no. 4, pp. 37–46,

2007.

[21] L. Soares, “Nested Context Language 3.0 part 12–support to multiple exhibition devices,” tech.

rep., Technical Report, Informatics Department, PUC-Rio, 2009.

http://www.stb.ind.br/catalogos/Apostila%20TV%20Digital%20ver1.2.pdf
http://www.britannica.com/bps/dictionary?query=interactive
http://www.vbrick.com/docs/VB_WhitePaper_TransportStreamVSProgramStream_rd2.pdf

BIBLIOGRAPHY 89

[22] T. Bray, J. Paoli, et al., “Extensible Markup Language (XML) 1.0,” W3C recommendation, 2000.

[23] ABNT NBR 15606-2:2007, Digital terrestrial television — Data coding and transmission specification

for digital broadcasting. Part 2: Ginga-NCL for fixed and mobile receivers – XML application language

for application coding. ABNT, Rio de Janeiro-RJ, Brazil, 2007.

[24] R. Ierusalimschy, Programming in Lua. Lua.org, second ed., 2006.

[25] F. Sant’Anna, L. Soares, and R. de Gusmão Cerqueira, “Nested Context language 3.0 part

10–imperative objects in NCL: The NCLua scripting language,” tech. rep., Technical Report,

Informatics Department, PUC-Rio, 2008.

[26] R. Carvalho et al., “Introdução às linguagens NCL e Lua: Desenvolvendo aplicações interativas

para TV digital.” Privately Published, October 2009. Peta5 - Laboratório MídiaCom.

[27] C. Neto et al., “Construindo programas audiovisuais interativos usando a NCL 3.0 e a fer-

ramenta Composer.” Privately Published, Rio de Janeiro-RJ, Brazil, July 2007. Laboratório

Telemídia, PUC-RIO.

[28] L. Chaves and F. Gomes, “Arquitetura de componentes e práticas ágeis para o middleware

GINGA-NCL,” in V CONNEPI-2010, 2010.

[29] The Eclipse Foundation, “The Eclipse Foundation open source community website.”

http://www.eclipse.org. Last Accessed: August 2011.

[30] R. Azevedo et al., “Textual authoring of interactive digital TV applications,” in Proceddings of

the 9th international interactive conference on Interactive television, pp. 235–244, ACM, 2011.

[31] “Portal do Software Público Brasileiro.” http://www.softwarepublico.gov.br. Last Accessed:

August 2011.

[32] ABNT NBR 15606-3:2007, Digital terrestrial television — Data coding and transmission specification

for digital broadcasting. Part 3: Data transmission specification. ABNT, Rio de Janeiro-RJ, Brazil,

2007.

http://www.eclipse.org
http://www.softwarepublico.gov.br

90 BIBLIOGRAPHY

[33] R. R. de Mello Brandão et al., “Extended features for the Ginga-NCL environment: Introducing

the LuaTV API,” in 2010 Proceedings of 19th International Conference on Computer Communications

and Networks (ICCCN), 2010.

[34] P. J. De Souza Júnior, “Luacomp: Ferramenta de autoria de aplicações para tv digital,” Master’s

thesis, Universidade de Brasília – UNB, March 2009.

[35] T. Monteiro Prota, “MoonDo: Um framework para desenvolvimento de aplicações declarativas

no SBTVD,” tech. rep., Universidade Federal de Pernambuco, 2009. Trabalho de Graduação

em Ciência da Computação.

[36] K. Lu, “Interaction design principles for interactive television,” Master’s thesis, Georgia Insti-

tute of Technology, 2005.

[37] J. Kim et al., “Personalization in digital television: Adaptation of pre-customized UI design,”

in Proceedings of the 2nd European Conference on Interactive Television: Enhancing the Experience,

pp. 169–171, 2004.

[38] C. Peng, Digital television applications. Ph.D. dissertation, Helsinki University of Technology,

2002.

[39] T. Mandel, The Elements of User Interface Design, ch. 5. John Wiley & Sons, 1997.

