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RESUMO 

 

A durabilidade de uma restauração cerâmica depende de fatores como grau de 

conversão do agente de cimentação e interação deste agente de cimentação com a superfície 

interna da cerâmica. Estes estudos in vitro avaliaram: (1) a influência de diferentes 

cerâmicas e o efeito de diferentes modos de ativação na microdureza Knoop (KHN) de um 

agente de cimentação resinoso dual, imediatamente e 24 horas após a polimerização e (2) a 

resistência de união de um novo tratamento de superfície à base de glaze na união entre a 

cerâmica à base de zirconia e um agente de cimentação resinoso dual, em associação com 

os tratamentos: jateamento com partículas de óxido de alumínio com 50 e 110µm, 

condicionamento com ácido fluorídrico a 10% e silanização. Para avaliação da atenuação 

da luz e dos modos de ativação, 10 discos do cimento resinoso Panavia F 2.0 foram 

confeccionados para cada grupo e ativados por fotoativação direta, ativação química ou 

através de discos de diferentes cerâmicas com 1.2mm de espessura. Os valores de KHN 

foram obtidos imediatamente e após 24 horas de armazenagem a 37 oC. Para a análise da 

resistência de união à cerâmica à base de zircônia, 80 discos de cerâmica à base de zirconia 

tetragonal estabilizada por ítrio foram confeccionados e receberam 8 tratamentos de 

superfície: Grupo I- jateamento com partículas de óxido de alumínio com 110µm, Grupo II- 

jateamento com partículas de óxido de alumínio com 110µm e silanização, Grupo III- 

jateamento com partículas de óxido de alumínio com 50µm, Grupo IV- jateamento com 

partículas de óxido de alumínio com 50µm e silanização, Grupo V- glaze e 

condicionamento com ácido fluorídrico 10%, Grupo VI- glaze, condicionamento com ácido 

fluorídrico 10% e silanização, Grupo VII- glaze e jateamento com partículas de óxido de 

alumínio com 50µm e Grupo VIII- glaze, jateamento com partículas de óxido de alumínio 

com 50µm e silanização. Após os tratamentos, o cimento resinoso dual Enforce foi inserido 

em microtúbulos Tygon em contato com a superfície das cerâmicas e fotoativado por 40s. 

A resistência de união foi obtida por ensaio de microcisalhamento. Os dados foram 

submetidos à Análise de Variância e ao teste de Tukey (5%) e mostraram que o agente de 

cimentação fotoativado através das cerâmicas à base de vidro e di-silicato apresentaram 
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KHN superiores aos fotoativados através das cerâmicas à base de alumina e zircônia, 

imediatamente e após 24 horas. A fotoativação direta levou a valores de KHN superiores 

aos grupos que foram ativados através das cerâmicas e ativação química, para o tempo 

imediato e 24 horas. A resistência de união à cerâmica zircônia foi afetada pelos diferentes 

tratamentos de superfície e a associação entre o glaze e o ácido fluorídrico apresentou os 

melhores resultados, independentemente do processo de silanização. Dessa forma, pode-se 

concluir que a fotoativação através das cerâmicas promove atenuação da luz e KHN 

superior para o tempo de armazenagem de 24 horas, exceto para o modo de ativação direto. 

O tratamento com glaze promove significante aumento nos valores de resistência de união.  

 

Palavras-chave: Cerâmica, Fotopolimerização, Cisalhamento, Cimentos Dentários.  
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ABSTRACT 
 

The durability of ceramic restoration depends of factors like the conversion 

degree of a luting agent and the interaction of this luting agent with the ceramic internal 

surface. These in vitro studies evaluate: (1) the influence of different ceramics and the 

effect of different activation modes on Knoop Hardness Number (KHN) of a dual agent 

luting, immediately and 24 hours after polymerization and (2) the bond strength of a novel 

surface treatment that use a glaze for promotes a bond between zirconia-based ceramic and 

a dual resin luting agent, in association with the treatments: 50 e 110µm air particle 

abrasion, 10% hydrofluoric acid etching and silanization. For the light attenuation and 

activated modes evaluation, 10 discs of Panavia F 2.0 resin cement were fabricated for each 

group and activated by directly photoactivation, chemical and activation through different 

ceramic discs of 1.2 mm thickness. KHN was obtained using microhardness immediately 

and after storage at 37oC for 24 hours. For the bond strength analysis to zirconia-based 

ceramic, 80 ceramic discs based on Yttrium-stabilized tetragonal Zirconia were fabricated 

and received 8 different surface treatments: Group I- 110µm aluminum oxide particle 

abrasion, Group II- 110µm aluminum oxide particle abrasion and silanization, Group III- 

50µm aluminum oxide particle abrasion, Group IV- 50µm aluminum oxide particle 

abrasion and silanization, Group V- glaze and hydrofluoric acid conditioning, Group VI- 

glaze, hydrofluoric acid conditioning and silanization, Group VII- glaze and 50µm 

aluminum oxide particle abrasion, and Group VIII- glaze, 50µm aluminum oxide particle 

abrasion and silanization. After the treatments, Enforce resin cement was placed into micro 

bore Tygon tubing in contact with the ceramic surfaces and photoactivated for 40s. The 

bond strength was obtained by the microshear bond test. The data were submitted to 

Analysis of Variance and Tukey’s test (5%) and showed that the glass and di-silicate based 

ceramics presented higher KHN than alumina and zirconia based ceramics, immediately 

and after 24 hours. The direct photoactivation showed higher KHN than the activated 

through the ceramics groups and chemical activation for immediate and 24 hours. The bond 

strength to zirconia was affected by different treatments and the association between glaze 
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and fluoric acid showed the best results, independent of the silanization process. Of this 

form, it can be concluded that the photoactivation through the ceramics promotes light 

attenuation and an improvement of KHN was found after 24 hours storage except for 

directly activated mode. The treatment with glaze promoted a significant increase of bond 

strength values. 

 

Key-Words: Ceramic, Photoactivation, Shear strength, Dental cements.  
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INTRODUÇÃO 

 
A busca por tratamentos estéticos abrange todos os campos da Odontologia que 

buscam reabilitar, tratar e promover saúde bucal ao longo do tempo. As restaurações 

cerâmicas apresentam papel inquestionável dentro deste cenário, apresentando excelentes 

propriedades estéticas que simulam a aparência da dentição natural. O conhecimento do 

comportamento frente à diversidade de composição dos sistemas cerâmicos, atenuação da 

luz durante o processo de fotoativação, tratamentos de superfície, interação com os agentes 

de cimentação, bem como seu comportamento frente aos estudos clínicos e laboratoriais, 

são fatores dominantes dentro das investigações científicas na atualidade.  

 

A translucidez, fluorescência, estabilidade química, biocompatibilidade, alta 

resistência à compressão e coeficiente de expansão térmica similar à estrutura dental são 

propriedades que contribuem para o grande uso das cerâmicas nas reabilitações dentais 

(Aboushelib et al., 2006; Pazin et al., 2008). A interação entre o agente de cimentação e a 

superfície cerâmica tratada é considerada vital para a longevidade das restaurações e deve 

se apresentar forte o suficiente para resistir às cargas mastigatórias (Blatz et al., 2004; 

Peumans et al., 2004; Aboushelib et al., 2007). As vantagens da utilização dos agentes de 

cimentação resinosos como selamento marginal, boa retenção inicial e aumento da 

resistência à fratura da cerâmica, colocam estes materiais como primeira escolha no 

processo de cimentação (Burke et al., 2002; Guazzato et al., 2004a). 

