

 FICHA CATALOGRÁFICA ELABORADA PELA
 BIBLIOTECA DO IMECC DA UNICAMP

 Bibliotecária: Maria Fabiana Bezerra Müller – CRB8 / 6162

Baccarin, Evandro

B12n Negociação automática de contratos multi-laterais em cadeias

produtivas agropecuárias/Evandro Baccarin -- Campinas, [S.P. : s.n.],

2009.

Orientador : Edmundo Roberto Mauro Madeira

Tese (doutorado) - Universidade Estadual de Campinas, Instituto de

Computção.

1.Gerência de cadeias produtivas. 2.Rastreabilidade. 3.Comércio

eletrônico. 4.Negociação eletrônica. 5.Fluxo de trabalho. 6.Middleware .

I. Madeira, Edmundo Roberto Mauro. II. Universidade Estadual de

Campinas. Instituto de Computação. III. Título.

Título em inglês: Automatic negotiation of multi-party contracts in agricultural supply chain

Palavras-chave em inglês (Keywords): 1. Supply chain managment. 2. Traceability.
3. Electronic commerce. 4.E-negotiation. 5. Workflow. 6. Middleware.

Área de concentração: Sistemas de Computação

Titulação: Doutor em Ciência da Computação

Banca examinadora: Prof. Dr. Edmundo R.M. Madeira (IC – UNICAMP)
Prof. Dr. Elias P. Duarte Jr (DINF – UFPR)
Prof. Dr. Fabio Kon (IME – USP)
Prof. Dr. Luiz Eduardo Buzato (IC – UNICAMP)
Prof. Dr. Eleri Cardozo (FEEC - UNICAMP)

Data da defesa: 18/12/2009

Programa de Pós-Graduação: Doutorado em Ciência da Computação

Instituto de Computação

Universidade Estadual de Campinas

Negociação Automática de Contratos Multi-laterais

em Cadeias Produtivas Agropecuárias

Evandro Baccarin1

Dezembro de 2009

Banca Examinadora:

• Edmundo R.M. Madeira (Orientador)

• Eleri Cardozo

FEEC/UNICAMP

• Luiz Eduardo Buzato

IC/UNICAMP

• Elias Procópio Duarte Júnior

DINF/UFPR

• Fábio Kon

IME/USP

• Jacques Wainer (Suplente)

IC/UNICAMP

• Jó Ueyama (Suplente)

ICMC/USP

1Suporte financeiro de: Bolsa do CNPq (processo 143153/2006-4) 12/2006 - 02/2007, CAPES (Estágio
de Doutorado no Exterior processo 4635-06-0) 04/2007 - 03/2008.

v

Resumo

Uma cadeia produtiva agropecuária é constitúıda por diversos tipos de atores que estabele-

cem uma rede de relacionamentos bastante complexa. Estes relacionamentos variam de ad

hoc e de curta duração até altamente estruturado e de longa duração. As cadeias produti-

vas agropecuárias possuem algumas particularidades, tais como, regulamentação estrita e

dependência cultural, e possuem relevância social e econômica. A utilização de contratos

é a forma natural para expressar os relacionamentos entre os membros de uma cadeia.

Desta forma, contratos e a atividade de negociá-los são de grande importância numa

cadeia produtiva. Esta tese propõe um modelo para cadeias produtivas agropecuárias que

integra suas principais caracteŕısticas, incluindo seus aspectos estruturais e sua dinâmica.

Em particular, a tese propõe um formato para contratos multi-laterais e um protocolo

de negociação que os constrói. Contratos multi-laterais são importantes neste contexto,

pois vários atores de uma cadeia produtiva podem construir alianças que compreendem

direitos e obrigações mútuos. Um conjunto de contratos bi-laterais não é adequado para

tal propósito. A tese também apresenta uma implementação do protocolo de negociação

baseado em serviços Web e numa máquina de workflow (YAWL).

vii

Abstract

An agricultural supply chain comprises several kinds of actors that establish a complex

net of relationships. These relationships may range from ad hoc and short lasting ones to

highly structured and long lasting. This kind of chain has a few particularities like strict

regulations and cultural influences, and presents a quite relevant economical and social

importance. Contracts are the natural way of expressing relationships among members of

a chain. Thus, the contracts and the activity of negotiating them are of major importance

within a supply chain. This thesis proposes a model for agricultural supply chains that

integrates seamlessly their main features, including their structure and their dynamics.

Specifically, the thesis proposes a multi-party contract format and a negotiation protocol

that builds such kind of contracts. Multi-party contracts are important in this context

because several actors of a supply chain may build alliances comprising mutual rights and

obligations. A set of bilateral contracts is not well-fitted for such a purpose. The thesis

also presents an implementation of the negotiation protocol that builds on Web services

and a workflow engine (YAWL).

ix

Dedicatória

Aos meus pais: um sonho sonhado, talvez, mais por eles.

xi

Agradecimentos

Esta monografia resume o trabalho de alguns anos de pesquisa cient́ıfica. O tempo de

doutoramento, porém, não se resume apenas ao seu conteúdo técnico-cient́ıfico. Com-

preende também a experiência de vida adquirida, as pessoas com as quais compartilhei

um trecho do caminho da vida, as que seguiram por outras sendas, as que encerraram

sua caminhada e deixaram saudades. Não é posśıvel expressá-la em prosa cient́ıfica, em

fórmulas matemáticas ou em linhas de código, pois impregna-se na profundidade do ser

humano e, por isso, é intraduźıvel, é intransfeŕıvel. Atrevo-me a tentar registrá-la na

forma de gratidão àqueles que tanto me ajudaram nestes anos.

Devo começar por meus orientadores: o Prof. Edmundo e a Profa. Claudia. A

dedicação e o envolvimento deles foram notáveis. Devo-lhes, também, amadurecimento

cient́ıfico e profissional. Muito que aprendi deles será reproduzido agora que retorno as

minhas atividades de ensino, pesquisa e orientação na Universidade de Londrina.

Enorme d́ıvida de gratidão ao pessoal do laboratório, principalmente pela companhia

e apoio e, especialmente, o Alan e o Luciano pela ajuda na resolução de certos problemas

transcendentais e esotéricos que carinhosamente chamamos “bugs”.

I would like to thank all people of TU/e and the friends I met in the Netherlands, spe-

cially Prof. Wil van der Aalst for allowing me to join his group. His patience, competence

and generosity are remarkable. I miss the people of our “coffee corner”. Inesquećıveis são

a Ana Karla e a Monica que me ajudaram muito quando cheguei em Eindhoven. I miss

all people that shared “our kitchen”, specially Hristina and Mohamed. They made me

feel at home. Sundays were special days: coffee after the International Mass and lunch

with a few friends I made there: Marc, Iana, Jorge, Eugenia. Louis is a bosom friend I

left in het Nederlands: hartelijk dank.

Fui acolhido pelo Adauto no primeiro ano do curso. Também fui acolhido pelo Tio

Ninho e pela Tia Deise ao retornar a Campinas após o “Sandúıche”. Além do teto e

carinho, pude ouvir aquelas histórias de outrora.

Dı́vida de gratidão à UEL que me deu a oportunidade de dedicar-me exclusivamente

ao doutorado. Especialmente, ao pessoal do departamento: todos absorveram uma carga

de trabalho extra por minha ausência. Também às agências de fomento Capes, CNPq

xiii

e Fapesp que me financiaram diretamente (“Sandúıche”) ou indiretamente por meio dos

projetos de nosso laboratório que apoiaram (WebMAPS e WebMAPS 2, AgroFlow e

BioCORE).

xiv

Sumário

Resumo vii

Abstract ix

Dedicatória xi

Agradecimentos xiii

1 Introdução 1

2 Research Context and Contributions 3

2.1 Overview . 3

2.2 Contributions 1 and 2 - Model and Architecture for Agricultural Supply

Chains . 4

2.3 Contribution 3 - Multi-party Negotiation 6

2.3.1 Related Work . 7

2.3.2 SPICA Negotiation . 8

2.4 Contribution 4 - Multi-party Contracts . 9

2.4.1 Related Work . 10

2.4.2 SPICA Contracts . 12

2.5 Contribution 5 - Using Contracts to Build Virtual Organizations 12

2.6 Contribution 6 - Implementation . 13

2.7 Thesis Organization . 16

3 A Model for Agricultural Supply Chains 17

3.1 Introduction . 17

3.2 Agricultural Supply Chains . 19

3.3 A Model for Supply Chains . 20

3.3.1 Basic Elements . 20

3.3.2 Element Composition and Encapsulation 21

xv

3.3.3 Return Flows . 22

3.4 The Architecture . 22

3.4.1 Building Blocks . 22

3.4.2 Orchestration of the Supply Chain 24

3.4.3 Revisiting the Case Study Using the Architecture 25

3.5 Implementation . 28

3.5.1 Mapping into Classes . 28

3.5.2 Class Specification . 28

3.5.3 Implementation as Web Services . 32

3.6 Related Work . 33

3.7 Conclusions . 35

4 A Negotiation Process and a Contract Format for Agricultural Supply

Chains 37

4.1 Introduction . 38

4.2 The Model and Basic Architecture . 39

4.3 Contracts . 41

4.3.1 The Contract Model . 42

4.3.2 Contract Instance . 45

4.4 The e-Negotiation Process . 48

4.4.1 Organization of the Negotiation . 48

4.4.2 Core Negotiation . 49

4.4.3 Main Protocol Messages . 50

4.5 Some Implementation Issues . 52

4.5.1 Interfaces . 53

4.5.2 Styles of Negotiation . 54

4.6 Related Work . 58

4.6.1 Supply Chains . 59

4.6.2 Contracts . 59

4.6.3 The Negotiation Process . 60

4.6.4 Enactment . 62

4.7 Conclusions . 62

5 Assembling VOs 65

5.1 Introduction . 65

5.2 The Running Example . 66

5.3 The SPICA Negotiation Protocol . 67

5.3.1 Contract Templates and Contracts 67

5.3.2 The Protocol . 68

xvi

5.3.3 Individual Marketplaces . 70

5.3.4 Putting Marketplaces together . 72

5.4 Implementation in Brief . 73

5.5 Discussion . 74

5.6 Related Work . 75

5.7 Conclusion . 77

6 Implementation 79

6.1 Introduction . 80

6.2 YAWL Overview . 81

6.2.1 YAWL: A Language Based on Patterns 82

6.2.2 YAWL System . 86

6.3 SPICA’s contracts and negotiation protocol: an overview 87

6.3.1 The Contract and the Actors . 88

6.3.2 Main Data Types . 90

6.3.3 Message types . 91

6.3.4 Implementation Overview . 92

6.4 Description of Patterns . 93

6.4.1 Pattern name: Bargain Known as: - 94

6.4.2 Pattern name: English Auction Known as: Ascending Auction . . . 96

6.4.3 Pattern name: Open Ballot Known as: - 100

6.4.4 Other Patterns . 102

6.5 Middleware Implementation . 104

6.5.1 Message Format . 104

6.5.2 Decompositions . 105

6.5.3 NS Custom Service . 107

6.5.4 Example Execution . 112

6.6 Related Work . 112

6.7 Conclusion . 115

7 Concluding Remarks and Future Work 117

7.1 Conclusion . 117

7.2 Extensions . 118

7.2.1 Supply Chains . 118

7.2.2 Negotiations . 118

7.2.3 Contracts . 118

7.2.4 Other Components for SPICA . 119

8 Conclusões 121

xvii

Bibliografia 122

xviii

Lista de Tabelas

4.1 Examples of mode combination for Figure 4.6 48

4.2 Interface acronyms . 54

4.3 The price function for a farm . 57

4.4 Negotiation issues . 62

6.1 Negotiation messages (requests). 91

6.2 Negotiation messages (answers). 92

6.3 NSTask decomposition. 105

6.4 Examples of assignment of tasks’ variables. 107

xix

Lista de Figuras

2.1 Middleware: basic arrangement. 14

2.2 Message logging. 15

2.3 Negotiation Console. 15

3.1 The Dairy Supply Chain . 19

3.2 Breaking down Dairy production element 21

3.3 Illustrating scope and manager hierarchies 25

3.4 Coordination and negotiation relationship 27

3.5 Class diagram with emphasis in model components and management 29

3.6 CoordinationIF interface . 30

3.7 ActivityReportIF interface . 30

3.8 Regulation XML file . 31

4.1 Simplified supply chain . 41

4.2 Contract model schematic representation 43

4.3 An Excerpt of a Contract Model, Focusing Properties 43

4.4 Contract Partners . 45

4.5 Examples of Properties . 46

4.6 A Contract Clause . 47

4.7 Excerpt of grammar for property negotiation 50

4.8 Example of price survey given an RFP . 51

4.9 Example of bargaining given an RFP . 51

4.10 Leader’s state after issuing an RFP . 52

4.11 Negotiator’s state after receiving an RFP 52

4.12 The english auction . 55

4.13 Voting for maximum quota per farm . 56

4.14 Quota negotiation . 58

5.1 Contract model for orange crop. 67

5.2 A simplified template’s clause. 68

5.3 An auction. 71

xxi

5.4 A ballot. 72

5.5 A bargain. 72

5.6 Logged message. 74

5.7 XML serialized message. 74

6.1 Symbols used in YAWL [5]. 83

6.2 Three YAWL specifications (adapted from [2]). 85

6.3 The architecture of YAWL [52]. 87

6.4 Contract. 89

6.5 A negotiation message and an answer. 93

6.6 Tasks arranged in pairs. 93

6.7 Sections of a pattern. 94

6.8 Bargain interaction pattern. 96

6.9 Bargain process (YAWL) . 97

6.10 English auction interaction pattern. 98

6.11 Auction process (YAWL) . 100

6.12 Open Ballot interaction pattern. 102

6.13 Ballot process. 103

6.14 Negotiation Message Format. 105

6.15 Parameters of an RP message: MsgReqProposalType. 106

6.16 Tasks with decomposition detailed. 107

6.17 Dispatch of negotiation messages. 108

6.18 NS service from the perspective of one negotiator. 109

6.19 Negotiation message received via RecM input variable 111

6.20 ACK message received via RecM input variable 111

6.21 Response message (R) received via checkInIF interface. 112

6.22 An example execution. 113

xxii

Caṕıtulo 1

Introdução

Esta tese apresenta os resultados da pesquisa desenvolvida no Instituto de Computação

(UNICAMP) relativa ao arcabouço SPICA (“espiga” em Latim). SPICA significa “SuP-

ply chain Integration, Coordination, contracting and Auditing framework” que tem por

objetivo ser um arcabouço completo para integração de cadeias produtivas agropecuárias.

Uma cadeia produtiva é composta por um conjunto de produtores, vendedores, dis-

tribuidores, transportadores e armazéns que atuam nestas atividades no contexto de um

produto espećıfico [65]. Uma cadeia produtiva agropecuária possui algumas particular-

idades, tais como: o fluxo de produtos dentro da cadeia produtiva está sujeito a uma

ampla gama de controles; tais cadeias são influenciadas por sua localização, pelo clima

de sua região e, até mesmo, sofre influências culturais. A escassez de alimentos devido

a desastres naturais ou à falta de infrastrutura adequada pode levar, inclusive, a graves

conflitos sociais. Assim, o monitoramento e a facilitação da coordenação e cooperação

entre os atores de uma determinada cadeia são aspectos relevantes no gerenciamento de

cadeias produtivas agropecuárias. Uma forma de estabelecimento de cooperação entre tais

atores e do monitoramento da execução de tal cooperação é a construção de contratos.

Portanto, a atividade de negociação de tais contratos também é de grande relevância.

As principais contribuições da tese são:

• um modelo e uma arquitetura para cadeias produtivas agropecuárias;

• um processo de negociação e um formato para contratos multi-laterais que visam

estabelecer acordos entre participantes da cadeia.

• uma estratégia de utilização do processo de negociação e do contrato multi-lateral

para o estabelecimento de organizações virtuais;

• a implementação de um middleware que suporte o processo de negociação baseado

num motor de workflow (YAWL);

1

2 Caṕıtulo 1. Introdução

A tese está organizada como uma coletânea de artigos da seguinte maneira. O

Caṕıtulo 2 descreve o contexto da pesquisa e sumariza as suas contribuições. O Caṕıtulo 3

apresenta o artigo publicado na “12th International Conference on Cooperative Informa-

tion Systems (COOPIS)” [21]. Este artigo descreve o modelo e a arquitetura para cadeias

produtivas, incluindo aspectos estruturais e sua dinâmica. No modelo proposto, uma

cadeia produtiva pode ser estruturada hierarquicamente. A dinâmica da cadeia prevê a

coordenação das atividades desenvolvidas pelos seus atores, bem como o controle da qual-

idade dos produtos que transitam pela cadeia produtiva, incluindo o registro deste fluxo

para fins de auditoria e rastreabilidade. O Caṕıtulo 4 contem um artigo publicado no “In-

ternational Journal of Electronic Commerce (IJEC)” [16] e descreve o formato contrato

multilateral e o protocolo de negociação. O processo de negociação é dirigido por um

modelo de contrato. Os negociadores são serviços Web e tem por objetivo preencher as

lacunas do modelo. O artigo apresenta as interfaces que os negociadores devem implemen-

tar para participar de uma negociação. O artigo apresentado no Caṕıtulo 5, publicado

na “11th International Conference on Enterprise Information Systems (ICEIS)”, usa o

protocolo de negociação e o contrato multilateral para construir organizações virtuais.

Ele mostra como os diferentes estilos de negociação podem ser combinados e executa-

dos conjuntamente para tal fim. Mostra um exemplo de uma negociação hierárquica.

Neste exemplo, uma cooperativa negocia em nome de várias propriedades rurais. Even-

tualmente, a cooperativa, antes de concordar com uma oferta recebida, consulta (num

segundo ńıvel de negociação) as fazendas a fim de verificar se existe consenso sobre tal

oferta. O Caṕıtulo 6 apresenta o último artigo, recentemente submetido ao “International

Journal of Cooperative Information Systems (IJCIS)”. Ele descreve a implementação do

middleware de negociação auxiliado por uma máquina de workflow. Este artigo é produto

do “Estágio de Doutorado no Exterior” desenvolvido pelo candidato na “Technische Uni-

versiteit Eindhoven” (Holanda), sob orientação do Prof. Wil van der Aalst. Uma versão

estendida deste artigo está dispońıvel na forma de relatório técnico [20]. O Caṕıtulo 7

apresenta algumas observações finais desta tese, além de trabalhos futuros. Finalmente,

o Caṕıtulo 8 conclui a tese.

Outros artigos foram publicados no decorrer da realização da pesquisa, não inclúıdos

na tese. Foram feitas investigações preliminares acerca de aspectos de coordenação da

cadeia produtiva agropecuária nos estágios iniciais da pesquisa. Resultados parciais estão

descritos em [19]. O protocolo de negociação foi simulado por meio de redes de Petri

durante o estágio de doutorado no exterior (“sandúıche”) desenvolvido pelo candidato.

Estes resultados estão publicados em [15].

Caṕıtulo 2

Research Context and Contributions

2.1 Overview

This thesis is organized as a collection of articles which present the results of the research

developed during the past few years concerning the SPICA framework. SPICA (“corn ear”

in Latin) stands for “SuPply chain Integration, Coordination, contracting and Auditing

framework”. It aims at providing a comprehensive framework for agricultural supply

chains. This chapter depicts the context that encompasses the research, summarizes the

results we believe are its main contributions and establishes the links between the articles.

A supply chain is a network of retailers, distributors, transporters, storage facilities

and suppliers concerning a specific product [65]. These elements are by their very na-

ture distributed, heterogeneous and autonomous and their relationships are inherently

dynamic.

An agricultural supply chain has a few particularities. To start with, the flow of prod-

ucts within a chain is subject to a wide range of controls. Besides the economic and de-

livery schedule limitations found in business to business (B2B) negotiations, agricultural

supply chains are sensitive to geographic location, season, climate, product perishabil-

ity, and cultural and religious backgrounds. Shortage of supplies may even cause social

disruption to the point of generalized famine.

Examples of concerns are, for instance, whether the production process is harmful to

the environment or whether it uses genetically modified substances. This requires setting

up strict monitoring at all stages, as well as enforcing a large set of rules, which may

be product, region or season-sensitive. Two parallel concerns are the quality of the final

product, which involves auditing all production and distribution stages, and an efficient

logistics to avoid or to relief ill-supplied scenarios.

Another peculiarity is the so-called return flow within such chains, in which the refuse

of a given stage of the chain may be recycled and re-enter the chain at another stage.

3

4 Caṕıtulo 2. Research Context and Contributions

Recycling is not a problem restricted to agricultural chains, but the constraints imposed

on these cycles are. Finally, the number and kinds of actors encountered allow limitless

possibilities of chain configurations, and the same kind of raw material may originate a

large set of interrelated chains.

As already mentioned, the participants of a supply chain are not isolated, self-sufficient

entities, but they, by their very nature, are actors of a dense network of relationships.

Some of these relationships will require a strict coordination of these actors´s actions.

However, most relationships will be based on cooperation: all actors know in advance

what they should do, what they might expect from their counterparts and they trust

that their counterparts will behave accordingly. Relationships may even be formed in an

ad hoc fashion and have a short lasting lifespan. These latter two kinds of relationships

may not be imposed by a “central authority”, but should stem from an agreement among

the partners. Thus, negotiation is also an important issue within an agricultural supply

chain.

To sum up, coordination and cooperation are major issues to be fostered in agricultural

supply chains. The main contributions proposed in this thesis may be summarized as:

• a model and an architecture for agricultural supply chains, presented in Chapter 3;

• a negotiation process and a multi-party contract format for agreements among the

participants of a supply chain, described in Chapter 4;

• a way of using the negotiation process and a contract to build a virtual organization,

presented in Chapter 5;

• the implementation of a middleware that supports the negotiation process by means

of extending a workflow engine, presented in Chaper 6.

There follows an overview of the research challenges attacked in the thesis, detailing

the contributions.

2.2 Contributions 1 and 2 - Model and Architecture

for Agricultural Supply Chains

The first contribution is a model for agricultural supply chains. The reasons for modeling

supply chains are manifold. First, agronomists have to decide the goal of their research.

The understanding of the environment (i.e., the supply chain) their research may benefit

would help to direct their efforts and resources [29]. Second, in any large country like

Brazil, the government has to decide about how to apply different resources to different

2.2. Contributions 1 and 2 - Model and Architecture for Agricultural Supply Chains 5

regions to develop them or to perform disaster relief actions (if needed). Modeling key

supply chains may help to understand better the social conditions and intervene there

effectively. Finally, entrepreneurs aim at gaining more money. A fine-tuned supply chain

model helps optimizing a few logistics issues. All these three dimensions are deeply inter-

twined, and are part of the supply chain. Ignoring this would narrow the comprehension

of the environment and hinder an effective use of resources.

The literature on economics and agriculture often presents descriptions of specific

supply chains, e.g., the rice supply chain. However, such descriptions differ significantly in

what the chain elements are, their relationships and the level of details of description. For

an example of such a disparity, see [29]. This book was written by researchers of Embrapa

(Brazilian Agricultural Research Corporation) and other related research corporations and

describes fourteen agricultural supply chains. A typical example of such a disparity can

be highlighted by means of the descriptions of the silk supply chain [89] and the manioc

supply chain [81]. The former displays a figure containing three quite detailed flowcharts

to describe the silk chain under three perspectives, whereas the latter depicts the manioc

chain by means of a very generic flowchart containing, basically, a farm, an industrial, a

few wholesales and retailers. Agronomists also discuss the use of Information Technology

in the context of agricultural supply chains, such as, [82] and [26].

There are countless articles on modeling, simulating and assessing supply chains aiming

at optimizations or decision support in the area of Operations Research. Chatfield and

others [32] propose a modeling language (Supply Chain Modeling Language – SCML). It

focuses on storing supply chain structural and managerial information at different levels to

assist supply chain analysis, and decision support. Rappold and Tchernev [76] introduce

a special issue on supply chain design. According to them, the proposed models aim

at predicting “accurately the behavior and performance of a supply chain under various

conditions and violations of underlying business assumptions”. This involves problems like

product design ([54]), inventory optimization ([28]), vehicle routing ([23]), and supplier

selection ([90]). Operations Research is not our focus.

SPICA proposes a model for agricultural supply chains, comprising a few elements,

namely: products, production, transportation, storage elements and actors. Products are

the central entity of a supply chain. A production element transforms raw material or

intermediate products into other products. Storage elements typically are warehouses or

any place where products are stored. Transportation elements move products from one

element to another (including other transportation elements). The chain’s dynamics is

modeled by means of coordination plans, contracts, regulations and summaries. A co-

ordination plan specifies a sequence of activities to be performed within a supply chain.

A contract specifies the relationship between chain’s elements. A contract can be estab-

lished among several chain’s elements (i.e., it is a multi-party contract). A regulation

6 Caṕıtulo 2. Research Context and Contributions

imposes restrictions on a product’s flow. Finally, summaries are used to track the flow

and transformation of production within a chain.

One distinguishing feature of SPICA´s model is that one element can be composed of

other elements. This gives rise to a hierarchical organization and allows to approach the

supply at different levels of details.

The model has already been used in a few case studies associated with the milk supply

chain ([38, 57, 56]). While Kondo [57, 56] concentrates in traceability issues, Figueiredo

[38] considers triggers to keep track of regulations within a chain. Both proposals were

implemented as prototypes.

The second contribution is an architecture for agricultural supply chains. This archi-

tecture comprises architectural blocks for each element in SPICA´s model and also a few

managers and repositories, e.g., there is a coordination manager and a coordination plan

repository concerning coordination plans.

The model and the architecture are presented in Chapter 3. This article inspired other

research activities in our group. First, Alan Nakai defended a master’s thesis that pro-

posed a choreographic approach for coordination on agricultural supply chains which is

related to Coordination Plans and Coordination Managers [67]. Andréia Kondo defended

her master’s thesis on management of traceability on food supply chains which concerns

Summaries and Summary Managers [56], also summarized in [57]. The original model

proposed two kinds of summaries: process and product. Kondo added a new one: the

service summary. A service, in this context, is any activity that may influence a product

without transforming it, e.g., inappropriate product handling may expose this product to

some kind of contamination. Thus, the condition under what the product was manipu-

lated should be registered for future investigation (if needed). Later, Mauricio Figueiredo

presented a master’s thesis that proposes mechanisms to manage rules that specify the

quality of products in supply chains also concerning summaries [38].

Concerning SPICA´s model, coordination issues were investigated in the early research

stages. This gave rise to a technical report on using choreography to support collaboration

in agricultural supply chains [19]. However, as the research evolved, the research efforts

were directed to negotiation issues. Thus, coordination issues were left for future work.

2.3 Contribution 3 - Multi-party Negotiation

A negotiation process is the thesis’ third contribution. Virtually all authors agree that

negotiation is a process by which entities communicate to reach an agreement on matters

of mutual interest [35, 36, 43, 49]. Dang and Huhns [35] highlight that the negotiators

are autonomous and try maximizing their individuals utilities. Governatori and oth-

ers [43] are also concerned with negotiation with legal contents. Electronic negotiation

2.3. Contribution 3 - Multi-party Negotiation 7

(e-negotiation) is a negotiation supported or conducted by means of the Information

Communication Technology [36]. The terms negotiation and e-negotiation are used inter-

changeably throughout the thesis.

2.3.1 Related Work

A negotiation process involves a number of issues. To begin with, the number of nego-

tiators involved typically is one-to-one (bargaining), one-to-many (auction), or many-to-

many (double-auction). In bargains, one seller deals with one buyer. Auctions aim at

selecting one among several competitors and have a broad range of flavors. For instance,

the so-called English or Dutch auctions have many buyers competing for a product sold

by an auctioneer. In English auctions, the auctioneer defines a start price and the bidders

increase continuously the item´s value until the last bid cannot be beaten. Dutch auctions

start with a high value and the auctioneer decreases this value until a buyer agrees to pay

the proposed value. A many-to-many negotiation can occur through a double auction.

In this case, several sellers offer their products on a “shared space” and several buyers

submit their bids. There is a mechanism that matches offers and bids.

Even if the negotiation process develops in one-to-many or many-to-many fashions, the

final agreement, in general, occurs between exactly two parties: a seller and a buyer. As

far as we know, little research has been done concerning negotiation among three or more

parties looking for mutual agreement. Bartolini and others ([22]) present a framework

for negotiation and advocate that it extends naturally to the case of agreements among

multiple parties, but it does not explicitly show how this is achieved. One particular kind

of such negotiation, not addressed in any of the consulted articles, is quota negotiation

where multiple parties agree to fulfill a specific goal.

A second issue about the negotiation process is related to the number of items. The

negotiation process may be restricted to a single product or to a bundle of items. In the

latter case, the buyer may be interested in buying all items or none [77]. This kind of

negotiation can be developed by combinatorial auctions [34].

A third issue refers to the negotiation strategy. According to [43], techniques for

designing negotiation strategies can be classified into three categories: (i) game-theoretic,

(ii) heuristic, and (iii) argumentation.

Approach (i) models a negotiation situation as a game and attempts to find dominant

strategies for each participant by applying game theory techniques. In heuristic-based

approaches (ii), a strategy consists of a family of tactics (i.e., a method for generating

counter-offers), and a set of rules for selecting a particular tactic depending on the stage of

the negotiation. Argumentation-based approaches (iii) extend heuristic ones by introduc-

ing communication performatives such as threats (e.g., “that is my last offer”), rewards,

8 Caṕıtulo 2. Research Context and Contributions

etc.

The negotiation strategy depends on a number of factors. The first factor concerns

how the negotiation process is conducted. Bartolini and others [22] construct negotiation

templates that specify different parameters of negotiation (product type, price, etc) that

can be constrained (range of possible values) or open (e.g., price). Chiu and colleagues [33]

also use contract templates as a reference document for negotiation. They are composed

of contract clauses that contain template variables, whose values are to be negotiated.

There may be dependencies among such variables, such that some of them should be ne-

gotiated together (e.g., quantity, delivery date and price), and others afterwards. These

relationships influence the negotiation plan. Similarly, Reeves and others [77] use a con-

tract template that describes the negotiation parameters, how they are interrelated, along

with meta-level rules about the negotiation. In contrast, Henderson and others [50] use

a set of examples of good agreements and it is up to the negotiator trying to get as close

as possible to one of the examples.

Another issue comprises the languages used to specify the negotiation rules, the strat-

egy and the language used to conduct the negotiation process itself. In general, languages

for rules and strategy are declarative and taken from the AI field, such as Defeasible Logic

[43] and Courteous Logic Programming [46]. Conversely, languages for the negotiation

process are similar to protocols used in distributed systems. Any of those languages faces

the problem of heterogeneity of vocabulary and concepts. Although some concepts are

well-defined in a negotiation framework (e.g., the negotiation protocol is formally de-

fined), contract variables, such as product names, measure units, and currency, may not

be standardized and such differences must be reconciliated on the fly. According to [61],

this is aggravated in the dynamic environment of e-commerce negotiations where transac-

tions involve interactions among different enterprises, using different representations and

terminologies.