[40] D. Chang, L. Dooley, and J. Tuovinen, “Gestalt theory in visual screen design: a new look at an

old subject,” in Proceedings of the Seventh world conference on computers in education conference on

Computers in education: Australian topics-Volume 8, pp. 5–12, Australian Computer Society, Inc.,

2002.

Appendix A

NCLua Virtual Keyboard

This appendix contains the source code for the NCLua Virtual Keyboard.

Code A.1: keyBoard.lua

1 -- The KeyBoard class will create an array of KbElements dynamically, depending

2 -- on the content table (content of each keyboard). For now, it will only

3 -- accept ASCII strings as text (as currently KbElement does).

4

5 -- The KeyBoard class will include the create(), config() and draw() methods,

6 -- create() will be in charge of dynamically creating a matrix and reading each

7 -- element of the current layouttable and setting each KbElement’s text property

8 -- with the corresponding value. config() is in charge of configuring all the

9 -- parameters of the KeyBoard by receiving an array of configuration properties

10 -- and setting the corresponding KbElement’s properties.

11 -- Finally, draw() will display the KeyBoard at the designated point on-screen.

12 function newKeyBoard()

13

14 -- Define private elements of the class

15 local self = {

16 x, y, -- Upper left corner

17 content, -- Table containing each layout

18 BGColour, FGColour, -- Colour parameters to be passed to KbElement

19 kWidth, kHeight, -- KbElement width and height in pixels

20 border = true, -- boolean value to turn on borders

21 font = {}, -- {fontFace, size, style} e.g. {’Vera’, 12, ’bold’}

22 currentLayout, -- selects the current layout from content

23 keys = {}, -- Table containing KbElement objects.

24 currentX, -- current positions for the cursor

25 currentY,

26 wrap = false -- allows wrapping

27 }

28

29 -- The content table should have the following structure:

30 -- content = {layout1, layout2, layout3, ...}

31

32 -- The layoutX table should have the following structure or similar:

33 -- layout1 = {}

91

92 Appendix A - NCLua Virtual Keyboard

34 -- layout1[1] = {’A’, ’B’, ’C’, ’D’, ’E’, ’F’}

35 -- layout1[2] = {’G’, ’H’, ’I’, ’J’, ’K’, ’L’}

36 -- layout1[3] = {’M’, ’N’, ’O’, ’P’, ’Q’, ’R’}

37 -- layout1[4] = {’S’, ’T’, ’U’, ’V’, ’W’, ’X’}

38 -- layout1[5] = {’Y’, ’Z’, ’_’, ’<’, ’[sym]’, ’OK’}

39

40 -- Or, preferably

41 -- layout1 =

42 -- {

43 -- {’A’, ’B’, ’C’, ’D’, ’E’, ’F’},

44 -- {’G’, ’H’, ’I’, ’J’, ’K’, ’L’},

45 -- {’M’, ’N’, ’O’, ’P’, ’Q’, ’R’},

46 -- {’S’, ’T’, ’U’, ’V’, ’W’, ’X’},

47 -- {’Y’, ’Z’, ’ ’, ’<-’, ’[sym]’, ’OK’}

48 -- }

49

50 -- Configuration function

51 local config =

52 function(arg)

53 self.x = arg.x; self.y = arg.y; self.BGColour = arg.BGColour;

54 self.FGColour = arg.FGColour; self.kWidth = arg.kWidth;

55 self.kHeight = arg.kHeight; self.border = arg.border;

56 self.font = arg.font;self.content = arg.content; self.currentLayout = arg.currentLayout;

57 self.currentY = arg.currentY; self.currentX = arg.currentX; self.wrap = arg.wrap

58

59 --print(’\nFGColour = ’ .. self.FGColour .. ’\nBGColour = ’ .. self.BGColour .. ’\n’)

60 end

61

62 -- Debug Function

63 local getParams =

64 function()

65 params =

66 {

67 x = self.x, y = self.y, BGColour = self.BGColour, FGColour = self.FGColour,

68 kWidth = self.kWidth, kHeight = self.kHeight, border = self.border,

69 currentLayout = self.currentLayout

70 }

71

72 for i,v in pairs(params) do print(i, v) end

73

74 for i,v in pairs(self.font) do print(i, v) end

75

76 for j = 1,table.getn(self.content[self.currentLayout]) do

77 for i,v in pairs(self.content[self.currentLayout][j]) do print(i,v) end

78 end

79

80 end

81

82

83 -- Creation of the Keyboard: Since the keyboard will be recreated each time the content

84 -- layout is selected. Row and column numbers must be recalculated from the current layout.

