UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA

DEPARTAMENTO DE PROCESSOS QUÍMICOS

Oxidação Total de Metano sobre Catalisadores de Paládio e Estanho Suportados em Zircônia

JUAN JOSÉ LOVÓN QUINTANA Orientador : Prof. Dr. Gustavo Paim Valença

Tese de Doutorado apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para a obtenção do título de Doutor em Engenharia Química

Campinas – São Paulo

Outubro / 2008

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE -UNICAMP

L949o	Lovón Quintana, Juan José Oxidação total de metano sobre catalisadores de paládio e estanho suportados em zircônia / Juan José Lovón QuintanaCampinas, SP: [s.n.], 2008.
	Orientador: Gustavo Paim Valença. Tese de Doutorado - Universidade Estadual de Campinas, Faculdade de Engenharia Química.
	 Catalisadores. 2. Oxidação. 3. Cinética química. Catálise heterogênia. I. Valença, Gustavo Paim. II. Universidade Estadual de Campinas. Faculdade de Engenharia Química. III. Título.

Título em Inglês: Methane oxidation over zirconia-supported palladium and tin catalysts Palavras-chave em Inglês: Catalysts, Oxidation, Chemical kinetics, Heterogeneous catalyst Área de concentração: Departamento de Processos Químicos Titulação: Doutor em Engenharia Química Banca examinadora: Gilberto Marques da Cruz, João Batista Oliveira dos Santos, Elizabete Jordão, Antônio José Gomes Cobo, Ricardo Vieira Data da defesa: 24/10/2008 Programa de Pós Graduação: Engenharia Química TESE DE DOUTORADO DEFENDIDA POR JUAN JOSE LOVÓN QUINTANA E APROVADA EM 24 DE OUTUBRO DE 2008 PELA BANCA EXAMINADORA CONSTITUÍDA PELOS PROFESSORES DOUTORES:

1 Prof. Dr. Gustavo Paim Valença Dr. Gilberto Malques da Cru Prof. Dr. João Batista Oliveira dos Santos Dra. Elizabete Jordão Profa. Prof. Dr. Antônie José Gomes Cobo Prof. Dr. Ricardo Vieira

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DE DOUTORADO EM ENGENHARIA QUÍMICA.

km Orientador: Prof. Dr. Gustavo Paim Valença

À minha querida esposa Adriana Aos meus pais José e Estela À minha irmã Sandra

AGRADECIMENTOS

Ao Prof. Dr. Gustavo Valença pela sua amizade, orientação, incentivo e contribuição no desenvolvimento e discussões da tese.

Aos meus amigos do Laboratório para o Estudo de Adsorção e Catálise – LEPAC, Adriana, Ricardo, Géssie, Victor, João, José e Danieli pelo seu companheirismo, amizade e colaboração.

Aos membros do Laboratório de Recursos Analíticos e de Calibração – LRCA, Luis Ferracin, Kelly e Andrea pela sua disposição e apoio nas análises realizadas durante a fase experimental do trabalho.

Aos membros da minha família Estela, José, Sandra, Freddy, Verónica e Marcelo e a minha nova família brasileira Rosa Maria, José Francisco, Luciana, Camila e Davi pela sua compreensão, apoio, incentivo e força para a conclusão da tese.

Aos professores e funcionários da Faculdade de Engenharia Química – UNICAMP.

Ao CNPQ pelo apoio financeiro que tornara possível a realização deste trabalho.

RESUMO

Pd e Sn foram suportados sobre ZrO₂ por impregnação incipiente usando Pd(NO₃)₂.XH₂O e SnC₄H₄O₆.XH₂O como precursores. Os sólidos foram secados e calcinados a 800, 1100 e 1400 K e caracterizados por ICP-AES, TEM, XRD, TPR, adsorção de H₂, O₂ e CO e por titulação de oxigênio adsorvido com H₂. Nos sólidos contendo Pd ou Pd-Sn calcinados a 800 K as partículas de Pd foram completamente oxidadas formando fases com baixo grau de cristalinidade e os sólidos calcinados a 1400 K a fase ativa foi decomposta a Pd° e sinterizada, formando partículas de Pd com planos cristalinos expostos de baixa densidade Pd(200). A quantidade de O₂ adsorvido sobre Pd-Sn ou Sn suportado sobre ZrO₂ foi maior que nos sólidos contendo Pd suportado sobre ZrO₂. O tamanho das partículas metálicas de Pd determinadas por adsorção de H₂ foi maior que nos sólidos contendo Sn.

Os testes de reação da oxidação de CH₄ sobre catalisadores de Pd e Sn suportados sobre a ZrO₂ foram realizados em um reator de fluxo contínuo a pressão atmosférica, na faixa de temperaturas de 450 até 750 K. A atividade catalítica dos sólidos foi dependente das condições de preparação dos catalisadores. Os sólidos Pd-Sn/ZrO₂ calcinados a temperaturas \leq 1100 K mostraram valores de TOR de 2 a 4 vezes maiores do que para Pd/ZrO₂ devido à alta capacidade de armazenamento de O₂ nos sólidos contendo Pd e Sn. No entanto, com o aumento da temperatura de calcinação a contribuição do Sn diminuiu, sendo praticamente zero a 1400 K.

ABSTRACT

Pd and Sn were supported on ZrO_2 by incipient wetness using Pd(NO₃)₂.XH₂O and SnC₄H₄O₆.XH₂O as precursors. The solids were dried and calcined at 800, 1100 and 1400K. The solids were characterized by ICP- AES, TEM, XRD, TPR, adsorption of H₂, O₂, and CO and by titration of adsorbed oxygen with H₂. In the solids containing Pd or Pd-Sn calcined at 800 K the Pd particles were made of fully oxidized low crystalline phases and the solids calcined at 1400 K the active phase was decomposed to Pd^o and sinterized, with the formation of particles with exposed low density planes such as Pd(200). The amount of adsorbed O₂ on Pd-Sn or Sn supported on ZrO₂ was higher than that on Pd supported on ZrO₂. The size of the Pd particles determined by adsorption of H₂ was larger for the Sn-containing samples.

The methane catalytic combustion on palladium and tin catalysts supported on ZrO_2 was carried out in a flow reactor at atmospheric pressure at the temperatures range of 450 to 750 K. The catalytic activity of the solids was strongly dependent on the preparation conditions. The solids Pd-Sn/ZrO₂ calcined at temperatures \leq 1100K showed values of TOR twice to four times higher than the Pd/ZrO₂ due to the high O₂ storage capacity of the catalysts containing Pd and Sn. However, with the increase of the calcination temperature the Sn contribution decrease and was null at 1400 K.

SUMÁRIO

RESUMO	xi
ABSTRACT	xiii
LISTA DE FIGURAS	xvii
LISTA DE TABELAS	xxi
NOMENCLATURA	xxiii

CAPITULO I : ASPECTOS GERAIS

1.1.	Introdução	01
1.2.	Catalisadores Metálicos Suportados	07
1.3.	Mecanismo da Oxidação de Metano	13
1.4.	Efeitos do CH ₄ , O ₂ , CO ₂ e H ₂ O na Taxa de Reação da Oxidação	
	de Metano	15
1.5.	Sensibilidade da Oxidação de Metano à Estrutura da Fase Ativa	
	dos Catalisadores	16
1.6.	Influência dos Íons Cl ⁻ no Desempenho dos Catalisadores	18
1.7.	Catalisadores Automotivos	20
1.8.	Conclusões	21
1.9.	Objetivo	22
1.10	. Referências Bibliográficas	22

CAPITULO II : PREPARAÇÃO E CARACTERIZAÇÃO DOS CATALISADORES

2.1.	Materiais e Métodos	27
	2.1.1. Preparação dos Catalisadores	27
	2.1.2. Caracterização dos Catalisadores	29
2.2.	Resultados e Discussão	34
	2.2.1. Microscopia Eletrônica de Transmissão	44
	2.2.2. Difração de Raios-X	40
	2.2.3. Redução a Temperatura Programada	45
	2.2.4. Medidas de Adsorção	48
2.3.	Conclusões	65
2.4.	Referências Bibliográficas	66

CAPITULO III : CINÉTICA DA OXIDAÇÃO DE METANO

3.1.	Materiais e Métodos	71
3.2.	Resultados e Discussão	76
	3.2.1. Taxa de Reação da Oxidação de CH₄ em Função do Temp	76
	3.2.2. Influência da Temperatura na Taxa de Reação da	
	Oxidação de Metano	79