 

O sucesso das restaurações cerâmicas cimentadas com agentes resinosos 

depende diretamente do grau de conversão dos monômeros resinosos, influenciando nas 

propriedades como dureza, resistência ao desgaste, absorção de água, presença de 

monômeros residuais e biocompatibilidade (Rasetto et al., 2001). Os agentes de cimentação 

resinosos apresentam como vantagem a possibilidade da polimerização química e da 

fotoativação (Peutzfeldt, 1995; El-Mowafy & Rubo, 2000; Caughman & Rueggeberg, 
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2002; Fonseca et al., 2004), embora esta necessite de adequada quantidade de luz para 

iniciar o processo de polimerização (Tarle et al., 2006). A intensidade de luz e a distância 

da fonte de luz durante a polimerização são outros fatores importantes que devem ser 

levados em consideração durante o processo de cimentação (Tashiro et al., 2004; Koch et 

al., 2007). 

 

A composição, espessura, opacidade e cor das cerâmicas podem atenuar a 

passagem da luz usada para a ativação da reação de polimerização do agente de cimentação 

resinoso (El-Mowafy & Rubo, 2000). As cerâmicas disponíveis apresentam diferenças 

quanto à composição e ao conteúdo cristalino, comportando-se de formas diferentes frente 

ao processo de fotoativação e levando atenuação da luz característica para cada material. As 

cerâmicas à base de vidro e di-silicato apresentam atenuação de luz diferente das cerâmicas 

reforçadas com alto conteúdo cristalino à base de óxido de alumínio e zircônio (Tango et 

al., 2007). Entretanto, há limitadas informações visando correlacionar o efeito da 

composição, opacidade e espessura das diferentes cerâmicas na atenuação de luz. 

 

O tratamento de superfície das cerâmicas é outro importante fator que deve ser 

considerado dentro do processo de cimentação. A durabilidade da resistência de união dos 

agentes de cimentação resinosos é dependente da interação com a superfície da cerâmica e 

pode ser obtida através de microretenção ou interação química. Tratamentos convencionais 

como jateamento com partículas de óxido de alumínio, condicionamento com ácido 

fluorídrico e silanização não são capazes de promover forte e durável resistência de união 

entre o cimento resinoso e as cerâmicas com alto teor mineral à base de óxido de alumínio e 

zircônio (Guazzato et al., 2004b; Spohr et al., 2008), embora sejam tratamentos eficientes 

para as cerâmicas à base de vidro e di-silicato (Blatz et al., 2003).   

 

As cerâmicas à base de zircônia apresentam alta resistência à flexão e fratura, 

estabilidade química e biocompatibilidade, estas características as colocam em destaque em 

relação aos diversos sistemas cerâmicos (Aboushelib et al., 2006). Estas cerâmicas 

apresentam um mecanismo de aumento da tenacidade por transformação induzida por 
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tensão, podendo resistir ativamente à propagação de trincas devido à mudança 

microestrutural da fase tetragonal para monoclínica na região de propagação da trinca, 

promovendo aumento volumétrico de 3-4% que resulta em tensões de compressão que irão 

tentar fechar a trinca ou dificultar sua propagação (Piconi & Maccauro, 1999; Blatz et al., 

2004; Guazzato et al., 2004b). Baseada nestas características, as cerâmicas à base de 

zircônia apresentam abrangente e promissora utilização na Odontologia e, atualmente são 

utilizadas como implante dental, pinos pré-fabricados, infra-estrutura para prótese sobre 

implante, bráquete ortodôntico e infra-estrutura protética para coroa e prótese fixa (Derand 

& Derand, 2000; Ozcan et al., 2007; Wolfart et al., 2007; Aboushelib et al., 2008). 

 

O processo de união química às cerâmicas à base de zircônia é um desafio 

devido à alta concentração de cristais inerentes à sua composição. Vários métodos que 

promovem aumento da rugosidade têm sido investigados na literatura, sempre com o intuito 

de promover união micromecânica satisfatória à superfície da zircônia. Dentre estes 

métodos, destacam-se a cobertura de sílica seguida do processo de silanização (Amaral et 

al., 2007), spray de plasma (Derand et al., 2005), associação entre jateamento com 

partículas de óxido de alumínio e o monômero MDP (10-metacriloxil decil 

dihidrogenofosfato) (Wolfart et al., 2007), primers para cerâmica (Aboushelib et al., 2008), 

Er: YAG Laser (Spohr et al., 2008) e condicionamento com infiltração seletiva e maturação 

induzida por sinterização (Aboushelib et al., 2007; Aboushelib et al., 2008). Em todos estes 

estudos, foi observado aumento imediato da resistência de união, porém estudos clínicos e 

laboratoriais que simulam o desgaste ao longo do tempo, bem como o estabelecimento de 

um protocolo simples e de fácil acesso aos clínicos, ainda não está fundamentado na 

literatura. 

 

Baseado nestas considerações, a durabilidade de uma restauração cerâmica 

depende de fatores como grau de conversão do agente de cimentação e interação deste 

agente de cimentação com a superfície interna da cerâmica. Dessa forma, avaliar a 

atenuação de luz através de cerâmicas de diferentes composições e o modo de ativação do 

agente de cimentação, bem como avaliar o efeito de um novo glaze à base de porcelana de 
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baixa fusão na superfície de uma cerâmica à base de zircônia em associação com os 

tratamentos convencionais, apresentam-se como tentativas no intuito de promover maior 

durabilidade das restaurações de cerâmicas, servindo de base para estudos longitudinais e 

buscando predizer o comportamento clínico das restaurações. 
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CAPÍTULOS 
 

Esta tese está baseada na Resolução CCPG/002/06UNICAMP, que regulamenta 

o formato alternativo para teses de Mestrado e Doutorado. Dois capítulos contendo artigos 

científicos compõem esta tese, conforme descrito abaixo: 

 

Capítulo 1: Effect of Activation Modes and Different Ceramics on Knoop 

Hardness Number of Dual Resin Cement. Artigo enviado para publicação no periódico: 

Journal of Adhesive Dentistry. 

 

Capítulo 2: Influence of glazed zirconia on dual luting agent bond strength. 

Artigo a ser enviado para publicação no periódico: Journal of Operative Dentistry. 
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CAPÍTULO 1 
 

Effect of Activation Modes and Different Ceramics on Knoop 

Hardness Number of Dual Resin Cement  
 

 
Clinical relevance: Polymerization of dual cure resin cement through different ceramics is 

significantly affected by activation modes, ceramic composition and post activation times. 
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ABSTRACT 

 

Purpose: To investigate (1) the influence of ceramic compositions on Knoop Hardness 

Number (KHN) of a resin cement, immediately and 24-hour after polymerization and (2) 

the effect of different activation modes (direct light activation, light activation through 

ceramics and chemical activation) on the KHN of resin cement.  

 Materials and Methods: Ten resin cement discs (Panavia F 2.0, Kuraray Co., Ltd) were 

fabricated in a Teflon mold covered with a polyester film. These discs were activated either 

directly using curing light, or chemically without applying light, or through ceramic discs 

of 1.2 mm thickness. The ceramics evaluated were Duceram, Cergogold, IPS Empress, IPS 

Empress 2, Procera, Cercon, In Ceram Alumina and In Ceram Zirconia. The KHN was 

obtained using microhardness test immediately and after 24-hour testing time. Two-way 

ANOVA and Tukey’s test were performed for statistical analysis, with significance set at p 

< 0.05. 

