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ABSTRACT 
 
In this study, the responses of terrestrial arthropods to different types of anthropogenic 

disturbance were examined, aiming to select and test ecological indicators. Ten groups of 

terrestrial arthropods were selected and sampled in an Atlantic Forest reserve with two sites with 

contrasting histories of disturbance, one with history of selective logging (preserved) and another 

with history of slash-and-burn (disturbed). The abundance of exotic species was higher in the 

disturbed area, and this pattern seems to be an adequate indicator of anthropogenic disturbance. 

Species richness was not significantly correlated between any pair of taxa. In contrast, species 

composition was significantly correlated among most groups, and clearly discriminates the 

disturbed from the undisturbed site. The composition of fruit-feeding butterflies and epigaeic 

Coleoptera were the best indicators in this study, discriminating between the disturbed and the 

undisturbed sites even in higher taxonomic categories, and acting as surrogates of the remaining 

arthropod groups. To validate the above findings, two additional Atlantic Forest reserves with 

different kinds of anthropogenic disturbance were sampled, aiming to find consistent responses to 

the three sources of disturbance. Fruit-feeding butterflies were used as focal group due to its 

usefulness as ecological indicators in the first study. Shifts in the species composition, abundance 

and proportion of three subfamilies (Brassolinae, Charaxinae and Satyrinae) were found to be 

consistent in our three study areas with different disturbance types and degrees. Results indicate 

that fruit-feeding butterflies may be promptly employed as disturbance indicators in the Atlantic 

Forest. On the other hand, disturbance effects on the fauna of the Brazilian Cerrado are still 

poorly understood. In the third study, the abundance of epigaeic arthropod orders and trophic 

guilds was assessed in cerrado sites subjected to three burning frequencies: frequent (HighFi), 

intermediary (MidFi) and infrequent (LowFi). None of the orders or trophic guilds analyzed had 
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higher abundance in the LowFi, being either more abundant in the HighFi or MidFi, or did not 

differ among the burning frequencies. Results indicate that some arthropod groups may not only 

be resilient to fire effect, but actually benefit from fire effect in cerrado. Based on the results, 

springtails (Collembola) and ants (Hymenoptera, Formicidae) seem to be particularly appropriate 

focal groups for further exploratory studies at species level aiming to verify their indicator 

properties, since they are abundant in samples and, in the case of ants, relatively well known in 

the Cerrado. To sum up, the present study supports the potential of using arthropods as ecological 

indicators in different biomes, showing new directions to future research. 
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RESUMO 
 
No presente estudo, foram examinadas respostas de artrópodes a diferentes tipos de perturbação 

antrópica, com o intuito de selecionar e testar indicadores ecológicos. Para tal, dez grupos de 

artrópodes terrestres foram selecionados e amostrados em uma reserva de Floresta Atlântica com 

duas áreas com histórico contrastante de perturbação: uma com corte seletivo (‘conservada’) e 

outra com corte raso e queimada (‘perturbada’). A abundância de espécies exóticas foi maior na 

área perturbada, padrão que aparentemente é um bom indicador de perturbação antrópica. Não 

houve correlação significativa da riqueza de espécies entre nenhum dos taxa selecionados. Por 

outro lado, a composição de espécies discriminou claramente a área perturbada da conservada, e 

foi significativamente correlacionada entre maior parte dos grupos. A composição de espécies de 

borboletas frugívoras e besouros epigéicos foram os melhores indicadores de perturbação, 

discriminando ambas as áreas mesmo com baixa resolução taxonômica e atuando como 

representantes de outros grupos de artrópodes. Para poder validar os resultados encontrados na 

primeira etapa, foram amostradas outras duas reservas de Floresta Atlântica com diferentes tipos 

de perturbação antrópica, com o objetivo de se verificar se existem respostas consistentes para 

três diferentes fontes de perturbação. Uma vez que se mostraram boas indicadoras de 

perturbação, borboletas frugívoras foram escolhidas como grupo focal. Mudanças na composição 

de espécies, abundância total e representatividade de três subfamílias (Brassolinae, Charaxinae e 

Satyrinae) foram consistentes nas áreas de estudo com diferentes tipos e graus de contraste de 

perturbação. Os resultados indicam que borboletas frugívoras podem ser prontamente aplicadas 

como indicadoras de perturbação antrópica em Floresta Atlântica. Por outro lado, os efeitos de 

perturbações na fauna do Cerrado ainda são pouco conhecidos. No terceiro estudo, a abundância 

de ordens e guildas tróficas de artrópodes epigéicos foi comparada entre áreas de uma reserva de 
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Cerrado com diferentes frequências de queima: frequente (HighFi), intermediária (MidFi) e 

infrequente (LowFi). Nenhuma das ordens ou guildas tróficas analisadas apresentou maior 

abundância na LowFi, sendo mais abundantes na HighFi ou MidFi, ou não apresentando 

diferença entre as frequencias de queima. Os resultados indicam que alguns grupos de artrópodes 

podem não apenas ser resilientes aos efeitos do fogo, mas de fato se beneficiar dele. Os 

resultados encontrados devem ser considerados uma primeira abordagem a partir da qual estudos 

mais detalhados devem ser feitos. De acordo com os resultados, Collembola e formigas são 

grupos focais promissores para estudos exploratórios adicionais com o intuito de verificar suas 

propriedades indicadoras na escala de espécie, uma vez que são abundantes nas amostras e, no 

caso das formigas, relativamente bem conhecidas no Cerrado. Os resultados do presente trabalho 

reafirmam o potencial de artrópodes como indicadores ecológicos em diferentes biomas, e 

apontam as direções a ser tomadas em futuros estudos nesta área. 
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INTRODUÇÃO GERAL 

 

Diagnosticar e monitorar a diversidade biológica são atividades essenciais para a 

avaliação da conservação ou da restauração da biodiversidade. Dada a dificuldade de se tomar 

medidas diretas de todo o ambiente, por razões práticas ligadas a tempo, custo ou ausência de 

conhecimento taxonômico (Bockstaller & Girardin, 2003; Duelli & Obrist, 2003; Sauberer et al., 

2004; Oertly et al., 2005), o desenvolvimento de atalhos que satisfaçam essa necessidade de 

avaliação e monitoramento é fundamental (McGeoch, 1998; Niemi & McDonald, 2004). Neste 

contexto foi criada e desenvolvida a área de investigação de indicadores biológicos, que são 

organismos cujas características (como presença, abundância e atributos individuais) refletem 

condições ambientais ou fenômenos biológicos difíceis, inconvenientes ou caros para serem 

medidos diretamente (Landres et al., 1988; McGeoch, 1998; Rølstad et al., 2002). 

A maioria dos indicadores biológicos é identificada através da confiabilidade da sua 

resposta à alguma característica do ambiente (Kitching et al., 2000; Dale & Beyeler, 2001; para 

definições veja McGeoch, 1998). No entanto, para serem usados com confiança os indicadores 

biológicos devem ser testados de forma independente daquela usada na sua identificação inicial 

(uma premissa poucas vezes testada de forma efetiva). Uma vez que o caráter de indicador 

biológico tenha sido estabelecido, sua robustez deve ser testada, por exemplo, re-amostrando o 

mesmo tipo de ambiente sob circunstâncias temporais ou espaciais diferentes (Weaver, 1995; 

Majer & Nichols, 1998). 

Embora a criação de protocolos de monitoramento seja uma das prioridades atuais para a 

conservação de ambientes tropicais (Toit et al., 2004) e muitos indicadores biológicos tenham 

sido propostos para ecossistemas terrestres ao longo dos últimos anos, poucos foram efetivamente 
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testados no campo (McGeoch, 1998; Simberloff, 1998). Adicionalmente, poucos estudos 

investigaram os efeitos de perturbação antrópica em mais de um grupo simultaneamente, 

diminuindo o potencial de generalização das informações obtidas de um grupo para outro e 

consequentemente limitando a abrangência dos resultados (McGeoch, 1998; Simberloff, 1998; 

veja Gardner et al., 2009 para excessões). 

No Brasil, alguns exemplos do potencial de aplicação de indicadores biológicos na 

avaliação de sistemas naturais são: a) Zoneamento de áreas para implementação de Unidades de 

Conservação; b) Implementação de planos de manejo em unidades de conservação já 

estabelecidas (Avaliação Ecológica Rápida – AER – veja também Meffe & Carrol, 1997); c) 

Estudo Prévio de Impacto Ambiental e respectivo Relatório de Impacto Ambiental (EIA/RIMA); 

d) Diagnóstico ambiental para fins de certificação, licenciamento ou compensação ambiental. A 

falta de testes de indicadores biológicos e a inexistência de protocolos de bioindicação em 

ambientes terrestres impossibilitam que uma avaliação rápida, objetiva e precisa seja efetuada em 

habitats que porventura necessitem de informação sobre sua condição de conservação. A vontade 

política para estabelecer programas de monitoramento provavelmente aumentaria se cientistas 

puderem desenvolver meios para diagnóstico da biodiversidade que fossem confiáveis e com 

bom custo-benefício (Sauberer et al., 2004). 

De acordo com New (1995), a indicação dos níveis de perturbação ou mudança de um 

sistema é a principal contribuição dos invertebrados no diagnóstico da conservação biológica. 

Assim, os objetivos gerais do presente estudo foram: 1) avaliar os efeitos de perturbação 

antrópica em diferentes grupos de artrópodes terrestres, 2) identificar grupos e/ou resoluções 

taxonômicas mais adequados para uso em bioindicação e 3) testar a efetividade desses 

indicadores em diferentes tipos de perturbação. 
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Este estudo divide-se em três partes. No primeiro capítulo, os efeitos da perturbação 

antrópica foram verificados em dez grupos de artrópodes terrestres, dentre os quais foram 

discutidos os mais adequados como indicadores ecológicos em Floresta Atlântica (objetivos 1 e 

2); 

No segundo capítulo, a aplicabilidade de um dos grupos de indicadores ecológicos, 

borboletas frugívoras, foi testada amostrando-se outras áreas de Floresta Atlântica com diferentes 

históricos de perturbação antrópica (objetivos 2 e 3); 

Por fim, no terceiro capítulo a abundância de ordens e guildas tróficas de artrópodes 

epigéicos foi usada em uma reserva de Cerrado sujeita a diferentes frequencias de queima, para 

se verificar se uma abordagem com baixa resolução taxonômica seria útil para indicação 

biológica nesse sistema (objetivo 1). 

Com esses três capítulos, o estudo pretende preencher ao menos parcialmente uma lacuna 

existente no Brasil, com a proposição e teste de indicadores biológicos, gerando dados básicos 

sobre efeitos da perturbação antrópica sobre artrópodes em Mata Atlântica e Cerrado, e 

fornecendo também subsídios para a execução de diagnóstico e/ou monitoramento em áreas que 

necessitem desse tipo de informação. 
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Selecting terrestrial arthropods as indicators of rainforest disturbance. 

Abstract 

The growing pressure placed by human development on natural resources creates a need for 

quick and precise answers about the state of conservation of different areas. Thus, identifying and 

making use of ecological indicators becomes an essential task in the conservation of tropical 

systems. Here we assess the effects of small-scale disturbance on terrestrial arthropods and select 

groups that could be used as ecological indicators in the Brazilian Atlantic Forest. Arthropods 

were sampled within a continuous forest in the Serra do Mar State Park, southeastern Brazil, both 

in disturbed and undisturbed areas of the reserve. The abundance of exotic species was higher in 

the disturbed site, and this pattern seems to be an adequate indicator of anthropogenic 

disturbance. Species richness of Araneae, Carabidae, Scarabaeidae, Staphylinidae, and epigaeic 

Coleoptera (pooled) was higher in the undisturbed site, while that of fruit-feeding butterflies was 

higher in the disturbed site. Species richness was not significantly correlated between any pair of 

taxa. In contrast, species composition was significantly correlated among most groups, and 

clearly discriminates the disturbed from the undisturbed site. Moreover, fruit-feeding butterflies 

and epigaeic Coleoptera composition discriminated disturbed and undisturbed sites even when 

species were grouped into higher taxonomic levels, which may be a way of overcoming the 

difficulty of identifying arthropod species from poorly studied, species-rich ecosystems. Potential 

applications for these indicators include the choice and evaluation of sites for the establishment 

of natural reserves, elaboration of management plans, and the assessment of ecological impacts 

due to human activities, either for the purposes of licensing or legal compensation. 

Keywords: anthropogenic disturbance, ecological indicator, multi-taxa, surrogacy, species 

composition
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1. Introduction 

Practical approaches concerning the assessment of the ecological integrity of natural systems 

require the selection of organisms or groups of organisms that work as ‘shortcuts’, i.e., surrogates 

of the other elements of the system and of the ecological processes in which they are involved 

(Kremen et al., 1993; McGeoch, 1998; Feinsinger, 2001; Niemi and McDonald, 2004). These 

organisms may act as indices of environmental conditions or biological phenomena that are 

difficult, inconvenient or expensive to be directly measured (Landres et al., 1988), comprising an 

attempt to synthesize information and recognize key aspects that at length should guide reliable 

conservation decisions (Niemeijer, 2002; Niemi and McDonald, 2004). 

Biological indication may take place in several ways, such as changes in species richness 

and abundance, shifts in biological attributes (such as body size or symmetry) or, in a more 

general way, by some change in species composition from an undisturbed state (New, 1995; 

Hodkinson and Jackson, 2005). Besides the universal need for developing ways to assess status 

and trends in environmental state (Niemi and McDonald, 2004), selecting organisms as indicators 

of anthropogenic disturbance to help conservation decisions is still a challenge in most biodiverse 

countries, where taxonomic and natural history knowledge is greatly deficient (Kim and Byrne, 

2006). This task is especially urgent in the megadiverse countries, since their natural systems are 

being continually destroyed by human activities (e.g., Bawa et al., 2004; Hong and Lee, 2006; 

Miles et al., 2006). 

The Brazilian Atlantic Forest is considered a ‘hotspot’ (sensu Myers et al., 2000) due to 

its high species diversity associated with high rates of endemism and elevated level of 

disturbance, attaining highest conservation priority (MMA, 2000; Myers et al., 2000). Having 

once covered 1.5 million km2 of the Brazilian territory, the Atlantic Forest is now reduced to ca. 



 

 

13 

 

12% of its original condition, with its remnants occurring mostly in small fragments (Ribeiro et 

al., 2009). Besides habitat loss, Atlantic Forest suffers from wood harvesting, plant collecting, 

hunting, invasion by exotic species, among other anthropogenic pressures (see Tabarelli et al., 

2005). Due to its shattered state, the development and testing of indicators to assess and monitor 

the state of Atlantic Forest remnants should be a priority (Tabarelli et al., 2005). 

Terrestrial arthropods share a number of qualities that make them highly adequate as 

biological indicators. These include their sensitivity to habitat change, rapid responses to 

disturbance, and easy and cost-effective sampling (e.g., Brown, 1996; McGeoch, 1998; Basset et 

al., 2004; Hodkinson and Jackson, 2005; Lawes et al., 2005; Lewinsohn et al., 2005; Pearce and 

Venier, 2006; Bouyer et al., 2007; Gardner et al., 2008; Basset et al., 2008). However, their 

usefulness has been systematically neglected in conservation planning in Brazil, which focuses 

their attention on more “charismatic”, but sometimes less informative groups (Landres et al., 

1988; Lewinsohn et al., 2005). Even when arthropods were used in the assessment of 

anthropogenic disturbances in Brazil (see Lewinsohn et al., 2005), multi-taxonomic approaches 

have rarely been applied for this purpose (for exceptions see Barlow et al., 2007; Fonseca et al., 

2009; Pardini et al., 2009), making it difficult to extrapolate the results from one taxon to another. 

The main goal of this study was to select a set of arthropod taxa as small-scale ecological 

indicators (sensu McGeoch, 1998) of disturbance in the Brazilian Atlantic Forest. The specific 

objective was to answer the following questions: a) How does forest disturbance affect arthropod 

groups in their abundance, species richness, and diversity? b) Does disturbance change species 

composition of different arthropod groups? c) Does a higher taxon approach affect the 

discriminatory ability of the arthropod groups? d) Can some arthropod groups be established as 

efficient surrogates for others? Based on the responses of each group, we then propose which 
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arthropod groups should be employed and/or deserve to be further investigated as indicators of 

small-scale rainforest disturbance. 

 

2. Methods 

2.1. Study area 

The study was carried out in the Santa Virgínia nucleus of Serra do Mar State Park (23°17' - 

23°24' S, 45°03' - 45°11' W), located on the Paraitinga-Paraibuna plateau, in the eastern region of 

the state of São Paulo, southeastern Brazil (Fig. 1a). The region is located on mountainous relief, 

with altitudes ranging from 870 to 1100 m (Ururahy et al., 1987). The regional climate is humid, 

without a dry season, with mean annual rainfall of 2180 mm, and no monthly rainfall below 65 

mm (DNMet, 1992). The region was originally covered with Atlantic Forest vegetation, classified 

as montane rainforest (Ururahy et al., 1987). 

The Santa Virgínia nucleus has an area of ca. 18 000 ha (J.P. Villani, pers. comm.) and is 

located inside a well-preserved vegetation continuum of 1 109 546 ha along the Serra do Mar 

(Ribeiro et al., 2009), a large mountain range near the Atlantic Ocean in southeastern Brazil (Fig. 

1b). The Brazilian Ministry of the Environment considers the region where Serra do Mar State 

Park is located as an “area of extreme biological importance”, of highest priority toward 

conservation of the Atlantic Forest (MMA, 2000). 

In the 1960s, part of the forest that currently belongs to the Santa Virgínia nucleus 

suffered slash-and-burn management, and was subsequently replaced by pasture. Nowadays, this 

part of the reserve is a forest mosaic composed of old growth forest, abandoned pastures 

occupied by woody vegetation, abandoned Eucalyptus plantations, and secondary forest at 

different regeneration stages (see Tabarelli and Mantovani, 1999 and references therein). Another 
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section of the reserve (~8 km distant from the former) was severely logged for hardwood before 

the establishment of the Serra do Mar State Park in 1977 (J.P. Villani, pers. comm.), and now is a 

fairly well-preserved old-growth forest, with some nearby remnants of primary forest. Hereafter, 

these sites with different disturbance degrees will be referred to as “disturbed” and “undisturbed”, 

respectively. It is worth emphasizing that both sites are embedded within a continuous, well-

preserved forest context in the Serra do Mar region (see Ribeiro et al., 2009). 

By comparing sites within a vegetation continuum, we seek to minimize noise due to 

fragmentation effects. We also hypothesize that if responses by arthropods are found in such 

apparently low-contrast sites, meaningful responses should also be achieved under higher-

contrast conditions. 

 

2.2. Sampling design and procedures 

Twelve replicated sampling stations were set in the Santa Virgínia nucleus, six in the disturbed 

site and six in the undisturbed site, so that disturbance degree was homogeneous within sites (Fig. 

1c). Replicates were set within structurally similar vegetation in both sites, but within spots with 

different history of disturbance. A pitfall trap sampling unit plus a bait trap sampling unit (each 

composed of five traps) set in the same location comprised a sampling station. Sampling stations 

were at least 100 m apart from each other (median: disturbed = 136.6 m; undisturbed = 141.1 m). 

The bait traps were cylinders of netting, with an internal funnel, baited with a mixture of 

mashed banana and sugar cane juice, fermented for at least 48 h. Bait traps were disposed along 

pre-existing trails in the understory of each site, suspended at a height of 1.5–2.0 m above the 

ground with a distance of at least 23 m between adjacent traps. The average distance between 

traps did not differ among sampling stations (ANOVA F = 0.213, P = 0.996). The traps were 
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checked every 48 h, and the baits replaced at each visit (see Uehara-Prado et al., 2007 for details 

on the sampling scheme). 

The pitfall traps consisted in 500 ml clear plastic cups, 85 mm wide at the opening and 

120 mm in depth, flush with ground level, with a polystyrene cover suspended above the cup by 

wooden sticks. Each trap contained ca. 50 ml of a mixture of 69.9% water, 30.0% propylene 

glycol, 0.1% formaldehyde, and a few drops of detergent. Pitfall traps were placed in lines 

parallel to the bait traps lines, inside the forest understory, at 2 m intervals, and at least 20 m from 

the trails. 

Pitfall and bait traps were kept simultaneously in the field for six and eight days/month, 

respectively. Sampling was done monthly from November 2004 to May 2005, including the most 

favorable season for the capture of arthropods in southeastern Brazil (butterflies: Brown, 1972; 

Scarabaeidae: Hernández and Vaz-de-Mello, in press; Opiliones: Almeida-Neto et al., 2006). 

Sampling effort was 60 840 trap-hours for pitfall traps; the effective effort for butterflies was 33 

600 trap-hours (considering 10 hours of sampling/day). 

Most fruit-feeding butterfly species captured in the bait traps could be identified in the 

field and were released after marking. The few specimens that could not be recognized even with 

a field guide (Uehara-Prado et al., 2004) were collected for later identification. The remaining 

arthropods collected in bait and pitfall traps were stored in 70% ethanol. In order to maximize the 

consistency of sorting, all pitfall samples were sorted by the first author or by laboratory 

assistants under his supervision. The first author also conducted the pitfall and bait trap sampling 

in the field. 
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2.3. Focal group selection 

Except for the fruit-feeding butterflies, included in this study due to previous experience (Uehara-

Prado et al., 2007), taxonomic groups were selected based on two simple criteria: 1) ease of 

sorting and ‘adequate’ abundance in the samples, i.e. neither too abundant (unfeasible to handle 

with) nor too scarce (low sample size) and 2) possibility of reliable identification, which 

demanded taxonomists to correctly identify the taxa, or at least to separate specimens into 

unidentified taxonomic species. The scarcity of structured regional terrestrial arthropod 

samplings in the Atlantic Forest of the state of São Paulo prevents the application of more 

sophisticated criteria (e.g., Bouyer et al., 2007). Additionally, some groups selected in this study 

(see below) have already been suggested as potential ecological indicators or have at least been 

shown to be sensitive to human-caused disturbance (e.g., Rainio and Niemelä, 2003; Pearce and 

Venier, 2006; Barlow et al., 2007; Bragagnolo et al., 2007; Nichols et al., 2007). The taxa not 

selected at this stage were sorted into several levels of detail, from family (e.g., Formicidae) to 

“other” (several arthropod orders pooled), and stored for future studies. 

Nine taxa in the sample met the criteria adopted for their inclusion in at least part of the 

analyses: landhoppers (Amphipoda, Tallitridae), woodlice (Isopoda, Oniscidea), ground-dwelling 

spiders (Araneae), harvestmen (Opiliones), ground beetles (Carabidae), rove beetles 

(Staphylinidae), scarab beetles (Scarabaeidae), false-blister beetles (Oedemeridae), and all 

epigaeic beetles pooled (Coleoptera). False-blister beetles captured in bait traps were initially 

considered by-catches, but their abundance justified their inclusion in the analysis. 

