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Long Live Nerv

Strike me... and I shall smight thee,
Hesitate... and I shall obliterate,
Differentiate...and I shall intergrate.
Always poised to undo the evil doing that has been done!

Since you have left me,
my heart has been SEGMENTATION FAULT.
Since you said goodbye,
all I can say is abort, cancel or retry.

Remember not to neglect the importance
of properly allocating ones sentiments,
for debugging is a pain.

–Nervinator.
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Resumo

Dentro do contexto de programação não linear, vários algoritmos resumem-se à aplicação do
método de Netwon aos sistemas constitúıdos pelas condições de primeira ordem de Lagrange.
Nesta classe de métodos é necessário calcular a matriz hessiana. Nosso foco é o cálculo exato,
dentro da precisão da máquina, de matrizes hessianas usando diferenciação automática. Para
esse fim, exploramos o cálculo da matriz hessiana sob dois pontos de vista. O primeiro é um
modelo de grafo que foca nas simetrias que ocorrem no processo do cálculo da hessiana. Este
ângulo propicia a intuição de como deve ser calculada a hessiana e leva ao desenvolvimento
de um novo método de modo reverso para o cálculo de matrizes hessianas denominado
edge pushing. O segundo ponto de vista é uma representação puramente algébrica que
reduz o cálculo da hessiana à avaliação de uma expressão. Esta expressão pode ser usada
para demonstrar algoritmos já existentes e projetar novos. Para ilustrar, deduzimos dois
novos algoritmos, edge pushing e um novo algoritmo de modo direto, e uma série de outros
métodos conhecidos [1], [20, p.157] e [9].

Apresentamos estudos teóricos e emṕıricos sobre o algoritmo edge pushing. Analisamos
sua complexidade temporal e de uso de memória. Implementamos o algoritmo como um
driver do pacote ADOL-C [19] e efetuamos testes computacionais, comparando sua per-
formance com à de dois outros drivers em dezesseis problemas da coleção CUTE [5]. Os
resultados indicam que o novo algoritmo é muito promissor.

Pequenas modificações em edge pushing produzem um novo algoritmo, edge pushing sp,
para o cálculo da esparsidade de matrizes hessianas, um passo necessário de uma classe de
métodos que calculam a matriz hessiana usando colorações de grafos, [14, 19, 30]. Estudos de
complexidade e testes numéricos são realizados comparando o novo método contra um outro
recentemente desenvolvido [30] e os testes favorecem o novo algoritmo edge pushing sp.

No caṕıtulo final, motivado pela disponibidade crescente de computadores com multi-
procesadores, investigamos o processamento em paralelo do cálculo de matrizes hessianas.
Examinamos o cálculo em paralelo de matrizes hessianas de funções parcialmente separáveis.
Apresentamos uma abordagem desenvolvida para o cômputo em paralelo que pode ser usad̃o
em conjunto com qualquer método de cálculo de hessiana e outra estratégia espećıfica para
métodos de modo reverso. Testes são executados em um computador com memória compar-
tilhada usando a interface de programação de aplicativo OpenMP.

Keywords: hessian matrix, automatic differentiation, sparse matrices, graph theory.
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Abstract

In the context of nonlinear programming, many algorithms boil down to the application of
Newton’s method to the system constituted by the first order Lagrangian conditions. The
calculation of Hessian matrices is necessary in this class of solvers. Our focus is on the exact
calculation, within machine precision, of Hessian matrices through automatic differentiation.
To this end, we detail the calculations of the Hessian matrix under two points of view. The
first is an intuitive graph model that focuses on what symmetries occur throughout the
Hessian calculation. This provides insight on how one should calculate the Hessian matrix,
and we use this enlightened perspective to deduce a new reverse Hessian algorithm called
edge pushing. The second viewpoint is a purely algebraic representation of the Hessian
calculation via a closed formula. This formula can be used to demonstrate existing algorithms
and design new ones. In order to illustrate, we deduce two new algorithms, edge pushing

and a new forward algorithm, and a series of other known Hessian methods [1], [20, p.157]
and [9].

We present theoretical and empirical studies of the edge pushing algorithm, establishing
memory and temporal bounds, and comparing the performance of its computer implemen-
tation against that of two algorithms available as drivers of the software ADOL-C [14, 19,
30] on sixteen functions from the CUTE collection [5]. Test results indicate that the new
algorithm is very promising.

As a by-product of the edge pushing algorithm, we obtain an efficient algorithm,
edge pushing sp, for automatically obtaining the sparsity pattern of Hessian matrices, a
necessary step in a class of methods used for computing Hessian matrices via graph coloring,
[14, 19, 30]. Complexity bounds are developed and numerical tests are carried out comparing
the new sparsity detection algorithm against a recently developed method [30] and the results
favor the new edge pushing sp algorithm.

In the final chapter, motivated by the increasing commercial availability of multiproces-
sors, we investigate the implementation of parallel versions of the edge pushing algorithm.
We address the concurrent calculation of Hessian matrices of partially separable functions.
This includes a general approach to be used in conjunction with any Hessian software, and
a strategy specific to reverse Hessian methods. Tests are carried out on a shared memory
computer using the OpenMP paradigm.

Keywords: hessian matrix, automatic differentiation, sparse matrices, graph theory.
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Chapter 1

Introdução

Ao examinar uma função na vizinhança de um ponto, podemos descartar várias carac-
teŕısticas complicadas da função e aproximá-la por funções mais simples. A mais conhecida
destas aproximações é a expansão de primeira ordem de Taylor. Seja f uma função real que
toma vetores do Rn como entrada e cujas derivadas de primeira ordem são cont́ınuas, ou
seja, f ∈ C(Rn,R). Denominamos gradiente o vetor coluna das derivadas de primeira ordem
de f(x),

∇f(x) =


∂f

∂x1

(x)

...
∂f

∂xn
(x)

 .

Usando o gradiente, podemos construir uma função afim que, em uma vizinhança próxima
de x ∈ Rn, serve como uma aproximação razoável da nossa função:

f(x+ ∆x) ≈ f(x) +∇f(x)T (∆x). (1.1)

Pode-se melhorar esta aproximação adicionando informação de segunda ordem: a matriz
hessiana.

f ′′(x) =


∂2f

∂x1∂x1

(x) . . .
∂2f

∂x1∂xn
(x)

...
...

∂2f

∂xn∂x1

(x) . . .
∂2f

∂xn∂xn
(x)

 .

É um fato bem conhecido que, se as derivadas de segunda-ordem f forem cont́ınuas, isto
é, f ∈ C2(Rn,R), então a sua matriz hessiana será simétrica. A aproximação de segunda
ordem é uma função quadrática:

f(x+ ∆x) ≈ f(x) +∇f(x)T (∆x) + (∆x)Tf ′′(x)(∆x). (1.2)

1



Para ilustrar, seja f(x, y) = cos(x) cos(y). Logo, a sua aproximação de segunda ordem nos
arredores da origem:

h(x, y) = f(0) +

((
x y

)
− 1 0

0 −1

)(
x
y

)
= 1− x2 − y2. (1.3)

A vantagem de se usar essa aproximação é que funções quadráticas são muito mais simples
de se entender. Repare que (2.3) possui um máximo local na origem, e, consequentemente,
a função f(x, y) também.

Tais aproximações (2.1) e (2.2) possuem várias aplicações. Por exemplo, a caracterização
de pontos de equiĺıbrio e análise de sensibilidade [6, 11, 25]. Outro contexto em que matrizes
hessianas são utilizadas é no método de Netwon para resolver sistemas Lagrangianas não
lineares. Um sistema não linear é um conjunto de equações não lineares

F1(x) = 0
F2(x) = 0

...
Fm(x) = 0,

(1.4)

onde Fi : Rn → R. Usando uma notação vetorial podemos escrever (2.4) como F (x) = 0,
onde F (x) = (F1(x), F2(x), . . . , Fm(x))T . Suponha que F ∈ C2(Rn,Rm). Se trocamos F
em (2.4) pela sua aproximação linear na vizinhaça de um ponto x0, obtemos

F (x0) + F ′(x0)(x− x0) = 0. (1.5)

Onde F ′ é uma matriz tal que a i-ésima linha é o gradiente transposto de Fi. Equação (2.5)
pode ser reescrita como

F ′(x0)x = F ′(x0)x0 − F (x0).

Suponha que F ′(x0) seja uma matriz não singular e seja x1 a solução do sistema linear acima.
Podemos repetir estes passos (aproximar e depois resolver o sistema linear) e assim construir
uma sequência (xi) tal que xi+1 é a solução de

F ′(xi)xi+1 = F ′(xi)xi − F (xi).

Se (xi) converge, então

‖F (xi)‖ = ‖F ′(xi)(xi+1 − xi)‖ ≤ ‖F ′(xi)‖ ‖(xi+1 − xi)‖ → 0,

portanto, (F (xi)) converge a zero e a sequência (xi) converge para a solução de (2.4). Este
método é conhecido como o método de Newton.

Dentro do contexto de otimização não linear, um ponto de solução deve satisfazer um
determinado sistema não linear. Um problema básico de otimização não linear é

2



min f(x)

sujeito a h(x) = 0,
(1.6)

onde f ∈ C2(Rn,R) e h ∈ C2(Rn,Rm). A condição de otimalidade de primeira ordem para
um determinado x é que exista λ ∈ Rm tal que

∇f(x)−
m∑
i=1

λi∇hi(x) = 0. (1.7)

Para resolver (2.7), o método de Netwon é comumente usado. Substituindo as funções
em (2.7) pelas suas aproximações lineares nos arredores do ponto (x0, λ0), obtemos

∇f(x0)−
m∑
i=1

λ0
i∇hi(x0) +

(
f ′′(x0)−

∑
i

λ0
ih
′′
i (x

0)

)
(x− x0)− h′(x0)(λ− λ0) = 0. (1.8)

Este sistema linear contêm duas matrizes hessianas – f ′′(x0) e h′′(x0). O método dos pontos
interiores, ub́ıquo em software de otimização não linear [10], usa variantes do método de
Newton. Enquanto os pacotes de otimização LOQO [28] exigem que o usuário forneça a
matriz hessiana, IPOPT [29] e KNITRO [7] são mais flex́ıveis, mas também utilizam de uma
forma ou outra informação da matriz hessiana. Portanto, a necessidade de se calcular a
matriz hessiana é impulsionada pela popularidade crescente dos métodos de otimização que
se aproveitam de informação de segunda ordem.

Nem sempre é necessário calcular as matrizes hessianas f ′′(x0) e h′′(x0) inteiras para
resolver o sistema (2.8). Dependendo da forma escolhida para resolver (2.8), possivelmente
apenas produtos hessiana-vetor são necessários, como no método do gradiente conjugado.
Torna-se necessária uma análise de caso a caso para decidir se vale a pena calcular a matriz
hessiana inteira ou apenas um conjunto de produtos hessiana-vetores. Em 1992, um método
reverso eficiente de differenciação automática (AD) foi desenvolvido para calcular produtos
hessiana-vetor [9]. Reverso, porque os cálculos são realizados na ordem inversa em relação à
avaliação da função subjacente. O software de otimização KNITRO [7] oferece a opção de
calcular somente produtos hessiana-vetor.

Existe uma extensão deste método hessiana-vetor reverso usado para calcular a matriz
hessiana inteira [20, p.155], porém, talvez o método mais comun encontrado na literatura,
que parece ter surgido no trabalho de Jackson e McCormick [23], seja o algoritimo hessiana
direto. A principal desvantagem deste algoritmo direto é a sua complexidade temporal que
é n2 vezes a do cálculo da função subjacente, onde n é a dimensão do domı́nio da função.

Uma abordagem verdadeiramente bem-sucedida, que calcula matrizes hessianas esparsas,
combina diferenciação automática de produtos hessian-vetor e coloração de grafos [14, 30].
De modo sucinto, estes métodos calculam uma versão comprimida da matriz hessiana usando
coloração de grafos e o algoritmo AD hessiana-vetor, e subsequentemente “descomprime”,
obtendo assim a matriz hessiana original.

3



Os cinco primeiros caṕıtulos desta dissertação foram condensados em artigo cient́ıfico,
cujo t́ıtulo é “A new framework for the computation of Hessians”. O mesmo foi submetido
e posteriormente aceito para publicação no Optimization Methods and Software.
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Chapter 2

Hessian Matrix: Why Calculate?

When examining a function in a neighborhood of a point, one can discard many complicated
aspects of the function and accurately approximate it with simpler functions. The best
known of these approximations is the first-order Taylor expansion. Let f be a real valued
function whose input is an n-dimensional vector, with first-order partial derivatives, thus
f ∈ C(Rn,R). The column vector of the first-order partial derivatives of f(x) is called the
gradient

∇f(x) =


∂f

∂x1

(x)

...
∂f

∂xn
(x)

 .

Using the gradient, one can obtain an affine function that serves as a reasonable approxima-
tion in a close neighborhood of the (fixed) point x ∈ Rn:

f(x+ ∆x) ≈ f(x) +∇f(x)T (∆x). (2.1)

One can improve this approximation by adding second-order information, the Hessian
matrix.

f ′′(x) =


∂2f

∂x1∂x1

(x) . . .
∂2f

∂x1∂xn
(x)

...
...

∂2f

∂xn∂x1

(x) . . .
∂2f

∂xn∂xn
(x)

 .

It is well known that if f possesses continuous second order partial derivatives, in other words
f ∈ C2(Rn,R), then its Hessian matrix is symmetric. The second-order approximation is a
quadratic function:

f(x+ ∆x) ≈ f(x) +∇f(x)T (∆x) + (∆x)Tf ′′(x)(∆x). (2.2)
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To illustrate, let f(x, y) = cos(x) cos(y) and its second order approximation around the
origin:

h(x, y) = f(0) +

((
x y

)
− 1 0

0 −1

)(
x
y

)
= 1− x2 − y2. (2.3)

The advantage of using such an approximation is that quadratic functions are far simpler
to understand. Note that it is immediate that (2.3) has a local maximum around the origin,
and thus so does the surface it approximates.

Such approximations (2.1) and (2.2) have many applications, a few examples are cha-
racterizing equilibrium points and sensitivity analysis [6, 11, 25]. Another context in which
Hessian matrices are used is Newton’s method for solving nonlinear Lagrangian systems. A
nonlinear system is a set of nonlinear equations

F1(x) = 0
F2(x) = 0

...
Fm(x) = 0,

(2.4)

where Fi : Rn → R. Using vectorial notation (2.4) becomes F (x) = 0, where F (x) =
(F1(x), F2(x), . . . , Fm(x))T . Suppose F ∈ C2(Rn,Rm). If we replace F in (2.4) with its
linear approximation in the vicinity of a point x0, then the system becomes

F (x0) + F ′(x0)(x− x0) = 0. (2.5)

Here F ′ is a matrix where the i-th row is the transposed gradient of Fi. Equation (2.5) may
be rewritten as

F ′(x0)x = F ′(x0)x0 − F (x0).

Suppose that F ′(x0) is an invertible matrix, and let x1 be the solution of the above linear
system. One can repeat these steps (approximate and solve a linear system) to build a
sequence (xi) such that each xi+1 is the solution of

F ′(xi)xi+1 = F ′(xi)xi − F (xi).

If (xi) converges then

‖F (xi)‖ = ‖F ′(xi)(xi+1 − xi)‖ ≤ ‖F ′(xi)‖ ‖(xi+1 − xi)‖ → 0,

thus (F (xi)) converges to zero and the sequence (xi) tends to a solution of (2.4). This method
is known as Newton’s method.

Within the context of nonlinear optimization, a solution point must satisfy a certain
nonlinear system. A basic nonlinear optimization problem is

min f(x)

subject to h(x) = 0,
(2.6)
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where f ∈ C2(Rn,R) and h ∈ C2(Rn,Rm). The first-order optimality conditions for x is
that there exist a λ ∈ Rm such that

∇f(x)−
m∑
i=1

λi∇hi(x) = 0. (2.7)

Newton’s method is commonly employed to solve (2.7). Replacing the functions in (2.7)
with their linear approximation around the point (x0, λ0), we obtain

∇f(x0)−
m∑
i=1

λ0
i∇hi(x0) +

(
f ′′(x0)−

∑
i

λ0
ih
′′
i (x

0)

)
(x− x0)− h′(x0)(λ− λ0) = 0. (2.8)

This linear system contains two Hessian matrices f ′′(x0) and h′′(x0). Interior-point meth-
ods, ubiquitous in nonlinear solvers [10], use variants of Newton’s method. While the nonlin-
ear optimization package LOQO [28] requires that the user supply the Hessian, IPOPT [29]
and KNITRO [7] are more flexible, but also use Hessian information of some kind or other.
Thus the need to efficiently calculate Hessian matrices is driven by the rising popularity of
optimization methods that take advantage of second-order information.

It is not always necessary to obtain Hessian matrices f ′′(x0) and h′′(x0) to solve sys-
tem (2.8). Depending on how one chooses to solve (2.8), one might only require Hessian-
vector products, as is the case with the conjugate gradient method. It becomes very much
a case-by-case analysis to decide whether it is worth calculating the entire Hessian matrix
as opposed to a set of Hessian-vector products. In 1992, a time efficient reverse Automatic
Differentiation (AD) method was developed for calculating Hessian-vector products [9]. Re-
verse, for the calculations are carried out in the reverse order in which would evaluate the
underlying function. The optimization solver KNITRO [7] offers the option of calculating
only Hessian-vector products.

There also exists an extension of this Hessian-vector method for the entire Hessian ma-
trix [20, p.155], though, perhaps the most common method found in the literature, apparently
appearing first in Jackson and McCormick’s work [23], is the Forward Hessian algorithm.
The major drawback of this forward algorithm is its heavy time penalty, presenting a com-
plexity of n2 times the function evaluation’s complexity, where n is the dimension of the
function’s domain.

A truly successful approach for calculating sparse Hessian matrices combines the auto-
matic differentiation of Hessian-vector products with graph coloring [14, 30]. Simply put,
these methods calculate a compressed version of the Hessian matrix using graph colouring
and the Hessian-vector AD procedure, to then subsequently “decompress” it and obtain the
original.
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Chapter 3

Introduction to Automatic
Differentiation

3.1 What is and is not Automatic Differentiation

There are three well-known methods in use for calculating derivatives: Finite Differences,
Symbolic Differentiation and Automatic Differentiation. We will start with what is not AD
(Automatic Differentiation). AD calculates derivatives within floating point precision, as
opposed to approximations. This is already different from Finite Differences where one would
use the limit definition to approximate partial derivatives, e.g, given a function f : Rn → R,
one can approximate the gradient of f at x0 ∈ Rn with n function evaluation such as:

∂f

∂xi
(x0) ≈ f(x0 + hei)− f(x0)

h
.

Symbolic differentiation is also exact, but there is a difference between the input and out-
put as compared to automatic differentiation. Symbolic differentiation’s input is a func-
tion f and its output is another function, the derivative f ′. In addition, this f ′ out-
put of symbolic differentiation has to be something the user can “touch” and manipu-
late and looks like the derivative we would see in a calculus course. Take the function
f(x1, x2, x3, x4) = x1 sin(x2)x3 cos(x4), for example. The first derivative in this case is the
gradient ∇f . The symbolic differentiation output would be something that resembles:

∇f(x) =


sin(x2)x3 cos(x4)

x1 cos(x2)x3 cos(x4)
x1 sin(x2) cos(x4)

−x1 sin(x2)x3 sin(x4)

 . (3.1)

Typically, in AD one does not strive for a palpable semblance of f ′ and is concerned solely
with fast evaluations of f ′ on a given point. Thus many AD routine’s input is a function f
and point x, and its output is f ′(x). Though there exists a form of AD called source code
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transformation which returns the source code of a subroutine that calculates f ′ on any given
point, but this code is unintelligible at a glance unlike the example above.