Results: The direct activation groups showed higher KHN than the activated through 

ceramics groups and chemical activation groups for both immediately and 24-hour testing 

time. The KHN for 24-hour post activation time was superior to the immediately post 

activation time except for direct activation mode. The glass and di-silicate based ceramics 

showed higher KHN than alumina and zirconia based ceramics, immediately and after 24-

hour.  

Conclusion: (1) The reinforced and opaque ceramics result in one of the lowest KHN 

values, (2) The ceramic composition results in light attenuation, lower polymerization 
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effectiveness, and lower hardness values, and (3) The 24-hour testing time promotes an 

improvement of microhardness except for the directly activated mode. 

Key words: dental ceramic, hardness, luting agent, thickness, light polymerization. 
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INTRODUCTION 

 

Dental ceramics are appreciated as highly esthetic restorative materials with 

optimal esthetic properties that simulate the natural dentition appearance. Other desirable 

characteristics include translucence, fluorescence, chemical stability, biocompatibility, high 

compressive strength, and a coefficient of thermal expansion similar to tooth structure.17 In 

spite of their many advantages, ceramics are fragile under tensile.2, 14, 24 Several different 

ceramic systems are available such as In-Ceram Alumina and In-Ceram Zirconia (Vita 

Zahnfabrik, Seefeld, Germany), IPS Empress and IPS Empress 2 (Ivoclar-Vivadent, 

Schaan, Liechtenstein), Cergogold (Degussa Dental, Hanau, Germany), Procera (Nobel 

BioCare, Gothenburg, Sweden), and Cercon (Degussa Dental, Hanau, Germany).  

 Luting materials are vitally important for the longevity of dental restorative 

materials.1,18 Resin cements offer distinct advantages such as adhesion to both ceramic and 

dental structure substrates, as well as low solubility, easy manipulation, and favorable 

esthetic.10 Higher fatigue and compressive strength of all-ceramic restorations is observed 

in these cements when compared with glass ionomer cements.10 However, to achieve a 

better restoration retention to a tooth structure and allow efficient polymerization of the 

resin cement, it has to flow smoothly with unbroken continuity.20,23 Survival of these 

restorations also depends on the degree of conversion of these luting agents which 

influences the properties like hardness, wear resistance, water absorption, residual 

monomer, and biocompatibility.20  
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Dual cure resin cements have the advantage of both chemical cure and light 

cure materials.5,7,8,19 Even though the materials are dual cured, an adequate quantity of light 

is required to initiate the polymerization process.22 The composition, thickness, opacity, and 

shade of the ceramic material may attenuate the light from the curing unit which was used 

to polymerize the resin cement under the ceramic restoration.7  Light intensity and the 

distance of the curing unit during polymerization  are other important factors that may be 

concerning while ceramics restorations are luting.13, 23 Ceramics   from different 

manufacturers have different compositions and crystal content , that may impact the light 

quantity that passes through them for luting cements activation. Once crystalline ceramics 

are opaque, it could be expected to attenuate more light. Limited information has been 

published on the composition effect, opacity, and ceramic materials thickness on the light 

attenuation.  

In-Ceram Alumina, an aluminous ceramic with 82 % weight of alumina and 

infiltrated by glass25, is indicated for anterior and posterior full crowns and anterior three-

unit fixed partial dentures. In-Ceram Zirconia, 67% by weight alumina and 13% zirconia, is 

indicated for posterior full crowns and posterior three unit-fixed partial dentures.  IPS 

Empress and Cergogold, glass-ceramic materials containing leucite crystals1, are indicated 

only for fabricating single unit crowns.  IPS Empress 2 is a multiphase glass ceramic with 

60% by volume and consists of two crystal phases: lithium disilicate based (Li2O·SiO2) 

crystals as the main phase and lithium orthophosphate crystals as the second phase.12 It is 

advocated for anterior and posterior full crowns, and anterior three unit fixed partial 

dentures.11 Procera, a high density alumina containing 99.5% of aluminum oxide, is 

indicated for full crowns and laminates. Cercon, a zirconia based ceramic which contains 
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94% ZrO2 stabilized by 5% Y2O3, is indicated for crowns fabrication and up to four unit 

posterior fixed partial dentures. Despite the differences among these ceramic materials, 

similar procedures for photo-polymerization have been used to activate resin cements under 

these restorations. Manufacturers of Duceram, Cergogold and IPS Empress recommend 

resin cement for luting, while IPS Empress 2, In Ceram, Procera and Cercon claim that 

their restorations can be luted with either resin cement or conventional glass ionomer 

cements. Furthermore, some zirconia based ceramic systems recommend the use of 

chemically-activated resin cement Panavia 2.1. 

The light attenuation from curing unit to polymerize the resin cement under 

different ceramics has not been adequately studied. Therefore, the purposes of this study 

were: (1) to evaluate the influence of ceramics composition on KHN of a resin cement, 

immediately and 24-hour after polymerization; (2) the effect of different activation modes 

(direct light-activation, light activation through ceramics and chemical activation) on the 

KHN of a resin cement. The null hypotheses were: (1) Ceramics do not affect the KHN of 

the resin cement.  (2) Time conditions do not affect the KHN of the resin cement.  
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MATERIAL AND METHODS 

 

Materials, brand names, manufacturers, composition and batch used are listed in 

Table 1. 

 

Ceramic Specimen Fabrication 

Porcelain Duceram Plus: Shade dentin A3 was condensed in a metallic mold to 

form a cylinder of 8 (± 0.01) mm that was sintered in a ceramic furnace (Austromat M, 

Dekema Austromat-Keramiköfen, Freilassing, Germany), according to manufacturer’s 

instructions. After, it was sectioned under water with a diamond disc at low speed to obtain 

discs with 1.2 mm thickness, which were then finished and glaze fired.  

Cergogold: A wax pattern of 8 mm diameter and 1.3 mm thickness was sprued 

and invested using Cergofit investment (Degussa Dental). It was then placed in a burnout 

furnace (7000-5P; EDG Equipments Ltda, Sao Carlos, Brazil) to eliminate the wax. The 

Cergogold ingot (shade A3) was pressed in an automatic press furnace (Cerampress Qex, 

Ney Dental Inc, Bloomfield, Conn.). After cooling, the specimen was divested with air 

abrasion using 50-m glass beads at 4-bar pressure, followed by 100-m aluminum oxide 

at 2-bar pressure, to remove the refractory material and finally with 100-m aluminum 

oxide at 1-bar pressure. It was then sectioned under water with a diamond disc at low speed 

to obtain 3 discs with 1.2 mm thickness, which were finished and stain fired. 

IPS Empress:  Wax patterns of 8 mm diameter and 1.3 mm in thickness were 

sprued and invested in IPS Empress investment (Ivoclar-Vivadent, Schaan, Liechtenstein) 

and then eliminated in a burnout furnace (7000-5P; EDG Equipments Ltda, Sao Carlos, 
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Brazil) by heating the refractory die. Simultaneously, the IPS Empress ingots (shade A3) 

and the alumina plunger were heated at an increase of 3°C per minute to 850°C and held for 

90 minutes. After the above procedure was completed, the investment, plunger, and ingot 

were transferred to a furnace (EP 500; Ivoclar-Vivadent, Schaan, Liechtenstein) that 

increased the temperature to 1180°C.   After pressing the melted ingot into the mold and  

slowly allowing to cool  at room temperature, the ceramic was divested with air abrasion 

using 50µm glass beads at 2-bar pressure, then ultrasonically cleaned in a special liquid 

(Invex liquid; Ivoclar-Vivadent) for 10 minutes, washed in running water, and dried. The 

ceramic disc was then treated with 100µm aluminum oxide at 1-bar pressure. They were 

then sectioned under water with a diamond disc at low speed to obtain 1.2 mm thickness. 