The fifth issue concerns how the negotiation process is finished: either by agreement

or by withdrawal. In [22], agreement formation rules determine which proposals are

matched. In [50], negotiation is aborted if agreement is not reached in a number of

predefined rounds.

Finally, the last issue concerns how to renegotiate an existing contract due to some

external change. This includes discovering which contracts were affected by the change,

which clauses should be modified, who should modify the contract, and so forth.

2.3.2 SPICA Negotiation

SPICA’s negotiation process combines desirable characteristics, as discuted in related

work. It proposes a contract format and a negotiation protocol. In this protocol, the

2.4. Contribution 4 - Multi-party Contracts 9

negotiation process is orchestrated by a leader and is guided by a contract model. The

contract model is a predefined contract template containing a set of so-called properties

which are filled in with values agreed upon by the negotiators. There is a notary respon-

sible for bureaucratic chores (e.g., constructing the final contract) or acting as a trusted

third-party (e.g., to control ballots). These players exchange information within the ne-

gotiation process by means of asynchronous messages. The messages may be peer-to-peer

or broadcasted. After a successful negotiation, a new contract is created from the model

and the negotiated values.

There are three generic styles of negotiation: ballots, auctions and bargains. Ballots

are used when the negotiators have to reach consensus on a property’s value. Auctions are

used when there is competition among different negotiators in order to bind a property

to a value. Bargains are used when there are two negotiators and they want to interact

to reach a value that is convenient for both.

The negotiation styles are built on a few negotiation primitives, i.e., types of mes-

sages exchanged among the participants. These primitives rely on four basic mechanisms:

request for proposals (RFP), offers, Request of Information (RFI) and information (Info).

An RFP is an invitation. A negotiator A sends an RFP to a negotiator B asking

for a value for one or more properties. An RFP may prescribe some restrictions on the

expected answer and may also bind the value of other properties.

An offer is a promise. A negotiator who wants to assign a value to one or more

properties sends an offer to another negotiator. The offer indicates the properties the first

negotiator is interested in and the values it proposes for them. If the other negotiator

accepts such an offer, both negotiators are committed to the proposed values. A negotiator

can answer to an RFP by sending back an offer that proposes values for the desired

properties and that complies with the restrictions indicated in the RFP.

RFIs and Infos are similar to RFPs and offers, respectively. However, there are two

distinguishing differences. Firstly, besides asking a value for a given property, an RFI

may ask upper and lower bounds for it. Secondly, Infos provide the asked information,

but the negotiator is not committed to the provided values.

2.4 Contribution 4 - Multi-party Contracts

The contract format is the thesis’ fourth contribution. Contracts are statements of com-

mon intentions which comprise the mutual obligations and authorizations that reflect the

(legally binding) agreements between two trading partners [86]. Hanson and Milosevic

[49] add that such agreement includes the consumption of resources, fulfilling requirements

and the communication of information. An e-contract is a contract modeled, specified,

executed and enacted (controlled and monitored) by a software system [58]. From now

10 Caṕıtulo 2. Research Context and Contributions

onwards, the terms contract and e-contract are used interchangeably.

2.4.1 Related Work

Contracts can be categorized based on their nature of execution as sequential, cyclic

or turnkey [58]. As will be seen, SPICA contracts can follow any of these styles. A

sequential contract executes sequentially once. A cyclic contract holds good for a certain

period of time regardless of how many times the contract is fulfilled. A turnkey contract

has a specific goal that needs to be accomplished within certain time and with a certain

budget.

Contracts can also be categorized as bilateral or multi-party contracts. A bilateral

contract is signed exactly by two partners whereas a multi-party one may have several

signatories. SPICA contracts support both modes.

A contract´s life cycle starts with the building of some kind of electronic document

that represents the agreement. This document follows some specification language and

can be built automatically through a negotiation process or other means.

According to Angelov and others [11], business contracts specify the exchange of val-

ues among business parties and the conditions for the exchange. They require three

fundamental classes of language constructs: data constructs, process constructs, and rule

constructs. Data constructs define the exchanged values between parties, such as quanti-

ties, prices, deadlines, and quality categories. Rule constructs express the conditions for

product exchange. Process constructs are responsible for describing the steps of contract

enactment.

In an article by Weigand and Heuvel [86], contracts are specified using a language

called XLBC.1 An XBLC contract is composed of one or more workflows. One workflow,

for instance, is responsible for receiving a purchase order from a consumer; another, for

performing the product shipment. When one such workflow is executed, transactions are

run.

Linington and others ([60]) model an enterprise as a series of interrelated communities.

A community is a configuration of objects that interact to achieve some shared objective.

The ODP Reference Model provides a framework that integrates support for distribution,

interworking, and portability. These objects perform one or more roles in the community.

Communities can be hierarchically specified. This paper proposes a contract monitor-

ing language (BCL), also presented in [63], developed for the purpose of expressing and

monitoring conditions stated in business contracts. BCL is made up from the following

entities: a) community expressions; b) policies (in essence they express fragments of be-

haviour that need to be monitored to determine the parties’ compliance to the contract);

1XBLC is named after FBLC, which stands for Formal Language for Business Communication.

2.4. Contribution 4 - Multi-party Contracts 11

c) temporal constraints; d) event matching constraints; e) state conditions.

Moreover, in [58], the entities of an e-contract are: parties, clauses, budget, roles and

payments; Hoffner and others [51] include details of the infrastructure needed to execute

contracts; and Krishna and other [58] allow composition of contracts (subcontracts).

After being built, the contract may be stored in some kind of repository. Besides stor-

age and searching functionalities, such repositories may provide more specialized func-

tions. For instance, Angelov, Till and Grefen,[11] use a trusted party called e-Notary to

store contracts and to verify the authenticity of the contracting parties.

A contract´s life cycle also includes the enactment phase. In this phase, the contract

produces the planned effects and its execution is monitored in order to check if the parties

have been properly accomplishing the agreed duties. The way a contract is executed and

monitored depends on the semantics of its specification language and on the underlying

infrastructure.

Contracts are also used in [51] as a means for integrating workflows of different or-

ganizations. It uses the contract´s details for dynamic construction of the infrastructure

needed for the enactment of the service. For each contract is created and configured a

module called Integration Facilitator (IF) in each partner (consumer and provider). The

configuration is derived from the contract itself and from a specification called Internal

Enactment Specification (IES), that describes the manner by which this specific contract

is to be implemented in the respective organisation.

In BCL [63, 60], expected behaviour is defined by behaviour expressions associated

with a role. Such expression is typically an event pattern. This specification is submitted

to the Basic Activity Monitoring (BAM) engine. BAM engine responds to the events as

they occur, thus monitoring the execution of business tasks.

Monitoring activities do not suffice. Signatories may be interested on assuring that

contract´s provisions will be fulfilled. Milosevic and others define contract enforcement as

“a set of mechanisms that ensure that contracting parties’ behaviour complies with the

behaviour specified in the agreed contract” [64]. They identify two types of enforcement.

The first, non-discretionary enforcement, uses mechanisms that prevent contract breaches.

Conversely, discretionary enforcement provides control mechanisms aiming at mending a

breached contract. They also propose a mechanism congruent with the latter approach

that comprises a mediator and an arbitrator. The mediator tries to settle the dispute

between the conflicting partners. In case it fails, the arbitrator can apply penalties.

Conditions may change during contract validity, thus the contract has to be updated,

either entirely (a new version replaces the old one) or through addenda (modifications

stated in separate documents linked to the existing contract).

Angelov and others [11] categorize contract updates according to their predictability

and protocols required for performing the update. In terms of predictability, changes can

12 Caṕıtulo 2. Research Context and Contributions

be anticipated (changes are foreseen when a contract is established), or they are exception

updates.

Protocols can consider: free updates that follow no constraints (e.g., change of a URL);

rule governed updates based on rules defined in the contract (e.g., automatic price increase

according to inflation rate); acknowledgment updates that need explicit acknowledgment

from the counter-party; and renegotiation updates, requiring multi-step negotiation for

contract update.

Electronic contracts are usually digitally signed. Thus, any contract change incurs in

the necessity of re-signing the modified contract by all the involved parties. Update and

enactment conditions have repercussion on management of e-contract repositories – e.g.,

the proposal from Angelov et al [11] where e-Notaries check contract signatures.

Service Level Agreements (SLA) can also be considered contracts. However, they

have a very specific purpose: defining values to predefined quality attributes of a service

available to users. They are, in fact, only an instance within our negotiation framework.

2.4.2 SPICA Contracts

A SPICA contract is an XML document organized into a few sections, similar to [86].

Its main section contains a set of clauses. A clause states some kind of obligation and a

set of partners involved in fulfilling such an obligation. There might be more than only

two partners. In addition, different clauses may have a different set of involved partners.

A clause also states how the involved partners are expected to fulfill such an obligation,

e.g., a clause may specify that it will be fulfilled if only one partner executes the intended

action, other clause might demand that all involved partners should execute the intended

action. This arrangement makes SPICA´s contracts actual multi-party contracts.

The contract format and the negotiation process are described in the second paper

of the thesis. It is included in Chapter 4. This paper also addresses quota negotiation.

A few details were added in [18]. The negotiation protocol was simulated by means of

Petri nets during the candidate’s stay in the Technical University of Eindhoven under the

supervision of Prof. Wil van der Aalst. They are presented in [15].

2.5 Contribution 5 - Using Contracts to Build Vir-

tual Organizations

The fifth contribution of this thesis is in Chapter 5. This article presents a way of using

SPICA’s multi-party contracts and combining bargains, auctions and ballots to assemble

a virtual organization. Virtual Organizations (VO) are dynamic alliances of enterprises

2.6. Contribution 6 - Implementation 13

that together can take advantage of economies of scale when available [83]. Grefen and

others ([45]) push this dynamic aspect to the limit, stating that new virtual organizations

(virtual enterprise, in their parlance) should be assembled in a span of a few days or even

lesser. They call such an organisation instant virtual enterprise.

Chapter 5 basically makes two proposals: the contract format we propose in this thesis,

being multi-party, is suitable to describe virtual organisations; the negotiation protocol

we propose is flexible and can be used to assemble virtual organisations by means of

negotiating a contract among the VO’s partners.

2.6 Contribution 6 - Implementation

The sixth contribution is the implementation of the negotiation framework over a tailor-

made middleware. It is described in an article submitted to the International Journal

of Cooperative Information Systems (IJCIS) included in Chapter 6. This implementa-

tion comprises around 330 Java classes. The middleware builds on a workflow engine

(YAWL). The middleware, shown in Fig. 2.1, aims at facilitating the implementation of

different kinds of negotiators. The negotiation protocol is described by means of a few

workflows (e.g., there is a workflow for handling auctions). The flow of messages enables

the workflow´s tasks that are automatically executed by the workflow engine. Basically,

the execution of a task either dispatches a negotiation message to the intended receiver

or uploads a message from a negotiator into the workflow.

The choice of YAWL is based on a few factors. First, YAWL builds on Petri nets.

YAWL provides an editor to design workflows. This editor provides an analysis tool

that can spot a few design problems, such as, potential deadlock situations. YAWL

extends Petri nets: workflow specifications may define cancellation regions which help

handling, in our case, time out situations (e.g., in auctions). Second, YAWL provides a

workflow engine that frees us from taking care of low level synchronization problems (e.g.,

determining when an OR-join is enabled). Third, YAWL is easily extended by means

of Web services. YAWL provides a standard mechanism to attach an external routine

(the so-called Custom Service) to a task. Such a routine is a Web service that is invoked

automatically by the engine when its respective task is enabled. This feature allowed us to

implement a standard Custom Service (the so-called NS Custom Service) that is attached

to most of the protocol´s tasks. It validates negotiation messages only considering the

task´s input parameters, i.e., the workflow describing a negotiation style (e.g., an auction)

can be changed without rewriting NS Custom Service.

It must be pointed out that the implementation did not cover all aspects specified.

For instance, Chapter 4, points out that we adopt Molina´s leader election proposal [42].

In our implementation of this aspect, the leader is imposed without loss of generality.

14 Caṕıtulo 2. Research Context and Contributions

Consider again Fig. 2.1. There is a negotiator (Negotiator 1) willing to make an offer

to another negotiator. Chapter 4 presents the interfaces a negotiator should implement to

take part in negotiations (represented by small circles in this figure). Thus, Negotiator 1

should invoke the operation receiveProposal available at a specific interface (namely,

PeerNegotiation interface) implemented by the other negotiator. The implementation

effort would be helped if the negotiator partner was a local Java object and such an

operation were only a method call. Unfortunately, it is not the case: the partner is not

local and a negotiation message conveys extra information needed for house keeping (e.g.,

to correlate messages in a conversation, to detect if a message has aged, to name but one

factor). A communication adaptor (Com Adp, in the figure) is used to spare the negotiator

of having to be aware of such chores. It mimics the negotiator. Thus, Negotiator 1 only

makes a local invocation to its associated adaptor which effectively creates a negotiation

message (an XML document) and delivers it to the middleware by means of a checkIn

operation provided by the middleware. The middleware validates and transports the

message and delivers it to a dispatcher. The dispatcher unfolds the negotiation message

and invokes the appropriate operation at the receiver (receiveProposal, in the example).

If needed, the dispatcher broadcasts the message to several receivers.

Figura 2.1: Middleware: basic arrangement.

This arrangement was implemented incrementally. The first prototype comprised only

local Java objects that played the scenario described above. The middleware was a simple

object: it only forwarded incoming messages to a local dispatcher that invoked methods

of local negotiators. A few auxiliary classes were implemented in this setup. One of them

is a logging facility class. It logs all messages conveyed in the middleware and produces a

HTML report displaying all messages for demonstration purposes. One log line is shown

in Fig. 2.2. The logged message (5th in the log) was sent by the notary to a negotiator

2.6. Contribution 6 - Implementation 15

named n1. The third column shows a short explanation about the message semantics and

the invoked operation. The fourth column has a link to the serialized message. Finally,

the last column shows a part of a serialized message.

Figura 2.2: Message logging.

Messages are logged in the communication adaptor because such an adaptor knows at

a specific point in time the invoked operation, the serialized message, the sender and the

receiver. In the first prototype, all messages pass through the same adaptor, making it

easy to keep the message order.

Another auxiliary class is a kind of a dashboard the negotiators and the notary use to

inform the actions they decided to perform. In future versions, a negotiator (or notary)

will use the dashboard to request the assistance of a human operator about an action to

take (e.g., if it should agree on a specific offer). Figure 2.3 shows the five dashboards:

four negotiators and the notary.

Figura 2.3: Negotiation Console.

The second prototype distributed all negotiators and notary. They were wrapped by a

web services layer. The dispatcher invokes specific operations at this layer that delegates

16 Caṕıtulo 2. Research Context and Contributions

the execution to the wrapped negotiator (or notary). Their implementation was not

changed at all, only the communication adaptor was adjusted to invoke the middleware’s

checkIn by means of a web service interaction. Now, each negotiator has its own instance

of a communication adaptor. Thus, the message order cannot be guaranteed anymore.

The logging facility was also transformed into a webservice. In this way, a communication

adaptor sends log lines to it by means of web services operations.

The middleware’s implementation in the first and second prototypes are simple. They

only transport an incoming message. Messages are not ckecked. They are believed to be

well-formed and to have been sent in the proper order and timing. The third prototype

addresses the correctness of incoming messages. It uses a workflow engine (YAWL) to

keep the current state of a negotation instance. This allows for, e.g., checking if an arrived

message was indeed expected or if it has not aged.

2.7 Thesis Organization

The following chapters contain the articles that are part of this thesis, as follows. Chap-

ter 3 is the paper “A Collaborative Model for Agricultural Supply Chains” presented in

the“12th International Conference on Cooperative Information Systems (COOPIS)” [21].

Chapter 4 is the paper “Contract E-Negotiation in Agricultural Supply Chains” published

by the “International Journal of Electronic Commerce (IJEC)”. Chapter 5 presents “As-

sembling and Managing Virtual Organizations out of Multi-party Contracts” published in

the “11th International Conference on Enterprise Information Systems (ICEIS)”. Chap-

ter 6 presents the last paper – “SPICA’s Multi-party Negotiation Protocol: Implementa-

tion using YAWL”, submitted to the “International Journal of Cooperative Information

Systems (IJCIS)”. Finally, Section 7 discusses the experiences gathered in the research

and lists future work.

Other papers were published, but were not included in this thesis, namely: [19], [15],

and [20].

Caṕıtulo 3

A Model for Agricultural Supply

Chains

E. Bacarin and C.B. Medeiros and E.R.M. Madeira. A Collaborative

Model for Agricultural Supply Chains. In CoopIS 2004, LNCS 3290,

pages 319-336, 2004.

Abstract

This paper presents a collaborative model for agricultural supply chains that

supports negotiation, renegotiation, coordination and documentation mecha-

nisms, adapted to situations found in this kind of supply chain – such as return

flows and composite regulations. This model comprises basic building blocks

and elements to support a chain’s dynamic execution. The model is supported

by an architecture where chain elements are mapped to Web Services and their

dynamics to service orchestration. Model and architecture are motivated by

a real case study, for dairy supply chains.

3.1 Introduction

A supply chain is a network of retailers, distributors, transporters, storage facilities and

suppliers that participate in the sale, delivery and production of a particular product

[59, 65]. It is composed of distributed, heterogeneous and autonomous elements, whose

relationships are dynamic, and change while the chain is activated. Supply chains present

several research challenges, such as recording and tracking B2B and e-commerce trans-

actions, designing appropriate negotiation protocols, providing cooperative work environ-

ments among enterprises, or coordinating loosely coupled business processes [12].

This paper is concerned with modeling, supervising and coordinating processes in

agricultural supply chains, a specific kind of chain that has a large economic impact all over

17

18 Caṕıtulo 3. A Model for Agricultural Supply Chains

the world. These chains present new challenges in their specification and management,

which so far have been mostly ignored by Computer Science researchers.

To start with, the flow within a chain is subject to a wide range of controls. Besides the

economic and delivery schedule limitations found in B2B negotiations, agricultural supply

chains are sensitive to geographic location, season, climate and product perishability.

Examples of concerns are, for instance, whether the production process is harmful to the

environment or whether it uses genetically modified substances. This requires setting up

strict monitoring at all stages, as well as enforcing a large set of rules, which may be

product, region or season-sensitive. A parallel concern is the quality of the final product,

which involves auditing all production and distribution stages.

Another peculiarity is the so-called “return flow” within such chains, in which the

refuse of a given stage of the chain may be recycled and re-enter the chain at another

stage. Recycling is not a problem restricted to agricultural chains, but the constraints

imposed on these cycles are. Finally, the number and kinds of actors encountered allow

limitless possibilities of chain configurations, and the same kind of raw material may

originate a large set of interrelated chains.

Our solution combines research in databases, computer networks, and distributed

systems and is based on tackling the problem in several stages and levels. The first stage

involves modeling the chain’s components and dynamics. Subsequent stages consist in

mapping the chain to our architecture, whose elements are seen as Web Services.

For each of these stages, the chain’s elements and flow have to be considered at two

levels: within and across enterprises. Furthermore, service coordination also considers

two levels: global dynamics, treated by Coordination Plans; and inter-element dynamics,

treated via Contracts negotiated between trading partners.

The main contributions are the following: (i) a general model for specification of agri-

cultural supply chains, which takes into consideration cross organizational collaboration

aspects; (ii) an architecture for its implementation, which emphasizes coordination and

service flow composition issues; (iii) the validation of the model via a real life case study

in agriculture, stressing the peculiarities of this kind of application domain.

The rest of this paper is organized as follows. Section 3.2 provides an example that

will be used throughout the paper to illustrate our work. Section 3.3 describes the model.

Section 3.4 specifies the architecture and shows how it supports dynamic behaviour. Sec-

tion 3.5 outlines an implementation of a chain via Web services. Section 3.6 contains

related work and section 3.7 concludes the paper.

3.2. Agricultural Supply Chains 19

3.2 Agricultural Supply Chains

This section presents a simple agriculture supply chain that will be used throughout the

paper to illustrate our solution. Figure 3.1 shows this example – the dairy cattle supply

chain. The goal of this dairy chain is to process milk, producing and commercializing its

products – such as bottled milk, butter, or cheese. The starting point is a “Milk Producer”

– a farm that has milk-cows. The farmer gathers milk at given periods. Next, milk is

delivered by some sort of transportation means “Transport 1” to a Dairy (production).

It can only be processed if it obeys certain constraints stated in “Regulation 1”. At the

“Dairy”, it is processed to create products, which are then transported for wholesale and

finally retail commercialization, reaching the end consumer. Products and inputs may

be stored at different storage facilities throughout the chain – e.g., warehouses. At each

stage, various actors – humans or software – may intervene: lawyers, commodity brokers,

quality certifiers or software agents.

Some of the chain´s refuse may provide feedback to it, in terms of return flows – such

as from the Dairy back to the Producer. For instance, milk that overflows from vats

returns to the farms to be used in cattle feed.

Actor

Milk
Producer

Transport
1

Regulation 1 Regulation 5

Dairy
Transport

2
Whole
sale

Retail Consumer
Transport

3

Figura 3.1: The Dairy Supply Chain

Even though the diagram in Fig. 3.1 shows a sequential execution, this is seldom

the case. Each chain component may moreover encapsulate other chains. Negotiation,

cooperation and coordination issues occur at all levels. Coordination may be centralized

– such as in the milk cooperative – or distributed among several coordination centers,

that negotiate with each other.

20 Caṕıtulo 3. A Model for Agricultural Supply Chains

3.3 A Model for Supply Chains

3.3.1 Basic Elements

The model’s basic elements are Actors, Production, Storage and Transportation. Chain

dynamics are furthermore supported by elements Regulation, Contract, Coordination

Plan and Summary.

A Production Element encapsulates a productive process that uses raw material ex-

tracted from its own environment or inputs obtained from other components and produces

a product that is passed on to the chain. It is represented graphically by an ellipsis.

A Storage Element stores products or raw material and a Transportation Element

moves products and raw material between production and storage components. They are

represented by rectangles and diamonds respectively.

Actors are software or human agents that act in the chain. They may be directly or

indirectly involved in the execution of activities A Regulation Certifier is an actor that

is responsible for certifying that activities or products within the chain obey a set of

constraints – such as sanitary regulations or quality specifications.

Regulations are sets of rules that regulate a product’s evolution within the chain.

These rules specify constraints imposed at distinct execution stages, such as government

regulations, quality criteria, or conditions determined by a region’s social, cultural, eco-

nomic or even religious context. Regulations may be atomic or complex, containing other

regulations within them.

Interactions among chain components are organized by means of Coordination plans

and negotiated via Contracts. A Coordination plan is a set of directives that describe a

plan to execute the chain. A chain is coordinated by a top level plan, which may further-

more activate other plans. Plans indicate, among others, sequences of chain elements to

be activated, and actors responsible for monitoring these sequences. They trigger activity

execution, synchronize parallel activities and control the overall product flow.

Contracts are statements of shared purpose which comprise the mutual obligations

and authorizations that reflect the agreements between trading partners [86] that define

quality, delivery schedule and costs.

Summaries are elements introduced for traceability and auditability. They are sim-

ilar to logs, recording chain execution, and may be of two kinds: process and product

summaries. A process summary contains information about the execution of a production

process. A product summary stores information on how, when and where a product went

through each chain step. It also includes information on certification “stamps” received

throughout chain execution.

Dynamics and execution depend on coordination plans, which specify valid element

interactions in a very high level. During execution of a specific chain instance, elements are

3.3. A Model for Supply Chains 21

instantiated, contracts negotiated, and the Coordination plan is refined. A Coordination

Plan is completely specified only at the end of the execution of a chain, since real-time

contract negotiations will dynamically change the chain’s configuration, as well as the

partners involved.

3.3.2 Element Composition and Encapsulation

Production, Storage and Transportation elements can be simple or complex. Complex

elements are those that can be decomposed into other elements. A complex Produc-

tion element must include other productive processes, while Transportation and Storage

elements cannot encapsulate production elements.

The degree of composition of the elements depends on the level of detail desired.

Figure 3.2 shows how the Dairy Production element of Fig. 3.1 can encapsulate other

production chains. Composition and encapsulation of other elements can be likewise

exemplified. Raw milk that arrives at the dairy is pasteurized and stored at the “Milk

Warehouse”. It may subsequently be bottled within the “Bottling of milk” production

element, or be transported via the “Transport 6” element to the “Cheese Production”

element.

Dairy

Pasteurization ����Milk Warehouse

Cheese
Production

Bottling of
Milk����Transport 6

Cheese Bottled Milk

Raw Milk

Regulation 1

Regulation 3

Regulation 2
Quality

Department

Figura 3.2: Breaking down Dairy production element

22 Caṕıtulo 3. A Model for Agricultural Supply Chains

The placement of a Regulation element within a chain indicates when and where it

is applied. “Regulation 1” represents conditions established by the Dairy to accept Raw

Milk. They include parameters such as: milk acidity or fat content as well as milk region

provenance - e.g., for sanitary reasons. Thus, it is location-sensitive. “Regulation 2”

defines rules that determine whether the milk is suitable for cheese or bottling and “Reg-

ulation 3” represents quality conditions for cheese comercialization.

Actor “Quality Department” is a sector within the Dairy to check some of the condi-

tions expressed within Regulations 2 and 3. It is within the Dairy element denoting that

it can only enforce regulations within it.

3.3.3 Return Flows

Most supply chain studies ignore return flows, unless they model products returned by

a consumer. Waste reuse is seldom considered. Environmental concerns are forcing pro-

ducers to consider residues. Thus, harmful waste is now being returned to its producer or

reprocessed, creating return flows in the supply chain. Return flow constraints are mod-

eled within regulations and the flow is modeled by backward or forward links between a

chain’s components.

3.4 The Architecture

3.4.1 Building Blocks

The architecture supports the model described in section 3.3. It is composed of blocks

that encapsulate data and/or services. These blocks can be classified into: those that

represent the model’s basic elements; those used to support coordination, negotiation,

documentation and regulation enforcement; and those used for data needed for a chain’s

execution and auditing.

The basic elements of our model are directly mapped to the architecture’s blocks

Production, Storage, Transport and Actor. Manager (M) blocks are introduced in or-

der to handle chain dynamics. The architecture has managers for: coordination (CM),

negotiation (NM), regulations (RM) and summaries(SM), that respectively handle coordi-

nation plans, contract settlement, regulations and summaries, all mentioned in section 3.3.

Furthermore, distinct kinds of repositories are needed to store information on: chain Par-

ticipants (the basic elements), Products, Regulations, Contracts and Summaries. The

contents and roles of Production, Transport, Storage and Actor blocks are straightfor-

ward. There follows a description of manager and repository blocks.

Repository Blocks.

3.4. The Architecture 23

Information about chains’ elements and execution is stored in six kinds of repositories.

Any implementation of the architecture requires that there be at least one repository of

each kind, under the responsibility of specific managers.

A Participant repository stores cadastral data on a chain’s basic participants, namely:

Transportation, Storage, Production and Actors. Its goal is to allow validation of the

identity of the agents acting within the chain, as well as the roles played by them. It also

helps the process of chain instantiation, by supporting the selection of actual businesses

to play a given role within a chain.

A Product repository contains data on all products and materials used within a supply

chain. Its goal is to allow verification of product properties, as well as supporting cross-

references within and across chains.

A Regulation repository stores regulations for contract negotiation and quality control.

Such regulations include global rules (e.g., government level) and local rules (e.g. within

a production process).

A Contract repository stores contracts established among chain components. More

details on these contracts are provided in the next section. A Coordination plan repository

contains coordination plans specified at distinct granularity levels. The coordination plan

repository also contains information about plan execution (e.g., instantiation, validity).

All these repositories support composition of their elements. Thus, composite con-

tracts can be built by aggregating other contracts, plans can be built from the compo-

sition of previously stored plans, and so on. Summaries, on the other hand, record the

execution of a chain and thus cannot be created from past summaries.

A Summary Repository stores product and process summaries, for documentation

and auditing. Thus, they can be controlled by government agencies, such as health or

sanitation departments, to check on the quality of products and of the production process.

Manager Blocks.

The chain’s elements and flow have to be considered at two levels: within and across

enterprises. Furthermore, service coordination also considers two levels: global dynamics,

treated by a Coordination Plan; and inter-element dynamics, treated via the negotiation

of Contracts between trading partners. Cooperation, collaboration and negotiation within

a chain and the documentation of its activities are handled by manager blocks. Managers

may be totally automated or require human Actor intervention.

A Coordination manager is in charge of Coordination Plans, interpreting, controling

and coordinating them. It is also responsible for managing the Coordination plan Repos-

itory. Therefore, these managers trigger and coordinate all processes within the chain. In

particular, they are responsible for starting negotiation among components, and may also

start regulation enforcement procedures.

A Negotiation manager is responsible for handling contracts and coordinating negoti-

24 Caṕıtulo 3. A Model for Agricultural Supply Chains

ation among distinct chain elements. It also controls Contract Repositories.

A Summary manager controls access to a Summary Repository. A Regulation Manager

encapsulates the access to a Regulation Repository and is also used to verify regulations

using information from all repositories. It informs to the Coordination and Negotiation

managers whether a regulation has been obeyed or not. Thus, it does not play an active

role in regulation enforcement.

3.4.2 Orchestration of the Supply Chain

The backbone of all orchestration interactions within a chain is formed by a hierarchy of

Coordination Managers, that communicate along specific protocols based on a coordina-

tion plan. A coordination manager CM at a given hierachical level can only communicate

with its parent and its children (levels immediately above and below).

All other interactions among managers are described in terms of this coordination

hierarchy background. Each coordination manager CM in the hierarchy may be associated

with at most one regulation manager RM, one summary manager SM and one negotiation

manager NM. These three managers (RM, SM and NM) are said to be within the scope

of that coordination manager.

A coordination manager, furthermore, interacts with: the negotiation and summary

managers within its scope; and with all regulation managers above its level, and the

regulation manager within its scope.

Consider again the “Milk Producer” and “Dairy” elements of figure 3.1. Suppose that

the milk producer is, in fact, a cooperative that agregates several milk farms and the dairy

is composed of three production units (for butter, bottled milk and cheese). Figure 3.3

depicts the block arrangement for those elements and some of their interactions. This

example details only production elements, but similar arrangements may also be done for

transportation or storage elements. The figure shows a 2-level hierarchy, rooted at CM3.