If all that one wants is to evaluate numerical values of ∇f , say in the context of an
optimization routine, using (3.1) can be very inefficient. Note how the partial derivatives
shares common subexpressions. For instance, x1 sin(x2) appears in two partial derivatives,
hence many calculations would be repeated using the above expression. In contrast to (3.1),
the Black-Box Gradient in Algorithm 3.1 does not repeat unnecessary calculations.

Algorithm 3.1: Black-Box Gradient ∇f(x)

Input: (x1, x2, x3, x4)
c = cos(x4)
s = sin(x2)
a = x3c
b = x1s
D3f = bc
D1f = as
a = x1a
b = x3b
D4f = −a sin(x4)
D2f = b cos(x2)

;

Output: D1f,D2f,D3f,D4, f

The Black-Box Algorithm is much like a AD routine, for its output is the gradient eval-
uated on a point, and gives you no representation of the function f ′ itself. To the user this
might indeed appear to be a bit of a black-box. The advantage is that while evaluating the
gradient using our previous symbolic formula we would calculate: ten products, four sin(x)
and four cos(x) evaluations, the Black-Box Gradient algorithm performs: eight products,
two sin(x) and two cos(x) evaluations.

In AD, great savings are made by not repeating common threads of calculation. So much
so, that it will be shown that evaluating the gradient has the same complexity as evaluating
the underlying function.

3.2 The Function and Notation

We will restrict ourselves to functions that can be expressed as a composition of a fixed set of
“known” functions. We refer to this set of known functions as the set of elemental functions,
for they are the basic building blocks of which our functions are composed. A large variety
of functions can be described as a composition of but a few elementary functions ,e.g.,

f(x1, x2, x3) = cos(x1)
3x2

x1

+ 3x2 exp(x3). (3.2)
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In this example f(x) is a composition of the functions cos(x), exp(x), division, multiplication
and summation. If we know the derivative of each elemental function, using the chain rule
we can derive by hand the functions under consideration. Automatic differentiation works
on this principle, hence AD packages are accompanied by a library of elemental functions
and their corresponding derivatives already coded.

To be able to talk about how to differentiate a function, we have to define precisely how
it will be represented, or, in other words, what is the input for an automatic differentiation
algorithm.

We define a function program as a procedure that a compiler knows how to evaluate. A
typical example in C++ or FORTRAN would look like Algorithm 3.2. calculations.

Algorithm 3.2: A Function Program

Input: (x1, x2, x3)

f(x1, x2, x3) = cos(x1) ∗
(

3x2

x1

)
+ 3 ∗ x2 ∗ exp(x3)

Output: f(x1, x2, x3)

Although Algorithm 3.2 is user friendly, the order in which the terms are evaluated is com-
piler dependent, in contrast to the list of statements detailed in the Alternative Evaluation
Procedure in Algorithm 3.3, where the order is fixed and the appearance is less appealing to
the user. Furthermore, if one were to differentiate (3.2), for each application of the chain-rule
there is one line and internal variable vi of Algorithm 3.3.

Algorithm 3.3: An Alternative Evaluation Procedure for (3.2)

Input: (x1, x2, x3)
v1 = cos(x1)
v2 = 3 ∗ x2

v3 = v2/x1

v4 = v2 ∗ v3

v5 = exp(x3)
v6 = v2 ∗ v5

v7 = v6 + v4

Output: v7

Such a list of internal variables as in Algorithm 3.3 is soon to become commonplace
in this dissertation. So that the numbering scheme of the variables reflect their order of
evaluation, and other reasons yet to be clarified, we found it convenient to apply, throughout
this dissertation, a shift of −n to the indices of all matrices and vectors. We already have
x ∈ Rn, which, according to this convention, has components x1−n, x2−n, . . . , x0. Similarly,
the rows/columns of the Hessian f ′′ are numbered 1−n through 0. Other vectors and matrices

10



will be gradually introduced, as the need arises for expressing and deducing mathematical
properties enjoyed by the data.

A graphic and more intuitive way of representing the list evaluation procedure in Algo-
rithm 3.3 is as a directed acyclic graph called the computational graph.

A graphG = (V,E) is comprised of a set V of nodes, or vertices, and a set of pares of nodes
E called edges or arcs. If an edge (i, j) is an ordered pair, then we say the edge is directed,
while unordered pairs {i, j} are referred to as undirected edges. The pictorial depiction of
a directed edge has an arrowhead, as in Figure 3.1, while undirected edges have not. Let
S(i) = {j | ∃(i, j) ∈ E} be the set of successors of node i and P (i) = {j | ∃(j, i) ∈ E} be
the set of its predecessors. An example of a directed graph is in Figure 3.1.

Formally, a computational graph is a pair CG = (G,ϕ) where G = (V ∪Z,E) is a directed
graph and ϕ = (φ1, . . . , φ`) a list of elemental functions. Z = {1 − n, . . . , 0} is the set of
nodes with indegree zero, and V = {1, . . . , `} is the set of intermediate nodes. The node
` ∈ V is called the dependent node, and is special in that it is the only node with outdegree
zero. Each node is associated to a function as follows: node i − n ∈ Z represents the ith
independent variable, so vi−n = xi−n, and to nodes i ∈ V we associate vi = φi

(
vP (i)

)
, a

elemental function of its predecessors. The nodes are numbered so that if j ∈ P (i) then
j < i. For each node i in V , there is a path from some node with indegree zero to node i.
CG can be seen as a device to orderly evaluate several composite functions, assigning values
to all intermediate nodes, given a set of values for the independent variables, in one forward
sweep of the graph, as follows:

vi−n = xi−n, for i = 1, . . . , n
vi = φi(vP (i)), for i = 1, . . . , |V |.

From this point of view, each node i ∈ V is ultimately associated to a function of the
independent variables, say vi = ui(x). As with many other formal definitions, it is common
to relax the formality when working with the defined objects. In this case, this means
identifying the computational graph with its “graph” part, failing to make explicit mention
of the functions. We will adhere to this lax use if no ambiguity derives therefrom. Figure 3.1
gives an example of such a graph.

−2 −1 0

1

2

3

4

5

6

7 v1 = cos(x−2)
v2 = 3 ∗ x−1

v3 = v2/x−2

v4 = v2 ∗ v3

v5 = exp(x0)
v6 = v2 ∗ v5

v7 = v6 + v4

Figure 3.1: A Computational Graph and an evaluation procedure of the function
f(x−2, x−1, x0) = cos(x−2) (3x−1/x−2) + 3x−1 exp(x0).
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A commonly used notation is the precedence symbol ≺, where j ≺ i denotes that vj is
part of the input of φi, thus j ≺ i ⇔ j ∈ P (i). Both forms of notation will be used, using
the predecessor P (i) and successor S(i) sets in graph contexts, but the two notations are
interchangeable.

Algorithm 3.4: An Evaluation Procedure of a Function f(x) = y.

Input: x ∈ Rn.
for i = 1− n, . . . , 0 do

vi = xi
end
for i = 1, . . . , ` do

vi = φi(vj)j≺i
end
Output: v`

Using the precedence notation ≺ the evaluation of a function is described as in Algo-
rithm 3.4. The first loop copies the current values of the independent variables x1−n, ..., x0

into the variables v1−n, ..., v0. The actual function evaluation takes place in the next loop
with ` elemental function evaluations φi, i = 1, . . . , `, which are stored in ` internal interme-
diate variables vi, i = 1 . . . `. The precedence notation hides the number of input variables,
in that φi(vj)j≺i denotes the evaluation of φi on all vj variables of which φi depends, e.g., if
φi is a binary function, and P (i) = {j, k}, then φi(vj)j≺i = φi(vj, vk). The last step copies
the intermediate variable v` into the output variable y.

Any function can be unrolled into a (potentially long) sequential evaluation of one el-
emental function and one floating point value per line as in Algorithm 3.4. This sort of
representation is called the factored form by Jackson and McCormick [23], and Wengert List
in [2] and [32]. We will refer to it as the list of intermediate functions. Note that, if the time
to carry-out a look-up and calculate an elemental function φi is bounded by a constant, then
the complexity of evaluating f with ` intermediate functions is bounded by a constant mul-
tiple of `. Of course the user is not required to supply the function in such a format. On the
contrary, there will be an interface that transforms the user supplied function program into
a list of intermediate variables. This automatic conversion can be carried out by operator
overloading. We will expand on how this is done in the Chapter 5.

3.3 Calculating The Gradient Using The Computational

Graph

With automatic differentiation one can obtain the gradient of a function at a small fixed
multiple of the cost of evaluating the underlying function, a complexity that does not depend
explicity on the dimension of the domain. Attempts at calculating the partial derivatives
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∂f/∂xi, for i = 1, . . . , n, as n separate functions gives the impression that the cost of cal-
culating ∇f(x) depends on n, when in fact the calculation of each ∂f/∂xi can share many
threads with the calculation of other partial derivatives. This is the key to realizing that
the cost of a gradient evaluation can be of the same order as that of a function evaluation,
although there may be overheads.

Here we present a known graph interpretation of an efficient gradient routine, followed
in the next two sections by an algebraic representation. This format of presentation, graph
then algebra, is repeated with the Hessian.

In Calculus textbooks the computation of partial derivatives via the chain rule is often
explained with the help of a diagram, see, for instance, [26, p. 940], where (intermediate)
variables are replicated as need, so that the diagram corresponding to the evaluation of the
function is a tree, see Figure 3.2. The leaves of the trees are associated with the independent
variables, possibly replicated, and the top node with the function.

r r rs s st t t

x y z

u

x = rset

y = rs2e−t

z = r2s sin t
u = x4y + y2z3

Figure 3.2: Tree diagram in example 5 of [26, p. 940].

Thus the partial derivative of the function with respect to one of the variables is obtained
by moving up the tree from each leaf that is a replica of this variable to the top, multiplying
the appropriate partial derivatives. For instance, there are three copies of t in Figure 3.2,
which provides three paths from a ‘t’ to the top and the partial derivative in t is:

∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
+
∂u

∂z

∂z

∂t
.

Notice that the partial derivative associated with an arc in the diagram depends only on
the arc’s end points, and we may think of it as a weight associated with the arc. Then each
path from a leaf to the top node also has a weight, which is the product of the weights of
the arcs in the path. The desired partial derivative is the sum of the weights of these paths,
one from each replica of the variable to the top node.

Now a computational graph may be seen as obtained from the tree diagram by merging
the nodes that were replicas of each other. Usually this means that the graph is no longer
a tree. Nevertheless, the same computations may be carried out, taking into account that
there may be several paths from a zero indegree node (the leaves of the tree diagram) to node
` (previously the top node). Therefore the first order partial derivative of f with respect to
one of the variables, say xi−n, will simply be the sum of the weights of all the paths from
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node i− n to node ` in G:

∂f

∂xi−n
=

∑
p|path from i− n to `

 ∏
(i,j)∈p

∂φj
∂vi

 =
∑

p|path from i− n to `

 ∏
(i,j)∈p

cij

 , (3.3)

where cij is the weight associated with arc (i, j) ∈ E.
Different algorithms for calculating the gradient can be perceived as different ways of

accumulating these edge weights. As an example, let G = (V ∪ Z,E) be a computational
graph of a function f : Rn → R. Let |V | = `. Assume that the functions φi ∈ C2, for
i = 1, . . . , `. Then the first order partial derivatives of f may be computed by a backward
sweep of the computational graph, as prescribed in Algorithm 3.5, [20]. If the only concern
(or possibility) is the numerical evaluation of functions, then the backward sweep must
be preceded by a forward sweep, where the values associated with the intermediate nodes,
corresponding to a given set of values for the independent values, are computed. Thus, in the
backward sweep, the partial derivatives ∂φj/∂vi will be evaluated at the points computed in
the forward sweep. But the algorithm is self-sufficient if one is doing symbolic computations.

Algorithm 3.5: Reverse Gradient Calculation

Input: G = (V ∪ Z,E), |V | = `, {φi | i = 1, . . . , `}
Initialization v̄` = 1, v̄i = 0, for i = 1− n, . . . , `− 1
for i = `, . . . , 1 do

v̄j =
∑
j∈P (i)

v̄i
∂φi
∂vj

(vP (i))

end
Output: {v̄i−n | 1 ≤ i ≤ n}

Algorithm 3.5 is referred to as reverse accumulation and as the Non-incremental Adjoint
Recursion by Griewank and Walther [20, p. 41]. From the description of the computation
using tree diagrams and chain rule, it is straightforward to conclude that the algorithm is
the implementation of the tree diagram method adapted to the computational graph. In
particular, notice that, after node i is swept, the variable v̄i contains the sum of the weights
of the paths from i to `. Therefore, at the end of the algorithm v̄i−n = ∂f/∂xi−n, for
i = 1, . . . , n. The graph interpretation gives us an intuitive view of the chain rule, but
we leave the more formal correctness proof for the next section, where we use an algebraic
representation.

3.4 The Function as State Transformations

Writing the function as a loop is very convenient computer-wise, but quite awkward for
demonstration purposes. In order to derive a one line representation for a function let

vi := (v1−n, . . . , vi, 0, . . . , 0) ∈ Rn+`, for i = 0, . . . , `. (3.4)
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To each elemental function φi a state transformation

Φi : R`+n → R`+n
(y1−n, . . . , yi, . . . , y`) 7→ (y1−n, . . . , φi(yj)j≺i, . . . , y`)

is associated. In other words, Φi mimics the identity function in all coordinates except the ith
coordinate, where it sets yi to φi(yj)j≺i. By sequentially applying the state transformations
we can build the vectors defined in (3.4) as such:

v1 = Φ1(v0),
vi = Φi(vi−1), i = 1 . . . , `.

With these definitions we can write f(x) in a single equation:

f(x) = eT` (Φ` ◦ Φ`−1 ◦ · · · ◦ Φ1) (P Tx), (3.5)

where e` is the (` + n)th canonical vector and P = [In×n, 0, . . . , 0]. This representation of
f(x) as a series of state transforms was introduced by Griewank and Walther [20].

3.5 Calculating the Gradient Using State Transforma-

tions

Differentiating and recursively using the chain rule on (3.5) we arrive at:

∇fT = eT` Φ′`Φ
′
`−1 · · ·Φ′1P T . (3.6)

For simplicity’s sake, the argument of each function is omitted in (3.6), but it should be
noted that Φ′k is evaluated at (Φk−1 ◦ Φk−2 ◦ · · · ◦ Φ1)(P Tx), for k = 1, . . . , `.

Each intermediate variable may also be written as a composition of state transformations
and seen as a function of the independent variables:

vj(x) = eTj (Φj ◦ Φj−1 ◦ · · · ◦ Φ1) (P Tx), (3.7)

thus the gradient of each intermediate variable may also be written as:

∇vTi = eTi Φ′iΦ
′
i−1 · · ·Φ′1P T . (3.8)

Although one can present each gradient differentiation algorithm in this chapter and prove
correctness without the aid of (3.6), it provides a broader perspective, in the sense that it
may be used to design and demonstrate several algorithms. With this in mind, multiplying
the Jacobians Φ′i in a left-to-right fashion yields the Block Reverse Gradient Algorithm 3.6,
while multiplying from the right-to-left yields the Block Forward Gradient Algorithm 3.7. A
previous forward sweep is carried out in each algorithm to calculate each Φi and store the
resulting intermediate variables, so in turn we can evaluate Φ′i.
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Algorithm 3.6: Block Reverse Gradient Algorithm

Input: x ∈ Rn
Initialization: v̄ ← e`+n
(forward sweep to calculate each Φi)
for i = `, . . . , 1 do

v̄T ← v̄TΦ′i
end
Output: ∇f(x)T = v̄TP T

Algorithm 3.7: Block Forward Gradient Algorithm

Input: x ∈ Rn
Initialization: V̇ ← P T ∈ R(n+`)×n

(forward sweep to calculate each Φi)
for i = 1, . . . , ` do

V̇ ← Φ′iV̇
end

Output: ∇f(x)T = eT`+nV̇

We will refer to algorithms that perform a sequential reverse sweep of the intermediate
variables from v` to v1 as reverse mode algorithms, and algorithms that perform forward
sweeps as forward mode algorithms. To perform the calculations in the Block Reverse
Gradient Algorithm, an auxiliary vector v̄ ∈ R`+n is used, called the adjoint vector. We
shall refer to v̄i as the i-th adjoint value.

The translation to a componentwise computation of the vector-matrix products of Al-
gorithm 3.6 is very much simplified by the special structure of the Jacobian of the state
transformation Φi. This follows from the fact that the function in component j of Φi is given
by

[Φi]j(y) =

{
yj, if j 6= i,
φi(yj)j≺i, if j = i.

(3.9)

Since row j of the Jacobian Φ′i is the transposed gradient of [Φi]j, we arrive at the following
block structure for Φ′i:

Φ′i =


I 0 0

1− n...
i− 1

(ci)T 0 0 row i,

0 0 I
i+ 1...
`

 (3.10)

where

cij =
∂φi
∂vj

, for j = 1− n, . . . , i− 1. (3.11)
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Thus (ci)T is basically the transposed gradient of φi padded with the convenient number
of zeros at the appropriate places. In particular, it has at most as many nonzeros as the
number of predecessors of node i, and the post-multiplication vTΦ′i affects the components
of v associated with the predecessors of node i and zeroes component i. In other words,
denoting component i of v by v̄i, the block assignment in Algorithm 3.6 is equivalent to

v̄j ←


v̄j + v̄i

∂φi
∂vj

, if j ≺ i,

0, if j = i,

v̄j, otherwise.

Now this assignment is done as the node i is swept, and, therefore, in subsequent itera-
tions component i of v will not be accessed, since the loop visits nodes in decreasing index
order. Hence setting component i to zero has no effect on the following iterations. Elimi-
nating this superfluous reduction, we arrive at Griewank and Walther’s Incremental Adjoint
Recursion [20, p. 41] in Algorithm 3.8. If one does not zero the ith adjoint after node i is
swept, then after visiting all of node i’s successors, v̄i will have accumulated all necessary
contributions and

v̄i = e`Φ
′
` · · ·Φ′i+1ei. (3.12)

In conclusion, we have deduced the same reverse gradient algorithm, once in a graph setting
(Algorithm 3.5) and now in an algebraic setting.

Algorithm 3.8: Reverse Gradient Algorithm

Input: x ∈ Rn
Initialization: v̄`+n = 1
for i = 1, . . . , ` do

vi = φi(vj)j≺i
end
for i = `, . . . , 1 do

foreach j ≺ i do

v̄j+ = v̄i
∂φi
∂vj

end

end
Output: ∇f(x)T = v̄TP T

For the Block Forward Gradient Algorithm 3.7, we need an auxiliary matrix V̇ ∈ R(n+`)×n

to accumulate the product sequence of Jacobian matrices. At the end of the ith iteration of
Algorithm 3.7,

V̇ = Φ′iΦ
′
i−1 · · ·Φ′1P T . (3.13)

Comparing (3.13) and (3.8), we see that the (i+ n)−th row of V̇ is the gradient ∇vTi , thus
at the end of ith iteration V̇ is given by (3.14).
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V̇ =



0 · · · 0 · · · 0
...

0 · · · 0 · · · 0
∇vTi

...
∇vT1−n


. (3.14)

Using once again Φ′i’s special structure we see that V̇ ← Φ′iV̇ only alters the (i+ n)-th row
of the matrix V̇ :

V̇i. ← (ci1−n, . . . , c
i
i−1, 0, . . . , 0) · V̇ . (3.15)

Thus the update in (3.15) is equivalent to:

∇vi ←
∑
j

cij∇vj. (3.16)

With (3.16), Algorithm 3.7 can be translated to Algorithm 3.9 which is the well-known
Forward Gradient Algorithm [32] .