The discs were finished and stain fired. 

IPS Empress 2: Wax patterns of 8 mm diameter, and 0.7 mm thickness were 

sprued and invested in IPS Empress 2 Speed investment (Ivoclar-Vivadent, Schaan, 

Liechtenstein). The wax was eliminated in a burnout furnace (700-5P; EDG Equipments 

Ltda, São Carlos, Brazil). Then, the investment, plunger, and 2 ingots of IPS Empress 2 

(shade 300) were transferred to a furnace (EP 500, Ivoclar-Vivadent, Schaan, 

Liechtenstein) and automatically pressed in accordance with manufacturer’s instructions. 

After cooling to room temperature, the ingots were divested with air particle abrasion 50-

m glass beads at 2-bar pressure, ultrasonically cleaned in a special liquid (Invex liquid; 

Ivoclar-Vivadent), washed in running water, and dried. It was then treated with 100-m 

aluminum oxide at 1-bar pressure. Porcelain Eris shade dentin A3 (Ivoclar-Vivadent) was 
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applied and fired over the di-silicate disc. The porcelain was ground and submitted to 

finishing and glaze firing to achieve 0.5 mm, providing a total disc thickness of 1.2 mm.   

Procera: A brass plate of 8 mm diameter and 0.5 mm thickness was fabricated 

on a lathe (Nardini ND 250 BE, Sao Paulo, Brazil). The plate was measured after finishing 

by using a precision electronic micrometer (Electronic Micrometer; LS Starrett, Athol, 

MA) with an accuracy of 0.002 mm. It was then sent to Gothenburg, Sweden and a ceramic 

plate of sintered high-purity aluminum-oxide ceramic was fabricated following the 

CAD/CAM technique used by Nobel Biocare (Gothenburg, Sweden). Porcelain AllCeram 

shade dentin A3 (Degussa Dental, Hanau, Germany) was applied and fired over the 

alumina disc. The porcelain was ground and submitted to finishing and glaze firing to 

achieve 0.7 mm. Thus, a 1.2 mm thickness disc was obtained.    

In-Ceram Alumina and In-Ceram Zirconia: A mold of stainless steel (20 x 20 x 

5 mm) with a central depression 8 mm diameter and 0.5 mm thickness was obtained. An 

impression of this model was made with polyvinyl siloxane, and then duplicated in a plaster 

(Special plaster; Vita Zahnfabrik, Bad Sackingen, Germany). The aluminum oxide powder 

or the aluminum zirconia powders were mixed with a special liquid as instructed by the 

manufacturer. The slurry mixture was then painted into the depression in the special plaster 

die and fired at 1120o C in the furnace (Inceramat II; Vita Zahnfabrik) for 10 hours. Glass 

infiltration was achieved by coating the aluminum oxide frameworks with glass powder 

(silicate-aluminum-lanthanum) mixed with distilled water, and fired for 4 hours at 1100o C. 

Then, the excess glass was removed by use of a fine-grained diamond (Renfert, Hilzingen, 

Germany). Subsequently, the specimens were air abraded using 100-m aluminum oxide at 
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a pressure of 3-bar. Porcelain VM7™ shade dentin A3 (Vita Zahnfabrik, Seefeld, 

Germany) was applied and fired over the infiltrated alumina and zirconia disc. The 

porcelain was ground and submitted to finishing and glaze firing to achieve a total disc 

thickness of 1.2 mm.  

Cercon: A wax pattern of 8 mm diameter and 0.4 mm in thickness was 

obtained. The wax model was placed in the Cercon brain (DeguDent) unit for scanning. 

The confocal laser system measured the wax to an absolute precision of 10 m and 

reproducibility of < 2 m, scanning was accomplished in 4 minutes. A Cercon base blank 

of pre-sintered zirconia was milled and then sintered to a fully dense structure in the Cercon 

Heat (DeguDent) at 1350o C for 6 hours. The specimens were finished by using 100-m 

aluminum oxide at a pressure of 3-bar. Cercon Ceram S shade dentin A3 (DeguDent, 

Hanau, Germany) was applied and fired on the zirconia disc. The porcelain was ground, 

finished, and glazed to achieve a total disc thickness of 1.2 mm thickness. 

 

Resin cement activation  

The resin cement Panavia F 2.0 (Kuraray Co. Ltd, Osaka, Japan), shade A3, was 

mixed according to manufacturer’s directions and inserted in a nylon mold having a 

centered hole with a 5.0 (±0.01) mm diameter and 1.0(±0.01) mm thickness. The nylon 

mold was pre-coated with black paint (Colorgin Spray, Sherwin-Wiliams do Brasil Ind 

Com Ltda, São Bernardo do Campo, Brazil) to limit light transmission through the ceramic 

and the resin cement only.22 A polyester film (25 µm thickness) was placed above the mold. 
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The cement was mixed under controlled temperature 23 (±1) °C and relative humidity 

(higher than 30%), according to ISO 4049. 

For the activation modes, the resin cement was chemically activated (chemical 

activation mode) and photo/chemical activated by two modes: directly photo-activated 

(direct activation mode) and photo activated through the discs manufactured for 8 different 

ceramics (activated through ceramic mode). Two post-cure times were investigated, 

immediately and 24-hour post-cure. In immediately post-cure, specimens were evaluated 

between 10-20 minutes after light-activation or between 20-30 minutes for the chemically-

activated groups. They were then stored in dry and dark condition at 37 ° C. In 24-hour 

post-cure, specimens were stored in dry and dark conditions at 37°C for approximately 24 

hours.  

Specimens in which the cement was light-activated through different ceramic 

discs, the discs were interposed between the tip of the light source unit and the polyester 

film that covered the resin cement before irradiation. The resin cement was light-activated 

by a quartz-tungsten-halogen light unit XL 2500 (3MESPE, St. Paul, MN, USA) with an 

irradiance of 650 mW/cm2 for 40 seconds. The light intensity of the curing unit was 

measured with a hand held radiometer (Curing Radiometer, model 100, Demetron/Kerr, 

Danbury, CT, USA).   

 

Knoop Hardness Testing 

Ten discs of resin cement for each group tested were finished through 1200 SiC  

discs and subjected to a universal indenter tester (HMV – 2, Shimadzu, Tokyo, Japan) for 

Knoop Hardness testing (KHN). Measurements were obtained at 40 X magnification and 
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values were obtained at 100 µm from the irradiated surface after a force of 50 grams-force 

was applied for 15 seconds. Three indentations were made in each specimen (n=30), with a 

distance of 1 mm between them and mean was calculated for each specimen. The KHN was 

calculated automatically by the tester’s software. Data were analyzed statistically using 

two-way analysis of variance (ANOVA) and multiple comparisons were conducted by 

Tukey’s test. All tests were performed at p <0.05. 
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RESULTS 

 

The means and standard deviations of KHN for each group are shown in Table 

2 and Figure 1. The KHN of the resin cement was not only affected by the ceramic 

composition, but also by the post activation testing time (p=0.00001).  

The direct activation mode showed higher statistical significance KHN than 

activated through ceramics groups and chemical activation groups for both testing time, 

immediately and 24-hour.  