3.3. 3.4.	3.2.3. Ordem de Reação Conclusões Referências Bibliográficas	88 91 91
CONO	CLUSÕES GERAIS	95
SUGE	ESTÕES	97
ANEX	(O "A"	99

xvi

LISTA DE FIGURAS

Figura 1.1.	Motor para funcionamento opcional com gás natural e gasolina (BOSCH, 2005)	01
Figura 1.2.	Combustão de hidrocarbonetos de uma corrente de gases com 1% O ₂ sobre catalisadores de Pt-Rh (NEYESTANAKI <i>et al.</i> , 2004)	04
Figura 1.3.	Emissões e efeitos poluentes no funcionamento de veículos a gasolina, GLP, gás natural e diesel (BOSCH, 2005)	06
Figura 1.4.	Atividade de catalisadores de metálicos suportados sobre Al ₂ O ₃ ANDERSON <i>et al.</i> (1961)	08
Figura 1.5.	Comparação de 4%Pt/Al2O3 e 4%Pd/Al2O3 para diferentes razões de O2/CH4 (BURCH e LOADER, 1994)	09
Figura 1.6.	Conversão de CH ₄ sobre 4%PdO/ γ -Al ₂ O ₃ em função da de temperatura 570 até 1170K. Aquecimento (); resfriamento (); linha base (). FARRAUTO <i>et al.</i> (1992)	10
Figura 1.7.	Oxidação de metano sobre catalisadores de Pd/MxOy (M =Al, Ga, In, Nb, Si, Sn, Ti, Y, Zr), SEKIZAWA et al. (2000a)	12
Figura 1.8.	Dispersão de partículas de PdO sobre SnO ₂ (SEKIZAWA <i>et al.</i> 2000b)	12
Figura 1.9.	Oxidação de metano sobre a superfície Pd-PdO (FUJIMOTO <i>et al.</i> , 1998)	14
Figura 1.10	 Mudança da conversão de metano com o tempo sobre catalisadores de Pt/γ-Al₂O₃ preparados a partir de precursores clorados (A, B, C e F) e não clorados (MARCEU <i>et al.</i>, 1996) 	19
Figura 2.1.	Dispositivo experimental de impregnação	29
Figura 2.2.	Aparelho volumétrico - ASAP 2010C	33
Figura 2.3.	Fotomicrografias TEM: (a) 4%Pd/ZrO ₂ – 800 K; (b) 3%Pd/ZrO ₂ – 1400 K	37
Figura 2.4.	Fotomicrografias TEM: (a) e (b) 2,6%Sn/ZrO ₂ – 800 K; (c) 2,5%Sn/ZrO ₂ – 1400 K	38
Figura 2.5.	Fotomicrografias TEM: (a) 2,8%Pd-2,3%Sn/ZrO ₂ – 800 K; (b) 2,8%Pd-2,2%Sn/ZrO ₂ – 1400 K	39

xviii

Figura 2.6.	Difração de raios-x: ZrO ₂ monoclínico – 1200 K	40
Figura 2.7.	Difração de raios-x: ZrO2 monoclínico / tetragonal – 1400 K	41
Figura 2.8.	Difração de raios-x: (a) 3,9%Pd/ZrO ₂ – 1400K; (b) Pd (200)	43
Figura 2.9.	Difração de raios-x: (a) 2,5%Sn/ZrO ₂ – 1400K; (b) SnO ₂ (110)	44
Figura 2.10	. Arranjos atômicos: (a) Pd(111) (b) Pd (200) (c) PdO (001) (d) Possível formação de PdO sobre a superfície de Pd(200)	45
Figura 2.11	. Dessorção térmica a temperatura programada de H ₂ sobre Pd/Al ₂ O ₃ (RAGAINI et AL., 1994)	46
Figura 2.12	. TPR dos sólidos PdO/ZrO ₂ e PdO-SnO ₂ /ZrO ₂	47
Figura 2.13	. Medidas de adsorção de CO em função da temperatura (4,0%Pd/ZrO ₂ – 800K)	49
Figura 2.14	. Adsorção de O ₂ – 4,0%Pd/ZrO ₂ (800K)	50
Figura 2.15	. Titulação de O adsorvido com H ₂ – 4,0%Pd/ZrO ₂ (800K)	51
Figura 2.16	. Adsorção de H ₂ – 4,0%Pd/ZrO ₂ (800K)	51
Figura 2.17	. Adsorção de CO – 4,0%Pd/ZrO ₂ (800K)	52
Figura 2.18	Mecanismo da mobilidade de átomos de O entre o suporte e as partículas metálicas: 1) Adsorção de O_2 da fase gasosa nas partículas de Pd; 2) Intercâmbio de O entre a superfície da ZrO_2 e as partículas de Pd, formando espécies PdO _x ; 3) Intercâmbio de O entre as espécies PdO _x e a fase gasosa; 4) Intercâmbio de O entre a fase gasosa e a superfície do ZrO_2 ; 5) Equilíbrio de O entre a superfície e o <i>bulk</i> do ZrO (CIUPARU <i>et al.</i> , 2002)	56
Figura 3.1.	Dispositivo experimental para combustão de metano	72
Figura 3.2.	Oxidação de CH ₄ medida a 600 K sobre catalisadores de Pd/ZrO ₂ calcinados entre 800 E 1400 K	77
Figura 3.3.	Oxidação de CH ₄ medida a 600 K sobre catalisadores Pd-Sn/ZrO ₂ calcinados entre 800 e 1400 K	77
Figura 3.4.	Taxa de reação da oxidação de CH ₄ em função da temperatura de reação para em 4,0%Pd/ZrO ₂ calcinado a 800 K	80
Figura 3.5.	Taxa de reação da oxidação de CH ₄ em função da temperatura de reação para Pd/ZrO ₂ , Pd-Sn/ZrO ₂ , Sn/ZrO ₂ e ZrO ₂ calcinados entre 800 e 1400 K	81
Figura 3.6.	Energia de ativação aparente e temperatura <i>light off</i> para o catalisador 4,0%Pd/ZrO ₂ calcinado a 1100 K	82
Figura 3.7.	Taxa de giro (TOR) em função da temperatura de reação	

	para Pd/ZrO ₂ e Pd-Sn/ZrO ₂ calcinados a 800, 1100 e	
	1400 K	86
Figura 3.8.	Taxa de giro (TOR) em função da temperatura de reação para Pd/ZrO ₂ e Pd-Sn/ZrO ₂ calcinados a 1100 K	87
Figura 3.9.	Variação da taxa de giro (TOR) determinado a 550 K com o tamanho médio das partículas metálicas de Pd	88
Figura 3.10.	. Taxa de reação da oxidação de CH₄ vs. fração molar de CH₄ (♦), O₂ (□), H₂O (▲) and CO₂ (○) sobre 4,0%Pd/ZrO₂ calcinado a 800 K	90
Figura A.1.	Fases cristalinas do ZrO ₂ (DICKEY e PENNYCOOK, 1999; STACHS <i>et al.,</i> 1997)	101

LISTA DE TABELAS

Tabela 1.1.	Informações técnicas do gás natural	03
Tabela 1.2.	Energia produzida na combustão de hidrocarbonetos por kg de CO ₂ formado	04
Tabela 1.3.	Parâmetros de combustão da gasolina e gás natural	05
Tabela 1.4.	Valores comparativos de ordens de reação do CH ₄ , O ₂ , H ₂ O e CO ₂ para diversos catalisadores de Pd	16
Tabela 1.5.	Valores comparativos de taxa de giro (TOR) e energia de ativação aparente (E _A) para diversos catalisadores de Pd	17
Tabela 1.6.	Atividade catalítica de catalisadores de Pt/γ-Al ₂ O ₃	19
Tabela 2.1.	Teores metálicos e temperaturas de calcinação das amostras de Pd/ZrO ₂ , Pd-Sn/ZrO ₂ e Sn/ZrO ₂	35
Tabela 2.2.	Medidas de adsorção de O ₂ , H ₂ , CO e Titulação de O adsorvido com H ₂	53
Tabela 2.3.	Razões de adsorção e titulação	61
Tabela 2.4.	Razões de adsorção de CO/Pd em função da orientação dos planos cristalinos de Pd	62
Tabela 2.5.	Parâmetros estruturais dos sólidos Pd/ZrO2 e Pd-Sn/ZrO2	64
Tabela 3.1.	Parâmetros de operação do cromatógrafo HP 6890	73
Tabela 3.2.	Atividade dos sólidos Pd/ZrO2 e Pd/SnO2 na reação da oxidação de CH4 a 600 K	79
Tabela 3.3.	Energia de ativação aparente e temperatura <i>light off</i> da reação da oxidação de metano nos sólidos Pd/ZrO ₂ , Pd-Sn/ZrO ₂ e Sn/ZrO ₂	83
Tabela 3.4.	Parâmetros cinéticos de reação da oxidação de CH ₄ a 550 K nos sólidos Pd/ZrO ₂ , Pd-Sn/ZrO ₂ e Sn/ZrO ₂	84
Tabela 3.5.	Ordens de reação de CH ₄ , O ₂ , H ₂ O e CO ₂	89
Tabela A.1.	Propriedades termo-físicas do ZrO ₂	102

NOMENCLATURA

LETRAS LATINAS

А	:	Fator pré-exponencial da equação de Arrhenius
a _(t)	:	Atividade do catalisador em função do tempo
d_{Pd}	:	Tamanho médio das partículas metálicas de paládio (nm)
E _A	:	Energia de ativação aparente (kJ mol ⁻¹)
Eq	:	Equação
f_{Pd}	:	Densidade superficial média de átomos de Pd expostos por metro quadrado de superfície (2,11 \times 10 ⁻⁵ mol Pd m ⁻²). Esse valor é o resultado da divisão da densidade superficial de átomos de Pd (1,27 \times 10 ¹⁹ átomos Pd m ⁻²) pelo Número de Avogadro (6,02 \times 10 ²³ átomos mol ⁻¹)
F_{Pd}	:	Fração de átomos de paládio expostos
k	:	Constante da taxa de reação de oxidação de metano
k i	:	Constantes cinéticas das etapas elementares da reação de oxidação de metano
М	:	Massa molar (g mol ⁻¹)
m _{cat}	:	Massa do catalisador (g)
n	:	Número de sítios ativos (mol g ⁻¹)
Ρ	:	Pressão (kPa)
P ^o CH4	:	Pressão parcial de CH4 na entrada do reator (kPa)
ppm	:	Partes por milhão
p/p	:	Composição química em peso/peso
Pd_s	:	Número de átomos expostos de Pd
Q_{CO}	:	Número de moles de CO adsorvido por grama de amostra (mol g ⁻¹)
Q _H	:	Número de moles de H ₂ adsorvido por grama de amostra (mol g ⁻¹)
Qo	:	Número de moles de O ₂ adsorvido por grama de amostra (mol g ⁻¹)
r	:	Número médio de átomos de H adsorvido na superfície de Pd após redução e evacuação
r _{CH4}	:	Taxa de reação da oxidação de CH ₄ (mol s ⁻¹ g ⁻¹)
r _(t)	:	Taxa de reação da oxidação de CH_4 em função do tempo (mol s ⁻¹ g ⁻¹)