Algorithm 3.9: Forward Gradient Algorithm

Input: x ∈ Rn
Initialization:
∇vi = ei, i = 1− n, . . . , 0
∇vi = 0, i = 1, . . . , `
for i = 1, . . . , ` do

vi = φi(vj)j≺i
foreach j ≺ i do

∇vi+ =
∂φi
∂vj
∇vj

end

end
Output: ∇f(x) = ∇v`

The correctness of the forward and reverse gradient algorithms has been established given
that they correctly calculate (3.6). The next natural concern is complexity. It is obvious
that the complexity depends on the number of predecessors each φi is allowed to have.
Therefore, to bound the complexity, we will adopt the usual assumption: The elemental
functions have at most two arguments. Turning to Algorithm 3.8, the first forward loop
has the same complexity as a function evaluation. In each iteration of the reverse sweep, a
sum, a multiplication and elemental function evaluation are performed for each predecessor.
Since there are at most two predecessors, each iteration of the revere sweep is bounded by
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a constant. Hence the reverse sweep has a complexity of O(`) which is a fundamental result
in automatic differentiation:

TIME(eval(∇f(x))) = TIME(eval(f(x))).

This result is referred to as the “Cheap Gradient Principle” [20]. The remaining (and equally
important) aspect regarding complexity is memory usage. For all reverse mode algorithms
have to store information in the prior forward sweep to be able to carry out the reverse
sweep. In some cases all the floating point values vi, for i = 1, . . . , `, have to be recorded,
and the list of intermediate variables is potentially very long. We will address these issues
in Chapter 5 .

The Forward Gradient Algorithm 3.9 is not so cheap, for it operates on vectors of n-
dimensions. In each iteration, a vector sum, a scalar-vector multiplication and n elemental
function evaluations are performed. This yields a complexity of nTIME(eval(f(x))). The
advantage is that there is no issue with memory usage.

Algorithm 3.10: Block Mixed Mode Gradient Algorithm

Input: x ∈ Rn
Initialization: V̇ ← P T ∈ R(n+`)×n, v̄ ← e`+n
(forward sweep to calculate each Φi)
for i = 1, . . . , p do

V̇ ← Φ′iV̇
end
for i = `, . . . , p+ 1 do

v̄T ← v̄TΦ′i
end

Output: ∇f(x)T = v̄T V̇

Though both the Forward and Reverse Gradient Algorithms can be easily demonstrated
using induction instead of the state transformation perspective (3.6), this formula allows us
to investigate other possibilities. For instance, are these the only two plausible algorithms
for calculating the gradient? Restricting our attention to algorithms that perform at most,
a forward sweep followed by a reverse sweep, what are the possibilities? Accumulating from
right to left up to the p-th Jacobian matrix, and from left to right up to (p+ 1)-th Jacobian
matrix, gives us a Block Mixed Mode Gradient Algorithm 3.10. An immediate advantage of
this mixed mode algorithm is that it involves two disjoint set of operations. Hence the work
load can be separated over two processors.

If the gradient can be evaluated at a cost proportional to the function evaluation, how
cheaply can the Hessian matrix be evaluated? This is the subject of the next chapter, and
basically the entire dissertation.
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Chapter 4

Calculating the Hessian Matrix

4.1 Calculating The Hessian Using The Computational

Graph

4.1.1 Computational Graph of the Gradient

Creating a graph model for the Hessian is also very useful, as it provides insight and intu-
ition regarding the workings of Hessian algorithms. Not only can the graph model suggest
algorithms, it can also be very enlightening to interpret the operations performed by an
algorithm as operations on variables associated with the nodes and arcs of a computational
graph.

Since second order derivatives are simply first order derivatives of the gradient, a natural
approach to its calculation would be to build a computational graph Gg = (V g, Eg) for
the gradient evaluation in Algorithm 3.5, then use the formula (3.3) for partial derivatives
expressed in a graph setting on Gg to obtain the second order partial derivatives. Later on
we shall be able to make do without the enlarged graph, but it helps in formulating the
problem.

Let CG = (G,ϕ) be the computational graph of the function f(x) where G = (V ∪Z,E).
Of course the gradient may be represented by distinct computational graphs, or equivalently,
sequential lists of functions, but the natural one to consider is the one associated with the
computation performed by the Reverse Gradient Algorithm 3.5. Assuming this choice, the
gradient∇f = (v̄1−n, . . . , v̄0)T is a composite function of (v̄1, . . . , v̄`), as well as (v1−n, . . . , v`),
which implies that the gradient (computational) graph Gg = (V g, Eg) must contain G. The
graph Gg is basically built upon G by adding nodes associated with v̄i, for i = 1− n, . . . , `,
and edges representing the functional dependencies amongst these nodes.

Thus the node set V g contains 2(n + `) nodes {1 − n, . . . , `, 1− n, . . . , `}, the first half
associated with the original variables and the second half with the adjoint variables. The arc
set is Eg = E1∪E2∪N , where E1 contains arcs with both endpoints in “original” nodes, E2

arcs with both endpoints in “adjoint” nodes and N , arcs with endpoints of mixed nature.
Since running Algorithm 3.5 does not introduce new dependencies amongst the original v’s,
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we have that E1 = E.

The new dependent variables created by running Algorithm 3.5 satisfy

v̄i =
∑
k|i≺k

v̄k
∂φk
∂vi

(vP (k)) (4.1)

at the end of the algorithm.

Expression (4.1) indicates that v̄i depends on v̄k for every k that is a successor of i. Thus
every arc (i, k) ∈ E1 gives rise to arc (k̄, ı) ∈ E2. Therefore, arcs in E2 are copies of the arcs
in E with the orientation reversed. The graph Gg thus contains G and a kind of a mirror copy
of G. Furthermore, j ≺ ı only if vj is an input variable of the function ∂φk/∂vi. Notice that
this may only happen if j and i share a common successor k. This implies, in particular, that
there are no edges incident to `. Figure 4.1 shows the computational graph of the gradient
of the function f(x) = (x−1x0)(x−1 + x0). On the left we have the computational graph of
f and, on the right, a mirror copy thereof. Arcs in N are the ones drawn dashed in the
picture. Such a gradient computational graph has already been obtained in [20, p. 237].

−1 0

1 2

3 −1 0

1 2

3

v−1 = x−1 v̄3 = φ3 = 1
v0 = x0 v̄2 = φ2 = v̄3v1

v1 = φ1 = v−1v0 v̄1 = φ1 = v̄3v2

v2 = φ2 = v−1 + v0 v̄0 = φ0 = v̄2 + v̄1v−1

v3 = φ3 = v1v2 v̄−1 = φ−1 = v̄2 + v̄1v0

Figure 4.1: Gradient computational graph Gg of the function f(x) =
(x−1x0)(x−1 + x0).

Analogously to (3.3), we conclude that

∂2f

∂xi∂xj
=

∑
p|path from i to 

weight of path p, (4.2)

where again the weight of path p is simply the product of the weights of the arcs in p.

The weights of arcs (i, k) ∈ E1 are already know. Equation (4.1) implies that the weight
of arc (k̄, ı) ∈ E2 is

ck̄
ı =

∂v̄i
∂v̄k

=
∂φi
∂vk

= cik, (4.3)

that is, arc (i, k) has the same weight as its mirror image.
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The weight of arc (j, ı) is also obtained from (4.1)

cı
j =

∑
k|i≺k

v̄k
∂2φk
∂vj∂vi

=
∑

k|i≺k and j≺k

v̄k
∂2φk
∂vj∂vi

, (4.4)

since the partial derivative ∂2φk/∂vj∂vi is identically zero if k is not a successor of j. In
particular, (4.4) and the fact that f is twice continuously differentiable implies that

cı
j = c

i, for j 6= i. (4.5)

Notice that arcs in N are the only ones with second-order derivatives as weights. In a
sense, they carry the nonlinearity of f , which suggests the denomination nonlinear arcs.

4.1.2 Computation of the Hessian

The computation of a second order partial derivative could be accomplished by applying
existing Jacobian methods to the gradient graph Gg, which has been done in [3]. Instead, we
wish to somehow include in G the pertinent information from Gg and develop rules to deal
with the new information that make it possible to evaluate all entries of the Hessian in one
backward sweep of the graph.

The basic idea is to identify paths in Gg using the unique nonlinear arc in the path.
Unique, for none of the original nodes is a successor of an adjoint node. Therefore, the
summation in (4.2) may be partitioned as follows:

∂2f

∂xi∂xj
=
∑

(r,s)∈N

 ∑
p|path from i to r

weight of path p

 csr

 ∑
q|path from s to 

weight of path q

 .
(4.6)

On close examination, there is a lot of redundant information in Gg. One really doesn’t
need the mirror copy of G, since the information attached to the adjoint nodes can be
recorded associated to the original nodes. Now if we fold back the mirror copy over the
original, identifying nodes k and k, we obtain a graph with same node set as G but with
an enlarged set of arcs. Arcs in E1 will be replaced by pairs of arcs in opposite directions
and nonlinear arcs will become either loops (in case one had an arc (i, ı) in N) or pairs of
arcs with opposite orientations between the same pair of nodes, see Figure 4.2. Due to the
symmetry in (4.3), the arc weights of the mirror arcs are the same, therefore we will try to
make do without these mirror copies. Thus we arrive at a simplified graph which is in fact
the original function graph G = (V ∪Z,E) with added nonlinear edges N , see the rightmost
graph in Figure 4.2. We will denote this enlarged graph with additional nonlinear edges by
GN = (V ∪ Z,E ∪N).
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The paths needed for the computation of the Hessian, in GN , are divided into three parts.
In the first part we have a directed path from some zero in-degree node, say i, to some other
node, say r. Next comes a nonlinear arc (r, s). The last part is a path from s to another
zero in-degree node, say j, in which all arcs are traveled in the wrong direction. Of course,
both the first and third parts of the path may be empty, only the middle part (the nonlinear
arc) is mandatory. Thus we have:

∂2f

∂xi∂xj
=
∑

(r,s)∈N

 ∑
p|path from i to r

weight of path p

 csr

 ∑
q|path from j to s

weight of path q

 ,
(4.7)

−1 0

1 2

3 −1 0

1 2

3

folding simplifying

−1 0

1 2

3

−1 0

1 2

3

Figure 4.2: Folding of the gradient computational graph of Figure 4.1 and
further elimination of redundancies leaves us with the graph GN .

We have now expressed an arbitrary second order partial derivative in terms of a sum of
the weights of certain paths in GN . To devise an efficient way to accumulate the contribution
of all these paths, we grow these paths from the nonlinear edges. This is more efficient, as
opposed to growing from the independent nodes, for the paths that contain a nonlinear edge
(r, s) may start at distinct endpoints, but all funnel in as they approach the nonlinear edge.
The key idea is the creation of shortcuts, as exemplified in Figure 4.3. All paths that contain
the edge (r, s) ∈ N must pass through a predecessor of r. To illustrate, let P (r) = {i, j}. All
paths containing (r, s) must contain the sub-path (i, r, s) or (j, r, s). Therefore, (r, s) may be
eliminated and replaced by two new artificial shortcuts (i, s) and (j, s) with weights cri c

s
r and

crjc
s
r respectively. What if GN already contained one of these new nonlinear edges? In this

case, we do a parallel reduction, that is, replace the parallel edges (original plus shortcut)
with one edge whose weight is the sum of the weights of the parallel edges. This process
is repeated until the resulting shortcut edges connect zero in-degree nodes, such that the
weight of arc (i− n, j − n) is the sum of the weights of all permissible paths between these
nodes. We call this process Pushing, for the contribution of nonlinear edges are pushed
down to predecessors.

A simple algorithm for calculating (4.7), is to store the sum of the weights of all per-
missible paths between nodes j and k in an edge denoted by wjk. One would first add the
shortest permissible paths to G = (V ∪ Z,E), thoughs consisting of a single nonlinear arc,
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i j

r s
csr

i j

r s

crjc
s
r

cri c
s
r

Figure 4.3: Pushing the edge (r, s)

thus producing GN = (V ∪ Z,E ∪N). Then recursively create shortcuts using the Pushing

routine, until the only shortcut edges left connect independent nodes, see Algorithm 4.1. We
have named this algorithm edge pushing after the pushing subprocedure.

Our objective here has been to develop intuition on how one should accumulate the second
order partial derivatives. There is still more symmetry to explore, for instance, equation (4.5)
implies that nonlinear arcs in parallel have the same weight. Thus we could replace the pairs
of directed nonlinear arcs in opposite directions with a single undirected arc and directed
loops by undirected ones, and see what this implies for the calculation of (4.7). Alas this
has some awkward consequences that would only hinder our intuition, though further on, we
present and deduce a more complete and implemented version of edge pushing that takes
full advantage of all these symmetries and of sparsity.

4.2 Calculating the Hessian Using State Transforma-

tions

In a fashion similar to the gradient formula (3.6), we develop a Hessian formula that we will
use to demonstrate several algorithms encountered in the literature. We also use this formula
to design a new forward Hessian algorithm and a new reverse Hessian algorithm called
edge pushing. Our approach will be analogous to that used to deduce gradient methods
using state transformations: first we describe a Hessian Algorithm in a Block format and
then translate this algorithm to a componentwise format. More attention will be given to
the edge pushing algorithm, for it is our chosen method to implement and test.

The closed formula to be developed concerns the Hessian of a function g that is defined
as a linear combination of the functions Ψ1, . . . , Ψp, or, in matrix form,

g(x) = yTΨ(x), (4.8)

where y ∈ Rp and Ψ ∈ C2(Rn,Rp). The linearity of the differential operator implies that the
Hessian of g is simply the linear combination of the Hessians of Ψ1, . . . , Ψp:

g′′(x) =

p∑
i=1

yiΨ
′′
i (x). (4.9)

24



Algorithm 4.1: Simple edge pushing

Input: G = (V ∪ Z,E), |V | = `, {φi | i = 1, . . . , `}, {v̄i | i = 1 . . . `}
Initialization W = {∅}
Creating Paths with one edge:
for i = 1, . . . , ` do

foreach nonlinear φi and r, s ∈ P (i) do

wrs += v̄i
∂2φi
∂vr∂vs

end

end
Pushing:
foreach (r, s) ∈ W do

if r /∈ Z then
foreach j ∈ P (r) do

wjs +=
∂φr
∂vj

wrs

end

else if k /∈ Z then
foreach j ∈ P (s) do

wrj +=
∂φs
∂vj

wrs

end

Delete (r, s)

end
Output: Edge set W
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This motivates the introduction of the following definition of the vector-tensor product
yTΨ′′(x), in order to establish an analogy between the linear combinations in (4.8) and (4.9):

g′′(x) = (yTΨ(x))′′ = yTΨ′′ =

p∑
i=1

yiΨ
′′
i (x). (4.10)

Next we need to establish how to express g′′ when Ψ is a composition of vector functions
of several variables, the subject of the next Proposition.

Proposition 4.1 Let y ∈ Rp, Ω ∈ C2(Rn,Rm), Θ ∈ C2(Rm,Rp) and Ψ(x) = Θ ◦ Ω(x).
Then

yTΨ′′ = (Ω′)T (yTΘ′′)Ω′ + (yTΘ′)Ω′′. (4.11)

Demonstration: By definition, applying differentiation rules, and using the symmetry of
the Hessian, we may calculate entry (j, k) of the Hessian as follows:

(yTΨ′′(x))jk =
∑
i

yi
∂2Ψi(x)

∂xj∂xk

=
∑
i

yi
∂

∂xj

(
∂Θi(Ω(x))

∂xk

)

=
∑
i

yi
∂

∂xj

(
m∑
r=1

∂Θi(Ω(x))

∂Ωr

∂Ωr(x)

∂xk

)

=
∑
i

∑
r

yi

[
∂

∂xj

(
∂Θi(Ω(x))

∂Ωr

)]
∂Ωr(x)

∂xk
+
∑
i

∑
r

yi
∂Θi(Ω(x))

∂Ωr

∂2Ωr(x)

∂xj∂xk

=
∑
r

∑
s

∑
i

yi
∂2Θi(Ω(x))

∂Ωs∂Ωr

∂Ωs(x)

∂xj

∂Ωr(x)

∂xk
+
∑
r

(yTΘ′(Ω(x))r(Ω
′′
r(x))jk

=
∑
s

∑
r

(yTΘ′′(Ω(x)))rs (Ω′(x))sj (Ω′(x))rk +
∑
r

(yTΘ′(Ω(x))r(Ω
′′
r(x))jk

=
∑
s

(Ω′(x))sj
∑
r

(yTΘ′′(Ω(x)))sr (Ω′(x))rk +
∑
r

(yTΘ′(Ω(x))r(Ω
′′
r(x))jk,

=
(
(Ω(x))T (yTΘ′′(Ω(x)))Ω′(x)

)
jk

+
(
(yTΘ′(Ω(x)))Ω′′(x)

)
jk
,

which is the entry (j, k) of the right-hand-side of (4.11).
Although we want to express the Hessian of a composition of state transformations, it is

actually easier to obtain the closed form for the composition of generic vector multivariable
functions, our next result.

Proposition 4.2 Let Ψi(x) ∈ C2(Rmi−1 ,Rm), for i = 1, . . . , k, y ∈ Rmk and

g(x) = yTΨk ◦ · · · ◦Ψ1(x).
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Then

g′′ =
k∑
i=1

(
i−1∏
j=1

(Ψ′j)
T

)
((wi)TΨ′′i )

(
i−1∏
j=1

Ψ′i−j

)
, (4.12)

where

(wi)T = yT
k−i∏
j=1

Ψ′k−j+1, for i = 1, . . . , k. (4.13)

Demonstration: The proof is by induction on k. When k = 1, the result is trivially true,
since in this case (4.12)–(4.13) reduce to (w1)TΨ′′1 = yTΨ′′1, which denotes, according to (4.9),
the Hessian of g.

Assume the proposition is true when g is the composition of k−1 functions. Now simply
rewrite the composition of k functions as follows

g = yTΨk ◦ · · · ◦Ψ3 ◦Ψ, (4.14)

where Ψ = Ψ2 ◦Ψ1. Then, applying the induction hypothesis to (4.14), we obtain

g′′ = (Ψ′)T

[
k∑
i=3

(
i−1∏
j=3

(Ψ′j)
T

)
((wi)TΨ′′i )

(
i−1∏
j=3

Ψ′i−j

)]
Ψ′ + (w2)TΨ′′. (4.15)

The last term in (4.15) is calculated separetely, using the induction hypothesis, (4.11) and
(4.13):

(w2)TΨ′′ = (Ψ′1)T ((w2)TΨ′′2)Ψ′1 + ((w2)TΨ′2)Ψ′′1
= (Ψ′1)T ((w2)TΨ′′2)Ψ′1 + (w1)TΨ′′1. (4.16)

Using the fact that Ψ′ = Ψ′2Ψ′1, and expression (4.16) obtained for the last term, (4.15)
becomes

g′′ = (Ψ′1)T (Ψ′2)T

[
k∑
i=3

(
i−1∏
j=3

(Ψ′j)
T

)
((wi)TΨ′′i )

(
i−1∏
j=3

Ψ′i−j

)]
Ψ′2Ψ′1

+(Ψ′1)T ((w2)TΨ′′2)Ψ′1 + (w1)TΨ′′1

=
k∑
i=1

(
i−1∏
j=1

(Ψ′j)
T

)
((wi)TΨ′′i )

(
i−1∏
j=1

Ψ′i−j

)
,

which completes the proof.
The Hessian of the composition of state transformations follows easily from Proposi-

tion 4.2.
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Corollary 4.1 Let f be the composition of state transformations given in (3.5). Then its
Hessian is

f ′′ = P
∑̀
i=1

(
i−1∏
j=1

(Φ′j)
T

)
((vi)TΦ′′i )

(
i−1∏
j=1

Φ′i−j

)
P T , (4.17)

where

(vi)T = eT`

`−i∏
j=1

Φ′`−j+1, for i = 1, . . . , `. (4.18)

Demonstration: Simply apply (4.12) to the composition of `+1 functions, where Ψi = Φi,
for i = 1, . . . , `, Ψ0(x) = P Tx, and use the facts that Ψ′0 = P T and Ψ′′0 = 0.