Taxonomic accuracy varied among arthropod groups (Table 1S). All individuals could be 

identified to species level in Amphipoda (a single exotic species, Talitroides topitotum), 

Oedemeridae (two species in the genus Matusinhosa), and fruit-feeding butterflies (52 species). 
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Due to a high proportion of undescribed species and/or a lack of taxonomic knowledge on the 

different groups (i.e., a ‘taxonomic bottleneck’, see Kim and Byrne, 2006), the remaining taxa 

were separated either into unnamed taxonomic species or, whenever possible, into species. The 

proportion of taxonomic entities identified to species level (i.e., Latin binomials) in these groups 

ranged from 1.3% for rove beetles to 66.7% for harvestmen (median = 15.6%) (Table 1S). Other 

families of epigaeic Coleoptera were sorted to species or unnamed species, but due to their low 

occurrence in the samples, they were included only when data for epigaeic Coleoptera were 

pooled. Juvenile specimens of spiders were discarded from analyses. Although harvestmen 

females of the genus Mischonyx (= Ilhaia) could not be identified to species, the level of analysis 

used in this group (abundance of the order) allowed their inclusion in the dataset (see results). 

 

2.4. Statistical analyses 

The null hypothesis of no difference in abundance within arthropod groups between disturbed 

and undisturbed sites was assessed by the t-test on log10(x+1) transformed abundance data. 

Fisher’s logarithmic series parameter (α) was compared between sites by the bootstrapping 

procedure (see Magurran, 2004) using the PAST software (Hammer et al., 2001). Overall 

similarity between sites was calculated by the Sørensen index. Species richness of arthropod 

groups with 12 or more species (see Table 1) was compared between sites by individual-based 

rarefaction analysis. The statistical significance (at P < 0.05) of differences in species richness 

was evaluated by comparing 95% confidence limits in the point of the rarefaction curves with 

same abundance (see Magurran, 2004). Rarefaction analyses were performed using the Analytic 

Rarefaction 1.3 software (available from 

http://www.uga.edu/strata/software/anRareReadme.html). 



 

 

19 

 

To evaluate if disturbance affected the species composition of the selected groups, we 

performed a non-metric multidimensional scaling (NMDS) on the resemblance matrix of Bray-

Curtis distances for arthropod groups with S ≥ 12 (see Table 1), with 1000 random restarts. This 

ordination method has been frequently used in ecological studies (e.g., Minchin, 1987, Clarke 

and Ainsworth, 1993; Brehm and Fiedler, 2004), and presents several advantages, such as 

minimizing the arch effect, releasing linearity constraints, and not requiring multivariate 

normality of data (Minchin, 1987). Moreover, as in other indirect gradient analyses, NMDS 

depicts the environment in the organism’s point of view, or in Clarke and Ainsworth’s (1993) 

words, allow the biota to “tell their own story”. To test the null hypothesis of equal species 

composition between disturbed and undisturbed forest sites, we applied an analysis of similarities 

(ANOSIM – Clarke, 1993) on the matrix of Bray-Curtis similarities, with 999 permutations. 

Before running these multivariate techniques, a dispersion weighting was applied to the original 

dataset in order to downweight species of highly variable abundance, clumped into replicates 

(Clarke et al., 2006). These analyses were done using the PRIMER software (Clarke and Gorley, 

2006). 

To evaluate if grouping species into higher taxonomical categories would result in loss of 

multivariate information, we performed a NMDS on the matrix of families or subfamilies of the 

same dataset. We first performed a visual inspection of both ordinations and then compared their 

stress values. An increase in stress value in higher taxonomic category was interpreted as loss of 

multivariate information (Caruso and Migliorini, 2006; Clarke and Gorley, 2006). 

We tested species richness surrogacy by two approaches (following Sauberer et al., 2004): 

1) pairwise correlations of species richness among taxa; and 2) correlation of species richness of 

one taxon with the pooled richness of the remaining taxa. Correlations were done with Pearson’s 
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coefficient on log10(x+1) transformed data. A procedure to control for false discovery rate (FDR) 

was applied, due to the large number of correlations tested (Benjamini and Hochberg, 1995). To 

test surrogacy on species composition, RELATE tests (PRIMER software - Clarke and Gorley, 

2006) with Spearman’s correlation coefficient were used to correlate Bray-Curtis similarity 

matrices based on species composition. This function calculates the Spearman rank correlations 

between two similarity matrices and calculates the significance of this correlation by a 

permutation test. When comparisons were done between hierarchically related taxa (e.g., family 

vs. order), the lower taxon was removed from the higher taxon dataset. 

 

3. Results 

3.1. Abundance, species richness, and diversity 

The proportion of individuals in both sites varied widely from group to group (Fig. 2). The most 

abundant taxon in the sample was Amphipoda, with 3593 individuals, 97.7% of which were 

found in the disturbed site (Fig. 2). Harvestmen were more abundant in the disturbed site as well 

(75.4%, Fig. 2), mainly due to individuals of the genus Mischonyx (see Table 1S). In contrast, 

77.9% of the false-blister beetles were sampled in the undisturbed site (Fig. 2). Although 

woodlice abundance did not differ significantly between the sites (Table 1), 80 of the 82 

individuals of the exotic species Styloniscus spinosus were found in the disturbed site (Table 1S). 

The most speciose group within the selected taxa was the epigaeic Coleoptera, followed 

by Staphylinidae, Araneae, fruit-feeding butterflies, Carabidae, and Scarabaeidae (Table 1). 

Araneae and Staphylinidae showed a decrease in both species richness and abundance in 

disturbed sites, while the converse occurred for fruit-feeding butterflies (Table 1; Fig. 2). The 

species richness of Carabidae, Scarabaeidae, and epigaeic Coleoptera pooled was higher in the 
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undisturbed site, while their abundance did not differ between disturbed and undisturbed sites 

(Table 1; Fig. 2). Differences in species richness of the remaining taxa between disturbed and 

undisturbed sites were not analyzed due to their low species richness. Fisher’s α comparisons 

between sites followed the same pattern of species richness, with the only exception of 

Carabidae, whose diversity did not differ between sites (Table 1). Sørensen’s similarity between 

disturbed and undisturbed sites ranged from 0.42 in Scarabaeidae and Staphylinidae to 0.57 in 

Carabidae (Table 1). 

 

3.2. Species composition 

Non-metric multidimensional scaling results for Araneae, fruit-feeding butterflies, Carabidae, 

Staphylinidae, and epigaeic Coleoptera clearly showed different species composition between 

disturbed and undisturbed sites (Fig. 3). These results were confirmed by ANOSIM (Table 2). 

Scarabaeidae was the only group that showed no difference between sites (Fig. 3). When species 

data were aggregated into subfamilies (fruit-feeding butterflies, Carabidae, Scarabaeidae and 

Staphylinidae) or families (Araneae and all epigaeic Coleoptera pooled), only fruit-feeding 

butterflies and epigaeic Coleoptera maintained the same pattern of aggregation in NMDS (Table 

2), also confirmed by ANOSIM results (fruit-feeding butterflies: R = 0.613, P = 0.002; epigaeic 

Coleoptera: R = 0.480, P = 0.002). 

 

3.3. Surrogacy 

No significant results were observed in pairwise correlations of species richness (Table 3), and 

only fruit-feeding butterfly species richness showed a significant negative correlation with the 

pooled species richness of the remaining taxa. This group also showed a negative correlation with 
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all other taxa in both approaches (Table 3), indicating that their species richness declined as the 

richness of the remaining taxa increased. 

Comparison of species composition among arthropod groups revealed that five out of six 

analyzed groups had significant correlations, excluding Scarabaeidae (Table 3). Among the 

groups with significant correlations, fruit-feeding butterflies, Carabidae, and epigaeic Coleoptera 

correlated significantly with all the remaining groups, while Araneae and Staphylinidae 

correlated significantly with the remaining groups, but not with each other (Table 3). 

 

4. Discussion 

4.1. Abundance  

Considering only the differences in abundance between study sites (Table 1), the fact that exotic 

species of Amphipoda and Isopoda were more abundant at the site where anthropogenic 

intervention was more intense in the past seems particularly promising. A similar result was 

obtained in the same area in a study with earthworms, which also presented more individuals of 

exotic species at the disturbed site (91.4%, n = 58, Fernandes et al., in press). Invasion by exotic 

species aided by different human activities has long been reported (Elton, 1958), and disturbed 

habitats are more likely to be invaded – indeed, many exotic species seem to be restricted to 

habitats created by human disturbance (Fox and Fox, 1986). 

Our results are similar to that of previous works, which found that the abundance of a 

native South African terrestrial amphipod (Talitriator africana) was significantly higher in 

ecotones or disturbed habitats (Kotze and Lawes, 2008). In fact, Lawes et al. (2005) considered 

this amphipod an appropriate single-species ecological indicator for poor forest condition in 

South Africa. Although the outcomes of biological invasions remain widely unknown for 
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Brazilian epigaeic arthropods, it seems appealing to use presence and abundance of exotic species 

within Atlantic Forest remnants as an indication of anthropogenic disturbance. 

When looking exclusively at the abundance of different arthropod groups in our samples, 

some widespread, abundant species have the potential to be good indicators of anthropogenic 

disturbance in the Atlantic Forest. For example, harvestmen in the genus Mischonyx, the ground 

beetle Galeritula carbonaria, and the fruit-feeding butterfly Morpho epistrophus were at least 

three times more abundant in disturbed than in undisturbed sites (Table 1S). In comparison to 

other species within their groups, the above species are larger, easily identifiable, and better 

known as concerns their natural history. Thus, they could be appropriate focal species for further 

studies with anthropogenic disturbance effects on arthropods. The great majority (77.9%) of 

individuals in the genus Matusinhosa (Oedemeridae) was sampled at the undisturbed site and 

should be considered for future studies as well. However, in contrast with the above examples, 

basic aspects of the biology of Brazilian Oedemeridae are still unknown. 

We are aware that indicator-related interpretations that can be made from the results of 

particular taxon might be limited and that a set of species provides a more effective 

representation of ecological change (Lawton et al., 1998; McGeoch, 1998; Lawes et al., 2005). 

The applicability of these single taxa as disturbance indicators will depend critically on the 

generality of the results found in this study. Therefore, our results should be validated by 

additional studies in other areas of the Atlantic Forest domain. 

 

4.2. Species diversity, composition, and surrogacy 

The decrease in species richness with disturbance observed for five epigaeic arthropod taxa finds 

consistent correspondence in the literature only for tropical Scarabaeidae (Nichols et al., 2007). 
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This result was found despite the use of unbaited traps in this study, a less efficient method for 

dung beetles. Patterns of response of the other groups (Araneae, Carabidae, Staphylinidae, 

epigaeic Coleoptera pooled) to disturbance are either unknown or poorly studied in tropical 

forests (e.g., Rainio and Niemelä, 2003; Pearson, 2006). Fruit-feeding butterflies was the only 

arthropod group whose species richness was higher in the disturbed site, the opposite result found 

for other studies at a similar scale (Hill and Hamer, 2004; Barlow et al., 2007). Anthropogenic 

disturbance may affect species richness and diversity in several ways, and responses may vary 

within studies among taxonomic or functional groups or among studies within the same group 

(Kimberling et al., 2001; Kotze and Samways, 2001; Perfecto et al., 2003; Rainio and Niemelä, 

2003; Hill and Hamer, 2004; Schulze et al., 2004; Barlow et al., 2007; Basset et al., 2008; 

Fonseca et al., 2009; Pardini et al., 2009). This variation may be attributed to several factors, such 

as the sensitivity of species richness to sampling effort, the spatial and temporal scale of the 

study, and disturbance intensity, frequency and type (e.g. Brown, 1996; Kimberling et al., 2001; 

Hill and Hamer, 2004; Barlow et al., 2007; Basset et al., 2008). 

As reported in several previous studies, no surrogacy was found in correlations of species 

richness (e.g., Lawton et al., 1998; Perfecto et al., 2003; Schulze et al., 2004; Barlow et al., 

2007). The lack of congruency in species richness correlations has been attributed to the high 

variability in ecological requirements inherent to the sampling of a number of different taxa 

(Lawton et al., 1998), among other causes (Weaver, 1995; Schulze et al., 2004; Oertli et al., 

2005; Barlow et al., 2007). In this study, perhaps the sampling method was not as specific as 

would be desirable for some arthropod groups in order to catch such variability (e.g., Isopoda, 

Opiliones, and Scarabaeidae), which may have contributed to the lack of congruency found for 

species richness correlations. However, as the methods and sampling effort were the same in 
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disturbed and undisturbed sites, we expect that comparability would be maintained. Additionally, 

our sampling protocol was designed in such a way that it could be conducted by one or two 

people in the field, minimizing operational costs and increasing the chance of replication in future 

studies (see Paoletti, 1999; Gardner et al., 2008). Adding several specific methods would 

certainly reduce the cost-effectiveness of our sampling. We expect that responses to 

anthropogenic disturbances found with non-specific sampling methods are applicable per se, and 

should be improved in later studies with specific methods. 

The characterization of general diversity patterns of response to disturbance at the 

continental scale may be a very difficult task, due to functional and structural differences among 

biomes, and idiosyncrasies (e.g., history of disturbance) of different regional communities. 

However, general patterns may emerge from studies focused on specific biomes within regions 

(Kim and Byrne, 2006), validating the use of ecological indicators within specific geographical 

limits (in our case, the Serra do Mar biogeographical sub-region – see Ribeiro et al., 2009). 

Therefore, future studies about diversity patterns of potential ecological indicators in the Atlantic 

Forest should focus on increase the geographical sampling coverage of this biome, in search of 

well-defined patterns of response to disturbance. 

As found in studies with more comprehensive taxonomic coverage (Barlow et al., 2007; 

Basset et al., 2008), responses to anthropogenic disturbance based on species composition were 

more informative than those based on species richness or diversity. In the present study, 

significant correlations among the species compositions of most selected arthropod groups also 

indicate that they represent each other and can effectively be used as surrogates of anthropogenic 

disturbance. This could be promising for the future application of ecological indicators in the 
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Atlantic Forest, as one could sort just one of the selected groups, reducing sampling and sorting-

related time and costs in situations with financial constraints. 

However, the problem of identifying arthropods to species level persists. Fortunately, 

among the selected groups, fruit-feeding butterflies and epigaeic Coleoptera maintained the 

quality of discrimination between disturbed and undisturbed sites, even when species were 

grouped into higher taxonomic categories. Discovering disturbance-related response patterns at 

higher taxonomic levels may be important in a practical sense, since it is a manner of overcoming 

the difficulty of identifying arthropod species, particularly from poorly studied, species rich 

systems. Sometimes, the time lag from sampling to identifying a taxon may be decisive for its 

inclusion in assessment and monitoring studies with financial and time constraints (Pawar, 2003; 

Gardner et al., 2008). Though it may not be simple to sort Neotropical Coleoptera into families 

without previous taxonomic training, it is obviously much easier than sorting them into species. 

Sorting fruit-feeding butterflies into subfamilies, in turn, is an easy task and, despite potential 

drawbacks of working at this taxonomic scale (see Basset et al., 2008), it would prevent species 

level misidentifications, which are frequent in this group, notably among the small brown 

Satyrinae (A.V.L. Freitas, pers. obs.). 

 

4.3. Practical constraints and advantages 

The lack of taxonomists available to sort specimens into species hindered the selection and 

inclusion in our analyses of several taxa in the sample. Even in the majority of the selected taxa, 

most specimens had unnamed taxonomic species due to a lack of taxonomic studies on the 

sampled groups. Therefore, there is an urgent need for support for taxonomy and natural history 

research in the Atlantic Forest as well as other tropical ecosystems (e.g., Kim and Byrne, 2006; 
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Gardner et al., 2008). Despite the clear advantage of using species composition showed by our 

results, the other approaches used in this study aiming for ecological indication (abundance and 

species richness) have their merits and drawbacks (see Basset et al., 2008). Choosing among 

them in practical situations may ultimately depend upon the availability of financial support and 

taxonomic expertise in the selected group(s). 

Some benefits must be emphasized in this apparently discouraging scenario for the 

implementation of multi-taxonomic bioindication studies. Multiple taxa sampling in this 

ecosystem almost invariably adds new data on several aspects of the biology of both well and 

poorly studied arthropods, and possibly reveals undescribed species (e.g., Basset et al., 2004), as 

found in this study for Araneae, Coleoptera, Isopoda, and Opiliones. A wide taxonomic range 

also provides an opportunity to overcome “taxonomic chauvinism” (Pawar, 2003), as several 

groups not included in more specific sampling protocols may be seen in more detail and motivate 

further studies. Moreover, multi-taxonomic surveys can be undertaken with very little additional 

cost in the field, when compared to single taxon sampling (Gardner et al., 2008). Finally, as 

shown by our results, higher taxonomic level identification (a straightforward approach when 

sampling several taxa) may be enough for some groups to discriminate different disturbance 

levels. 

 

5. Conclusion 

In this study, we sampled, sorted, and selected arthropods that showed potential as local 

ecological indicators of forest disturbance in a reserve included in a large continuum of Atlantic 

Forest, a condition not often found in this highly fragmented ecosystem (e.g., MMA, 2000; 

Tabarelli et al., 2005; Ribeiro et al., 2009). Finding responses in this apparently low-contrast 
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situation may be a good hint about the sensitivity of the selected indicators. Additional local-scale 

studies with different anthropogenic disturbances should enhance the generalization power of our 

results. 

Basset et al. (2008) advocate the use of metrics based on species identity in biological 

assessment (as opposed to richness alone), as they “reflect a high sensitivity of arthropod 

assemblage to disturbance”. Our results indicate that this statement could be valid in the studied 

site, since the species composition of most groups differentiated the disturbed from the 

undisturbed site. Moreover, surrogacy in species composition showed that different arthropod 

groups represent each other in the response to disturbance, while this was not observed for 

species richness. We recommend therefore that future studies on ecological indication in Atlantic 

Forest (and other ecosystems) do not limit their analyses to richness-related patterns. The 

composition of fruit-feeding butterflies and epigaeic Coleoptera pooled were the best indicators 

in this study, discriminating the disturbed and the undisturbed site even in higher taxonomic 

categories, and acting as surrogates of the remaining arthropod groups. 

Some of the potential applications of terrestrial arthropods as ecological indicators in 

Brazil (and elsewhere) are the evaluation of sites for the establishment of reserves, the 

implementation of management plans in already established reserves, and the evaluation of 

ecological impacts due to human activities, either for licensing or legal compensation purposes. 

The absence of robust, tested ecological indicators for terrestrial ecosystems makes it unfeasible 

to conduct a quick, objective, and precise evaluation about the conservation status of target sites 

(see McGeoch, 1998; Niemi and McDonald, 2004). The overwhelming pressure imposed by 

human activities on natural systems puts at risk not only species and their interactions, but also 

limits conservation and management options, reducing the number of ways in which human 
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populations can interact with natural remnants (Brown, 1996; Kim & Byrne, 2006). Identifying 

the effects that such disturbances have on the biota of a locality or region is only the first step in a 

long journey toward the conservation of the vanishing Atlantic Forest. 
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Captions 

Fig. 1. Study location in Brazil. (a) Serra do Mar coastal forest ecoregion (grey); (b) the Santa 

Virgínia nucleus of Serra do Mar State Park (hashed), surrounded by ombrophilous montane 

forests (grey); (c) Sampling scheme showing sampling stations (white bars) composed by five 

portable bait traps (triangles) and five pitfall traps (circles) in disturbed (grey rectangle) and 

undisturbed (black rectangle) sites. 

Fig. 2. Proportion of total arthropod individuals collected in disturbed (gray bars) and undisturbed 

(black bars) sites. From left to right: Oedemeridae, Staphylinidae, Araneae, Scarabaeidae, 

epigaeic Coleoptera pooled, Carabidae, Isopoda, fruit-feeding butterflies (Nymphalidae), 

Opiliones, and Amphipoda. See Table 1 for common names and abundance of each group. 

Fig. 3. NMDS ordination of disturbed (open circles) and undisturbed (solid circles) sites, based 

on different arthropod groups. See stress values in Table 2. Drawings inside the graphs indicate 

the arthropod groups according to Fig. 2. 
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Table 1. Mean abundance, species richness, similarity and diversity of arthropods in disturbed (D) and undisturbed (U) sites in the Santa 

Virgínia nucleus, Serra do Mar State Park, São Paulo, Brazil. See methods for details on the disturbance history of each site. 

 Mean abundance (±sd) 1  Species richness 2  Fisher’s α 3 

Common name Taxon 
 D U  D U Total Sørensen’s S  D U 

Landhoppers Amphipoda, Talitridae  585.0 (650.9)** 13.8 (20.8)  1 1 1 -  - - 

Woodlice Isopoda, Oniscidea  22.7 (29.8) 12.2 (9.2)ns  3 4 4 -  - - 

Ground spiders Araneae  28.3 (7.9) 50.8 (7.7)**  27 56* 63 0.48  9.04 20.13** 

Harvestmen Opiliones  16.2 (10.8)* 5.3 (4.4)  6 8 9 -  - - 

Fruit-feeding butterflies Lepidoptera, Nymphalidae  87.8 (47.4)** 30.3 (10.7)  48* 22 52 0.51  12.84** 5.55 

False-blister beetles Coleoptera, Oedemeridae  7.8 (6.8) 27.7 (18.8)*  2 2 2 -  - - 

Ground beetles Coleoptera, Carabidae  42.0 (36.4) 21.7 (10.2)ns  14 14* 20 0.57  3.20 3.98ns 

Rove beetles Coleoptera, Staphylinidae  14.3 (8.2) 28.5 (5.8)*  31 68* 78 0.42  17.39 41.77** 

Scarab beetles Coleoptera, Scarabaeidae  7.67 (6.3) 11.7 (8.8)ns  6 18* 19 0.42  1.84 7.84** 

Epigaeic beetles Coleoptera 4  83.8 (42.7) 104.2 (32.4)ns  91 152* 190 0.44  32.47 63.94** 

* P < 0.05, ** P < 0.01, ns P > 0.05 

1 Differences in abundance evaluated by t-test on log10(x+1) transformed abundance data. 

2 Differences in species richness evaluated by visual comparison of rarefaction curves and their 95% confidence intervals. 

3 Differences in Fisher’s α evaluated by the bootstrapping procedure on each site’s pooled data. 

4 27 families. See Table 1S. 
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Table 2. NMDS and ANOSIM results for arthropod groups sampled in disturbed and undisturbed 

sites in the Santa Virgínia nucleus, Serra do Mar State Park, São Paulo, Brazil. 

  
NMDS Stress 

 

 

ANOSIM R 

 Species 
Higher 

taxonomic 
level1 

 

Ordination quality 
at higher taxon 

level2 

Araneae 0.526*  0.13 0.14  Worse 

Fruit-feeding butterflies 0.606*  0.05 0.05  Same 

Carabidae 0.581*  0.10 0.10  Worse 

Scarabaeidae -0.043ns  0.03 0.05  Worse 

Staphylinidae 0.563*  0.17 0.12  Worse 

Epigaeic Coleoptera 0.641*  0.12 0.13  Same 

* P < 0.01 

1 Araneae and epigaeic Coleoptera grouped into families; Fruit-feeding butterflies, Carabidae, 

Scarabaeidae, and Staphylinidae grouped into subfamilies. 

2 Visual inspection of ordination diagrams. 
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Table 3. Correlations among groups in species richness (above diagonal) and species composition (below diagonal). Correlations of 

each Coleoptera family with epigaeic Coleoptera pooled exclude that family from epigaeic Coleoptera. Alpha values adjusted for false 

discovery rate (Benjamini and Hochberg, 1995). 