xxiv		
r _(T)	:	Taxa de reação da oxidação de CH_4 em função da temperatura (mol s ⁻¹ g ⁻¹)
R	:	Constante universal dos gases (8,31 \times 10 ³ kJ mol ⁻¹ K ⁻¹)
R _{QO/QF}	4:	Razão de adsorção = QO/QH
Rt	:	Razão de titulação = $TH \times (QH + QO)^{-1}$
S	:	Sítios ativos sobre a superfície metálica do catalisador
S _M	:	Área metálica exposta por grama de amostra (m ² g ⁻¹)
S_{Pd}	:	Quantidade de paládio superficial por grama de amostra (mol g ⁻¹)
t	:	Tempo (s, min, ou h)
Т	:	Temperatura (K)
T _{amb}	:	Temperatura ambiente (K)
Т _Н	:	Número de moles de H_2 consumido na titulação de O adsorvido por grama de amostra (mol g ⁻¹)
۷٥	:	Vazão total de gases na entrada do reator (cm ³ s ⁻¹)
v/v	:	Composição química em volume/volume
w	:	Número médio de átomos de O adsorvidos em sítios localizados próximo ou na superfície de SnO_2
W_{Pd}	:	Teor de paládio (% p/p)
х	:	Número médio de átomos de O adsorvidos irreversivelmente em cada Pd_s ou número médio de átomos de O contidos nas espécies Pd_sO_x e SnO_x
X'	:	Número médio de átomos de O adsorvidos nas superfícies de Pd após os processos de calcinação e resfriamento até temperatura ambiente
Χ	:	Grau de cobertura de carbono
X ₂	:	Halogênos (e.g., F ₂ , Cl ₂ , Br ₂)
у	:	Número médio de átomos de H adsorvidos irreversivelmente em cada $\mbox{Pd}_{\mbox{s}}$
Z	:	Número médio de átomos de H adsorvidos irreversivelmente em cada Pd_s na titulação de O adsorvido com H_2

LETRAS GREGAS

- α : Ordem de reação em relação ao metano
- β : Ordem de reação em relação ao oxigênio
- β_i : Coeficiente de regressão linear

- ΔH^{o}_{c} : Entalpia de combustão (kJ mol⁻¹)
- ΔH^{o}_{f} : Entalpia de formação (kJ mol⁻¹)
- γ : Ordem de reação em relação à água
- δ : Ordem de reação em relação ao dióxido de carbono
- λ : Comprimento de onda (nm)
- θ : Ângulo (graus)
- υ : Número médio de moléculas de CO adsorvidos irreversivelmente em cada Pd_{s}
- χ_{CH4} : Fração de metano convertido

SÍMBOLOS

- * : Sítios ativos vazios localizados na superfície de Pd
- Sítios ativos vazios localizados próximo ou na superfície do SnO₂

ABREVIATURAS LATINAS

- e.g. : *Exemplia gratia* (por exemplo)
- i.e. : Id est (isto é)
- ca. : *Circa* (aproximadamente)

SIGLAS

CAS# :	Número de registro CAS (Chemical Abstracts Service)
DMPY:	2,6-Dimetilpiridina
EDX:	<i>Energy dispersive x-ray spectroscopy</i> (Espectroscopia de energia dispersiva de raios-x)
ICP-AES:	Inductively coupled plasma – Atomic emission spectroscopy (Espectroscopia de emissão atômica com plasma acoplado indutivamente)
LSS :	Laser scattering spectrometer (Espectroscopia de espalhamento de raios laser)
PDF :	Powder Diffraction File (Fichas de difração de raios-x de pós)
PY :	Piridina
TEM :	<i>Transmision electron microscopy</i> (Microscopia eletrônica de transmissão)
TCD :	Thermo Conductivity Detector (Detector de condutividade térmica)

xxvi

- TOR : Turnover rate (Taxa de giro, s^{-1})
- TPR : *Temperature-programmed reduction* (Redução a temperature programada)
- XRD : *X-Ray diffraction* (Difração de raios-X)

CAPITULO I

ASPECTOS GERAIS

1.1. Introdução

O crescente interesse pelo uso do gás natural como fonte alternativa para geração de energia térmica, motriz e elétrica, conduz à necessidade de desenvolvimento de tecnologias que permitam a sua adequada utilização, minimizando os seus efeitos nocivos para o meio ambiente. Um exemplo específico é a oxidação total de metano a CO₂ e H₂O sobre catalisadores visando a remoção de emissões poluentes de veículos que usam gás natural como combustível (Figura 1.1.).

NG-ME-Motronic para funcionamento opcional com gás natural ou gasolina

1 canister, 2 válvula de ventilação do tanque, 3 válvula de recirculação de gás de escape, 4 medidor de massa de ar, 5 acelerador eletrônico (EGAS), 6 sensor de pressão do coletor de admissão, 7 distribuidor de combustível com válvulas injetoras, 8 bobina de ignição com vela de ignição, 9 sensor de fase, 10 sonda Lambda, 11 pré-catalisador, 12 sonda Lambda, 13 unidade de comando do motor, 14 módulo do pedal do acelerador, 15 módulo regulador de pressão com válvula de fechamento de gás integrada, 16 sensor de temperatura e pressão do gás natural, 17 distribuidor de gás natural com válvulas injetoras de gás natural, 18 sensor de rotação,

19 sensor de temperatura, 20 sensor de detonação, 21 bocal de enchimento do tanque, 22 válvula de fechamento do gás (alta pressão), 23 tanque de gás natural, 24 interface CAN, 25 lâmpada de diagnóstico, 26 interface de diagnóstico, 27 tanque de gasolina com bomba elétrica de combustível, 28 catalisador principal.

Figura 1.1. Motor para funcionamento opcional com gás natural e gasolina (BOSCH, 2005)

O gás natural é um combustível fóssil, produto final da decomposição anaeróbia de plantas e organismos marinhos microscópicos, soterrado durante milhões de anos, associado ou não ao petróleo, contendo basicamente metano (80 a 99% v/v) e em menores proporções etano, propano e hidrocarbonetos de maior massa molecular. Normalmente o gás natural apresenta baixos teores de contaminantes como dióxido de carbono, nitrogênio, enxofre e quase nenhum material particulado (ver Tabela 1.1).

A molécula de metano ^[1], principal constituinte do gás natural, por possuir a maior razão H/C dos hidrocarbonetos faz com que seja o hidrocarboneto menos reativo, o mais difícil de oxidar (ver Figura 1.2). No entanto, quando queimado produz a maior quantidade de energia por unidade de massa de CO₂ formado (BURCH e LOADER, 1994 e ANDERSON *et al.*, 1961). Na Tabela 1.2 são mostradas as quantidades de energia produzida por kg de CO₂ formado na combustão de diversos hidrocarbonetos.

^[1] O metano (CH₄) é um hidrocarboneto saturado, protótipo dos alcanos de estrutura tetraédrica, apolar. Pouco solúvel em água, mas muito solúvel em líquidos orgânicos como gasolina, éter e álcool. Tipicamente, reage somente com substâncias altamente reativas ou em condições muito energéticas. Entre outras propriedades físico-químicas do metano têm-se:

Massa molecular	:	16,04 g mol ⁻¹
Densidade (gás, 25°C)	:	0,72 kg m ⁻³
Temperatura de fusão	:	90 K
Temperatura de ebulição	:	112 K
Temperatura de autoignição	:	813 K
Limites de explosividade (20°C,1 atm)	:	5 – 15%

Segundo MORRISON e BOYD (1996) os processos reacionais mais conhecidos do metano são:

		Chama
(i)	Combustão :	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O (\Delta H^0_c \approx 890 \text{ kJ.mol}^{-1})$
		1770 K
(ii)	Oxidação parcial :	$6CH_4 + O_2 \rightarrow 2HC \equiv CH + 2CO + 10H_2O$
		1120 K
(iii)	Reforma :	$CH_4 + H_2O \xrightarrow{Ni} CO + 3H_2$
<i>(</i> .)		X_2 HX X_2 HX X_2 HX X_2 HX
(IV)	Halogenação :	$CH_4 \rightarrow + \rightarrow + \rightarrow + \rightarrow +$ $CH_2X \rightarrow CH_2X_2 \rightarrow CH_2X_2 \rightarrow CX_4$
		Reatividade de X_2 : $F_2 > CI_2 > Br_2$ (o iodo é não reativo)