The expression for the Hessian of f can be further simplified by noting that the tensor
Φ′′i is null except for the Hessian of its component i, [Φi]i, since the other components are
just projections onto a single variable, see (3.9). Thus the vector-tensor product in (4.17)
reduces to

(vi)TΦ′′i = vii[Φi]
′′
i , (4.19)

where vi = (vi1−n, . . . , v
i
`). Additionally, each vector vi defined in (4.18) is equivalent to the

vector v in Algorithm 3.6 immediately after iteration i. Turning now to Algorithm 3.8, we
see that vii is simply the ith adjoint v̄i. Furthermore, notice that [Φi]

′′
i is just the Hessian of

φi padded with the appropriate number of zeros at the right places:

[Φi]
′′
i =

(
∂2φi
∂vj∂vk

)k=1−n...`

j=1−n...`
.

Letting

V̇ i =

(
i−1∏
j=1

Φ′i−j

)
P T , for i = 1, . . . , `, (4.20)

and using (4.19), (4.17) reduces to

f ′′ =
∑̀
i=1

(V̇ i)T v̄i[Φi]
′′
i V̇

i

=
∑̀
i=1

v̄i(V̇
i)T [Φi]

′′
i V̇

i. (4.21)

4.2.1 A New Forward Hessian Algorithm

If one first calculates and stores the adjoint values v̄i, i = 1, . . . , `, then the formula (4.21) can
be naturally calculated in a forward sweep, see Algorithm 4.2. In each iteration, a summand
of (4.21) is calculated and added to the matrix W . Note that at the end of iteration i+ 1 of
the forward sweep

V̇ = Φ′i · · ·Φ′1P T ,
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therefore V̇ = V̇ i+1. At the end of the `-th iteration of the forward sweep, all ` summands
of (4.21) will have been added to the matrix W , hence W = f ′′.

Algorithm 4.2: Block Forward Hessian Algorithm

Input: x ∈ Rn
Initialization: v = e`, W = 0 ∈ Rn×n, V̇ = P T

for i = `, . . . , 1 do

v̄i =
∑

i≺j v̄j
∂φj

∂vi

end
for i = 1, . . . , ` do

W = W + v̄i(V̇ )T [Φi]
′′
i V̇

V̇ = Φ′iV̇

end
Output: f ′′(x) = W

Using (3.14), at the end of the ith iteration of the forward sweep in Algorithm 4.2, one
can break V̇ up into gradients of the intermediate variables and see the following equivalence:

(V̇ )T [Φi]
′′
i V̇ =

∑
j,k

∇vj
∂2φi
∂vj∂vk

∇vTk . (4.22)

Finally, by noting that the update V̇ = Φ′iV̇ is merely an iteration of the Forward Gradient
Algorithm 3.9, this Forward Hessian Algorithm 4.2 can be rewritten as Algorithm 4.3.

To bound the complexity of Algorithm 4.3, let us assume once more that each node has
at most two predecessores. The Forward Hessian Algorithm 4.3 performs all the calculations
of the Forward and Reverse Gradient Algorithms 3.9 and 3.8, which have a complexity of
O(n`) and O(`) respectively. In addition, for every nonlinear function it calculates an outer
product matrix, a computation that costs O(n2). Thus the complexity is bound by:

O
(
n`+ n2(Number of nonlinear intermediate functions)

)
. (4.23)

In terms of memory use, the Forward Hessian must store all ` adjoints in a reverse sweep.
While in the forward sweep it carries a n × n matrix W and ` vectors of size n, thus using
up an extra O(n`), though this may be improved by using sparsity and overwriting schemes.
An advantage of the algorithm is that it preserves the symmetry of W , a desirable quality.
We have found no reference to such an algorithm in the literature.

4.2.2 Intermediate Forward Hessian Algorithm

Another strategy for calculating the Hessian matrix is to adopt the viewpoint of the inter-
mediate variables as functions of the independent variables (3.7), then establish a recurrence

29



Algorithm 4.3: Forward Hessian Algorithm

Input: x ∈ Rn
Initialization: v = e`, W = 0 ∈ Rn×n
∇vi = ei, i = 1− n, . . . , 0
∇vi = 0, i = 1, . . . , `
for i = `, . . . , 1 do

v̄i =
∑

i≺j v̄j
∂φj

∂vi

end
for i = 1, . . . , ` do

foreach j, k ≺ i do

W+= v̄i∇vj
∂2φi
∂vj∂vk

∇vTk
end
foreach j ≺ i do

∇vi+=
∂φi
∂vj
∇vj

end

end
Output: f ′′(x) = W

that involves the Hessian of vi(x) and the Hessians of its predecessors. One can then calcu-
late the Hessians of the intermediate variables in a forward sweep, up to and including the
Hessian of v`(x) = f(x). This is perhaps the most common method found in the literature,
apparently appearing first in Jackson and McCormick’s work [23]. There are also a num-
ber of other references [1] and Griewank and Walther’s book [20, p.155]. This is a method
analogous to the Forward Gradient Algorithm 3.9, where the gradient of each intermediate
variable is calculated using the gradients of predecessors.

The demonstration presented here uses (4.21) and is admittedly cumbersome. The usual
demonstration using induction is more natural. This being said, we present this demonstra-
tion for reasons of completion.

To demonstrate this method, we define adjoints associated to the calculation of each
intermediate variable vj(x). For this we use an analogous formula to (3.12):

v̄ji = eTj Φ′j · · ·Φ′i+1ei, for i = 1, . . . , j − 1,

v̄jj = 1,

v̄ji = 0, for i > j.

(4.24)
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With this notation, one can establish a recurrence relation between adjoint variables:

v̄ji = eTj Φ′j · · ·Φ′i+1ei

=
∑
k≺j

∂φj
∂vk

eTkΦ′j−1 · · ·Φ′i+1ei

=
∑
k≺j

∂φj
∂vk

eTkΦ′k · · ·Φ′i+1ei

=
∑
k≺j

∂φj
∂vk

v̄ki .

The last but one equality holds for eTkΦ′i = eTk when i > k. With this, one can use the
Hessian formula (4.21) to express the Hessian of vj(x):

v′′j (x) =

j∑
i=1

v̄ji (V̇
i)T [Φi]

′′
i V̇

i

=

j−1∑
i=1

v̄ji (V̇
i)T [Φi]

′′
i V̇

i + v̄jj (V̇
j)T [Φj]

′′
j V̇

j

=

j−1∑
i=1

∑
k≺j

∂φj
∂vk

v̄ki (V̇ i)T [Φi]
′′
i V̇

i + 1(V̇ j)T [Φj]
′′
j V̇

j

=
∑
k≺j

∂φj
∂vk

k∑
i=1

v̄ki (V̇ i)T [Φi]
′′
i V̇

i + (V̇ j)T [Φj]
′′
j V̇

j

=
∑
k≺j

∂φj
∂vk

v′′k(x) + (V̇ j)T [Φj]
′′
j V̇

j. (4.25)

Equation (4.25) establishes the desired recurrence relation. Using (4.22) once again and
the recurrence relation (4.25), one can calculate the Hessian matrices v′′i (x), i = 1, . . . , `, in
a forward sweep using Algorithm 4.4.

This Intermediate Forward Hessian Algorithm 4.4 is the only Hessian algorithm that
performs all necessary calculations in a single forward sweep. Though this is a significant
advantage, the downside to this algorithm is that it potentially needs a large quantity of
memory with ` Hessian n× n matrices. However, exploiting the symmetry of the Hessians,
this quantity is almost halved, as is normally done [1]. The time complexity of Algorithm 4.4
is dominated by the calculation of the matrix outer-products and the gradients of the inter-
mediate variables, and thus has the same complexity as the Forward Hessian, see (4.23). If
one is interested in sensitivity issues of the function with respect to its intermediate variables,
then Algorithm 4.4 may be useful. Otherwise, if one is solely interested in the Hessian of the
function f(x), then the large storage requirements may render this algorithm prohibitive for
many applications.
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Algorithm 4.4: Intermediate Forward Hessian

Input: x ∈ Rn
Initialization: v′′i (x) = 0 ∈ Rn×n, for i = 1, . . . , `
∇vi = ei, i = 1− n, . . . , 0
∇vi = 0, i = 1, . . . , `
for i = 1, . . . , ` do

v′′i (x) =
∑
j≺i

∂φi
∂vj

v′′i (x)

foreach j, k ≺ i do

v′′i (x)+= ∇vj
∂2φi
∂vj∂vk

∇vTk
end
foreach j ≺ i do

∇vi+=
∂φi
∂vj
∇vj

end

end
Output: f ′′(x) = v′′` (x)

4.2.3 Griewank and Walther’s Reverse Hessian Algorithm

Although the inception of Griewank and Walther’s reverse Hessian computation algorithm
[20, p.157], presented in block form in Algorithm 4.5, follows a different line of reasoning, its
correctness may be established by means of (4.17).

Algorithm 4.5: Griewank and Walther’s Reverse Hessian computation algorithm.

Input: x ∈ Rn
Initialization: v = e`, W = 0, V̇ 1 = P T

for i = 2, . . . , ` do

V̇ i = Φ′i−1V̇
i−1

end
for i = `, . . . , 1 do

W = (Φ′i)
TW

W+= vTΦ′′i V̇
i

vT = vTΦ′i
end
Output: f ′′ = PW

Algorithm 4.5 is the translation to block operations, using our notation, of Griewank and
Walther’s reverse Hessian computation algorithm. It recursively builds parts of expression
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(4.17) and then combines them appropriately. It is straightforward to see that (V̇ 1, . . . , V̇ `)
constructed in the first (forward) loop satisfies (4.20).

In the second loop the indices are visited in reverse order, or equivalently, a backward
sweep of the computational graph is performed. Notice that the computation of v is the same
as the Reverse Matrix Gradient in Algorithm 3.6. Thus at the beginning of the iteration
where node i is swept, this vector contains the partial product eT` Φ′` · · ·Φ′i−1. Hence, at the
iteration where node i is swept, W is incremented by

vTΦ′′i V̇
i = ((vi)TΦ′′i )

(
i−1∏
j=1

Φ′i−j

)
P T .

Finally, taking into account the pre-multiplication done at the beginning of the reverse loop,
it can be shown by induction that, at the end of the iteration where node i is swept, we have

W =
∑̀
k=i

(
k−1∏
j=i

(Φ′j)
T

)
((vk)TΦ′′k)

(
k−1∏
j=1

Φ′k−j

)
P T .

This implies that, at the end of the algorithm, PW is precisely the expression for the Hessian
of f in (4.17).

As far as we can ascertain, there are no reports on the implementation and testing of
this algorithm. Although the special structure of the Jacobians and Hessians of the state
transformations lead to simple and efficient componentwise versions of the block assignments,
there are two obvious downsides to this approach for calculating the Hessian. First is the fact
that its symmetry is not exploited, and second, (V̇ 1, . . . , V̇ `), calculated in the forward loop,
needs to be recorded for later use in the second loop, which is potentially a large quantity
of memory, even if one takes advantage of its special structure.

4.2.4 Hessian-vector Product Algorithm

With a slight ajustment to Algorithm 4.5 one can efficiently calculate Hessian-vector prod-
ucts. Let y ∈ Rn be a given vector, and f ′′(x)y the desired Hessian-vector product. We seek
an algorithm that calculates (4.17) but with an additional y multplied on the right. Letting

v̇i := V̇ iy =

(
i−1∏
j=1

Φ′i−j

)
P Ty, for i = 1, . . . , `, (4.26)

we can apply a completely analogous strategy to the previous Algorithm 4.5 and calcu-
late the Hessian-vector product by simply swapping V̇ i in Algorithm 4.5 for v̇i resulting in
Algorithm 4.6. This algorithm first appeared in [8].

This Hessian-vector algorithm is renowned for its time complexity which is O(`), the
same as the function evaluation’s time complexity. To see this, we must write Algorithm 4.6
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Algorithm 4.6: Block Reverse Hessian-vector

Input: x ∈ Rn
Initialization v̄ = e`, z = 0 ∈ R(n+`), v̇1 = P Ty
for i = 1, . . . , ` do

v̇i = Φ′iv̇
i−1

end
for i = `, . . . , 1 do

z = (Φ′i)
T z

z+= v̄TΦ′′i v̇
i−1

v̄T = v̄TΦ′i
end
Output: f ′′(x)y = Pz

in its componentwise form. Due to the definition of vi and (3.14), after the ith iteration of
the forward sweep in Algorithm 4.6 we have

v̇i =



0
...
0
∇vTi y

...
∇vT1−ny


. (4.27)

Using (4.27) we find that:

v̄TΦ′′i v̇
i−1 = v̄i[Φi]

′′
i



0
...
0

∇vTi−1y
...

∇vT1−ny


= v̄i

∑
j,k

∂2φi
∂vj∂vk

∇vTk y.

Thus, by storing the gradient-vector products ∇vTk y in the kth element of a vector
v̇ ∈ R`+n and noting that the pre-multiplication of a vector by (Φ′i)

T is equivalent to an
iteration of the Block format of the Reverse Gradient Algorithm 3.6, Algorithm 4.6 can be
written in its componentwise form Algorithm 4.7.

If one restricts the set of elemental functions to binary or unary functions, the complexity
of Algorithm 4.7 becomes apparent. Since there are only scalar operations, each iteration
of the forward and reverse loop has a complexity of O(1), resulting in a total complexity of
O(`). This algorithm is used together with a compacting scheme methods [14] to calculate
the entire Hessian matrix with only a few Hessian-vector products. The advantageous time
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Algorithm 4.7: Reverse Hessian-vector

Input: x ∈ Rn
Initialization v̄ = e`, z = 0 ∈ R(n+`), v̇ = P Ty
for i = 1, . . . , ` do

foreach j ≺ i do v̇i+=
∂φi
∂vj

v̇j

end
for i = `, . . . , 1 do

foreach j ≺ i do zj+=
∂φk
∂vj

zk

foreach j, k ≺ i do

z+= v̄i
∂2φi
∂vj∂vk

v̇k

end

foreach j ≺ i do v̄j+=
∂φk
∂vj

v̄k

end
Output: f ′′(x)y = Pz

complexity of the Hessian-vector product contributes to make the method relatively efficient,
and thus will be used for comparative tests later on.

4.3 A New Hessian Algorithm: edge pushing

4.3.1 Development

In order to arrive at an algorithm to efficiently compute expression (4.17), once again, it is
helpful to think in terms of block operations. First of all, rewrite (4.17) as

f ′′ = PWP T = P

(∑̀
i=1

Wi

)
P T , (4.28)

so the problem boils down to the computation of W . The summands in W share a common
structure, spelled out below for the i-th summand.

Wi =
(
(Φ′1)T · · · (Φ′i−1)T

)︸ ︷︷ ︸
left multiplicand

(
(vi)TΦ′′i

)︸ ︷︷ ︸
central multiplicand

(
Φ′i−1 · · ·Φ′1

)
.︸ ︷︷ ︸

right multiplicand

(4.29)

Using the distributivity of multiplication over addition, the partial sum Wi +Wi−1 may
be expressed as a three multiplicand products where the left and right multiplicands coincide
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with those in the expression of Wi−1, but the central one is different.

Wi +Wi−1 =(
(Φ′1)T · · · (Φ′i−2)T

)(
(Φ′i−1)T ((vi)TΦ′′i )(Φ

′
i−1) + ((vi−1)TΦ′′i−1)

)(
Φ′i−2 · · ·Φ′1

)
. (4.30)

Instead of calculating each Wi separately, we may save effort by applying this idea to in-
creasing sets of partial sums, all the way to W`. This alternative way of calculating W is
reminiscent of the nested multiplication for polynomials. The nested expression for ` = 3 is
given in (4.31) below.

W = (Φ′1)T
(
(Φ′2)T ((v3)TΦ′′3)Φ′2 + (v2)TΦ′′2

)
Φ′1 + (v1)TΦ′′1. (4.31)

Of course, the calculation of such a nested expression must begin at the innermost expres-
sion and proceed outwards. This means, in this case, going from the highest to the lowest
index. This is naturally accomplished in a backward sweep of the computational graph,
which could be schematically described as follows.

Node ` W ← (v`)TΦ′′`
Node `− 1 W ← (Φ′`−1)TWΦ′`−1

W ← W + (v`−1)TΦ′′`−1

...

Node i W ← (Φ′i)
TWΦ′i

W ← W + (vi)TΦ′′i
...

Node 1 W ← (Φ′1)TWΦ′1
W ← W + (v1)TΦ′′1.

In particular, node `’s iteration may be cast in the same format as the other ones if we
initialize W as a null matrix.

It follows that the value of W at the end of the iteration where node i is swept is given
by

W =
∑̀
k=i

(
k−1∏
j=i

(Φ′j)
T

)
((vk)TΦ′′k)

(
k−i∏
j=1

Φ′k−j

)
.

Notice that, at the iteration where node i is swept, both assignments involve derivatives
of Φi, which are available. The other piece of information needed is the vector vi, which
we know how to calculate via a backward sweep from Algorithm 3.6. Putting these two
together, we arrive at Algorithm 4.8.

Before delving into the componentwise version of Algorithm 4.8, there is a key observation
to be made about matrix W , established in the following proposition.

Proposition 4.3 At the end of the iteration at which node i is swept in Algorithm 4.8, for
all i, the nonnull elements of W lie in the upper diagonal block of size n+ i− 1.
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Algorithm 4.8: Block form of edge pushing.

Input: x ∈ Rn
initialization: v = e`, W = 0
for i = `, . . . , 1 do

W = (Φ′i)
TWΦ′i

W+ = vTΦ′′i
vT = vTΦ′i

end
Output: f ′′ = PWP T

Consider the first iteration, at which node ` is swept. At the beginning W is null, so the
first block assignment ((Φ′`)

TWΦ′`) does not change that. Now consider the assignment

W ← W + (v)TΦ′′` .

Using (4.10) and the initialization of v, we have

(v)TΦ′′` = v̄`[Φ`]
′′
` = [Φ`]

′′
` ,

and, since [Φ`]`(y) = φ`(yj)j≺`, the nonnull entries of [Φ`]
′′
` must have column and row indices

that correspond to predecessors of node `. This means the last row and column, of index `,
are zero. Thus the statement of the proposition holds after the first iteration.

Suppose by induction that, after node i+1 is swept, the last `− i rows and columns of W
are null. Recalling (3.10) and using the induction hypothesis, the matrix-product (Φ′i)

TWΦ′i
can be written in block form as follows:

I ci 0

0 0 0

0 0 I




W1−n..i−1,1−n..i−1 W1−n..i−1,i 0

Wi,1−n..i−1 wii 0

0 0 0




I 0 0

1− n...
i− 1

(ci)T 0 0 row i,

0 0 I
i+ 1...
`


which results in

W1−n..i−1,1−n..i−1 + ciWi,1−n..i−1 +W1−n..i−1,i (c
i)T + wii c

i(ci)T 0 0
1− n...
i− 1

0 0 0 row i.