Both testing time, immediately and 24-hour, Duceram, Cergogold, IPS Empress 

and IPS Empress 2 showed higher statistical significance KHN than Procera, Cercon, In 

Ceram Alumina and In Ceram Zirconia.  

Through ceramics activation groups and chemical activation groups, 24-hour 

testing time showed higher statistical significant KHN than immediately, but statistical 

significance was not observed for direct activation mode. 

Immediately testing time, the direct activation mode was statistically superior to 

the activated through ceramics groups and chemical activation mode. Duceram and 

Cergogold showed KHN statistically significant higher than IPS Impress 2, and IPS 

Empress showed intermediate KHN. Procera and Cercon showed lower KHN than IPS 

Empress 2, however, higher than chemical activation mode. On the other hand, the KHN 

for In Ceram Alumina and In Ceram Zirconia groups did not show significant statistical 

difference than the chemical mode activation. 
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For 24-hour testing time, the activated through ceramics groups showed 

intermediate KHN between direct activation mode (higher values) and chemical activation 

mode (lower values). Duceram and Cergogold showed a statistically significant higher 

KHN than IPS Empress 2, and IPS Empress showed intermediate values. Procera, Cercon, 

In Ceram Alumina and In Ceram Zirconia showed a statistically significant lower KHN 

within the activated through ceramics groups. 
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DISCUSSION 

 

The direct mode resulted in a statistically significant higher KHN than the 

activated through the ceramics groups and chemical mode groups for both testing time. The 

KHN for 24-hour post activation was always statistically superior to the immediately post 

activation time except for direct activation mode. The glass and di-silicate based ceramics 

showed statistically higher KHN than the alumina and zirconia based ceramics in both 

testing time (Table 2 and Figure 1). Therefore, the null hypotheses evaluated in this study 

were rejected.  

The present study suggested the ceramic type and composition are critical 

factors for the hardness development in indirectly activated dual-cured resin luting tested. 

Furthermore, it could be assumed that the degree of polymerization depends on the 

interaction between ceramic composition and light attenuation, and the indirect activation 

decreases the level of irradiance reaching the luting material. As a result, the polymer 

network development could be affected by diminishing the monomer conversion, 

interfering with the type and degree of cross-linking.17 The results of the present study 

confirm that the most translucent ceramics, like Duceram, Cergogold, IPS Empress and, 

IPS Empress 2, showed statistically higher KHN than the most opaque ones, like Procera, 

Cercon, In Ceram Alumina and, In Ceram Zirconia (Table 2 and Figure 1). 

The direct activation mode showed statistically higher KHN than the activated 

through ceramics groups and chemical activation mode groups for both testing time, 

immediately and 24-hour (Table 2 and Figure 1). Therefore, the self-curing component 



21 
 

itself might not be enough to ensure the adequate polymerization.6 In addition, the results 

showed the luting agent formulation is a critical factor for the development of hardness 

indirectly dual-cured activated. Even though it is difficult to predict whether different 

clinical performances are likely to occur for restorations luted under similar conditions to 

those tested in the present study, the use of high intensity light source or increase the light 

exposure time is advisable when cementing more opaque ceramic restoration.17 In the 

present study the KHN was measured immediately after mixing and 24-hour. Further 

researches to study the effect of time on the KHN over a long period of time are 

encouraged.     

Since it has been shown that even well polymerized resin cements can release 

some residual monomers, it is reasonable to conclude that more substances would elute 

from poorly polymerized resin cement. These substances have the potential to irritate soft 

tissues and pulp, stimulate the growth of bacteria and promote allergic reactions.16 

Furthermore in a real clinical situation, many times we confront with a cement line that 

stays in direct contact with the gingiva in the intrasulcular margin of crown 

preparation.3,4,7,9 Therefore, those monomers released from not well polymerized cement 

would potentiate the gingival irritation, and lead adverse clinical consequences such as 

microleakage, postoperative sensitivity, discoloration, and secondary caries.3,4,7,9,15,16,26 

As shown in results, the immediately testing time showed lower KHN than 24- 

hour testing time. Similar findings have been observed in previous studies evaluating 

different cements.13, 16, 21, 23, 25 Hence, restorations placed are unstable at the immediately 

time, and could be dislocated during the mastication process.  Thus we recommend that a 

clinical protocol may be created for a cementation process that includes additional time to 
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allow adequate polymerization. Moreover, this protocol should include an advice to the 

patients to avoid chewing hard-based diet for at least 24 hours.   
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CONCLUSIONS 

 

 Within the limitations  of this study the following conclusions may be drawn: 

1. Polymerization through ceramic affects the activation mode. 

2. Ceramic composition affects the polymerization of the dual resin cement. 

3. An improvement of microhardness was found after 24-hour testing time except for 

directly activated mode. 

4. Alumina and zirconia based ceramics demonstrate a significantly greater decrease in 

Knoop hardness values than did silica and di-sicate based ceramics. 
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Table 1. Materials, Brand Names, Manufacturers, Composition and Batch Used. 

Materials Brand Name Manufacturer Composition* Batch # 
Feldspatic 

porcelain 
Duceram Plus 

Degussa Dental, Hanau, 

Germany 
K2O2, Al2O3, SiO2, SnO, ZrO, Na2O, CaO, 

pigments 0122/5 

Feldpatic ceramic Cergogold 
Degussa Dental,  Hanau, 

Germany SiO2, Al2O2, K2O, Na2O, CaO 2018/12 

Feldspatic 

porcelain 
Duceragold 

Degussa Dental,  Hanau, 

Germany 
SiO2,Al2O3,K2O,Na2O,CaO,BaO, 

SnO2,Li2O,F,Sb2O3,CeO2,B2O3,TiO2 
0230/4 

Leucite ceramic IPS Empress 
Ivoclar,Vivadent, 

Schaan, Liechtenstein 
SiO2, Al2O3, K2O, Na2O, CeO2, B2O3, CaO, 

BaO, TiO2 
F68542 

Lithium di-

silicate ceramic 
IPS Empress 2 

Ivoclar-Vivadent, 

Schaan, Liechtenstein 
SiO2, Al2O3, La2O3 , MgO, ZnO, K2O, Li2O, 

P2O5 
G02567 

Feldspatic 

porcelain 
Eris 

Ivoclar-Vivadent, 

Schaan, Liechtenstein 
SiO2, K2O, ZnO, ZrO2, Li2O, CaO, Na2O, 

Al2O3) F69117 

Alumina high 

content ceramic 
Procera 

Nobel Biocare,  

Gothenburg, Sweden 
Al2O3 03/2003 

Feldspatic 

porcelain 
AllCeram 

Degussa Dental, Hanau, 

Germany 

SiO2,Al2O3,K2O,Na2O,CaO,Y2O3,SnO2,Li2O,

ZrO2 0182/1 

Alumina ceramic 
In Ceram 

Alumina 

Vita Zanfabrik, Seefeld, 

Germany Al2O3, La2O3, SiO2, CaO, other oxides 10780 

Zirconia ceramic 
In Ceram 

Zirconia 

Vita Zanfabrik, Seefeld, 

Germany 

Al2O3 (62%), ZnO (20%), La2O3 (12%), 
SiO2 (4.5%), CaO (0.8%), other oxides 

(0.7%) 
22470 

Feldspatic 

porcelain 
VM7 

Vita Zanfabrik, Seefeld, 

Germany SiO2,Al2O3,B2O3,Na2O,K2O,CaO and TiO2 62530 

Zirconia ceramic Cercon 
DeguDent,  Hanau, 

Germany 
ZrO2, Y2O3, Hf O2, SiO2,Al2O3 200186

69 

Feldspatic 

porcelain 

Cercon Ceram 

S 

DeguDent,  Hanau, 

Germany 
SiO2,Al2O3,K2O,Na2O and silicate glasses 30240 

Resin cement Panavia F 2.0 Kuraray, Osaka, Japan 

Paste A: BPEDMA, MDP, DMA, silica, 
barium sulfate, dibenzoylperoxide. 