COMPOSIÇÃO QUÍMICA						
ELEMENTOS	ASSOCIADO ^(a)	NÃO ASSOCIADO ^(b)	PROCESSADO ^(c)			
Metano	81,57	85,48	88,56			
Etano	9,17	8,26	9,17			
Propano	5,13	3,06	0,42			
I-Butano	0,94	0,47	-			
N-Butano	1,45	0,85	-			
I-Pentano	0,26	0,20	-			
N-Pentano	0,30	0,24	-			
Hexano	0,15	0,21	-			
Heptano e superiores	0,12	0,06	-			
Nitrogênio	0,52	0,53	1,20			
Dióxido de carbono	0,39	0,64	0,65			
Enxofre Total (mg.m ⁻³)	-	-	< 110			
	PODER	CALORIFICO				
Inferior (kJ.m ⁻³)	41.516	40.122	36.094			
Superior (kJ.m⁻³)	45.808	44.296	39.980			
	RESERVAS PRO	VADAS E PRODUÇÃO				
	BRASIL	_ (2006)	MUNDO (2005)			
Reservas provadas	3,5 × 1	10 ¹¹ m ³	1,8 × 10 ¹⁴ m ³			
Produção	5,0 × 10	0 ⁷ m ³ /dia	3,0 × 10 ¹² m ³ /ano			
Abastecimento estimado	19 a	anos	60 anos			
	COMPOSIÇÃO DA	MATRIZ ENERGÉTICA				
BRASIL (2006)	MUNDO	D (2005)			
Biomassa Hidráulica 14,8% Uránio 1,6% Carvão Mineral 6,0%						

Tabela 1.1. Informações técnicas do gás natural

^(a) Gás do campo de Garoupa, Bacia de Campos
 ^(b) Gás do campo de Miranga, na Bahia
 ^(c) Saída da UPGN - Candeias, na Bahia
 FONTE: GASPETRO - <u>http://www.gaspetro.com.br</u> ANUÁRIO ESTATÍSTICO 2007 – Agencia Nacional do Petróleo (ANP) BALANÇO ENERGÉTICO NACIONAL 2007 [Ano Base 2006] – Ministério de Minas e Energia (MME)

Figura 1.2. Combustão de hidrocarbonetos de uma corrente de gases com 1% O₂ sobre catalisadores de Pt-Rh (NEYESTANAKI *et al.*, 2004)

HIDROCARBONETOS	MASSA MOLAR [M] g mol ⁻¹	ENTALPIA DE FORMAÇÃO [∆H⁰₁] kJ mol⁻¹	ENTALPIA DE COMBUSTÃO [∆Hº₅] kJ mol⁻¹	CO ₂ PRODUZIDO POR kg DE HIDROCARBONETO QUEIMADO Kg-CO ₂ mol-C _n H _m ⁻¹	ENERGIA PRODUZIDA POR Kg DE CO ₂ FORMADO kJ kg-CO ₂ ⁻¹
Metano (CH ₄) _{gás}	16,04	-74,81	-890	2,74	-20223
Etano (C ₂ H ₆) _{gás}	30,07	-84,68	-1560	2,93	-17723
Propano (C ₃ H ₈) _{gás}	44,09	-103,85	-2220	2,99	-16814
Butano (C ₄ H ₁₀) _{gás}	48,12	-126,15	-2878	3,66	-16349
Pentano (C ₅ H ₁₂) _{gás}	72,14	-146,44	-3537	3,05	-16074
Octano (C ₈ H ₁₈) _{líquido}	114,22	-249,90	-5471	3,08	-15539

 Tabela 1.2. Energia produzida na combustão de hidrocarbonetos por kg de CO2 formado

FONTE: ATKINS e JONES (2002).

A combustão do gás natural por possuir alta qualidade antidetonante ^[2] permite que máquinas operem com alta razão de compressão e com concentrações baixas de combustível, resultando em eficiência de combustão substancialmente mais alta do que aquela obtida em máquinas que operam com gasolina, ver Tabela 1.3. (BOSCH, 2005 e OH *et al.*, 1991).

DESCRIÇÃO	GASOLINA	GÁS NATURAL
Qualidade antidetonante (MON/RON ^(a))	82,5 a 88 / 91 a 98	115 a 130 ^(b)
Taxa de compressão	9 a 11/1	13/1
Temperatura de ignição (K)	~ 600	~ 900
Valor calórico específico (kJ kg ⁻¹)	42.700 a 43.500	40.300 a 49.100
Densidade	0,72 a 0,78 kg l ⁻¹	0,73 a 0,83 kg m ⁻³
Relação ar (kg)/combustível (kg)	13,4/1	17/1
Relação H/C	2:1	4:1

Tabela 1.3.	Parâmetros	de	combustão	da	gasolina	e gás	natural
					•	<u> </u>	

^(a) MON = número de octonas motor; RON = número de octanas pesquisa;

^(b) Para fins comparativos do poder antidetonante do gás natural com a gasolina, os valores típicos de octanas (MON ou RON) para o gás natural encontram-se na faixa citada acima, sendo que para o metano apresenta 140 (Portaria ANP Nº 104 DE 08/07/2002, Brasil).
FONTE: BOSCH (2005).

Comparados a motores à gasolina, veículos a gás natural se caracterizam por apresentar emissões de CO₂ de 20 a 30% menores. Apesar dos veículos a gás natural apresentarem menores emissões (Item "a" Figura 1.3.) e efeitos poluentes (Item "b" Figura 1.3.), a temperatura dos gases exaustados atinge até 750 K. Essa temperatura é inferior à temperatura de ignição do gás natural (~ 900 K) e à faixa de temperaturas de operação de catalisares automotivos 900 a 1300 K, movidos a gasolina e diesel, e de catalisadores utilizados em sistemas de

^[2] A "qualidade antidetonante" refere-se à resistência à pré-ignição. Para gasolina, essa propriedade é medida através do número de octanas (octanagem). Quanto maior for o número de octanas maior será a resistência à detonação no motor. O número de octanas é determinado por dois métodos: MON (número de octanas motor – ASTM D2700, método de teste correspondente ao funcionamento do motor em altas rotações, > 3000 rpm) e RON (número de octana de pesquisa – ASTM D2699, método de teste correspondente ao funcionamento do motor em altas rotações, > 3000 rpm) e RON (número de octana de pesquisa – ASTM D2699, método de teste correspondente ao funcionamento do motor em baixas rotações, < 3000 rpm). O número de octanas é o teor volumétrico em porcentagem de isooctana (2,2,4-trimetilpentano, C₈H₁₈), contido em uma mistura com n-heptano (C₇H₁₆), no ponto em que a resistência à detonação da mistura, em um motor de teste, é idêntica aquela do combustível em teste. A isooctana que é extremadamente resistente à detonação, recebe o número de octana 100, enquanto que o n-heptano, que apresenta baixa resistência à pré-ignição, recebe o número zero (BOSCH, 2005).

PRIMET, 2002; HECK e FARRAUTO, 2001; FUJIMOTO *et al.*, 1998 e combustão catalítica de gás natural ^[3] (CHO e HE, 2007; BOSCH, 2005; GÉLIN e VATCHA, 1997).

A baixa temperatura dos gases de exaustão de veículos movidos a gás natural (< 750 K) não favorece a formação de NO_x e à oxidação total de hidrocarbonetos constituídos principalmente de metano. Nessas condições, catalisadores tradicionais usados para remoção de emissões poluentes de veículos que usam gasolina ou diesel como combustível são impróprios para oxidar completamente os hidrocarbonetos dos gases de exaustão de veículos movidos a gás natural. Essas observações levam à necessidade de desenvolver materiais catalíticos que exibam alta atividade, para combustão total de metano a temperaturas baixas (< 750 K) em presença de vapor de água, CO₂ e excesso de O₂ (principais constituintes dos gases de exaustão) e apresentem alta resistência a contaminantes como SO_x e NO_x existentes na composição química do gás natural (CHO e HE, 2007; GÉLIN e PRIMET, 2002; YAMAMOTO e UCHIDA, 1998).

1.2. Catalisadores Metálicos Suportados

A oxidação total de metano sobre catalisadores constituídos por metais de transição (e.g., Pd, Pt, Rh) suportados sobre óxidos cerâmicos (e.g., AI_2O_3 , SiO_2 , ZrO_2) tem sido amplamente estudada. Assim, no inicio da década de 1960, ANDERSON *et al.* (1961) observaram que as atividades de diversos metais impregnados sobre gama-alumina (γ -AI₂O₃), na oxidação de metano a 720 K,

^[3] Em processos que usam sistemas de combustão catalítica de gás natural (e.g., geração de energia elétrica em turbinas a gás) foi observado que na faixa de temperaturas de 900 a 1300 K acontece a combustão completa de metano (CH₄) a CO₂ e H₂O. Sendo as concentrações de CO e CH₄ residual inferiores a 5 ppm em temperaturas próximas a 1300 K. No entanto, próxima a temperatura de saída dos produtos de combustão catalítica (ca. 1600 K), as moléculas de nitrogênio reagem com radicais de oxigênio formando baixas emissões de NO_x (< 10 ppm), sendo mais significativo acima de 1800 K. Em processos que usam sistemas de combustão convencionais de gás natural (e.g., processos de combustão não catalíticos) as temperaturas de chama podem atingir até 2100 K. Nessas condições a concentração de espécies NO_x podem chegar até 160 ppm (KUPER *et al.*, 1999 e VATCHA, 1997). Neste último caso, urge a implementação de sistema de combustão catalítica, para evitar a formação de gases NO_x, por serem responsáveis por 50% da destruição da camada de ozônio (GUPTA, 1997).

apresentam a seguinte ordem decrescente: Pt > Pd > Cr > Mn > Cu > Ce > Co > Fe > Ni > Ag (Figura 1.4).

Figura 1.4. Atividade de catalisadores metálicos suportados sobre Al₂O₃ ANDERSON *et al.* (1961)

Experiências posteriores realizadas com catalisadores de Pt/Al₂O₃ e Pd/Al₂O₃, na reação de oxidação de CH₄ em diferentes temperaturas e razões de mistura reagente O₂/CH₄, demonstraram que o Pd é mais ativo que a Pt quando O₂/CH₄ > 2 (Figura 1.5). Porém catalisadores de Pt são mais ativos quando O₂/CH₄ < 2. No entanto, essa ultima condição não tem importância para aplicação em catalisadores automotivos uma vez que parte do CH₄ não é queimado quando a razão O₂/CH₄ é < 2 (BURCH e LOADER, 1994; MIZUSHIMA e HORI, 1992 e OH *et al.*, 1991).