NM1, RM1 and SM1 are within the scope of CM1 (the cooperative’s coordination

manager). CM1 can communicate with CM3 (its parent in the coordination hierarchy),

with the farms (its children), NM1, RM1 and SM1 (the managers within its scope).

A Negotiation Manager can interact with any other negotiation manager, and with

regulation managers of the same scope or above. Negotiation is always triggered by a

coordination manager interacting with a negotiation manager.

A Regulation Manager may interact with regulation managers at any level above it.

They may also respond to requests from any negotiation manager within the same scope

or below its level, and to the coordination manager within the same scope or below its

level.

Summary Managers only interact with coordination managers and with any other SM.

3.4. The Architecture 25

CM3

RM3

Truck

NM2
Dairy

SM2

CM2

NM2c

Cheese Butter Milk

NM2mNM2b

RM2

NM1
Cooperative

RM1

CM1

NMf1

Farm1 Farm2 Farm3

NMf3NMf2

SM1

Figura 3.3: Illustrating scope and manager hierarchies

3.4.3 Revisiting the Case Study Using the Architecture

This section illustrates how chain dynamics are supported within the architecture. It

starts by discussing coordination aspects, followed by negotiation aspects.

Coordination.

The first step in chain execution is its instantiation – this means that a plan’s compo-

nents are instantiated – e.g., Farm 3, registered in the Participant Repository, is a specific

farm in Fig. 3.3. Farms 1, 2 and 3 are furthermore production elements. Each farm

has its own negotiation manager (NMf1, NMf2, NMf3). Once the elements start being

instantiated, they can agree to establish collaboration, according to coordination plans

written and ran by a coordination manager (e.g., CM3). This begins chain execution,

started by some coordination manager “higher-up” in the manager hierarchy (CM3) or

by actor intervention.

The cooperative and the dairy may undergo several negotiation processes. Those

negotiation processes are led by negotiation managers NM1 (for the cooperative) and

NM2 (for the dairy). Negotiation is triggered by CM3. In this example, the cooperative

and the dairy have their own regulation managers, namely RM1 and RM2. RM3 is

responsible for handling regulations within the scope of CM3, and external to the scope

of the dairy and cooperative.

Suppose now that CM3, as part of its plan, asks the cooperative to supply 5000

liters of milk the next day. None of the farms can singly afford that volume. Thus,

CM1 coordinates this production. It may demand 1000 liters of one farm; 1500 liters

26 Caṕıtulo 3. A Model for Agricultural Supply Chains

of another; and 2500 liters of the last one. As soon as a farm gets the request ready,

it reports to CM1. When all farms have reported, CM1 reports to CM3. This kind of

communication and execution protocol is similar to that found in management of nested

complex transactions in distributed systems [70].

Now, CM3 will ask some transportation agent (Truck) to collect the milk at the

cooperative and deliver it to the dairy. When the milk arrives, Truck will notify CM3.

CM3 will then ask the dairy to produce 100 liters of bottled milk, 50Kg of butter and

200Kg of cheese. CM2 takes care of this assignment, by coordinating the activities of

butter, cheese and bottled milk units. Each unit reports the completion of its task to

CM2. When all units have accomplished their tasks, CM2 reports to CM3, and so on.

In this scenario, CM1 and CM2 are subordinated to CM3, but they can coordinate

plans that do not depend on CM3, for instance, related to their internal activities.

Negotiation.

The relationships among cooperative, farms, dairy (and the respective production

units) is governed by contracts. The establishment of a contract is started by a coordi-

nation manager that requests intervention from negotiation managers. Consider, again,

that CM3 asks the cooperative for a daily production of 5000 liters of milk for the next

three months to be delivered to the dairy, but there is not any predefined quota for each

farm. The negotiation happens at two distinct levels: the cooperative negotiates with

the dairy through NM1 and NM2; the farms negotiate among themselves through NMf1,

NMf2 and NMf3.

The negotiation sequence covering both negotiation levels is depicted in Fig. 3.4. First,

CM3 asks the cooperative to deploy a contract negotiation with the dairy. This figure

shows that, as soon as CM1 receives a negotiation request from CM3 (edge 1), CM1 starts

two activities: a) It asks NM1 (edge 2) to negotiate the contract with the dairy´s NM

(NM2); b) It asks (edge 3) Farm 1´s CM (CMf1) to start milk quotas negotiation among

the farms.

As a consequence of CM1´s request, NM1 and NM2 develop a negotiation process.

NM1 proposes contract clauses to NM2 (edge 4). The latter considers each clause in-

dividually and may accept it, reject it or propose an alternative (edge 5). The cycle

proposal X alternative runs until they agree to or reject the clause. Eventually, NM1 and

NM2 agree to the contract. At the same time, CMf1 asks NMf1 (edge 6) to begin quota

negotiation with NMf2 and NMf3 (edges 7 and 8, 9 and 10).

When quota negotiation is finished, NMf1 reports this to CMf1 (edge 11), which in

turn relays this information to CM1 (edge 12). Eventually, NM1 and NM2 agree on the

deployment contract and NM1 reports the agreement to CM1 (edge 13). As soon as both

negotiation processes (milk quotas and deployment contract) are finished, CM1 reports

to CM3 (edge 14). Note that eventually NM1 might ask the Cooperative or NM2 might

3.4. The Architecture 27

ask the Dairy about some negotiation parameters during a negotiation process. This kind

of request is not depicted in this figure.

1

CM3

NM1 NM2

Cooperative

CM1

NMf1

2

6

4

5

13

3

NMf2

NMf3

7

8

10

91112

14

Dairy

CM2

NM2c

Cheese Butter Milk

NM2mNM2b

Farm 1
CMf1

Figura 3.4: Coordination and negotiation relationship

A contract is executed and renegotiated on a clause-by-clause basis by the initiative

of a coordination manager. For instance, the supply chain may have to be dynamically

reconfigured due to a new factor (e.g. a new law, some natural disaster or animal epidemics

in a region). Considering the managers illustrated in the Fig. 3.4, CM3 asks CM1 and

CM2 to negotiate new parameters via the suitable negotiation managers NM1 and NM2.

These, in turn, verify their contracts in order to determine which contracts and which

clauses were affected. The affected clauses are renegotiated individually, again under the

proposal X alternative cycle. Negotiation and renegotiation may need human intervention.

Each new contract is stored in a Contract Repository by some negotiation manager.

Documentation.

The chain execution is documented into summaries that follow products along the

chain. Summaries are in fact composed of sequences of local process and product sum-

maries. They are updated at each chain step, and can be merged or subdivided.

Documentation proceeds along the chain. For instance, when the butter unit starts, a

new process summary is created for its production process. At the end of this process, the

butter unit’s CM asks its summary manager to create a summary for the butter produced.

This new butter summary is composed of a description of the butter fabrication process,

appended to the input milk summary. Eventually, the dairy will output the butter to the

next chain step, and this butter will be accompanied by its summary.

28 Caṕıtulo 3. A Model for Agricultural Supply Chains

Regulation Upholding.

Coordination and negotiation involve regulation checking and upholding. For instance,

at the end of butter production, CM2 may ask its regulation manager RM2 to check if the

product satisfies the suitable restrictions. In order to do this, it will inform RM2 which

constraints must be checked. Next, RM2 will combine information from Participant and

Product repositories, plus data from the product summary to check these regulations,

and return a verdict on regulation compliance, which is also stored in the summary.

3.5 Implementation

3.5.1 Mapping into Classes

Implementation of our architecture can be specified in terms of classes in an object-

oriented system. Figure 3.5 uses UML and shows a high level specification of some of

the topmost classes needed. The basic elements are in grey, managers are in black,

repositories are in white. It shows that basic components include Storage, Transportation

and Production, and also the possible compositions among them (Actors are not shown).

Note the closed arrowheads from Production, Transport and Storage to Element. This

indicates that Element generalizes the other classes, whereas black diamonds indicate

composition – e.g., a Production element can encapsulate any other element, whereas

Transportation and Storage elements cannot contain Production components.

Black arrows indicate responsibility relationships – e.g., a NM handles contracts, or a

SM handles summaries. These classes are implemented in Java. The next section presents

highlights of these classes.

3.5.2 Class Specification

CoordinationManager Class.

This class implements the CM block of Fig. 3.5. A Coordination Manager executes coor-

dination plans. A coordination plan is composed by a set of activities. The coordination

plan is a XML file that can be mapped to a BPEL4WS script. The values transferred to

and from activities are also XML files. Each activity has an identification and may yield a

result after completion. These activities include: execution of another coordination plan,

execution of a clause of a contract, verification of a regulation, execution of a Web service

operation, and execution of local operations. Activities may be executed sequentially or

in parallel and may be synchronized by synchronization primitives.

A given plan can have more than one instance executing at the same time. Thus each

plan execution has a unique instance identification. Each plan execution may also receive

3.5. Implementation 29

SM

Element

Transport

Production

Storage

0..1 0..1

0..n

0..10..1

0..1
0..1

1..1

1..1

CM

CoordinationPlan Contract

RM

NM

1..1

Regulation Summary

Figura 3.5: Class diagram with emphasis in model components and management

30 Caṕıtulo 3. A Model for Agricultural Supply Chains

parameters from the environment.

A CM communicates with a CM within its scope (e.g., CM3 and CM1) via interfaces

CoordinationIF (Fig. 3.6) and ActivityReportIF (Fig. 3.7). Orchestration is performed

through these interfaces. The lower level CM receives the request through its Coordina-

tionIF interface and reports the result to the parent’s ActivityReportIF interface.

public interface CoordinationIF {

public void executeStoredPlan(CoordinationManagerAddress caller,

ActivityIdentification activityId,

PlanIdentification planId,

CoordinationPlanAddress planAddr,

Properties pars);

}

Figura 3.6: CoordinationIF interface

Figure 3.6 shows that the request for plan execution contains parameter planAddr that

informs the address of the repository where the demanded plan is stored, planId is a key

that identifies the plan inside the repository, pars are environmental parameters, caller is

the address of the higher Coordination Manager, and activityId keeps both the activity

and the instance identification of the higher activity that demanded the plan execution.

The parameters caller and activityId are used to report the execution status to the higher

manager.

Eventually, the lower manager reports the execution status to the parent manager.

Using the received caller parameter, it can reach the higher manager and execute re-

portPlanStatus operation of the higher manager (Fig. 3.7). The parameter st informs

the status (DONE, ACTIVE, SUSPENDED, RESUMED, CANCELED) and may con-

vey some value produced by the plan´s execution, and activityId received previously is

assigned to id.

public interface ActivityReportIF {
public void reportPlanStatus(ActivityIdentification id, PlanStatus st);

}

Figura 3.7: ActivityReportIF interface

The Coordination Manager has another interface called OwnerComponentIF that is

quite similar to CoordinationIF interface. This new interface is used by a component to

demand an inner Coordination Manager the execution of a plan. The execution may be

3.5. Implementation 31

synchronous or asynchronous, and there is an operation to ask the status of an asyn-

chronous plan execution.

ActivityReportIF interface also receives reports from other kind of activities in a similar

way.

RegulationManager Class.

This class implements the RM block of Fig. 3.5. An instance of this class verifies regula-

tions. A regulation is evaluated against a summary of a product to verify if that product

satisfies the constraints expressed in the regulation.

A Regulation is specified in an XML file (Fig. 3.8). It contains a section (tag verify)

with the conditions that must hold for the regulation to be satisfied (the regulation is

said to be satisfied). The evaluation of this condition may produce a certificate stamp -

another XML file.

<regulation id=‘‘unique id’’ type=‘‘CategoryName’’>
<parameters> . . . < /parameters>
<enforce>

<reg var=‘‘VarName’’ id=‘‘RegulationIdentification’’

address=‘‘RegulationRepositoryAddress’’ >
<par name=‘‘Parameter1Name’’> Parameter1Value< /par>

< /reg>
< /enforce>
<verify> < /verify>
<action>

<ifok>
<mark m=‘‘all|alltrue|allfalse|#VarName|##’’/ >

< /ifok>
< /action>

< /regulation>

Figura 3.8: Regulation XML file

Complex Regulations embed other regulations to be verified (tag enforce). The value

produced by the evaluation of an enforced regulation is assigned to VarName. A complex

regulation is satisfied iff its condition holds and so do all the enforced regulations.

The action tag indicates whether to store the certification stamps in the summary or

not. The mark tag will instruct which mark is appended to the summary; e.g, all means

that all stamps will be appended; alltrue appends the stamps whose value is yes; allfalse

is the opposite; #VarName, appends the stamp contained in variable VarName; ##,

appends only the stamp produced by the composite regulation.

32 Caṕıtulo 3. A Model for Agricultural Supply Chains

3.5.3 Implementation as Web Services

All architecture elements can be seen as implemented through or encapsulated by Web

Services. The only exception is the coordination plan, which is mapped to a workflow.

In more detail, repositories and contracts are static entities encapsulated by Services

that provide access to them. Actors can be either Services (e.g., a broker) or Service

clients. All managers correspond to services, and the remaining architecture elements

– Production, Transportation and Storage – are atomic services or the result of service

composition via coordination plans.

The workflow that describes a coordination plan is constructed just as any workflow

described in the literature [41], i.e.:

• totally predefined before execution; or

• constructed in an ad hoc manner by the CM responsible for the orchestration, while

the chain is executed, typical of scientific workflows (e.g., [87, 30]); or

• a combination of both.

Each workflow activity references a service responsible for its execution. For instance,

in figure 3.3, a coordination plan executed by CM2 is a workflow that contains an activity

that starts cheese production. This activity must refer to the cheese unit (a Service), the

desired kind of cheese (a Service for a Product Repository) and the regulations (a Service

to a Regulation Repository) that must be verified during the production process in order

to ensure cheese quality.

There follows the ennumeration of the interfaces of these Services, which can also be

depicted as WSDL specification. Most of these blocks also implement an administra-

tion interface, used to configure the corresponding Web Service. The main interfaces of

Transportation, Production and Storage Services are:

• Interfaces for specific/business services: each element represents a chain partner

(e.g., business, enterprise, industry), and therefore can have one or more interfaces

for its specific services.

• Contract Negotiation interface: receives requests from the Negotiation Manager

about negotiation and contract parameters.

• Contract Execution interface: accepts requests from other components (or Coordi-

nation Manager) to execute a specific contract clause.

• Sumary Management interface: responsible for exchange and certification of sum-

maries, via communication with the Summary Manager.

3.6. Related Work 33

A Coordination Manager Service implements at least the following interfaces. The

Java specifications of some of them are shown in section 3.5.2:

• Coordination interface: receives requests from a higher Coordination Managers.

Orchestration happens through this interface.

• Activity Report interface: receives status reports about the activities demanded from

another Service.

• Owner Component interface: the interface by which a Coordination Manager re-

ceives requests from the component that owns it.

The interfaces implemented by a Negotiation Manager Service include:

• Negotiation Coordination interface: accepts requests from the Coordination Man-

ager.

• Peer Negotiation interface: for negotiation with another Negotiation Manager Ser-

vice.

A Summary Manager Service has one Exchange interface for exchange of summaries

among summary managers.

Finally, a Regulation Manager Service has one interface Regulation Verifying interface.

It is responsible for checking all rules within a regulation against the chain’s state. This

may require requesting information from all repositories. It may be invoked by one or

more chain components. The component that invoked it is responsible for enforcing the

corresponding regulation.

All repositories are encapsulated by Services. The interfaces of these Services offer

access to these data for retrieval and update. These interfaces can be accessed by the

Managers of a chain and also by external services and systems that have no connection

with a chain, but want to perform queries on products, participants, contracts and plans.

3.6 Related Work

There are several issues that can be analyzed under the umbrella of supply chains - e.g.,

concerning algorithms adopted, logistics, placement strategies, partner choice. One partic-

ular trend, called by [65] IT-related supply chains, concerns information technology tools

and techniques to specify and implement such chains. In particular, a recent direction

concerns the communication technologies adopted. Problems encountered in electronic

34 Caṕıtulo 3. A Model for Agricultural Supply Chains

commerce and B2B applications and interactions are the same as those faced by supply

chain interactions [62].

Though there are many proposals for combining workflows and Web Services (e.g., [39]

on agriculture) proposals for supply chains combining these mechanisms are still prelimi-

nary. The closest is the research on e-business using Web services, but for other goals –

e.g., see [80]. [9] even states that the main reason for the lack of practical implementation

of strategic supply chain development can be found in the high degree of complexity that

is connected with the identification of supply chain entities and the modelling of the chain

structure, as well as the high coordination effort.

Our goal is to contribute to solving these issues. Most researchers do not examine the

entire chain, focusing only on some aspects. Auditing structures and log maintenance are

ignored. Agricultural chains are mostly examined under a business or logistics framework.

Examples of such approaches are the work of [74] or [82]. The first categorizes inte-

grated supply chains into three models, namely: channel master, chain web, and chain

organism. The author states that the predominant model in agricultural supply chain is

the channel master. In this model, a dominant firm specifies the terms of trade across the

entire supply chain and the coordinated behaviour is based on specification contracts. [82]

discusses the usage of information technology in the american cattle-beef supply chain.

The paper emphasizes the need for better information integration and well-defined means

for describing and enforcing activitities coordination, negotiation and execution of con-

tracts.

Since our proposal is based on Web services implementation, we also examine a few

related issues. Two aspects have to be considered: mapping a chain’s components to Web

services and composition of these services.

[73] analyzes issues in service composition and comments on various standards for or-

chestration and choreography, such as BPEL4WS, WSCI and BPML. Important concerns

in service execution in this context are long running transactions and exception handling.

The actions in those standards are undone by compensation actions. This affects docu-

mentation of chain execution, since all performed actions are logged in summaries and in

repositories. [25], in turn, overviews several proto-patterns for architecting and managing

composite Web services, while [27] is more concerned with service semantics.

[24] proposes a mechanism for service definition and coordination. Their architecture

is based on a 2-level workflow. At the highest level, a workflow orchestrator controls

execution, while at the lowest level service execution can be controlled by a regular work-

flow engine. This is done through entry points placed between activities. In contrast, the

work of [14] uses statecharts for defining service composition, and is based on a distributed

orchestration engine.

[71] proposes a service-oriented architecture built upon the Web services proposals for

3.7. Conclusions 35

inter-enterprise and cross-enterprise integration. Using this architecture, process man-

agers can compose and choreograph business processes based on exposed enterprise and

Web services.

Several other authors are concerned with organizational and modeling aspects of sup-

ply chains, as indicated by the classification proposed by [65] to analyze efforts in supply

chain modeling. This includes for instance work on partner coordination [59], logistics

[84] or business contract languages [86].

3.7 Conclusions

This paper presented a framework for modeling, supervising and coordinating processes

in agricultural supply chains. This framework is comprised of two parts: (i) a model for

these production chains, that covers both declarative and dynamic aspects; and (ii) an

architecture to support the model, based on Web Services and their interfaces.

The model takes into account the fact that agricultural chains are inherently hetero-

geneous, and sensitive to different kinds of constraints. Chain definition using this model

involves specifying its basic components (Actors, Transportation, Process and Storage)

and the components needed for cooperation, collaboration, negotiation and documenta-

tion (Contracts, Coordination plans, Regulations and Summaries). The model provides

rules for composition and construction of these elements, thereby allowing ad hoc chain

construction and execution. The model is mapped into an architecture of Web Services

that provides support for contract negotiation, plan coordination, regulation enforcement

and summary management. These services also encapsulate access to distinct repositories,

that contain data on the chain’s partners, processes, regulations, constraints, contracts

and execution documentation. This architecture supports flow execution at two dimen-

sions: within and across enterprises, for a multiple hierarchy of coordination levels, under

service orchestration. Service coordination encompasses global and local dynamics, en-

forceable by communication protocols established among and across coordination levels.

The main contributions are thus the following: (1) an information technology-based

model for specification of agricultural supply chains, which takes into consideration scope,

structure and goals, and supports coordination, cooperation and documentation; (2) an

architecture for its implementation, which emphasizes negotiation, regulation manage-

ment, coordination and service flow issues; (3) validation of the model via a real life case

study in agriculture.

Current work includes refining the object model of the framework, which will in turn

allow implementation and testing of the architecture. This includes testing the suitability

of scientific workflows to support the dynamics of ad-hoc coordination plan construction.

The implementation will be tested against case studies provided by Brazil’s agriculture

36 Caṕıtulo 3. A Model for Agricultural Supply Chains

ministry research corporation.

Caṕıtulo 4

A Negotiation Process and a

Contract Format for Agricultural

Supply Chains

E. Bacarin, E.R.M. Madeira and C.B. Medeiros. Contract E-Negotiation

in Agricultural Supply Chains. Intl. Journal of Electronic Commerce,

12(4): 71–97, summer, 2008.

Abstract

Supply chains are composed of distributed, heterogeneous and autonomous

elements, whose relationships are dynamic. Agricultural supply chains, in

particular, have a number of distinguishing features - e.g., they are charac-

terized by strict regulations to ensure safety of food products, and by the

need for multi-level traceability. Contracts in such chains need sophisticated

specification and management of chain agents – their roles, rights, duties and

interaction modes – to ensure auditability. This paper proposes a framework

that attacks these problems, which is centered on three main elements to sup-

port and manage agent interactions: Contracts, Coordination Plans (a special

kind of business process) and Regulations (the business rules). The main con-

tributions are: i) a contract model suitable for agricultural supply chains; ii) a

negotiation protocol able to produce such contracts, which allows a wide range

of negotiation styles; iii) negotiation implementation via Web services. As a

consequence, we maintain independence between business processes and con-

tract negotiation, thereby fostering interoperability among chain processes.

37

38Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

4.1 Introduction

A supply chain is a network of retailers, distributors, transporters, storage facilities and

suppliers that participate in the sale, delivery and production of a particular product [65].

It is composed of distributed, heterogeneous and autonomous elements, whose relation-

ships are dynamic. Supply chains present several research challenges, such as recording

and tracking B2B and e-commerce transactions, designing appropriate negotiation proto-

cols, providing cooperative work environments among enterprises, or coordinating loosely

coupled business processes [12].

Trading relations inside a specific supply chain comprise a huge amount of commercial

transactions and are subject to legal commitments varying from federal and international

laws to particular contracts between trading partners. The use of computational means to

perform commercial transactions is increasing steadily. This implies that contracts should

ideally be replaced by their electronic counterparts (e-contracts), and live negotiation

should be performed by software agents (e-negotiation). The negotiation process develops

in the context of a business process. This raises several interesting problems: i) the

efficient execution of a supply chain depends on the commitment of most of its multiple

agents – multi-partner negotiation is a must; ii) even though supply chain partners are

autonomous and heterogeneous, they must agree on concepts and names; iii) a supply

chain demands diverse styles of negotiation – some issues may be resolved through ballots,

others through auctions, or through bilateral bargaining, and so forth.

The result of an e-negotiation process is an e-contract to be enacted, in the context of

an existing business process. During this phase, partners may want to know if the contract

is being enacted properly, that is, whether the terms of the agreement are being satisfied.

This raises a number of issues. Not only the contract, but data about its enactment

should be stored and retrieved. During the enactment phase, agreements may be changed

through a renegotiation process. This requires contract version management, and causes

consistency problems among contracts. All of these are open problems pointed out in the

literature.

This paper presents an e-negotiation framework that attacks several of these issues,

focusing on problems raised by business processes within agricultural supply chains. Such

chains have a number of characteristics that distinguish them from other kinds of supply

chains – e.g., they must obey strict governmental regulations; they deal with products that

are perishable and may influence health conditions; they may be subject to cultural or even

religious contexts. The framework is centered on linking contracts and their negotiation to

the underlying business processes, rules, and services. The connection between contracts

and processes is established in such a way that they can evolve independently, without

requiring the update cascades common to this sort of situation. The framework comprises:

4.2. The Model and Basic Architecture 39

i) a model for agricultural supply chains; ii) a negotiation protocol suitable for different

styles of e-negotiation; iii) the definition of an e-contract structure; iv) the design and

implementation of an e-negotiation framework based on Web services; v) the design and

implementation of an enactment infrastructure. The paper’s contributions concern issues

(ii) – Section 4.4, (iii) – Section 4.3 and (iv) – Section. 4.5.

The following motivating example will be used throughout the paper. Sky Food is a

catering company that delivers meals to airlines. It has established a number of contracts

with its clients and suppliers, which also have contracts with other parties. The example

concerns milk products, and the paper will discuss two of its several contracts. The first

is a two-party contract Sky Food has established with a dairy (supplier) that will provide

pasteurized milk and other dairy products. The dairy, in turn, is the client of a milk

cooperative. However, the milk is not produced by the cooperative, but by its member

farms. Thus, the second contract analyzed is a multiparty agreement that the cooperative

has established with the farms it represents.

This scenario poses several interesting problems in contract negotiation and enactment.

For instance, though the two contracts are independent, their enactment interferes with

each other. Moreover, each farm has daily quotas to meet, to enable the cooperative

to fulfill its contract with Sky Food. If a farm fails to meet its quota, the others are

expected to step up their production (internal renegotiation of the multiparty contract).

Additionally, eventual geographical conditions (e.g., a drought) may affect overall milk

production requiring renegotiation of both contracts. These and other issues will illustrate

the presentation of the framework.

The paper is organized as follows. Section 4.2 describes our model for agricultural

supply chains and an architecture induced by this model. Section 4.3 describes the orga-

nization of our e-contracts and Section 4.4 describes the e-negotiation process to produce

such a contract. Section 4.5 discusses some implementation issues and a few basic inter-

actions scenarios, such as ballots, auctions, and quota negotiation. Section 4.6 discusses

related work, mainly on contracts and negotiation. Finally, Section 4.7 concludes the

paper.

4.2 The Model and Basic Architecture

Our framework is based on a specific model for supply chains (see [21]). This model

specifies a chain from basic elements, and then progressively constructs their interact-

ing and cooperative processes. The basic elements are Actors, Production, Storage and

Transportation. Regulations, Contracts, Coordination Plans and Summaries are elements

needed for providing chain dynamics.

A Production Element encapsulates a productive process that uses raw material ex-

40Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

tracted from its own environment or inputs obtained from other components and trans-

forms such inputs into some product that is passed onwards to the chain.

A Storage Element stores products or raw material and a Transportation Element

moves products and raw material between production, storage components and other

transportation components.

Regulations are sets of rules that regulate a product’s evolution within the chain. These

rules specify constraints, such as government regulations, and quality criteria. Actors

are software or human agents that act in the chain. They may be directly or indirectly

involved in the execution of activities. Summaries are elements introduced for traceability

and auditability. They are similar to database logs, recording chain events.

Interactions among chain components are organized by means of Coordination plans

and negotiated via Contracts. The latter delineate patterns of interaction among the

partners, being detailed in the paper.

A Coordination plan is a set of directives that describes a plan to execute the chain,

coordinating the activities inside an agent or among several chain agents. These activities

can be seen as business processes. Plans indicate, among others, sequences of chain

elements to be activated, and actors responsible for monitoring these sequences. They

trigger activity execution, execute contract clauses, synchronize parallel activities and

control the overall product flow. A chain usually has several plans, that are organized

and may interact in different ways.

Figure 4.1 illustrates the main concepts of our model, showing a simplified chain for the

motivating example (Section 4.1). The chain is composed of producers (e.g., Sky Food),

means of transportation (e.g., Transp 1), storage facilities (e.g., Airport Storage), and

other actors that perform complementary activities (e.g, Lawyer 1). Regulation 1 is a set

of rules describing the quality criteria that the milk delivered by the Dairy must comply

with in order to be accepted by Sky Food. The figure shows two contracts, one of which

(Contract 1), between the Dairy and Sky Food, will be discussed subsequently. Its clauses

include parameters such as price, date and regulations to be obeyed (e.g., Regulation 1).

The chain has several summaries that provide product, process and service traceability –

see [57]. Plans (e.g., Coord Plan 1) are executed by coordination managers, which send

messages to chain elements to perform a set of activities (e.g., asking the Cooperative to

produce milk, or Transp 1 to transport milk from the Cooperative to the Dairy).

Production, Storage and Transportation elements can be simple or complex. Complex

elements are those that can be decomposed into other elements, e.g., the Cooperative is

composed of several member farms (which are Production elements), and a number of

storage and transportation facilities. Regulations may be atomic or complex, containing

other regulations within them.

The model has been mapped to a Web service architecture, whose components di-

4.3. Contracts 41

Figura 4.1: Simplified supply chain

rectly reflect the model’s elements. The architecture has managers for: coordination

(CM), negotiation (NM), regulations (RM) and summaries (SM), that respectively han-

dle coordination plans, contract settlement, regulations and summaries, all mentioned

previously. Distinct kinds of repositories are needed to store information in: chain Partic-

ipants (the basic elements), Products, Regulations, Contracts and Summaries. For more

on interactions among plans and their composition and encapsulation see [21].

4.3 Contracts

Our e-contract is an instance of a contract model and is constructed by a negotiation

process. Basically, it is composed of a set of clauses and some auxiliary information that

makes it meaningful and supports its execution.

The life cycle of a contract starts with the construction of a contract model, which

has a specific purpose (e.g., furnishing of milk by a supplier to Sky Food). Contract

models are designed by human actors and stored in specific repositories. They indicate

the business rules that must be obeyed when the contract is enacted.

This section presents our proposal for contract specification. Section 4.3.1 describes

our specific model, containing a draft of the contract’s clauses with blanks. Whenever two

or more partners want to establish a contract, they choose a contract model that better fits

their objective. Their respective negotiators (NMs) interact, according to the negotiation

protocols proposed in Section 4.4 filling the blanks. If the negotiation succeeds, an actual

contract instance is produced – Section 4.3.2. It represents the agreement among the

partners and contains the business processes that are to be activated when it is enacted.

Thus, a model can originate several instances. Both model and instances are written in

XML.

Enactment comprises carrying out the contract’s clauses individually and in a proper

order. Preconditions are verified before the clause execution. If they hold, a business

42Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

process associated with the clause is activated. After the business process has ended,

postconditions are checked.

Logs are produced during contract enactment, being used to verify contract fulfillment

and to help chain traceability. Conditions may change during the enactment. This may

demand the renegotiation of the contract. The renegotiation process is quite similar to the

primary negotiation, but adds new version control and logging challenges. Discontinued

contracts cannot be enacted again, but must be stored with the produced logs for legal

purposes. Versioning and log-related issues are outside the scope of the paper.

4.3.1 The Contract Model

Our contract model is a template written in XML. Figure 4.2 shows a graphical repre-

sentation of its structure and Figure 4.3 shows an excerpt of an actual XML document.