 
Paste B: N,N-diethanol-p-toluidine, silica 

sodiumfluoride, Polyethyleneglycol, 
glycerine, sodium benzenesulfinate cont. gel. 

51581 

*# Manufactures information 
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Table 2. Knoop Hardness Number (KHN) of Panavia F 2.0 Resin Cement as a Function of 
Activation Mode and Testing Time (Mean ± Std dev) n=30.  

 

Activation Mode 
Testing time 

Immediate 24 Hours 
Direct 51.56 (2.93) Aa 52.03 (3.63) Aa 

Duceram 22.26 (1.85) Bb 31.33 (2.84) Ba 
Cergogold 22.09 (3.83) Bb 32.20 (3.07) Ba 

IPS Empress 18.09 (2.02) BCb 30.19 (3.91) Bca 
IPS Empress 2/Eris 15.85 (3.15) Cb 26.96 (3.30) Ca 
Procera/Allceram 12.77 (1.54) Db 20.10 (2.61) Da 

Cercon/CerconCeram 11.20 (1.79) Db 17.79 (2.06) Da 
In Ceram/VM7 D 9.19 (0.73) DEb 18.90 (1.54)Da 
In Ceram/Zirconia 8.78 (0.90) DEb 18.71 (2.06) Da 

Chemical 8.63 (1.29) Eb 14.98 (2.09) Ea 
 

Upper cases denote significant differences between Activation Modes (p≤ 0.05) and lower cases 
denote significant differences between Testing Times (p≤ 0.05) (Tukey’s test). 
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Figure 1. Knoop Hardness Number (KHN) of Panavia Resin Cement as a Function of Activation 
Mode and Testing Time (Immediate and 24 hours). 
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CAPÍTULO 2 
 
Influence of glazed zirconia on dual luting agent bond strength 

 

Running title: Bond strength of a dual luting agent to zirconia 

 

Clinical significance: Treatment of zirconia ceramic surfaces with a low fusing porcelain 

glaze significantly increased the bond strength of dual resin cement to the ceramic surface. 
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Abstract 

 

Purpose: The aim of this study was to evaluate a novel surface treatment that use a low 

fusing porcelain glaze for promoting a bond between zirconia-based ceramic and a dual 

resin luting agent and to analyze the association of this surface treatment with air particle 

abrasion, hydrofluoric acid etching, and silanization treatments. 

Materials and Methods: Eighty Yttrium-stabilized tetragonal Zirconia ceramic discs 

(Cercon, Degudent, Hanau, Germany) were fabricated and received eight different surface 

treatments: Group I - 110 µm aluminum oxide particle abrasion. Group II - 110 µm 

aluminum oxide particle abrasion and silane, Group III - 50 µm aluminum oxide particle 

abrasion, Group IV - 50 µm aluminum oxide particle abrasion and silane, Group V - low 

fusing porcelain glaze and hydrofluoric acid, Group VI - low fusing porcelain glaze, 

hydrofluoric acid, and silane, Group VII - low fusing porcelain glaze and 50 µm aluminum 

oxide particle abrasion, and Group VIII - low fusing porcelain glaze, 50 µm aluminum 

oxide particle abrasion, and silane. After the treatments, Enforce resin cement (Dentsply, 

Caulk, Milford, DE, USA) was used to fill an iris that was cut from micro bore Tygon 

tubing which was put on the ceramic surface and photo-cured for 40 seconds by 

800mW/cm2 halogen light curing intensity. The microshear bond test was performed at a 

cross-head speed of 0.5 mm/min until failure, totalizing ten specimens per ceramic disk and 

ten disks per group. Data and multiple comparisons were statistically analyzed using one-

way ANOVA and Tukey’s test respectively, both at 0.05 significance level.  
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Results: The bond strength was only affected by the different treatments, but not by the 

silanization. The low fusion porcelain glaze groups in association with air particle abrasion 

or hydrofluoric acid showed bond strength values statistically superior to the groups that 

utilized the conventional air particle abrasion treatments with 50 and 110 µm aluminum 

oxide particles.  

Conclusion: The low fusing porcelain glaze treatment promotes a significant improvement 

of zirconia-resin bond strength, zirconia-based ceramic surfaces are not affected by the air 

particle abrasion with aluminum oxides, and silane agent not influences the bond strength 

to zirconia-based ceramic. 

 

Key words: dental ceramic, agent luting, microshear, zirconia, low fusing porcelain glaze. 
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Introduction 

 

The unique mechanical properties, chemical stability, and biocompatibility 

make zirconia-based ceramic an attractive core material for fabrication of all-ceramic 

restorations.1 Combined with CAD/CAM technology, the fabrication of complex 

restorations incorporating zirconia cores has become a completely digitalized process and a 

relatively simple procedure.2,3 The flexural and fracture resistance are considerably higher 

than those of other dental ceramics4 and the zirconia-based ceramic showed a distinct 

mechanism of stress-induced transformation toughening, which means the material that 

undergoes microstructural changes when submitted to stress.4-6 Zirconia-based ceramic can 

actively resist crack propagation through a transformation from a tetragonal to a monoclinic 

phase at the tip of a crack, which is accompanied by a 3-4% volume increase.5 Based on 

these characteristics, zirconia-based ceramic is used as a prosthetic implant for medical and 

dental applications,  posts,  implant abutments, orthodontic brackets and frameworks for 

crown and bridges.2,7,8,9   

Long-term durable bond strength to ceramic surface is the aim for the dental 

clinical application and depends to the micromechanical and chemical interaction between 

luting agent and ceramic surface. The retention and the stability of the ceramic restorations 

primarily depend on the adhesive bond strength, which must be strong enough to resist the 

expected functional loads.10 The luting of a zirconia restoration can be done with zinc 

phosphate or with modified glassionomer cements.11 However, the advantages of resin 

luting agents, for example marginal seal, good retention and improvement of fracture 
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resistance, have made them frequently more used even for high strength ceramics.11,12 

Several studies investigated the bond strength to zirconia-based ceramic and several 

methods are purposed for promote a durable chemical and micromechanical bond with 

zirconia. The conventional treatments for surface ceramic such as oxides air abrasion and 

hydrofluoric acid etching are not able to promote a strong and stable bond with zirconia.13 

The air-abrasion might affect the ceramic surface by creating microcracks which might 

reduce the fracture strength of the ceramic14 and the hydrofluoric acid etching combined 

with silanization, which is used with other glass and disilicate-based ceramics, was not 

successful with acid resistant and glass-free zirconia ceramics.7,13 

In the last years, the literature showed new treatments that aimed optimal bond 

strength to zirconia-based ceramic. However, a chemical bonding to zirconia was limited 

by the inertness of the ceramic composition and various surface roughening methods were 

investigated to promote an optimal bond to zirconia, such as silica coating followed by 

silanation,15 plasma spraying,11 association between air particle abrasion with the phosphate 

ester monomer (MDP),8 ceramic primers,7 Er:YAG laser,16 selective infiltration etching 

technique,7 and heat-induced maturation.10 For all this treatments was observed an 

immediately increase of the bond strength, however, the association between bond strength 

increase and durability ahead of clinical performance, as well as the development of a 

simple and easier surface treatment protocol for the clinicians, are still not full defined and 

needs more clinical and longitudinal laboratories researches for promote a safe and easy 

protocol for zirconia ceramic.  