Figura 1.5. Comparação de 4%Pt/Al₂O₃ e 4%Pd/Al₂O₃ para diferentes razões de O₂/CH₄ (BURCH e LOADER, 1994)

A maioria dos autores concorda com a alta reatividade de CH₄ sobre Pd, mais especificamente, quando o Pd está na sua forma oxida (PdO). Por exemplo, OH *et al.* (1991) sugeriram que os sítios são formados por camadas de PdO suportado sobre superfícies de Pd metálico (Pd⁰). Anteriormente, HICKS *et al.* (1990a) sugeriram que PdO dispersado sobre γ -Al₂O₃ é menos ativo que PdO dispersado sobre cristalitos de Pd. Apesar do consenso sobre a forma oxida do Pd como a fase mais ativa para a oxidação de metano, o seu exato estado químico e morfologia ainda são desconhecidos (GÉLIN e PRIMET, 2002).

Em catalisadores de Pd/γ - Al_2O_3 ou Pd/SiO_2 a oxidação completa do Pd a PdO acontece a 600 K. Quando esses sólidos completamente oxidados são aquecidos (e.g, de 570 até 1170 K) em uma corrente de 1% CH₄/ar sintético, entre 1070 e 1120 K, acontece a decomposição completa do PdO com a conseqüente formação de cristalitos de Pd^o, Figura 1.6 (RODRIGUEZ *et al.*, 1995 e FARRAUTO *et al.*, 1992).

Figura 1.6. Conversão de CH₄ sobre 4%PdO/γ-Al₂O₃ em função da temperatura de 570 até 1170K. Aquecimento (----); resfriamento (-----); linha base (.....). FARRAUTO *et al.* (1992)

No processo inverso, quando resfriados, os cristalitos de Pd^o apresentam estabilidade até ca. 920 K. No entanto, durante o processo de resfriamento na faixa de temperaturas de 1070 a 920 K, a contribuição dos cristais de Pd^o na oxidação de metano é essencialmente nula. Abaixo de 920 K os cristais de Pd^o são re-oxidados, restabelecendo a sua atividade na reação de oxidação de CH₄. LYUBOVSKY *et al.* (1999) e LYUBOVSKY e PFEFFERLE (1999) sugeriram que abaixo de 1030 K o PdO é termodinâmicamente mais estável e a atividade catalítica tende a cair com o tempo devido à sinterização. Por outro lado, acima de 1030 K os cristais de Pd são mais estáveis do que os de PdO e a atividade na oxidação de metano aumenta com a redução do PdO. Contrários a essa última afirmação VATCHA (1997) e KOLACZKOWSKI (1995) sugeriram que a
de 1070 Κ oxidação de temperaturas acima а metano acontece predominantemente em fase homogênea (autoignicão de metano em excesso de ar), sendo mínima a contribuição dos cristais de Pd à oxidação de metano. Outros autores como FORZATTI e GROPPI (1999) concordam que a ativação do metano não envolve Pd metálico. No entanto, o Pd metálico apresenta-se como um sitio ativo para adsorção de oxigênio, o que leva a pensar que a atividade dos catalisadores de Pd está associada e regulada pela transformação térmica reversível do Pd/PdO, sendo o PdO a fase ativa para a combustão de metano.

Partindo do fato de que a sinterização das partículas metálicas resulta em um decréscimo simultâneo da superfície metálica ativa e da taxa de oxidação de metano, o suporte apresenta uma importante contribuição na estabilidade dos catalisadores. SEKIZAWA *et al.* (2000a) e WIDJAJA *et al.* (1999 e 1998) observaram que as atividades de catalisadores de Pd suportado sobre diferentes óxidos, obtidas entre 570 e 1170K, apresentaram a seguinte ordem decrescente: Sn > Zr > Al > Ga > In > Ti > Si > Y > Nb, sendo o PdO/SnO₂ o catalisador mais ativo para a combustão completa do CH₄ (Figura 1.7).

TAKEGUCHI *et al.* (2003); EGUCHI e ARAI (2001) e SEKIZAWA *et al.* (2000a) atribuíram que a alta atividade dos catalisadores Pd/SnO₂ deve-se à presença de SnO₂ que favorece a formação de partículas finas de PdO (10 a 100 nm). Mesmo com altos teores de PdO (e.g., 22%PdO/SnO₂) ainda é possível observar a formação de uma pequena fração de partículas finas de Pd, além das partículas grandes ou aglomeradas de Pd (Figura 1.8). Segundo TAKEGUCHI *et al.* (2003) os sólidos PdO-SnO₂ preparados por co-precipitação são menos ativos que os catalisadores de PdO/SnO₂ preparados por técnicas de impregnação e quando a fase ativa é reduzida (PdO \rightarrow Pd⁰), as partículas de Pd adsorvem dissociativamente o H₂ e a adsorção de CO diminui com aumento da interação química entre o Pd e SnO₂. No entanto, o uso do SnO₂ como suporte pode ser limitado pela sua área específica (< 7 m²g⁻¹) e estabilidade térmica (ponto de fusão, ca. 1900 K) inferior ao ZrO₂ (10 a 50 m² g⁻¹ próximo de 1170 K e ponto de

Figura 1.7. Oxidação de metano sobre catalisadores de Pd/M_xO_y (M =AI, Ga, In, Nb, Si, Sn, Ti, Y, Zr), SEKIZAWA *et al.* (2000a)

Figura 1.8. Dispersão de partículas de PdO sobre SnO₂ (SEKIZAWA *et al.* 2000b)

fusão, ca. 2963 K).

Catalisadores de Pd/ZrO₂ apresentam a segunda melhor atividade na oxidação de metano (SEKIZAWA *et al.*, 2000a). A zircônia (ZrO₂) caracteriza-se por apresentar alta estabilidade térmica, baixa condutividade térmica, alta resistência a corrosão e é conhecida pela sua capacidade de interagir fortemente com o componente metálico favorecendo a alta estabilidade das partículas metálicas (CHUAH, 1999; YAMAGUCHI, 1994 e MERCERA *et al.*, 1991). O PdO decompõe completamente entre 1020 e 1070 K quando suportado sobre γ -Al₂O₃ ou SiO₂ (RODRIGUEZ *et al.*, 1995) e a 1130 K quando suportado sobre SnO₂ (WIDJAJA *et al.*, 1999). No entanto, quando o PdO é suportado sobre ZrO₂, uma fração significativa da fase cristalina do PdO é mantida estável à temperatura de 1170 K (RODRIGUEZ *et al.*, 1995 e FARRAUTO *et al.*, 1992).

1.3. Mecanismo da Oxidação de Metano

Diversos mecanismos da oxidação de metano sobre superfícies de Pd foram propostos. Por exemplo, segundo HICKS *et al.* (1990a e 1990b) quando o paládio é exposto ao oxigênio (O₂) na temperatura ambiente, o O₂ é adsorvido em sítios específicos localizados na superfície das partículas metálicas não havendo nenhuma outra reação. O catalisador quando é aquecido em atmosfera de CH₄, o O₂ adsorvido é consumido, formando CO₂ e H₂O sobre a superfície de Pd. Além desses produtos, também pode ser obtido CO adsorvido sobre a superfície de Pd. Através de estudos realizados por espectroscopia de infravermelho, os mesmos autores, propuseram a seguinte seqüência de reações:

onde **s** é o sítio localizado sobre a superfície metálica do catalisador; e, **X** é o grau de cobertura de carbono. Essas observações sugerem que a formação de sítios,

para oxidação de metano, depende do estado de oxidação das partículas cristalinas de Pd.

Outros autores como YANG *et al.* (2000); FUJIMOTO *et al.* (1998) e FARRAUTO *et al.* (1992) concordam que a oxidação de metano depende da coexistência de uma fase metálica atômica de Pd em contato com espécies óxidas de paládio (PdO_x, $0 < x \le 1$) formadas sobre a superfície do suporte óxido durante o transcurso da reação. Segundo FUJIMOTO *et al.* (1998) o mecanismo da oxidação de CH₄ sobre catalisadores de Pd consiste em ter um sítio de Pd e um sítio PdO dentro da seqüência reacional de oxidação de metano (Figura 1.9.).

Os sítios são restabelecidos ao final do ciclo catalítico pela recombinação de superfícies de grupos hidroxila, conforme mostrado na seguinte seqüência de reações:

$$O_2 + * \overset{K_1}{\longrightarrow} O_2 *$$
 (Eq. 1.5.)

$$O_2 * + * \xrightarrow{N_2} 2O *$$
 (Eq. 1.6.)

$$CH_4 + * \stackrel{K_3}{\longrightarrow} CH_4 *$$
 (Eq. 1.7.)

$$CH_4 * + O * \xrightarrow{K_4} CH_3 * + OH *$$
 (Eq. 1.8.)

$$2 \text{ OH}* \bigoplus_{k_6}^{k_5} H_2 O_{(g)} + O* + *$$
 (Eq. 1.9.)

$$CO_2* \overset{\sim}{\longleftrightarrow} CO_2 + *$$
 (Eq. 1.10.)

$$CO_{3}* \quad \textcircled{K}^{\prime\prime} CO_{2} + O* \quad (Eq. 1.11.)$$

onde * são os sítios ativos vazios localizados na superfície de Pd. De acordo com FUJIMOTO *et al.* (1998) a taxa de oxidação de metano é consistente com o mecanismo de adsorção de metano sobre pares de sítios adjacentes Pd-PdO como proposto na Figura 1.9., sendo essa a etapa determinante da reação de oxidação de CH₄.