The graphical representation emphasizes the nesting of the contract’s sections and the in-

formation needed to construct a final instance: only the information in the gray rounded

boxes. Broadly speaking, the contract model has two sections (Figure 4.2): property dec-

laration and template. The property declaration section lists all the properties that can

be negotiated and some specific information about them. The template section contains

a draft for the contract. The syntax of its content is similar to that of the final contract.

A contract model can be seen as a contract draft with blanks – properties not yet

bound to a value. Thus, at its core, the negotiation process consists of agreeing on values

(or ranges of values) for each contract property, thereby filling these blanks. At the end

of the negotiation, most parts of the contract model (the ones in rounded gray boxes in

Figure 4.2) are used to make up the final contract: mandatory and optional properties

are condensed in a single properties section in the final contract, the other gray boxes are

copied almost verbatim to the final contract.

The properties. There are two kind of properties: contract and negotiation. The

former are those used in the final contract. The latter guide the negotiation process itself

and are not present in the final contract. A property declaration in the contract model

defines what can be negotiated, whereas in the final contract it determines what can be

performed.

Both kinds of properties may either be negotiated or have a predefined value within

the model. Contract properties in the model can be mandatory or optional. Mandatory

properties must be negotiated, in contrast with the optional ones. A negotiation can only

be committed after all mandatory properties are negotiated.

Figure 4.3 shows an example of properties. Property values can be predefined in the

model, and thus constant for all contract instances (e.g., approval-threshold); alternatively,

when assigned to “?”, they are not bound to a value e.g., price). The valid values are

4.3. Contracts 43

Figura 4.2: Contract model schematic representation

<cmodel>
<properties>

<negotiation>
<p name=“approval-threshold” value=“50” type=“xs:decimal”/>
<p name=“max-wait-delay” value=“?” type=“xs:nonNegativeInteger”

default=“5”/>
</negotiation>
<mandatory>
<p name=“price” type=“xs:float” value=“?” dynamics=“static”/>
<p name=“amount” type=“xs:integer” value=“?” dynamics=“static”/>
<p name=“deliver-time” type=“xs:time” value=“?” dynamics=“both”

range=“07:00:00,18:00:00” constrained=“narrow”/>
<p name=“gis:place” type=“xs:string” value=“?” dynamics=“dynamic”

enum=“maringa,campinas,londrina” constrained=“fixed”/>
</mandatory>
<optional> </optional>

</properties>
<template> </template>

</cmodel>

Figura 4.3: An Excerpt of a Contract Model, Focusing Properties

44Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

defined by the type of the property, and restricted by range or enum.

A value can be bound to the property: a) when the negotiation starts; b) by the

negotiation process; c) after the negotiation has ended, when the contract is carried out.

In the first case, the value is assigned in the contract model and cannot be changed.

The second case is the most common one, in which negotiators agree upon a value for a

property. If it is a negotiation property, it will be constant until the end of the negotiation.

If it is a contract property, this value will be used in every implementation of that contract.

Finally, some property values are assigned only at runtime. This happens for two reasons:

a) the negotiators have decided not to establish a fixed value, but agreed on a range of

valid values to be assigned at execution time; b) the contract model has established that

the value must be assigned only during the implementation of the contract.

A property has two attributes to model all these behaviours: dynamics and con-

strained. The dynamics attribute has three possible values: “static”, “dynamic”, “both”.

The first option means that the property must have a constant value at the end of the

negotiation (e.g., price). The second (e.g., gis:place) means that the value of the property

will be defined when the contract is carried out. The negotiators can, at most, define a

range of valid values for the property. The last option (e.g., deliver-time) means that the

negotiators may agree upon a value for the property (static assignment) or postpone the

definition to execution time (dynamic assignment).

The constrained attribute has two possible values: “fixed” or “narrow”. The first (e.g.,

gis:place) forbids any modification on the property constraints (range and enum). They

must be obeyed as they are declared in the contract model. The second (e.g., deliver-

time) allows the negotiation to narrow the range of the constraints declared in the contract

model, that is, the set of valid values is made smaller.

Properties in the negotiation section have standard names and a defined domain of

values. For instance, the value “50” for property approval-threshold means that, during

the negotiation process, an issue submitted to ballot will be approved if it receives more

than 50% of the votes. Undefined negotiation properties (“?” value) must have their

values negotiated at the very beginning of the negotiation.

If a mandatory or a negotiation property was not negotiated, the default value is

assigned to it (e.g., property max-wait-delay).

The template. The template section contains a draft whose syntax is very similar

to that of the contract. It has a number of sections that are also present in the final

contract. Basically, the content of this section and the negotiated properties are used to

generate the contract instance. Thus, the template section is in the next section.

4.3. Contracts 45

4.3.2 Contract Instance

A contract is based on a contract model (Section 4.3.1). The main sections are: setup,

info, partners, properties, and clauses. Excerpts of these sections are shown through

examples.

The setup section. Contains low level information necessary to the contract imple-

mentation, such as: ontologies, paths, libraries, etc. Ontologies play an important role in

the negotiation process. They allow the negotiators to understand the meaning of each

clause and the relationship among the properties being negotiated. There is a default

ontology, and partners can declare other ontologies. In the latter case, terms are preceded

by a prefix that identifies the ontology, similar to namespaces within XML documents.

The info section. Contains “administrative” information about the contract, such

as validity, or the contract model it was originated from.

The partners section. A contract establishes rights and obligations among the

partners. In general, a binary relationship establishes a duty to a partner and a right to

the other partner. However, our contracts allow relationships of higher cardinality.

A partner (Figure 4.4) can refer to a person (e.g., John Doe is the manager of Sky

Food) or to a role (e.g., the CEO of the Dairy). The identity of a partner is checked

against a Participant Repository (Section 4.2). The address of the repository is a URI.

Participants can also be identified by a short name (abr).

<partners>
<person name=“john-doe” abr=“SF” directory=“http://www.x.y/pd1”/>
<role name=“ceo-dairy” abr=“DRY” directory=“http://www.z.k/pd2”/>

</partners>

Figura 4.4: Contract Partners

The properties section. This section is directly derived from the property declara-

tion in the contract model (Section 4.3.1). Properties are value containers (like variables

or constants). Their values may be fixed (static) or defined during contract enactment

(dynamic). Figure 4.5 presents the property section derived from the contract model of

Figure 4.3. Note that the value of property price was agreed to be 0.50, while property

deliver-time was kept dynamic, but its range was narrowed. Property types are declared

in the contract model. Attributes dynamics and constrained are only used in the con-

tract model. References to ontologies disambiguate property names (e.g., property place

belongs to the ontology identified by the prefix gis). Type names are also described by

ontologies.

The clauses section. The contract is made from a set of clauses, and is fulfilled

when the clauses are executed properly. Each clause (e.g., Figure 4.6) is identified by

46Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

<properties>
<p name=“price” type=“xs:float” value=“0.50”/>
<p name=“amount” type=“xs:integer” value=“200”/>
<p name=“deliver-time” type=“xs:time” value=“?”

range=“07:00:00,09:00:00”/>
<p name=“gis:place” type=“xs:string” value=“?”

enum=“maringa,campinas,londrina”/>
</properties>

Figura 4.5: Examples of Properties

a unique identifier within the contract (attribute id) and has a number of sections: an

action name, a text, a dependency expression, the regulations that must be enforced by the

execution of the clause, a service to be executed, a list of authorized and obliged partners.

The action name describes the task that will be performed when the clause is executed.

The text dictates rights or obligations to the partners. It contains sentences intending to

be both human-readable and machine-processable. Basically, the text contains nouns,

verbs and properties. Verbs establish duties among partners and nouns detail them. The

properties must be previously declared in the section properties. When executed, each

embedded property is replaced by the value that was assigned in the property declaration

or defined at execution time. Property references embedded in the text are prefixed by

the “#” mark. Property references may be used all over the contract wherever applicable.

For instance, the text section of Figure 4.6 refers to properties amount, price and place,

indirectly, to partners SF and DRY. The word liter is defined in the default ontology,

whereas deliver is defined in the ontology identified by ecom. Suppose that there is

another clause (id=9) that states that any milk delivered must be paid within a period

of three days. The milk referred to in clause 10 is the same as the one in clause 9. This

is shown by the notation “milk[9]”.

The depends section contains a boolean expression that determines if the clause

may be applicable. In this example, the condition checks if Sky Food has no debts. If

this expression is true, the coordination plan A, stored in a repository whose address

is “http://www.coop.com/plans” is allowed to be executed by the coordination manager

at “http://www.coop.com/coop cm”, all of which is informed in the service section. The

expression may contain arithmetic, relational and boolean operators, as well as external

function calls. The coordination plan may demand some parameters. Properties or con-

stants can be assigned to them (e.g., the value of the property price is assigned to the

parameter MilkPrice, Figure 4.6). Conversely, the section enforces is a postcondition that

lists the regulations that must be enforced by the execution of the clause.

The enactment of a clause may be started by any of authorized or obliged partners.

4.3. Contracts 47

An obliged partner must accomplish the state of affairs intended by the clause. In the

example, the milk must be delivered by the dairy (represented by its CEO). An authorized

partner has the right to receive the effect intended by the clause. In the example, John Doe

(representing Sky Food) has the right of receiving the milk. Both obliged and authorized

items are optional, but at least one of them must be present. Note that if only the

authorized item is present, it means that the clause conveys an optional right to the listed

partners, but none of them is obliged to enact the clause.

<clause id=“10”>
<action> Milk deliver </action>
<text>

@OBLIGED will ecom:deliver #amount liters of milk[9]
at R$ #price liter to the branch of @AUTHORIZED at #place.

</text>
<depends> no debt(@SF) </depends>
<enforces> <r> Regulation 1 </r> </enforces>
<service cmaddress=“http://www.coop.com/coop cm”

cpaddress=“http://www.coop.com/plans/” idplan=“A”>
<par name=“MilkPrice” value=“#price”/>
<par name=“MilkAmount” value=“#amount”/>
<par name=“DeliverPlace” value=“#place”/>

</service>
<authorized partners=“@SF” mode=“all”/>
<obliged partners=“@DRY” mode=“all”/>

</clause>

Figura 4.6: A Contract Clause

The example shows a binary relationship: the Dairy must deliver milk to Sky Food.

However, our contracts allow relationships with higher cardinality. Note that both au-

thorized and obliged items may contain a list of several partner names. In this case, the

attribute mode determines how many of the partners in each list are supposed to perform

the task or to be the clause beneficiary. The attribute mode has three possible values:

“one”, “all” or a positive integer “n”. The value “one” means that exactly one of the

obliged (authorized) partners must fulfill the duty (right). Similarly, “n”, means that, at

least, n obliged (authorized) partners must fulfill (should receive) the duty (the right).

The value “all” has analogous meaning. The names @AUTHORIZED and @OBLIGED

can be used in the text item standing for the partners listed in the respective items, ac-

cording the respective modes. For instance, Table 4.1 shows two combinations of mode

assigment.

48Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

Obliged Authorized Effect

one all Exactly one of the obliged partners must deliver the estab-
lished amount of milk to each authorized partner. Thus,
the obliged partner will deliver n*amount liters of milk.

all one Each obliged partner must deliver amount of milk to one
of the authorized partners. Some authorized partners may
receive i*amount, while others may receive no milk.

Tabela 4.1: Examples of mode combination for Figure 4.6

4.4 The e-Negotiation Process

This section describes the negotiation process. It presents a negotiation protocol that can

be used for various negotiation styles, e.g., bargaining or auctions. Section 4.4.1 gives an

overview of how negotiations are set up; the subsequent sections detail the negotiation

process itself.

4.4.1 Organization of the Negotiation

Negotiators are instances of the Negotiation Managers (NM) of our architecture (Sec-

tion 4.2). One of them is the leader. A Notary actor is responsible for given bureaucratic

chores, e.g., constructing the final contract, or acting as a trusted third-party (e.g., to

control ballots).

These players exchange information within a negotiation process through asynchronous

messages. The messages may be peer-to-peer or broadcasted. Contract negotiation is

directed by the contract model (Sect. 3.1) and has several phases:

1. Negotiation announcement: the Notary announces a new negotiation process or

renegotiation of an existing contract. The interested parties register for this process.

2. Leader determination: the leader of the negotiation is chosen. The leader may be

predefined in the contract model (the notary just announces it to all negotiators)

or chosen by means of an election procedure – in our case, similar to [42].

3. Objective announcement: the leader announces the objectives of the negotiation,

such as: minimize (or maximize) a property, or enforce a regulation.

4. Negotiation set up: some parameters that guide the negotiation process are set up

by means of property negotiation.

5. Restriction announcement: all negotiators may broadcast their restrictions on what

is going to be negotiated. For instance, a restriction can be “I accept Price> $10

only if delivery interval < two days”.

4.4. The e-Negotiation Process 49

6. Core negotiation (see Sec 4.4.2): the contract negotiation takes place. Negotiators

exchange messages trying to agree upon property values, through a cycle of proposals

and counter-proposals or through ballots.

7. Commit attempt: after the parties have reached an agreement, the Notary verifies

if there is any pending issue that prevents the contract to be commited, such as, all

mandatory properties must be negotiated. If no problem is found, the negotiation

is commited and the final contract can be written down. Otherwise, the negotiation

returns to the state just before the commit attempt.

8. Contract (re)construction: after the (re)negotiation is commited, the contract is

(re)written by the Notary and is available to be signed by the partners.

4.4.2 Core Negotiation

Core negotiation involves settling values of properties. Contract or negotiation properties

may be negotiated by means of two basic mechanisms: request for proposals (RFP)

and offers. These basic mechanisms can be combined to provide the various styles of

negotiation in a supply chain.

A negotiator A may propose to negotiator B a value (or range of values) for a given

property P using an offer. B can accept, reject or make a counter-offer. They then

engage in a cycle of counter-offers until they agree or give up. Conversely, negotiator A

may request a proposal from B using an RFP. B answers the RFP sending A an offer that

complies with the restrictions of the RFP, and they may engage in cycles of counter-offers.

An RFP or an offer may cover to several properties.

An offer (or an RFP) may be submitted to a ballot – see example in Section 4.5.2.

The notary broadcasts the offer (RFP) and the list of allowed votes – typically agree or

not agree, for offers, or a list of several options, for RFPs – and waits for the votes. The

negotiators send back to the Notary their votes (choices). The Notary counts the votes

and broadcasts the result. Negotiators with veto power are listed in the contract model

– instead of sending back a vote to the Notary, they may veto the subject. In this case,

the ballot is cancelled.

Property values may also be negotiated through an auction – see example in Sec-

tion 4.5.2. In this case, the notary broadcasts an offer or an RFP and collects all answers

for them. Then, the leader chooses the answer it considers the best one. Counter-offers

are not allowed.

Finally, some negotiators may agree on exchanging information during the negotiation

process, bypassing the leader or the Notary – e.g., to establish mutual consensus during

the negotiation process. For instance, before answering the RFP, they develop a private

50Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

negotiation and respond identical offers to the leader. This is useful in case of composition

(e.g., the Cooperative and its farms) or for strategic alliance among partners.

4.4.3 Main Protocol Messages

Our negotiation protocol is specified by means of a context-free grammar and state di-

agrams. The latter describe the steps a negotiator follows after sending or receiving a

message.

Figure 4.7 presents an excerpt of the grammar. Non-terminals are capitalized, termi-

nals are in bold, � means another rule for the same non-terminal, [A] means that A is

optional, A+ means one or more A.

1. NegotiateProperty::= MakeRFP

2. � MakeOffer

3. � IssueVoting

4. � Auction

5. MakeRFP ::= Communicate RequestForProposal

ReceiveRfpResponse

6. Communicate::= send Dest

7. � broadcast

8. RequestForProposal::= new rfp rfp [Obj]

9. ReceiveRfpResponse::= (RfpResp [MyResp])+

10. RfpResp::= ProposalResponse

11. MyResp::= ProposalResponse

12. RfpId::= rfp id

13. ProposalResponse::= send Dest proposal agree Offer

14. � send Dest proposal no agree Offer [Reason]

15. � send Dest new offer Offer [Obj]

16. � send Dest no offer RfpId

17. � Wait ProposalResponse

18. Wait::= send Dest wait [WaitDuration] [Reason]

Figura 4.7: Excerpt of grammar for property negotiation

The figure shows that the negotiation of a property can be achieved by: (i) making an

RFP (line 1), (ii) making an offer (line 2), (iii) issuing a ballot (line 3) or (iv) performing

an auction step (line 4). Offers and RFPs are the main negotiation mechanisms. Ballots

and auctions use them. These four negotiation primitives may be combined to develop

several styles of negotiation.

A negotiator announces an RFP communicating it to one or more negotiators, who

will send back a response (line 5). Communicating a message means sending it to a

single partner (line 6) or broadcasting it to all negotiators (line 7). The message that

4.4. The e-Negotiation Process 51

communicates the RFP is “new rfp rfp” (line 8). The terminal symbol “rfp” conveys all

information about a specific RFP. This message can optionally disclose the intention of

the negotiator, e.g., minimizing the #price property. Offers are made in a similar way

(grammar rules were omitted). If the partner agrees to the offer, it sends back a “proposal

agree” message (line 13); if it disagrees, it sends back a “proposal no agree” message (line

14); if it answers an RFP or makes a counter-offer, it sends back a “new offer” message

(line 15); if it does not intend to answer an RFP, it sends back a “no offer” message (line

16); finally, it may send a wait message informing that it will postpone the answer (lines

17, 18).

Figure 4.8 shows a possible sequence of messages induced by this excerpt. In this

example, the text between triangles represents an RFP and between squares represents

an offer. This is not the actual syntax; only the main parameters are shown. RFPs and

offers share parameters that allow correlating them. This figure shows that a negotiator

(presumably N1) has broadcasted an RFP asking for a proposal for property price, con-

sidering that property amount has value 20. The RFP imposes that a proposal for price

must be less than 10. Three negotiators answered the RFP, sending back an offer each,

with different values for price. Figure 4.9 shows a short bargaining process, where N2

agrees to N1’s counter-offer.

broadcast new rfp Cprice?<10; amount=20B

send n1 new offer �price=8; amount=20�

send n1 new offer �price=9; amount=20�

send n1 new offer �price=7; amount=20�

Figura 4.8: Example of price survey given an RFP

send n2 new rfp Cprice?<10; amount=20B

send n1 new offer �price=9; amount=20�

send n2 new offer �price=8; amount=20�

send n1 proposal agree �price=8; amount=20�

Figura 4.9: Example of bargaining given an RFP

Figure 4.10 shows the steps followed by the leader after it has sent an RFP. The

transitions are labeled with the message sent or received. The leader collects offers from

other negotiators until all expected offers have arrived or a fixed length of time elapses.

Next, it analyzes all received offers, using the Offer Received diagram (not detailed), and

may accept the offer, reject it or make a counter-offer. In this diagram, the prefix “e:”

52Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

means an internal event, e.g., “e:timeout” means that the leader has not received any

offer within a specific time.

Figure 4.11 shows the negotiator’s steps after receiving an RFP. First, it analyzes the

RFP and may send back an offer, inform the partner that it will not make any offer, or

that it will delay the answer. Prefix “s:” means that the negotiator has sent a peer-to-peer

message.

Figura 4.10: Leader’s state after issuing an
RFP

Figura 4.11: Negotiator’s state after receiv-
ing an RFP

Note that the communication primitives presented in Figure 4.7 allow several styles

of negotiation. This flexibility is important in the context of business processes within

agricultural supply chains. For instance, a contract model may contain a clause with a

property whose value must be agreed on by most of the negotiators (e.g., a maximum

production quota for any farm of a cooperative). This is resolved by a ballot. Another

clause of the same contract may have a property that must be disputed by the negotiators.

This is resolved by auctions, and so forth. Sections 4.5.2, 4.5.2, and 4.5.2 show a few

examples of different negotiation styles.

4.5 Some Implementation Issues

Our framework is implemented by Web services, which are suitable for handling hetero-

geneity, distribution and autonomy of supply chain partners. The messages exchanged

among negotiators are mapped directly to Web service SOAP messages. When a message

4.5. Some Implementation Issues 53

is received by a negotiator, it activates a Web service operation. Our framework specifies a

number of operations that enable the reception of the messages needed by the negotiation

process. The operations are organized into interfaces.

4.5.1 Interfaces

Negotiator Interfaces

Every negotiator has interfaces to receive messages from other negotiators or from the

Notary. Interfaces may relate to (1) establishing a negotiation, (2) negotiation setup, or

(3) core negotiation.

Establishment of the negotiation. The Advertisement interface receives messages

concerning a new contract negotiation or about the renegotiation of an existing contract.

An interested negotiator must register to the negotiation with the Notary. The Negotiation

Coordination interface receives messages from the Notary concerning the acceptance of

that negotiator. This interface follows the WS-Coordination specification [53].

Negotiation setup. The Leader Election interface receives messages concerning the

election of the leader. The Announcement interface receives messages from other nego-

tiators announcing their restrictions and objectives for a negotiation.

Core negotiation. The Proposal and PeerNegotiation interfaces receive messages con-

cerning exchange of proposals. They are complementary interfaces by which negotiators

may reach a “personal” agreement. The Voting interface receives messages concerning a

ballot process. The negotiator is asked to vote on some issue and receives the result of

the ballot through this interface. Through the Leader interface, the leader receives some

specific demands.

Notary interfaces

Similarly, the Notary has interfaces related to the establishment of the negotiation.

Through the Negotiation Activation interface the notary is requested (typically by a

Coordination Manager) to perform the initial setup of a new negotiation. It follows

the WS-Coordination specification. The Registration interface is responsible for receiving

messages from the negotiators concerning their registration to a negotiation process. This

interface also follows the WS-Coordination specification.

The Leader Election interface is related to the setup of the negotiation. It receives

messages from the negotiator who wants to apply as a candidate in the leader election.

54Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

Finally, the Notary helps the core negotiation process by the following interfaces.

The Negotiation and Leader interfaces provide operations needed during the negotiation

process, such as, commit or cancel the negotiation, and through the Ballot interface the

notary is asked to conduct a ballot and to receive the respective votes.

4.5.2 Styles of Negotiation

This section discusses a few of the possible negotiation styles supported. Interactions are

enacted by execution of operations of suitable interfaces. The following scenarios show the

messages exchanged among the participants of a negotiation and the operations invoked

by them. For instance, the first message sent in Figure 4.12 shows the Sky Food NM

sending the message “first answers” to the Notary. This message activates the Notary’s

“firstAnswersToProposal” operation. Only the main parameters are shown. Acronyms

were adopted for brevity’s sake. The names of the invoked operations are prefixed with

a string that identifies the interface which the operation belongs to. Table 4.2 shows the

meaning of the prefixes. Most of the interfaces are related to the negotiators, a few with

the Notary.

lif Leader interface
pnif PeerNegotiation interface
pif Proposal interface
vif Voting interface

nbbif Ballot interface (notary)
nlif Leader interface (notary)

Tabela 4.2: Interface acronyms

Auctions

Recall Figure 4.1. Sky Food wants establish a contract with the supplier that offers the

cheapest milk. Two dairies have entered the negotiation: SDA and SDB. Thus, their NMs

undergo a negotiation process, led by the Sky Food’s NM, directed by a contract model

(not shown), and helped by the Notary.

The scenario in Figure 4.12 depicts a variant of an english auction that aims at min-

imizing the price (property p). The maximum price is 10,00. Thus, (1) the leader asks

the Notary to advertise an auction for an RFP and wants the notary to collect at most

two answers within 30s. The notary broadcasts the RFP and waits as demanded. The

negotiators receive the RFP and (2) send offers to the Notary in response. The notary

collects them and (3) sends them to the leader. Now, the leader chooses the best offer

4.5. Some Implementation Issues 55

(p=8) and (4) asks the notary to start a new auction round. This is repeated until no

negotiator answers the RFP of the last round. Finally, (5) the leader agrees with the best

offer of the previous round (p=6). This scenario may also be implemented by a Dutch

Auction: the leader announces descending offers and the negotiator who first agrees with

the current offer wins the auction.

Figura 4.12: The english auction

Similarly, the so-called double auction is easy to be developed using these primitives.

For instance, the negotiators willing to sell a product (in fact, to define a value for

a property) send offers to the leader. Conversely, the negotiators that want to buy a

product (in fact, to ask for a value for a property) send RFPs to the leader. The leader

matches RFPs and offers using some criterion and forwards the selected offer to the RFP

originator.

Voting

Recall again Figure 4.1. The Cooperative is the negotiation leader and has a number of

member farms (F1, F2,...). The Cooperative itself does not produce milk. In order to

provide milk to its customers (the Dairy), it negotiates quotas with its member farms.

However, the Cooperative wants to avoid that only a few members monopolize the milk

market. Thus, it negotiates a maximum quota for any farm before negotiating any con-

56Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

tract with its costumers. This is done through a ballot. The Cooperative proposes three

alternatives (e.g., 10, 20, or 30). The members vote in their choices.

Figure 4.13 shows a diagram for this ballot. First, (1) the Cooperative’s NM (leader)

asks the Notary to conduct the ballot. The Notary (2) accepts the job and broadcasts

the issue to be voted to all negotiators, that is, it broadcasts an RFP asking for a quota

value and the three choices available (10, 20, or 30). Next, (3) each negotiator sends its

vote the Notary. Finally, (4) the Notary counts the votes and broadcasts the ballot result

to all negotiators. The option “20” has won with 38 votes.

Figura 4.13: Voting for maximum quota per farm

Quota Negotiation

This section resumes the scenario presented in Section 4.5.2, where a maximum quota was

negotiated. Now, individual quotas are established, obeying the maximum one. The Co-

operative (leader) negotiates milk quotas among several farms, until reaching the desired

total. The negotiation process is aware of the parameters:

• n: number of suppliers.

• QT : total amount of milk to be provided.

• Qi: amount provided by the ith milk farm.

• Qmi: maximum production capacity for the ith milk farm.

• QM : maximum quota for any farm.

4.5. Some Implementation Issues 57

• Pi: price (per liter) charged by the ith milk farm to deliver amount Qi

and must obey the restrictions:

• Q1 + Q2 + ... + Qn = QT

• Qi ≤ Qmi and Qi ≤ QM

There are two complementary heuristic strategies for quota negotiation: the Coopera-

tive tries to buy cheap milk, while the farm tries to sell expensive milk. The interaction of

both strategies usually ends up in an intermediate price. The objective of the negotiation,

as determined by the leader, is:

minimize
∑

(Qi ∗ Pi).

Leader Strategy

The cooperative believes that the price asked by any farm depends on the amount of

milk. Each farm has a price function that it does not disclose. The strategy of the leader

is first to issue a number of RFPs asking the price of different increasing amounts of milk.

Based on the answers, for each farm, the dairy constructs, a table Prices[q, p] (Table 4.3):

for a given RFP, the farm answered that it should deliver q liters of milk at a price p per

liter– e.g., the price for milk between 10 and 19 liters is $0,90 per liter.

T 1 2 3 . . .

Q 10 20 30 . . .
P 0,90 0,80 0,72 . . .

Tabela 4.3: The price function for a farm

Those tables are used to construct the price function for each farm. Next, these

functions are used by an optimization tool aiming at finding the minimum cost for the

total amount of milk. For the sake of simplicity, we suppose that Qi ≥ Qi+1. Let K be

number of farms needed to provide the total amount. The equation that describes cost

computation is:

CT = Q1 ∗ P1 + Q2 ∗ P2 + ... + Qk ∗ Pk (4.1)

The cooperative believes that the prices answered by each farm are inflated. Thus, the

cooperative bargains with each negotiator (i). It offers increasing prices for the quantity

Qi found for the Equation 4.1, beginning with a price smaller than Pi. The last offer will

be the asked price (Pi). Supposedly, the farm will agree with one of the offers because

the last offer is the one it has proposed.

58Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

Farm Strategy

The farms follow a different strategy. They listen to RFPs and offers, and respond

appropriately. Their strategy is quite simple: when a farm receives an RFP, it returns a

higher value. When a farm receives an offer, it accepts offers with values higher (or equal)

to the value it expects.

Figure 4.14 illustrates the interactions between the Cooperative and the farms. The

Cooperative (1) broadcasts an RFP inquiring the price each farm charges for 10 liters

of milk. Farms F1 and F2 answer the RFP sending offers to the Cooperative. The

Cooperative (2) keeps inquiring the farms for different amounts of milk. Next, (3) the

Cooperative bargains with F1, and similarly (4) with F2.

Figura 4.14: Quota negotiation

4.6 Related Work

This section reviews related work on supply chains (Section 4.6.1), electronic contracts

(Section 4.6.2), the negotiation process (Section 4.6.3), and contract enactment (Sec-

tion 4.6.4).

4.6. Related Work 59

4.6.1 Supply Chains

Supply Chain Management (SCM) is based on the integration of all activities that add

value to customers starting from product design to delivery, in order to minimize system

wide cost while satisfying service level requirements [48]. It aims at specific processes in

order to optimize inventory level, reduce cost and increase profits. The proposal of [58]

even goes into budget and payment control. Our approach differs from the usual treatment

of SCM in the sense that our goal is to provide generic mechanisms that allow cooperation

among the participants of a supply chain without aiming at any specific business process.

Chatfield and others [31] present a supply chain simulation system that is based on

a supply chain description, written in SCML - Supply Chain Modeling Language. This

description contains structural (nodes, arcs, components, actors, and policies) and man-

agerial information (properties associated with these constructs, e.g., storage capability,

inputs and outputs). Structural and managerial information are used to build on demand

a mathematical model that simulates a supply chain.

Our architecture proposes a supply chain structure quite similar to the one proposed by

Chatfield. However, it does not contain a separate structure for managerial information,

which is instead stated in contracts, regulations, summaries and coordination plans. This

decentralization facilitates local administration of tasks, within Web services, being thus

closer to real world supply chains.

4.6.2 Contracts

There are several proposals for e-contract specification. In [11], business contracts specify

the exchange of values among business parties and the conditions for the exchange. They

require three fundamental classes of language constructs: data constructs, process con-

structs, and rule constructs. Data constructs define the exchanged values between parties,

such as quantities, prices, deadlines, and quality categories. Rule constructs express the

conditions for product exchange. Process constructs are responsible for describing the

steps of contract enactment.

[60] models an enterprise as a series of interrelated communities, whose members

perform roles. Their contract monitoring language (BCL) is made up from the following

entities: a) community expressions; b) policies; c) temporal constraints; d) event matching

constraints; e) state conditions. In [58], the entities of an e-contract are: parties, clauses,

budget, roles and payments. Contracts can be composed into more complex ones. [51]

includes details of the infrastructure needed to carry out contracts.

Our contracts are semi-structured documents composed of clauses. Each clause refers

to a duty or a right of a partner. A clause has one or more properties that qualify and

quantify such right or dutys, and a number of constraints (e.g., temporal, spatial, quality).

60Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

Properties must be understood by all the negotiators, using ontologies.

In [86], contracts are specified using the XBLC language. An XBLC contract is com-

posed of one or more workflows that specify and coordinate transactions to be run. This

kind of contract is used to coordinate and control the interaction between business work-

flows. This approach is different from ours. Our contracts do not coordinate the activities

that must be performed to fulfill the agreement. Coordination is performed by other en-

tities in our architecture [21], called “Coordination Managers”. Thus, we separate the

obligations (what) from how they can be fulfilled. Again, this is closer to reality, since

conditions may change in a supply chain. Commitments are still valid, but the way they

can be fulfilled may need to be changed.

Fantinato and others [37] address contracts for e-services supply and consumption

based on feature modeling. The approach is similar to ours, in the sense that contracts

are generated from existing templates and that their features can be broadly compared

with our properties. However, our approach is more general. In particular, while e-services

are central in their work, we use e-services just as a mechanism to start clause execution.

4.6.3 The Negotiation Process

There are a number of mechanisms that guide the negotiation process. Bartolini [22]

constructs negotiation templates that specify different negotiation parameters that can

be constrained or open. Chiu [33] also uses contract templates as a reference document

for negotiation. Contract clauses contain template variables, whose values are to be

negotiated separately or together (e.g., quantity, delivery date and price). Similarly,

[77] uses a contract template that describes the negotiation parameters, how they are

interrelated, along with meta-level rules about the negotiation. In contrast, [50] uses a

set of examples of good agreements and it is up to the negotiator to try to get as close as

possible to one of the examples.

Others – e.g., [51] or [68] – do not present a proper negotiation process. Their ap-

proach is based on matchmaking. The approach of [51] is based on predefined contract

templates. The seller creates a Contract Advertising Template (CAT) and submits it to

a Matchmaking Engine. The consumer creates a Contract Search Template (CST), and

submits his proposal to the same engine. Next, the engine tries to match CATs and CSTs.

[68] proposes a matchmaking facilitator based on description logics that ranks matches

within categories.

Like most of these papers, our e-negotiation process is guided by a contract model

with properties not yet bound to a value. Thus, broadly speaking, the negotiation process

concerns determining values for unbound properties. Like [22], properties may be open

or constrained. We distinguish moreover between optional and non-optional properties.

4.6. Related Work 61

Negotiation strategy is another issue addressed in the literature. According to [43],

techniques for designing negotiation strategies can be classified into three categories: (i)

game-theoretic, (ii) heuristic, and (iii) argumentation. The first approach models a nego-

tiation situation as a game and attempts to find dominant strategies for each participant

by applying game theory techniques. In heuristic-based approaches, a strategy consists

of a family of tactics (i.e., a method for generating counter-offers), and a set of rules for

selecting a particular tactic depending on the negotiation stage. Argumentation-based

approaches extend heuristic ones by introducing issues such as threats (e.g., “that is my

last offer”), rewards, etc.

Our negotiators may be implemented using any kind of negotiation strategy. They

only need to agree on the negotiation protocol and to have a common vocabulary.

Another issue comprises the languages used to specify the negotiation rules, the strat-

egy and the language used to conduct the negotiation process itself. In general, languages

for rules and strategies are declarative and taken from the AI field, such as Defeasible

Logic [43] and Courteous Logic Programming [46]. Conversely, languages for the negotia-

tion process are similar to protocols used in distributed systems. Any of those languages

faces the problem of heterogeneity of vocabulary and concepts. Although some concepts

are well-defined in a negotiation framework (e.g., the negotiation protocol is formally de-

fined), contract variables, such as product names, measure units, and currency, may not

be standardized and such differences must be reconciliated on the fly. According to [61],

this is aggravated in the dynamic environment of e-commerce negotiations where transac-

tions involve interactions among different enterprises, using different representations and

terminologies. To solve this, [61] combine the use of ontologies and agent technologies, in

negotiations within car assembly supply chains. Our use of ontologies addresses the same

interoperability issues.

Our negotiation process is developed through the exchange of messages among the

negotiators that comply with a specific protocol. This is a common approach, like the

ones based on FIPA’s standards [40], e.g., [61].

Governatori and others [43] have a different approach. They propose a negotiation

process that uses Defeasible Logic. Each negotiator has a set of facts and rules. A

negotiator makes an offer to another, with a set of public facts calculated previously. A

second negotiator uses this set of facts and its own knowledge database to decide if it will

accept, decline the offer or make a counter-offer.

Table 4.4 summarizes the negotiation issues discussed in this section.

62Caṕıtulo 4. A Negotiation Process and a Contract Format for Agricultural Supply Chains

Characteristic Related Work Our Work

Number of negotia-
tors

bargain (1:1), biding (1:many) (e.g.,
English auction), double auction
(many:many)

allows all of them

Number of items single item, a bundle of items bundle of items (prop-
erties)

Strategy game-theoretic, heuristic, argumen-
tation

allows all of them

Negotiation proto-
col

guided by templates, examples,
matching offers with proposals

guided by templates

exchange of messages, exchange of
knowledge (AI database)

exchange of messages

manual negotiation with successive
refinement of feature models

human actors may in-
tervene, but not com-
pulsory

Tabela 4.4: Negotiation issues

4.6.4 Enactment

The enactment phase comprises two main activities: the enactment itself and monitoring

for audit purposes. Enactment should enforce a number of constraints and audit must

verify if they were actually enforced. In this context, BCL [60] expresses and monitors

conditions in business contracts. In addition, [60] states that a monitor can access a

community specification (that represents a contract), collect events significant to the con-

tract from the participants or the environment and interpret them in order to determine

whether the contract is being followed. The authors state that it is possible to think of

multiple monitors, each protecting the interests of one of the signatories.

Conversely, our contracts do not have monitoring constraints to verify if they have been

fulfilled. Clauses have preconditions and postconditions, but even if they hold, it does not

ensure the fulfillment of the contract. However, logs produced by clause execution can be

used for monitoring purposes following the process mining approach of [8, 4]. Governatori

and others [44] have a different approach. They aim at checking the compatibility of

business processes and business contracts by means of a logic-based formalism.

4.7 Conclusions

The paper presented a framework for contract negotiation in agricultural supply chains,

which uses our supply chain model ([21]). The main contributions are: i) a contract model

that includes the specification of quality constraints suitable for this kind of chains; ii) the

negotiation protocol that produces such a contract; and (iii) the implementation of the

framework via Web services. The explicit use of ontologies, exemplified in Sections 3 and

4.7. Conclusions 63

4, combined with Web services, increases interoperability and fosters local independence

among business partners.

A contract is composed of a set of clauses, with pre- and postconditions – reflecting

business rules. Carrying out a contract means activating some of the clauses individually

and in an appropriate order. Clause activation triggers the execution of a Coordination

Plan (Section 4.2) – a business process. The Coordination Plan guarantees the appro-

priate order of clause execution of a contract. Pre- and postconditions (Regulations),

in agricultural chains, concern both administrative (e.g., payment schedule) and quality

(e.g., food safety measures) constraints.

Two factors differentiate our work from other proposals. First, our negotiation pro-

tocol is based on a generic grammar, and supports the specification of a wide variety

of negotiation styles, and their implementation, using just a few negotiation primitives.

These primitives are reflected in the messages exchanged among partners. This was illus-

trated by a few interaction scenarios. Most other proposals are centered on establishing

specific protocols for given situations.

Second, though intimately related, our proposal clearly separates business processes

from contracts and their negotiation. This allows scenarios where a given business process

requires multiple independent contracts and negotiations. It allows moreover situations

where a contract may be enacted by more than one business process - for instance, one

process may be responsible for fulfilling a part of the contract (e.g., material procurement)

and another process for another part (e.g., shipment). Moreover, this lets contracts and

processes evolve in a transparent way.

This separation between contracts and business processes simplifies process manage-

ment and supports several real life situations in a flexible way. Contracts define rights

and obligations, while processes express how these rights and obligations will be satisfied.

Note that any kind of environmental alteration (e.g., new law, natural disaster, internal

modification) may demand a change in the way a business process is handled, but may

not modify the rights and obligations. That is, they must be fulfilled, but in a different

way.

Since negotiation may happen among many negotiators, several contracts may be

needed at a given chain stage. This raises a number of interesting problems involving

regulation enforcement and audit, especially when renegotiation is allowed, either in the

enactment phase or in the renegotiation phase itself. These are themes for future work.

Our negotiation protocol allows several styles of negotiation. Thus, future work also

includes identifying and describing them in a systematic way.

Caṕıtulo 5

Assembling VOs

E. Bacarin, E.R.M. Madeira and C.B. Medeiros. Assembling and Man-

aging Virtual Organizations out of Multi-party Contracts. In ICEIS

758-769, 2009.

Abstract

Assembling virtual organizations is a complex process, which can be modeled

and managed by means of a multi-party contract. Such a contract must en-

compass seeking consensus among parties in some issues, while simultaneously

allowing for competition in others. Present solutions in contract negotiation

are not satisfactory because they do not accommodate such a variety of needs

and negotiation protocols. This paper shows our solution to this problem, dis-

cussing how our SPICA negotiation protocol can be used to build up virtual

organizations. It assesses the effectiveness of our approach and discusses the

protocol’s implementation. Key words: virtual organization, multi-party

contract, supply chain, negotiation, auction, ballot, bargain.

5.1 Introduction

Virtual Organizations (VO) are dynamic alliances of enterprises that together can take

advantage of economies of scale when available [83]. Assembling and managing them is

a complex task, due to the many relationships and agreements among their components.

One possible way to shape and manage such organizations is via multi-party contracts,

which must reflect obligations, rights and interaction modes within a virtual collaboration

scenario. They are built by means of some negotiation mechanism.

According to [36], VOs need negotiation protocols that are multi-party and interactive,

i.e., the protocol should allow simultaneous negotiation among three or more partners and

they should be allowed to refine a received proposal, e.g., by means of a counter-proposal.

65

66 Caṕıtulo 5. Assembling VOs

The process of constructing a VO can be quite complex: the partners should reach

a consensus on some issues, whereas there is competition among them on others, and

also other issues may demand individual agreement. While existing solutions do not

make allowance for these negotiation heterogeneity, our protocol provides mechanisms

to develop all those negotiation styles for negotiating a single contract, namely, ballots,

auctions and bargains.

The same mechanisms can also be employed individually to build specific marketplaces.

For instance, they can be easily configured to provide different auction styles (e.g., English

and Dutch auctions). This paper highlights such mechanisms by means of showing how

they can be set up for a number of distinct marketplaces.

The main contributions of the paper are: (a) it points out that multi-party contracts

are a means for describing virtual organizationss; (b) it shows how to integrate three

different styles of negotiation (bargain, ballot, auction) to build up a virtual organization

using SPICA negotiation protocol; (c) it presents some details of the implementation of

the SPICA negotiation protocol.

The paper is organized as follows. Section 5.2 presents a running example that will

be used throughout the paper. Section 5.3 shows how SPICA negotiation protocol can

be used to build different setups of marketplaces. Next, Section 5.4 describes briefly the

protocol’s implementation. Then, Section 5.5 evaluates the approach proposed in the

paper. Section 5.6 presents related work. Finally, Section 5.7 concludes the paper.

5.2 The Running Example

The scenario described in this section is used throughout the paper to motivate and

exemplify the usage of the SPICA negotiation protocol.

The scenario consists of a number of farms (F1,F2,...,Fn), a few orange processing

companies (PC1,PC2,...,PCi) and a railway company (RC). The farms grow orange trees

and deliver their crops to the processing companies. A processing company produces

concentrated orange juice to be exported. The juice is transported from the company’s

plant to the nearest harbour by means of the only railway company available in that

region.

There is a standard contract model that processing companies use to buy oranges.

The main contract’s provisions are shown in Figure 5.1.1 Note that pj, ff and pf are the

model’s parameters.

The farms have organized themselves into a Cooperative to better negotiate delivery

contracts. The cooperative will choose a processing company and will establish a delivery

1In fact, these provisions are a simplification of a contract model (Consecitrus) Brazilian farmers and
orange juice industry have been discussing to be used in negotiation of future crops.

5.3. The SPICA Negotiation Protocol 67

(1) The price paid by the PC will cover the

production costs plus a percentage of the juice

value (pj) in the commodities market.

(2) The harvest and transportation from farm to

industry is done at the PC’s expense.

(3) If the supplier is farther than 100km from

the processing company, the farm will pay an extra

freight fee (ff).
(4) If the farm’s productivity is below a certain

local level, the farm must also pay an extra fee

(pf).

Figura 5.1: Contract model for orange crop.

contract. The chosen company will be the one that proposes the best values for parameters

pj, ff and pf. Thus, the farms must reach a consensus on what is the best proposal. Finally,

the processing company will negotiate the juice transportation with the railway company.

They will haggle over the freight fee rff.

Notice the following peculiarities in this scenario. There are several competing PCs

and the cooperative will choose the best one using an auction. However, the farms must

agree on this choice via a ballot. Since there is just one railway company, the PC is

forced to bargain. This complex scenario requires a contract that contemplates multi-

party negotiation, and bargains, ballots and auctions. As will be seen, we provide a

seamless solution that supports these requirements.

5.3 The SPICA Negotiation Protocol

The negotiation process is guided by a contract template. Negotiators exchange messages

that comply with the SPICA negotiation protocol. If there is an agreement, a contract

instance is produced. Section 5.3.1 describes the contract template and the contract

instance. Section 5.3.2 describes the protocol.

5.3.1 Contract Templates and Contracts

A contract template consists of a set of clauses with blanks to be filled in. Such blanks

are referred to by so-called properties and the negotiation process aims at assigning values

to them. Thus, a contract instance is a contract template with its properties successfully

negotiated. The obligations (or rights) stated in a clause may bind (or benefit) several

68 Caṕıtulo 5. Assembling VOs

partners.

The contract model depicted in Figure 5.1 gives rise to a contract template for the

scenario presented in Section 5.2. A contract template is an XML document composed of

several sections. One of them contains a set of clauses, the others are used for setting up

the negotiation environment. A template’s clause respective to the model is presented in

Figure 5.2. It is written in plain English for simplicity.

text: The price paid by the @OBLIGED to the

@AUTHORIZED will cover the production costs plus

a percentage worth of #PJ of the juice value in

the commodities market.

depends: (a precondition)

enforces: (a set of regulations)

service: (URLs and other parameters)

authorized: F1,F2,F3,F4,... obliged: PC

Figura 5.2: A simplified template’s clause.

Note that the name of the property to be negotiated (PJ in the figure) is embedded

within the clause’s text. There are a few parameters regarding the clause enactment.

There is a precondition (depends) that must hold before the processing company should

make the payment. In this example, it could be the existence of an formal statement of a

trusted company about the juice’s price in the market. There is a postcondition (enforces)

that refers to one or more regulations that must hold after clause enactment. Regulations

state a number of conditions to a product be transfered to a partner to another. In this

example, it could be the accomplishment of a few legal procedures established by the local

government; in other context, it could be a quality criterion to be meet. Service points

to a business process to be executed, enacting the clause. Authorized lists the parties

that will be payed and obliged lists the names of the processing companies that will pay

the due value. These lists are referred to by the special properties @AUTORIZED and

@OBLIGED in the text.

5.3.2 The Protocol

The main data exchanged in a negotiation by means of negotiation messages are request

for proposals (RFPs), offers, requests for information (RFIs) and information (Info). They

convey several parameters that tune up a specific negotiation, identify the sender and the

receivers, and help establishing correlation among messages. Only the relevant parameters

for the purpose of this paper are presented.

5.3. The SPICA Negotiation Protocol 69

An RFP invites another party to negotiate a set of properties. A negotiator A sends an

RFP to a negotiator B asking for a value for one or more properties. More specifically, an

RFP conveys three pieces of data: a set of asked properties, a set of assigned properties and

a restriction. The example below shows two RFPs. They are written using a simplified

notation. The first RFP asks values for properties ff and pp and imposes a restriction

over the value for ff: it would only accept values lesser than 3.00, but does not impose

any restriction over pp. The second one proposes a value for ff, asks a value for pf, but

imposes a restriction over pf. The symbols � and � enclose an RFP.

(1) �----,{pp,ff},‘ff<3.00’�

(2) �{ff:1.96},{pf},‘pf<1.15’�

A negotiator A proposes a value to one or more properties sending an offer to a

negotiator B. Negotiator A informs the properties it is interested in and the values it

proposes for them. If negotiator B accepts the offer, both negotiators are committed to

the proposed values. A negotiator answers an RFP sending back an offer that assigns

values to the asked properties. The example below shows offers that answers the previous

RFPs. The first offer is a valid answer for RFP (1). It assigns the value 2.3 to property pp

and the value 2.50 to property ff. This value complies with the imposed restriction. The

second offer is a valid answer for RFP (2). The proposed value for property ff must be

exactly the same of the one assigned in the respective RFP. The symbols [and] enclose

an offer.

(1) [pp=2.3, ff=2.50]

(2) [pp=0.9, ff=1.96]

An RFI is very similar to an RFP: it asks values for properties, but also lower and

upper bounds for them. An Info is similar to an offer: it proposes values for asked

properties and also informs upper and lower bounds for them, however, the negotiator

which issued an Info is not committed to it.

RFPs and offers are used to build several styles of negotiation that boil down to

three basic ones: bargain, ballots, and auctions. Other styles are obtained from different

setups of these basic ones. They use a few negotiation messages that are introduced

by the examples that follow. RFIs and Infos do not lead to agreements (they are not

committing), but they help constructing better proposals, thus improving the negotiation

process.

The scenario presented in Section 5.2 uses all those styles. Firstly, only one processing

company will be chosen. Thus, there is competition among them to decide which one

will assign values for properties pj, ff and pf. This is resolved by means of an auction.

70 Caṕıtulo 5. Assembling VOs

However, consensus is also needed: the farms must agree on a received bid. This is dealt

through a ballot. Finally, the winning processing company has to negotiate property rff

with the railway company. Since there is only one such a company, a bargain is used.

There are two approaches to organize the negotiation environment. The first one

should consist of three separated marketplaces: one runs the auction and selects the

winning bid. Then, this bid is submitted to a ballot, verifying if it is accepted by the

most of the farms. Finally, the winning (and accepted) processing company will use a

bargaining marketplace to negotiate the transportation. The second environment should

consist of an integrated marketplace that develops all those negotiations.

Section 5.3.3 presents the first approach. It shows each negotiation style separately.

Section 5.3.4 shows how the negotiation styles can be integrated in one marketplace.

5.3.3 Individual Marketplaces

English Auction

This first individual scenario shows the cooperative looking for a processing company

which would buy the farms production in a specific season. Recall that the negotiation

parameters (i.e., properties) are pj, ff and pf (Section 5.2). There are several candidate

processing companies (PC1,PC2,...). The cooperative (Coop) will choose one of them by

means of an auction. It is the auctioneer and it is helped by a notary (Not) which is

a trusted third-party. Figure 5.3 shows the auction running. (1) The cooperative asks

the notary to collect up to 2 bids within 30s. The auction’s subject is described by an

RFP. This RFP asks values for properties pj, ff and pf, and imposes a restriction over

the proposals for pj — only values higher than 1.2 will be accepted. There should be

restrictions over the other properties. They were omitted for the sake of simplicity. The

notary agrees to run the asked auction step (it might have refused instead). (2) The

notary broadcasts the auction issue to all bidders. (3) The bidders send offers back to

the notary. The offers assign values to the asked properties. The notary collects the

received bids (i.e., offers) and sends them to the cooperative. The offers are represented

by o1 and o2 in the figure. (4) The cooperative analyses the received bids and comes

to conclusion that it could get better bids. Thus, the cooperative builds a new RFP

(note the new restriction over pj) and asks the notary to develop another auction step.

This repeats as many times as wanted. Eventually, no bidder is interested in submitting

another bid. Then, (5) the cooperative agrees on the best bid of the previous auction

step. The fact that the demanded auction step asked for 2 bids does not imply that the

auctioneer must agree on 2 bids.

A Dutch auction can be easily run using the same mechanism. However, the auction’s

subject is described by means of an offer. In step (1), the auctioneer sends an offer to

5.3. The SPICA Negotiation Protocol 71

Figura 5.3: An auction.

the notary. In (3), the bidders which first agree on that offer win the auction (up to 2

within 30s) . If no bidder agrees on such an offer within 30s, the auctioneer (4) will build

another offer and submit it to another auction step. This repeats until there are winning

bidders or the auctioneer gives up.

Ballot

The cooperative has found a processing company (the winning bidder in Section 5.3.3).

However, such a choice must be validated by the farms. Now the cooperative runs a

ballot helped by the notary (Figure 5.4). (1) The cooperative asks the notary to run

a ballot. The ballot issue is described by means of an offer, i.e., the winning bid. The

notary accepts conducting the ballot (it might have refused). (2) The notary broadcasts

the issue to the voters (farms). The cooperative is not a voter in this case. It would be

a voter in other setups. (3) The farms send their votes to the leader. In this case, they

can only agree (vote ok) or disagree (vote nok). Abstention is also possible. (4) The

notary collects the votes, counts them and broadcasts the result to all parties (farms and

cooperative). In this example, the farms have accepted the winning bid, because more

farms have agreed (15) than disagreed (8)

The presented scenario was a “take-it-or-leave-it” ballot. The voters could only have

accepted or refused the proposed offer. In step (1), an RFP is used instead of an offer

when there are several alternatives for the same property. In this case, the vote will

contain one of these alternatives (instead of ok or nok). In some setups, a few voters may

have veto power. If one of them sends a veto instead of a vote, the ballot is voted down.

72 Caṕıtulo 5. Assembling VOs

Figura 5.4: A ballot. Figura 5.5: A bargain.

Bargain

The processing company (PC) has been chosen and validated by the farms. Now it has

to negotiate the transportation with the railway company (RC). They will haggle over a

value for property rff. This is shown in Figure 5.5. (1) PC asks the freight cost RC would

charge for the transportation. (2) RC answers that it would charge 8. PC considers is

too expensive and makes a counter-offer: 5. RC finds the proposal too cheap and makes

another counter-offer: 7. This cycle of counter-offers is repeated as much as needed. (3)

The process finishes when PC (or RC) reaches a final decision — in this case, PC agrees

on the offer.

5.3.4 Putting Marketplaces together

The approach presented in Section 5.3.3 has two main drawbacks. Firstly, the auctioneer

has to develop completely an auction and use its own criteria (not the farms’) to choose

the winning bid. Secondly, it has to submit its chosen bid to a ballot. If the bid is not

approved, the auctioneer has to start the auction anew.

In an alternative setup, auction steps are interleaved with ballot sessions: the auc-

tioneer submits all collected bids to the farms at the end of the auction step in successive

ballots. If one of the bids is approved, the auctioneer chooses this as the winning bid;

otherwise, it runs another auction step.

The role of the auctioneer in this setup can range from neutral to highly interested in

a certain outcome. The order that it submits the received bids to ballot may influence

5.4. Implementation in Brief 73

the result. Thus, it can rank the bids aiming at efficiency (e.g., submitting first the bids

it considers being more probable to be accepted) or according its own interests.

The voters determine the auction step’s winning bid. In case no bid is chosen, the

auctioneer typically will create a new RFP (or offer), and submit it to a new auction step.

The auctioneer can consider the ballot’s result of previous steps and try to prepare an

RFP that would direct the bids closer the voter’s expectations.

5.4 Implementation in Brief

We have been implementing a framework for the integration of agricultural supply chain

(SPICA). The negotiation of contracts is a part of it (SPICA Negotiation Protocol).

The core of this negotiation protocol has been implemented. This section presents a few

details about such an implementation.

Negotiators and the notary are web services. A negotiator N1 is willing to interact

with another negotiator N2 (it might also be the notary). Such an interaction happens

by means of an operation being invoked at the appropriate interface.

The framework provides a number of Java classes and Java interfaces to ease the

implementation of negotiators. The Web services interfaces described in [16] are directly

mapped to Java interfaces. A negotiator should react properly upon receiving a given

negotiation message. For instance, whenever a negotiator receives an offer, it should (a)

analyze it and decide about agreeing, disagreeing or making a counter-offer; (b) prepare

the corresponding answer message, and (c) send it back to the offer originator. There

is a default negotiator (DN) that implements this mechanism in a way that a specific

negotiator (SN) needs only to override a few methods concerning the decision-making

phase (i.e., step a).

There are also classes that help the communication of negotiation messages among ne-

gotiators. The framework’s design aims at providing specific negotiators the illusion that

they are exchanging negotiation messages by means of simple method calls at another local

object (i.e., the other negotiator(s)). To do so, the framework provides two classes: Com-

municationAdaptor and MessageBroker. CommunicationAdaptor mimics a negotiator.

When a specific negotiator (SN1) wants to call a method M at another negotiator (SN2),

it calls this method M of the CommunicationAdaptor. Then, the CommunicationAdaptor

serializes the method’s parameters (XML-formated) and delivers it to a middleware that

transports the message. At the other end, the message reaches a MessageBroker which

gets the message’s parameters and invokes the method M at SN2.

Figures 5.6 and 5.7 show an excerpt of messages exchanged among negotiators logged

by the system. In Message 77 (Figure 5.6), the notary asks the negotiators (farms) to vote

on a specific issue. The notary uses the CommunicationAdaptor to upload this message.

74 Caṕıtulo 5. Assembling VOs

Figura 5.6: Logged message.

In the end, the method askedForVote is called at each negotiator. Figure 5.7 shows an

excerpt of the respective message serialized by the CommunicationAdaptor.

Figura 5.7: XML serialized message.

5.5 Discussion

This paper shows by means of an example how a multi-party contract can be negotiated

using the SPICA negotiation protocol.

Section 5.3 presented the SPICA protocol. The individual marketplaces approach

(Sec. 5.3.3) was discussed first because most of the negotiation frameworks found in the

literature have only one negotiation style, typically auctions or bargains. To the best of

our knowledge, none uses a ballot as a foundation of a marketplace. If one would create

a marketplace combining an existing auction and a bargain framework, it would be like

the one proposed in Section 5.3.3.

Section 5.3.4 showed that the same primitives can be combined into an integrated

marketplace. Thus, it is possible to explicitly correlate different negotiations. The con-

tract instance produced by such a negotiation naturally shapes a VO. It is noteworthy

that VOs are better shaped by means of multi-party contracts than by a set of bi-lateral

ones. In this context, negotiation by consensus is quite important but rarely used.

5.6. Related Work 75

A contract template can be used to describe a VO and its negotiation is the process

of building a new VO that endures until the end of the agreed contract. For instance,

Section 5.2 showed a scenario consisting of several actors. It gives rise to two possible

approaches. In the first, two unrelated bi-lateral contracts are built: (a) between the

processing companies and the cooperative, and (b) between the processing company and

the railway. In this setup, the railway company is not aware about its role in the VO. In the

second approach, a multi-party contract is used to establish the relationship among farms,

processing companies and the railway company. The model presented in Figure 5.1 should

only be enhanced with a clause about property rff. This setup allows that the contract

provisions focus on a shared goal (i.e., export orange juice and improve profit), shaping a

VO where all partners know their role in it.

The SPICA negotiation protocol was designed to provide flexible yet comprehensive

negotiation primitives. They are somehow choreographic in the sense that they indicate

how the partners should react upon receiving a given message, but does not fully define

their expected behaviour. Auctions are a clear example of this. The protocol just defines

that the auctioneer will ask the notary to conduct one auction step (not the whole auction).

The notary will inform the negotiators about it, collect the bids and send them back to

the auctioneer. The auctioneer is the one who is responsible for deciding if there is a

winning bid, or if it will try another step, and, even, if it would give up the auction at

all. This gives rise to several opportunities. For example, it is possible to run different

styles of negotiation without changing the protocol at all. For instance, in Section 5.3.4

the winning bid (if any) of an auction step is decided by means of a ballot and not by the

auctioneer itself. Another example, a segment of the supply chain or a VO may specify

different types of behaviour of auctioneers and establish that negotiations within such

segment or VO will be done under such specification.

The negotiation primitives build on two basic concepts RFPs and offers. RFIs and

Infos may be used for building better proposals to be submitted to a ballot. For instance, a

processing company could use RFIs to have a learned guess about the transportation costs

and use this knowledge to submit more competitive bids. In this case, it would be a three-

level negotiation scenario: (i) a processing company submits RFIs to the transportation

company and (ii) take part of an auction, (iii) and the winning bid is decided by means

of a ballot, all simultaneously.

5.6 Related Work

Our contract model is based on previous work in agricultural supply chains, a very complex

kind of VOs [21, 16]).

There are several proposals for contract specification. Some of them are designed

76 Caṕıtulo 5. Assembling VOs

for specific purposes where the domain of negotiatable items is predefined, like SLAs

(e.g.,[37]). This is not our approach. More generic contract specification approaches need

an expressive language to describe the commitments agreed among the partners. Several

of them use logic-based approaches, like [72, 47, 43, 69, 88]. Our approach is different. It

is was designed to be used in real agricultural supply chains where the participants are

autonomous and heterogeneous. Thus, the process of designing a contract template must

be feasible by a team of one TI professional and a lawyer.

A contract expresses commitments among partners. We advocate that a contract

in the context of an agricultural supply chain and VOs should express the agreement

among more than two partners. However, most of the ones proposed in the literature are

bi-lateral, just a few are multi-party, e.g., [88].

Contracts are the outcome of some negotiation process which may be done with some

level of software assistance. We proposed automatic negotiation performed by software

agents and guided by contract templates [16]. Other proposals also use templates, e.g.,

[49, 22, 33]. An alternative for negotiation are matchmaking approaches like [68].

Kallel and others [55] propose a multi-agent negotiation model for a particular contract

type of a specific supply chain. The negotiation model consists of a heuristic negotiation

protocol and a decision-making model. The authors’ approach diverge from ours in two

aspects. Firstly, they understand a supply chain as a neighborhood: a focused company,

its suppliers and its customers. We consider a supply chain “from farm to fork”. To

the limit, an alliance (i.e., VO) within a specific supply chain would comprise partners

of all supply chain levels. A business process of this wide VO would aim at a complex

and long-term event, e.g., the organization of the 2014 World Cup (Brazilian people are

not used to eat potatoes in every meal; thus, it would be necessary to increase potato

crops timely). Secondly, we propose a generic negotiation protocol rather than a specific

one. This prevents us to aim at optimizations (e.g., maximizing profits), but widens the

protocol applicability.

Pitt and colleagues [75] propose a voting protocol for multi-agent VOs. This voting

protocol characterises the powers, permissions, obligations and sanctions of the voters

and is specified by means of Event Calculus. This protocol is used in the context of an

agent community. Decisions must be taken during the life-cycle of such a community.