0 0 0
i+ 1...
`

 (4.32)

Thus at this point the last `− (i− 1) rows and columns have been zeroed.
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Again using (4.10), we have

(v)TΦ′′i = v̄i

(
∂2φi
∂vj∂vk

)
1−n≤j,k≤`

,

where the nonnull entries of the Hessian matrix on the right-hand side have column and row
indices that correspond to predecessors of node i. Therefore, the last ` − (i − 1) rows and
columns of this Hessian are also null. Hence the second and last block assignment involving
W will preserve this property, which, by induction, is valid till the end of the algorithm.

Using the definition of ci in (3.11), the componentwise translation in the first block
assignment involving W in Algorithm 4.8 is

(
(Φ′i)

TWΦ′i
)
jk

=

 wjk +
∂φi
∂vk

∂φi
∂vj

wii +
∂φi
∂vk

wji +
∂φi
∂vj

wik, if j < i and k < i,

0, otherwise.
(4.33)

For the second block assignment, using (4.10), we have that

(
(v)TΦ′′i

)
jk

=

 v̄i
∂2φi
∂vj∂vk

, if j < i and k < i,

0, otherwise.
(4.34)

Finally, notice that, since the componentwise version of the block assignment, done as
node i is swept, involves only entries with row and column indices smaller than or equal to
i, one does not need to actually zero out the row and column i of W , as these entries will
not be used in the following iterations.

This componentwise assignment may be still simplified using symmetry, since W ’s sym-
metry is preserved throughout edge pushing. In order to avoid unnecessary calculations
with symmetric counterparts, we employ the notation w{ji} to denote both wij and wji.
Notice, however, that, when j = k in (4.33), we have

(
(Φ′i)

TWΦ′i
)
jj

= wjj +

(
∂φi
∂vj

)2

wii +
∂φi
∂vj

wji +
∂φi
∂vj

wij,

so in the new notation we would have(
(Φ′i)

TWΦ′i
)
{jj} = w{jj} +

(
∂φi
∂vj

)2

w{ii} + 2
∂φi
∂vj

w{ji}.

The componentwise version of Algorithm 3 adopts the point of view of the node being
swept. Say, for instance that node i is being swept. Consider the first block assignment

W ← (Φ′i)
TWΦ′i,

whose componentwise version is given in (4.33). Instead of focusing on updating each w{jk},
j, k < i, at once, which would involve accessing w{ii}, w{ji} and w{ik}, we focus on each
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w{pi} at a time, and ‘push’ its contribution to the appropriate w{jk}’s. Taking into account
that the partial derivatives of φi may only be nonnull with respect to i’s predecessors, these
appropriate elements will be w{jp}, where j ≺ i, see the pushing step in Algorithm 4.9.

The second block assignment

W ← W + (vi)TΦ′′i ,

may be thought of as the creation of new contributions, that are added to appropriate entries
and that will be pushed in later iterations. From its componentwise version in (4.34), we see
that only entries of W associated with predecessors of node i may be changed in this step.
The resulting componentwise version of the edge pushing algorithm is Algorithm 4.9.

Algorithm 4.9 has a very natural interpretation in terms of the graph model introduced
in Section 4.1.2. The nonlinear arcs are ‘created’ and their weight initialized (or updated, if
in fact they already exist) in the creating step. In graph terms, the pushing step performed
when node i is swept actually pushes the endpoints of the nonlinear arcs incident to node i
to its predecessors. The idea is that subpaths containing the nonlinear arc are replaced by
shortcuts. This follows from the fact that if a path contains the nonlinear arc {i, p}, then
it must also contain precisely one of the other arcs incident to node i. Figure 4.4 illustrates
the possible subpaths and corresponding shortcuts. In cases I and III, the subpaths consist
of two arcs, whereas in case II, three arcs are replaced by a new nonlinear arc. Notice that
the endpoints of a loop (case II) may be pushed together down the same node, or split down
different nodes. In this way, the contribution of each nonlinear arcs trickles down the graph,
distancing the higher numbered nodes until it finally reaches the independent nodes.

This interpretation helps in understanding the good performance of edge pushing in the
computational tests, in the sense that only “proven” contributions to the Hessian (nonlinear
arcs) are dealt with.

What differentiates this edge pushing from the simple presentation in Algorithm 4.1,
is that now the execution can be carried out in the two orderly sweeps of the intermediate
variables and we have adapted to using undirected nonlinear edges. But more considerations
have to be made to implement this code, for we have yet to make suppositions about our
set of elemental functions, consider possible overwrites and how to take more advantage of
sparsity. These details and others will be discussed in Chapter 5.

4.3.2 Examples

In this section we run Algorithm 4.9 on two examples, to better illustrate its workings. Since
we’re doing it on paper, we have the luxury of doing it symbolically. In the first example we
show all the workings of each iteration of edge pushing, in the second we show an overview
on a larger example.

Example 1:
The iterations of edge pushing on a computational graph of the function f(x) = (x−2 +
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Algorithm 4.9: Componentwise form of edge pushing.

Input: x ∈ Rn
initialization: v̄1−n = · · · = v̄`−1 = 0, v̄` = 1, w{ij} = 0, 1− n ≤ j ≤ i ≤ `
for i = `, . . . , 1 do

Pushing

foreach p such that p ≤ i and w{pi} 6= 0 do
if p 6= i then

foreach j ≺ i do
if j = p then

w{pp}+ = 2
∂φi
∂vp

w{pi}

else

w{jp}+ =
∂φi
∂vj

w{pi}

end

end

else p = i
foreach unordered pair {j, k} such that j, k ≺ i do

w{jk}+ =
∂φi
∂vk

∂φi
∂vj

w{ii}

end

end

end
Creating

foreach unordered pair {j, k} such that j, k ≺ i do

w{jk}+ = v̄i
∂2φi
∂vk∂vj

end
Adjoint

foreach j ≺ i do

v̄j+ = v̄i
∂φi
∂vj

end

end
Output: f ′′ = PWP T
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Figure 4.4: Pushing nonlinear arc {i, p} is creating shortcuts.
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ex−1)(3x−1 + x2
0) are shown on Figure 4.5. The thick arrows indicate the sequence of three

iterations. Nodes about to be swept are highlighted. As we proceed to the graph on the right
of the arrow, nonlinear arcs are created (or updated), weights are appended to edges and
adjoint values are updated, except for the independent nodes, since the focus is not gradient
computation. For instance, when node 3 is swept, the nonlinear arc {1, 2} is created. This
nonlinear arc is pushed and split into two when node 2 is swept, becoming nonlinear arcs
{0, 1} and {−1, 1}, with weights 1 · 2v0 and 1 · 3, respectively. When node 1 is swept, the
nonlinear arc {−1, 1} is pushed and split into nonlinear arcs {−2,−1} and {−1,−1}, the
latter with weight 2 · 3 · ev−1 . Later on, in the same iteration, the nonlinear contribution of
node 1, ∂2φ1/∂v

2
−1, is added to the nonlinear arc {−1,−1}. Other operations are analogous.

The Hessian can be retrieved from the weights of the nonlinear arcs between independent
nodes at the end of the algorithm:

f ′′(x) =

 0 3 2v0

3 ev−1(6 + v2) 2v0e
v−1

2v0 2v0e
v−1 2v1

 =

 0 3 2x0

3 ex−1(6 + 3x−1 + x2
0) 2x0e

x−1

2x0 2x0e
x−1 2(x−2 + ex−1)

 .

Notice that arcs that are pushed are deleted from the figure just for clarity purposes, though
this is not explicitly done in Algorithm 4.9. Nevertheless, in the actual implementation the
memory locations corresponding to these arcs are indeed deleted, or in other words, made
available for overwritting.

Example 2:
In Figure 4.6 we depict the execution of edge pushing on the function

f(x−2, x−1, x0) = (x−2 + 1)(x−1 + 1)3(x0 + 1).

The evaluation on this function is broken up into a list of intermediate variables which are
in a table on the top lefthand side of Figure 4.6. In this same table there are also a few
adjoint values which are needed in the execution, and we omit the details on how the adjoints
calculated. The thick arrows indicate the sequence of six iterations. Nodes about to be swept
are highlighted. As we proceed to the graph on the right of the arrow, nonlinear arcs are
created (or updated), weights are appended to edges. For instance, when node 4 is swept,
the nonlinear arc {3, 4} is pushed to its predecessores and split into two edges: {1, 3} and
{2, 3} with weights 3v2 and 3v1, respectively. The edge {1, 2} is then created with weight
v5, for φ4 = v1v2 is a nonlinear function.

No parallel reductions occur during the execution of this function, thus the weight of
each nonlinear arc is determined during its allocation and is not altered in future iterations.
Drawing the computational graph with independent nodes lower down and the output node
at the top, edge pushing creates edges at higher levels of the graph that trickle down to the
independent nodes.

The Hessian can be retrieved from the weights of the nonlinear arcs between independent
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0).

43



v1 = x−2 + 1
v2 = x−1 + 1
v3 = x0 + 1
v4 = v1 ∗ v2

v5 = 3 ∗ v3

v6 = v4 ∗ v5
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Figure 4.6: f(x−2, x−1, x0) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

nodes at the end of the algorithm:

f ′′ =

 0 v5 3v2

v5 0 3v1

3v2 3v1 0

 =

 0 3(x0 + 1) 3(x−1 + 1)
3(x0 + 1) 0 3(x−2 + 1)

3(x−1 + 1) 3(x−2 + 1) 0

 .
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Chapter 5

Implementing the New Reverse
Hessian Algorithm

5.1 Implementation Issues of Reverse Modes

A major challenge in designing reverse automatic differentiation procedures is running the
evaluation procedure backwards. To this end, one usually records information during the
function evaluation on what is called a Tape T . The Tape is essentially a first-in-last-out
data structure capable of storing large amounts of sequential access memory. This Tape T
must contain the necessary information to represent the computational graph of the function
and allow the calculation of first and second order derivatives of the intermediate variables
during a reverse sweep. A possible solution is, for each intermediate variable vi, to record
on T the value attributed to vi, a number identifying the elemental function φi and the
indices of the input variables, e.g., if vi = vkvj, we record vi, a number that identifies the
multiplication function, and the indices k and j. This information enables us to calculate all
of φi’s partial derivatives. Such a Tape can be generated automatically during the evaluation
of a function program using operator overloading.

Operator overloading is a tool in many modern programming languages such as C++
and FORTRAN 90, which allows the programmer to give alternative implementations for
the same operator when called with different data types. For instance, defining a new type
of variable called adouble, we can implement a function sin(adouble x) without altering
the standard definition for sin(double x). This is very convenient, for we can program our
new function sin(adouble x) to not only calculate sin(double x), but also to record a new
entry on a Tape T . For instance, sin(adouble x) could be programmed to perform three
functions: calculate the floating point value of sin(x), record on T the index of x and an
integer sinv that is a reference to the function sin(·).

If such an operator overloading strategy were implemented, then the user would only have
to change the data type used in the function program to adouble, as done in Algorithm 5.1,
and upon evaluation, a Tape would be automatically generated. The quantity in bytes
occupied by an element recorded on this Tape is bounded by a constant, hence the total
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Algorithm 5.1: A Function Program

Input: adouble (x1, x2, x3)
Initialization: adouble f = 0

f = cos(x1) ∗
(

3x2

x1

)
+ 3 ∗ x2 ∗ exp(x3)

Output: f

of Sequential Access Memory (SAM ) used is proportional to `: the number of intermediate
variables. This is potentially a lot of memory, so it is possible that this Tape has to be
recorded on the hard disk instead of the internal memory of the processor. Though one
can reduce the quantity of information recorded by taking into consideration that some
functions can be recalculated on the way back, while others have partial derivatives that are
independent of the input variables, such as linear and constant functions.

Better bounds on SAM usage are attained by a method by Griewank and Walther [18, 31]
that involves saving snapshots of the evaluation procedure and recalculating from snapshot
to snapshot. This method, called check-pointing, requires a quantity proportional to log(`) of
memory. This is an important result for reverse procedures, for a usage of SAM proportional
to ` made reverse procedures prohibitive for some very large scale problems.

Reverse modes also require a portion of Random Access Memory (RAM ). For instance,
as node i is swept in the Reverse Gradient Algorithm 3.8, one needs instant access to the
adjoints of i’s predecessors. Though there are ` distinct adjoints, one may use significantly
less if an overwriting scheme is employed. Note how in the code for the Black-Box Gradient
in Algorithm 3.1 the internal variables a and b are reused or, in other words, their previous
content is overwritten by new values. With the exception of the Black-Box Gradient Algo-
rithm 3.1, all the AD algorithms presented so far employ no explicit overwriting. Take for
example the Reverse Gradient Algorithm 3.8, the ith adjoint value is stored in a distinct
location designated by v̄i, but in an efficient implementation, the adjoints will be stored in
internal variables that are reused.

Let us now address the problem of how much RAM is required to execute the Reverse
Gradient Algorithm. To bound how many distinct internal variables are required, we must
take into account the the lifespan of a variable, where the lifespan of a data element used in
an algorithm is the maximum interval of iterations in which we require access to it.

As node i is being swept in Algorithm 3.8, to evaluate the partial derivatives of φi we
need access to the values of the arguments vj, j ≺ i and to calculate adjoint values we
need access to v̄i and v̄j, j ≺ i. There is no predefined order in which we will access these
floating point values, hence it is preferable to store these values on a structure that permits
random access, being a vector structure the usual choice. For vi its lifespan starts at the
first incrementation,

vi+ = vk
∂φk
∂vi

,

46



where k = max{s | i ≺ s}, and ends after the last use in an argument on the right hand side,

vj+ = vi
∂φi
∂vj

,

where j = min{s | s ≺ i}.
The lifespan of vi in a reverse procedure is necessarily shorter then that of vi, starting

with its first use in an argument, on iteration k such that k = max{s | i ≺ s} and ending
after being used as an argument for the last time on iteration j = min{s | i ≺ s}. Let r be
the maximum number of adjoint variables that have an overlapping lifespan. We refer to r
as the maximum number of live variables. A vector of size r for the adjoints and another
one for the vi values would suffice to guarantee random access when needed.

In most applications r tends to be much smaller then `. This allows us to store these
vector structures in the internal memory of the processor, which in turn permits fast access. It
will be shown later that, with a specific data structure, one can implement the edge pushing

Algorithm 4.9 in such a way that only a quantity of RAM proportional to r is necessary.

5.2 The Adjacency List Data Structure

The core data structure used in our implementations is the Adjacency List. It is a structure
primarily used to represent graphs. First, additional notation is required. For an undirected
graph G = (V,E), the set of neighbors of node i is denoted by Ni ≡ {j | ∃{j, i} ∈ E}. The
degree of node i is defined and denoted by di ≡ |Ni|.

Consider an undirected graph G = (V,E) with |V | = n nodes, the Adjacency List
structure is comprised of an array with n positions, and each position contains a pointer to a
linked list. Turn to the example of a graph and a corresponding Adjacency List in Figure 5.1.
The ith position in the array is associated to the ith node in the graph, and connected to it
is an ordered list of its neighbors. Additionally, if a graph has a weight function w : E → R,
in the list connected to position i, we store the weight wij in node j.

Let us examine the complexity of two basic operations on the data structure: Find
and Insertion, so we may in turn bound the complexity of the algorithms that use such a
structure.

� Find: To search for an edge {i, j} or a weight wij, we may check either the list con-
nected to position i or j. In searching down the list adjacent to i (resp., j), it is possible
that we will go through all di (resp., dj) elements in the list. Hence the time to find
edge {i, j} or weight wij is bounded by O(di + dj). The only exception to this is if
i = j, in which case it is a loop such as the edge {1, 1} in Figure 5.1. Finding a loop
is bounded by O(di).

� Insertion: The nodes in each list are arranged in increasing order, which must be
preserved when inserting a new edge. The insertion of a new edge {i, j} implies changes
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Figure 5.1: A graph and its representation as an Adjacency List

to the lists connected to positions i and j. In the worst case, one must scan the whole
list in order to insert an element therein. Thus, the insertion of a new edge {i, j} has
a complexity of O(di + dj).
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5.3 An Implemention of the edge pushing Algorithm

We have implemented the edge pushing Algorithm 4.9 in C++ and integrated the code into
the automatic differentiation package ADOL-C [19]. ADOL-C uses operator overloading to
generate a Taped evaluation procedure T . This Tape T and a point x ∈ Rn form the input
to the edge pushing Algorithm 5.2. The output is a sparse representation of the hessian
matrix f ′′(x).

_ _

edge pushing(x, T , f ′′(x))
_

The first step in elaborating an implementation is choosing appropriate data structures.
Our main concern is the choice of the structure for the matrix W used in Algorithm 4.9. Our
choice must be suitable for symmetric sparse matrices. Sparse, for Hessian matrices tend to
be sparse in many applications. For these reasons we chose the Adjacency List structure,
section 5.2. Each nonzero w{jk} in Algorithm 4.9 will be represented by an edge {j, k} and
a weight w{jk}. The data structure stores a graph G = (V ∪ Z,N), where V = {1, . . . , `},
Z = {1 − n, . . . , 0}, N ⊂ {{j, k} | j, k ∈ V ∪ Z} and a weight function w : N → R. The
pseudocode for our implementation is in Algorithm 5.2. We assume that the set of elemental
functions is composed of only unary and binary functions.

For simplicity, we have not made explicit the allocation of the edges {j, k}. Instead we
only refer to the edges weights w{j,k}. An edge will be allocated as soon as its weight assumes
a nonzero value.

Now that we have chosen a data structure we can establish bounds on the time and
memory complexity of the algorithm.

5.4 Complexity Bounds

5.4.1 Time complexity

During the execution of the algorithm, new arcs may be allocated in the structure G during
the pushing or the creating step. After node i has been swept, G has accumulated all
the nonlinear arcs that have been created or pushed, up to this iteration, since arcs are not
deleted. One may think of G as the recorded history (creation and pushing) of the nonlinear
arcs.

The time complexity of edge pushing depends on how many nonlinear arcs are allocated
during execution. Thus it is important to establish bounds for the number of arcs allocated
to each node. Of course the degree of node i and its neighborhood vary during the execution
of the algorithm. To this end, we fix G∗ as the graph obtained at the end of the algorithm.
Recall that edges are not deleted in Algorithm 5.2.

Let d∗i be the degree of node i in G∗, and let d∗ = maxi{d∗i }. Clearly di ≤ d∗i , where di is
the degree of node i in the graph G at any given iteration, for no edges are deleted during the
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Algorithm 5.2: edge pushing

Input: x ∈ Rn, a Taped evaluation procedure T of f(x)
Intialization:
v̄ = e`+n
G = (V ∪ Z,N) with |V ∪ Z| = n+ `, N = ∅
for i = `, . . . , 1 do

Pushing:

foreach {i, p} ∈ N do
if p 6= i then

foreach j ≺ i do
if j = p then

w{p,p}+= 2∂φi

∂vp
w{i,p}

else

w{j,p}+= ∂φi

∂vj
w{i,p}

end
if p = i then

foreach unordered pair {j, k} such that j, k ≺ i do

w{j,k}+= ∂φi

∂vk

∂φi

∂vj
w{i,i}

end

end
Creating:

if φi is a nonlinear function then

if φi is unary vi = φi(vj) and ∂2φi

∂v2j
6= 0 then

w{j,j}+= v̄i
∂2φi

∂v2j

if φi is binary vi = φi(vj, vk) then

if ∂2φi

∂v2j
6= 0 then

w{j,j}+= v̄i
∂2φi

∂v2j

if ∂2φi

∂vk∂vj
6= 0 then

w{k,j}+= v̄i
∂2φi

∂vk∂vj

if ∂2φi

∂v2k
6= 0 then

w{k,k}+= v̄i
∂2φi

∂v2k

Adjoint:

foreach j such that j ≺ i do

v̄j += v̄i
∂φi

∂vj

end

end

Output: ∂2f(x)
∂xj∂xk

= w{j−n,k−n} foreach w{j−n,k−n} 6= 0
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Figure 5.2: Complexity bounds for the pushing step.

execution of Algorithm 5.2. In order to bound the complexity of edge pushing, we consider
the pushing and creating steps separately. We repeat in Figure 5.2 the possible cases of
pushing, and the corresponding time complexity bounds. On the right of Figure 5.2 we have
the new edges allocated after pushing the corresponding edge on the left.