1.4. Efeitos do CH₄, O₂, CO₂ e H₂O na Taxa de Reação da Oxidação de Metano

Expressando a taxa de reação da oxidação de CH₄ em função das concentrações dos reagentes e produtos, tem-se:

$$- r_{CH4} = k [CH_4]^{\alpha} [O_2]^{\beta} [H_2 O]^{\gamma} [CO_2]^{o}$$
(Eq. 1.12.)

onde - \mathbf{r}_{CH4} é a taxa de reação da oxidação de CH₄; **k** é a constante da taxa de reação de oxidação de metano; [CH₄], [O₂], [H₂O] e [CO₂] são as concentrações de metano, oxigênio, água e dióxido de carbono; α , β , γ e δ são as ordens de reação relativas a metano, oxigênio, água e dióxido de carbono, respectivamente.

De acordo com estudos prévios (Tabela 1.4.), a taxa da oxidação de metano sobre catalisadores de Pd/ZrO₂ é proporcional à concentração de CH₄ ($\alpha \approx 1,0$) e depende fracamente da concentração de oxigênio ($\beta \approx 0,1$). No entanto, é observada a queda da taxa de oxidação de metano com aumento da concentração de H₂O ($\gamma \approx -1,0$). A H₂O é formada durante a reação, o que permite sugerir que as espécies intermediárias derivadas da readsorção de água na superfície do catalisador (e.g., OH⁻) são as mais abundantes durante o processo da combustão catalítica do metano. Segundo RIBEIRO *et al.* (1994) o CO₂ inibe a oxidação de metano, quando as concentrações de CO₂ no sistema reacional são maiores de 0,5% v/v, em presença de baixas concentrações ou ausência de H₂O. Nesse caso, a queda da taxa de oxidação de metano é proporcional a [CO₂]⁻². Segundo FUJIMOTO *et al.* (1998) a densidade dos sítios disponíveis para oxidação de metano é controlada pelo quase-equilíbrio de dessorção de H₂O e CO₂, resultando em uma queda da taxa de oxidação de metano com o aumento da concentração dos produtos da reação.

Outros pesquisadores como WIDJAJA, *et al.* (1999) ressaltam que os produtos da oxidação de metano, H₂O e CO₂, apresentam menor influência sobre catalisadores de Pd/SnO₂ em relação aos catalisadores suportados sobre ZrO₂ ou Al₂O₃, devido à dispersão e estabilidade do estado de oxidação do paládio (PdO) sobre o SnO₂, o que faz dos catalisadores Pd/SnO₂ os mais ativos para oxidação de metano.

	ORDENS DE REAÇÃO DA OXIDAÇÃO DE METANO				
CATALISADOR	CH₄	O ₂	H₂O	CO ₂	REI ERENOIAO
Pd em pó	0,7	0,1	-0,8	-	MONTEIRO et al. (2001)
$7,3\%$ Pd/ γ -Al $_2$ O $_3$	1,0±0,1	0,1±0,1	-0,8±0,2	0	GIEZEN <i>et al.</i> (1999)
0,9%Pd/ZrO ₂	1,1±0,1	0,1±0,1	-1,0±0,1	-2 ⁽¹⁾	FUJIMOTO et al. (1998)
0,5%Pd/SiO ₂	0,5	0,1	-	-	MUTO <i>et al</i> . (1996)
0,5% Pd/ γ -Al $_2O_3$	0,5	0,2	-	-	MUTO <i>et al.</i> (1996)
0,5%Pd/SiO ₂ -Al ₂ O ₃	0,6	0	-	-	MUTO <i>et al.</i> (1996)
7,7%Pd/Si-Al ₂ O ₃	-	-	-1,0	-2 ⁽²⁾	RIBEIRO et al. (1994)

Tabela 1.4. Valores comparativos de ordens de reação do CH₄, O₂, H₂O e CO₂ para diversos catalisadores de Pd

Valor observado quando a concentração de CO_2 na mistura reagente é > 3,0 % molar;

⁽²⁾ Valor observado quando a concentração de CO_2 na mistura reagente é > 0,5% molar.

1.5. Sensibilidade da Oxidação de Metano à Estrutura da Fase Ativa dos Catalisadores

Na Tabela 1.5 são mostrados os valores da taxa de giro ou *turnover* (TOR), tamanho de partículas metálicas e energia de ativação aparente (E_A) para diversos catalisadores de Pd obtidos por diferentes autores.

TOR ^{(a) (b)} [s ⁻¹]	TAMANHO DE PARTÍCULAS METÁLICAS [nm]	E _A [kJ mol ⁻¹]	REFERÊNCIAS
$7 \times 10^{-3} - 1 \times 10^{-1}$	1,4 – 5,6	71 – 84	YAO (1980)
$1 \times 10^{4} - 2 \times 10^{1}$	1 – 30	110 – 125	HICKS <i>et al</i> . (1990a e 1990b) ^(d)
3×10^{-3}	3	-	OH <i>et al</i> . (1991)
3×10^{-2}	16	-	BRIOT e PRIMET (1991)
$1 \times 10^{4} - 2 \times 10^{2}$	2 – 80	80 – 160	BALDWIN e BRUCH (1990) ^(c)
$2 \times 10^{\text{-2}} \ -8 \times 10^{\text{-2}}$	2 – 110	75 – 90	RIBEIRO <i>et al</i> . (1994) ^(c)
$1 \times 10^{-2} - 7 \times 10^{-2}$	2 – 12	81 – 110	SANTOS (2003) ^(c)

Tabela 1.5. Valores comparativos de taxa de giro (TOR) e energia de ativação aparente (E_A) para diversos catalisadores de Pd

^(a) TOR = $(\mathbf{r}_{CH4})\mathbf{n}^{-1}$, sendo: TOR, *turnover* ou taxa de giro; \mathbf{r}_{CH4} , a taxa de reação de oxidação de CH₄ (mol s⁻¹ g⁻¹); **n**, o número de sítios ou número de átomos expostos da fase ativa (mol g⁻¹);

^(b) As taxas correspondem a temperatura de reação de 550 K em 2%CH₄/ar sintético;

(c) Autores que sugerem que a TOR é insensível à estrutura do Pd;

^(d) Autores que sugerem que a TOR é sensível à estrutura de Pd.

O conceito e a distinção entre reações insensíveis e sensíveis à estrutura de catalisadores foram estabelecidos por BOUDART (1969) ^[4]. Por exemplo, HICKS *et al.* (1990a) observaram que em catalisadores com teores de Pd entre 0,2 e 2,3% suportados sobre γ -Al₂O₃ preparados a partir de H₂PdCl₄, quando o tamanho médio das partículas metálicas de Pd varia de 1 até 5 nm, a TOR varia de 0,004 até 0,15 s⁻¹, isto é, quase 40 vezes. Baseados nessa observação os menos autores concluiriam que a reação de oxidação de CH₄ é sensível à estrutura. No entanto, sobre catalisadores com teores de Pd entre 0,7 e 10%Pd suportados sobre γ -Al₂O₃, ZrO₂ ou Si-Al₂O₃ preparados a partir de PdCl₂ ou Pd(NH₃)₂(NO₂)₂, RIBERO *et al.* (1994) observaram que quando o tamanho médio das partículas metálicas de Pd varia entre 2 e 110 nm, os valores da TOR

^[4] Nas reações *insensíveis à estrutura*, a taxa de giro (TOR, *turnover*) permanece constante, considerando a todos os átomos expostos da fase ativa como sítios ativos, independente da sua estrutura cristalina e tamanho de partículas. No entanto, as reações *sensíveis à estrutura* caracterizam-se pela variação da taxa de giro quando há mudança na morfologia cristalina e tamanho das partículas da fase ativa (RIBEIRO, *et al.*, 1997 e CHE e BENNETT, 1989).

encontram-se na faixa de 2×10^{-2} a 8×10^{-2} s⁻¹. Nesse caso, a variação na TOR é equivalente a 4 vezes. Isso levou os autores a concluir que a reação de oxidação de CH₄ é insensível à estrutura. As duas últimas conclusões são contraditórias, mas é importante observar que ambos pesquisadores trabalharam em diferentes faixas de tamanhos de partículas metálicas de Pd, o que não permite descartar a hipótese de que, para partículas metálicas de Pd menores do que 2 nm, o efeito da estrutura do catalisador pode se tornar significativo.

As variações encontradas, nos valores da energia de ativação aparente (E_A) para a reação da oxidação de CH₄, sobre diversos catalisadores de Pd são pequenas (Tabela 1.5) o que permite inferir que a energia de ativação aparente é independe da forma estrutural dos catalisadores.