The purpose of this study was to evaluate a novel surface treatment that use a 

low fusing porcelain glaze for promotes a bond between zirconia-based ceramic and a dual 
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resin luting agent, and analyzing the association of this surface treatment with the 

conventional air particle abrasion, hydrofluoric acid etching and silanization treatments. 

The null hypothesis was that the ceramic conventional treatments and a novel glaze surface 

treatment not influence the microhardness of a dual cured agent luting. 
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Materials and Methods 

 

Ceramic Surface Treatments 

Eighty ceramic discs based on Yttrium-stabilized tetragonal Zirconia (Cercon, 

Degudent, Hanau, Germany) were fabricated; all measuring 16 mm in diameter and 1 mm 

thickness. The ceramic discs were randomly assigned to eight treatment sequences (10 

discs for each) and then received one of the following surface treatments: 

Group I: 110 µm aluminum oxide particle abrasion as finished by the 

manufacturer. No additional treatment was applied, but the ceramic surface was washed 

with tap water for 1 minute, ultrasonically cleaned in water bath for ten minutes, and air-

dried. 

Group II: No additional treatment was applied, but the ceramic surface was 

washed with tap water for 1 minute, ultrasonically cleaned in water bath for ten minutes, 

and air-dried. A silane agent (Scotchbond Ceramic Primer, 3M ESPE, Germany) was 

applied on the ceramic surface and allowed to dry for 5 minutes.  

Group III: The ceramic surface received air particle abrasion with 50 µm 

aluminum oxide for 5 seconds at 4-bar pressure. The distance of the tip from the ceramic 

surface was approximately 4 mm, and washed with tap water for 1 minute, ultrasonically 

cleaned in water bath for ten minutes, and air-dried. 

Group IV: The ceramic surface received air particle abrasion with 50 µm 

aluminum oxide for 5 seconds at 4-bar pressure. The distance of the tip from the ceramic 

surface was approximately 4 mm. and washed with tap water for 1 minute, ultrasonically 
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cleaned in water bath for ten minutes, and air-dried. A silane agent (Scotchbond Ceramic 

Primer, 3M ESPE, Germany) was applied on the ceramic surface and allowed to dry for 5 

minutes.  

Group V: At the beginning a low fusing porcelain glaze was applied on the 

ceramic surface with a brush # 1 (Ney, Germany) and sintered following manufacturer’s 

instructions. After that, the glaze was conditioning by acid etched with hydrofluoric at 10% 

(Dentsply, USA) during 20 seconds and washed with tap water for 1 minute, and finally 

ultrasonically cleaned in water bath for ten minutes, and air-dried. 

Group VI: At the beginning a low fusing porcelain glaze was applied on the 

ceramic surface with a brush # 1 (Ney, Germany) and sintered following manufacturer’s 

instructions. After that, the glaze was conditioning by acid etched with hydrofluoric at 10% 

(Dentsply, USA) during 20 seconds and washed with tap water for 1 minute, and finally 

ultrasonically cleaned in water bath for ten minutes, and air-dried. A silane agent 

(Scotchbond Ceramic Primer, 3M ESPE, Germany) was applied on the ceramic surface and 

allowed to dry for 5 minutes.  

Group VII: At the beginning a low fusing porcelain glaze was applied on the 

ceramic surface with a brush no 1 (Ney, Germany) and sintered following manufacture’s 

instruction. After that, the glaze excess was removed with air particle abrasion with 50 µm 

aluminum oxide for 5 seconds at 4-bar pressure. The distance of the tip from the ceramic 

surface was approximately 4 mm, and washed with tap water for 1 minute, ultrasonically 

cleaned in water bath for ten minutes, and air-dried. 

Group VIII: At the beginning a low fusing porcelain glaze was applied on the 

ceramic surface with a brush no 1 (Ney, Germany) and sintered following manufacture’s 
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instruction. After that, the glaze was conditioning with air particle abrasion with 50 µm 

aluminum oxide for 5 seconds at 4-bar pressure. The distance of the tip from the ceramic 

surface was approximately 4 mm. and washed with tap water for 1 minute, ultrasonically 

cleaned in water bath for ten minutes, and air-dried. A silane agent (Scotchbond Ceramic 

Primer, 3M ESPE, Germany) was applied on the ceramic surface and allowed to dry for 5 

minutes.  

 

Bonding procedure 

The materials used in this study are listed in Table 1. 

After the treatments, in order to prepare the resin cement cylinder for 

cementation, equal lengths of Enforce resin cement (Dentsply, Caulk, Milford, DE, USA) 

base and catalyst pastes were mixed for 20 seconds and then used to fill an iris that was cut 

from micro bore Tygon tubing (TYG-030, Small Parts Inc., Miami Lakes, FL) with an 

internal diameter and height of approximately 0.75 and 0.50 mm, respectively (Figure 1). 

The Tygon tubing containing resin luting agent was put on the ceramic surface and photo-

cured for 40 seconds by 800mW/cm2 halogen light curing intensity. In this manner, each 

ceramic surface was bonded at ten different locations with the resin cylinders. The 

assembly of ceramic/resin luting agent was stored at room temperature (23o C ± 2o C) for 1 

hour prior to removal of the Tygon tubing, then, the specimens were immersed in distilled 

water at 37 o C for 24 hours before proceeding for the microshear bond test. 
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Microshear bond test 

Before the test, all the ceramic/resin cylinder interfaces were analyzed with an 

optical microscope 40 X (Olympus, Tokyo, Japan) for bonding defects. The cylinders with 

apparent interfacial gap formation, bubble inclusion, or any other defects were excluded 

and replaced by another one. Three sets of ceramic/resin luting agents (30 cylinders of resin 

cement to each treatment group) were used for each test group. 

The assembly of the ceramic plate and the resin cement was adhered to the 

testing device using cyanoacrylate adhesive (Superbond, Loctite, Sao Paulo, Brazil), which 

in turn was placed in a universal testing machine (EMIC DL-3000, São José dos Pinhais, 

PR, Brazil) for microshear bond testing (Figure 2). An edge of stainless steel with 0.5 mm 

in thickness was fixed on the superior part of a universal testing machine, and was gently 

adapted against the ceramic/resin luting agent interface. A microtensile bond test was 

applied to each specimen at a cross-head speed of 0.5 mm/min until failure, totalizing ten 

specimens per ceramic disk and three disks per group. 

           

Statistical Analysis   

The data were statistically analyzed using one-way ANOVA and multiple 

comparisons were made using Tukey’s test. Statistical significance level was set at α = 

0.05.  
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Results 

 

The bond strength of the dual resin cement was only affected by the different 

treatments (p<0.001), but not by the silanization (Table 2). The means and standard 

deviations of microshear bond strength values for the groups tested are shown in Table 3. 

The groups that utilized the low fusing porcelain glaze in association with air 

particle abrasion or hydrofluoric acid showed bond strength values statistically superior to 

the groups that utilized the conventional air particle abrasion treatments with 50 and 110 

µm aluminum oxide particles (Figure 3 and 4) which is the treatment recommended for the 

zirconia manufacturer (p<0.001). 