The authors’ approach is slightly different from ours. They do not focus on establishing

an agreement (i.e., contract) for future enactment, but on decisions taken “on-the-fly”

during the enactment.

A number of authors use contracts to describe the coordination of activities of partners,

e.g., [86, 60]. Others use contracts a means of monitoring the fulfillment of the contract’s

commitments, e.g., [88]. In addition, [6] use a Petri net-base approach to discuss how a

partner should implement its part of the contract complying to the contract’s description.

5.7. Conclusion 77

Most of research efforts that combine VOs and contracts are in the context of agent

societies, e.g., [85, 91]. They use contracts to shape the agents’ behaviour, i.e., the actions

they might or might not be undertaken regarding to the use of shared resources. They

are not business contracts indeed.

5.7 Conclusion

Contracts can be used to assemble and manage VOs. Multi-party contracts are required

in such a context, because a set of bi-lateral contracts can destroy or hide relationships

among the partners. Such relationships are hard to model and manage, because they are

not homogeneous within a VO. Some issues may demand consensus among the partners.

Others, competition among them or exactly two partners must reach a consensus. Thus,

it is important that different styles of marketplaces be seamlessly combined in a single

coherent assembling process. This paper presented how SPICA negotiation protocol can

be used to do so. It also outlined some details of the protocol’s implementation.

Future work includes the implementation of an infrastructure for a mechanism to

monitor the contract’s fulfillment.

Acknowledgements

Research financed by Brazilian Science Foundations CAPES, CNPq and FAPESP.

Caṕıtulo 6

Implementation

E. Bacarin, E.R.M. Madeira, C.B. Medeiros and W.M.P. van der

Aalst. SPICA’s Multi-party Negotiation Protocol: Implementation using

YAWL. Intl. J. of Coop. Info. Sys., submitted, 2009.

Abstract

A supply chain comprises several different kind of actors that interact either

in an ad hoc fashion (e.g., an eventual deal) or in a previously well planned

way. In the latter case, how the interactions develop is described in contracts

that are agreed on before the interactions start. This agreement may involve

several partners, thus a multi-party contract is better suited than a set of

bi-lateral contracts. If one is willing to negotiate automatically such kind of

contracts, an appropriate negotiation protocol should be at hand. However,

the ones for bi-lateral contracts are not suitable for multi-party contracts, e.g.,

the way of achieving consensus when only two negotiators are haggling over

some issue is quite different if there are several negotiators involved. In the

first case, a simple bargain would suffice, but in the latter a ballot process

is needed. This paper presents a negotiation protocol for electronic multi-

party contracts which seamlessly combines several negotiation styles. It also

elaborates on the main negotiation patterns the protocol allows for: bargain

(for peer-to-peer negotiation), auction (when there is competition among the

negotiators) and ballot (when the negotiation aims at consensus). Finally, it

describes an implementation of this protocol based on Web services, and built

on the YAWL Workflow Management System.

79

80 Caṕıtulo 6. Implementation

6.1 Introduction

Face-to-face negotiations are being increasingly replaced by electronic negotiations (e-

negotiation) in all situations in which interactions among partners are dynamic and must

follow the “just-in-time” principle. Such a negotiation process gives rise to electronic

contracts (e-contract) that are enacted by a suitable supporting system and produce data

that can be used to assess in which extension their partners are fulfilling the contract’s

provisions, allowing for early corrective actions. Electronic negotiations, either assisting

human negotiators or automating the whole process, facilitate the interaction among

parties and speed up contract construction.

eBay is a prime example of such a situation, but it presents just a facet of the multiple

challenges to be faced. One can extend this kind of scenario to a situation where multiple

kinds of enterprises need to interact and negotiate distinct issues, at different levels. One

typical example of such a complex situation is contract negotiation within supply chains.

A supply chain is a network of retailers, distributors, transporters, storage facilities

and suppliers that participate in the sale, delivery and production of a particular prod-

uct [65]. It is composed of distributed, heterogeneous and autonomous elements, whose

relationships are dynamic.

Efficiency and profitability within a supply chain depends on several factors, includ-

ing the speed and flexibility with which the participants arrange their relationship in

terms of goals and commitments, and their capability of assessing how these goals and

commitments have been reached or fulfilled.

A contract negotiation differs from a single item (or single bundle) negotiation, which

is more common. In the latter, partners haggle over the item’s price and configuration

and, if they agree, two actions follow: the buyer hands over money to the seller, and the

seller hands over the item to the buyer.

Conversely, a contract states rights and duties among partners (and also subsets

thereof). It mainly comprises a set of actions or intended effects that, if accomplished,

would result in the fulfillment of these duties or rights. In this perspective, a negotiation

comprises taking into consideration this set of actions and haggling over specific attributes

that qualify them (e.g., configuration, price and quality constraints). A contract is a future

plan and contains a number of statements of intention.

Multi-party contracts are a special kind of contract. The negotiation process must be

able to express to whom each duty or right is applicable to.

e-Negotiation and contract management are subject to intensive research. However,

most papers concentrate on one single kind of negotiation protocol (e.g., auction, bar-

gain). Moreover, implementation issues are handled either at the protocol (communica-

tions) level or concern negotiation logics. In [16] we discuss SPICA Negotiation Protocol

6.2. YAWL Overview 81

(SPICA, for short), a new kind of contract e-negotiation in which each clause may be

established according to a different negotiation protocol. This provides the flexibility

needed in multi-party negotiation in which partners change at each situation (e.g., typical

of supply chains). In [17] we present how SPICA’s protocols can be combined to build

virtual organizations. This paper details our implementation of SPICA which shows in-

novative ways of solving the challenges in implementing combined negotiation styles for

e-contracts:

1. we present how multi-protocol issues can be attacked by means of specific negotiation

patterns, which can then be instantiated at will, dynamically.

2. we discuss how to take advantage of a workflow engine – YAWL – to implement the

middleware that orchestrates interactions among partners. The negotiation protocol

is seen as a workflow in which each interaction (e.g., an offer) is considered a task

the partner negotiator must carry out (e.g., decide whether to accept the offer or

not). In addition, YAWL’s workflow engine is extended with a tailor-made service

which takes care of the information exchanged among negotiators.

The main contributions of this paper are: (a) it presents a negotiation protocol for

electronic contracts which combines three basic negotiation styles: bargain (for peer-to-

peer negotiation), auction (when there is competition among the negotiators) and ballot

(when the negotiation aims at consensus); (b) it depicts the main negotiation patterns

the protocol allows for; (c) it describes an implementation built on a WfMS (YAWL).

The paper is organized as follows. Section 6.2 presents an overview of YAWL. Sec-

tion 6.3 describes briefly SPICA’s contracts and the SPICA negotiation protocol. Sec-

tion 6.4 presents the main negotiation patterns supported by the protocol. Section 6.5

discusses the protocol’s implementation, including a negotiation execution. Section 6.6

reviews related work. Finally, section 6.7 concludes the paper.

6.2 YAWL Overview

In this paper, we use YAWL (Yet Another Workflow Language) to realize and support

the SPICA protocol. YAWL was developed after a rigorous analysis of existing workflow

management systems and related standards using a comprehensive set of workflow pat-

terns [7]. YAWL is both a language and a system supporting this language [52]. There

are three main reasons for using YAWL. First of all, the language is simple yet much

more expressive than most other languages. Since a wide range of workflow patterns are

directly supported, it is easy to quickly realize complex workflows. Second, the YAWL

system has rigorously adopted a service-oriented architecture. This makes it easy to use

82 Caṕıtulo 6. Implementation

YAWL in a distributed setting where multiple parties and also software from multiple

vendors need to cooperate. Finally, YAWL is well-grounded, i.e., right from the start

formal semantics and analysis techniques were provided. (Unlike most other languages

where semantics and analysis are more of an afterthought, rather than a first priority.)

This section introduces the YAWL language, the supporting system, and some of the

more advanced capabilities used in the implementation of SPICA. For more details, the

reader is referred to [52].

6.2.1 YAWL: A Language Based on Patterns

In the area of workflow one is confronted with a plethora of products (commercial, free

and open source) supporting languages that differ significantly in terms of concepts, con-

structs, and their semantics. One of the contributing factors to this problem is the lack

of a commonly agreed upon formal foundation for workflow languages. The workflow

patterns initiative [7] aims at establishing a more structured approach to the issue of the

specification of control flow dependencies in workflow languages. Based on an analysis

of existing workflow management systems and applications, this initiative identified a

collection of patterns corresponding to typical control flow dependencies encountered in

workflow specifications, and documented ways of capturing these dependencies in exist-

ing workflow languages. These patterns have been used as a benchmark for comparing

process definition languages and in tendering processes for evaluating workflow offerings.

See http://www.workflowpatterns.com for extensive documentation, flash animations

of each pattern, and evaluations of standards and systems.

While workflow patterns provide a pragmatic approach to control flow specification

in workflows, Petri nets provide a more theoretical approach. Petri nets form a model

for concurrency with a formal foundation, an associated graphical representation, and a

collection of analysis techniques. These features, together with their direct support for

the notion of state (required in some of the workflow patterns), make them attractive

as a foundation for control flow specification in workflows. However, even though Petri

nets support a number of the identified patterns, they do not provide direct support for

the cancellation patterns (in particular the cancellation of a whole case or a region), the

synchronizing merge pattern (where all active threads need to be merged, and branches

which cannot become active need to be ignored), and patterns dealing with multiple

active instances of the same activity in the same case. This realization motivated the

development of YAWL [5] (Yet Another Workflow Language) which combines the insights

gained from the workflow patterns with the benefits of Petri nets. It should be noted

though that YAWL is not simply a set of macros defined on top of Petri nets as the

expressiveness is increased considerably (see [7, 5, 52] for discussions on this).

6.2. YAWL Overview 83

Before describing the architecture and implementation of the YAWL system, we in-

troduce the distinguishing features of YAWL relevant to this paper. As indicated in the

introduction, YAWL is based on Petri nets. However, to overcome the limitations of Petri

nets, YAWL has been extended with features to facilitate patterns involving multiple in-

stances, advanced synchronization patterns, and cancellation patterns. Moreover, YAWL

allows for hierarchical decomposition and handles arbitrarily complex data.

Figure 6.1 shows the modeling elements of YAWL. At the syntactic level, YAWL

extends the class of workflow nets described in [1] with multiple instances, composite

tasks, OR-joins, removal of tokens, and directly connected transitions. YAWL, although

being inspired by Petri nets, is a completely new language with its own semantics and

specifically designed for workflow specification.

A workflow specification in YAWL is a set of process definitions which form a hierarchy.

Tasks1 are either atomic tasks or composite tasks. Each composite task refers to a process

definition at a lower level in the hierarchy (also referred to as its decomposition). Atomic

tasks form the leaves of this graph. There is one process definition without a composite

task referring to it. This process definition is named the top level workflow and forms the

root of the hierarchy of process definitions.

Figura 6.1: Symbols used in YAWL [5].

Each process definition consists of tasks (whether composite or atomic) and conditions

which can be interpreted as places. Each process definition has one unique input condition

and one unique output condition (see Figure 6.1). In contrast to Petri nets, it is possible

to connect ‘transition-like objects’ like composite and atomic tasks directly to each other

1We use the term task rather than activity to remain consistent with earlier work on workflow nets [1].

84 Caṕıtulo 6. Implementation

without using a ‘place-like object’ (i.e., conditions) in-between. For the semantics this

construct can be interpreted as a hidden condition, i.e., an implicit condition is added for

every direct connection.

Both composite tasks and atomic tasks can have multiple instances as indicated in

Figure 6.1. We adopt the notation described in [1] for AND/XOR-splits/joins as also

shown in Figure 6.1. Moreover, we introduce OR-splits and OR-joins corresponding re-

spectively to Pattern 6 (Multi choice) and Pattern 7 (Synchronizing merge) defined in

[7]. Finally, Figure 6.1 shows that YAWL provides a notation for removing tokens from

a specified region denoted by dashed rounded rectangles and lines. The enabling of the

task that will perform the cancellation may or may not depend on the tokens within the

region to be “canceled”. In any case, the moment this task completes, all tokens in this

region are removed. This notation allows for various cancellation patterns.

To illustrate YAWL we use the three examples shown in Figure 6.2. The first example

(a) illustrates that YAWL allows for the modeling of advanced synchronization patterns.

Consider that, within an agricultural supply chain, a given load of coffee, packed in bags,

is to be transported between two warehouses in two different cities. This amount can be

divided in up to three partial loads and transported by different means of transportation.

Task plan is an ‘OR-split’ (Pattern 6: Multi-choice) and task complete is an ‘OR-join’

(Pattern 7: Synchronizing merge). This implies that every planning step is followed

by a set of transportation tasks ship, truck, and/or train. It is possible that all three

transportation tasks are executed, but it is also possible that only one or two tasks are

performed. The YAWL OR-join synchronizes only if necessary, i.e., it will synchronize

only the transportation tasks that were actually selected, signaling that the full amount

of coffee bags were received at the destination.

Figure 6.2(b) illustrates another YAWL specification of the same stage of the supply

chain. In contrast to the first example, a transportation trip may include multiple legs,

i.e., an itinerary between the two warehouses may include multiple segments. Typically,

transportation between two consecutive legs is performed by one transportation means.

However, the load that arrives at one point may be divided and transported by different

transportation means to the next point in the itinerary, where again the load can be

rearranged for the next leg. For example, the trip between the warehouses may entail

three itinerary segments with distinct characteristics. In the first segment, coffee bags

are transported from a farm warehouse to a cooperative by truck. The cooperative col-

lects bags from several farms, and the load is then transported to the docks by train.

Finally, the coffee is transported to a final warehouse overseas by ship. Figure 6.2(b)

shows that multiple segments are modeled by multiple instances of the composite task

do transportation segment. This composite task is linked to the process definition also

shown in Figure 6.2(b). In the case of multiple instances, it is possible to specify upper

6.2. YAWL Overview 85

Figura 6.2: Three YAWL specifications (adapted from [2]).

86 Caṕıtulo 6. Implementation

and lower bounds for the number of instances. It is also possible to specify a thresh-

old for completion that is lower than the actual number of instances, i.e., the construct

completes before all of its instances complete. The example shows that YAWL supports

the patterns dealing with multiple instances (Patterns 12-15). Only few systems support

multiple instances.

Finally we consider the YAWL specification illustrated in Figure 6.2(c). Again com-

posite task do transportation segment is decomposed into the process definition shown in

Figure 6.2(b). Now it is however possible to withdraw planned segments by executing

task cancel. Task cancel is enabled if there is a token in transport in progress. If the envi-

ronment decides to execute cancel, everything inside the region indicated by the dashed

rectangle will be removed. In this way, YAWL provides direct support for the cancellation

patterns (Patterns 19 and 20). Note that support for these patterns is typically missing

or very limited in existing systems.

In this section we illustrated some of the features of the YAWL language while fo-

cusing mainly on the control-flow. We did not discuss the data aspects – each workflow

execution involves several variables (over 10 variables in the example of coffee transporta-

tion) – because they are not needed to understand the rest of the paper, even though

variable specification and instantiation is an essential aspect in workflow execution. It is

important to note that YAWL also supports many resource patterns [78], data patterns

[79], exception patterns, flexibility patterns, service interaction patterns, etc.

6.2.2 YAWL System

The YAWL language is supported by a full-fledged workflow management system. Fig-

ure 6.3 shows the architecture of YAWL. Like any workflow management system, YAWL

has an Engine and Process Designer. The Process Designer is used to construct YAWL

specification using the notations described before. These can be verified and once they

contain no error, they are runable and the engine can instantiate instances of such models.

The engine also records events in so called event logs and persists data beloning to running

instances. The Resource Service is used to offer or push work to human resources. This

is just one example of a service that can be invoked from YAWL. There are many other

YAWL Services and Figure 6.3 only shows a fraction of the available services. The main

design principle of the YAWL System is that the Engine should be completely agnos-

tic with regards to the services interacting with it. The Engine is unaware of the inside

behavior of services, i.e., services can be seen as a black box that subcontract work. More-

over, YAWL itself can be seen as a service, e.g., one YAWL engine can subcontract work

to another engine. This makes YAWL truly service-oriented system and highly suitable

for supporting the SPICA protocol. For more details, we refer to [52].

6.3. SPICA’s contracts and negotiation protocol: an overview 87

Figura 6.3: The architecture of YAWL [52].

6.3 SPICA’s contracts and negotiation protocol: an

overview

This section highlights some basics about SPICA’s contracts and negotiation protocol.

For simplicity’s sake some details were omitted. The complete description is presented in

[16].

Usually, a negotiation process consists of determining the price for an item. Our

negotiation process is more general, i.e.: (a) the items to negotiate may involve values

other than prices or numbers. Thus, we prefer to think of the “best value”, instead of the

“highest” (“lowest”) value. Sometimes, we use the typical negotiation jargon in the broad

sense, e.g., the phrase “pay more” would mean to offer a better value (in a negotiator’s

perspective); (b) the negotiation process may concern something other than a physical

item (e.g., a requirement or a quality criterion to be met). Thus, we use the term “goods”

in this broader sense.

This section is organized as follows. Section 6.3.1 reviews briefly the format of SPICA’s

contracts and the roles run by the negotiation partners. Section 6.3.2 overviews the main

data exchanged by the negotiators within a negotiation process. Section 6.3.3 presents

the negotiation messages that convey such data and shape the interactions among the ne-

gotiators. Section 6.3.4 describes the overall approach we adopted to implement SPICA’S

88 Caṕıtulo 6. Implementation

negotiation framework on top of YAWL system.

6.3.1 The Contract and the Actors

Figure 6.4 depicts a class diagram for our contracts. A contract is an instance of a

contract model. A contract model is composed of clauses. A clause may have one or more

properties. A property is an attribute to be negotiated. It has a name (which is unique

in the contract) and may appear in more than one clause. The negotiation process aims

at assigning values to properties.

A property is negotiated once. If it appears in more than one clause, once negotiated,

its value holds for all occurrences. There are two kinds of properties: simple properties

and compound properties. A simple property holds a scalar value. A compound property

is a vector of scalar values and each entry corresponds to a different partner.

The partners in a contract are identified by unique names. Each clause may have

two sets of partner names: the authorized partners and the obliged partners. An obliged

partner must perform some action to produce the intended result. Authorized partners

have the right to receive such a result.

Consider, for instance, the clause below. Two parties – a farm and a storage provider

– engage a negotiation process over this clause. They will haggle over the storage space in

cubic meters (property QC) and the price (property PC) of each cubic meter. The properties

OBLIGED and AUTHORIZED are assigned with the names of the parties who agreed on the

values for QC and PC. Note that, in this example, there is only one obliged negotiator

(the storage provider) and only one authorized negotiator (the farm). Note also that the

names of these (simple) properties are preceded by $ and properties that refer to partner

names are preceded by @.

The party @OBLIGED agrees to make available $QC cubic meters at a

cost of $PC per cubic meter.

The next example is quite similar to the previous one. Now, several storage firms

(St 1, St 2, etc) promise to offer space to the farms. Each firm will make available a

different amount of space at different prices. Note that all properties in this example are

compound and, thus, are preceded either by @@ or $$.

The party @@OBLIGED agrees to make available $$QC cubic meters at

a cost of $$PC per cubic meter.

6.3. SPICA’s contracts and negotiation protocol: an overview 89

Conversely, in case space has the same price for all firms, but each firm provides a

different amount of space, the clause would have been written like (note that there is only

one $ before PC):

The party @@OBLIGED agrees to make available $$QC cubic meters at

a cost of $PC per cubic meter.

The actors in a negotiation setup are the negotiators and the notary. There is a special

kind of negotiator – the leader – who orchestrates the negotiation. Every negotiation setup

has at least two negotiators (the leader is always present). More negotiators are possible.

Unlike other contract models, SPICA supports several kinds of negotiation styles for the

negotiation of a single contract. This is made possible by defining typical negotiation

patterns — e.g., auction and ballot (see section 6.5). The notary is a trustworthy third-

party. It mediates some negotiation patterns (e.g., ballots) and is responsible for building

the contract instance after a successful negotiation. Some negotiators may be proxy

negotiators, i.e., they represent a group of negotiators. The negotiators in such a group

do not take part directly in the negotiation process, but they will always be represented

by the proxy negotiator. However, the proxy negotiator cannot sign the contract (only

the negotiators it represented can sign).

Figura 6.4: Contract.

90 Caṕıtulo 6. Implementation

6.3.2 Main Data Types

The negotiation process begins with a setup phase. In this phase, all necessary setup

operations are performed, such as: the contract model to be negotiated is determined and

a new negotiation instance is created, the negotiators register in. Its main outcome is

twofold. First, it creates a new negotiation instance that is distinguished by an identifier.

This identifier is named nid throughout the paper and used in virtually all messages

exchanged within that negotiation process. Second, the negotiators and their roles are

determined. Negotiators have distinct names and credentials. The name identifies the

negotiator and is used to address messages. The credential states its capabilities in the

negotiation process, e.g., some negotiators may have veto power in a ballot.

The negotiation of a contract’s properties may involve several negotiation rounds.

Each round runs one of the possible negotiation styles (bargain, ballot, auction), aims

at assigning values to the properties of a particular clause, and establishes who are the

obliged and the authorized partners regarding such a clause. The actual negotiation style,

the obliged and benefited partners and other attributes that configure the negotiation

round are described by means of negotiation descriptions, which are represented by nd

throughout this paper.

The properties to be negotiated – i.e., the subject of the negotiation – are not included

in a negotiation description, rather, they are described by means of an RFP (request for

proposal), an offer, an RFI (request for information) or an Info (information).

An RFP is an invitation. A negotiator A sends an RFP to a negotiator B asking for a

value for one or more properties. RFPs are represented by either rfp or r()throughout

the paper.

An offer is a promise. Typically, it is an answer for an RFP. A negotiator answers

an RFP by sending back an offer that confirms the values of predefined properties and

proposes values for the desired properties. The offer must comply with the restrictions

indicated in the RFP. The negotiator that issued an offer is committed to it. Offers are

represented by offer or o() throughout the paper.

An RFI is similar to an RFP: it requests values for properties. In addition, it also

requests lower and upper bounds for them. An RFI is answered by an Info. An Info is

similar to an offer; however, the negotiator who issues an Info is not committed to it. An

RFI is represented by rfi and an Info by info.

RFPs, offers, RFIs and Infos have also other data elements, such as, unique identifiers

respectively, rid (for RFPs), oid (for offers), riid (for RFIs), and iid (for Infos); the

credential of the negotiator who has created it, and the list of names of the receiver

negotiators. The credential for a particular negotiator, say n1, is represented by !n1 in

the figures presented in the paper.

6.3. SPICA’s contracts and negotiation protocol: an overview 91

6.3.3 Message types

Tables 6.1 and 6.2 present the types of messages that are provided by SPICA Negotiation

Protocol and the attributes they convey. They are used in the negotiation patterns

described in Section 6.4. There are also a few extra messages needed by the framework’s

implementation. They are called control messages and will be presented later. Most of

these messages convey a few common parameters, namely: the sender name (from) that

can be used to address a response message; the identification of the negotiation instance

(nid) the message corresponds to, and the negotiation description (nd).

Request Proposal. It communicates an RFP within the context
of a particular negotiation style (described by nd).

Rp(from,nid,nd,rfp)

Request Information. It communicates an RFI. Ri(from,nid,nd,rfi)

Request Agreement. It communicates an offer. Ra(from,nid,nd,offer)

Request Auction Step. The leader asks the notary to conduct
an auction step. An English auction step is described by an RFP
and a Dutch auction step is described by means of an offer.

Ras(from,nid,nd,rfp)

Ras(from,nid,nd,offer)

Request Ballot. The leader asks the notary to conduct a ballot
process. The issue to be voted is described by (ballot)

Rb(from,nid,nd,ballot).

Request Vote Agreement. The notary requests a vote from a
negotiator. The expected answer is “agree” or “disagree”. (bid)
is the ballot instance.

Rva(from,nid,nd,bid,ballot)

Request Vote Preference. The notary requests a vote from a
negotiator. The expected answer is a value for a property.

Rvp(from,nid,nd,bid,ballot)

Tabela 6.1: Negotiation messages (requests).

As an introductory example consider Figure 6.5, suppose that a farm (F) would bargain

over the freight fee (ff) with a transportation company (TC) to deliver coffee bags to the

docks. In this scenario, F will send an RFP to TC by means of a Rp message asking TC

how much it would charge the transportation (i.e., it asks a value for ff). This message

conveys four attributes. The first holds the name the sender used to register in the

negotiation. The receiver uses this name to address a reply message. The second (nid)

is the negotiation instance identification. The third attribute describes the details of the

current negotiation style (a bargain, in this example). Each negotiation style has specific

attributes within this description, but all of them share a common subset. These three

attributes are present in most of the negotiation messages. The last attribute is an RFP

that asks a value for ff.

TC receives this message, analyses the received RFP and answers it by sending back

an offer that assigns a value to ff. This offer is conveyed by means of an Ra message.

92 Caṕıtulo 6. Implementation

Answer for Request Proposal. An Rp message can be an-
swered by two exclusive messages: Ra sends an offer in response
to the previous RFP; (Ino) declines the invitation.

Ra(nid,nd,offer)

Ino(from,nid,rid)

Answer for Request Information. An Ri message can be
answered by two exclusive messages: Ari sends an Info in response
to the previous RFI; (Ini) informs that the negotiator will not
provide the asked information.

Ari(from,nid,info)

Ini(from,nid,riid)

Answer for Request Agreement. An Ra message can be an-
swered by three exclusive messages: Aa agrees on the proposed
offer; Ad disagrees on it; another Ra proposes a counter-offer.

Aa(from,nid,nd,offer)

Ad(nid,nd,offer)

Ra(from,nid,nd,offer)

Answer for Request Auction Step. Two consecutive mes-
sages answers a Request Auction Step (Ras) message: The notary
sends an Aas message to the leader to inform the leader that the
requested auction step will be performed (conversely, Nas to refuse
doing so); at the end of the auction step, the notary sends an Ica

message to the leader with all received bids.

Aas(nid,aucid,rid)

Aas(nid,aucid,oid)

Ica(nid,aucid, offer lst)

Nas(from,nid,rid)

Nas(from,nid,oid)

Answer for Request Ballot. Notary returns two consecutive
messages in response to a Rb message. First, the message Ab

acknowledges the leader that it will conduct the requested ballot
(conversely, Nb refuses it). At the the end, the notary returns to
the leader the ballot’s result by means of an Ibr message.

Ab(from,nid,bid,rid)

Ab(from,nid,bid,oid)

Ibr(from,nid,bid,bresult)

Nb(from,nid,rid)

Nb(from,nid,oid)

Answer for Request Vote Preference. An Av answers a previ-
ous Rvp message. The voter sends the notary its vote, abstention,
or veto. This message conveys the voter’s credential (crd), used
for checking, e.g., if the voter has veto power.

Av(from,nid,bid,crd,vote)

Answer for Request Vote Agreement. The same Av message,
but the only allowed alternatives are: abstention, ok (i.e., agree),
nok (i.e., not agree), and veto (if applicable).

Av(from,nid,bid,crd,vote)

Tabela 6.2: Negotiation messages (answers).

6.3.4 Implementation Overview

The participants are Web services that use the messages presented in the previous section

(Section 6.3.3) to develop the intended negotiation (see [16]). Thus, sending a negotiation

message to a participant means invoking a particular operation of a service. Thus, in

principle, each participant (web service) can make sure it complies with the protocol rules

and the negotiation can proceed without any external help. However, there are a few

chores that would be better undertaken by a tailor-made middleware, providing a clear

separation between the participant’s negotiation strategy implementation and message

transportation.

We use the YAWL WfMS (Workflow Managemente System) as such a middleware. It

is used to model and to execute the protocol. In this model, a workflow task typically

represents a message received or to be sent. Thus, when a message is received by the

middleware, the corresponding task is enabled. This causes the execution engine to invoke

a specific routine (i.e., a Web service operation) to handle such a message. Handling a

6.4. Description of Patterns 93

Figura 6.5: A negotiation message and an answer.

message means analysing it and sending back an answer for it. Thus, there must be

another task already enabled responsible for receiving such a response. For this purpose,

these tasks are, in general, arranged in pairs. See Figure 6.6. The first task (T1d)

receives a negotiation message (e.g., Rp). The underlying workflow system instrumented

with additional software validates the message, dispatches it to the intended negotiator

(Negotiator 1) and, simultaneously, enable the second task by sending it a an internal

control message (ACK, in this case). The second task (T1f) is responsible for receiving

the negotiator’s answer (e.g., Ra) and forwarding it to the next task (e.g., T2d). Thus,

tasks like the first one are dispatch-like tasks and like the second one are forward-like

tasks. Tasks T2d and T2f have similar arrangement. This kind of arrangement occurs

frequently in the patterns presented in Section 6.4.

Figura 6.6: Tasks arranged in pairs.

6.4 Description of Patterns

This section presents several negotiation patterns supported by the SPICA protocol.

94 Caṕıtulo 6. Implementation

Each pattern is composed of several sections (Figure 6.7). Pattern name and Known as

are used to identify the pattern. The Motivation part elaborates on the goal and presents

the context of the pattern. This part uses common concepts and does not use SPICA

protocol’s parlance. The Problem description part presents the problem to be handled by

the pattern in terms of SPICA’s concepts. Problem Solution details a possible solution to

the problem, i.e., it shows how the message types (described in Section 6.3.3) can be com-

bined to achieve the expected results and how the participants interact. Implementation

of Solution shows the pattern realization in YAWL and addresses some specific setups or

additional elements needed for the presented solution.

Figura 6.7: Sections of a pattern.

6.4.1 Pattern name: Bargain Known as: -

Motivation: The simplest style of negotiation is a bargain. Two negotiators haggle over

a value to be settled (the subject of the negotiation). They usually exchange counter-

offers, e.g., between a set of farms and a transportation company

Problem Solution: Bargains are characterized by the following pattern. A leader starts

a bargain requesting a proposal from the other negotiator. The leader and the negotiator

exchange offers and counter-offers until the negotiation comes to a conclusion (either by

an acceptance or final disagreement message). Figure 6.8 shows such a pattern, where the

offer and counter-offers appear in messages 2,3 and 4. In more detail, the figure shows

five messages exchanged between the leader (ld) and a negotiator (n1). It starts (1)

when the leader (ld) sends a request proposal message (Rp). The negotiator responds (2)

with either (a) an offer conveyed by a request agreement message (Ra), or (b) a non-offer

message (Ino) declining to take part of this bargain. If the negotiator has decided to take

part, it sends an Ra message with an initial proposal. The negotiation carries on. (3) The

leader does not agree with the proposal and sends a counter-offer (another Ra message).