Studying the cases spelled out in Figure 5.2, one concludes that the time spent in pushing
edge {i, p} is bounded by 2(d∗j + d∗p + d∗k), where j and k are predecessors of node i. Since
there are at most d∗i nonlinear arcs incident to node i, the time spent in the pushing step
at the iteration where node i is swept is bounded by

d∗i (2(d∗j + d∗p + d∗k)) = O(d∗i (d
∗
j + d∗p + d∗k)) = O(d∗i d

∗).

Finally, the assumption that all functions are either unary or binary implies that at most
three nonlinear arcs are allocated between predecessors during the creating step, analogous
to case II in Figure 5.2. Hence the time used up in this step at the iteration where node i is
swept is bounded by

2(d∗j + d∗k) = O(d∗j + d∗k) = O(d∗),

where j and k are predecessors of node i.

Thus, taking into account the time spent in merely visiting a node — say, when the
intermediate function associated with the node is linear — is constant, the time complexity
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of edge pushing is

TIME(edge pushing) ≤
∑̀
i=1

(d∗i d
∗ + d∗ + 1)

= O

(
d∗
∑̀
i=1

d∗i + `

)
. (5.1)

A consequence of this bound is that, if f is linear, the complexity of edge pushing is
that of the function evaluation, a desirable property for Hessian algorithms. This bound is
possibly too pessimistic in general, but can be used to provide more meaningful estimates for
the class of partially separable functions (which are going to be defined in a later section).
Unfortunately, the bounds do not employ the “natural” parameters of the input (n, `), so as
to render it not very useful to end-users.

5.4.2 Memory Complexity Bound

To save space, we allow overwrites of edges. Bounds on the usage of memory of the
edge pushing Algorithm 5.2 are summed up in Proposition 5.1.

Proposition 5.1 The edge pushing Algorithm 5.2 uses

(i) O(r) of RAM

(ii) O(rd∗) of SAM.

Here r is the maximum number of lives variables. To prove Proposition 5.1 we must consider
the lifespan of an edge, as defined on page 46.

Proposition 5.2 If an edge {j, k} is allocated, then the adjoints v̄i and v̄j are alive.

Demonstration: First we prove the assertation for any edge {j, k} allocated during the
Creating step, thus j and k are predecessors of a node i that is being swept. The next
subprocedure after the Creating step in the algorithm is the Adjoint step, where the adjoint
of all predecessors are incremented, including v̄j and v̄k. So the assertion holds true for edges
allocated in the Creating step.

We will prove by induction that the assertion is true at the end of each iteration. Since
N is initially empty, edges are only allocated on the first iteration through the Creating

step, thus the assertion holds true at its end.
Suppose by induction that the assertion holds at the end of the iteration at which node

m+1 is swept. Consider the sweeping of node m. Let {j, k} be an edge allocated during the
Pushing step, then without loss of generality, there existed an edge {m, p} such that j ≺ m
and (k ≺ m or k = p). If k (resp., j) is a predecessor of m, then the adjoint v̄k (resp., v̄j)
must be alive for the Adjoint step of iteration m. Else if k = p, then due to the induction
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hypothesis v̄p was alive when {m, p} was allocated and will continue alive until node p is
visited. Hence v̄p was alive when {j, k} was allocated. Therefore, the assertion is true at the
end of the sweeping of node m, and, by induction, at the end of all iterations.

Proposition 5.3 The lifespan of an edge {j, k} is contained in the intersection of the life-
spans of the adjoints v̄j and v̄k.

Demonstration: In Proposition 5.2 we proved that when {j, k} allocated, the correspond-
ing adjoints were alive. The edge {j, k} will be deleted when pushed on iteration max{j, k}
until which the adjoints v̄j and v̄k will be alive, for when the node j (resp., k) is swept, v̄j
(resp., v̄k) is used to calculate the adjoints of predecessores.
Demonstration of Proposition 5.1 : The first item is a consequence of Proposition 5.3,
for we only need r distinct locations for the nodes in our graph structure. To prove this,
supppose that on one iteration there are more then r nodes with adjacent edges. As a
consequence of Proposition 5.3 there are more then r adjoints simultaneaosly alive, which is
impossible for r is the maximum number of adjoints that have an overlapping lifespan. The
Adjacency List structure uses a quantity of RAM proportional to the number of nodes. This
proves the first item of Proposition 5.1. The second item is a consequences of the first item,
for if there are r nodes in the graph, and each node has at most d∗ neighbors then there are
at most rd∗ elements in the adjacency lists and lists are a form of SAM.

The edge pushing Algorithm uses as much RAM as the Reverse Gradient Algorithm 3.8.
The question is if the quantity of SAM used is too much to keep on the internal memory
of the processor. Though we do not report on all such tests, we carried out experiments on
functions with very sparse Hessians with more then 106 variables, and no overflow of the
internal memory occurred.

5.4.3 Bounds for Partially Separable Functions

As defined in [27], a function f : Rn → R is partially separable if

f(x) =
m∑
i=1

fi(xIi), (5.2)

where Ii ⊂ {1, . . . , n} and ∪mi=1Ii = {1, . . . , n}, and there exists p ∈ N such that: |Ii| ≤ p < n
for i = 1, . . . ,m.

Additionally, let us assume we have a coded instance of a partially separable function
and let q be an integer such that the number of intermediate variables used to calculate
fi(xIi) is bounded above by q, for i = 1, . . . ,m. When p � n, this representation can
be exploited in a number of contexts such as nonlinear optimization [27] and efficiently
calculating derivatives [21].

The computational graph in Figure 5.3 is compatible with the evaluation of a partially
separable function. Each node fi is the root of a computational graph that calculates the
nonlinear function fi(xIi). The drawing does not indicate such, but the fi subgraphs may
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share nodes and independent variables with each other. The emphasis in the schematics is
how these graphs are connected from above, leaving possible connections from below to the
imagination. The vj nodes are the partial sums:

vj =

j∑
i=1

fi(xIi) (5.3)

Figure 5.3: Computational graph
associated to partially separable

function

f1 f2

v1

v2

f3

vm−1

fm

When using operator overloading to generate an
evaluation procedure, the format of the computa-
tional graph in Figure 5.3 is very common for par-
tially separable functions. What we set out to
demonstrate here does not require that the com-
putional graph be exacly like Figure 5.3, but sim-
ply that the last m− 1 intermediate variables of the
evaluation procedure are sums of the fi’s. The com-
putational graph in Figure 5.3 is an example of such
an evaluation procedure, and will serve as a visual
guide for our demonstration. Upon executing the
edge pushing Algorithm on such a evaluation pro-
cedure, the first m− 1 nodes visited are sum opera-
tions hence no edges will be allocated. Hence most
all of the computational effort occurs while the nodes
in the fi rooted graphs are swept. For functions
such that p � m and q � m, the edge pushing

algorithm efficiently calculates the Hessian matrix,
Proposition 5.4.

Proposition 5.4 Consider the partially separable function in (5.2). Let p and q be an
upperbound for the number independent and intermediate variables, respectively, in each fi
subgraph, for all i ∈ {1, . . . ,m}. Assume a computational graph G = (V,E) for f such
that the last m − 1 node of G are the partial sum variables (5.3), then the edge pushing

Algorithm 4.9 has a complexity of O(mp2q3).

Demonstration: The number of edges incident to any node within the computational
graph rooted by fi, is bounded by the number of nodes therein, ergo d∗ ≤ (q+ p). Applying
the bound in (5.1) to a single fi subgraph, the complexity is bounded by:

O

(
q∑
i=1

(q + p)2

)
= O

(
q(q + p)2

)
.

Hence the total complexity adds up to the computation of the m graphs rooted by fi,
i = 1, . . . ,m, and visiting all the nodes vj, j = 1, . . . ,m− 1 :

O
(
m(q(q + p)2) +m− 1

)
= O

(
mp2q3

)
.
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We have found throughout our numerical experiments that for partially separable func-
tions that are re-scalable in dimension (n), the number of nonlinear terms m will have a
linear relation with n while p and q tend to be fixed and independent of dimension. We will
emphasize this linear dependency by plotting the time taken by edge pushing over varying
dimensions with examples from the CUTE collection.

A fundamental aspect of the edge pushing Algorithm 4.9 is that the calculations carried
out on each nonlinear term of a partially separable function, are disjoint from the calculations
on other nonlinear terms. Therefore the execution on a partially separable function of m
terms can be broken down into m disjoint set of calculations, hence the workload can be
spread across m processors.

5.5 Computational experiments

All tests were run on the 32-bit operating system Ubuntu 9.10, processor Intel 2.8 GHz, and
4 GB of RAM. All algorithms were coded in C and C++. The algorithm edge pushing has
been implemented as a driver of ADOL-C, and uses the taping and operator overloading
functions of ADOL-C [19]. The tests aim to establish a comparison between edge pushing

and two algorithms, available as drivers of ADOL-C v. 2.1, that constitute a well estab-
lished reference in the field. These algorithms incorporate the graph coloring routines of
the software package ColPack [15, 16] and the sparsity detection and Hessian-vector prod-
uct procedures of ADOL-C [30]. We shall denote them by the name of the coloring scheme
employed: Star and Acyclic. Analytical properties of these algorithms, as well as numerical
experiments with them, have been reported in [14, 30].

We have hand-picked fifteen functions from the CUTE collection [5] and one — augmlagn
— from [22] for the experiments. The selection was based on the following criteria: Hessian’s
sparsity pattern, scalability and sparsity. We wanted to cover a variety of patterns; to be able
to freely change the scale of the function, so as to appraise the performance of the algorithms
as the dimension grows; and we wanted to work with sparse matrices. The appendix of [17]
presents results for dimension values n in the set 5 000, 20 000, 50 000 and 100 000, but the
tables in this section always refer to the n = 50 000 case, unless otherwise explicitly noted.

The list of functions is presented in Table 5.1. The ‘Pattern’ column indicates the type of
sparsity pattern: bandwidth1 (B x), arrow, box, or irregular pattern. The last two display the
number of columns of the seed matrix produced by Star and Acyclic, for dimension equal
to 50 000. In order to report the performance of these algorithms, we briefly recall their
modus operandi. Their first step, executed only once, computes a seed matrix S via coloring
methods, such that the Hessian f ′′ may be recovered from the product f ′′S, which involves
as many Hessian-vector products as the number of columns of S. The latter coincides with
the number of colors used in the coloring of a graph model of the Hessian. The recovery of
the Hessian boils down to the solution of a linear system. Thus the first computation of the
Hessian takes necessarily longer, because it comprises two steps, where the first one involves

1The bandwidth of matrix M = (mij) is the maximum value of |i− j| such that mij 6= 0.
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# colors
Name Pattern Star Acyclic

cosine B 1 3 2
chainwoo B 2 3 3
bc4 B 1 3 2
cragglevy B 1 3 2
pspdoc B 2 5 3
scon1dls B 2 5 3
morebv B 2 5 3
augmlagn 5× 5 diagonal blocks 5 5
lminsurf B 5 11 6
brybnd B 5 13 7
arwhead arrow 2 2
nondquar arrow + B 1 4 3
sinquad frame + diagonal 3 3
bdqrtic arrow + B 3 8 5
noncvxu2 irregular 12 7
ncvxbqp1 irregular 12 7

Table 5.1: Test functions

the coloring, and the second one deals with the calculation of the actual numerical entries.
In subsequent Hessian computations, only the second step is executed, resulting in a shorter
run. It should be noted that the number colors is practically insensitive to changes in the
dimension of the function in the examples considered, with the exception of the functions
with irregular patterns, noncvxu2 and ncvxbqp1.

Table 5.2 reports the times taken by edge pushing and by the first and second Hessian
computations by Star and Acyclic. It should be pointed out that Acyclic failed to recover the
Hessian of ncvxbqp1, the last function in the table. In the examples where edge pushing

is faster than the second run of Star (resp., Acyclic), we can immediately conclude that
edge pushing is more efficient for that function, at that prescribed dimension. This was the
case in 14 (resp., 16) examples. However, when the second run is faster than edge pushing,
the corresponding coloring method may eventually win, if the Hessians are computed a
sufficient number of times, so as to compensate the initial time investment. This of course
depends on the context in which the Hessian is used, say in a nonlinear optimization code.
Thus the number of evaluations of Hessians is linked to the number of iterations of the code.
The minimum time per example is highlighted in Table 5.2.

Focusing on the two-stage Hessian methods, we see that Star always has fastest second
runtimes. Only for function sinquad is Star’s first run faster than Acyclic’s. Nevertheless,
this higher investment in the first run is soon paid off, except for functions arwhead, nondquar
and bdqrtic, where it would require over 1600, 50 and 25, respectively, computations of the
Hessian to compensate the slower first run. We can also see from Tables 5.1 and 5.2 that
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Star Acyclic
Name 1st 2nd 1st 2nd e p

cosine 9.93 0.16 9.68 2.52 0.15
chainwoo 35.07 0.33 33.24 5.08 0.30
bc4 10.02 0.25 10.00 2.56 0.25
cragglevy 28.17 0.79 28.15 2.60 0.48
pspdoc 10.31 0.35 10.27 4.39 0.23
scon1dls 11.00 0.59 10.97 4.96 0.40
morebv 10.36 0.46 10.33 4.49 0.35
augmlagn 15.99 0.68 8.36 16.74 0.27
lminsurf 9.30 1.01 9.24 3.89 0.35
brybnd 11.87 2.44 11.73 12.63 1.68
arwhead 176.50 0.16 45.86 0.24 0.20
nondquar 166.59 0.18 28.64 2.57 0.12
sinquad 606.72 0.26 888.57 1.51 0.32
bdqrtic 262.64 1.34 96.87 7.80 0.80
noncvxu2 29.69 1.10 29.27 7.76 0.28
ncvxbqp1 13.51 2.42 – – 0.37

Averages 87.98 0.78 82.08 5.32 0.41

Variances 25 083.44 0.54 50 313.10 19.32 0.14

1Table 5.2: Runtimes in seconds for Star, Acyclic and edge pushing.
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Star’s performance on the second run suffers the higher the number of colors needed to
color the Hessian’s graph model, which is to be expected. Thus the second runs of lminsurf,
brybnd, bdqrtic, noncvxu2 and ncvxbqp1 were the slowest of Star’s. Notice that, although
the Hessian of bdqrtic doesn’t require as many colors as the other four just mentioned, the
function evaluation itself takes longer.

On a contrasting note, edge pushing execution is not tied to sparsity patterns and thus
this algorithm proved to be more robust, depending more on the density and number of
nonlinear functions involved in the calculation. In fact, this is confirmed by looking at the
variance of the runtimes for the three algorithms, see the last row of Table 5.2. Notice that
edge pushing has the smallest variance. Furthermore, although Star was slightly faster than
edge pushing in the second run for the functions arwhead and sinquad, the time spent in
the first run was such that it would require over 4 000 and 10 000, respectively, evaluations
of the Hessian to compensate for the slower first run.

The bar chart in Figure 5.4, built from the data in Table 5.2, permits a graphical com-
parison of the performances of Star and edge pushing. Times for function brybnd deviate
sharply from the remaining ones, it was a challenge for both methods. On the other hand,
function ncvxbq1 presented difficulties to Star, but not to edge pushing.

The bar chart containing the runtimes of the three algorithms is made pointless by the
range of runtimes of Acyclic, much bigger than the other two. To circumvent this problem,
we applied the base 10 log to the runtimes multiplied by 10 (just to make all logs positive).
The resulting chart is depicted in Figure 5.5.

Although the results presented in Table 5.2 correspond to the dimension 50 000 case, they
represented the general behavior of the algorithms in this set of functions. This is evidenced
by the plots in Figures 5.6 and 5.7, that show the runtimes of edge pushing and Star on
four functions for dimensions varying from 5 000 to 100 000.

The functions cosine, sinquad, brybnd and noncvxu2 were selected for these plots because
they exemplify the different phenomena we observed in the 50 000 case. For instance, the
performances of both edge pushing and Star are similar in the functions cosine and sinequad,
and this has happened consistently in all dimensions. Thus the dashed and solid lines in
Figure 5.6 intertwine, and there is no striking dominance of one algorithm over the other.
Also, these functions presented no real challenges, and the runtimes in all dimensions are
low.

The function brybnd was chosen because it presented a challenge to all methods, and
ncvxu2 is the representative of the functions with irregular sparsity patterns. The plots in
Figure 5.7 show a consistent superiority of edge pushing over Star for these two functions.
All plots are close to linear, with the exception of the runtimes of Star for the function
noncvxu2. We observed that the number of colors used to color the graph model of its
Hessian varied quite a bit, from 6 to 21. This highest number occurred precisely for the
dimension 70 000, the most dissonant point in the series.

The appendix of [17] contains the runtimes for the three methods, including first and
second runs, for all functions, for dimensions 5 000, 20 000 and 100 000.

58



0.16

0.33

0.25

0.79

0.35

0.59

0.46

0.68

1.01

2.44

0.16

0.18

0.26

1.34

1.1

2.42

0.15

0.3

0.25

0.48

0.23

0.4

0.35

0.27

0.35

1.68

0.2

0.12

0.32

0.8

0.28

0.37

cosine

chainwoo

bc4

cragglevy

pspdoc

scon1dls

morebv

augmlagn

lminsurf

brybnd

arwhead

nondquar

sinquad

bdqrtic

noncvxu2

ncvxbqp1

edge pushing

Star

Time (in seconds)

F
u
n

ct
io

n
s

Figure 5.4: Graphical comparison: Star versus edge pushing.
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5.6 Discussion

The formula (4.17) for the Hessian obtained in Corollary 4.1 leads to new correctness proofs
for existing Hessian computation algorithms and to the development of new ones. We also
provided a graph model for the Hessian computation and both points of view inspired the
construction of edge pushing, a new algorithm for Hessian computation that conforms to
Griewank and Walther’s Rule 16 of Automatic Differentiation [20, p. 240]:

The calculation of gradients by nonincremental reverse makes
the corresponding computational graph symmetric, a property
that should be exploited and maintained in accumulating Hes-
sians.

The new method is a truly reverse algorithm that exploits the symmetry and sparsity
of the Hessian. It is a one-phase algorithm, in the sense that there is no preparatory run
where a sparsity pattern needs to be calculated that will be reused in all subsequent itera-
tions. This can be an advantage if the function has a discontinious second derivative, thus
requiring recalculation of the sparsity pattern when changing from one continouos region to
another. For instance h(u) = (max{−u, 0})2. This type of function is used as a differentiable
penalization of the negative axis. It is not uncommon to observe the ‘thinning out’ of Hes-
sians over the course of nonlinear optimization, as the iterations converge to an optimum,
which obviously lies in the feasible region. If the sparsity structure is fixed at the beginning,
one cannot take advantaged of this slimming down of the Hessian.

edge pushing was implemented as a driver of ADOL-C[19] and tested against two other
algorithms, the Star and Acyclic methods of ColPack [16], also available as drivers of ADOL-
C. Computational experiments were run on sixteen functions of the CUTE collection [5]. The
results show the strong promise of the new algorithm. When compared to Star, there is a
clear advantage of edge pushing in fourteen out of the sixteen functions. In the remaining
two the situation is unclear, since Star is a two-stage method and the first run can be very
expensive. So even if its second run is faster than edge pushing’s, one should take into
account how many evaluations are needed in order to compensate the first run. The answers
regarding the functions arwhead and sinquad were over 4 000 and 10 000, respectively, for
dimension equal to 50 000. These numbers grow with the dimension. Finally, it should be
noted that edge pushing’s performance was the more robust, and it wasn’t affected by the
lack of regularity in the Hessian’s pattern.