85 local create =

86 function ()

87 -- Get current layout’s dimensions.

88 rows = table.getn(self.content[self.currentLayout]) -- Assuming table is rectangular.

89 cols = table.getn(self.content[self.currentLayout][1])

90

91 -- Define KbElement’s configuration parameters. Values fo x0,y0 and text

Appendix A - NCLua Virtual Keyboard 93

92 -- will be defined inside the loop. The following parameters won’t change for each

93 -- key

94 KbParams = { width = self.kWidth,

95 height = self.kHeight,

96 font = self.font,

97 border = self.border,

98 BGColour = self.BGColour,

99 FGColour = self.FGColour,

100 }

101

102 self.keys = {}

103 -- Creates the matrix

104 for i = 1,rows do

105 self.keys[i] = {};

106 for j = 1, cols do

107 self.keys[i][j] = newKbElement();

108

109 KbParams.x0 = self.x + (j-1) * self.kWidth ; -- Maybe a +1px will be necessary.

110 KbParams.y0 = self.y + (i-1) * self.kHeight;

111 KbParams.text = self.content[self.currentLayout][i][j];

112

113 self.keys[i][j].config(KbParams);

114 end

115 end

116 end

117

118 -- Another Debug Function. Displays text content of keys created by create()

119 local printKeys =

120 function()

121 rows = table.getn(self.content[self.currentLayout])

122 cols = table.getn(self.content[self.currentLayout][1])

123

124 for i = 1,rows do

125 for j = 1, cols do

126 print(self.keys[i][j].getText());

127 end

128 end

129 end

130

131 -- Graphical Function

132 local draw =

133 function()

134 rows = table.getn(self.content[self.currentLayout])

135 cols = table.getn(self.content[self.currentLayout][1])

136

137 for i = 1,rows do

138 for j = 1, cols do

139 self.keys[i][j].draw(false);

140 end

141 end

142

143 -- Forcing focus on first draw;

144 self.keys[self.currentY][self.currentX].draw(true)

145

146 end

147

148 -- Cursor control function. Will keep track of index.

149 local moveCursor =

94 Appendix A - NCLua Virtual Keyboard

150 function(dir)

151 -- Layout Dimensions

152 rows = table.getn(self.content[self.currentLayout])

153 cols = table.getn(self.content[self.currentLayout][1])

154

155 -- Redraw current key (animation purposes). Y represents Rows, so it should

156 -- go as the first dimension. X represents columns (to the right).

157 self.keys[self.currentY][self.currentX].draw(false)

158

159 if (dir == ’CURSOR_UP’) then

160 if(self.currentY > 1) then

161 self.currentY = self.currentY - 1

162 elseif(self.wrap == true) then

163 self.currentY = rows

164 end

165 elseif (dir == ’CURSOR_DOWN’) then

166 if(self.currentY < rows) then

167 self.currentY = self.currentY + 1

168 elseif(self.wrap == true) then

169 self.currentY = 1

170 end

171 elseif (dir == ’CURSOR_LEFT’) then

172 if(self.currentX > 1) then

173 self.currentX = self.currentX - 1

174 elseif(self.wrap == true) then

175 self.currentX = cols

176 end

177 elseif (dir == ’CURSOR_RIGHT’) then

178 if(self.currentX < cols) then

179 self.currentX = self.currentX + 1

180 elseif(self.wrap == true) then

181 self.currentX = 1

182 end

183 end

184

185 -- Redraw new current key (for animation)

186 self.keys[self.currentY][self.currentX].draw(true)

187

188 end

189

190 -- Displays select animation and returns selected KbElement.text.