The negotiator (4) sends another counter-offer. This situation is repeated until one of the

6.4. Description of Patterns 95

participants (in this case, the leader) comes to a conclusion finishes the process by either

(a) agreeing by means of an agreement message (Aa), or (b) disagreement message (Ad).

Let us now examine the parameters in each message. (1) When the leader requests

a proposal from Negotiator n1 (message Rp), the parameter (nid) identifies the negotia-

tion instance, created during the negotiation setup (not shown in pattern). The second

parameter (tuple d) is negotiation description. It informs that this negotiation concerns

a bargain (BG), the clause being negotiated (cj),the obliged party list (ol), and the au-

thorized party list (al). The third parameter describes the proposal requested by means

of an RFP (tuple r). Note that the first and second parameters happen in all pattern’s

messages.

The RFP’s parameters are the following. The value r1 identifies the RFP. An RFP

has two set of properties: one pre-assigned by the originator (pas) and one set of asked

properties (aps). Finally, rt describes the restrictions (i.e., a boolean expression) on

the expected answer. An RFP also has the identification of the originator and of the

receiver(s); they are implied by the arrows in all patterns presented in the paper. Here,

the originator is the leader ld and the receiver is negotiator n1.

In the counter-offer cycle started at (2), the partners use Ra messages to exchange

offers (tuple o, in the third parameter). The offer, identified by oi1, correlates to the

starting Rp message (r1). The offer must also mention and assign all the properties of the

corresponding RFP. Thus, it contains the same assignment in the previous RFP (pas) and

assigns values for all the asked properties (aps). This set of assignments is represented by

assgn1 in the figure. The offer also repeats the RFP’s restrictions (rt). The last but one

parameter means that the negotiator n1 agrees with this offer (because it has created the

offer itself), and the last parameter means that the offer has not been evaluated by the

receiver. Like an RFP, an offer also identifies the originator and the receivers, implied by

the arrow as well. (3) The leader does not agree with the proposal and sends a counter-

offer (another Request Agreement message). It is similar to the previous one with different

assignment for the asked properties. Note that the counter-offer correlates to the previous

offer (oi1), instead of the starting RFP (r1). (5) (a) When a negotiator (the leader in

this example) agrees on an offer, the agreement message (Aa) contains exactly the same

offer (assgn3) the leader has received (which it agrees upon); however the last but one

offer’s parameter contains the identification of both the leader and the negotiator (since

both agree upon assgn3) and the last parameter (A) states that the offer was agreed upon.

Conversely, (b) a disagreement message (Ad) to the other negotiator is similar to the Aa

message, but the last parameter that is set to D.

Implementation of Solution: The pattern implementation in YAWL is shown in

Figure 6.9. In this figure, arrows correspond to messages and boxes to tasks. Tasks

labeled with L inside a pentagon represents tasks performed by the leader and the ones

96 Caṕıtulo 6. Implementation

Figura 6.8: Bargain interaction pattern.

labeled with a Ng inside a circle are performed by a negotiator (other than the leader).

This process starts at the topmost circle (with a triangle inside) and finishes at the

bottommost circle (with a square inside).

An offer and an RFP have a valid lifespan. A late offer is only discarded. Note that

the tasks on the left are related to the leader and the ones on the right relate to the

negotiator.

An Rp arrives at the task Negotiator Received RFP. The task is accomplished by

dispatching the Rp message to the intended negotiator. The task’s result is an ACK message

sent to the task Negotiator Creates Offer (enabling it). The negotiator uploads an

answer via the infrastructure. The infrastructure executes this task by matching the

ACK message and the answer provided by the negotiator and forwarding the answer to

one of RFP Declined or Received Negotiator Offer or Received Notification from

Negotiator, depending on the negotiator’s reply.

This two-task arrangement appears on most of the interactions in this net. Dispatch-

like tasks are identified by a little triangle on the bottom-leftmost corner of its label

(e.g., Negotiator Received RFP) and the forward-like ones have a small mark on its

top-rightmost corner (Negotiator Creates Offer). However, some sent messages do

not demand a response (e.g., Aa. In this case, there is only the dispatch-like task (e.g.,

RFP Declined) and its resulting ACK message is just discarded.

6.4.2 Pattern name: English Auction Known as: Ascending Auction

Motivation: The subject of the negotiation is in dispute by several negotiators, e.g., the

several coffee farms. Supposedly the negotiator who is more willing to get the item will

offer a better value for it.

6.4. Description of Patterns 97

Figura 6.9: Bargain process (YAWL)

Problem Solution: In Figure 6.10, there are a leader (ld) and a notary (nt). There are

several bidders that are represented by n+. One individual bidder is represented by nk.

An auction is characterized by the following pattern.

The auction is controlled by the leader and helped by the notary. It develops in auction

steps. In one auction step (a) the leader requests the notary to broadcast the subject of

the auction to the bidders and to accept the corresponding bids. The auction’s subject

defines restrictions over the bids (e.g., a minimum price). (b) the bidders send bids to the

notary. (c) The notary collects a few bids and sends them all to the leader, finishing the

auction step. The leader may either agree on one or more bids received in the last or any

previous steps or request the notary to run another step. In the latter case, the leader

may increase the restrictions over the expected bids (e.g., increase the minimum price).

Let us examine the dynamics of the auction pattern presented in Figure 6.10. (1) The

leader asks the notary to announce the auction (message Ras). The first two parameters,

as usual, are the negotiation identification and the negotiation description. The negotia-

tion description for an auction is similar to the one of a bargain, but conveys a few extra

attributes: the list of the negotiators that take part in the auction ({n1,n2,...}), the

number of expected bids (max answr)), and the time interval the notary should wait for

98 Caṕıtulo 6. Implementation

the expected bids (tmout). These last two parameters indicate that each auction step

has a predefined lifespan and may receive many bids (typically, it is only one). Aged or

excess bids are only discarded. The third parameter conveys the RFP that describes the

property(ies) to be auctioned. Typically, such an RFP imposes a restriction on the asked

properties (e.g., a minimum acceptable price). (2) The notary signals the leader that it

will control the auction (message Aas) and informs the identifier for this auction step (a1)

and the RFP’s identification (r1). (3) The notary broadcasts the negotiation description

and the RFP to all negotiators. The broadcast is represented by a stair-shaped arrow.

(4) Each negotiator answers this request by (a) sending an offer to the notary (message

Ra), or (b) informing the notary that it is not interested in the current auction step (mes-

sage Ino). The offer has a suitable assignment for each asked property (not shown). The

last two parameters are shown. They state that the negotiator nk agrees with this offer

and that the offer was not evaluated by the counter-party (Ne). (5) The notary collects

these offers and sends them back to the leader by means of an Ica message. The last

parameter is the list of received offers. It does not include the Ino messages sent in step

4b (if any). (6) The leader chooses the best offer(s) (the step winner(s)) according to its

own criterion, and starts another auction step with a more restrictive RFP (e.g., a higher

minimum acceptable price). This cycle repeats and (7) eventually no negotiator proposes

an offer (the leader receives an empty list of offers). (8) The leader agrees with the best

offer(s) of the previous round (identified by oy) and (9) may disagree with all defeated

offers (or simply let them age).

Figura 6.10: English auction interaction pattern.

Implementation of Solution: Consider Figure 6.11. It models both English and

Dutch auctions. Dutch auction is described in Section 6.4.4. The leader’s tasks are on

6.4. Description of Patterns 99

the left, the notary’s are in the middle, and the negotiator’s (bidder’s) are on the right.

A new auction request (Ras) arrives at task Requested Auction Step. It is dispatched

to the notary. The notary may either refuse or accept conducting this auction step.

In the first case, it answers an Nas message to leader. In the second case, the notary

starts an internal timer to control the lifespan of the initiating auction step and answers

two simultaneous messages: Aas to the leader accepting the job and Rp to the bidders

announcing the new auction step. To model such a behaviour and due to the fact that

Aas and Rp will not be uploaded by the notary exactly at the same point in time, but

in any order, Requested Auction Step has a AND-split that sends an ACK to Notary

Decides I and Notary Decides II enabling them to receive all those three messages.

Let us discuss what happens in either cases.

Recall that upon receiving the ACK message, both tasks Notary Decides I and Notary

Decides II are enabled. In the first case (the refusal), the Nas message may reach either

of them and, as a result, control is diverted to Notary has Refused, which dispatches

the message to the leader.

Conversely, the notary might have accepted. In this case, control heads for Start New

Auction Step. It is just a synchronization task (AND-join) that waits for the arrival of

both messages Aas and Rp. It directs the message Aas to task Notary has Acknowledge

and message Rp to task New English Auction. It relies on non-trivial XQueries to direct

the received messages to the right tasks. It also enables task Collected Bids by sending

the same ACK as of Requested Auction Step. Recall that Section 6.3.4 observed that

an arc itself does not convey any data. This enabling is a clear example: task Collected

Bids gets enabled by the arc originated from Start New Auction Step, but obtains its

input data of a local variable assigned at the completion of task Requested Auction

Step.

Task New English Auction dispatches the Rp message to the bidders and sends an

ACK to task Waiting Bids. Whenever Waiting Bids receives a bid, it forwards the bid to

task Receive Bids. This task dispatches the bid to the notary and re-enables Waiting

Bids allowing it to receive other bids from other negotiators. The notary stores the

received bids in its private database.

When the auction step’s lifespan has elapsed, the notary collects the bids it has re-

ceived, creates an Ica message containing the received bids and uploads it to the engine by

means of the Collected Bids task. This message is forwarded to task Leader Waiting

Bids, which dispatches it to the leader. Finally, the leader can start a new auction

step (Ras) or agree with a few bids (message Aa) and disagree with the defeated ones

(message Ad). These messages are dispatched to the corresponding negotiators by task

Receive (Dis)Agreement. The bottommost arc is used when there was no bid at all

(auction failed) or it was a Dutch auction. Note that tasks Notary has Acknowledged

100 Caṕıtulo 6. Implementation

and Receive Bids do not have their forward-like counter-parts. This happens because

the received message do not demand an answer. For more details the reader is referred

to [20].

This model uses two cancellation regions: for tasks Notary has Refused and Collect

Bids. The first region comprises tasks Notary Decides I and Notary Decides II and

their outgoing arc. Recall that both tasks were simultaneously enabled, but Nas message

reaches one of them. This cancellation region makes sure the other task is canceled. The

second region comprises all tasks and arcs on the right of task Collected Bids, disabling

the reception of late bids.

Figura 6.11: Auction process (YAWL)

6.4.3 Pattern name: Open Ballot Known as: -

Motivation: Some negotiation issues comprise a set of options to be chosen by the

negotiators. The goal of the negotiation is to determine the most preferred option.

Problem Description: The ballot’s issue may include several properties. Most of the

6.4. Description of Patterns 101

properties’ values are assigned in advance. There is exactly one property not assigned

and a predefined list of possible values for this property. The ballot’s goal is to assign the

most preferred value to this property.

Problem Solution:

This pattern, shown in Figure 6.12. There are a leader (ld) helped by the notary

(nt) and several negotiators, all of them represented by n+. An individual negotiator

is represented by nk. (1) The leader asks the notary to conduct the ballot process (Rb

message). This message conveys three parameters: the negotiation instance identification

(nid), the negotiation description (tuple d) and the ballot description (tuple b). The

negotiation description informs that this negotiation concerns a ballot (BLT). Besides the

common attributes, it also conveys the list of voters ({n1,...}). The leader is not always

a voter: if so, it will be included in this list. The negotiation description includes other

parameters that specify the dynamics of the ballot, all represented by xp, such as: how

much time to wait for votes, the number of votes needed to approve the issue, the minimum

number of votes to an alternative be elected, how to handle ties (e.g., by considering the

leader’s vote twice, considering a tie as an approval, etc).

The ballot description comprises an RFP (tuple r, showing only the RFP identifier)

and the set of alternatives ({a1,...,az}). This RFP has exactly one unbound property.

Thus, voting means choosing one among the alternatives. (2) (a) The notary acknowl-

edges the leader that it will conduct the ballot (message Ab) and informs the ballot

identifier (bid). (b) Conversely, the notary refuses this job (message Nb) and there is no

further interactions. (3) If the notary agreed, it broadcasts the ballot’s subject to all

negotiators (Rvp). If the leader is a voter, it also receives this request for voting. The

dashed line indicates that it is not always the case. (4) A voter sends its vote to the

notary (message Av): (a) Each vote may choose one alternative; or (b) may be an absten-

tion, or (c) a veto (if applicable). A non-authorized veto is considered as an abstention.

Note that parameters nid and bid correlate the vote to the the negotiation instance and

to the ballot. The vote also conveys the voter’s credential (!nk). (5) The notary counts

the votes (xi is the number of votes the alternative ai has received) and broadcasts the

result. The result may be approved, not approved, or vetoed. The result of a ballot is

disclosed by means of br data type, written as:

br(blst,{ch1:nv,...},ofr)

The first parameter is the ballot status, i.e., whether the ballot was approved (A), not

approved (Na) or vetoed (V). The second parameter lists how many votes (nv) each choice

(chI) has received. The approved choice is in the beginning of this list. In case of an

approved ballot, the last parameter (ofr) conveys an offer that assigns the chosen value to

102 Caṕıtulo 6. Implementation

the respective property. Such an offer is agreed by the leader and the notary (the notary

is a kind of a proxy for the voters).

Figura 6.12: Open Ballot interaction pattern.

Implementation of Solution: Figure 6.13 shows the ballot’s implementation. It

implements both the open ballot pattern and the close ballot pattern (Section 6.4.4).

This net follows the same rationale of the auction’s net (Section 6.4.2). However, it is

a bit simpler. Note that the auction’s net also implements two patterns (English and

Dutch auction). The bids for each pattern are semantically and structurally different.

Thus, each kind of bids is received in different parts of the auction’s net. Conversely,

there is no substantial difference between votes of each pattern and they can be handled

equally. Another difference is that, whereas the auction step’s result is only sent to the

leader the ballot’s result is broadcasted to all negotiators, including the leader.

In the case of an open ballot, the notary, via task Start Ballot, forwards the mes-

sage Rvp to the negotiators via task Request Vote. Later, the notary receives the votes

enclosed within message Av.

6.4.4 Other Patterns

This section briefly presents a few other patterns the negotiation protocol supports.

Dutch auction. In a Dutch auction, one or more properties are in dispute by sev-

eral negotiators (bidders). The auctioneer announces successive (typically, decreasing)

assignments for such property(ies). There is a predefined time span between successive

announcements. The negotiator that first agrees upon the current value wins the auction.

6.4. Description of Patterns 103

Figura 6.13: Ballot process.

This pattern is quite similar to the English auction pattern (Section 6.4.2). However,

each auction step is described by an offer conveyed by message Ra (see Figure 6.11) and

the bidder agrees with such an offer by means of message Aa.

Closed ballot. A closed ballot is similar to the open one (Section 6.4.3). However,

the ballot issue is described via an offer and the voters may only agree or disagree on it

(abstention and veto are also possible). The ballot’s issue is forwarded by the notary via

an Rva message (Figure 6.13) and the votes are conveyed by an Av message.

Sealed bid. A sealed bid is a kind of auction with only one auction step. The

auctioneer asks for bids and chooses the best bid. The implementation of this pattern is

quite similar to the bargain pattern: the auctioneer broadcasts an RFP (message Rp) to

all bidders and waits for the bids during a predefined time span. The bidders send offers,

via Ra messages, in response. Then, the auctioneer agrees on the best offer.

Request for Information. All the presented patterns can be augmented by a number

of requests for information (RFIs) sent by the leader before starting the proper negotiation.

We have also defined and implemented this pattern, this factoring out a common type of

104 Caṕıtulo 6. Implementation

request found in all negotiation stages.

6.5 Middleware Implementation

The previous sections explained SPICA’s negotiation messages (Section 6.3) and how they

can be combined into different negotiation styles which are modeled as workflows (Sec-

tion 6.4). Such messages are transported by means of a middleware (recall Figure 6.6)

and delivered at specific interfaces of a few Web services (negotiator’s and notary’s). This

middleware comprises YAWL’s workflow engine which we instrumented with tailor-made

software (hereafter called NS Service). The engine executes the workflow and invokes

NS to handle the transported messages. Sections 6.2 presented YAWL system and Sec-

tion 6.3.4 pointed out a few implementation issues needed to understand design decisions.

This section details the protocol’s implementation.

SPICA’s negotiation protocol is modeled as a YAWL model comprising several subnets.

Some of them were presented in Section 6.4. Each subnet has a number of tasks that are

responsible for handling the messages exchanged among the negotiators. A task has a

decomposition. The decomposition defines its input and output variables as well as a

so-called YAWL service. This is a Web service and can be seen as a procedure called

by the workflow engine to process the input variables and return a set of results (the

outputs). Thus, the engine can forward these results to subsequent tasks. The format of

the messages are described in Section 6.5.1. SPICA’s specific decompositions are described

in Section 6.5.2. Section 6.5.3 presents the tailor-made custom service (NS Service).

6.5.1 Message Format

Section 6.3.3 presented the negotiation messages exchanged within a negotiation process.

Messages are XML files sent between tasks. This section shows their layout and also

describes a few extra messages, called control messages, needed by the infrastructure.

Figure 6.14 shows an excerpt of a message. All messages have a common header.

The first piece of information in the header is the message’s type (tp) – e.g., Ra, Rp.

The second piece of information (posted) records when the message was posted to the

middleware, while the third one (expires) determines its lifespan, i.e., how long the

sender will wait for an answer. The fourth piece of information (expectansw) is a boolean

value that instructs SPICA’s infrastructure whether it must expect a reply for such a

message. Finally, fromname and receivers record the message’s originator and recipients.

Following this header there is a long choice element with an entry for each possible

message type. Only the first two appear in Figure 6.14. Such elements encode the

message’s parameters (presented in Section 6.3.3)

6.5. Middleware Implementation 105

<complexType name=‘‘MessageType’’>
<sequence>

<element name=‘‘tp’’ type=‘‘MsgType’’/>
<element name=‘‘mid’’ type=‘‘MsgIDType’’/>
<element name=‘‘pid’’ type=‘‘MsgIDType’’/>
<element name=‘‘posted’’ type=‘‘dateTime’’/>
<element name=‘‘expires’’ type=‘‘dateTime’’/>
<element name=‘‘expectansw’’ type=‘‘YesNoType’’/>
<element name=‘‘fromName’’ type=‘‘string’’/>
<element name=‘‘receivers’’ type=‘‘ToType’’/>
<choice>

<element name=‘‘rp’’ type=‘‘MsgReqProposalType’’/>
<element name=‘‘ra’’ type=‘‘MsgReqAgreementType’’/>
Similar for other types of messages...

</choice>
</sequence>

</complexType>

Figura 6.14: Negotiation Message Format.

Variable Mode

RecM In & Out The received message. The received mes-
sage can be a negotiation message or a con-
trol message.

ExpectAnsw In Only The types of the expected reply messages,
i.e., the outgoing messages in RespM1.

RespM1 Out Only A task can generate an outgoing message

Tabela 6.3: NSTask decomposition.

Figure 6.15 depicts the encoding of the parameters of an Rp message – see Section 6.3.3.

Other messages follow similar arrangement.

Additional so-called control messages were introduced and are used internally by the

middleware, e.g., ACK, NULL.

6.5.2 Decompositions

Most of the tasks related to negotiation interactions have a common decomposition called

NSTask. Table 6.3 summarizes the parameters of this decomposition.

The first two variables provide input for the task and the last is an outgoing message.

RecM is also an output variable, which just outputs the received message. RecM may be

a negotiation message or a control message. The YAWL service associated to a task of

such a decomposition is the NS service.

Recall the dual task arrangement (i.e., the dispatch-like and forward-like tasks ar-

106 Caṕıtulo 6. Implementation

Figura 6.15: Parameters of an RP message: MsgReqProposalType.

rangement) presented in Section 6.3.4 and the auction subnet presented in Figure 6.11.

Figure 6.16 shows this subnet in detail. A request for a new auction step (Ras) message

arrives at Requested Auction Step via its RecM input variable. This task is a dispatch-

like task. The Ras message is dispatched to the notary and an ACK control message is

returned via RespM1 output variable and assigned to a local variable (named NewAucAck).

This ACK message contains information that will relate the received Ras message to the

corresponding answers to it. The ACK message is received at Notary Decides I via its

RecM input variable. This task is a forward-like task. In response to the Ras message,

the notary has to send three different messages: (1) an Aas message to the leader; (2)

either an Rp (English auction) or an Ra message (Dutch auction) to the negotiators, and

(3) an Ica message to the leader at the end of the auction step. Thus, the notary sends

these messages (only Aas is shown in the picture) to NS service which: a) verifies if the

incoming responses are within the list of ExpectAnsw input variable (offending messages

are discarded), b) correlates them to the previous ACK message and c) checks them into

the workflow engine. The output message will be assigned to output variable RespM1.

For instance, Table 6.4 shows the values for these parameters for the first two tasks in

Figure 6.11. Note that the values assigned to RespM1 must be in the ExpectAnsw input

variable.

6.5. Middleware Implementation 107

Figura 6.16: Tasks with decomposition detailed.

Task RecM ExpectAnsw RespM1

Requested Auction
Step

Ras ACK ACK

Notary Decides I ACK Aas, Rp, Ra Aas

Tabela 6.4: Examples of assignment of tasks’ variables.

6.5.3 NS Custom Service

Tasks are processed by means of associated YAWL services. The YAWL workflow engine

implements a few predefined services and provides support for the implementation of user-

tailored services, the so-called YAWL custom services. A custom service is a Java class

that complies with specific interfaces. The negotiation framework implements a custom

service called NS (for Negotiation custom Service) that handles the negotiation messages.

Figure 6.17.a shows the rationale behind a generic custom service and Figure 6.17.b

shows how such a rationale is applied in our solution. Consider Figure 6.17.a, the standard

YAWL solution for custom services. When (1) a task is enabled and its input parameters

(IP) are available (typically from a local variable), (2) the engine invokes the associated

custom service (Csrv). This service (2a) performs the so-called “check out” operation via

a specific interface provided by the engine. This causes the task to be in the “executing”

state. The service obtains the input data, processes it and (2b) returns the result to the

engine by means of a “check in” operation. This causes the task to be completed and

(3) the result to be assigned the output parameters (OP). In the end, other tasks may

be enabled and the results may be available for further processing. To sum up, it is a

synchronous arrangement.

On the other hand, SPICA’s messages, depicted in Figure 6.17.b, are asynchronous.

108 Caṕıtulo 6. Implementation

The negotiators are web services that implement some specific interfaces and are not

aware of YAWL’s engine. In the figure, (1) A negotiation message (IM) is sent to a

negotiator (e.g., an Rp message). (2) This message enables task T’ and is transfered to

its input variable RecM. The engine invokes NS that (2a) checks out the incoming message,

(2b) immediately checks in a specific ACK control message, (2c) enabling the subsequent

task (T”). At the same time, (2d) NS dispatches the incoming message to the intended

negotiator. (3) The negotiator analyzes the received message and (3a) sends an answer to

NS via the NS’ checkInIF interface. Meanwhile, the ACK message has arrived to task T”.

NS is invoked by the engine and (3b) checks out the ACK message. (c) NS matches the

ACK and answer messages (see Section 6.5.2), perform a few validation procedures and

checks in the messages which are assigned to the output variable RespM1. This outgoing

message (OM) is available for processing by the subsequent tasks.

Figura 6.17: Dispatch of negotiation messages.

Figure 6.18 goes into details about the interaction between the YAWL engine, the

NS service and a negotiator from the latter’s perspective.2 It shows that NS provides

two interfaces: one to receive requests from the YAWL engine (interface B’) and other

to receive requests form a negotiator via the checkInIF interface (Ci). There is also a

setup interface (interface S) that is out of the scope of this paper. Every negotiator

(NM) implements a set of specific interfaces (described in [16]) depicted as gray circles.

Operations of these interfaces are activated when the corresponding negotiation message

is dispatched to the negotiator. There is an extra interface (black circle) for exceptions

(out of the scope of this paper). The negotiator also uses a communication adaptor (COM

ADP) to upload an answer message.

A YAWL custom service extends the so-called InterfaceBWebSideController ab-

stract class (interface B’ in Figure 6.18) and implements a method named handle-

2The rationale is the same for the notary.

6.5. Middleware Implementation 109

EnabledWorkItemEvent. When a task is enabled, this method is invoked by the YAWL

engine. A custom service interacts (i.e., checks out) with the engine through the so-called

interface B. Using this interface, the custom service gets the received message, uploads

the corresponding ACK message, and uploads the corresponding answer message.

Let us examine Figure 6.18 in detail. When a task whose decomposition is NSTask

is enabled, (1) the engine calls the method handleEnabledWorkItemEvent within the

interface B’. This method receives a so-called work item as a parameter. Such work item

keeps quite a few pieces of information about the enabled task. (2) NS service interacts

with the engine and gets the message received by the task, i.e., the content of input variable

RecM, validates the message and (3) checks in an ACK message. (4) According to the type

of the received message, NS service calls an appropriate operation of one of these interfaces,

i.e., it dispatches the negotiation message. (5) The negotiator interacts with NS via the

Ci interface. In response to a negotiation message, the negotiator uploads the answer

messages to NS. Recall that the negotiator is not aware about NS service or about YAWL

engine. The message uploading is intermediated by means of a communication adaptor

(COM ADP). This adaptor mimics a negotiator by implementing the same interfaces.

When a negotiator calls one of its operations, it creates a negotiation message in the

format described in Section 6.5.1 and forwards it to NS. If another middleware was used,

only the adaptor should be replaced. Finally, (6) NS correlates the uploaded answers with

the corresponding ACK message and checks in the corresponding task. To do so, NS uses

a few data contained within the received work item. The uploaded answer is assigned

to this task’s output variable (RespM1). Details about the validation and correlation

processes are presented next.

Figura 6.18: NS service from the perspective of one negotiator.

The algorithm used to dispatch messages uses two data structures: a table of dis-

110 Caṕıtulo 6. Implementation

patched messages (TDM) and a queue of not processed incoming messages (NpMsgs). There

is an instance of them to each different negotiation instance. The table TDM has 8 columns:

• mid: it is the identification of the dispatched message M.

• pid: M’s parent message identification

• nansw: it keeps the number of answers the message has received so far (-1 means

the message has not been dispatched; 0, the message was dispatched, but no an-

swers have arrived so far; other positive numbers stand for the number of received

answers),

• ndscd: it counts the discarded answers for a specific message

• expires: it indicates the message’s expiration date

• posted: Date when the message was posted into NS service.

• msg: it keeps the message itself for auditing purposes.

• ackLst: recall that when message M is dispatched, ACKs are sent to subsequent

tasks enabling them to receive answers for M. Thus,ackLst is a list that contains

the work items of the tasks enabled by such ACKs.

In what follows, TDM[nid,mid].expires means the expiration date of message mid in

the negotiation nid; M.mid() means the message identifier for message M.

An incoming message, viz., a message received via the NS’ checkInIF interface, can

only be processed if its enabling ACK has already been checked out. If this is not true, the

incoming message is inserted in the NpMsgs queue and processed upon ACK arrival.

Figures 6.19, 6.20 and 6.21 depict algorithms used by NS to handle incoming messages.

Figure 6.19 shows the actions executed by NS when a negotiation message (i.e., not an

ACK message) is received via the RecM input variable (Figure 6.18.b, step 1). Note the

created ACK: it keeps the identification of its respective message (ACK.pid, step b3) that

will be used to correlate with the expected answer (to arrive).

Conversely, if an ACK message is received via RecM, the algorithm presented in Fig-

ure 6.20 is executed. The received ACK is used to match a dispatched message (algorithm

Figure 6.19) with a future answer. However, it may happen that the answer itself ar-

rives before its ACK. In this case, the early answer will have been put in the queue of not

processed messages (algorithm Figure 6.21). Thus, step (d) checks if this is the case.

Finally, Figure 6.21 shows the actions executed when a reply message is received

via NS’ checkInIF interface. Such reply message might have arrived earlier that its

respective ACK. It is checked in step (b). If so, the incoming message is added to the list of

6.5. Middleware Implementation 111

a. Check out negotiation message M (Figure 6.17.b, step

2a)

b. Create an new ACK message:

i.ACK.nid:= M.nid();

ii.ACK.mid:= new identifier();

iii.ACK.pid:= M.mid();

c. TDM[M.nid(),M.mid()].nasw:= -1: ,

TDM[M.nid(),M.mid()].ndscd:=-1;

TDM[M.nid(),M.mid()].pid:= M.pid() ;

TDM[M.nid(),M.mid()].msg:= M;

TDM[M.nid(),M.mid()].expires:= M.expires();

d. Check in the ACK message (Figure 6.17.b, step 2b)

e. Dispatch message M to the appropriate negotiator’s

interface. (Figure 6.17.b, step 2d)

Figura 6.19: Negotiation message received via RecM input variable

a. Check out the ACK message (A). (Figure 6.17.b, step 3b)

b. TDM[A.nid(),A.pid()].answ = 0;

TDM[A.nid(),A.pid()].ndscd=0

c. Insert A to TDM[A.nid(),A.mid()].ackLst d. Check

NpMsgs. If there is already a response (R) related to this

ACK message (i.e., R.pid()=A.pid()), take the response off

the queue and execute steps (c) and (d) of the algorithm in

Figure 6.21

Figura 6.20: ACK message received via RecM input variable

112 Caṕıtulo 6. Implementation

not processed messages. Recall that a message may have several answers. For instance,

the message Ras at the beginning of an auction (Figure6.11) may receive two answers

when the auction step starts (namely, Aas and Rp) and another message at its end (an

Ica). In this case, the Ras’s ackLst will contain three work items respective to tasks

Notary Decides I, Notary Decides II and Collected Bids that are responsible for

receiving those answers. Note that all such answers have the same parent. Thus, it must

be determined which is a suitable work item for the upcoming message: this suitable work

item is the one whose list of expected answers contains the type of the upcoming answer.

Note that step (c) validates the upcoming message before it is check in within the context

of the suitable work item.

a. NS receives the response R for previous negotiation

message P via checkInIF interface. It examines the

response and finds the identification of the parent message

(Figure 6.17.b, step 3a)

pnid:= R.nid(); pmid:= R.pid())

b. If the respective ACK has not been checkout yet (i.e.,

TDM[R.nid(),R.pid()].nansw =-1):

i. Insert the response R into NpMsgs

ii. Exit

c. If R is aged (TDM[R.nid(),R.pid()].expires <

date posted(R)), or is not valid or violates some

restrictions:

i. Send exception to the sender.

ii. Increment ndscd counter and discard the response.

d. If R is not aged:

i. TDM[R.nid(),R.pid()].nansw++

ii. Checks in message R. (Figure 6.17.b, step 3c)

Figura 6.21: Response message (R) received via checkInIF interface.