 
Fruit-feeding 

butterflies 
Araneae Carabidae Scarabaeidae Staphylinidae 

Epigaeic 
Coleoptera 

 Remaining 
 taxa pooled 

Fruit-feeding 

butterflies 
 -0.631 -0.290 -0.369 -0.477 -0.726 

 
-0.754a 

Araneae 0.641**  0.156 0.046 0.687 0.599  0.329 

Carabidae 0.577* 0.573**  0.306 -0.006 0.246  0.120 

Scarabaeidae -0.235 -0.037 -0.035  0.242 0.409  0.163 

Staphylinidae 0.303* 0.153 0.264* -0.047  0.4133  0.529 

Epigaeic Coleoptera 0.406** 0.372** 0.344* 0.089 0.375**   -0.247 

a Corrected α = 0.008 

* P < 0.05; ** P < 0.01
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Table 1S. Terrestrial arthropod species sampled in Santa Virgínia nucleus, Serra do Mar State Park, São Paulo, Brazil. 

Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Arachnida Araneae Actinopodidae Actinopus sp. 0 8 8 
Arachnida Araneae Anapidae Pseudanapis sp.1 1 0 1 
Arachnida Araneae Corinnidae Corinna sp.1 0 2 2 
Arachnida Araneae Corinnidae Creugas sp.1 6 8 14 
Arachnida Araneae Corinnidae Creugas sp.2 1 1 2 
Arachnida Araneae Corinnidae Creugas sp.3 2 3 5 
Arachnida Araneae Corinnidae Ianduba sp. 2 0 2 
Arachnida Araneae Corinnidae Ianduba varia 7 9 16 
Arachnida Araneae Corinnidae Meriola sp. 7 0 7 
Arachnida Araneae Corinnidae Paradiestus sp. 1 0 1 
Arachnida Araneae Corinnidae Tupirinna sp. 3 1 4 
Arachnida Araneae Ctenidae Asthenoctenus sp. 2 0 2 
Arachnida Araneae Ctenidae Ctenidae sp. 2 31 36 67 
Arachnida Araneae Ctenidae Ctenidae sp. 3 1 0 1 
Arachnida Araneae Ctenidae Isoctenus sp.1 1 0 1 
Arachnida Araneae Ctenidae Itatiaya modesta 19 2 21 
Arachnida Araneae Dipluridae Linothele sp. 1 0 1 
Arachnida Araneae Gnaphosidae Gnaphosidae sp.1 1 0 1 
Arachnida Araneae Gnaphosidae Gnaphosidae sp.13 3 0 3 
Arachnida Araneae Hahniidae Hahniidae sp.1 0 4 4 
Arachnida Araneae Hahniidae Hahniidae sp.2 1 0 1 
Arachnida Araneae Idiopidae Idiops camelus 8 0 8 
Arachnida Araneae Idiopidae Idiops sp. 2 0 2 
Arachnida Araneae Linyphiidae Linyphiidae sp.4 11 0 11 
Arachnida Araneae Linyphiidae Linyphiidae sp.7 1 4 5 
Arachnida Araneae Linyphiidae Linyphiidae sp.8 2 0 2 
Arachnida Araneae Linyphiidae Meioneta sp. 27 30 57 
Arachnida Araneae Linyphiidae Scolecura parilis 3 6 9 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Arachnida Araneae Linyphiidae Smermisia sp. 4 0 4 
Arachnida Araneae Linyphiidae Sphecozone labiata 0 1 1 
Arachnida Araneae Linyphiidae Sphecozone sp.1 5 0 5 
Arachnida Araneae Linyphiidae Sphecozone sp.2 1 0 1 
Arachnida Araneae Linyphiidae Vesicapalpus simplex 36 16 52 
Arachnida Araneae Lycosidae Lycosidae sp.1 3 19 22 
Arachnida Araneae Lycosidae Lycosidae sp.2 0 2 2 
Arachnida Araneae Lycosidae Lycosidae sp.3 0 2 2 
Arachnida Araneae Miturgidae Miturgidae sp.1 1 0 1 
Arachnida Araneae Mysmenidae Itapua sp. 14 0 14 
Arachnida Araneae Mysmenidae Maymena sp. 1 0 1 
Arachnida Araneae Mysmenidae Mysmenidae sp.2 2 0 2 
Arachnida Araneae Mysmenidae Mysmenidae sp.3 1 0 1 
Arachnida Araneae Mysmenidae Trogloneta sp. 6 1 7 
Arachnida Araneae Nemesiidae Nemesiidae sp.15 4 0 4 
Arachnida Araneae Nemesiidae Nemesiidae sp.3 6 0 6 
Arachnida Araneae Nemesiidae Prorachias bristowei 1 0 1 
Arachnida Araneae Nemesiidae Rachias sp.1 1 0 1 
Arachnida Araneae Nemesiidae Stenoterommata sp.1 2 0 2 
Arachnida Araneae Ochyroceratidae Ochyroceratidae sp.1 2 0 2 
Arachnida Araneae Oonopidae Dysderina sp. 6 1 7 
Arachnida Araneae Oonopidae Orchestina sp. 2 0 2 
Arachnida Araneae Pholcidae Mesabolivar sp. 5 6 11 
Arachnida Araneae Pholcidae Tupigea sp. 7 0 7 
Arachnida Araneae Salticidae Corythalia sp. 4 1 5 
Arachnida Araneae Salticidae Salticidae sp.3 1 0 1 
Arachnida Araneae Salticidae Salticidae sp.4 1 0 1 
Arachnida Araneae Salticidae Salticidae sp.5 0 1 1 
Arachnida Araneae Salticidae Salticidae sp.7 0 1 1 
Arachnida Araneae Theraphosidae Homeomma montanum 20 2 22 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Arachnida Araneae Theridiidae Chrosiothes niteroi 1 0 1 
Arachnida Araneae Theridiidae Steatoda diamantina 0 1 1 
Arachnida Araneae Theridiidae Stemmops sp.1 1 0 1 
Arachnida Araneae Theridiidae Theridion sp. 1 0 1 
Arachnida Araneae Zodariidae Tenedos sp. 4 2 6 
Arachnida Araneae Zoridae Zoridae sp.1 18 0 18 
Arachnida Opiliones Gonyleptidae Gonyleptes saprophilus 10 3 13 
Arachnida Opiliones Gonyleptidae Hypophyllonomus maculipalpi 5 1 6 
Arachnida Opiliones Gonyleptidae Longiperna sp. 1 0 1 
Arachnida Opiliones Gonyleptidae Mischonyx aff. cuspidatus 1 23 24 
Arachnida Opiliones Gonyleptidae Mischonyx cuspidatus 8 12 20 
Arachnida Opiliones Gonyleptidae Mischonyx sp. (non identifiable females) 4 53 57 
Arachnida Opiliones Gonyleptidae Neosadocus sp. 1 0 1 
Arachnida Opiliones Gonyleptidae Pseudotroglus mirim 1 3 4 
Arachnida Opiliones Gonyleptidae Triglochinura curvispina 1 0 1 
Arachnida Opiliones Scleromatidae Jussara flamengo 0 2 2 
Crustacea Amphipoda Talitridae Talitroides topitotum 83 3510 3593 
Crustacea Isopoda "Philosciidae" Atlantoscia sp. 31 42 73 
Crustacea Isopoda "Philosciidae" Benthana werneri 27 14 41 
Crustacea Isopoda Plathyarthridae Trichorhina sp. 1 0 1 
Crustacea Isopoda Styloniscidae Styloniscus spinosus 2 80 82 
Insecta Coleoptera Anobiidae Lasioderma serricornis 1 0 1 
Insecta Coleoptera Artematopidae Artematopus sp.1 0 1 1 
Insecta Coleoptera Artematopidae Artematopus sp.2 0 1 1 
Insecta Coleoptera Artematopidae Artematopus sp.3 1 0 1 
Insecta Coleoptera Biphyllidae Biphyllidae sp.1 1 0 1 
Insecta Coleoptera Carabidae Aspidoglossa sp.1 3 1 4 
Insecta Coleoptera Carabidae Bembidiini sp.1 0 1 1 
Insecta Coleoptera Carabidae Dercylus (Asporina) sp.1 0 20 20 
Insecta Coleoptera Carabidae Euchroa sp.1 21 1 22 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Insecta Coleoptera Carabidae Euchroa sp.2 3 0 3 
Insecta Coleoptera Carabidae Feroniola sp.1 3 0 3 
Insecta Coleoptera Carabidae Galeritula brasiliensis 0 11 11 
Insecta Coleoptera Carabidae Galeritula carbonaria 31 132 163 
Insecta Coleoptera Carabidae Haplobothynus sp.1 13 6 19 
Insecta Coleoptera Carabidae Lebiini sp.1 1 0 1 
Insecta Coleoptera Carabidae Lebiini sp.2 1 0 1 
Insecta Coleoptera Carabidae Loxandrus sp.1 9 9 18 
Insecta Coleoptera Carabidae Loxandrus sp.2 20 4 24 
Insecta Coleoptera Carabidae Pelecium sp.1 14 2 16 
Insecta Coleoptera Carabidae Pelecium sp.2 4 0 4 
Insecta Coleoptera Carabidae Pentacomia (Mesochila) sp.1 0 2 2 
Insecta Coleoptera Carabidae Scarites (Scallophorites) sp.1 6 61 67 
Insecta Coleoptera Carabidae Stenolophus sp.1 1 0 1 
Insecta Coleoptera Carabidae Stenolophus sp.2 0 1 1 
Insecta Coleoptera Carabidae Trichopselaphus sp.1 0 1 1 
Insecta Coleoptera Chrysomelidae Alticini sp.1 1 0 1 
Insecta Coleoptera Chrysomelidae Alticini sp.2 0 1 1 
Insecta Coleoptera Chrysomelidae Alticini sp.3 1 0 1 
Insecta Coleoptera Chrysomelidae Alticini sp.4 1 0 1 
Insecta Coleoptera Chrysomelidae Homotyphus sp.1 0 1 1 
Insecta Coleoptera Chrysomelidae Longitarsus sp.1 1 0 1 
Insecta Coleoptera Ciidae Ciidae sp.1 1 0 1 
Insecta Coleoptera Coccinelidae Coccinelidae sp.1 0 1 1 
Insecta Coleoptera Corylophidae Corylophidae sp.1 1 0 1 
Insecta Coleoptera Curculionidae Baridinae sp.1 0 1 1 
Insecta Coleoptera Curculionidae Conotrachelus sp.1 10 1 11 
Insecta Coleoptera Curculionidae Cryptorhynchini sp.1 1 0 1 
Insecta Coleoptera Curculionidae Cryptorhynchini sp.2 0 1 1 
Insecta Coleoptera Curculionidae Erirhininae sp.1 3 3 6 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Insecta Coleoptera Curculionidae Erirhininae sp.2 2 0 2 
Insecta Coleoptera Curculionidae Mesocordylus cylindraeus 1 0 1 
Insecta Coleoptera Curculionidae Petalochilini sp.1 1 0 1 
Insecta Coleoptera Curculionidae Scolytinae sp.1 1 0 1 
Insecta Coleoptera Curculionidae Sitophilini sp.1 1 0 1 
Insecta Coleoptera Curculionidae Tylodema sp.1 0 1 1 
Insecta Coleoptera Dryopidae Dryopinae sp.1 2 0 2 
Insecta Coleoptera Dryopidae Dryops sp.1 2 0 2 
Insecta Coleoptera Dytiscidae Copelatus sp.1 1 1 2 
Insecta Coleoptera Dytiscidae Copelatus sp.2 12 2 14 
Insecta Coleoptera Elateridae Aeolus sp.1 1 0 1 
Insecta Coleoptera Elateridae Pomachilius sp.1 0 1 1 
Insecta Coleoptera Geotrupidae Athyreus cyanescens 8 7 15 
Insecta Coleoptera Geotrupidae Bolbapium sp.1 aff. lucidulum 2 10 12 
Insecta Coleoptera Geotrupidae Neoathyreus sp.1 aff. bidentatus 0 1 1 
Insecta Coleoptera Hybosoridae Chaetodus (Chaetodus) exaratus 8 0 8 
Insecta Coleoptera Hybosoridae Chaetodus (Chaetodus) sp.1 1 1 2 
Insecta Coleoptera Hybosoridae Cloeotus sp.1 0 3 3 
Insecta Coleoptera Hybosoridae Coilodes sp.1 0 1 1 
Insecta Coleoptera Hybosoridae Germarostes (Germarostes) sp.1 0 3 3 
Insecta Coleoptera Hybosoridae Germarostes (Haroldostes) sp.1 0 1 1 
Insecta Coleoptera Hydrophilidae Dactylosternum sp.1 1 0 1 
Insecta Coleoptera Hydrophilidae Enochrus sp.1 4 1 5 
Insecta Coleoptera Hydrophilidae Helochares sp.1 0 1 1 
Insecta Coleoptera Hydrophilidae Pelosoma sp.1 28 8 36 
Insecta Coleoptera Hydrophilidae Pelosoma sp.2 6 1 7 
Insecta Coleoptera Hydrophilidae Phaenonotum sp.1 2 0 2 
Insecta Coleoptera Hydroscaphidae Hydroscaphidae sp.1 2 0 2 
Insecta Coleoptera Leiodidae Dissochaetus sp.1 29 9 38 
Insecta Coleoptera Leiodidae Dissochaetus sp.2 1 0 1 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Insecta Coleoptera Leiodidae Leiodidae sp.1 4 0 4 
Insecta Coleoptera Leiodidae Leiodidae sp.2 6 4 10 
Insecta Coleoptera Leiodidae Leiodidae sp.3 0 1 1 
Insecta Coleoptera Leiodidae Leiodinae sp.1 5 2 7 
Insecta Coleoptera Leiodidae Leiodinae sp.2 2 0 2 
Insecta Coleoptera Melolonthidae Astaena sp.1 0 1 1 
Insecta Coleoptera Melolonthidae Trizogeniates dispar 0 1 1 
Insecta Coleoptera Nitidulidae Carpophilus sp.1 0 1 1 
Insecta Coleoptera Nitidulidae Colopterus sp.1 2 0 2 
Insecta Coleoptera Nitidulidae Nitidulinae sp.2 1 0 1 
Insecta Coleoptera Nitidulidae Pocadius sp.1 64 27 91 
Insecta Coleoptera Oedemeridae Matusinhosa atripennis 31 8 39 
Insecta Coleoptera Oedemeridae Matusinhosa callosicollis 135 39 174 
Insecta Coleoptera Phalacridae Phalacridae sp.1 2 1 3 
Insecta Coleoptera Ptiliidae Acrotrichis sp.1 8 10 18 
Insecta Coleoptera Ptiliidae Ptiliidae sp.1 1 0 1 
Insecta Coleoptera Ptiliidae Ptinella sp.1 10 0 10 
Insecta Coleoptera Ptilodactylidae Ptilodactyla sp.1 2 0 2 
Insecta Coleoptera Scarabaeidae Anomiopus sp.1 10 0 10 
Insecta Coleoptera Scarabaeidae Canthidium aff. korschefskyi 2 0 2 
Insecta Coleoptera Scarabaeidae Canthidium depressum 15 16 31 
Insecta Coleoptera Scarabaeidae Canthidium dispar 2 0 2 
Insecta Coleoptera Scarabaeidae Canthidium gigas 1 0 1 
Insecta Coleoptera Scarabaeidae Canthidium korschefskyi 1 0 1 
Insecta Coleoptera Scarabaeidae Canthidium sp.1 2 0 2 
Insecta Coleoptera Scarabaeidae Canthon amabilis 2 0 2 
Insecta Coleoptera Scarabaeidae Canthonella lenkoi 1 0 1 
Insecta Coleoptera Scarabaeidae Coprophanaeus (Metallophanaeus) saphirinus 1 0 1 
Insecta Coleoptera Scarabaeidae Dichotomius (Luederwaldtinia) assifer 0 1 1 
Insecta Coleoptera Scarabaeidae Dichotomius (Selenocopris) aff. ascanius 16 23 39 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Insecta Coleoptera Scarabaeidae Dichotomius (Selenocopris) aff. semicircularis 3 1 4 
Insecta Coleoptera Scarabaeidae Dichotomius (Selenocopris) ascanius 1 0 1 
Insecta Coleoptera Scarabaeidae Dichotomius (Selenocopris) sp.1 7 4 11 
Insecta Coleoptera Scarabaeidae Dichotomius (Selenocopris) sp.2 2 0 2 
Insecta Coleoptera Scarabaeidae Paracanthon aff. trichonotulum 2 1 3 
Insecta Coleoptera Scarabaeidae Sylvicanthon foveiventri 1 0 1 
Insecta Coleoptera Scarabaeidae Trichillum aff. halffter 1 0 1 
Insecta Coleoptera Scydmaenidae Euconnus sp.1 1 2 3 
Insecta Coleoptera Scydmaenidae Euconnus sp.2 1 1 2 
Insecta Coleoptera Scydmaenidae Euconnus sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Aleocharinae sp.1 0 1 1 
Insecta Coleoptera Staphylinidae Aleocharini sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Anotylus sp.1 3 0 3 
Insecta Coleoptera Staphylinidae Anotylus sp.2 4 0 4 
Insecta Coleoptera Staphylinidae Anotylus sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Anotylus sp.4 5 2 7 
Insecta Coleoptera Staphylinidae Arthmius sp.1 9 0 9 
Insecta Coleoptera Staphylinidae Arthmius sp.2 1 0 1 
Insecta Coleoptera Staphylinidae Arthmius sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Arthmius sp.4 2 0 2 
Insecta Coleoptera Staphylinidae Atheta sp.1 11 21 32 
Insecta Coleoptera Staphylinidae Atheta sp.2 21 2 23 
Insecta Coleoptera Staphylinidae Atheta sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Barrojuba sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Belonuchus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Carpelimus sp.1 1 4 5 
Insecta Coleoptera Staphylinidae Chroaptomus flagrans 1 0 1 
Insecta Coleoptera Staphylinidae Coproporus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Coproporus sp.2 1 0 1 
Insecta Coleoptera Staphylinidae Dysanellus sp.1 1 2 3 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Insecta Coleoptera Staphylinidae Edaphus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Holotruchus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Homaeotarsus sp.1 2 4 6 
Insecta Coleoptera Staphylinidae Homalotini sp.1 0 1 1 
Insecta Coleoptera Staphylinidae Homalotini sp.2 0 1 1 
Insecta Coleoptera Staphylinidae Homalotini sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Homalotini sp.4 1 0 1 
Insecta Coleoptera Staphylinidae Hoplandria sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Hoplandria sp.2 1 0 1 
Insecta Coleoptera Staphylinidae Lathropinus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Lissohypnus sp.1 0 1 1 
Insecta Coleoptera Staphylinidae Lomechusini sp.1 1 6 7 
Insecta Coleoptera Staphylinidae Lomechusini sp.2 1 7 8 
Insecta Coleoptera Staphylinidae Lomechusini sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Lomechusini sp.4 1 0 1 
Insecta Coleoptera Staphylinidae Lomechusini sp.5 0 2 2 
Insecta Coleoptera Staphylinidae Lomechusini sp.6 1 0 1 
Insecta Coleoptera Staphylinidae Lomechusini sp.7 1 0 1 
Insecta Coleoptera Staphylinidae Lomechusini sp.8 1 0 1 
Insecta Coleoptera Staphylinidae Mimogonus sp.1 0 1 1 
Insecta Coleoptera Staphylinidae Ochthephilum sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Osorius sp.1 2 3 5 
Insecta Coleoptera Staphylinidae Osorius sp.2 0 4 4 
Insecta Coleoptera Staphylinidae Osorius sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Paederomimus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Paederomimus sp.2 1 1 2 
Insecta Coleoptera Staphylinidae Philonthina sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Philonthus sp.1 1 2 3 
Insecta Coleoptera Staphylinidae Philonthus sp.2 0 1 1 
Insecta Coleoptera Staphylinidae Philonthus sp.3 0 1 1 



 

 
 