The low fusing porcelain glaze treatment in association with hydrofluoric acid, 

independent of the silanization process, showed bond strength values statistically superior 

to the others groups tested. The groups that associated low fusing porcelain glaze and 50 

µm aluminum oxide air particle abrasion showed statistically intermediate bond strength 

values. The air particle abrasion (groups I, II, III, and IV) showed bond strength values 

statistically inferior to glaze (groups V, VI, VII, and VIII), and not differing in relation to 

different oxides granulations tested, as well as silanization process (Table 3). 
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Discussion 

 

The surface roughness methods to densely sintered zirconia ceramics are 

limited by the inertness and hardness of this ceramics. 10 These characteristics become 

difficult to create grooves for micro retention and chemical bond for the optimal interaction 

with luting agents. The novel surface treatment evaluated that use a low fusing porcelain 

glaze was able to promote superior bond strength values between zirconia-based ceramic 

and a dual resin luting agent, and the association with the traditional surface treatment 

methods, conventional air particle abrasion (Figures 3 and 4) and hydrofluoric acid etching 

(Figure 5), showed strong bond strength in relation to the zirconia manufacture’s treatment 

(Table 3). Based on the results obtained, the proposed null hypothesis that the ceramic 

conventional treatments and a novel glaze surface treatment would not influence the 

microhardness of a dual cured agent luting was not accepted. 

In attempt of promote an optimal bond strength to zirconia-based ceramic, 

several roughening methods have been investigated.7,810,11,15,16 For all this roughening 

methods, that utilized silica coating followed by silanation,15 plasma spraying,11 association 

between air particle abrasion with the phosphate ester monomer (MDP),8 ceramic primers,7 

Er:YAG laser,16 selective infiltration etching technique,7 and heat-induced maturation;10 

was observed an immediately increase of the bond strength. However, the methods’ 

durability ahead of clinical performance and aged laboratories researches require further 

investigations for stabilized a safe protocol for the zirconia-based ceramics. The low fusing 

porcelain glaze treatment was able to promote a bond strength increase and showed to be a 
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simple treatment that correlated traditional treatments for the clinicians like hydrofluoric 

acid or air particle abrasion, becoming an advantage. 

The ceramic surface treatments should follow some pre-requisites like not 

compromise the integrity of the ceramic, not promote additional problems with crown 

adaptation and good interaction with the agent luting.11 On the contrary, the surface 

roughening methods resulted in structural damage, material loss, grain pullout, and creation 

of sharp crack tips,17 thus, the bonded restorations becomes more susceptible to radial 

cracking under functional loads.10 The low fusion porcelain glaze promotes a vitreous layer 

into the zirconia-based ceramic surface. The zirconia-base ceramic surface treated with 

glaze seems to be similar to glass-based ceramic surface and become possible the creation a 

ceramic surface that is susceptible to air abrasion and hydrofluoric acid treatments, as well 

as an interaction with the silane agent for promoting a chemical reactivity surface. 

The highest bond strength was observed for the low fusion porcelain glaze 

groups, and the association with hydrofluoric acid conditioning showed superior statistical 

bond strength values and promoted a better interaction within the cementation process 

(Table 3). The use of silane agent did not improve the bond strength to zirconia-based 

ceramic for groups tested and this results corroborated with the some studies which was 

observed that silane utilization not presented good performance for high crystals 

ceramics.6,11,18,19 The zirconia manufacture’s treatment, as well as air particle abrasion with 

50 µm aluminum oxide, is not able to promote satisfactory bond strength to zirconia surface 

due the ceramic composition, and other pre-treatments that aimed to promote roughness 

increase or chemical bond interaction are necessaries for the immediately bond strength. 
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The optimal interaction between ceramic surface and agent luting are necessary 

for the success and the long-term durability restoration.19 The mechanical properties make 

zirconia-based ceramic a promising core material for fabrication of all-ceramic restorations 

and others dental applications;1,2,7,8,9 and new clinical and artificial aging researches are still 

necessary for promote a safe and easy protocol of the zirconia surface treatment. The low 

fusing porcelain glaze treatment seems to be a promising treatment for the zirconia-based 

ceramics and should be considered in new researches like the influence of this treatment in 

the marginal adaptation.   
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Conclusions 

 

Within the limitations of this study, these findings may be drawn: 

1. The bond strength to zirconia-based ceramic surface is not affected by the air particle 

abrasion with aluminum oxides. 

2. The low fusing porcelain glaze treatment promotes a significant improvement of 

zirconia-resin bond strength. 

3. Silane agent not influences the bond strength to zirconia-based ceramic. 
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Table 1. Material type, brand name, manufacturer, and composition. 

 

* Manufactures information 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Material type Brand name Manufacturer Compositions* 

Zirconia Ceramic Cercon Degudent ZrO2 stabilized by Y2O3 

 

Low Fusion 

Porcelain Glaze 

 

Cercon Ceram Kiss 

 

Degudent Vitreous porcelain and pigments 

    

Resin Cement Enforce Dentsply 
BisGMA, BHT, EDAB, TEGDMA, Fumed 

Silica, Silanized Barium, Aluminum 
Borosilicate Glass (66% wt) 

 

 

Ceramic Primer 

 

Scotchbond Ceramic 

Primer 

 

3M ESPE 

 
Bisphenol A polyethoxy dimethacrylate 

3-Methacryloyloxypropyl trimethoxysilane 
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Table 2.  Results of one-way ANOVA for microshear bond test of Enforce dual resin 
cement bonded to zirconia-based ceramic. 

 

Source of 
Variation Df Sum of Squares Meam Square F P value 

Treatment 7 15367.386 5122.462 96.781 <0.001 
Error 90 1026.5252220 11.4058358 --- --- 
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Table 3. Means and standard deviations of micro shear bond strength in MPa. 

 
Capital letters denote significant differences among the zirconia-based surface treatments 
(p<0.001) (Tukey’s test).  

 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zirconia-Based Ceramic Treatment 

110 µm Air Particle Abrasion  50 µm Air Particle Abrasion  
Glaze +  50 µm Air Particle 

Abrasion  Glaze + Hidrofluoric Acid 

Nosilane Silane  Nosilane Silane  Nosilane Silane  Nosilane Silane 

4.06 (1.36) C 5.33 (1.58) C  3.95 (1.24) C 6.02 (1.61) C  17.45 (8.55) B 18.41 (7.47) B  20.75 (8.29) A 25.17 (8.37) A 
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Figure 1. Bonding procedure of Enforce resin cement to zirconia-based ceramic 
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Figure 2. Diagram of micro shear bond Test 
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Figure 3. Zirconia-base ceramic treated with 110 µm aluminum oxides air particle abrasion 

(Manufacture’s recommendation)  
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Figure 4. Zirconia-base ceramic treated with 50 µm aluminum oxides air particle abrasion  
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Figure 5. Zirconia-base ceramic treated with 10% hydrofluoric acid conditioning  
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CONCLUSÕES 

 

Com base nos resultados obtidos e dentro das limitações destes estudos in vitro, 

pode-se concluir que: 

1. A fotoativação de um agente de cimentação resinoso dual através de 

cerâmicas reforçadas e opacas resulta em menores valores de KHN.  

2. A composição e a espessura da cerâmica promovem atenuação da luz e 

menor efetividade de polimerização, resultando em menor valor de KHN.  

3. Superfícies cerâmicas à base de zircônia não são significantemente afetadas 

pelo jateamento com partículas de óxido de alumínio. 

4. O tratamento à base glaze promove um aumento significante da resistência 

de união à cerâmica à base de zircônia. 

 5. A silanização não promove aumento significante da resistência de união para 

a cerâmica à base de zircônia.  
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