We observed that Star was consistently better than Acyclic in all computational exper-
iments. However, Gebremedhin et al. [14] point out that Acyclic was better than Star
in randomly generated Hessians and the real-world power transmission problem reported
therein, while the opposite was true for large scale banded Hessians. It is therefore manda-
tory to test edge pushing not only on real-world functions, but also within the context of
a real optimization problem. Only then can one get a true sense of the impact of using
different algorithms for Hessian computation.

It should be pointed out that the structure of edge pushing naturally lends itself to
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parallelization, the topic of the final chapter. The opposite seems to be true for Star and
Acyclic. The more efficient the first run is, the less colors, or columns of the seed matrix one
has, and only the task of calculating the Hessian-vector products corresponding to f ′′S can
be seen to be easily parallelizable.
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Dimension 5 000 20 000 100 000
Name Star Acyclic e p Star Acyclic e p Star Acyclic e p

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd
cosine 0.10 0.02 0.09 0.04 0.02 1.58 0.07 1.61 0.45 0.07 37 0.35 37 9.48 0.31
chainwoo 0.38 0.04 0.33 0.09 0.02 6.11 0.12 5.41 0.92 0.11 137 0.65 130 19.54 0.58
bc4 0.11 0.02 0.10 0.05 0.02 1.59 0.09 1.58 0.48 0.10 37 0.51 37 9.57 0.50
cragglevy 0.29 0.05 0.28 0.05 0.04 4.54 0.30 4.53 0.49 0.19 109 1.57 109 9.66 1.00
pspdoc 0.11 0.04 0.11 0.07 0.02 1.61 0.14 1.60 0.86 0.09 36 0.70 36 17.49 0.44
scon1dls 0.11 0.04 0.12 0.07 0.04 1.63 0.24 1.61 0.92 0.16 37 0.95 37 20.05 0.81
morebv 0.12 0.05 0.12 0.08 0.04 1.63 0.19 1.61 0.91 0.14 37 0.88 37 18.13 0.73
augmlagn 0.13 0.07 0.11 0.21 0.02 1.64 0.28 1.36 2.83 0.12 84 1.40 33 65.98 0.55
lminsurf 0.12 0.09 0.12 0.09 0.03 1.57 0.45 1.55 0.78 0.14 36 2.30 36 15.04 0.68
brybnd 0.17 0.23 0.16 0.22 0.18 1.96 0.96 1.88 2.20 0.67 39 4.88 39 42.05 3.36
arwhead 1.52 0.01 0.42 0.03 0.02 28.80 0.06 9.99 0.09 0.09 943 0.31 233 0.47 0.42
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sinquad 2.79 0.02 5.09 0.05 0.03 60.97 0.11 99.54 0.33 0.13 3905 0.54 8961 5.14 0.66
bdqrtic 1.55 0.13 0.48 0.22 0.09 28.62 0.55 7.66 1.40 0.34 4323 2.68 833 71.4 1.65
noncvxu2 0.32 0.08 0.32 0.12 0.03 4.85 0.42 4.73 1.41 0.12 118 2.21 117 29.45 0.56
ncvxbqp1 0.15 0.20 – – 0.02 2.22 0.91 – – 0.13 51 5.39 – – 0.77
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Chapter 6

Obtaining the Hessian’s Sparsity
Pattern using AD

Obtaining the sparsity pattern of the Hessian is a necessary step in a well-known method
for calculating sparse Hessians using Automatic Differentiation or Finite Differences [13, 14].
With the sparsity pattern in hand, one may also use univariante Taylor series or second order
scalar methods to individually calculate each nonzero element in the Hessian [1, 4].

We describe two methods for automatically calculating the sparsity pattern that use the
framework of automatic differentiation, both of which consider a set of elemental functions
composed of only unary and binary operations. The first method is by Andreas Walther [30]
which has been implemented as the driver called hess pat in ADOL-C [19]. Essentially
hess pat propagates nonlinearity information forward through the function evaluation. The
second is a new method called edge pushing sp which is an algorithm adapted from the
edge pushing algorithm. edge pushing sp does the opposite in the sense that it propa-
gates nonlinearity information in the reverse order. We compare the two algorithms using
complexity analysis and numerical tests.

The sparsity structure that we are interested in is a structure that indicates the positions
in the Hessian matrix that are not always zero. We refer to this sparsity structure as the
sparsity super-structure.

Let f : Rn → R and x ∈ Rn. The sparsity structure of the Hessian f ′′(x) is a set of
unordered pairs where:

{j, k} ∈ sparsity structure ⇔ ∂2f

∂xj∂xk
(x) 6= 0 ∈ R.

The sparsity super-structure of the second derivative f ′′ is a set of unordered pairs where:

{j, k} ∈ sparsity super-structure ⇔ ∂2f

∂xj∂xk
6= 0 ∈ C2(R).

The common idea behind hess pat and edge pushing sp is that if ∂2f/∂xj∂xk is not
identically zero then there exists an intermediate variable vi = ui(x) such that ∂2ui/∂xj∂xk
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is not identically zero. This is equivalent to saying that there exists r, s and i such that
∂2φi/∂vr∂vs is not identically zero and j ≺∗ r and k ≺∗ s, where ≺∗ is the transitive closure
of the precedence relation. This motivates the definition of nonlinear interactions. We
say that node j has a nonlinear interaction with node k if there exist i, r and s such that
∂2φi/∂vr∂vs is not identically zero, j ≺∗ r and k ≺∗ s.

One can build an over-estimate of the sparsity super-structure by including all pairs {j, k}
such that j has a nonlinear interaction with k. This is an overestimate due to degeneracy,
for example consider the sequence of statements

v1 = sin(x0), v2 = cos(x0), v3 = v1v1, v4 = v2v2, v5 = v3 + v4.

Our overestimate would include the pair {0, 0} when in fact the sparsity super-structure of
this evaluation procedure is empty. In practical examples, both methods calculate this over-
estimated sparsity super-structure. For most function programs this overestimated sparsity
super-structure is in fact the sparsity super-structure. From here on we drop the “overesti-
mated” prefix for brevity.

6.1 Walther’s Forward Mode: hess pat

The first tool for calculating structural information of the Hessian automatically was im-
plemented in AMPL [12]. By automatically detecting a partially separable structure, or, in
other words, identifying that the function of interest is a sum of nonlinear terms, the Hessian
matrices of the nonlinear terms are calculated separately and summed together to produce
the desired Hessian matrix. Although this procedure exploits the sparsity pattern, is does
not calculate it.

An algorithm that calculates the actual sparsity structure of the Hessian was proposed
and analyzed in 2008 by Walther [30]. Roughly speaking, the algorithm walks through the
function’s list of intermediate variables and upon encountering a nonlinear elemental function
φi it checks to see how φi contributes to the sparsity super-structure of the Hessian. To do
due this, the linear dependencies between intermediate variables and independent variables
are stored in ` sets χi called index domains, defined in [20] as follows

χi := {j ≤ n : j − n ≺∗ i} for 1 ≤ i ≤ `.

Each χi contains the indices of the independent variables necessary to calculate vi, in other
words, there exists u : R|χi| → R such that u(x) = vi.

If we also create index domains for the independent variables and set χj−n := {j} for
1 ≤ j ≤ n, one can compute the index domains using the forward recurrence:

χi ←
⋃
j≺i

χj, for i = 1, . . . , `.

To keep track of the accumulating sparsity super-structure, Walther [30] defines the
Nonlinear interaction domains Nj, j = 1, . . . , n,

Nj := {k ≤ n : j has a nonlinear interaction with k} .
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The pseudo code of hess pat is in Algorithm 6.1. Upon execution, the algorithm pre-
forms a forward sweep of the intermediate variables from v1 to v`. At the ith iteration, it
calculates χi by merging the index domains of vi’s predecessors. If φi is a nonlinear func-
tion, the nonlinear interaction domain of the independent variables indexed in χi must be
updated. How they are updated depends on the type of nonlinear function φi is: If it is
unary φi(vj)j≺i = φi(vj) then every variable indexed in χi has a nonlinear interaction with
every other variable therein. To carry-out this update we merge Np for every p ∈ χi with
χi, see line (8). If φi is binary φi(vj)j≺i = φi(vj, vk) and nonlinear there are two possibilities:
i) either φi is bilinear therefore each variable indexed in χj has a nonlinear interaction with
each indexed in χk, lines (11) and (15), or ii) it is nonlinear in both vj and vk and every
variable indexed in χi has a nonlinear interaction with every other variable therein, lines (13)
and (17).

Algorithm 6.1: Walther’s Forward Mode: hess pat

Input: A taped evaluation procedure T of f(x)
1 for i = 1, . . . n do
2 χi−n ← {i}, Ni ← ∅
3 end
4 for i = 1, . . . ` do
5 χi ←

⋃
j≺i χj

6 if φi is nonlinear then
7 if vi = φi(vj) then
8 ∀p ∈ χi : Np ← Np ∪ χi
9 if vi = φi(vj , vk) then

10 if φi is linear in vj then
11 ∀p ∈ χj : Np ← Np ∪ χk
12 else
13 ∀p ∈ χj : Np ← Np ∪ χi
14 if φi is linear in vk then
15 ∀p ∈ χk : Np ← Np ∪ χj
16 else
17 ∀p ∈ χk : Np ← Np ∪ χi
18 end

Output: A matrix sparsity pattern, where ith row contains the indices in Ni.

The algorithm has been implemented and incorporated to ADOL-C [19] as a driver called
hess pat. We will use this driver later on for comparative numerical tests.

6.2 A New Reverse Mode: edge pushing sp

From the edge pushing Algorithm 4.9 we can extract an algorithm for calculating the spar-
sity super-structure. This method for calculating the sparsity structure sweeps through
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the evaluation procedure in the reverse order. Upon encountering a nonlinear function φi
such that ∂2φi/∂vj∂vk 6= 0, an edge is allocated incident to nodes j and k to represent the
nonlinear interaction between vj and vk. This nonlinear dependency is “pushed down” to
predecessors by pushing and splitting the edge. Contrasting to hess pat, the contribution
of a nonlinear function φi to the sparsity pattern is not immediately calculated. Instead, the
nonlinear function initiates a trickle of edges down the computational graph. These edges will
eventually connect independent variables, and an edge connecting xj to xk means that {j, k}
is in the overestimated sparsity super-structure. We call the algorithm edge pushing sp. To
transform edge pushing into this sparsity calculating algorithm, we dispensed of all things
related to correctly calculating weights of edges and simply maintain edges that would have
weights that are not always zero.

The resulting edge pushing sp pseudo code is in Algorithm 6.2. The input for
edge pushing sp is a recorded evaluation procedure T , but differently from the usual
recorded evaluation procedure for reverse routines such as the edge pushing Algorithm 4.9,
the floating point values of vi’s need not be recorded.

6.3 Complexity Bounds

6.3.1 Bounds for Partially Separable Functions

Our objective here is to argue that, for practical cases, edge pushing sp is more suited for
obtaining the sparsity pattern of partially separable functions (5.2) then hess pat. Simply
put, the time spent in merging the index domains on line (5) of the hess pat Algorithm 6.1
is costly. Specifically, under reasonable assumptions, the temporal complexity of calculating
the index domains is bounded below by Ω(n2/p + m). While edge pushing sp is bounded
above by O(mp2q3). We will emphasize these bounds with numerical tests on partially
separable functions in which we can grow n. From this point on, we prove these claims.

When using operator overloading to generate an evaluation procedure, the format of
the computational graph in Figure 6.3.1 is very common for partially separable functions.
We define such evaluation procedure as a partially separable O.O.P (Operator Overloading
Procedure). Each node fi in Figure 6.3.1, is the root of a computational graph that calculates
the nonlinear function fi(xIi). The vj nodes are the partial sums:

vj =

j∑
i=1

fi(xIi), j = 1, . . . ,m− 1.

Such a computational graph is generated when the function program supplied is like the one
in Algorithm 6.3. This is truly a natural way of computing a partially separable function, so
much so, almost all of our test functions from the CUTE collection possess such a format.
The few that were not in this format, could be made so with small adjustments. However,
no adjustments were made on the functions for the computational tests.
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Algorithm 6.2: edge push sp: Sparsity Pattern calculation.

Input: A taped evaluation procedure T of f(x)
Initialization: a graph G = (V,E) with |V | = n+ ` and E = ∅
for i = ` : 1 do

Pushing:

foreach {i, p} ∈ E do
if vi = φi(vj, vk) then

E ← E ∪ {p, j}
E ← E ∪ {p, k}

else if vi = φi(vj) then
E ← E ∪ {p, j}

end
Creating:

if φi is nonlinear then
if vi = φi(vj) then

if
∂2φi
∂v2

j

6= 0 then

E ← E ∪ {j, j}
else if vi = φi(vj, vk) then

if
∂2φi
∂v2

j

6= 0 then

E ← E ∪ {j, j}

if
∂2φi
∂vj∂vk

6= 0 then

E ← E ∪ {k, j}

if
∂2φi
∂v2

k

6= 0 then

E ← E ∪ {k, k}
end
Output: The subgraph of G formed by the node set {1− n, . . . , 0}.

Algorithm 6.3: A typical function program of a partially separable function f(x) = y.

Input: x ∈ Rn
Intialization: y = 0
for i = 1 : m do

y = y + fi(xIi)
end
Output: y
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Figure 6.1: Computational graph of a partially separable O.O.P

Proposition 6.1 The temporal complexity of calculating the index domains χi, i = 1, . . . , `,
of partially separable O.O.P is Ω

(
n2/p+m

)
.

Demonstration: To prove Proposition 6.1, first note that independently of the merging
method used, the operation count of merging two ordered sets is at least the sum of their
respective cardinalities.1

Let χj be the index domain of the partial sum variable vj, j = 1, . . . ,m− 1. Let χfi be
the index domain of the root variables fi, i = 1, . . . ,m. We use p to denote the maximum
number of independent variables indexed in any given χfi, thus |χfi| ≤ p, for i = 1, . . . ,m.

We will obtain a lower bound for calculating the index domains by bounding the com-
plexity of computing each χj, j = 1, . . . ,m. The set χ1 is built by merging χf1 and χf2 , while
χj are built by merging the sets χj−1 and χfj+1

, for j = 2, . . . ,m. Necessarily |χm−1| = n,
hence there are at least n operation counts in merging χm−2 and χfm . Given there are at
most p independent variables in the graph rooted by fm, we have that |χm−2| ≥ n− p which
in turn incurs an operation count of at least n− p in calculating the set χm−2. By induction
we have:

Operation Count(χm−j) ≥ max{0, n− (j − 1)p}.

Thus, for the total number of operation counts in calculating all χj, we have the following

1This of course excludes cases where we have specific knowledge of the sets.
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bound:

m∑
j=1
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⌋
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2
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)⌊n

p

⌋
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Hence the operation count for calculating the index domains is Ω(n2/p+m).
The upper bound O(mp2q3) is immediate for edge pushing sp given that it has the same

complexity of edge pushing Algorithm 5.2, and we proved this bound in Proposition 5.4 for
all partially separable functions such that the last m− 1 intermediate variables are sums.

6.4 Computational Experiments

All tests were run on the 32-bit operating system Ubuntu 9.10, processor Intel 2.8 GHz,
and 4 GB of RAM. All algorithms were coded in C and C++. Both edge pushing sp and
hess pat algorithms have been implemented as drivers of ADOL-C, and use the same taped
evaluation procedure produced by ADOL-C [19]. The output of the two algorithms is the
same overestimated sparsity super-structure.

As test cases, we have chosen the Lagrange function of the CUTE problems broydnbd,
chainwoo, lminsurf, morebv and sinquad with varying dimension n. The first four functions
are precisely the test functions used in [30]. We chose the last function sinquad for its Hessian
structure has a property that the others do not: a dense row. The runtimes are displayed in
Table 6.4. To emphasize the asymptotic behavior, we vary dimension from 1000 to 2×105. All
test cases are partially separable with m being linear in n, whereas p and q were independent
of n. The nonlinear dependence on n of the execution time of hess pat, Proposition 6.1,
becomes apparent. All five examples have similar results, hence we have plotted only one of
them, morebv, in Figure 6.2.

Accumulating linear dependencies between intermediate variables and independent vari-
ables, as is done in hess pat, becomes costly as the dimension of the problem grows. This
might well be a necessary aspect of algorithms that perform a forward sweep. While accumu-
lating nonlinear dependencies in a reverse sweep, we need not carry these linear dependencies.
Instead, only known contributions to the sparsity pattern are dealt with.

As an immediate application of edge push sp, one can make the Hessian methods that
use graph colouring [13, 14] more competitive.
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morebv chainwoo lminsurf brydnbd sinquad
n hess p e p sp hess p e p sp hess p e p sp hess p e p sp hess p e p sp

1000 0.03 0.01 0.02 0.02 0.01 0.01 0.01 0.03 0.01 0.01
2000 0.05 0.02 0.05 0.02 0.02 0.01 0.03 0.06 0.05 0.02
4000 0.06 0.05 0.21 0.02 0.06 0.02 0.08 0.12 0.20 0.02
6000 0.13 0.05 0.41 0.02 0.13 0.02 0.17 0.18 0.44 0.03
8000 0.24 0.05 0.84 0.03 0.24 0.03 0.28 0.25 0.77 0.04

10000 0.38 0.07 1.31 0.04 0.38 0.04 0.42 0.29 1.21 0.05
12000 0.54 0.09 1.97 0.04 0.52 0.06 0.59 0.34 1.74 0.06
16000 0.94 0.11 3.37 0.07 0.93 0.08 1.01 0.49 3.10 0.08
20000 1.61 0.14 5.33 0.09 1.42 0.10 1.56 0.58 4.88 0.10
30000 3.29 0.21 12.06 0.12 3.22 0.15 3.39 0.88 11.62 0.15
40000 6.02 0.27 21.20 0.16 5.74 0.20 6.03 1.15 32.64 0.20
60000 13.74 0.41 47.83 0.24 12.70 0.30 13.27 1.86 106.02 0.29
80000 23.68 0.57 83.20 0.32 22.59 0.39 23.25 2.33 214.99 0.38

100000 36.73 0.72 131.03 0.41 35.94 0.49 38.88 3.06 359.33 0.49
200000 166.81 1.34 604.86 0.81 165.47 1.03 167.09 5.96 1532.26 1.02

Table 6.1: Runtime results for edge pushing sp (abbreviated to e p sp) and hess pat

(abbreviated to hess p) over varying dimensions.
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Figure 6.2: The time in seconds over varying dimension on problem morebv
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Chapter 7

Parallel Sparse Hessian Computation

7.1 Introduction

Physical limitations that include temperature and a minimum transistor size combined with
the growing cost of producing faster single processors are pushing parallel computing forward.
Supercomputers such as can be found at http://top500.org/ have been using concurrent
processing since the ’70s to solve large scientific and industrial problems, but now multi-
core processors and parallel processing has become commonplace, with most all laptops on
the market with two or more processing units.1 It is desirable to take full advantage of this
processing power, and efforts are being made throughout the computing community to adapt
existing algorithms to make good use of this surge of parallel processing computers.