191 local onPress =

192 function()

193 -- Hide focus

194 self.keys[self.currentY][self.currentX].draw(false)

195

196 return self.keys[self.currentY][self.currentX].getText();

197

198 end

199

200 local onRelease =

201 function()

202 -- Delay + show focus. (Counting on STB’s own delay).

203 self.keys[self.currentY][self.currentX].draw(true)

204

205 end

206

207 -- Cleans the canvas (to transparent). Current Layout’s area only.

Appendix A - NCLua Virtual Keyboard 95

208 -- Function is called by nextLayout. Use this if implementing the

209 -- switchLayout() method.

210 local clear =

211 function()

212

213 -- Cleans the matrix

214 self.keys = {}

215 self.currentX = 1;

216 self.currentY = 1;

217

218 -- Layout Dimensions

219 rows = table.getn(self.content[self.currentLayout])

220 cols = table.getn(self.content[self.currentLayout][1])

221

222 width = self.kWidth * cols;

223 height = self.kHeight * rows;

224

225 canvas:attrColor(0,0,0,0);

226 canvas:clear(self.x, self.y, width, height);

227 canvas:flush()

228 end

229

230 -- Switches to the next layout and redraw’s it (if possible).

231 -- Receives parameters x and y to set current position.

232 local nextLayout =

233 function(x, y)

234

235 -- Clears the canvas (keyboard area only)

236 clear();

237

238 self.currentX = x

239 self.currentY = y

240

241 -- Sets new layout to be drawn.

242 self.currentLayout = self.currentLayout + 1;

243

244 -- After the last layout is used, return to first layout.

245 if self.currentLayout > table.getn(self.content) then

246 self.currentLayout = 1

247 end

248

249 -- Will recreate the keyboard with new layout

250 create();

251

252 -- Redraw the keyboard

253 draw();

254 end

255

256 -- Returns the values (in index) of the current position of the cursor.

257 local getCurrentXY =

258 function()

259 return self.currentX, self.currentY;

260 end

261

262 local getCurrentLayout =

263 function()

264 return self.currentLayout;

265 end

96 Appendix A - NCLua Virtual Keyboard

266

267 return {config = config, create = create, getParams = getParams,

268 printKeys = printKeys, draw = draw, moveCursor = moveCursor,

269 onPress = onPress, onRelease = onRelease, clear = clear,

270 nextLayout = nextLayout, getCurrentXY = getCurrentXY,

271 getCurrentLayout = getCurrentLayout}

272

273 end

274

275

276 function newKbElement()

277

278 -- Define private elements of the class

279 local self = {

280 width , height,

281 x0, y0,

282 text, font,

283 BGColour, FGColour, -- Background and Font Colour

284 border, -- Values should be ’true’ or ’false’

285 }

286

287 -- Debug Function

288 local getText =

289 function()

290 return self.text

291 end

292

293 -- Define private Lua methods

294 local config =

295 function(arg)

296 self.width = arg.width; self.height = arg.height; self.x0 = arg.x0;

297 self.y0 = arg.y0; self.text = arg.text; self.font = arg.font;

298 self.BGColour = arg.BGColour; self.FGColour = arg.FGColour;

299 self.border = arg.border;

300 end

301

302 -- Function to extract parameters from colour table

303 local setColour =

304 function(colour)

305

306 numel = table.getn(colour)

307 if numel == 4 then

308 canvas:attrColor(colour[1], colour[2], colour[3], colour[4])

309 elseif numel == 3 then

310 canvas:attrColor(colour[1], colour[2], colour[3], 255)

311 elseif numel == 1 then

312 canvas:attrColor(colour[1])

313 else

314 return

315 end

316

317 end

318

319 -- Main Graphical Method. Draws the key on screen.

320 local draw =

321 function(focus)

322

323 -- Draw the background first

Appendix A - NCLua Virtual Keyboard 97

324 if(focus == true) then

325 setColour(self.FGColour)

326 else

327 setColour(self.BGColour)

328 end

329

330 canvas:drawRect(’fill’, self.x0, self.y0, self.width, self.height)

331

332 -- If border is enabled.