53 

Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Insecta Coleoptera Staphylinidae Pinophilus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Platydracus sp.1 2 4 6 
Insecta Coleoptera Staphylinidae Platydracus sp.2 2 1 3 
Insecta Coleoptera Staphylinidae Platydracus sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Pselaphellus sp.1 0 2 2 
Insecta Coleoptera Staphylinidae Pselaphellus sp.2 2 1 3 
Insecta Coleoptera Staphylinidae Pselaphinae sp.1 5 0 5 
Insecta Coleoptera Staphylinidae Pselaphinae sp.2 2 1 3 
Insecta Coleoptera Staphylinidae Pselaphinae sp.3 2 0 2 
Insecta Coleoptera Staphylinidae Pselaphinae sp.4 2 0 2 
Insecta Coleoptera Staphylinidae Pselaphinae sp.5 1 0 1 
Insecta Coleoptera Staphylinidae Pselaphinae sp.6 1 0 1 
Insecta Coleoptera Staphylinidae Pselaphinae sp.7 1 0 1 
Insecta Coleoptera Staphylinidae Pselaphinae sp.8 1 0 1 
Insecta Coleoptera Staphylinidae Pselaphinae sp.9 1 0 1 
Insecta Coleoptera Staphylinidae Quedius sp.1 3 2 5 
Insecta Coleoptera Staphylinidae Quedius sp.2 2 0 2 
Insecta Coleoptera Staphylinidae Rugilus sp.1 10 1 11 
Insecta Coleoptera Staphylinidae Rugilus sp.2 1 2 3 
Insecta Coleoptera Staphylinidae Scopaeus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Sebaga sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Sebaga sp.2 1 0 1 
Insecta Coleoptera Staphylinidae Sebaga sp.3 1 0 1 
Insecta Coleoptera Staphylinidae Styngetus sp.1 31 2 33 
Insecta Coleoptera Staphylinidae Tetradonia sp.1 1 1 2 
Insecta Coleoptera Staphylinidae Thinocharis sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Trimicerus sp.1 1 0 1 
Insecta Coleoptera Staphylinidae Zyras sp.1 2 2 4 
Insecta Coleoptera Tenebrionidae Antimachus sp.1 1 0 1 
Insecta Coleoptera Tenebrionidae Asidini sp.1 2 1 3 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Insecta Coleoptera Tenebrionidae Pogonoceromorphus sp.1 2 0 2 
Insecta Coleoptera Tenebrionidae Scotinus sp.1 0 1 1 
Insecta Coleoptera Tenebrionidae Scotinus sp.2 0 3 3 
Insecta Lepidoptera Biblidinae Biblis hyperia 0 1 1 
Insecta Lepidoptera Biblidinae Catonephele acontius 0 1 1 
Insecta Lepidoptera Biblidinae Catonephele sabrina 0 1 1 
Insecta Lepidoptera Biblidinae Diaethria candrena 0 1 1 
Insecta Lepidoptera Biblidinae Ectima thecla 0 10 10 
Insecta Lepidoptera Biblidinae Epiphile orea 0 7 7 
Insecta Lepidoptera Biblidinae Hamadryas amphinome 0 1 1 
Insecta Lepidoptera Biblidinae Hamadryas epinome 0 22 22 
Insecta Lepidoptera Biblidinae Hamadryas feronia 0 1 1 
Insecta Lepidoptera Biblidinae Hamadryas fornax 1 6 7 
Insecta Lepidoptera Biblidinae Myscelia orsis 0 11 11 
Insecta Lepidoptera Biblidinae Temenis laothoe 0 1 1 
Insecta Lepidoptera Brassolinae Blepolenis batea 0 7 7 
Insecta Lepidoptera Brassolinae Caligo arisbe 21 42 63 
Insecta Lepidoptera Brassolinae Caligo beltrao 4 3 7 
Insecta Lepidoptera Brassolinae Caligo brasiliensis 0 1 1 
Insecta Lepidoptera Brassolinae Catoblepia amphirrhoe 1 3 4 
Insecta Lepidoptera Brassolinae Dasyophthalma rusina 19 6 25 
Insecta Lepidoptera Brassolinae Eryphanis reevesi 22 6 28 
Insecta Lepidoptera Brassolinae Narope cyllarus 1 0 1 
Insecta Lepidoptera Brassolinae Narope cyllene 8 0 8 
Insecta Lepidoptera Brassolinae Opoptera syme 8 3 11 
Insecta Lepidoptera Charaxinae Archaeoprepona amphimachus 3 3 6 
Insecta Lepidoptera Charaxinae Archaeoprepona chalciope 0 1 1 
Insecta Lepidoptera Charaxinae Archaeoprepona demophon 0 7 7 
Insecta Lepidoptera Charaxinae Fountainea ryphea 0 4 4 
Insecta Lepidoptera Charaxinae Memphis appias 0 1 1 
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Class Order Family or subfamily* Species Undisturbed Disturbed Total 
Insecta Lepidoptera Charaxinae Memphis arginussa 0 6 6 
Insecta Lepidoptera Charaxinae Memphis moruus 1 1 2 
Insecta Lepidoptera Charaxinae Memphis otrere 1 11 12 
Insecta Lepidoptera Charaxinae Memphis philumena 0 1 1 
Insecta Lepidoptera Charaxinae Zaretis itys 0 2 2 
Insecta Lepidoptera Morphinae Morpho epistrophus 42 137 179 
Insecta Lepidoptera Nymphalinae Colobura dirce 0 1 1 
Insecta Lepidoptera Satyrinae Eteona tisiphone 0 21 21 
Insecta Lepidoptera Satyrinae Euptychoides castrensis 1 30 31 
Insecta Lepidoptera Satyrinae Forsterinaria necys 9 21 30 
Insecta Lepidoptera Satyrinae Forsterinaria quantius 5 22 27 
Insecta Lepidoptera Satyrinae Hermeuptychia hermes 0 23 23 
Insecta Lepidoptera Satyrinae Manataria hercyna 0 1 1 
Insecta Lepidoptera Satyrinae Moneuptychia griseldis 0 13 13 
Insecta Lepidoptera Satyrinae Moneuptychia paeon 0 1 1 
Insecta Lepidoptera Satyrinae Moneuptychia soter 0 18 18 
Insecta Lepidoptera Satyrinae Paryphthimoides grimon 0 1 1 
Insecta Lepidoptera Satyrinae Paryphthimoides phronius 0 13 13 
Insecta Lepidoptera Satyrinae Paryphthimoides poltys 1 12 13 
Insecta Lepidoptera Satyrinae Praepedaliodes amussis 1 0 1 
Insecta Lepidoptera Satyrinae Praepedaliodes phanias 0 2 2 
Insecta Lepidoptera Satyrinae Splendeuptychia hygina 1 0 1 
Insecta Lepidoptera Satyrinae Taygetis acuta 11 3 14 
Insecta Lepidoptera Satyrinae Taygetis mermeria 2 24 26 
Insecta Lepidoptera Satyrinae Taygetis ypthima 19 13 32 
* All Lepidoptera are Nymphalidae 
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Abstract 

Developing straightforward ways for assessing and monitoring ecological conditions through 

indicators is essential, especially in face of current threats to highly endangered natural systems. 

In this study, we evaluated the responses of fruit-feeding butterflies subjected to different kinds 

of anthropogenic disturbance in three reserves in the Brazilian Atlantic Forest, seeking consistent 

and useful parameters for forest assessment and monitoring. Relative abundance of butterflies 

showed directional responses to disturbance within reserves in Satyrinae, Charaxinae (increases 

in disturbed sites) and Brassolinae (decreases in undisturbed sites). A small number of individual 

species were indicators of specific disturbance type, mostly for each reserve separately. Species 

composition was different for disturbed and undisturbed sites of all reserves, and the same pattern 

was observed when species were grouped into subfamilies. Those responses may be related to 

ecological, physiological and behavioral traits for both larval and adult stages. The consistency of 

the present results validates fruit-feeding butterflies as an outstanding group of biological 

indicators that should be promptly employed in the assessment and monitoring of anthropogenic 

disturbance in tropical forests. 

 

Keywords: Nymphalidae, fruit-feeding butterflies, monitoring, biological indicators 
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Introduction 

A major endeavor in biological conservation today is to select appropriate indicators that provide 

credible scientific support for decisions in practical situations (Niemi & McDonald, 2004). 

Developing straightforward ways for assessing and monitoring ecological condition through 

indicators is therefore fundamental, especially in face of current threats to natural systems 

(McGeoch, 1998; Dale & Beyeler, 2001; Niemi & McDonald, 2004). Once stablished, ecological 

indicators can be employed in the assessment of the state, identification of the causes of 

disturbance, and as “early warning signal of changes” in the environment they inhabit (Dale & 

Beyeler, 2001). Afterwards, the information gathered by means of indicators can be used by 

managers and policy makers towards the benefit of the place they want to protect (Palmer et al., 

2005). 

Tropical forests have experienced a high rate of anthropogenic conversion during the 20th 

century, and the rhythm of destruction did not slowed down in the beginning of 21st century the 

way it would be desirable (e.g. Fearnside, 2005; Ribeiro et al., 2009). The destruction of tropical 

habitats necessarily involves losing much of Earth’s biodiversity, which ultimately may imply in 

the loss of many ecosystem services (see Sodhi, 2008). The Brazilian Atlantic Forest, one of the 

word’s hottest hotspots (Laurance, 2009), is a good example of how human activities can 

devastate natural ecosystems (Morellato & Haddad, 2000; Tabarelli et al., 2005). This highly 

endangered, species-rich rainforest, originally covering 1.5 million km2 of the Brazilian territory 

before the European colonization in the 1500s, is now reduced to ca. 12% of it original area, 

mostly in fragmented landscapes (Ribeiro et al., 2009). In addition to this huge amount of habitat 

lost, Atlantic Forest suffers from exotic species invasion, plant harvesting and collecting, hunting, 

among other human-driven disturbances (see Tabarelli et al., 2005). Therefore, the development 
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and testing of indicators to assess and monitor the condition of Atlantic Forest remnants is 

imperative. 

Among candidate groups within arthropods for assessing and monitoring habitat changes 

in terrestrial systems, fruit-feeding butterflies present several advantages. They can be sampled in 

a standard way with bait-traps, may be promptly identified and released, have a well known 

systematics (Freitas & Brown, 2004) and have been shown to be good indicators of 

anthropogenic disturbance in several ecosystems (e.g. Brown & Freitas, 2003; Fermon et al., 

2005; Barlow et al., 2007a,b, 2008), including the Atlantic Forest (Brown & Freitas, 2000; 

Uehara-Prado et al., 2007). Moreover, these butterflies have been shown to be the predictors of 

community responses of other vertebrate and invertebrate taxa (Brown & Freitas, 2000; Barlow 

et al., 2007a; Uehara-Prado et al., 2009). Therefore, besides being good ecological indicators, 

these insects also act as surrogates, representing a range of other organisms living in the same 

location. 

In this study, we evaluated the responses of fruit-feeding butterflies assemblages 

subjected to three different types of anthropogenic disturbance in the Atlantic Forest: past wood 

harvesting, traill management and edge effects. No study to date evaluated how these butterflies 

respond to diverse sources of disturbance in the same biome using the same sampling design. Our 

objective is to find if there are consistent and useful parameters that would make disturbance 

assessing and monitoring in the Atlantic forest straightforward. Based on previous studies in the 

same biome (Brown & Freitas, 2000; Uehara-Prado et al., 2007), we expected the following: a) 

Pooled abundance would be higher in disturbed habitats; b) Species richness would not differ 

between disturbed and undisturbed habitats; c) Species composition would differentiate disturbed 

from undisturbed habitats; d) The proportion of Brassoline in the assemblage would be higher in 
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undisturbed habitats, while the proportion of Biblidinae, Charaxinae and Satyrinae would be 

higher in disturbed habitats. 

 

Methods 

Study area 

The study was conducted in three protected forest reserves located in the crest of Serra do Mar, a 

large mountain range near the Atlantic Ocean in southeastern Brazil (Fig. 1). The region is 

located in a mountainous relief, and the original forest is classified as montane rainforest 

(Ururahy et al., 1987). The regional climate is humid, without a dry season. Annual rainfall range 

from ca. 1,860 to ca. 4,400 mm in the reserves, with no mean monthly rainfall below 48 mm 

(SIGRH, 2008). Sudden weather changes are frequent in all areas and fog incidence very 

common. The three reserves studied have different histories of occupation and land use (Table 1), 

and in each reserve, two areas with contrasts of disturbances were selected to be sampled (see 

below). 

Before the creation of the Serra do Mar state park in the 1970s, part of the Santa Virgínia 

Nucleus (SVN) suffered a slash-and-burn management followed by pasture establishment. This 

part of the reserve is now a mosaic composed mostly of secondary vegetation (see Tabarelli & 

Mantovani, 1999 and references therein). Other sector within the SVN was selectively logged for 

hardwood (J.P. Villani, pers comm.), and now is a fairly well preserved, old-growth forest, with 

some nearby remnants of primary forest. 

The Boracéia Biological Station (BBS) is located within a 16,450 ha of old growth forest 

area owned by the São Paulo state water company (Sabesp). Part of this area contains several 

small road and trails used for the maintenance of electricity lines and water pipes, and therefore 
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are periodically managed (vegetation prune). Some trails were abandoned in the 1970s  and now 

have been used exclusively for research and teaching, remaining mostly unmanaged.  

The Paranapiacaba Biological Reserve (PBR) is limited by a paved road at W-NW and by 

electricity high-tension lines at S-SW. Next to the road and to the electricity lines there is an 

active railway constructed in the mid 1800s. In this area, vegetation removal occurred since 

earlier colonization and particularly in the 1970s with the ease of access due to road opening. 

Vegetation disturbance was increased by the implementation of an industrial complex near the 

PBR by the 1950s, and peaked from the 1970s to the mid 1980s with the local vegetation being 

seriously affected by atmospheric pollution (SMA, 1990). The reserve is nowadays occupied 

mostly by secondary vegetation (Kirisawa et al., 2003). 

Sampling units were installed in three different conditions: secondary vegetation only 

(PBR), old-growth vegetation only (BBS), and both situations (SVN). All reserves are embedded 

in a vegetation continuum of more than 300,000 ha along the Serra do Mar, where several 

protected areas are found (Brito & Joly, 1999; MMA 2000), in the better preserved 

biogeographical sub-region of the Atlantic Forest (Ribeiro et al., 2009). The Brazilian 

Environmental Ministry considers this region as an “area of extreme biological importance”, 

presenting highest conservation priority (MMA, 2000). 

 

Sampling design and procedures 

Within each forest reserve, two areas with contrasting disturbance were selected, being one more 

disturbed and other less disturbed as follows (see also Table 1): SVN - history of slash and burn 

vs. history of selective logging; BBS - managed trails vs. unmanaged trails; PBR - edge vs. 

interior. Hereafter these areas will be called ‘disturbed’ and ‘undisturbed’, respectively. 
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Twelve sampling units were installed in each reserve, six in undisturbed sites and six in 

disturbed sites. Five bait traps combined defined one sampling unit. Bait traps were cylinders 

made of netting with an internal funnel, baited with a mixture of mashed banana with sugar cane 

juice, fermented for at least 48 h. Bait traps were set in line in the understory of each site, along 

pre-existing trails, suspended 1.5–2.0 m above the ground with a distance of at least 23 m 

between adjacent traps. The total length of sampling transects varied from 115m to 160m, and did 

not differ among disturbed and undisturbed sites within reserves (t-test, P > 0.05 in all cases). 

Traps were checked every other day (48 h), and the baits replaced at each visit. Fruit-feeding 

butterfly individuals that could be reliably identified in the field were released after receiving an 

individual mark. Recaptures were not included in the analyses. 

Traps were kept open in the field for eight days/month. Sampling was done monthly from 

November to May, a period that includes the most favorable season for the capture of butterflies 

in southeastern Brazil (Brown, 1972). Sampling in each reserve was done in different years 

(SVN: 2004-2005; BBS: 2005-2006; PBR: 2006-2007). We are aware that annual variation may 

hamper comparisons among reserves, but logistical constraints did not allow to sample in all 

reserves simultaneously. Moreover, the focus of this study relies mostly on within-reserve 

comparisons. 

 

Data analyses 

Species richness was compared between disturbed and undisturbed areas within each reserve by 

an individual-based rarefaction analysis. The statistical significance was evaluated by comparing 

95% confidence intervals in the point of the curves with same abundance (see Magurran, 2004). 
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This analysis was performed in Analytic Rarefaction 1.3 (available from 

http://www.uga.edu/strata/software/anRareReadme.html). 

To evaluate if disturbance affected the species composition of the selected groups, we 

performed a non-metric multidimensional scaling (NMDS) on the resemblance matrix of Bray-

Curtis distances, with 1000 random restarts. The hypothesis of no difference in species 

composition between disturbed and undisturbed sites of the same reserve was tested by an 

analysis of similarities (ANOSIM – Clarke, 1993) on the matrix of Bray-Curtis similarities, with 

1000 permutations. Before running these multivariate techniques, abundance data was log10(x+1) 

transformed. These analyses were performed in the software Primer (Clarke and Gorley, 2006). 

Previous studies have shown that fruit-feeding Nymphalidae subfamilies react differently 

to disturbance (Uehara-Prado et al. 2007; Barlow et al. 2008). We tested if the relative abundance 

of each fruit-feeding Nymphalidae subfamily in the assemblage (i.e., its representativity) was 

different between disturbed and undisturbed sites within each reserve with a binomial test (Sokal 

& Rohlf, 1995). A procedure to control for false discovery rate (FDR) was applied due to the 

multiplicity of tests made (Benjamini & Hochberg, 1995).  

The indicator species analysis (IndVal) (Dufrêne & Legendre, 1997) was used to assess 

species typical of the different kinds of disturbance occuring in each reserve. This analysis 

combines information about the abundance (specificity) and frequency of occurrence (fidelity) of 

species in groups of ecologically similar sites. Species with a significant IndVal higher than 70% 

were considered indicators of a habitat type. A Monte Carlo randomization procedure among 

sites (with 999 iterations) was used to test the statistical significance of each species’ indicator 

values (Dufrêne & Legendre, 1997). 
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Results 

A total of 1,886 individuals in 72 butterfly species were recorded in the three reserves (Appendix 

1). Species richness was 52 in SVN, 43 in BBS and 51 in PBR, with an overlap of 2 to 11 species 

between two reserves, and 28 species present in all reserves (Figure 2). Observed species richness 

surpassed 70% of estimated species richness in all sites (Table 2). The observed species richness 

was higher in disturbed sites of all reserves. However, rarefied species richness was only 

significantly higher in the disturbed site when compared to the undisturbed site in SVN (Table 2, 

Fig. 3). The pooled number of individuals was always higher in the disturbed sites of all reserves 

(t-test, P < 0.01 in all cases; Table 2). 

NMDS ordinations indicated that fruit-feeding butterfly species composition differed 

between disturbed and undisturbed sites within all reserves (Fig. 4). The patterns observed in the 

ordinations have not changed when species were grouped into subfamilies (Table 3). Ordination 

results were confirmed by Anosim in all cases (Table 3). 

The relative abundance of the subfamily Brassolinae in the fruit-feeding butterfly 

assemblage was higher in the undisturbed sites in all reserves, while for Satyrinae it was always 

higher in the disturbed sites (Fig. 5; Table 4). Charaxinae also had higher representativity in 

disturbed sites of two out of three reserves; the exception was PBR, the only reserve where the 

vegetation was mostly secondary. Biblidinae had higher relative abundance only in the disturbed 

site of SVN (Fig. 5; Table 4). 

The IndVal analysis revealed 12 indicator species (i.e., with high specificity and fidelity) 

for the different contrasts of disturbance within the reserves (Figure 6). Three brassoline species 

(Dasyophthalma rusina, Opoptera syme, and Eryphanis reevesi) were indicators of less disturbed 

sites, while Myscelia orsis (Biblidinae), Memphis otrere (Charaxinae), and Morpho catenarius 
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(Morphinae) were indicators of more disturbed sites. Five out of six satyrine species were 

indicators of more disturbed sites. Two satyrine species were indicators in two reserves: Taygetis 

acuta, indicator of selective logging (undisturbed) in SVN and managed trails (disturbed) in 

BBS; Forsterinaria necys, indicator of managed trails in BBS and edge habitats in PBR (both 

disturbed).  

 

Discussion 

The initial expectations of difference (or lack of difference) in pooled abundance, relative 

abundance of subfamilies, species richness and species composition were at least partially 

confirmed in this study with fruit feeding butterflies subjected to three different types of 

anthropogenic disturbance. The generality and application of the results for biological indication 

will be discussed, and recommendations for future reseach will be made. 

 

Abundance, subfamily relative abundance and indicator species 

The pooled abundance of fruit-feeding butterflies was always higher in disturbed sites of the 

three studied reserves, corroborating findings with a similar sampling protocol in the Atlantic 

Plateau (Uehara-Prado et al., 2007; D.B. Ribeiro in prep.), and in the Brazilian savannah 

(Cerrado) (M. Uehara-Prado, forthcoming). Considering subfamilies separately, the higher 

representativity of Satyrinae observed in disturbed sites of all reserves corroborates previous 

studies in the Amazon (e.g. DeVries et al., 1999; Barlow et al., 2007b, 2008), Atlantic Forest 

(Uehara-Prado et al., 2007) and Cerrado (M Uehara-Prado, forthcoming), as well as studies done 

outside the Neotropics (e.g.; Fermon et al., 2005; Bossart et al., 2006). On the other hand, the 

higher proportion of Brassolinae individuals in undisturbed sites finds less correspondence in the 
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literature, probably because the diversity of this group peaks in the coastal mountains near the 

Tropic of Capricorn in SE Brazil. Nevertheless, the only previous work in this region found that 

none brassoline species had higher abundance in fragmented habitats when compared to a 

continuous landscape, while the opposite was found for Biblidinae, Charaxinae and Satyrinae 

(Uehara-Prado et al., 2007). In fact, Brown & Freitas (2000) found strong habitat dissociation 

between Brassolinae and Satyrinae across several Atlantic Forest sites, and we expect this 

relationship to repeat across the distribution of the two subfamilies. Accordingly, Barlow et al. 

(2007b) found a negative correlation between the abundance of these subfamilies in primary and 

secondary forests and Eucalyptus plantations in the Brazilian Amazon. This habitat dissociation 

between Satyrinae and Brassolinae make them complementary in biological indication studies. 

The relative abundance of Charaxinae was higher in disturbed areas of the two sites with 

old-growth vegetation, and did not differ between edge and interior in the site composed mostly 

by secondary vegetation, suggesting this subfamily, along with Satyrinae, as a good disturbance 

indicator. This finding may seem contradictory to the statement made by Brown & Freitas (2000, 

p. 950), who suggested the disappearance of forest-inhabiting Charaxinae from natural systems as 

among the best indicators of disturbance and pollution. However, while these authors deal with 

‘species disappearance’, our result refers to the relative abundance of Charaxinae in the fruit-

feeding butterfly assemblage, wich is driven by the commonest species. Therefore, both studies 

are complementary rather then contradictory: the disappearance of some charaxine species 

reflects large scale (reserve) disturbance, while the abundance of the ‘remnant’ species in relation 

to the other subfamilies in the assemblage reflects disturbance at smaller (habitat) scale. 

IndVal results showed that no brassoline species were indicator of disturbed sites within 

different reserves, and three species in this subfamily were indicators of undisturbed sites (Fig. 
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6), corroborating results from relative abundance. Disturbed site indicators were butterflies from 

four subfamilies (Biblidinae, Charaxinae, Satyrinae and Morphinae), with no conspicuous 

common traits among them (e.g. body size, lifespan, behavior), except for their host plants, 

mostly typical of edges, gaps and secondary sites (see below).  

Two species of the same genus, Forsterinaria necys and F. quantius (Satyrinae) were 

both indicators of disturbed sites in the same location (BBS). However, in PBR, where F. necys 

was also indicator of disturbance, as few as three individuals of F. quantius were caught 

(Appendix 1). Since PBR is composed mostly by secondary vegetation, while the opposite occur 

in BBS, it is probable that both species have different degrees of tolerance to disturbance, F. 

necys being more eurytopic than F. quantius. In fact, a previous study found that F. necys was 

more abundant in a fragmented landscape, while F. quantius was more abundant in a continuous 

landscape (Uehara-Prado et al., 2007). These are promising species to be investigated as 

ecological indicators in future studies in the Atlantic Forest. In contrast, the result for a large 

satyrine species, Taygetis acuta was incongruent. This species was indicator of undisturbed site 

in one reserve (SVN), while indicator of disturbed site in another (BBS). A testable hypothesis 

for this incongruency would only be available when more knowledge about natural history of T. 

acuta is accumulated. As previously stated (see Shahabuddin & Terborgh, 1999; Brown & 

Freitas, 2000; Barlow et al., 2007b), the subfamily Satyrinae includes species with a wide range 

of features, from small edge to large shade dwellers, which results in an equally wide range of 

responses to disturbance, making this subfamily a potential source of indicator species to 

different kinds of disturbance. 

The Biblidinae Myscelia orsis was an indicator of disturbance in the present study, and 

appears among the most abundant species in two studies in fragmented landscapes in the Atlantic 
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Forest (Uehara-Prado et al., 2007; D.B. Ribeiro in prep.). Outside the Serra do Mar region, this 

subfamily is more representative within the fruit-feeding assemblage (Brown & Freitas, 2000), 

and species of Biblidinae are usually abundant. For example, species in the genus Hamadryas, 

which are very abundant in several different sites in the Neotropics (Pinheiro & Ortiz, 1992; 

Uehara-Prado et al., 2007; Barlow et al., 2008 and unpublished results of the authors), had the 

summed abundance always higher in disturbed sites of all reserves (SVN – D = 30, U = 1; BBS – 

D = 17, U = 0; PBR – D = 9, U = 3), despite the low abundance in the present study. These 

species seem to be promising indicators of disturbance sensu latu, and deserve additional studies. 

Leaving sampling-related differences aside (see Hamer & Hill, 2000; Barlow et al., 

2007b; Koh, 2007), and given that the same sampling protocol was applied in all reserves, several 

factors may generate these abundance-related patterns. Butterfly species presence, richness and 

abundance have been frequently related to the incidence and abundance in their host-plant 

(Shahabuddin & Terborgh, 1999; Brown & Freitas, 2000; Shahabuddin & Ponte, 2005; Barlow et 

al., 2008). This certainly applies to this study, since many of the species or subfamilies found 

with higher abundance/proportion in disturbed habitats (such as biblidines, and small satyrines 

and charaxines), have larvae that feed on plants typical of secondary Atlantic Forest sites (see 

Uehara-Prado et al., 2007).  