1.6. Influência dos lons Cl⁻ no Desempenho dos Catalisadores

Outro fator importante é a natureza do precursor metálico utilizado durante o processo de preparação dos catalisadores. Por exemplo, MARCEAU et al. (1996) observaram que a taxa da reação de oxidação de CH₄, em catalisadores de Pt/y-Al₂O₃ preparados a partir de precursores clorados (e.g., H₂PtCl₆) é inibida inicialmente pela presença de cloro residual e com o transcorrer do tempo de reação mostra um incremento gradual da taxa até a completa eliminação do cloro da superfície do catalisador (ver Tabela 1.6 e Figura 1.10). Esse comportamento não foi observado em catalisadores preparados a partir de precursores não clorados (e.g., Pt[NH₃]₄[OH]₂) atingindo mais rapidamente o estado estacionário. Segundo GELIM e PRIMET (2002) catalisadores de Pd são mais sensíveis ao efeito dos íons cloro (Cl⁻) que os de Pt. Geralmente a atividade de catalisadores Pt/Al₂O₃ com o transcorrer do tempo é completamente restaurada. No entanto, catalisadores Pd/Al₂O₃ requerem tratamento adicional, em correntes de ar a 900 K, para recuperar parcialmente a sua atividade em relação a catalisadores preparados com precursores livres de íons Cl⁻. Em ambas experiências não foram observadas mudanças significativas no tamanho médio das partículas metálicas, levando a acreditar, que a queda de atividade observada em catalisadores de Pd preparados a partir de precursores clorados deve-se, em alguns casos, à perda de

AMOSTRA	PRECURSOR -	TEOR	(% p/p)	TAMANHO MÉDIO DE PARTÍCULAS METÁLICAS (nm)	TOR	r _{сн4} × 10 ⁻⁶ (mol s ⁻¹ g ⁻¹)
		Pt	CI		(s ⁻¹)	
Α	H ₂ PtCl ₆	2,0	0,8	1,5	0,014	33,33
В	H ₂ PtCl ₆	1,4	0,4	4,7	0,017	8,33
С	H ₂ PtCl ₆	1,5	0,3	1,0	0,012	41,67
D	Pt(NH ₃) ₄ (OH) ₂	1,6	0	1,6	0,039	172,22
Е	Pt(NH ₃) ₄ (OH) ₂	2,8	0	1,5	0,025	102,78
F	H ₂ PtCl ₆	2,9	0,1	2,5	0,012	27,78

Tabela 1.6. Atividade catalítica de catalisadores de Pt/y-Al₂O₃

FONTE: MARCEU et al. (1996)

Pd após pré-tratamentos a altas temperaturas (> 900 K) em ar via formação de complexos de $Pd_xO_yCl_z$, e em outros casos, à forte adsorção de íons Cl⁻ na interface PdO-Al₂O₃ interagindo fortemente com os íons Pd⁺² e interferindo ou atuando competitivamente com o mecanismo de adsorção-dessorção durante o processo de oxidação total de metano. Outra forma proposta por MARCEU *et al.* (1996) para diminuir o efeito dos íons Cl⁻, em catalisadores de Pt/Al₂O₃ preparados a partir de precursores de H₂PtCl₆, foi pré-tratar os catalisadores com correntes de H₂ entre 650 e 800 K. No entanto, os íons Cl⁻ ainda permanecem entre 0,3 e 0,8 % p/p, além de que o tratamento em meio redutor favorece a sinterização das partículas de metálicas.

1.7. Catalisadores Automotivos

Segundo HECK e FARRAUTO (2001) catalisadores automotivos têm apresentado diferentes fases de desenvolvimento. Catalisadores automotivos utilizados em veículos movidos a gasolina ou diesel podem apresentar diversas configurações: Pd, Pt, Pd/Rh, Pt/Rh, Pd/Rh/Pt. O suporte mais comercialmente utilizado é a base de cordeirite (2MgO + $5SiO_2 + 2Al_2O_3$), seguido de outros como alumina, Zr ou Zr estabilizado com Ce. O cério (Ce) é um excelente catalisador para oxidação do CO e também é conhecido pela sua capacidade de reter oxigênio. O ródio (Rh) é um catalisador promissor para redução das emissões NO_x. No entanto, para operar eficientemente, requer que os gases NO sejam primeiramente convertidos a NO₂ sobre Pt e em seguida adsorvidos em um oxido metálico alcalino (e.g., BaO, K₂CO₃) o mesmo que é incorporado junto com os metais preciosos do catalisador.

Em veículos movidos a gás natural, tipicamente os catalisadores automotivos são constituídos de Pd e/ou Pt suportados sobre $CeO_2 + \gamma - Al_2O_3$. Esses catalisadores já foram utilizados para remoção de emissões derivadas de óleos lubrificantes e de gases orgânicos reativos, que podem formar nuvens de fumaça quando interagem com NO_x e com a luz solar. Em relação à remoção de metano, esses catalisadores, ainda apresentam deficiências, sendo necessário o desenvolvimento de novas tecnologias para o cumprimento das regulamentações

referentes ao controle de emissões poluentes (CHO e HE, 2007 e HECK e FARRAUTO, 2001).

1.8. Conclusões

- A combustão de gás natural é limpa e uniforme, apresenta baixas emissões de poluentes, ausência de particulados (fuligem) e alta seletividade para obtenção de CO₂ e H₂O.
- A oxidação total de metano acontece sobre diversos metais de transição, sendo o Pd o catalisador mais ativo.
- Mecanismos de oxidação de metano sobre a superfícies de Pd sugerem a coexistência de sítios de Pd metálico e PdO.
- A sinterização das partículas metálicas resulta em um decréscimo simultâneo da superfície metálica ativa e da taxa específica de oxidação de metano, sendo o ZrO₂ o suporte que apresenta maior estabilidade para as partículas metálicas do Pd.
- Para reação de oxidação de CH₄, catalisadores de Pd suportado sobre SnO₂ são mais ativos que os catalisadores de Pd suportados sobre ZrO₂. Não obstante, o uso comercial dos catalisadores de Pd/SnO₂ pode ser limitado pela baixa área superfícial e menor estabilidade térmica do SnO₂ em relação ao ZrO₂.
- Na oxidação de metano sobre Pd/ZrO₂, as ordens de reação relativas para CH₄, O₂ e H₂O são 1,0±0,1, 0,1±0,1 e -1,0±0,1, respectivamente. O CO₂ inibe a oxidação de metano quando as concentrações de CO₂ no sistema reacional são maiores de 0,5% v/v em presença de baixas concentrações ou ausência de H₂O. Nesse caso, a queda da taxa de oxidação de metano é proporcional à [CO₂]⁻².
- Os diversos valores da TOR e da energia de ativação para oxidação de metano encontradas na literatura devem-se às diferentes condições reacionais utilizadas. No entanto, ainda não existe um consenso geral se a reação de

oxidação de CH4 é ou não sensível à estrutura.

- Em catalisadores preparados a partir de precursores clorados, a taxa da oxidação de metano é inibida inicialmente pela presença de cloro residual. A taxa de reação aumenta gradualmente com o tempo até a completa eliminação do cloro da superfície do catalisador. Este comportamento não é observado em catalisadores preparados a partir de precursores não clorados, atingindo mais rapidamente o estado estacionário.
- Catalisadores automotivos de veículos que usam gasolina ou diesel não são capazes de realizar a reação de oxidação completa de hidrocarbonetos dos gases de exaustão de veículos movidos a gás natural, devido às baixas temperaturas desses gases (< 750 K).

1.9. Objetivo

Conforme encontrado na literatura, catalisadores de Pd/SnO₂ são os mais ativos para a combustão de CH₄, seguido dos catalisadores de Pd/ZrO₂ e Pd/Al₂O₃. No entanto, SnO₂ apresenta limitações como baixa área específica e ponto de fusão relativamente baixo quando comparado com a ZrO₂. Sendo assim, o objetivo deste trabalho é propor a preparação de catalisadores de Pd e Sn suportados sobre ZrO₂ e estudar as características físicas e a atividade catalítica desses sólidos na reação de oxidação de metano.

1.10. Referências Bibliográficas

- ANDERSON, R. B., STEIN, K. C., FEENAN, J. J., HOFER, L. J. E., Catalytic oxidation of methane. *Industrial and Engineering Chemistry*, v. 53, n. 10, p. 809-812, 1961.
- ATKINS, P, JONES, L. *Princípios de química Questionando a vida moderna e o meio ambiente*. São Paulo: Artmed Editora S.A., 2002.
- BALDWIN, T. R., BURCH, R. Catalytic combustion of methane over supported palladium catalysts. I. Alumina supported catalysts. *Applied Catalysis*, v. 66, p. 337 – 358, 1990.

- BOSCH, R. *Manual de tecnologia automotiva*. São Paulo: Edgard Blücher, Ed. 25, 2005.
- BOUDART, M. Catalysis by supported metals. *Advances in Catalysis and Related Subjects*, v. 20, p. 153-166, 1969.
- BRIOT, P., PRIMET, M. Catalytic oxidation of methane over palladium suporte on alumina: Effect of aging under reactants. *Applied Catalysis*, v. 68, p. 301-314, 1991.
- BURCH, R., LOADER, P. K. Investigation of Pt/Al₂O₃ and Pd/Al₂O₃ catalysts for the combustion of methane at low concentrations. *Applied Catalysis B: Environmental*, v. 5, p. 149-164, 1994.
- CHE, M., BENNETT, C. O. The influence of particle size on the catalytic properties of supported metals. *Advances in Catalysis*, v. 36, p. 55-172, 1989.
- CHO, H. M., HE, B. Spark ignition natural gas engines A review. *Energy Conversion and Management*, v. 48, p. 608-618, 2007.
- CHUAH, G. K. An investigation into the preparation of high surface area zirconia. *Catalysis Today*, v. 49, p. 131-139, 1999.
- EGUCHI, K., ARAI, H. Low temperature oxidation of methane over Pd-based catalysts effect of support oxide on the combustion activity. *Applied Catalysis A: General*, v. 222, p. 359-367, 2001.
- FARRAUTO, R. J., HOBSON, M. C., KENNELLY, T., WATERMAN, E. M. Catalytic chemistry of supported palladium for combustion of methane. *Applied Catalysis A: General*, v. 81, p. 227-237, 1992.
- FORZATTI, P., GROPPI, G. Catalytic combustion for the production of energy. *Catalysis Today*, v. 54, n. 1, p. 165-180, 1999.
- FUJIMOTO, K., RIBEIRO, F. H., AVALOS-BORJA, M., IGLESIA, E. Structure and reactivity of PdO_x/ZrO₂ catalysts for methane oxidation at low temperatures. *Journal of Catalysis*, v. 179, p. 431-442, 1998.
- GELIN, P., PRIMET, M. Completa oxidation of methane at low temperature over noble metal based catlysts: a review. *Aplied Catalysis B: Environmental*, v. 39, p. 1-37, 2002.