6.5.4 Example Execution

Figure 6.22 shows part of the output of a negotiation instance. Each participant has a

window where it prints out a few remarks about the steps and decisions it has undertaken.

A complete execution is shown in another paper ([17]). It presents how the main

negotiation styles are combined seamlessly to build a virtual organization.

6.6 Related Work

Modeling. According to [13], a supply chain is a set of disparate members who are

6.6. Related Work 113

Figura 6.22: An example execution.

dependent on each other to manage resources (such as inventory and information). The

common way of describing such a management is the definition of a business process (BP),

i.e., a set of activities that, if properly performed, causes the intended effect. Multiple

executions of a BP happen within individual, isolated contexts and, in general, each step

causes some kind of transformation, be it physical (e.g., raw material becomes manufac-

tured goods) or logical (e.g., information is produced or updated). Workflow Management

Systems (WfMS) are a natural choice for modeling and executing BPs.

Modeling a workflow may be a piece of art or a piece of engineering. In the first case, it

is a result of the abilities of the modeler. In the second case, the modeler employs different

techniques to achieve a proper result. One of those techniques are design patterns. Design

patterns have been around since the mid 90s. Aalst and colleagues have applied them

to workflows ([3, 7]) and Mulyar ([66]) presented patterns for process-aware information

systems.

This paper proposes using workflows as a means of modeling and executing a specific

kind of BP: contract negotiations, and presents core negotiation patterns.

Contracts and Negotiation. There are several proposals for contract specification.

Some of them are designed for specific purposes where the domain of negotiable items

is predefined, like SLAs (e.g.,[37]). Our approach, instead, does not enforce any item

domain. More generic contract specification approaches need an expressive language to

describe the commitments agreed among the partners. Several of them use logic-based

approaches, like [72, 10, 47, 43, 69, 88]. This is not our approach, though we support

114 Caṕıtulo 6. Implementation

generic contract specification. The use of specific languages would demand highly trained

computer scientists to design the contract to be negotiated. However, the negotiation

environment we propose aims at real supply chains where the participants are autonomous,

highly heterogeneous and geographically widespread. It would not be realistic to expect

that all participants would have the needed skills.

A contract expresses commitments among partners. However, most of the ones pro-

posed in the literature are bi-lateral, just a few are multi-party, e.g., [88]. Again, our

generic contract specification and negotiation patterns does not impose any such con-

straint.

Contracts are the outcome of some negotiation process which may be done with some

level of software assistance. We proposed automatic negotiation performed by software

agents and guided by contract templates [16]. This is not unique – other proposals also use

templates, e.g., [49, 22, 33]. An alternative for negotiation are matchmaking approaches

like [68].

Kallel and others [55] propose a multi-agent negotiation model for a particular contract

type of a specific supply chain. The negotiation model consists of a heuristic negotiation

protocol and a decision-making model. The authors’ approach diverge from ours. They

understand a supply chain as a neighborhood: a focused company, its suppliers and its

customers. We consider the whole supply chain from the original suppliers to the end

consumers.

FIPA3 proposes standards for the interoperation of heterogeneous agents. A few of

them resembles our negotiation styles, e.g., FIPA Contract Net Interaction Protocol4 bears

resemblance to our bargains. However, they mostly aim at finding an agent to perform

a task. The agent will acknowledge that it has accomplished such a task. In contrast,

our negotiation protocol aims at producing a contract that will be enacted in the future.

Our protocol itself does not include the execution phase. FIPA also proposes standards

for Dutch and English Auctions, but “the auctioneer seeks to find the market price of a

good”.5 Our approach is more general than that: we seek to determine good values for a

set of properties, not restricted to only price.

A number of authors use contracts to describe the coordination of activities of partners,

e.g., [86, 60]. Others use contracts a means of monitoring the fulfillment of the contract’s

commitments, e.g., [88]. In addition, [6] use a Petri net-base approach to discuss how a

partner should implement its part of the contract complying to the contract’s description.

Other authors use contracts in the context of agent societies to shape the agents’ behaviour

(e.g., [85, 91]), i.e., the actions might or might not be undertaken according to the use of

3IEEE’s Foundation for Intelligent Physical Agents: http://www.fipa.org/
4http://www.fipa.org/specs/fipa00029/SC00029H.pdf
5English auction: http://www.fipa.org/specs/fipa00031/XC00031F.pdf; Dutch auction:

http://www.fipa.org/specs/fipa00032/XC00032F.pdf

6.7. Conclusion 115

shared resources. These are not business contracts.

Middleware. SPICA Negotiation Protocol is defined as a set of interfaces to be

implemented by the negotiators and notary. Since these participants may be distributed,

there must be a communication infrastructure that allows them to exchange negotiation

messages (that activate such interfaces). Our current choice is an implementation based

on Web services supervised by a workflow engine (YAWL). Other alternatives could have

been employed, such as: an implementation of OASIS ebXML Messaging Services6 (e.g.,

Hermes7) or JADE8 (extended with WADE). The reasons for using YAWL were stated in

the beginning of the paper.

6.7 Conclusion

This paper presented the core implementation of the SPICA Negotiation Protocol, which

allows arbitrary composition of negotiation primitives, specified by means of patterns. The

implementation relies on the use of the YAWL workflow management system and engine,

for which we developed specific services to allow the required negotiation flexilibity. We

have implemented several real-life negotiation examples for agricultural supply chains.

Our protocol is more generic than others. It allows for different combination of the

negotiation primitives resulting in a wide variety of composite negotiation styles. The

ones detailed in this paper are just the most important and suitable for illustrating the

use of the protocol’s primitives. For a detailed example on protocol primitives, the reader

is referred to [17], which shows how two hierarchical parallel negotiations are interleaved

to produce a contract.

Additional features have been designed, but not implemented so far. Future work

comprises implementing them. Such features include grouping properties in a hierarchi-

cal way and negotiating each group separately. Another option is to allow the negotiators

to express their intentions, restrictions and reasons at different phases of the negotia-

tion. This would not influence the protocol’s control flow, but is intended to help the

negotiators’ decision making process.

Acknowledgements

This paper was partially supported by CAPES/Brazil and by CNPq (WebMAPS

and AgroFlow projects) and FAPESP.

6http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/cs02/ebms core-3.0-spec-cs-02.pdf
7http://www.freebxml.org/msh.htm
8http://jade.tilab.com/

Caṕıtulo 7

Concluding Remarks and Future

Work

7.1 Conclusion

The thesis attacked the problem of handling negotiations in agricultural supply chains in

a top down approach. It proposed a model for agricultural supply chains that integrates

seamlessly the main features of supply chains discussed in the literature. The model

considers both static and dynamic aspects. It also investigated lower level negotiation

issues, covering two aspects contract specification and support to flexible multi-party e-

negotiations. Multi-party contracts are important in this context because several actors

of a supply chain may build alliances comprising mutual rights and obligations. A set

of bilateral contracts is not well-fitted for such a purpose. The thesis also presents an

implementation of the negotiation protocol that builds on Web services and a workflow

engine (YAWL).

The main contributions are:

• a model and an architecture for agricultural supply chains, presented in Chapter 3;

• a negotiation process and a multi-party contract format for agreements among the

participants of a supply chain, described in Chapter 4;

• a way of using the negotiation process and a contract to build a virtual organization,

presented in Chapter 5;

• the implementation of a middleware that supports the negotiation process by means

of extending a workflow engine, presented in Chaper 6.

117

118 Caṕıtulo 7. Concluding Remarks and Future Work

7.2 Extensions

There are several possibilities for extensions including supply chains, negotiation and

contracts.

7.2.1 Supply Chains

Supply Chain Modeling can be analysed from different perspectives. The way agronomists,

economists, computer scientists and researchers of other areas view a supply chain differs

greatly. All of them are relevant and complementary. However, to the best of our knowl-

edge there is not a unifying model. Although SPICA´s model was inspired and designed

aiming at agricultural supply chains, there is no reason that hinders its application to

other sorts of supply chains.

Under the Computer Science perspective, SPICA´s model lacks a well-defined descrip-

tion format. There is only a convention for graphical symbols (ellipses, boxes, and so on).

There should be, for instance, an XML format for storing supply chain descriptions, left

for future work.

7.2.2 Negotiations

This thesis addressed a protocol for negotiation. It presents an implementation of a

negotiation scenario only to test the protocol dynamics. The negotiators use simple

heuristics to decide about received offers. The thesis did not considered the negotiation

intelligence. This is a broad research area to be exploited in the future, specially by means

of cooperation with researchers from AI.

The legal aspects of a negotiation process are not considered at depth in the thesis.

Future work should consider how to lay a negotiation setup in a way that an agreement

made in this setup could be legally enforceable.

We have already designed extensions to the negotiation protocol. One of them concerns

providing a way for negotiators to communicate with each other during a negotiation

process. This would allow for the establishment of alliances among a subset of them.

This extension will be implemented shortly. Renegotiation is another feature also left for

future work.

7.2.3 Contracts

The thesis proposed a format for electronic contracts. It is situated between two ap-

proaches. In one end are the “paper contracts made digital”. Human beings can read

them, but computers can only store them. On the other end are the contracts described

7.2. Extensions 119

by means of highly sophisticated formal languages, which fits automatic processing. How-

ever, very few computer scientists could be able to read and write them, and it is not a

practical approach. We claim that a contract in the context of agricultural supply chains

should be designed by a team with at least one IT professional and one lawyer.

Although we have claimed that formal languages are not practical, they are quite

useful. Future work might address a way of deriving formal representations out of a

SPICA contract. This would help approaching monitoring and auditing issues, which

were not addressed by this thesis.

Contracts are instances of contract models. Contracts should be renegotiable. More-

over, the model and the instance may evolve over time. Thus, version control is an aspect

that could be further investigated.

Contract execution was not addressed in this thesis. It is related to the execution

of coordination plans. In fact, they will be executed by the same mechanism. Contract

execution and plan execution were left for future work.

7.2.4 Other Components for SPICA

Most of SPICA´s components were not addressed by this thesis. There is a huge amount

of research and implementation efforts to be done concerning chain execution, traceability,

summary and regulation management, to name but a few.

To sum up, there is a great amount of further research and implementation to be

undertaken, to produce a seamlessly supply chain framework.

Caṕıtulo 8

Conclusões

A tese propôs um arcabouço completo para cadeias produtivas agropecuárias, incluindo:

um modelo e uma arquitetura para cadeias produtivas agropecuárias, um processo de

negociação e um formato para contratos multi-laterais que visam estabelecer acordos

entre participantes da cadeia, uma estratégia de utilização do processo de negociação e do

contrato multi-lateral para o estabelecimento de organizações virtuais e a implementação

de um middleware para o suporte do processo de negociação baseado num motor de

workflow (YAWL).

O arcabouço proposto contempla vários aspectos de uma cadeia produtiva, incluindo

aspectos estruturais (quem são os atores e como se organizam) e sua dinâmica (como

os atores interagem). O foco da tese concentrou-se no processo de negociação e no con-

trato entre os parceiros. Duas caracteŕıstica são relevantes para suas aplicabilidades: os

contratos são multi-laterais e semi-formais. Como já mencionando, um conjunto de con-

tratos bi-laterais não seria adequado para o contexto de cadeias produtivas agropecuárias.

Também, contratos escritos em linguagens formais por especialistas seriam de dif́ıcil con-

fecção. No outro extremo, contratos escritos em linguagem natural seriam dificilmente

processados. Os outros aspectos serão abordados em trabalhos futuros.

121

Referências Bibliográficas

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The

Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[2] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and

Implementation of the YAWL System. In A. Persson and J. Stirna, editors, Advanced

Information Systems Engineering, Proceedings of the 16th International Conference

on Advanced Information Systems Engineering (CAiSE’04), volume 3084 of Lecture

Notes in Computer Science, pages 142–159. Springer-Verlag, Berlin, 2004.

[3] W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski.

Advanced workflow patterns. In CooplS ’00: Proceedings of the 7th International

Conference on Cooperative Information Systems, pages 18–29, London, UK, 2000.

Springer-Verlag.

[4] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process mining and

verification of properties: An approach based on temporal logic. In OTM Conferences

(1), pages 130–147, 2005.

[5] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow

Language. Information Systems, 30(4):245–275, 2005.

[6] W.M.P. van der Aalst, P. Massuthe, C. Stahl, and K. Wolf. Multiparty Con-

tracts: Agreeing and Implementing Interorganizational Processes. Technical report,

Humboldt-Universität zu Berlin, 2007. Informatik-Berichte 213.

[7] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[8] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and

A.J.M.M. Weijters. Workflow mining: A survey of issues and approaches. Data &

Knowledge Engineering, 47(2):237–267, 2003.

123

124 REFERÊNCIAS BIBLIOGRÁFICAS

[9] A Albani, A Keiblinge, K Turowski, and C Winnewisser. Identification and modelling

of web services for inter-enterprise collaboration exemplified for the domain of strate-

gic supply chain development. In R. et al. Meersman, editor, CoopIS/DOA/ODBASE

2003, pages 74–92, 2003.

[10] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, and P. Tor-

roni. Expressing and verifying business contracts with abductive logic programming.

Intl. Journal of Electronic Commerce, 12(4):9–38, summer 2008.

[11] S. Angelov, S. Till, and P.W.P.J. Grefen. Dynamic and secure B2B e-contract update

management. In ACM Conference on Electronic Commerce, pages 19–28, 2005.

[12] A. Arsanjani. Developing and Integrating Enterprise Componentes and Services.

Communications of the ACM, 45(10):31–34, 2002.

[13] Arshinder, A. Kandan, and S.G. Deshmukh. A framework for evaluation of coor-

dination by contracts: A case of two-level supply chains. Computer & Industrial

Engineering, 56(4):1177–1191, 2009.

[14] M. Dumas B. Benatallah, Q.Z. Sheng. Environment for web services composition.

IEEE Internet Computing, pages 40–48, Jan/Feb 2003.

[15] E. Bacarin, W.M.P van der Aalst, E. Madeira, and C.B. Medeiros. Towards modeling

and simulating a multi-party negotiation protocol with colored petri nets. In Proc.

CPN 07 - Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets

and the CPN Tools, 2007.

[16] E. Bacarin, E.R.M. Madeira, and C.B. Medeiros. Contract e-negotiation in agri-

cultural supply chains. Intl. Journal of Electronic Commerce, 12(4):71–97, summer

2008.

[17] E. Bacarin, E.R.M. Madeira, and C.B. Medeiros. Assembling and managing virtual

organizations out of multi-party contracts. In J. Filipe and J. Cordeiro, editors,

ICEIS, volume 24 of Lecture Notes in Business Information Processing, pages 758–

769. Springer, 2009.

[18] E. Bacarin, E.R.M. Madeira, C.B. Medeiros, and W.M.P. van der Aalst. Spica’s

multi-party negotiation protocol: Implementation using yawl. Intl. J. of Coop. Info.

Sys., 2009. submitted.

[19] E. Bacarin, E.R.M. Madeira, and C.M.B. Medeiros. Using choreography to support

collaboration in agricultural supply chains. Technical Report IC-07-07, Institute of

Computing/UNICAMP, March 2007.

REFERÊNCIAS BIBLIOGRÁFICAS 125

[20] E. Bacarin, E.R.M. Madeira, and C.M.B. Medeiros. Spica’s multi-party negotiation

protocol: Implementation using yawl. Technical Report IC-09, Institute of Comput-

ing/UNICAMP, March 2009.

[21] E. Bacarin, C.B. Medeiros, and E.R.M. Madeira. A Collaborative Model for Agri-

cultural Supply Chains. In CoopIS 2004, LNCS 3290, pages 319–336, 2004.

[22] C. Bartolini, C. Preist, and N.R. Jennings. A software framework for automated

negotiation. In SELMAS, pages 213–235, 2004.

[23] P. Belfiore and H.T.Y. Yoshizaki. Scatter search for a real-life heterogeneous fleet

vehicle routing problem with time windows and split deliveries in brazil. European

Journal of Operational Research, 199(3):750–758, 2009.

[24] K. Belhajjame, G. Vargas-Solar, and C. Collet. Defining and coordinating open-

services using workflows. In R. Meersman et al., editor, CoopIS/DOA/ODBASE

2003, pages 110–128, 2003.

[25] B. Benatallah, M. Dumas, M.C. Fauvet, F.A. Rahbi, and Q.Z. Sheng. Overview of

some patterns for architecting and managing composite web services. ACM SIGecom

Exchange, 3(3):9–16, August 2002.

[26] B.L. Bhur. Information technology and changing supply chain behavior: Discussion.

Amer. J. Agr. Econ., 82(5):1130–1132, 2000.

[27] C. Bussler, D. Fensel, and A. Maedche. A Conceptual Architecture for Semantic

Web enabled Web Services. ACM Sigmod Record, 31(4):24–30, 2002.

[28] K.E. Caggiano, P.L. Jackson, J.A. Muckstadt, and J.A. Rappold. Efficient computa-

tion of time-based customer service levels in a multi-item, multi-echelon supply chain:

A practical approach for inventory optimization. European Journal of Operational

Research, 199(3):744–749, 2009.

[29] A.M.G. Castro, S.M.V. Lima, W.J. Goedert, A. Freitas Filho, and J.R.P. Vascon-

celos, editors. Cadeias Produtivas e Sistemas Naturais – Prospecção Tecnológica.

EMBRAPA/Serviço de Produção de Informação, Braśılia, 1998. in Portuguese.

[30] M. Cavalcanti, M. Mattoso, M. Campos, F. Llirbat, and E. Simon. Sharing Scientific

Models in Environmental Applications. In Proc ACM Symposium Applied Computing

- SAC, 2002.

[31] D.C. Chatfield, T.P. Harrison, and J.C. Hayya. SISCO: An object-oriented supply

chain simulation system. Decision Support Systems, 42(1):422–434, 2006.

126 REFERÊNCIAS BIBLIOGRÁFICAS

[32] D.C. Chatfield, T.P. Harrison, and J.C. Hayya. Scml: An information frame-

work to support supply chain modeling. European Journal of Operational Research,

196(2):651–660, 2009.

[33] D.K.W. Chiu, S.C. Cheung, P.C.K. Hung, S.Y.Y. Chiu, and A.K.K. Chung. De-

veloping e-negotiation support with a meta-modeling approach in a web services

environment. Decision Support Systems, 40(1):51–69, July 2005.

[34] P. Cramton, Y. Shoham, and R. Steinberg. An overview of combinatorial auctions.

SIGecom Exch., 7(1):3–14, 2007.

[35] J. Dang and M.N. Huhns. Concurrent Multiple-Issue Negotiation for Internet-Based

Services. IEEE Internet Computing, 10(6):42–49, 2006.

[36] S. Darko-Ampem, M. Katsoufi, and P. Giambiagi. Secure negotiation in virtual orga-

nizations. In EDOCW ’06: Proceedings of the 10th IEEE on International Enterprise

Distributed Object Computing Conference Workshops, pages 48–55, Washington, DC,

USA, 2006. IEEE Computer Society.

[37] M. Fantinato, M. B. F. de Toledo, and I. M. de S. Gimenes. A feature-based approach

to electronic contracts. In CEC/EEE’06, pages 34–41, Los Alamitos, CA, USA, 2006.

IEEE Computer Society.

[38] M.A. Figueiredo. Managing the quality of products in a supply chain (gerenciamento

de regras de qualidade de produtos em cadeias produtivas). Master’s thesis, Instituto

de Computação - Unicamp, May 2009.

[39] R. Fileto, L. Liu, C. Pu, E. Assad, and C. B. Medeiros. POESIA: An Ontological

Workflow Approach for Composing Web Services in Agriculture. VLDB Journal,

12(3), 2003.

[40] FIPA. Fipa abstract architecture specification. Available at www.fipa.org, 2000.

[41] A. Gal and D. Montesi. Inter-enterprise workflow management systems. In Proc.

10th International Conference and Workshop on Database and Expert Systems Ap-

plications (DEXA ’99), pages 623–627, 1999.

[42] H. Garcia-Molina. Elections in distributed computing systems. IEEE Transactions

on Computers, C-31(1):48–59, jan 1982.

[43] G. Governatori, M. Dumas, A.H.M. ter Hofstede, and P. Oaks. A formal approach

to protocols and strategies for (legal) negotiation. In ICAIL, pages 168–177, 2001.

REFERÊNCIAS BIBLIOGRÁFICAS 127

[44] G. Governatori, Z. Milosevic, and S. Sadiq. Compliance checking between business

processes and business contracts. In Proc. 10th Intl. Enterprise Distributed Object

Computing Conference, pages 221–232, 2006.

[45] P.W.P.J. Grefen, N. Mehandjiev, G. Kouvas, G. Weichhart, and R. Eshuis. Dynamic

business network process management in instant virtual enterprises. Computers in

Industry, 60(2):86–103, 2009.

[46] B. Grosof. Courteous logic programs: Prioritized conflict handling for rules. IBM

Research Report RC20836, May 1997.

[47] B.N. Grosof and T.C. Poon. SweetDeal: Representing Agent Contracts with Excep-

tions Using Semantic Web Rules, Ontologies, and Process Descriptions. Intl. Journal

of Electronic Commerce, 8(4):61–97, 2004.

[48] A. Gunasekaran and E.W.T Ngai. Information systems in supply chain integration

and management. European Journal of Operational Research, 159:269–295, 2004.

[49] J.E. Hanson and Z. Milosevic. Conversation-oriented protocols for contract negotia-

tions. EDOC, 00:40–49, 2003.

[50] P. Henderson, S. Crouch, R.J. Walters, and Q. Ni. Comparison of some negotiation

algorithms using a tournament-based approach. In Agent Technologies, Infrastruc-

ture, Tools and Applications for E-Services, volume 2592 of Lecture Notes in Artificial

Intelligence, pages 137–150. Springer, Jan 2003.

[51] Y. Hoffner, H. Ludwig, P. Grefen, and K. Aberer. Crossflow: integrating workflow

management and electronic commerce. SIGecom Exch., 2(1):1–10, 2001.

[52] A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell. Modern

Business Process Automation: YAWL and its Support Environment. Springer-Verlag,

Berlin, 2010.

[53] IBM. Ws-coordination. Available at http://www.ibm.com/developerworks/libra-

ry/specification/ws-tx/, 2006.

[54] E.M. Jewkes and A.S. Alfa. A queueing model of delayed product differentiation.

European Journal of Operational Research, 199(3):734–743, 2009.

[55] O. Kallel, I.B. Jaâfar, L. Dupont, and K. Ghédira. Multi-agent negotiation in a

supply chain - case of the wholsale price contract. In J. Cordeiro and J. Filipe,

editors, ICEIS (4), pages 305–314, 2008.

128 REFERÊNCIAS BIBLIOGRÁFICAS

[56] A.A. Kondo. Gerenciamento de rastreabilidade em cadeias produtivas agropecuárias.

Master’s thesis, Instituto de Computação - Unicamp, Abril 2007.

[57] A.K. Kondo, C.B. Medeiros, E. Bacarin, and E.R.M. Madeira. Traceability in Food

for Supply Chains. In Proc. 3rd International Conference on Web Information Sys-

tems and Technologies (WEBIST), pages 121–127, March 2007. Barcelona,Spain.

[58] R. Krishna, K. Karlapalem, and D.K.W. Chiu. An ERec framework for e-contract

modeling, enactment and monitoring. Data & Knowledge Engineering, 51(1):31–58,

oct 2004.

[59] K. Kumar. Technology for supporting supply chain management. Communications

of the ACM, 44(6):58–61, jun 2001.

[60] P.F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, and S. Neal. A uni-

fied behavioural model and a contract language for extended enterprise. Data &

Knowledge Engineering, 51(1):5–29, 2004.

[61] A. Malucelli, D. Palzer, and E. Oliveira. Ontology-based services to help solving the

heterogeneity problem in e-commerce negotiations. Electronic Commerce Research

and Applications, 5(1):29–43, 2006.

[62] B. Medjahed, B. Benatallah, A. Bouguettaya, A.H.H. Ngu, and A.K. Elmagarmid.

Business-to-business interactions: issues and enabling technologies. The VLDB Jour-

nal, 12(1):59–85, 2003.

[63] Z. Milosevic, S. Gibson, P.F. Linington, J. Cole, and S. Kulkarni. On design and

implementation of a contract monitoring facility. In Boualem Benatallah, Claude Go-

dart, and Ming-Chien Shan, editors, Proceedings of WEC, First IEEE International

Workshop on Electronic, pages 62–70. IEEE Computer Society, July 2004.

[64] Z. Milosevic, A. Jøsang, T. Dimitrakos, and M.A. Patton. Discretionary enforcement

of electronic contracts. In EDOC, pages 39–50. IEEE Computer Society, 2002.

[65] H. Min and G. Zhou. Supply chain modeling: past, present and future. Computer &

Industrial Engineering, 43:231–249, July 2002.

[66] N.A. Mulyar. Patterns for Process-Aware Information Systems: An Approach Based

on Colored Petri Nets. PhD thesis, Technische Universiteit Eindhoven, 2009.

[67] A.M. Nakai. Uma infra-estrutura para coordenação de atividades em cadeias produti-

vas baseada em coreografia de serviços web. Master’s thesis, Instituto de Computação

- Unicamp, Março 2007.

REFERÊNCIAS BIBLIOGRÁFICAS 129

[68] T. Noia, E. Sciascio, F.M. Donini, and M. Mongiello. A system for principled match-

making in electronic marketplace. Intl. Journal of Electronic Commerce, 8:9–37,

Summer 2004.

[69] N. Oren, T.J. Norman, and A.D. Preece. Argumentation based contract monitoring

in uncertain domains. In Manuela M. Veloso, editor, IJCAI, pages 1434–1439, 2007.

[70] T. Oszu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall,

1991.

[71] S. P. Fremantle, Weerawarana and R. Khalaf. Enterprise Services. Communications

of the ACM, 45(10):77–82, 2002.

[72] S. Panagiotidi, J. Vázquez-Salceda, S. Álvarez Napagao, S. Ortega-Martorell, ,

S. Willmott, R. Confalonieri, and P. Storms. Intelligent contracting agents language.

In Proceedings of the Symposium on Behaviour Regulation in Multi-Agent Systems

-BRMAS’08. Aberdeen, UK, pages 49–54, April 2008.

[73] C. Peltz. Web services orchestration: a review of emerging technologies, tools, and

standards. Technical report, Hewlett Packard, Co., January 2003.

[74] H.C. Peterson. The “learning” supply chain: Pipeline or pipedream? American J.

Agr. Econ., 84(5):1329–1336, 2002.

[75] J. V. Pitt, L. Kamara, M.J. Sergot, and A. Artikis. Formalization of a voting protocol

for virtual organizations. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M.P. Singh,

and M. Wooldridge, editors, AAMAS, pages 373–380. ACM, 2005.

[76] James A. Rappold and Nikolay Tchernev. Special issue on supply chain design.

European Journal of Operational Research, 199(3):732–733, 2009.

[77] D.M. Reeves, M.P. Wellman, and B.N. Grosof. Automated negotiation from declar-

ative contract descriptions. In Proc. of the 5th International Conference on Au-

tonomous Agents, pages 51–58, Canada, 2001. ACM Press.

[78] N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow

Resource Patterns: Identification, Representation and Tool Support. In O. Pastor

and J. Falcao e Cunha, editors, Proceedings of the 17th Conference on Advanced Infor-

mation Systems Engineering (CAiSE’05), volume 3520 of Lecture Notes in Computer

Science, pages 216—-232. Springer-Verlag, Berlin, 2005.

130 REFERÊNCIAS BIBLIOGRÁFICAS

[79] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow

Data Patterns: Identification, Representation and Tool Support. In L. Delcam-

bre, C. Kop, H.C. Mayr, J. Mylopoulos, and O. Pastor, editors, 24nd International

Conference on Conceptual Modeling (ER 2005), volume 3716 of Lecture Notes in

Computer Science, pages 353–368. Springer-Verlag, Berlin, 2005.

[80] R. Rust and P. Kannan. E-Service: a New Paradigm for Business in the Electronic

Environment. Communications of the ACM, 46(6):36–42, 2003.

[81] C.P. Sá, F.G. Andrade, and N.F. Almeida. Estudo da Cadeia Produtiva da Mandioca

no Acre. In A.M.G Castro, S.M.V Lima, W.J. Goedert, A.F. Filho, and J.R.P. Vas-

concelos, editors, Cadeias Produtivas e Sistemas Naturais: Prospecção Tecnológica,

pages 321–341. Embrapa-SPI, 1998. in Portuguese.

[82] V. Salin. Information technology and cattle-beef supply chains. American J. Agr.

Econ., 82(5):1105–1111, 2000.

[83] Tuomas Sandholm and Victor Lesser. Leveled-commitment contracting: a backtrack-

ing instrument for multiagent systems. AI Mag., 23(3):89–100, 2002.

[84] S.J. Simon. The art of military logistics – moving to dynamic supply chain. Com-

munications of the ACM, 44(6):62–66, jun 2001.

[85] Y.B. Udupi and M.P. Singh. Contract enactment in virtual organizations: A

commitment-based approach. In AAAI. AAAI Press, 2006.

[86] H. Weigand and W. Heuvel. Cross-organizational workflow integration using con-

tracts. Decision Support Systems, 33(3):247–265, July 2002.

[87] M. Weske, G. Vossen, C. B. Medeiros, and F. Pires. Workflow Management in

Geoprocessing Applications. In Proc. 6th ACM International Symposium Geographic

Information Systems – ACMGIS98, pages 88–93, 1998.

[88] L. Xu. A multi-party contract model. SIGecom Exch., 5(1):13–23, 2004.

[89] R.S. Yamaoka, J.K. Watanabe, and S.A. Baroni. Estudo da cadeia produtiva da

seda no estado do paraná. In A.M.G Castro, S.M.V Lima, W.J. Goedert, A.F. Filho,

and J.R.P. Vasconcelos, editors, Cadeias Produtivas e Sistemas Naturais: Prospecção

Tecnológica, pages 185–211. Embrapa-SPI, 1998. in Portuguese.

[90] E. Yücel, F. Karaesmen, F.S. Salman, and M. Türkay. Optimizing product assort-

ment under customer-driven demand substitution. European Journal of Operational

Research, 199(3):759–768, 2009.

REFERÊNCIAS BIBLIOGRÁFICAS 131

[91] M. Zuzek, M. Talik, T. Swierczynski, C. Wisniewski, B. Kryza, L. Dutka, and J. Ki-

towski. Formal model for contract negotiation in knowledge-based virtual organiza-

tions. In ICCS 2008, Part III, LNCS 5103, pages 409–418, Berlin, 2008. Springer-

Verlag.