On the other hand, host-plant specificity seems not to explain why brassolines are 

proportionally more abundant in less disturbed sites (see Uehara-Prado et al., 2007), since their 

larvae feed on Arecaceae (palms), Poaceae (bamboos and grasses), Musaceae (bananas) and 

Cyperaceae (sedges) (Penz et al., 1999; Beccaloni et al., 2008), usually found also in secondary, 

disturbed areas. One possible explanation is that some brassoline larvae may be adapted to cooler 

microclimates present in less disturbed sites (see Koh, 2007). Territoriality may also play an 
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important role in the spatial distribution of adult brassolines (e.g. Freitas et al., 1997; Srygley & 

Penz, 1999). Individuals of territorial species may use environmental cues within a site to 

establish their territories, and these cues may be changed by disturbance. However, the use of 

environmental cues by butterflies is still an open question, deserving additional studies (see 

Peixoto & Benson, 2009). Finally, environmental disturbance may decouple phenological triggers 

from fruit-feeding butterflies and its main larval and adult resources, and these effects are more 

pronounced in larger species, like most Brassolinae (Ribeiro & Freitas, in prep.). These 

hypotheses concerning the responses of Brassolinae (and in part the other subfamilies) to 

disturbance are not mutually exclusive, and remain largely untested. 

A note of caution should be made on using individual fruit-feeding species as biological 

indicators. Despite all 12 species with significant IndVal occurred in at least two reserves, only 

two species were indicators in two reserves, and none was indicator in the three reserves (Fig. 6). 

In other words, most individual species in this study may be good indicators for one type of 

disturbance, but not indicators of forest disturbance sensu latu. Also, the reserve with more 

indicator species (SVN) was that with the higher contrast in vegetation successional stage, 

suggesting that responses using this approach may need sites with elevated degree of differences, 

which, in turn, may not be useful in practical situations with low-contrasting disturbance. 

Additionally, Barlow et al. (2007b) point out the problem of achieving adequate sample sizes to 

quantify habitat preferences of rare species in Amazonian fruit-feeding butterflies, and the same 

may be true for other tropical forests. 
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Species composition 

Previous studies have shown that parameters based on species identities are better in indicating 

anthropogenic disturbance than species numbers alone (Barlow et al. 2007a; Basset et al. 2008; 

Uehara-Prado et al., 2007, 2009). Corroborating such studies, species composition of fruit-

feeding butterflies in this study was different between contrasting sites of all reserves, even when 

the degree of disturbance was not markedly contrasting, such as in BBS. The effort employed in 

the identification of fruit-feeding butterflies is smaller than for other invertebrate and also some 

vertebrate groups (see Gardner et al. 2008; Uehara-Prado et al. 2009), but even with this 

advantage, some practical situations (lack of time, money or taxonomic expertise - Mandelik et 

al., 2007) may require the use of lower taxonomic resolution (such as genera or subfamilies). Our 

results show that in these cases, subfamily composition may be good surrogate of species 

composition, at least in coarse disturbance assessment (e.g. disturbed vs. undisturbed). 

 

Conclusions 

Shifts in the species composition, total abundance, and relative proportion of subfamilies 

of fruit-feeding butterflies in response to Atlantic Forest disturbance were consistent in the three 

study areas with different disturbance types and degrees. Those responses may be related to 

ecological, physiological and behavioral traits for both larval and adult stages. Even if so far it is 

not possible to link responses to butterfly traits, the consistency of the present results validates 

this guild as an outstanding group of biological indicators. 

Whatever the underlying factors causing the differences in occurrence recorded in this 

study, those species and groups showing consistent responses should be promptly employed by 

researchers who deal with the assessment and monitoring of anthropogenic disturbance in 
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tropical forests. Meanwhile, the processes behind the patterns should be simultaneous and 

continuously investigated to improve our understanding in the ways management procedures 

would benefit butterflies and, consequently, other groups of vertebrates and invertebrates 

represented by them (Barlow et al., 2007a; Uehara-Prado et al., 2009). 

 

References 

Barlow, J., Gardner, T.A., Araujo, I.S., Avila-Pires, T.C., Bonaldo, A.B., Costa, J.E., Esposito, 

M.C., Ferreira, L.V., Hawes, J, Hernandez, M.M., Hoogmoed, M.S. Leite, R.N., Lo-Man-

Hung, N.F., Malcolm, J.R., Martins, M.B., Mestre, L.A.M., Miranda-Santos, R., Nunes-

Gutjahr, A.L., Overal, W.L., Parry, L., Peters, S.L., Ribeiro-Junior, M.A., da Silva, M.N.F., 

Motta, C.S., Peres, C.A. 2007a. Quantifying the biodiversity value of tropical primary, 

secondary, and plantation forests. Proceedings of the National Academy of Sciences of the 

United States of America 104, 18555-18560. 

Barlow, J., Overal, W.L., Araujo, I.S., Gardner, T.A., Peres, C.A. 2007b. The value of primary, 

secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. Journal 

of Applied Ecology 44, 1001-1012. 

Barlow, J., Araujo, I.S., Overal, W.L., Gardner, T.A. Mendes, F.S., Lake, I.R., Peres, C.A. 2008. 

Diversity and composition of fruit-feeding butterflies in tropical Eucalyptus plantations. 

Biodiversity and Conservation 17, 1089–1104. 

Basset, Y., Missa, O., Alonso, A., Miller, S.E., Curletti, G., De Meyer, M., Eardley, C., Lewis, 

O.T., Mansell, M.W., Novotny, V., Wagner, T. 2008. Choice of metrics for studying 

arthropod responses to habitat disturbance: one example from Gabon. Insect Conservation 

and Diversity 1, 55–66. 



 

 
 

72 

Beccaloni, G.W., Viloria, A.L., Hall, S.K., Robinson, G.S. 2008. Catalogue of the hostplants of 

the Neotropical butterflies. Gorfi S.A., Zaragoza, ES. 

Benjamini, Y., Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. Journal of the Royal Statistical Society Series B 57, 289–300. 

Bossart, J.L., Opuni-Frimpong, E., Kuudaar, S., Nkrumah, E. 2006 Richness, Abundance, and 

Complementarity of Fruit-feeding Butterfly Species in Relict Sacred Forests and Forest 

Reserves of Ghana. Biodiversity and Conservation 15, 333-359. 

Brito, M.C.W., Joly, C.A. 1999. Biodiversidade do Estado de São Paulo, Brasil: síntese do 

conhecimento ao final do século XX, 7: infra-estrutura para conservação da biodiversidade. 

São Paulo: FAPESP. 

Brown Jr., K.S. 1972. Maximizing daily butterfly counts. Journal of the Lepidopterists’ Society 

26, 183–196. 

Brown Jr, K.S., Freitas, A.V.L. 2000. Atlantic Forest butterflies: indicators for landscape 

conservation. Biotropica 32, 934–956. 

Brown Jr, K.S., Freitas, A.V.L. 2003. Butterfly communities of urban forest fragments in 

Campinas, São Paulo, Brazil: structure, instability, environmental correlates, and 

conservation. Journal of Insect Conservation 6, 217–231. 

Clarke, D.B. 1996. Abolishing virginity. Journal of Tropical Ecology 12, 735-739. 

Clarke, K.R. 1993. Non-parametric multivariate analysis of changes in community structure. 

Australian Journal of Ecology 18, 117-143. 

Clarke, K.R., Gorley, R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd., 

Plymouth. 



 

 
 

73 

Dale, V.H., Beyeler, S.C. 2001. Challenges in the development and use of ecological indicators. 

Ecological Indicators 1, 3-10. 

DeVries, P.J., Walla, T.R. 2001. Species diversity and community structure in neotropical fruit-

feeding butterflies. Biological Journal of the Linnean Society 74, 1–15. 

DeVries, P.J., Walla, T.R., Greeney, H.F. 1999. Species diversity in spatial and temporal 

dimensions of a fruit-feeding butterfly community from two Ecuadorian rainforest. Biological 

Journal of the Linnean Society 68, 333–353. 

Dufrêne, M., Legendre, P. 1997. Species assemblages and indicator species: the need for a 

flexible asymmetrical approach. Ecological Monographs 67, 345-366. 

Fearnside, P.M. 2005. Deforestation in Brazilian Amazonia: history, rates and consequences. 

Conservation Biology 19, 680-688. 

Fermon, H., Waltert, M., Vane-Wright, R.A., Mühlenberg, M. 2005. Forest use and vertical 

stratification in fruit-feeding butterflies of Sulawesi, Indonesia: impacts for conservation. 

Biodiversity and Conservation 14, 333–350. 

Freitas, A.V.L., Brown Jr., K.S. 2004. Phylogeny of the Nymphalidae (Lepidoptera). Systematic 

Biology 53, 363-383. 

Freitas, A.V.L., Benson, W.W., Marini-Filho, O.J., Carvalho, R.M. 1995.Territoriality by the 

dawnʹs early light: The Neotropical owl butterfly Caligo idomenaeus (Nymphalidae; 

Brassolinae). Journal of Research on the Lepidoptera 34, 14-20. 

Gardner, T.A., Barlow, J., Araujo, I.S., Ávila-Pires, T.C., Bonaldo, A.B., Costa, J.E., Esposito, 

M.C., Ferreira, L.V., Hawes, J., Hernandez, M.I.M., Hoogmoed, M.S., Leite, R.N., Lo-Man-

Hung, N.F., Malcolm, J.R., Martins, M.B., Mestre, L.A.M., Miranda-Santos, R., Overal, 

W.L., Parry, L., Peters, S.L., Ribeiro-Junior, M.A., da Silva, M.N.F., Motta, C.S., Peres, 



 

 
 

74 

C.A., 2008. The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters 

11, 139–150. 

Hamer, K.C., Hill, J.K. 2000. Scale-dependent effects of habitat disturbance on species richness 

in tropical forests. Conservation Biology 14, 1435–1440. 

Kirizawa, M.. Sugiyama, M., Lopes, E.A., Custodio Filho, A. 2003. Flora Fanerogâmica da 

Reserva Biológica do Alto da Serra de Paranapiacaba. Available at 

http://www.ibot.sp.gov.br/PESQUISA/paranapiacaba/paranapiacaba.htm 

Koh, L.P. 2007. Impacts of land use change on South-east Asian forest butterflies: a review. 

Journal of Applied Ecology 44, 703–713. 

Laurance, W.F. 2009. Conserving the hottest of the hotspots. Biological Conservation 142, 1137. 

Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell Science, London. 

Mandelik Y., Dayan T., Chikatunov V., Kravchenko V. 2007. Reliability of a higher-taxon 

approach to richness, rarity, and composition assessments at the local scale. Conservation 

Biology 21, 1506-1515. 

McGeoch, M.A. 1998. The selection, testing and application of terrestrial insects as bioindicators. 

Biological Reviews of the Cambridge Philosophical Society 73, 181-201. 

MMA 2000. Avaliação e Ações Prioritárias para a Conservação da Biodiversidade da Mata 

Atlântica e Campos Sulinos. Conservation International do Brasil, Fundação SOS Mata 

Atlântica, Fundação Biodiversitas, Instituto de Pesquisas Ecológicas, Secretaria do Meio 

Ambiente do Estado de São Paulo, SEMAD/ Instituto Estadual de Florestas-MG. MMA/SBF, 

Brasília. 

Morellato, L.P.C., Haddad, C.F.B. 2000. Introduction: The Brazilian Atlantic Forest. Biotropica 

32, 786-792. 



 

 
 

75 

Niemi, G.J., McDonald, M.E., 2004. Application of ecological indicators. Annual Review of 

Ecology Evolution and Systematics 35, 89-111. 

Palmer, M.A., Bernhardt, E.S., Chornesky, E.A., Collins, S.L., Dobson, A.P., Duke, S., Gold, 

B.D., Jacobson, R.B., Kingsland, S.E., Kranz, R.H., Mappin, M.J., Martinez, M.L., Micheli, 

F., Morse, J.L., Pace, M.L., Pascual, M., Palumbi, S.S., Reichman, O.J., Townsend, A.R., 

Turner, M.G. 2005. Ecological science and sustainability for the 21st century. Frontiers in 

Ecology and the Environment 3, 4-11. 

Peixoto, P.E., Benson, W.W. 2009. Seasonal effects of density on territory occupation by males 

of the satyrine butterfly Paryphthimoides phronius (Butler 1867). Journal of Ethology DOI 

10.1007/s10164-008-0147-3  

Penz, C. M., Aiello, A., Srygley, R.B. 1999. Early stages of Caligo illioneus and C. idomeneus 

(Nymphalidae, Brassolinae) from Panama, with remarks on larval food plants for the 

Subfamily. Journal of the Lepidopterists' Society 53, 142-152. 

Pinheiro, C.E.G., Ortiz, J.V.C. 1992. Communities of fruit-feeding butterflies along a vegetation 

gradient in central Brazil. Journal of Biogeography 19, 505–511. 

Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F., Hirota, M.M. 2009. Brazilian 

Atlantic forest: how much is left and how is the remaining forest distributed? Implications for 

conservation. Biological Conservation 142, 1141-1153. 

Shahabuddin, G., Ponte, C.A. 2005. Frugivorous butterfly species in tropical forest fragments: 

correlates of vulnerability to extinction. Biodiversity and Conservation 14, 1137–1152. 

Shahabuddin, G., Terborgh, J.W. 1999. Frugivorous butterflies in Venezuelan forest fragments: 

abundance, diversity and the effects of isolation. Journal of Tropical Ecology 15, 703–722. 



 

 
 

76 

SIGRH Sistema de Informações para o Gerenciamento de Recursos Hídricos do Estado de São 

Paulo, Banco de Dados Pluviométricos do Estado de São Paulo. Assessed on 07/04/2008 

www.sigrh.sp.gov.br 

SMA - Secretaria do Meio Ambiente. 1990. The Rain Forest of the Serra do Mar: degradation 

and reconstitution. Document Series, São Paulo, Brasil. 130p. 

Sodhi, N.S. 2008. Tropical biodiversity loss and people - a brief review. Basic and Applied 

Ecology 9, 93-99. 

Sokal, R.R., Rohlf, F.J. 1995. Biometry: The principles and practice of statistics in biological 

research. 3rd edition. W.H. Freeman, New York. 

Srygley, R. B., Penz, C.M. 1999. Lekking in Neotropical owl butterflies, Caligo illioneus and C. 

oileus (Lepidoptera: Brassolinae). Journal of Insect Behavior 12, 81-103. 

Tabarelli, M., Mantovani, W. 1999. A regeneração de uma floresta tropical montana após corte e 

queima (São Paulo-Brasil). Revista Brasileira de Biologia 59, 239–250. 

Tabarelli, M., Pinto, L.P., Silva, J.M.C., Hirota, M., Bedê, L. 2005. Challenges and opportunities 

for biodiversity conservation in the Brazilian Atlantic Forest. Conservation Biology 19, 695-

700. 

Uehara-Prado, M., Brown Jr., K.S., Freitas, A.V.L. 2007. Species richness, composition and 

abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: comparison between a 

fragmented and a continuous landscape. Global Ecology and Biogeography 16, 43–54. 

Uehara-Prado, M., Fernandes, J.O., Bello, A.M., Machado, G., Santos, A.J., Vaz-de-Mello, F.Z., 

Freitas, A.V.L. 2009. Selecting terrestrial arthropods as indicators of small-scale disturbance: 

A first approach in the Brazilian Atlantic Forest. Biological Conservation 142, 1220-1228. 



 

 
 

77 

Ururahy, J.C., Collares, J.E.R., Santos, M.M. & Barreto, R.A.A. 1987. Vegetação. Projeto 

RADAMBRASIL, Vol. 32, fls. SF 23–24 (Rio de Janeiro e Vitória), pp. 553–611. Ministério 

das Minas e Energia, Brasília. 



 

 
 

78 

Captions 

Figure 1. Study reserves in the Atlantic Forest (in grey, the Serra do Mar coastal forest 

ecoregion). PBR = Paranapiacaba Biological Reserve; BBS = Boracéia Biological Station; SVN 

= Santa Virginia Nucleus, Serra do Mar State Park. 

Figure 2. Venn diagram showing overlap in species composition among reserves. BBS = 

Boracéia Biological Station; SVN = Santa Virgínia Nucleus; PBR = Paranapiacaba Biological 

Reserve. Species richness for each reserve in parentheses. 

Figure 3. Individual-based rarefaction curves for fruit feeding butterfly assemblages sampled in 

three Atlantic Forest reserves with different disturbance contrasts. (A) Santa Virgínia Nucleus, 

(B) Boracéia Biological Station and (C) Paranapiacaba Biological Reserve. Grey lines represent 

disturbed sites. Dotted lines are the 95% confidence limits. 

Figure 4. NMDS ordination of disturbed (open circles) and undisturbed (solid circles) sites 

within reserves, based on fruit-feeding butterfly assemblages. (A) Santa Virgínia Nucleus, (B) 

Boracéia Biological Station, (C) Paranapiacaba Biological Reserve. See specific disturbances in 

Table 1. 

Figure 5. Proportion of individuals in the subfamilies of fruit-feeding nymphalid butterflies 

sampled in reserves with different disturbance contrasts. BIB = Biblidinae, BRA = Brassolinae, 

CHA = Charaxinae, MOR = Morphinae, NYM = Nymphalinae, SAT = Satyrinae. See Table 4 for 

significance values. 

Figure 6. Abundance of fruit-feeding butterfly species with significant IndVal in at least one 

reserve. * = reserve where the IndVal was significant; black bars = undisturbed sites; white bars 

= disturbed sites; SVN = Santa Virgínia Nucleus; PBR = Paranapiacaba Biological Reserve; BBS 

= Boracéia Biological Station.
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Table 1. Characteristics of the forest reserves. See text for additional information. 

Contrasting areas in each reserve 

Reserve 
Legal area 

(ha)1 

Altitude 

(m.a.s.l.) 

Vegetation 

classification2 

Disturbed Undisturbed 

Santa Virgínia Nucleus (SVN) 17,000 740–1,620 

Secondary(disturbed) 

and old growth 

(undisturbed) 

History of slash-and-

burn 

History of selective 

logging 

Boracéia Biological Station (BBS) 96 ~800 Old growth Managed trails Unmanaged trails 

Paranapiacaba Biological Reserve 

(PBR) 

336 750-890 
Secondary Edge Interior 

1 All reserves are embedded in a vegetation continuum. 

2 According to Clarke (1996). 
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Table 2. Abundance, observed and estimated species richness of fruit-feeding butterflies in reserves with different disturbance 

contrasts.  

 
Santa Virgínia  

  
Boracéia  

  Paranapi

acaba 
 

 

 Slash and burn  Logging Total  Managed Unmanaged Total  Edge Interior Total 

Abundance    527** 182  709      332** 139 471     477** 226 706 

Observed species richness 48 22  52  36 23 43  43 33 51 

Estimated species richness1 63.4 30.7 70.3  47.6 31.7 57.7  56.5 45.5 67.5 

** = P < 0.01 

1 Jacknife 1 
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Table 3. NMDS and Anosim results for fruit-feeding butterfly species and subfamilies in the 

reserves with different contrasts of disturbance. 

 Santa Virginia Boracéia Paranapiacaba 

 Slash and burn vs. 

 Selective logging 

Managed vs.  

Unmanaged trails 

Edge vs. 

Interior 

Species    

Ordination stress 0.05 0.10 0.13 

Anosim R 0.657* 0.504* 0.306** 

Subfamilies    

Ordination stress 0.03 0.11 0.07 

Anosim R 0.719* 0.406* 0.243* 

Ordination quality1 maintained maintained maintained 

* = P < 0.05, ** = P < 0.01 
1 Based on visual inspection of ordination diagrams. 
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Table 4. Representativity of fruit-feeding Nymphalidae subfamilies within disturbed and 

undisturbed sites of different reserves. Values in percentage. 