333 if self.border == true then

334 setColour(self.FGColour)

335 canvas:drawRect(’frame’, self.x0, self.y0, self.width, self.height)

336 end

337

338

339 -- "Write" Text at the middle of the Key. Check for focus decorations.

340 if(focus == true) then

341 setColour(self.BGColour)

342 else

343 setColour(self.FGColour)

344 end

345

346

347 -- If string is equal or larger than 5 characters, reduce font by 2pt

348 if (string.len(self.text) < 5) then

349 canvas:attrFont(self.font[1], self.font[2], self.font[3])

350 else

351 canvas:attrFont(self.font[1], self.font[2] - 2, self.font[3])

352 end

353

354 -- Use canvas:measureText() to fit the text inside the Key

355 dx, dy = canvas:measureText(self.text)

356 canvas:drawText(self.x0 + self.width/2 - dx/2, self.y0 + self.height/2 - dy/2, self.text)

357 end

358

359

360

361 -- Methods made public

362 return {config = config, draw = draw, getText = getText}

363

364 end

98 Appendix A - NCLua Virtual Keyboard

Appendix B

Sample Application

This appendix contains the source code for a sample NCLua application containing the NCLua

Virtual Keyboard.

Code B.1: main.ncl

1 <?xml version="1.0" encoding="ISO-8859-1"?>

2 <ncl id="ClassTest" xmlns="http://www.ncl.org.br/NCL3.0/EDTVProfile">

3 <head>

4 <regionBase>

5 <region width="100%" height="100%" id="rScreen">

6 <region width = "50%" height = "80%" left = "25%" top = "10%" id = "rLua" />

7 </region>

8 </regionBase>

9

10 <descriptorBase>

11 <descriptor id="dLua" region="rLua"/>

12 </descriptorBase>

13

14 <connectorBase>

15 <importBase documentURI="ConnectorBase.ncl" alias="conEx"/>

16 </connectorBase>

17 </head>

18 <body>

19 <port id="startPort" component="LuaScript"/>

20 <media id="LuaScript" src="classtest.lua" descriptor="dLua"/>

21

22 <!-- Configuration for the Ginga-NCL Virtual STB -->

23 <!-- It catches Key Press events according to the ABNT standard and

24 passes it to the LuaScript media node.-->

25 <media type="application/x-ginga-settings" id="programSettings">

26 <property name="service.currentKeyMaster" value="LuaScript"/>

27 </media>

28 </body>

29 </ncl>

Code B.2: classtest.lua

1 dofile "keyBoard.lua"

99

100 Appendix B - Sample Application

2

3 -- Flag for first run of the event

4 firstTime = 1

5

6 -- Dims gets Canvas Dimensions

7 canvasWidth, canvasHeight = canvas:attrSize()

8

9 letras =

10 {

11 {’A’, ’B’, ’C’, ’D’, ’E’, ’F’},

12 {’G’, ’H’, ’I’, ’J’, ’K’, ’L’},

13 {’M’, ’N’, ’O’, ’P’, ’Q’, ’R’},

14 {’S’, ’T’, ’U’, ’V’, ’W’, ’X’},

15 {’Y’, ’Z’, ’space’, ’DEL’, ’[sym]’, ’OK’}

16 }

17

18 numeros =

19 {

20 {’0’, ’1’, ’2’, ’3’, ’4’, ’5’},

21 {’6’, ’7’, ’8’, ’9’, ’@’, ’#’},

22 {’_’, ’&’, ’$’, ’(’, ’)’, ’-’},

23 {’*’, ’[’, ’]’, ’DEL’, ’[abc]’, ’OK’}

24 }

25

26 teclado = {letras, numeros}

27

28 kb1 = newKeyBoard()

29 params = {x = 30, y = 30,

30 BGColour = {75, 116, 169, 150}, --"75,116,169,255",

31 FGColour = {255, 255, 255, 150}, --"255,255,255,255",

32 kWidth = 64, kHeight = 64, border = true, content = teclado,

33 currentLayout = 1, font = {’vera’, 16, ’bold’},

34 currentY = 1, currentX = 1, wrap = true}

35

36 -- Event Handler

37 function keyHandler(evt)

38

39 -- Setting evt.class == ’ncl’ prevents key from getting in here

40 -- (it seems firstTime was not enough)

41 if (evt.class == ’ncl’ and firstTime == 1) then

42 firstTime = 0;

43

44 -- Clear the screen with Transparency.