Functions that possess sparse Hessian matrices have a partially separable structure (5.2)
such that p � n, [27]. One can use the partially separability of a function to break up the
work load in calculating the Hessian. Due to the linearity of the differential operator, the
Hessian of the partially separable function f(x) in (5.2) is a summation of other Hessians:

Hf (x) =
m∑
i=1

Hfi
(xIi). (7.1)

A simple method for dividing up the work is to assign to each processor the job of calcu-
lating a number of Hfi

Hessians. The computational graph in Figure 7.1 is compatible with
the evaluation of a partially separable function. Each node fi is the root of a computational
graph that calculates the nonlinear function fi(xIi). Each coloured ellipse represents a sub-
graph. The ellipses intersects to indicate that each graph rooted by a fi may share nodes
and independent variables with other subgraphs. The vj nodes are the partial sums:

vj =

j∑
i=1

fi(xIi). (7.2)

Though the total processing can be increased due to intersections in these subgraphs, one

1The laptops used to write this dissertation both had dual-core processors.
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Figure 7.1: Computational graph of a partially separable function.
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can still obtain speed-up through concurrent processing.

A general strategy for calculating the Hessian in parallel would be to cut up the taped
evaluation procedure of a partially separable function, creating m severed pieces which corre-
spond to the m fi functions. Each processing unit then calculates the Hessian Hfi

associated
to a number of fi tapes, to finally send the separate Hessians to a single master processor
that will merge the Hessians into one.

If one were to use the edge pushing algorithm 5.2, or any other completely reverse
Hessian routine, one would not need to cut up the tape previously, but simply distribute the
original tape to all processing units, and allow each processor to calculate a number of Hfi

Hessians.

The strategies described here work for both distributed and shared memory models. In
shared memory systems, one can concurrently execute different threads of tasks, in other
words, instructions that are independent of one another. Though the separate threads are
executed concurrently, the threads share cache memory. On the other hand, in a distributed
system separate processors with separate memory can work concurrently to achieve a com-
mon goal. Though the memory is not shared between processors, which allows for simulta-
neous memory access, now interprocess communication costs become the issue. Throughout
this chapter we will use threads to designate the separate tasks being executed, but keep
in mind the strategies presented here can be implemented in a shared or distributed sys-
tem. Now we work out the details of these two strategies, first the general, then the specific
edge pushing approach.

74



7.2 General approach

First we describe a sequential algorithm for cutting up a taped evaluation procedure of a
partially separable function. After the pieces are severed, various threads may simultaneously
calculate the Hessians associated with the severed pieces. In addition to the function being
partially separable, assume that it is coded in such a way that the partial sum variables (7.2)
are the last m− 1 nodes of the computational graph.

7.2.1 Sequential Tape Cutting

The tape cut Algorithm 7.1 receives as an input a taped evaluation procedure T and an
integer nthreads: the number of threads that will concurrently calculate the Hessian. Its
output is a sequence of tapes T1 . . . Tnthreads. Algorithm 7.1 performs a reverse sweep
of the original tape. The central idea behind the cutting algorithm is to transverse the
partial sum variables, and by and large ignore them, to subsequently reach and identify the
head of each fi subgraph in Figure 7.1, then flag this head node as belonging to a certain
processor. Specifically, processors are numbered 1 to nthreads, and during the Setting

Flags step, the fi head nodes are flagged to processors according to the congruence classes of
mod (nthreads). Then in the Passing Flags step, flags are passed down to all predecessors
of the head node, indicating that they belong to the same threads as their successors. To
this end, lists flagsi are created for i = 1 − n, . . . , `. As node i is being swept, each k ∈
flagsi indicates that node i has been flagged for the kth thread. Flags are passed down to
predecessors j ≺ i by merging the set flagsi into flagsj. After a node has passed on each
flag k ∈ flagsi, its number and relevant information is recorded to the tape Tk.

Aside from this central idea, a small precaution must be taken to avoid copying “dead
end” nodes, that is, nodes that do not contribute to the end value of v`. To avoid assigning a
dead end subgraph to a thread, all predecessors of the end node ` are marked as “belonging”
by setting belongsj = 1, for j ≺ `. Then, as node i is visited in the reverse sweep, if
belongsi = 1 then the predecessors of i are also marked as belonging. By simply ignoring
nodes that do not belong, dead ends are forefended.

To analyze the Sequential tape cut Algorithm (7.1)’s complexity, first we fix the flagsi
sets, for i = n − 1, . . . , `, as linked lists and restrict the set of elemental functions to unary
and binary functions. As node i is swept, during the Setting Flags step, the inserting of
elements into flagsi need not be done in order, thus it can be carried out in constant time.
Consequently so can the Setting Flags step be done in constant time.

In the Passing Flags step, for each j ≺ i, the sets flagsi and flagsj are merged, thus
the complexity of Passing Flags step depends on how many elements are in these sets.
Given that there are nthreads threads, there can be at most nthreads integers in any set
flagsk, for k = 1 − n, . . . , `. Therefore the cost of merging any two flags· set is bounded
by O(nthreads) and consequently the complexity of the Passing Flags step is bounded by
O(nthreads). Hence each iteration of the Sequential tape cut Algorithm 7.1 is bounded by
O(nthreads), and the total complexity is O(nthreads`).
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Algorithm 7.1: Sequential tape cut

Input: T , nthreads
Initialization cur pro =0, belongsi = 0, flagsi = ∅, for i = 1− n . . . `,
tapes Ti = ∅ for i = 1 . . . nthreads
for i = 1, . . . , ` do

if φi = vj + vk and flagsi = ∅ then
belongsj =1
belongsk =1

else
Setting Flags:
if flagsi = ∅ and belongsi = 1 then

flagsi ← cur pro

cur pro = cur pro+1
if cur pro > nthreads then

cur pro=0

Passing Flags:
foreach k ∈ flagsi do

foreach j ≺ i do
flagsj = flagsj∪ flagsi

end
foreach k ∈ flagsi do
Tk ← node i data

end

end

end

end
Output: tapes T1 . . . Tnthreads
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7.2.2 Parallel Tape Cutting

Though the tape cut Algorithm 7.1 is a preparatory stage for parallel execution of Hessian
algorithms, it can be done in parallel. By allowing all threads access to the original tape2,
each thread will simultaneously cut out a designated number of fi functions from the original
tape. Thus the input to the Parallel tape cut Algorithm 7.2 is the original tape, the integer
nthreads and an integer mythread that corresponds to which thread is executing the Parallel
tape cut Algorithm 7.2. Two binary vectors initially set to zero, myflag and enemyflag,
with elements numbered 1− n to ` are used to flag the nodes. As the tape is transversed in
reverse order, the fi head nodes encountered such that

mythread = i mod nthreads,

are flagged by marking myflagi = 1, otherwise it is flagged as belonging to another thread by
marking enemyflagi = 1. In the Passing Flags step, flags of both types are passed down
to predecessors, but only nodes flagged by the myflag vector are copied into the output
tape T̂ .

The complexity of the Parallel tape cut Algorithm 7.2 is rather simple, for as node i
is swept, there are no loops through vectors or lists, and by restricting the set of elemental
functions to binary and unary functions, the overall complexity of Algorithm 7.2 is O(`).
The parallel tape cutting strategy consists of running the Parallel tape cut Algorithm 7.2
simultaneously on nthreads threads. In a shared memory model, different threads cannot
alter and access memory simultaneously. Thus, the allocating of nthreads sets of binary
vectors myflag and enemyflag should be done sequentially, which can incur in a large
execution time.

7.3 Parallel edge pushing

With a completely reverse Hessian routine, one need not explicitly cut the tape, but sim-
ply deliver the original tape to all processors and restrict which Hfi

Hessians of (7.1) each
processing unit is allowed to calculate. The general outline for a shared memory implementa-
tion is Algorithm 7.3, where the Hessian method adopted is edge pushing. The commands
followed by the hash # symbol indicate that the iterations of the following loop should be
distributed amongst the threads. This style of commands for parallel execution is borrowed
from the application programming interface of OpenMP [24]. Each call to edge pushing p

accompanies a tape and an integer thread, and will only calculate the Hessians Hfi
such

that
mythread = i mod nthreads.

The output of edge pushing p is a graph structure that stores a Hessian matrix. After all
calls to edge pushing p are finished, all graphs Gi, for i = 1 . . . nthreads, are merged into
one, which stores the desired Hessian matrix.

2In a distributed system this would be done by broadcasting the tape to all CPUs.

77



Algorithm 7.2: Parallel tape cut

Input: T , nthreads, mythread
Initialization belongsi = 0, enemyflagi = 0, myflagi = 0, for i = 1− n . . . `,
cur pro =0, tape T̂ = ∅
for i = 1, . . . , ` do

if φi = vj + vk myflagi = 0 and enemyflagi = 0 then
belongsj =1
belongsk =1

else
Setting Flags:
if myflagi = 0 and enemyflagi = 0 and belongsi = 1 then

if cur pro = mythread then
myflagi = 1;

else
enemyflagi = 1

cur pro = cur pro+1
if cur pro > nthreads then

cur pro=0

Passing Flags:
if myflagi = 1 then

foreach j ≺ i do
myflagj = 1

end

T̂ ← node i data

if enemyflagi = 1 then
foreach j ≺ i do

enemyflagj = 1
end

end

end

Output: tape T̂
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Algorithm 7.3: Parallel edge pushing strategy

Input: T , nthreads
Initialization Graph Gi, i = 1 . . . nthreads, Graph G
#Begin Parallel For Loop region
for thread = 1 . . . nthreads do

Gi = edge pushing p(T , thread);
end
#End Parallel region
for i = 1 . . . nthreads do

G← G ∪Gi

end
Output: G

The code for edge pushing p is in Algorithm 7.4, and it is literally a merger between the
Parallel tape cut Algorithm 7.2 and edge pushing. All the details of the Hessian calculation
in Algorithm 7.4 are left out, and only the major steps: Pushingi, Creatingi and Adjointi
are indicated. The focus is on how one selects which nodes will enter into the calculations,
and which will not. The same flagging procedure from Algorithm 7.2 is adopted, with the
binary vector myflag for flagging nodes associated to Hfi

Hessians that will be calculated,
and enemyflag for those that will not enter in the calculations.

The nodes encountered during the reverse sweep with nonlinear functions that have not
been flagged are precisely the fi head nodes. Therefore they are flagged in the Setting

Flags step. Control over what nodes enter in the calculation is exerted by restricting the
Creating step, which is only executed on nodes that have been flagged by myflag. Thus, the
larger nthreads is, the fewer sequences of trickling down edges are initiated by the Creating
step.

7.4 Concurrent Execution and Results

We have implemented the Parallel edge pushing strategy for execution in a shared memory
computer. The computer used for our experiments is a Mac Pro Xeon 64-bit workstation,
with two 2.8GHz quad-cores Intel Xeon processors and 12Mb on-chip level 2 cache per
processor. The chosen shared memory programming paradigm is OpenMp, which has become
one of the most successful and widely used [24]. OpenMP is a directive-based, fork-join model
for shared memory parallelism.

Care was taken when implementing Algorithm 7.3 to allocate the required memory for
execution outside of the parallel region. When a thread allocates memory within a parallel
region, a series of procedures are executed to ensure that no other thread will simultaneously
access or alter this region of memory, and this entails serious overheads. A series of measures
were also taken to diminish the number of accesses to the shared memory, this even entailed
a change of data structure, but we will not go into these details for they extrapolate the

79



Algorithm 7.4: Parallel edge pushing p

Input: x ∈ Rn, a tape T , nthreads, mythread
Initialization enemyflagi = 0, myflagi = 0, for i = 1− n . . . `,
cur pro =0, tape T̂ = ∅
for i = `, . . . , 1 do

Pushingi
Setting Flags:
if myflagi = 0 and enemyflagi = 0 then

if φi is a nonlinear function then
if cur pro = mythread then

myflagi = 1;
else

enemyflagi = 1
cur pro = cur pro+1
if cur pro > nthreads then

cur pro=0

end

Passing Flags:
if myflagi = 1 then

Creatingi
foreach j ≺ i do

myflagj = 1
end

if enemyflagi = 1 then
foreach j ≺ i do

enemyflagj = 1
end

Adjointi
end
Output: A Graph structure of a Hessian matrix.
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Figure 7.2: The runtime of bdqtic for Algorithm 7.3 with n = 50′000 and number of
processors varying from 1 to 8.

scope of this dissertation.

The types of computational effort that can be boosted using threading in a multi-core
shared memory computer, are ones that involve floating point arithmetic. While actions
dominated by accessing and allocating memory have no speed-up in shared memory archi-
tecture, for threads share a large potion of memory, and cannot concurrently access and
allocate it.

Our computational experiments show that the computational effort of the edge pushing sp

algorithm is dominated by accessing and altering memory. What is more, the memory re-
quirements for calculating a single Hfi

of (7.1) is of the same order of that of calculating the
entire Hessian matrix. This is due to the overwriting scheme employed for edge pushing,
for the Hessians Hfi

, for i = 1 . . .m, tend to have very similar sparsity patterns, and edges
allocated to calculate one Hfi

are re-used for the next one. Naturally threads cannot reuse
each other’s memory, thus more threads resulted in more memory allocation and a significant
growth in allocating and deleting time. Large enough to compromise the entire execution
time of the parallel edge pushing strategy on many test functions. Look to Figure 7.2,
which contains the results of executing Algorithm 7.3 on the function bdqtic with dimen-
sion n = 50′000 from the CUTE collection [5]. Similar results where obtained for all the
functions tested in Section 5.3.

To illustrate when such a strategy would be worthwhile in a shared memory computer,
we have elaborated an artificial function with a sparse Hessian such that the calculations
in edge pushing p algorithm are dominated by floating point arithmetic, see the Heavy
Arithmetic Function in Algorithm 7.5 and equations (7.3) and (7.4). In Figure 7.3 we have
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plotted the runtime results of Algorithm 7.3 for the Heavy Arithmetic Function with rep,
nonl, n and m equal to 20, 20, 50′000 and 50′000, respectively. There is a growing gain in
using more threads on the Heavy Arithmetic Function up to four threads, after which it
appears to stabilize around 45 seconds.

yi =

rep∏
j=1

i+nonl∏
k=i

sin(xk/j), (7.3)

y =
m∑
i=1

yi. (7.4)

Algorithm 7.5: Heavy Arithmetic Function

Input: x ∈ Rn, rep, nonl ∈ N and m ∈ N
Initialization: y = 0, yi = 1, for i = 1 . . .m.
for i = 1 . . .m do

for j = 1 . . . rep do
for k = i . . . i+ nonl do

yi = sin(xk/j) ∗ yi;
end

end

end
for i = 1 . . .m do

y = y + yi
end
Output: y

In conclusion, using an implementation of edge pushing aimed at sparse Hessians re-
quires dynamic data structures, however dynamic allocation and shared memory program-
ming do not mix. Thus our implementation of the Parallel edge pushing strategy does not
work well on shared memory computers due to dominance of memory related tasks. Nothing
indicates that such a strategy would not be a success in a distributed system, thus this will
be the focus of future work.

From a general outlook, a tape cutting strategy seems advantageous for it diminishes
the problem size. The original tape has a size proportional to ` while, if m is large and the
subgraphs headed by the fi nodes are of similar sizes, Figure 7.1, then the severed pieces of
the tape will be roughly proportional in size to `/nthreads. This being said, with taping
and overwriting scheme of ADOL-C, the memory requirements of executing edge pushing

on the smaller tapes was the same as the memory requirements of the original tape.
As the technology of processing power advances, more and more will memory related op-

erations become the bottleneck in modern software. This might well stimulate the production
of hybrid computers with distributed sets of multi-core processors.
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Figure 7.3: The runtime of Algorithm 7.3 for the function in Algorithm 7.5 with rep, nonl
n and m equal to 20, 20, 50′000 and 50′000, respectively. And processors varying from 1 to
8.
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Chapter 8

Conclusão

Resumindo as contribuições principais desta dissertação, desenvolvemos duas formas de ca-
racterizar o problema de calcular a matriz hessiana. Usando estas caracterizações, criamos
um novo algoritmo reverso para o cálculo da matriz hessiana: edge pushing. Implementa-
mos edge pushing, o comparamos com o estado da arte e os resultados são promissores.

� O grafo computacional e a matriz hessiana: A primeira caracterização consistiu
em descrever o cálculo das derivadas de segunda ordem como uma soma de pesos de
caminhos especiais no grafo computacional. Esta visão expôs as simetrias inerentes ao
problema e, com essa intuição, desenvolvemos um método reverso: edge pushing. Este
algoritmo tira proveito destas simetrias e acumula de forma eficiente todos os pesos
destes caminhos especiais, calculando, assim, todas as derivadas parciais de segunda
ordem.

� A fórmula hessiana por transformações de estados: Tomando a representação
da função como uma sequência de transformações de estado [20], descrevemos a matriz
hessiana como uma fórmula fechada, composta por somas e multiplicações das dervidas
das transformações de estado, corolário (4.1). Com esta fórmula, elaboramos novas
demonstrações de corretude de algoritmos existentes e desenvolvemos novos algoritmos.
Fazendo um paralelo com o cálculo eficiente de polinômios por eninhamento, obtemos
novamente o mesmo método reverso: edge pushing.

� O algoritmo edge pushing:

O edge pushing satisfaz a décima sexta regra de diferenciação automática do Griewank
e Walther [20, p.240]:

O cálculo do gradiente pelo método reverso torna o grafo com-
putacional simétrico, uma propriedade que deve ser explorada
e mantida ao acumular matrizes hessianas.

O edge pushing realmente aproveita a esparsidade e a simetria da matriz hessiana. É
um algoritmo de uma única fase, no sentido de que não há uma execução preparatória,
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como nos métodos de coloração de grafo [14, 30], que precisam calcular o padrão de
esparsidade da hessiana. Isso pode ser uma vantagem formidável quando se trata
de funções cuja segunda derivada é descont́ınua, exigindo, portanto, o recálculo do
padrão de esparsidade quando se muda de uma região cont́ınua para outra. Por ex-
emplo, h(u) = (max{−u, 0})2. Este tipo de função é usada como uma penalização
diferenciável do eixo negativo.

Os testes computacionais do edge pushing, comparandos com o método estrela e
aćıclico do ColPack [16], indicam que o edge pushing possui uma execução mais veloz
e é um algoritmo mais robusto.

8.1 Futuros desafios

� Mais testes: As funções de teste usadas foram tiradas da coleção CUTE [5], que, em
sua maioria, são funções cujas hessianas possuem estruturas de esparsidades pareci-
das e, por isso, não são inteiramente adequadas para testar algoritmos que calculam
matrizes hessianas. Logo, funções de teste cujas hessianas possuem estruturas de es-
parsidade mais diversificadas são importantes. Testes do edge pushing inserido em
um pacote de otimização não-linear também são necessários para apreciar o ganho em
eficiência.

� Uma implementação distribúıda de edge pushing: Nossos testes e análises re-
velaram que edge pushing não é adequado para adaptação e implementação em um
sistema de memória compartilhada, devido ao fato de os cálculos do edge pushing

serem dominados por acessos e alterações de memória. Mas tudo indica que uma
implementação em um sistema distribúıdo terá ganhos significativos.

� Estender resultados para altas ordens: Um interesse atual dos autores é desen-
volver a teoria e possivelmente implementações de algoritmos reversos de diferenciação
automática para o cálculo de derivadas de altas ordens. Apesar de que a dimensão
de um tensor derivada aumenta com a ordem da diferenciação; a sua esparsidade e a
sua simetria também aumentam. Um algoritmo reverso poderá aproveitar essa espar-
sidade e simetria e, por conseqüência, talvez tornar viável métodos de otimização de
alta ordem.
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