 Santa Virginia  Boracéia  Paranapiacaba 

 Slash and burn  Selective logging  Managed  Unmanaged  Edge Interior 

Biblidinae 12.14** 0.55  12.95 8.63  5.49 3.45 

Brassolinae 13.47 46.15**  24.40 57.55**  38.40 71.55** 

Charaxinae 7.02* 2.75  12.95* 6.47  5.70 8.19 

Morphinae 26.00 23.08  6.33 4.32  0.21 0.43 

Nymphalinae 0.19 0.00  0.00 0.72  1.27 2.59 

Satyrinae 41.18** 27.47  43.37** 22.30  48.95** 13.79 

FDR corrected Binomial test, * = P < 0.03, ** = P < 0.0001 
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Appendix 1. Fruit-feeding butterfly species recorded in three reserves in the Atlantic Forest 

 Boracéia  
Biological Station 

Santa Virgínia  
Nucleus 

Paranapiacaba 
Biological Reserve 

 
Managed trails Unmanaged trails 

History of 
slash and burn 

History of 
selective logging 

Edge Interior 

 

Biblidinae 
 

      

Biblis hyperia 0 0 1 0 0 0 
Catonephele acontius 2 0 1 0 2 0 
Catonephele numilia 3 0 0 0 1 0 
Catonephele sabrina 0 0 1 0 0 0 
Diaethria candrena 0 0 1 0 0 0 
Ectima thecla 0 0 10 0 0 1 
Epiphile orea 1 0 7 0 7 0 
Hamadryas amphinome 0 0 1 0 5 2 
Hamadryas epinome 12 0 22 0 0 1 
Hamadryas februa 0 0 0 0 1 0 
Hamadryas feronia 1 0 1 0 2 0 
Hamadryas fornax 4 0 6 1 1 0 
Myscelia orsis 20 12 11 0 6 4 
Temenis laothoe 0 0 1 0 1 0 
 

Brassolinae 
 

      

Blepolenis batea 7 0 7 0 1 0 
Caligo arisbe 2 1 42 21 3 0 
Caligo beltrao 9 30 3 4 5 2 
Caligo brasiliensis 0 0 1 0 0 0 
Caligo illioneus 0 2 0 0 0 0 
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 Boracéia  
Biological Station 

Santa Virgínia  
Nucleus 

Paranapiacaba 
Biological Reserve 

 
Managed trails Unmanaged trails 

History of 
slash and burn 

History of 
selective logging 

Edge Interior 

Catoblepia amphirrhoe 0 0 3 1 0 0 
Dasyophthalma creusa 12 17 0 0 49 54 
Dasyophthalma rusina 20 16 6 19 90 72 
Eryphanis reevesi 18 10 6 22 27 13 
Narope cyllarus 0 0 0 1 0 0 
Narope cyllene 10 3 0 8 5 9 
Opoptera aorsa 0 1 0 0 0 0 
Opoptera syme 1 0 3 8 2 10 
Opsiphanes invirae 1 0 0 0 2 2 
Opsiphanes quiteria 0 0 0 0 0 2 
 

Charaxinae 
 

      

Memphis appias 0 0 1 0 1 0 
Memphis arginussa 0 0 6 0 0 0 
Memphis morvus 1 0 1 1 10 5 
Memphis otrere 4 0 11 1 4 3 
Memphis philumena 0 0 1 0 0 4 
Memphis ryphea 0 0 4 0 2 0 
Prepona amphimachus 29 7 3 3 6 5 
Prepona chalciope 0 0 1 0 0 0 
Prepona demophon 7 2 7 0 3 1 
Prepona demophoon 2 0 0 0 0 1 
Zaretis itys 0 0 2 0 1 0 
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 Boracéia  
Biological Station 

Santa Virgínia  
Nucleus 

Paranapiacaba 
Biological Reserve 

 
Managed trails Unmanaged trails 

History of 
slash and burn 

History of 
selective logging 

Edge Interior 

Morphinae 
 

Morpho aega 1 0 0 0 0 0 
Morpho catenarius 20 6 137 42 1 1 
 

Nymphalinae 
 

      

Colobura dirce 0 1 1 0 4 6 
Smyrna blomfildia 0 0 0 0 2 0 
 

Satyrinae 
 

      

Archeuptychia cluena 3 2 0 0 0 0 
Carminda griseldis 1 1 13 0 5 0 
Carminda paeon 0 1 1 0 112 2 
Eteona tisiphone 1 0 21 0 6 3 
Euptychia ernestina 0 1 0 0 0 0 
Forsterinaria necys 43 4 21 9 62 13 
Forsterinaria quantius 53 0 22 5 1 2 
Godartiana muscosa 1 0 0 0 2 1 
Guaianaza pronophila 0 0 0 0 3 1 
Hermeuptychia hermes 4 0 23 0 23 1 
Manataria hercina 0 0 1 0 0 0 
Moneuptychia soter 0 0 18 0 1 0 
Paryphthimoides interjecta 0 1 0 0 0 0 
Paryphthimoides phronius 0 0 13 0 6 2 
Paryphthimoides poltys 0 0 12 1 0 0 
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 Boracéia  
Biological Station 

Santa Virgínia  
Nucleus 

Paranapiacaba 
Biological Reserve 

 
Managed trails Unmanaged trails 

History of 
slash and burn 

History of 
selective logging 

Edge Interior 

Pierella nereis 1 0 0 0 0 0 
Praepedaliodes amusis 0 0 0 1 0 0 
Praepedaliodes phanias 0 0 2 0 2 0 
Pseudodebis euptychidia 0 0 0 0 1 0 
Splendeuptychia doxes 0 0 0 0 0 1 
Splendeuptychia hygina 2 0 0 1 0 1 
Taydebis peculliaris 0 0 0 0 0 1 
Taygetis acuta 15 3 3 11 1 1 
Taygetis mermeria 1 1 24 2 0 0 
Taygetis rectifascia 0 1 0 0 0 0 
Taygetis ypthima 19 16 13 19 0 0 
Yphthimoides castrensis 1 0 30 1 4 0 
Yphthimoides grymon 0 0 1 0 5 1 
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CAPÍTULO 3 – Abundance of soil epigaeic arthropods in a Brazilian savanna under 

different fire frequencies 
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Abstract 

Fire is a major determinant of structure and dynamics in savannas, and the rapid occupation of 

this biome by human activities has changed the natural burning regime. The effects of fire on 

the fauna of the cerrado (Brazilian savanna) are still poorly understood, and studies 

comparing sites frequently and infrequently burned are scarce. In this study the abundance of 

epigaeic arthropod orders and trophic guilds was assessed in cerrado sites located in the 

Brazilian Central Plateau subjected to three burning frequencies: frequent (HighFi), 

intermediary (MidFi) and infrequent (LowFi). When arthropods were analyzed by orders, 

abundance of Collembola and Orthoptera was lower in the LowFi site, while for Hemiptera it 

was higher in the MidFi site. No significant differences were found for Hymenoptera, 

Coleoptera and Araneae. The abundance of detritivores and herbivores decreased from HighFi 

to LowFi, while it did not change significantly for omnivores and predators. These results 

indicate that some arthropod groups may not only be resilient to fire effects, but actually 

benefit from fire effect in cerrado. Arthropod responses to burning frequency at high 

taxonomic or functional levels are important for applied studies. Based on the results of the 

current study, springtails and ants seem to be particularly appropriate focal groups for further 

exploratory studies on the effects of fire at species level. 

Key words: Insecta, Arachnida, burning, Cerrado, trophic guilds 
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Abundância de artrópodes epigéicos em uma área de cerrado sujeita a diferentes 

freqüências de queima 

 

Resumo 

O fogo é um importante determinante da estrutura e dinâmica das savanas, e a rápida 

ocupação desse bioma por atividades antrópicas tem mudado o regime natural de queima. Os 

efeitos do fogo na fauna do cerrado são pouco conhecidos, e estudos comparando áreas com 

diferentes freqüências de queima são escassos. No presente estudo comparamos a abundância 

de ordens e guildas tróficas de artrópodes em áreas de cerrado localizadas no Planalto Central 

do Brasil sujeitas a três regimes de queima: freqüente, intermediário e infreqüente. Quando a 

abundância dos artrópodes foi analisada por ordem, Collembola e Orthoptera foram menos 

abundantes na área com queimada infreqüente, enquanto Coleoptera foi menos abundante na 

área com freqüência intermediária de queima. Não houve diferença significativa entre os 

regimes de queima para Hymenoptera, Coleoptera e Araneae. Quando analisada por guildas 

tróficas, a abundância de artrópodes detritívoros e herbívoros decresceu da área com regime 

de queima freqüente para a área não queimada, mas não foi diferente para onívoros e 

predadores. Os resultados indicam que alguns grupos de artrópodes podem não apenas ser 

resilientes aos efeitos do fogo, mas de fato se beneficiar dele. A procura por padrões de 

resposta à freqüência de queima no cerrado em níveis taxonômicos superiores e em grupos 

funcionais pode ser importante para estudos aplicados. Baseado em nossos resultados, 

Collembola e formigas parecem ser grupos focais particularmente promissores para estudos 

adicionais. 

Palavras-chave: insetos, aracnídeos, fogo, guildas tróficas. 
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INTRODUCTION 

Originally covering about 2 million km2, the Brazilian Cerrado is the largest savanna 

region in the Americas (Gottsberger and Silberbauer-Gottsberger 2006). Its fauna and flora 

are one of the most diverse amongst the savannas (Mittermeyer et al. 1999), comprising about 

7,000 vascular plant species (Castro et al. 1999) and an estimated 90,000 insect species (Dias 

1992). However, current threats to its biodiversity are also impressive, since 50% of the 

region was already converted into disturbed landscapes (WWF 1995). 

Fire is a major determinant of cerrado structure and dynamics, influencing the 

vegetation physiognomy and composition (Moreira 2000), soil surface temperature (Miranda 

et al. 2002), and plant nutrient use efficiency (Nardoto et al. 2006). Fire stimulates the 

resprouting, germination, flowering and fruiting of many fire-adapted plant species (Coutinho 

1990; Miranda et al. 2002; Gottsberger and Silberbauer-Gottsberger 2006), which may foster 

animal populations that are directly or indirectly related to these resources. However, the 

rapid human occupation of the Cerrado region has changed the natural fire regime (season and 

frequency of burning) with negative consequences for its flora and fauna (Ramos-Neto and 

Pivello 2000; Miranda et al. 2002). Frequent fires may be harmful to animals and plants 

through direct mortality or, indirectly, by changing local hydrology, nutrient availability and 

soil properties (Neary et al. 1999; Nardoto et al. 2006). For that reason, fire may also become 

a threat to Cerrado’s biodiversity (Klink and Machado 2005; Durigan et al. 2007).  

Arthropods are fundamental components of earth’s biodiversity, occupying various 

niches and playing essential ecological roles in virtually every terrestrial ecosystem (Wilson 

1987; York 1999; Lavelle et al. 2006). Arthropods are particularly important drivers of soil 

function and, therefore, likely to be affected by disruption in soil properties by burning (York 

1999). Despite the importance of understanding the responses of arthropods to fire, only a few 
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number of studies were done to date in the cerrado (see Oliveira and Marquis 2004), mostly 

involving one or few taxonomic groups (e.g. Morais and Benson 1988; Prada et al. 1995; 

Seyffarth et al. 1996; Vieira et al. 1996; Marini-Filho 2000; Morais et al. 2007; 

Knoechelmann and Morais 2008). 

The aim of this study was to compare the abundance of epigaeic arthropod orders and 

trophic guilds under different fire frequencies in a Cerrado reserve. Most of the epigaeic fauna 

uses the leaf litter layer, a significant component of fuel in this ecosystem (Hoffmann 1996; 

Miranda et al. 2002), and therefore, their abundance are expected to be affected by fire (York 

1999). Ultimately, this study provides information that may be usefull in exploring different 

ways in determining indicators of disturbance by fire in this cerrado reserve. 

 

METHODS 

 

Study site 

The study was done in the Emas National Park, a Cerrado reserve located in the 

Brazilian Central Plateau (17°49’-18°28’S and 52°39’-53°10’W). This park is one of the 

largest and better preserved Cerrado reserves, and is a key area to the conservation of this 

ecosystem (Unesco 2001). The climate of the region is tropical humid with wet summer and 

dry winter (Aw of Köppen 1948). The dry season goes from June to August and the wet 

season from September to May. Annual rainfall varies from 1200 to 2000 mm, concentrated 

from September to March, and mean annual temperature is 24.6°C (Ramos-Neto and Pivello 

2000). The relief is mostly flat, and altitude varies from 820 to 890 m (Ramos-Neto and 

Pivello 2000). 
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The area was used for cattle ranching in the past, and dry season burnings were used 

annually to promote pasture regrowth (Ramos-Neto and Pivello 2000). Since the park 

delimitation cattle are no longer allowed inside it and a fire exclusion policy was established 

(Ramos-Neto and Pivello 2000). As a consequence, uncontrolled wildfires occurred every 3-4 

years, burning on average 80% of its total area (Ramos-Neto and Pivello 2000; França et al. 

2007). Thus, since 1994, approximately 10 km² of preventive firebreaks (30 m wide) are 

burned annually in the dry season to avoid the spread of eventual fires (França et al. 2007). 

 

Sampling and data analysis 

In 1994, a lightning fire burned more than 90% of the Emas National Park (Ramos-

Neto and Pivello 2002; França et al. 2007), so that year was considered the “ground zero” for 

burning effects on arthropods in this study. Arthropods were sampled in three sites with 

different burning frequencies from 1994 to 2006: a firebreak burned annually (12 fire events 

since 1994, last burning in 2005), another firebreak burned five times in this period (1996, 

1999, 2001-2003) and a site unburned since 1994. Hereafter these sites will be referred as 

‘HighFi’, ‘MidFi’ and ‘LowFi’, based on their burning frequency. Such fire management has 

been done every dry season when a fire brigade uses flamethrowers to burn all the biomass 

within the firebreaks. Except for the firebreaks, no burning ocurred in adjacent areas since 

2003. Once true replication for burning areas was not possible in the study site, due to 

logistical, bureaucratic and ethical reasons, a natural experiment approach was adopted, with 

sampling being conducted in sites with well-documented history of burning (see Parr and 

Chown 2003). Additionally, the three sites were close enough to each other to reduce the 

probability of confounding factors (e.g., different land use in the past, soil type, vegetation 

composition). Although limiting the degree of generalization of the findings and not solving 
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the statistical problem of a lack of true replicates for the fire treatments, this approach 

increases the likelihood that significant differences between sites are due to different fire 

frequencies (Pucheta et al. 1998), allowing us to discuss about patterns found within the 

reserve. 

In each of these sites, twenty pitfall traps were randomly placed at least 10 m apart 

each other along 2.5 km straight lines (one per site). Pitfall traps were 500 ml plastic cups 

leveled with the soil surface, with 5.8 cm opening and 10.5 cm depth, protected from direct 

rainfall by a circular polystyrene shield placed above them. Traps were filled with ca. 200 ml 

of 30% propylene glycol, 0.1% formaldehyde, and a few drops of detergent. Pitfall traps were 

kept open from May 8 to May 12, 2006, the end of the rainy season and the beginning of the 

dry season. All collected arthropods were preserved in 70% ethanol. 

Arthropods were sorted to different taxonomic levels from genera (e.g. ants and some 

Coleoptera) to order (e.g. Araneae and Scutigeromorpha), necessary to place them into four 

coarse trophic categories: detritivores, herbivores, omnivores and predators (based on 

Marinoni et al. 2001; Silvestre et al. 2003; Triplehorn and Johnson 2005). Leaf-cutting ants 

were assembled into herbivores. Ant abundance was based on species’ frequency in the traps. 

Spider specimens were deposited in the collection of Instituto Butantan (São Paulo, Brazil), 

ants were deposited in the Museu de Zoologia, Universidade de São Paulo (São Paulo, Brazil) 

and the remaining taxa were deposited in the Museu de Zoologia, Universidade Estadual de 

Campinas (Campinas, Brazil). 

To test the null hypothesis of no fire-induced abundance shift, differences in the 

abundance of each order and trophic group among sites were analyzed using a one-way 

randomized analysis of variance, appropriate for unreplicated designs (Payne, 2006). When 

significant differences were found, the Tukey post-hoc test was applied. 
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RESULTS 

A total of 1,192 individuals from eight orders were captured. Collembola was the most 

abundant order, representing 33% of the arthropods in the sample, followed by Hymenoptera 

(mostly ants), Orthoptera, Hemiptera, Coleoptera, Araneae, Dyctioptera and Scutigeromorpha 

(Table 1). The most abundant trophic guild was the detritivores, with 38.5% of the 

individuals, followed by herbivores (27%), omnivores (17.5%) and predators (17%). The 

abundance of trophic guilds was highly skewed by one or two taxonomic groups: 85% of the 

detritivores were Collembola, 69.3% of herbivores were Orthoptera, 73.9% of predators were 

Araneae and Hymenoptera and 100% of the omnivores were Hymenoptera (ants) (Table 1). 

When arthropods were analyzed by orders, the abundance of all but Hemiptera peaked 

in HighFi (Fig. 1). The abundance of Collembola was significantly higher in HighFi, while 

did not differ between MidFi and LowFi. For Orthoptera the abundance was significantly 

lower in LowFi, and did not differ between HighFi and MidFi. Hemiptera was the only order 

which abundance peaked in MidFi, with significant difference only between MidFi and 

LowFi (Fig. 1). The abundance of Coleoptera was lower in MidFi, and significantly different 

only between HighFi and MidFi. No significant differences were found for Araneae and 

Hymenoptera. 

The abundance of all trophic guilds decreased from HighFi to LowFi (Figure 1). 

Detritivore abundance was significantly higher in HighFi and did not differ between MidFi 

and LowFi. The abundance of herbivores was significantly higher in HighFi and MidFi when 

compared to LowFi. Omnivores and predators also showed a tendency to become less 

abundant over time since last burning, yet this difference was not significant (Figure 1). 
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DISCUSSION 

The general tendency found in this study - a lower abundance of epigaeic arthropods 

with decrease in fire frequency - corroborates some previous studies with fire effects on 

insects associated to cerrado plants. Prada et al. (1995) report a ca. 20-fold increase in the 

number of flowering plants of an Asteraceae species in a burned site followed by a higher 

abundance of herbivores associated to it. Ants visiting extrafloral nectaries also were more 

frequent in cerrado sites burned biennially than in unburned sites (Knoechelmann and Morais 

2008). It may not be surprising that some organisms benefit from the vigorous regrowth of 

plants with which they interact in frequently burned sites (Marini-Filho 2000). Therefore, it 

should be expected an increase in the abundance of Orthoptera and the herbivore trophic guild 

in such sites. In South African savannas the abundance of grasshoppers also increased in 

frequently burned sites benefited by vegetation regrowth (Chambers and Samways 1998). 

Nonetheless, these relationships do not appear to be so obvious for other taxonomic or 

functional groups. 

The lower abundance of detritivores in the MidFi and LowFi sites may be explained 

by the dominance of this trophic guild by Collembola, since some dominant springtail species 

may have greater frequency and density in burned than in unburned sites (Brand 2002). If 

species like these were numerically dominant among the springtails sampled in the Emas 

National Park, they would skew the response found for the order Collembola and 

consequently for detritivores, due to the dominance of springtails in this guild. 

The abundance of omnivores did not differ among sites with different burning 

frequencies. The idiosyncratic nature of the omnivore guild in this study, composed 

exclusively by ants, may help us to understand their relationship with burning frequency. 

Almost 80% of capture frequency in this guild was composed by three dominant ant genera in 
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Cerrado, Camponotus (Formicinae), Pheidole (Myrmecinae) and Linepithema 

(Dolichoderinae) (data not shown), which present massive recruitment and aggressive 

interspecific interactions, even in disturbed sites (Silvestre et al. 2003). These characteristics, 

coupled with the ability to feed on a large range of items could explain the homogeneous 

response of omnivores to all burning frequencies. Morais and Benson (1988) reported a high 

mortality for cerrado arboreal ants caused by fire, and a reduction in their abundance at least 

1.5 years after burning. They also postulated that ground ants would have higher survivorship 

to burning, due to a smaller effect of fire at the ground level. Their proposition is supported by 

the present study at least for omnivore ants. Few arboreal species were captured in this study 

(data not shown), and they did not affect the results. However, studies at species level are 

needed to verify whether there are shifts in the composition and species richness of omnivore 

ants in cerrado sites with different burning frequencies even when their abundance do not 

change. 

The abundance of predators did not differ among sites with different burning 

frequencies. In this case, different responses by arthropod orders composing this guild 

homogenized the overall response (see Table 1, Figure 1 B). This also means that no 

directional functional response (i.e., predation) was observed in relation to fire frequency in 

this study. In fact, variation in responses to fire has been observed within and between 

arthropod orders (e.g. Warren et al. 1987). The assemblage of groups with different response 

at the ordinal level may also help to explain the responses of Coleoptera and Hemiptera (with 

several functional groups), which decreased and peaked in abundance in MidFi respectively 

(Figure 1). 

Spider abundance did not differ among sites, contrasting with a previous study, which 

observed a significant reduction in spider abundance in a recently burned cerrado (Gomes et 
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al. 2007). However, in that study spiders were collected using winkler extractors, which 

selectively sample spider species of small size, which could be either more susceptible to fire 

effects and/or slower in colonizing burned sites. On the other hand, the method used in the 

current study is more efficient for sampling surface active species (Churchill 1993), which are 

the species that are most likely to colonize burned sites. 

The abundance of ground and grass-layer arthropods in tropical savanna woodlands 

and open forests in Australia were generally unaffected by different burning regimes, and this 

result was credited to an ordinal-level resilience of arthropod abundances (Andersen and 

Müller 2000 and references therein). This study indicates that some arthropod groups may not 

only be resilient to fire effect, but actually benefit from fire effect in cerrado. Additional 

studies should be conducted in this ecosystem to confirm the generality of this statement. 

Springtails and ants seem to be particularly appropriate focal groups for further exploratory 

studies at species level, since they are abundant in samples and, in the case of ants, relatively 

well known in the Cerrado (see Silvestre et al. 2003). 

 

Final Remarks 

The effects of fire on the cerrado fauna are still poorly understood, and studies 

comparing sites with different burning regimes are scarce (Morais et al. 2007). While long-

term samplings and species-level identification are highly desirable in any assessment study, 

decision-making assessments are often made in time and money-constrained circumstances 

(particularly in Brazil), and consequently important decisions are based on snapshot samples 

and identifications at high taxonomic levels. In these unfavorable situations, the use of 

abundance in higher taxonomic categories may be the only alternative (Brennan et al. 2006). 
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Therefore, finding consistent patterns for arthropods at high taxonomic or functional level is 

important in a practical way. 

It has been shown that the utility of higher taxonomic level as surrogate of lower 

levels will depend on how well documented the regional biodiversity is (Lovell et al., 2007). 

Therefore, this study should be considered a first assessment on high taxonomic level 

responses to fire regimes in cerrado arthropods, from which more detailed studies should be 

made. Ultimately, the information provided here may used to exploring different ways in the 

search for ecological indicators of disturbance by fire in cerrado. 

 

ACKNOWLEDGEMENTS 

We acknowledge P. Loiola for fieldwork assistance, and C. Matavelli, M. Magrini and L. 

Kaminski for laboratory assistance. J. Barlow and A.V.L. Freitas made several suggestions in 

an early draft. G. Machado, T.M. Lewinsohn, P.R. Guimarães Jr. and F.O. Roque made 

helpful comments on the manuscript. We are indebted to Instituto Brasileiro do Meio 

Ambiente (Ibama), for work permission in Emas National Park. M.V. Cianciaruso 

acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, proc. n. 

04-15763-0) and I.A. Silva to Conselho Nacional de Desenvolvimento Científico e 

Tecnológico (CNPq, proc. n. 141397/2006-3). A.J. Santos was financially supported by a 

FAPESP post-doctoral grant (03/04868-3) at Laboratório de Artrópodes, Instituto Butantan. 

This study was conducted as part of M.U.-Prado’s doctorate project on Ecology in Unicamp 

(CNPq fellowship 140116 – 2004 – 4). 



 

 
 

105 

REFERENCES 

Andersen AN, Müller WJ. 2000. Arthropod responses to experimental fire regimes in an 

Australian tropical savannah: ordinal-level analysis. Austral Ecology 25: 199-209. 

Brand RH. 2002. The Effect of Prescribed Burning on Epigeic Springtails (Insecta: 

Collembola) of Woodland Litter. American Midland Naturalist 148: 383-393. 

Brennan KEC, Asby L, Majer JD, Moir ML, Koch JM. 2006. Simplifying assessment of 

forest management practices for invertebrates: how effective are higher taxon and habitat 

surrogates for spiders following prescribed burning? Forest Ecology and Management 

231: 138-154. 

Buddle CM, Spence JR, Langor DW. 2000. Succession of boreal spider assemblages 

following wildfire and harvesting. Ecography 23: 424-436. 

Castro AAJF, Martins FR, Tamashiro JY, Shepherd GJ. 1999. How rich is the woody flora of 

Brazilian cerrados? Annals of the Missouri Botanical Garden 86: 192-224. 

Chambers BQ, Samways MJ. 1998. Grasshopper response to a 40-year experimental burning 

and mowing regime, with recommendations for invertebrate conservation management. 

Biodiversity and Conservation 7: 985-1012. 

Churchill TB. 1993. Effects of sampling method on composition of a Tasmanian coastal 

heathland spider assemblage. Memmoirs of the Queensland Museum 33: 475-481. 

Coutinho LM. 1990. Fire in the Ecology of the Brazilian Cerrado. In: Goldammer JG, editor. 

Fire in the tropical biota, pp. 82-105. Springer-Verlag. 

Dias BF de S. 1992. Cerrados: Uma Caracterização. In: Dias BF de S, editor. Alternativas de 

Desenvolvimento dos Cerrados: Manejo e Conservação dos Recursos Naturais 

Renováveis, pp. 11-25. FUNATURA. 



 

 
 

106 

Durigan G, Siqueira MF, Franco GADC. 2007. Threats to the cerrado remnants of the State of 

São Paulo, Brazil. Scientia Agricola 64: 355-363. 

Ferrenberg SM, Schwilk DW, Knapp EE, Groth E, Keeley JE. 2006. Fire decreases arthropod 

abundance but increases diversity. Fire Ecology 2: 79-102. 