45 canvas:attrColor(0,0,0,0);

46 --canvas:drawRect(’fill’, 0, 0, canvasWidth, canvasHeight);

47 canvas:clear(0, 0, canvasWidth, canvasHeight);

48

49

50 -- Draw Keyboard

51 kb1.config(params)

52 kb1.create()

53 kb1.draw()

54

55 end

56

57 -- Only Key Pressing events will go through

58 if (evt.class == ’key’ and evt.type == ’press’) then

59

Appendix B - Sample Application 101

60 if (evt.key == ’CURSOR_UP’ or evt.key == ’CURSOR_DOWN’

61 or evt.key == ’CURSOR_LEFT’ or evt.key == ’CURSOR_RIGHT’) then

62

63 -- If the arrows are pressed, move the cursor.

64 kb1.moveCursor(evt.key)

65

66 elseif (evt.key == ’ENTER’) then

67

68 -- Catch the pressed key

69 pressedKey = kb1.onPress();

70

71 -- If key was [sym], switch layouts

72 if (pressedKey == ’[sym]’) then

73 kb1.nextLayout(5,4)

74 end

75

76 if (pressedKey == ’[abc]’) then

77 kb1.nextLayout(5,5)

78 end

79

80 kb1.onRelease();

81

82 end

83

84 end

85

86 canvas:flush();

87

88 end

89 event.register(keyHandler)

	Master's Thesis
	Ficha Catalográfica
	Aprovação
	Abstract
	Resumo
	Acknowledgements
	Dedication
	Published Papers

	Table of Contents
	List of Figures
	List of Tables
	List of Codes
	Glossary
	1 Introduction
	1.1 Background
	1.2 Motivation and Objectives
	1.3 Chapter Organisation

	2 Theoretical Review
	2.1 Middleware
	2.2 Digital Television System
	2.3 Current Middleware Implementations
	2.3.1 DVB and MHP
	2.3.2 GEM
	2.3.3 ATSC and DASE
	2.3.4 ISDB-T and ARIB

	2.4 ISDB-Tb and the Ginga Middleware
	2.4.1 ISDB-Tb
	2.4.2 Ginga

	2.5 Interactivity
	2.5.1 Interactive Services

	2.6 MPEG-2 Transport Stream
	2.6.1 DSM-CC Protocol and Data Carousel
	2.6.2 Metadata Tables

	3 Programming Languages and Development Tools for Ginga
	3.1 Nested Context Model
	3.1.1 NCM Elements
	3.1.2 NCM Events

	3.2 Nested Context Language
	3.3 NCLua API
	3.4 Development Tools
	3.4.1 Composer
	3.4.2 Eclipse
	3.4.3 NCL Eclipse
	3.4.4 Lua Eclipse
	3.4.5 Ginga-NCL Virtual Set-top Box

	3.5 Related Projects
	3.5.1 LuaTV
	3.5.2 LuaComp
	3.5.3 MoonDo

	4 GUI Design Techniques and Guidelines
	4.1 Principles of UI Design
	4.1.1 Target Audience
	4.1.2 Constraints and Criteria

	4.2 Design Techniques and Guidelines
	4.2.1 The Golden Rules
	4.2.2 Grid-based design
	4.2.3 Gestalt Laws
	4.2.4 Colours and Transparency
	4.2.5 Viewing Patterns
	4.2.6 Safe Areas

	4.3 Layout Creation Guidelines
	4.3.1 Sketching the Concept
	4.3.2 Drawing the Interface
	4.3.3 Marking Coordinates and Dimensions
	4.3.4 Implementation

	5 NCLua Contributions
	5.1 Object-Oriented Programming in Lua
	5.2 NCLua Virtual Keyboard
	5.2.1 Conception
	5.2.2 Class Description

	6 Conclusions
	Bibliography
	A NCLua Virtual Keyboard
	B Sample Application