Force DC. 1981. Postfire insect succession in southern California chaparral. American 

Naturalist 117: 575-582. 

França H, Ramos-Neto MB, Setzer A. 2007. O fogo no Parque Nacional das Emas. Instituto 

do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama). 

Gillette NE, Vetter RS, Mori SR, Rudolph CR, Welty DR. 2008. Response of ground-

dwelling spider assemblages to prescribed fire following stand structure manipulation in 

the southern Cascade Range. Canadian Journal of Forest Research 38: 969-980. 

Gomes AC, Mineo MF, Vasconcelos HL. 2007. Efeito do fogo na araneofauna de serapilheira 

do cerrado. In: Anais do VIII Congresso de Ecologia do Brasil, pp. 1-2. Sociedade de 

Ecologia do Brasil. 

Gottsberger G, Silberbauer-Gottsberger I. 2006. Life in the cerrado: a South American 

tropical seasonal vegetation, vol. 1. Origin, structure, dynamics and plant use. Reta 

Verlag. 

Harris R, York A, Beattie AJ. 2003. Impacts of grazing and burning on spider assemblages in 

dry eucalypt forests of north-eastern New South Wales, Australia. Austral Ecology 28: 

526-538. 

Hoffmann WA. 1996. The effects of cover and fire on seedling establishment in a neotropical 

savanna. Journal of Ecology 84: 383-393. 

Klink CA, Machado RB. 2005. Conservation of the Brazilian Cerrado. Conservation Biology 

19: 707-713. 



 

 
 

107 

Knoechelmann CM, Morais HC. 2008. Visita de formigas (Hymenoptera: Formicidae) a 

nectários extra florais de Stryphnodendron adstringens (Mart.) Cov. (Fabaceae, 

Mimosoideae) em uma área de cerrado frequentemente queimado. Revista Brasileira de 

Zoociências 10: 35-40. 

Köppen W. 1948. Climatologia. Fondo Cultura Econômica. 

Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi J-

P. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42: 

S3–S15. 

Lovell, S., Hamer, M., Slotow, R., Herbert, D. 2007. Assessment of congruency across 

invertebrate taxa and taxonomic levels to identify potential surrogates. Biological 

Conservation 139: 113–125. 

Marini-Filho OJ. 2000. Distance-limited recolonization of burned cerrado by leaf-miners and 

gallers in central Brazil. Environmental Entomology 29: 901-906. 

Marinoni RC, Ganho NG, Monné ML, Mermudes JRM. 2001. Hábitos alimentares em 

Coleoptera (Insecta). Holos. 

Miranda HS, Bustamante MC, Miranda AC. 2002. The fire factor. In: Oliveira PS, Marquis 

RJ, editors. The Cerrados of Brazil: Ecology and Natural History of a Neotropical 

Savanna, pp. 51-68. Columbia University Press. 

Mittermeyer RA, Myers N, Mittermeyer, CG. 1999. Hotspots: Earth’s biologically richest 

and most endagered terrestrial ecoregions. Conservation International. 

Morais HC, Benson WW. 1988. Recolonização de vegetação de cerrado após queimada por 

formigas arborícolas. Revista Brasileira de Biologia 48: 459-466. 



 

 
 

108 

Morais HC, Cabral BC, Mangabeira JA, Diniz IR. 2007. Stenoma cathosiota Meyrick 

(Lepidoptera: Elachistidae) in the Cerrado of Brasilia: temporal and spatial variation of 

caterpillar abundance. Neotropical Entomology 36: 843-847. 

Moreira AG. 2000. Effects of fire protection on savanna structure in Central Brazil. Journal of 

Biogeography 27: 1021-1029. 

Moretti M, Obrist MK, Duelli P. 2004. Arthropod biodiversity after forest fires: winners and 

losers in the winter regime of the southern Alps. Ecography 27: 173-186. 

Nardoto GB, Bustamante MMC, Pinto AS, Klink CA. 2006. Nutrient use efficiency at 

ecosystem and species level in savanna areas of Central Brazil and impacts of fire. 

Journal of Tropical Ecology 22: 191-201. 

Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. 1999. Fire effects on belowground 

sustainability - a review and synthesis. Forest Ecology and Management 122: 51-71. 

Oliveira PS, Marquis RJ. 2004. Introduction: Development of research in the cerrados. In: 

Oliveira PS, Marquis RJ, editors. The Cerrados of Brazil: Ecology and Natural History of 

a Neotropical Savanna, pp. 1-10. Columbia University Press. 

Parr CL, Chown SL. 2003. Burning issues for conservation: a critique of faunal fire research 

in Southern Africa. Austral Ecology 28: 384-395. 

Payne, R. W. 2006. New and traditional methods for the analysis of unreplicated experiments. 

Crop Science 46, 2476-2481. http://dx.doi.org /10.2135/cropsci2006.04.0273 

Prada M, Marini-Filho OJ, Price PW. 1995. Insects in flower heads of Aspilia foliacea 

(Asteraceae) after a fire in a central Brazilian savanna: evidence for the vigor hypothesis. 

Biotropica 27: 513-518. 



 

 
 

109 

Pucheta E, Cabido M, Díaz S, Funes G. 1998. Floristic composition, biomass, and 

aboveground net plant production in grazed and protected sites in a mountain grassland of 

central Argentina. Acta Oecologica 19: 97-105. 

Ramos-Neto MB, Pivello VR. 2000. Lightning fires in a Brazilian savanna National Park: 

rethinking management strategies. Environmental Management 26: 675-684. 

Seyffarth JAS, Calouro AM, Price PW. 1996: Leaf rollers in Ouratea hexasperma 

(Ochnaceae): fire effect and the plant vigor hypothesis. Revista Brasileira de Biologia 56: 

135-37. 

Silvestre R, Brandão CRF, Silva RR. 2003. Grupos funcionales de hormigas: El caso de los 

gremios del Cerrado, Brasil. In: Fernández F, editor. Introducción a las Hormigas de la 

Región Neotropical, pp. 113-143. Instituto de Investigación de Recursos Biológicos 

Alexander Von Humboldt. 

Swengel AB. 2001. A literature review of insect responses to fire, compared to other 

conservation managements of open habitat. Biodiversity and Conservation 10: 1141-1169. 

Triplehorn CA, Johnson NF. 2005. Borror and DeLong's Introduction to the Study of Insects, 

7th. ed. Thomson Brooks/Cole. 

Unesco. United Nations Educational, Scientific, and Cultural Organization. 2001. Cerrado 

protected areas: Chapada dos Veadeiros and Emas National Parks. Unesco, Paris. 

Available at http://www.unesco.org/whc/sites/1035.htm, accessed on 2008/08/22 

Vieira EM, Andrade I, Price PW. 1996: Fire effects on a Palicourea rigida (Rubiaceae) gall 

midge - a test of the plant vigor hypothesis. Biotropica 28: 210-217. 

Warren SD, Scifres CJ, Teel PD. 1987. Response of grassland arthropods to burning - a 

review. Agriculture, Ecosystems and Environment 19: 105-130. 

Wilson EO. 1987. The little things that run the world. Conservation Biology 1: 344-346. 



 

 
 

110 

WWF 1995. De Grão em Grão: O Cerrado Perde Espaço. World Wide Fund for Nature 

(WWF-Brasil). 

York A. 1999. Long-term effects of frequent low-intensity burning on the abundance of litter-

dwelling invertebrates in coastal blackbutt forests of southeastern Australia. Journal of 

Insect Conservation 3: 191-199. 

 

 

 

FIGURE LEGEND 

 

Figure 1. Mean abundance (± sd) of arthropods in areas with different burning rates: HighFi 

(black bars), MidFi (dark gray bars), and LowFi (light gray bars). (A) orders and (B) trophic 

guilds. Different letters in the same sequence within an order or guild represent statistically 

significant differences in abundance (One-way randomized analysis of variance followed by a 

Tukey’s post-hoc test, see Appendix 1). 
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Table 1. Abundance of epigaeic arthropod orders and trophic guilds in areas with different 

burning frequencies in the cerrado of Emas National Park, Brazil. 

Burning rate1 
Order Trophic guild  

HighFi MidFi LowFi 
Total 

Araneae Predators  30 13 21 64 

Collembola Detritivores  225 115 57 397 

Detritivores  24 4 15 43 

Herbivores  1 1 1 3 

Coleoptera 

Predators  7 4 8 19 

Detritivores  3 9 11 23 Dyctioptera 

Predators  0 1 0 1 

Herbivores  30 28 14 72 Hemiptera 

Predators  8 19 6 33 

Herbivores  6 5 8 19 

Omnivores  75 69 64 208 

Hymenoptera 

Predators  34 36 16 86 

Orthoptera Herbivores  104 84 35 223 

Scutigeromorpha Predators  0 1 0 1 

1HighFi – site burned annually from 1994 to 2006, MidFi – site burned five times in this 

period, LowFi – site unburned since 1994. 
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Figure 1. Mean abundance (± sd) of arthropods in areas with different burning rates: HighFi 

(black bars), MidFi (dark gray bars), and LowFi (light gray bars). (A) orders and (B) trophic 

guilds. Different letters in the same sequence within an order or guild represent statistically 

significant differences in abundance (One-way randomized analysis of variance followed by a 

Tukey’s post-hoc test, see Appendix 1).
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Appendix 1. Randomized analysis of variance and Tukey's pos-hoc test results for 

comparison of the abundance of arthropod orders and trophic guilds in areas with different 

burning frequencies in the cerrado of Emas National Park, Brazil. Significant values are in 

bold. 

  Anova   Tukey's post hoc test P 

  P   HighFi x MidFi1 HighFi x LowFi MidFi x LowFi 

Araneae 0.0907  - - - 

Coleoptera 0.0329  0.003188 0.4472 0.07429 

Collembola 0.0019   0.01935 0.0002989 0.2869 

Hemiptera 0.0029  0.9114 0.01975 0.006551 

Hymenoptera 0.3616  - - - 

Orthoptera 0.0006  0.8917 0.000277 0.0008636 

      

Detritivores 0.004  0.01732 0.0005546 0.445 

Herbivores 0.0039  0.7247 0.0003568 0.002958 

Omnivores 0.2919  - - - 

Predators 0.1745  - - - 

1HighFi – site burned annually from 1994 to 2006, MidFi – site burned five times in this 

period, LowFi – site unburned since 1994. 
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CONCLUSÃO GERAL 

 

Estudos de diagnóstico e monitoramento de impacto ambiental conduzidos no Brasil 

raramente incluem invertebrados terrestres, os quais sabidamente estão entre os grupos que 

apresentam melhor custo-benefício em termos de indicação biológica (Gardner et al., 2008). 

Esse mesmo viés pode ser observado em estudos fora do Brasil (e.g. Dobson, 2005; Mendelik 

et al., 2005). Embora parte dessa ausência provavelmente se deva a questões 

‘vertebrocentristas’ (Nash, 2004), no Brasil em particular isso se deve também a ausência de 

estudos e protocolos de avaliação e teste de indicadores. 

Ao fim deste estudo fica claro que o emprego de indicadores ecológicos (sensu 

McGeoch, 1998) na prática está necessariamente relacionado ao tempo, recursos financeiros e 

à dificuldade taxonômica e logística imposta pelos diferentes taxa estudados. Os resultados 

encontrados empregando vários taxa, mas com diferentes resoluções taxonômicas e 

abordagens analíticas (Cap. 1) indicam que estudos que consideram apenas abundância total 

e/ou riqueza de espécies na avaliação de perturbação antrópica podem não detectar alterações 

no habitat, mesmo havendo um alto contraste entre uma área perturbada e uma não 

perturbada. A composição de espécies, por outro lado, mostrou-se um excelente parâmetro de 

comparação para vários grupos de artrópodes, e a composição agrupada em níveis 

taxonômicos superiores não influenciou a detectabilidade das alterações para besouros 

epigéicos (Cap. 1) e borboletas frugívoras (Cap. 1 e 2). Novos estudos são necessários para se 

testar a eficiência desses indicadores com menor resolução taxonômica em situações em que o 

contraste não é discreto (perturbado vs. conservado), mas contínuo. 

Em muitos casos, estudos de diagnóstico ambiental ocorrem em situações de escassez 

de tempo, recursos financeiros e taxonômicos, e nesses casos a análise em escala ordinal ou o 
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uso de grupos funcionais (Cap. 3) pode ser a única opção de avaliação de perturbação 

antrópica. Embora seja uma alternativa plausível, essa abordagem ainda necessita um grande 

aprofundamento a partir do que foi mostrado no presente estudo. No caso particular de 

frequencia de queima no cerrado, Collembola e formigas parecem ser grupos focais 

particularmente promissores para estudos exloratórios adicionais. A comparação com outros 

ecossistemas usando protocolos semelhantes pode esclarecer se existem padrões gerais e 

utilizáveis em indicação biológica. 

Por fim, borboletas frugívoras são, indubitavelmente, o grupo de artrópodes com 

maior facilidade de aplicação imediata como indicadores biológicos em Floresta Atlântica 

(Cap. 1 e 2). Um protocolo de amostragem pode e deve ser criado (como o já existente para 

formigas – Agosti et al., 2000), a taxonomia da maioria das subfamílias (exceto por Satyrinae) 

é simples ou pode vir a ser facilitada por guias locais (e.g. Uehara-Prado et al., 2005), e 

respostas a perturbação aparentemente são consistentes ao longo da Floresta Atlântica 

(Uehara-Prado et al., 2007, 2009; Fonseca et al., 2009; Pardini et al., 2009). No entanto, o uso 

de indicadores com maior lastro em termos de informações biológicas básicas (como 

taxonomia e distribuição), não são garantia de que padrões bem definidos necessariamente 

resultem de processos bem explicados (Cap 2). Estudos básicos sobre história natural de 

borboletas frugívoras ainda são raros e extremamente necessários para aperfeiçoar e sofisticar 

seu uso como indicadores biológicos. 
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Terrestrial amphipods live in forest litter and its interface with the soil, and they 

shelter under leaves and in fallen trees and other pieces of wood on the ground, i.e., habitats 

very similar to those of terrestrial isopods (Hurley, 1968). They feed on decomposing plant 

matter. When established in favourable environments, some species can replace native 

amphipods (Costello, 1993; Alvarez et al., 2000). They are usually nocturnal, a habit that 

minimizes dehydration and predation by birds (Friend & Richardson, 1986). Many species 

take an active part in soil dynamics, increasing oxygenation rates when moving within the soil 

and speeding up decomposition processes (Lam & Ma, 1989; Alvarez et al., 2000; Lopes & 

Masunari, 2004b). 
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Terrestrial amphipods are able to reproduce up to two times during their life time, with 

a brood size of 3 or 4 eggs and a mean life span of 10 months, giving rise to a mean of 3 to 4 

generations per year (Lam & Ma, 1989). The sex ratio varies seasonally and is usually biased 

towards females (Wenner, 1972).  

Talitroides topitotum (Burt, 1934) has its origins in the tropical and subtropical 

regions of the Indo-Pacific (Lemos de Castro, 1972; Lopes & Masunari, 2004a), and has 

become a cosmopolitan tropical and temperate species (Alvarez et al., 2000). It is usually 

associated with the introduction of non-native plants (sympatric spread) (Alvarez et al., 2000; 

Cowling et al., 2004). This species is always associated with high-humidity environments 

(Alvarez et al., 2000; Lopes & Masunari, 2004b), occurring at altitudes ranging from 120 m 

to over 2400 m a.s.l. (Lam & Ma, 1989; Richardson, 1992; Alvarez et al., 2000).  In Brazil, T. 

topitotum was introduced with young trees imported for commercial purposes (Ulian & 

Mendes, 1987; Lopes & Masunari, 2004a), and has probably spread via human gardening and 

landscaping activities. The species seems closely associated with areas that were reforested 

with Eucalyptus spp., a culture that covers extensive areas in Brazil (Ulian & Mendes, 1988; 

Lopes & Masunari, 2004b). Initial records of the presence of T. topitotum in several countries 

appear to be related to the introduction of exotic species of plants, as is the case in Brazil 

(Lemos de Castro, 1972, Lemos de Castro & Pereira, 1978), Mexico (Alvarez et al., 2000), 

and the United States, where other terrestrial species amphipods of have also been introduced 

(Visscher, 1874; Medcof, 1939; Lazo-Wasem, 1984).  

We studied some aspects of the population ecology of T. topitotum in an Atlantic 

forest area in southeastern Brazil. Some population studies on T. topitotum were performed 

earlier in Hong Kong by Lam & Ma (1989), in Mexico by Alvarez et al. (2000), and in 

southern Brazil by Lopes & Masunari (2004a, b, c). However, although it is an alien organism 
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and its invasion may have unknown biotic consequences, few general studies exist on the 

population biology of this species (Lam & Ma, 1989; Alvarez et al., 2000; Lopes & Masunari, 

2004a, b, c).  

Fieldwork was carried out in the Parque Estadual da Serra do Mar (Serra do Mar State 

Park), Núcleo Santa Virginia (NSV) (23°17'-23°24'S45°03'-45°11'W), in the state of São 

Paulo, Brazil. The local geomorphological relief features steep escarpments with embedded 

valleys, ranging from 740 to 1620 m a.s.l. (Tabarelli & Mantovani, 1999). The climate is 

humid, with no dry season, and the mean yearly precipitation is 2180 mm (Setzer, 1949; 

Tabarelli & Mantovani, 1999). In the past, the original Atlantic forest of some parts of the 

area that currently forms the NSV underwent slash-and-burn management and subsequent 

pasture plantation, while hardwood was logged in other parts. Nowadays, the area is covered 

by dense ombrophilic montane forest, interspersed with patches of forest in several stages of 

regeneration, abandoned pastures, and eucalyptus plantations (Tabarelli & Mantovani, 1999; 

J.P. Villani, pers. comm.). 

Sampling was carried out using pitfall traps made of 500 mL plastic cups with an 8.5 

cm opening, set level with the soil surface and containing 30% propylene glycol, 0.1% 

formaldehyde, and a few drops of detergent to break the surface tension. The traps were 

protected from direct rainfall and falling leaves by a circular styrofoam shield placed above 

each cup. They were arranged in transects of 5 traps, 2 m apart, per area. A group of 5 traps 

was considered a sampling unit. The pitfall traps were kept open six days per month during 

the sampling period. 

Twelve sampling units were installed in the study area, placed at least 100 m apart. 

Sampling was done from November 2004 to May 2005, encompassing late spring, summer, 

and early autumn, a period in which terrestrial amphipods are more active due to higher 
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temperatures (Lopes & Masunari, 2004b). After each sampling event, the collected material 

was sorted, preserved in 70% ethanol, and labelled. All collected material has been deposited 

in the Museu de Zoologia, Instituto de Biologia, UNICAMP. 

The number and sex of individuals in each sample were determined in all samples. 

Individuals were sexed following Lopes & Masunari (2004c; females have an oostegite and 

males have a penis). Mature individuals were based on size following Lopes & Masunari 

(2004c); one individual was considered mature when its size was bigger than 4.57 mm (the 

size of the smaller ovigerous female in all samples). The samples were analysed under a 

stereo-microscope fitted with a calibrated ocular micrometer. Individuals from each sampling 

unit were counted in a Petri dish filled with 70% ethanol to avoid dehydration, which could 

affect body size. For morphometric assessment, the individuals were placed in a standard 

position, with legs facing right in relation to the ruler. Two measures were done: 1) head 

length as the linear distance from the base of the antennae to beginning of the first thoracic 

segment; and 2) body length, as the linear distance from the base of the antennae to the last 

abdominal segment before the telson (following Leite & Wakabara, 1989). The presence of 

eggs was recorded, and the eggs were removed from the marsupium to be counted (number of 

eggs per female) (Lam & Ma, 1989; Alvarez et al., 2000; Lopes & Masunari, 2004c). Samples 

with N > 40 were re-sampled from the Petri dishes: after having been poured into the dishes, 

only one-fourth of the individuals (located in a predefined sector of the dish) was measured. 

Throughout the study, 3,593 individuals of T. topitotum were collected, all females. 

Abundance varied among sampling units, from zero to 1,602 individuals. Data about size 

were based on a subsample of 1,533 individuals following the methods described above. 

Based on this subsample, 87% of all individuals were of immatures (including juvenile and 

non ovigerous females), with only 13% of ovigerous females. 
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During the study period, two population peaks occurred, one in December, and the 

other in February (fig. 1). A peak of abundance of ovigerous females was observed in 

February. Two peaks of immatures abundance were also seen, in January and April (fig. 1).  

Head length was positively correlated with total length (Spearman Coefficient, rs = 

0.517; t = 16.32; P < 0.001; N = 602). Therefore, the former measurement can be used as a 

size indicator for this species (fig. 2). The total body length of T. topitotum individuals ranged 

from 1.48 to 10.12 mm, with the modal interval between 5.00 and 5.9 mm (fig. 3). Total body 

length of ovigerous females ranged from 4.57 to 9.02 mm. Mean egg production was 2.4 per 

female. The total number of eggs was positively correlated with total body length (Spearman 

Coefficient, rs = 0.2982; t = 2.88; P = 0.005; N = 87) (fig. 4). 

Interactions among rainfall, relative air humidity, and temperature largely determine 

the population dynamics of terrestrial amphipods, both stimulating their activity (Lopes & 

Masunari, 2004b), and possibly also determining variations in fecundity and development 

time (Lindeman, 1991). In the study area, summer is the season that merges optimum levels 

of many of these factors for T. topitotum, probably leading to the observed population growth 

at this time of year, associated with the increase in immature (juvenile and non ovigerous 

females) recruitment. The same pattern was described in other studies, as was the decrease in 

abundance in winter and spring (Lam & Ma, 1989; Alvarez et al., 2000; Gonçalves et al., 

2003). If, during summer, higher abundance is related to both population growth and higher 

individual activity, the winter drop may be related not only to the reduction in population size, 

but also to migration into more favourable environments, or displacement of individuals into 

deeper layers of the soil where microclimate conditions are more favourable (Gonçalves et al., 

2003). 



 

 
 

123 

The body size of the individuals in this population ranged from 1.48 to 10.12 mm. 

This is within the expected range for the species, upon comparison with previous studies 

(Biernbaum, 1980; Lam & Ma, 1989; Alvarez et al., 2000; Lopes & Masunari, 2004c). The 

largest individual ever recorded was 14.43 mm long (Lopes & Masunari, 2004a). Mature 

females, however, show a great variation among the several studies that have been performed. 

In Hong Kong, females begin to produce eggs when they reach a length of 5.56 mm (Lam & 

Ma, 1989). In Brazil, the smallest ovigerous females ranged from 4.57 mm (present study) to 

7.00 mm in the south of the country (Lopes & Masunari, 2004c). This difference in the 

minimum size of mature female may be related to differences in several factors regarding the 

various regions studied, such as mean temperature, food availability, and predation (O´Hanlon 

& Bolger, 1997a; Gonçalves et al., 2003). 

Previous studies have shown that temperature greatly influences some population 

parameters of amphipods (Gonçalves et al., 2003; Ingólfsson et al., 2007), and may affect the 

reproduction period of T. topitotum throughout its geographical range. Gonçalves et al. (2003) 

showed that populations of the estuarine amphipod, Talorchestia brito (Stebbing, 1891), had 

longer reproductive periods in warmer areas, and Ingólfsson et al. (2007) showed that 

temperature was the most important factor in triggering the reproductive phase in the coastal 

amphipod, Orchestia gammarellus (Pallas, 1766). In the present study, the recruitment period 

of T. topitotum was relatively short, from January to April, and comparison with other 

populations at different latitudes may help to clarify how temperature affects recruitment in 

this species. 

In the present study, no males were recorded throughout the total of sampling months, 

but other studies on T. topitotum have detected the presence of males in varying proportions 

(Lam & Ma, 1989; Alvarez et al., 2000). For crustaceans in general (Wenner, 1972), and 
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amphipods in particular, sex-ratio biases seem to be common, especially toward an excess of 

females (Jones & Wigham, 1993; Cardoso & Veloso, 1996; Persson, 1999; Gonçalves et al., 

2003, and references therein). In the literature, the main explanations for female 

predominance are: (1) shorter longevity of males; in some species, the males die immediately 

after copulation (Hastings, 1981; Carrasco & Arcos, 1984); (2) differences in the degree of 

catchability between the sexes, resulting from horizontal and vertical displacement (Williams, 

1995); and (3) intersexuality (Ford & Fernandes, 2005). The reasons that lead to 

intersexuality are still little known, and parasitism seems to be one of the most common 

explanations (Ginsburger-Vogel, 1991; Lindeman, 1991; O´Hanlon & Bolger, 1997a; Ford & 

Fernandes, 2005). In the present work, intersexuality was not investigated, and future studies 

will be needed for a better understanding of the factors behind this bias in sex ratio in some T. 

topitotum populations.  

Finally, if environmental factors influence the growth, recruitment, and fluctuation 

levels of populations of T. topitotum, then many factors have an indirect effect on the 

production of offspring. The present study shows that body size is positively correlated with 

female fecundity. Although this association was not found in a study carried out with the 

same species in southern Brazil (Lopes & Masunari, 2004c), the same pattern was detected 

for this species by Alvarez et al. (2000) in Mexico, and by Lam & Ma (1989) in Hong Kong, 

as well as for Arcitalitrus dorrieni (Hunt, 1925) by O´Hanlon & Bolger (1997b) in Ireland. 

Lam & Ma (1989) suggested that females may benefit from delaying the reproduction process 

until they reach a large body size, thus increasing their reproductive success. More, and more 

specific, studies are needed to test this hypothesis.  
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Talitroides topitotum as a potential bioindicator 

Though Talitroides topitotum is a cosmopolitan species, few studies of its biology 

exist (Lopes & Masunari, 2004b). However, some conditions that favour its establishment are 

known, such as soil properties (high porosity and high organic-matter content) and climate 

(relative air humidity above 52%, temperature gradient from 13 to 30ºC, and abundant 

rainfall, at least about 100 mm per month) (Ulian & Mendes, 1987; Richardson, 1992; 

Alvarez et al., 2000; Cowling et al., 2003; Lopes & Masunari, 2004b). There is also evidence 

that anthropogenic disturbance favours this species, whose presence is especially associated 

with non-native plants (Alvarez et al., 2000), mainly Eucalyptus spp., in Brazil (Lemos de 

Castro, 1972; Lopes & Masunari, 2004b). NSV offers many of these properties, including 

high humidity year-round and Eucalyptus spp. plantations (see Tabarelli & Mantovani, 1999), 

making it especially favourable for the establishment of populations of this species. The same 

properties are shared by a large portion of the Atlantic forest throughout the Serra do Mar, a 

large mountain range along coastal southeastern Brazil. In the particular case of environments 

that have suffered human impact, the presence of introduced plants seems especially 

important for the establishment of T. topitotum populations. Additionally, when there is a 

mosaic of natural vegetation and plantation areas, the junction of different habitats may 

favour the movement of individuals among them, in search of a more suitable microhabitat. 

The invasion of these natural areas by T. topitotum and other exotic species may have 

consequences for the local biota that are still unknown. The presence and abundance of 

terrestrial amphipods may be a powerful tool in biomonitoring activities of these mosaics (see 

Lawes et al., 2005), and more studies on this subject are needed in the Brazilian Atlantic 

Forest. 
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FIGURE CAPTIONS 

 

Fig. 1. Talitroides topitotum (Burt, 1934): variation in population abundance during the 

sampling period at the Parque Estadual da Serra do Mar - Núcleo Santa Virgínia: Above, 

total population (▲); below, immatures (see text) (■) and ovigerous females (●).  

 

Fig. 2. Correlation between head size and body size of Talitroides topitotum (Burt, 1934) 

collected in the Parque Estadual da Serra do Mar – Núcleo Santa Virgínia, Brazil.  

 

Fig. 3. Number of individuals of Talitroides topitotum (Burt, 1934) in each body-size class.  

 

Fig. 4. Ovigerous female body size vs. number of eggs produced in Talitroides topitotum 

(Burt, 1934).  
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FIGURE  1.  
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FIGURE 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0

Head size (mm)

B
od

y
si

ze
(m

m
)



 

 
 

134 

FIGURE 3. 
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FIGURE 4. 
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APÊNDICE 2 - The effect of rainforest fragmentation on species diversity and mimicry 

ring composition of ithomiine butterflies 

Insect Conservation and Diversity 2 (2009): 23–28 
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Running title: Forest fragmentation and ithomiine butterflies 

 

Abstract. 1. Subfamily Ithomiinae comprises about 370 species of Neotropical butterflies 

associated with humid forest habitats from Mexico to Northern Argentina.  Adult Ithomiinae 

are central models in many mimicry rings throughout their range, and are assumed to have 

high potential as bio-indicators.  Here we compare diversity and composition of Ithomiinae 

mimicry rings in continuous versus fragmented landscapes, and evaluate value these 

butterflies hold for ecological assessment and monitoring of anthropogenic disturbance. 2. 

Sampling was done at four sites inside a large forest block, the Morro Grande State Reserve, 

and in five forest fragments in a neighbor fragmented landscape. Butterflies were sampled 

with portable traps, baited with a fermented mixture of banana and sugar cane juice. Sampling 

was carried out during the period most favorable for the capture of ithomiine butterflies in 

south-eastern Brazil. 3. There was no difference between landscapes in species richness and 
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diversity index, but dominance index, and the distributions of tribes and mimicry rings 

between them was clearly different. The higher average light intensity in the understory of 

fragments could explain in part the higher abundance there of mimicry patterns typical of 

open sunny habitats, and concomitant reduced abundance of clearwing mimicry patterns, 

typical of shaded habitats. These results confirm the potential of ithomiine assemblages as 

biological indicators of habitat quality. 

 

Keywords: Atlantic rainforest, biological indicators, conservation, Ithomiinae 
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INTRODUCTION 

The subfamily Ithomiinae (Lepidoptera: Nymphalidae) comprises a group of about 

370 species of Neotropical butterflies distributed from Northern Argentina to Mexico (Lamas, 

2004; Willmott & Freitas, 2006).  Ithomiinae butterflies are usually associated with humid 

forest habitats, although some species can persist in small forest fragments and in urban or 

suburban systems (Brown & Freitas, 2003).  Larvae are generally cryptic and feeds primarily 

on Solanaceae, with few species feeding on Apocynaceae and Gesneriaceae (Brown & 

Freitas, 1994; Freitas et al., 1996), but the adults of all species are believed to be unpalatable 

and are aposematic, and are considered central models in many Neotropical butterfly mimicry 

rings (Brown & Benson, 1974; Beccaloni, 1997a,b). 

Ithomiines were previously shown to have high potential as biological indicators for 

monitoring anthropogenic disturbance (Brown, 1991, 1997), and were considered good 

predictors of total lowland forest butterfly species richness (Beccaloni & Gaston, 1995, but 

see Brown & Freitas, 2000). Many species restricted to dense forests are sensitive to 

disturbance and pollution, and their absence from certain natural systems can be understood 

as a sign of anthropogenic effects (Brown & Freitas, 2000).  Despite their importance and 

abundance in Neotropical forests, there are relatively few ecological studies focusing on 

Ithomiinae in comparison with their co-mimics in the Heliconiinae.  Nonetheless, several 

recent studies have addressed ithomiine biology, chemical ecology and mimicry rings (see 

Brown, 1985, 1987; Beccaloni, 1997 a, b; DeVries et al., 1999; Willmott & Freitas, 2006; 

Trigo, 2008). 

Even though, ithomiine butterflies appear to be primarily nectar feeders (to obtain 

carbohydrates) they also visit certain Compositae and Boraginacae for pyrrolizidine alkaloids, 

bird droppings for nitrogen and are incidental visitors of fruit-baited butterfly traps (DeVries 



 

 
 

139 

et al., 1999; Uehara-Prado et al., 2007; Trigo, 2008).  Our study of ithomiines emerges from a 

broader study of fruit-feeding butterflies in which they are not the primary targets.  

DeVries et al. (1999) showed that Müllerian co-mimicry associations can be measured 

on a fine scale in a tropical forest, and that these methods can be applied in studies on spatial 

and temporal organization of mimicry complexes. Since microhabitat use in ithomiines are 

linked with larval hostplant use (Beccaloni, 1997a) and there is evidence for microhabitat 

associations of different mimicry complexes (DeVries et al., 1999; Willmott & Mallet, 2004) 

we hypothesize that mimicry rings composition could change as responses to disturbance 

related microhabitat modification. This study compares the diversity and the composition of 

Ithomiinae butterfly mimicry rings in a continuous and in a fragmented landscape, and 

examines whether these butterflies may be useful as a focal group in assessing and monitoring 

anthropogenic disturbance. 

 

METHODS 

Study area 

The study area is located in the municipality of Cotia, São Paulo State, southeastern 

Brazil.  The altitude in the study area varies from 800 to 1000 m, with climate Cwa (humid 

subtropical with a dry winter, Köppen, 1948).  The annual mean temperature is 20.4ºC, 

ranging from 16.5ºC in July to 23.6ºC in February; mean annual rainfall is about 1340 mm 

(meteorological data for 1962-1992).  The original vegetation in the region is classified as 

montane rainforest (Ururahy et al., 1997), a constituent of the Atlantic rain forest system. 

The field work was done in two distinct landscapes: in a 10 870 ha continuous forest 

block, the Morro Grande State Reserve (23°39′−23°50′S, 46°55′−47°01′W), mostly in 

advanced stages of succession and containing patches of well preserved old growth forest, and 
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in a adjacent mosaic of forest fragments west of it.  The fragmented landscape consists of a 

matrix mostly made up of small farms and orchards, mixed with vegetation in initial stages of 

regeneration (two to eight years) and reforestation with exotic eucalyptus and pine 

interspersed with about 35% native vegetation (data from 1:10 000 aerial photographs, April 

2000) (Silva et al., 2007).  Additional details of the study area may be found in Uehara-Prado 

et al. (2005, 2007) and in Metzger et al. (2006). 

 

Sampling procedures 

Samples were collected in four independent sites within the Morro Grande State 

Reserve (“control” continuous forest) and five forest fragments, with ca. 14, 29, 52, 99 and 

175 ha (Appendix 1).  A sampling unit consisting of five portable bait traps was installed in 

each of the nine sites and kept in the field during periods of 12 to 14 days.  The traps were 

disposed linearly along pre-existing trails in the understory of each site, hanged 1.8–2.2 m 

above the ground, with a minimum distance of 20 m between adjacent traps and at least 50 m 

from the forest edge. The average distance between adjacent traps did not differ between 

fragments and reserve (t = 0.54, P = 0.60, DF = 34).  The sampling units were set at least 

1400 m apart from each other (reserve: mean = 5961 m, SD = 3263.1 ; fragments: mean = 

3849 m, SD = 1417.5), and the distance among sample units did not differ between 

landscapes (t = 1.31, P = 0.21, DF = 14). 

A mixture of mashed banana with sugar cane juice, fermented for at least 48 hours, 

was used as attractant.  The traps were checked every 48 hours, and the baits were substituted 

at each visit (see Uehara-Prado et al., 2007 for detailed sampling procedures).  Sampling was 

carried out six times from November 2001 to May 2002. 
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Analyses 

The hypothesis that abundance would be equally distributed in the two landscapes was 

tested for species, subfamilies and mimicry rings with N > 5 individuals, through the G test 

with Williams’ correction (Gotelli & Ellison, 2004).  The same test was used to assess the 

species’ sex ratio.  Similarity between landscapes was calculated by the Sørensen qualitative 

index (CS) (Magurran, 2004).  Comparisons of species richness, Fisher’s diversity index (α) 

and Berger-Parker dominance index (d) (Magurran, 2004) between landscapes were made by 

the bootstrapping procedure (Manly, 1991) implemented in the program PAST (Hammer et 

al., 2001). In this procedure, data on species abundance from both landscapes were pooled 

and 1000 random pairs of samples taken from this pool, preserving the original abundance of 

both samples. For each pair, Fisher’s index and Berger-Parker index were computed and the 

probability that the observed difference occurred by random sampling was calculated. 

 

RESULTS  

After 36 000 trap/hours, a total of 12 species and 217 individuals from six Ithomiinae 

tribes were captured in the bait traps.  This corresponds to 48% of the total Ithomiinae 

diversity in the study area (25 species, A.V.L. Freitas unpublished data).  Sex ratio was 1:1 in 

all species but Aeria olena olena, with 0.25 males/females (Table 1).  The number of 

individuals collected in the fragments (n = 152) was higher than in the continuous forest (n = 

65) (bootstrap P < 0.001). 

Species richness and abundance were not stable along the sample period, with a 

marked peak in February (Fig. 1).  The species accumulation curves had steep slopes for both 

landscapes, but was steeper in fragmented landscape (Fig. 2). Seven species were captured in 

the reserve and 11 species in the fragments (bootstrap P = 0.067), with six species shared by 
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the two landscapes (CS = 66.7%) (Table 1).  Fisher’s α was slightly higher in the fragments (α 

= 2.72) than in the continuous forest (α = 1.99), but the two values were not significantly 

different (bootstrap P = 0.318).  Berger-Parker dominance index was significantly higher in 

the continuous forest (Continuous forest, d = 0.539; Fragments, d = 0.421; bootstrap P = 

0.026).   

A large proportion of species in the continuous forest were of the tribe Godyridini 

(90.8%) while in the fragments species richness was fairly evenly distributed among tribes (G 

test = 84.3, df = 4, P < 0.001). When the abundance of individual ithomiine species was 

compared between landscapes, Pseudoscada acilla acilla was more abundant in the reserve, 

Ithomia drymo Hübner, A. olena olena, Pseudoscada erruca, Epityches eupompe and 

Hypothyris ninonia daeta were all more abundant in the fragments, and Hypoleria adasa 

adasa occurred at equal abundance in both landscapes (Table 1). 

Most Ithomiinae sampled in this study belonged to the clear-wing mimicry ring, with 

98.5% of the individuals in the continuous forest (all but one individual) and 72.4% of the 

individuals in the fragments (Table 1).  The response of these species to forest fragmentation 

varied from negatively affected (P. acilla acilla), not affected (H. adasa adasa), to positively 

affected (I. drymo and P. erruca). Individuals in the yellow-transparent and tiger mimicry 

rings occurred almost exclusively in the fragmented landscape (42 of 43 butterflies) (G test = 

36.5, df = 1, P < 0.001). 

 

DISCUSSION 

The temporal variation in individual abundance in the present study is similar to that 

observed in other ithomiine population studies in the region (Freitas, 1993, 1996; Freitas et 

al., 2001).  Additionally, the periods of maximum abundance of individuals were the ones 
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with higher species richness, as previously recorded for Ithomiinae by Freitas (1996) and 

DeVries et al. (1999), and in other butterfly groups such as fruit-feeding butterflies (DeVries 

et al., 1999).  DeVries et al. (1999) propose that abundance of trapped Ithomiinae could be 

related to rainfall, but in the present study our sampling scheme does not permit us to test this 

hypothesis. The few population studies of Ithomiinae have reported male biased sex ratios 

(Freitas, 1993, 1996; Freitas et al., 2001), while the present study showed that, for most 

species, males and females were sampled in equal proportions in bait traps.  For several 

Ithomiinae species, sex ratio in the laboratory is usually 1:1 (Freitas, 1993; Freitas et al., 

2001, and unpublished results for 12 species), and male-biased sex ratios in field captures 

have been attributed to behavioral differences between sexes, especially the strong attraction 

of males to sources of pyrrolizidine alkaloids (Brown, 1985; Freitas, 1996; Trigo et al., 1996; 

Trigo, 2008).  The results of the present study shows that the use of fruit-baited traps may 

overcome this bias for some species (see also Uehara-Prado et al., 2005) and could give a 

more realistic evaluation of sex ratios in nature. 

The species richness of Ithomiinae sampled in the present study – 48% of the total 

richness – was higher than that recorded by DeVries et al. (1999), which sampled 39% of the 

total richness in Jatun Sacha, Ecuador with an equivalent sampling effort.  It is interesting to 

note, however, that the sampling was taxonomically similar in both studies, capturing only 

species of few genera in the tribes Tithoreini (specifically the genus Aeria), Napeogenini, 

Oleriini, Dircennini and Godyridini, and no individuals of the equally abundant tribes 

Mechanitini and Melinaeini.  This shows that, even in two unrelated biomes, the taxonomic 

composition of the fauna sampled by this method is equivalent, resulting in comparable 

results in studies of community ecology and ecological monitoring. 
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Apparently, the differences in taxonomic composition are related to differences in 

flight heights, with the species attracted by fruits being those found in the lower strata of the 

forest (DeVries et al., 1999).  For example, the tiger mimicry ring has been shown to 

preferentially fly above 1 m (Papageorgis, 1975; Medina et al., 1996; Beccaloni, 1997a), 

perhaps as a result of host plant use and mate seeking behavior (Beccaloni, 1997a), and so, 

they might be less attracted to rotting fruits on the forest floor.  This could explain the near 

absence of species in the tiger mimicry ring, which were fairly abundant in the two landscapes 

based on hand-netting (A.V.L. Freitas, unpublished data), but represented by only seven 

individuals in the present study.  It should also be considered that differences in species 

abundance could reflect in part differences in bait preference among species, and this should 

be better investigated in the future. 

Since microhabitat characteristics influence the distribution of species of Solanaceae 

in the forest understory, differences in taxonomic and mimicry ring composition could be a 

result of availability of host plants in a given place (Beccaloni, 1997a, b).  The clear-wing 

species from SE Brazil (mostly in tribe Godyridini) are restricted predominantly to 

microhabitats with low light levels, flying below 1 m high.  The higher light incidence in the 

forest understory due to fragmentation could explain in part the decrease in the dominance of 

the clearwing pattern in the fragments, and the higher contribution of mimicry patterns typical 

of open sunny habitats (such as the yellow transparent pattern). Although species 

accumulation curves were not asymptotic, the results should not change with additional 

sampling effort, since the main differences were due to common species in each habitat (see 

Table 1).  It is worth noting that ithomiines are not a guild in the same sense of the fruit-

feeding butterflies, and some species will always be rare in the sample due to low attraction to 
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the bait.  These species contributed to the steep slope of accumulation curves in studies like 

this. 

The results of the present study showed that the ithomiine assemblage, as indicated by 

mimicry ring composition, is different between the two landscapes, and supports past 

assertions that these butterflies could be used as biological indicators of forest disturbance.  In 

this study, Ithomiinae are collateral captures since the study was primarily designed to sample 

fruit-feeding nymphalids. However, the taxonomic consistency and differences in community 

structure and mimicry rings between the two landscapes demonstrated that Ithomiinae 

attracted by baits may be an adequate group for biological monitoring. 

Ithomiines have long been proposed as good indicators of habitat integrity (Brown, 

1991, 1997; Beccaloni & Gaston, 1995).  However, this potential has not been demonstrated 

in large scale studies (Brown & Freitas, 2000, 2003; but see DeVries et al., 1999 to a small 

scale approach). This study demonstrate that forest fragmentation affects the composition of 

the ithomiine mimicry rings, which are considered to be the central models for mimicry rings 

in the Neotropics. Beyond indicating alteration in forest structure, shifts in predominant 

ithomiine color patterns may impact other taxonomic groups that rely on the umbrella of 

protection from certain model species (Beccaloni, 1997b), thus changing the equilibrium of 

mimicry complexes in these habitats. 
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Table 1. Mimicry rings, abundance in each landscape, and sex ratio of ithomiine butterflies 

species.  Mimicry ring (MR) abbreviations (after Beccaloni 1997a, b; DeVries et al. 1999, in 

part): C = clear-wing, YT = yellow-transparent, T = tiger. 

 

Figure 1. Species richness (black line) and mean abundance ± s.e. (gray line) of ithomiine 

butterflies along the sample period (November 2001 to May 2002). 

 

Figure 2. Species accumulation curves (± sd) of ithomiine butterflies in the continuous forest 

(black line) and forest fragments (grey line). 

 

Appendix 1. Size, altitude and geographical coordinates of sampled sites. 
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Table 1. 
   

Abundance 

 

Tribe 
 

MR 
 Continuous 

Forest 
Fragments 

P* 
Sex ratio (♂/♀) 

P* 

Ithomia drymo  Ithomiini  C  3 64 < 0.0001  1.31 0.2726 

Hypoleria adasa adasa  Godyridini  C  35 31 0.1636  1.00 - 

Pseudoscada acilla acilla  Godyridini  C  18 1 < 0.0001  0.58 0.2547 

Aeria olena olena  Tithoreini  YT  1 16 0.0004  0.25 0.018 

Epityches eupompe  Napeogenini  YT  0 17 < 0.0001  1.13 0.811 

Pseudoscada erruca  Godyridini  C  3 11 0.0006  1.33 0.5988 

Hypothyris ninonia daeta  Napeogenini  T  0 7 0.0056  0.40 0.2655 

Hypoleria lavinia proxima  Godyridini  C  3 2 -  - - 

Pteronymia carlia  Dircennini  C  2 0 -  - - 

Mcclungia cymo salonina  Godyridini  YT  0 1 -  - - 

Oleria aquata  Oleriini  C  0 1 -  - - 

Episcada hymenaea hymenaea  Dircennini  YT  0 1 -  - - 

*G-test, with Williams’ correction. 
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Figure 1. 
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Figure 2 
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Appendix 1.  

 

 Site code1 Area Altitude (m) Geographical coordinates 

Reserve A continuous2 890 46º 57' 38.049"W, 23º 40' 27.924"S 

 B continuous 900 46º 57' 25.066"W, 23º 41' 39.272"S 

 C continuous 920 46º 56' 43.837"W, 23º 42' 55.201"S 

 D continuous 985 47º 0'15.869"W, 23º 45'21.424"S 

Fragments E 14.00 ha 930 47º 6' 46.346"W, 23º 42' 57.339"S 

 F 28.88 ha 940 47º 6' 58.213"W, 23º 43' 43.655"S 

 G 52.17 ha 935 47º 3' 51.879"W, 23º 43' 36.716"S 

 H 99.39 ha 930 47º 4' 58.05"W, 23º 42' 4.172"S 

 I 175.10 ha 950 47º 4' 19.819"W, 23º 44' 13.395"S 

1See Figure 1 in Uehara-Prado et al. (2007) 

2Total area of the Morro Grande State Reserve: 10 870 ha 

 