- GIEZEN, J. C., BERG, F. R., KLEINEN, J. L., DILLEN, A. J., GEUS, J. W. The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane. *Catalysis Today*, v. 47, p. 287-293, 1999.
- GUPTA, A. K. Gas turbine combustion: Prospects and challenges. *Energy Conversion & Management*, v. 38, n. 10-13, p. 1311-1318, 1997.
- HECK, R. M., FARRAUTO, R. J. Automobile exhaust catalysts. *Applied Catalysis A: General,* v. 221, p. 443-457, 2001.
- HICKS, R. F., QI, H., YOUNG, M. L., LEE, R. G. Structure sensitivity of methane oxidation over platinum and palladium, *Journal of Catalysis*, v. 122, p. 280-294, 1990a.
- HICKS, R. F., QI, H., YOUNG, M. L., LEE, R. G. Effect of catalyst structure on methane oxidation over palladium on alumina, *Journal of Catalysis*, v. 122, p. 295-306, 1990b.
- KOLACZKOWSKI, S. T. Catalytic stationary gas turbine combustors: A review of the challenges faced to clear the next set of hurdles. *Chemical Engineering Research & Design*, v. 73, n. A2, p. 168-190, 1995.
- KUPER, W. J., BLAAUW, M., BERG, F., GRAAF, G. H. Catalytic combustion concept for gas turbines. *Catalysis Today*, v. 47, p. 377-389, 1999.
- LYUBOVSKY, M., PFEFFERLE, L. Complete methane oxidation over Pd catalyst supported on ∞-Alumina. Influence of temperature and oxygen pressure on the catalyst activity. *Catalysis Today*, v. 47, p. 29-44, 1999.
- LYUBOVSKY, M., PFEFFERLE, L., DATYE, A., BRAVO, J., NELSON, T. TEM Study of the microstructural modifications of an alumina-supported palladium combustion catalyst. *Journal of Catalysis*, v. 187, p. 275-284, 1999.
- MARCEAU, E., CHE, M., JAINT-JUST, J., TATIBOUËT, J. M. Influence of chlorine ions in Pt/Al₂O₃ catalysts for methane total oxidation. *Catalysis Today*, v. 29, p. 415-419, 1996.
- MERCERA, P. D. L., VAN OMMEN, J. G., DOESBURG, E. B. M., BURGGRAAF, A. J., ROSS, J. R. H. Stabilized tetragonal zirconium oxide as a support for

catalysts. Evolution of the texture and structure on calcinations in static air. *Applied Catalysis*, v. 78, p. 79-96, 1991.

- MIZUSHIMA, Y., HORI, M. Alumina aerogel for support of a methane combustion catalyst. *Applied Catalysis A: General*, v. 88, p. 137 148, 1992.
- MONTEIRO, R. S., ZEMLYANOV, D., STOREY, J. M., RIBEIRO, F. H. Turnover rate and reaction orders for the complete oxidation of methane on a palladium foil in excess dioxygen, *Journal of Catalysis*, v. 199, p. 291-301, 2001.
- MORRISON, R., BOYD, R. Química orgãnica. Lisboa: Fundação Calouste Gulbenkian, Ed. 13, 1996.
- MUTO, K., KATADA, N., NIWA, M. Complete oxidation of methane on supported palladium catalyst: Support effect. *Applied Catalysis A: General*, v. 134, p. 203-215, 1996.
- NEYESTANAKI, A. K., KLINGSTEDT, F., SALMI, T., MURZIN, D. Y. Deactivation of postcombustion catalysts, a review. *Fuel*, v. 83, p. 395-408, 2004.
- OH, S. E., MITCHELL, P. J., SIEWER, R. M. Methane oxidation over aluminasupported noble metal catalysts with and without cerium additives. *Journal of Catalysis*, v. 132, p. 287-30, 1991.
- RIBEIRO, F. H., CHOW, M., DALLA BETA, R. A. Kinetics of the complete oxidation of methane over supported palladium catalysts. *Journal of Catalysis*, v. 146, p. 537-544, 1994.
- RODRIGUEZ, N. M., OH, S. G., DALLA-BETTA, R. A., BAKER, R. T. K. In situ electrón microscopy studies of palladium supported on Al₂O₃, SiO₂, and ZrO₂ in oxygem. *Journal of Catalysis*, v. 157, p. 676-686, 1995.
- SANTOS, J. B. O. Oxidação total de metano sobre catalisadores de paládio. Tese de doutorado em engenharia química, FEQ-UNICAMP, Campinas-SP, 2003.
- SEKIZAWA, K., WIDJAJA, H., MAEDA, S., OZAWA, Y., EGUCHI, K. Low temperature oxidation of methane over Pd catalyst supported on metal oxides. *Catalysis Today*, v. 59, p. 69-74, 2000a.

- SEKIZAWA, K., WIDJAJA, H., MAEDA, S., OZAWA, Y., EGUCHI, K. Low temperature oxidation of methane over Pd/SnO₂ catalyst. Applied Catalysis A: General, v. 200, p. 211-217, 2000b.
- TAKEGUCHI, T., TAKEOH, O., AOYAMA, S., UEDA, J., KIKUCHI, R., EGUCHI, K. Strong chemical interaction between PdO and SnO₂ and the influence on catalytic combustion of methane. *Applied Catalysis A: General*, v. 255, p. 205-214, 2003.
- VATCHA, S. R. Low Emission gas turbines using catalytic combustion. *Energy Conversion & Management*, v. 38, n. 10-13, p. 1327-1334, 1997.
- WIDJAJA, H., SEKISAWA, K., EGUCHI, K. Catalytic combustion of methane over Pd supported on metal oxides. *Chemistry Letters*, v. 6, p. 481-482, 1998.
- WIDJAJA, H., SEKISAWA, K., EGUCHI, K. Low-temperature oxidation of methane over Pd supported on SnO₂-based oxides. *Bulletin of the Chemical Society of Japan*, v. 72, n. 2, p. 313-320, 1999.
- YAMAGUCHI, T. Application of ZrO₂ as a catalyst and a catalyst Support. *Catalysis Today*, v. 20, p. 199-218, 1994.
- YAMAMOTO, H., UCHIDA, H. Oxidation of methane over Pt and Pd supported on alumina in lean-burn natural-gas engine exhaust. *Catalysis Today,* v. 45, p. 147-151, 1998.
- YANG, S., MAROTO-VALIENTE, A., BENITO-GONZALES, M, I. RODRIGUEZ-RAMOS, I. GUERRERO-RUIZ, A. Methane combustion over supported palladium catalysts. I. Reactivity and active phase. *Applied Catalysis B: Environmental*, n. 28, p. 223-233, 2000.
- YAO, Y. Y. Oxidation of alkanes over noble metal catalysts. *Industrial Engineering Chemical Production Research Developments*, v. 19, p. 293-298, 1980.

CAPITULO II

PREPARAÇÃO E CARACTERIZAÇÃO DOS CATALISADORES

Neste capítulo foi estudada a mudança das propriedades físicas dos sólidos Pd/ZrO₂ com adição do Sn. Especificamente foi proposta a preparação dos sólidos Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂ por técnicas de impregnação incipiente, secagem e calcinação em ar estático a 800, 1100 e 1400 K e analisadas as propriedades físicas dos sólidos através de espectroscopia de adsorção atômica (ICP-AES), microscopia de transmissão (TEM), difração de raios-X (XRD), redução a temperatura programada (TPR), medidas de adsorção de O₂, H₂ e CO e Titulação de oxigênio adsorvido com H₂.

2.1. Materiais e Métodos

2.2.1. Preparação dos Catalisadores

Pd/ZrO₂, Pd-Sn/ZrO₂ and Sn/ZrO₂ foram preparados por impregnação incipiente a partir das soluções aquosas de nitrato de paládio hidratado (Pd(NO₃)₂.XH₂O, Aldrich Chemical Company, 41.9%Pd, Lot. Nº 05625MI) e tartarato de estanho II (SnC₄H₄O₆.XH₂O, Alfa Aesar – Johnson Matthey Company, 43.7%Sn, Lot. L13J01). Como suporte foi utilizado a zircônia (ZrO₂, RC-100P) da Daichi Kigenso Kagaku (DKK) do Japão. Maiores informações sobre as propriedades físico-químicas e de segurança dos materiais citados acima foram descritas no Anexo "A" deste trabalho.

A solução de Pd(NO₃)₂.XH₂O foi preparada pela dissolução do sal em água destilada e deionizada, apresentando uma cor marrom escura. Para evitar a presença de partículas insolúveis a solução foi filtrada. A solubilidade de Pd(NO₃)₂.XH₂O foi calculada através da concentração de Pd determinada por análise gravimétrica, usando-se dimetilglicoxima como agente complexante.

A solubilidade do Pd(NO₃)₂.XH₂O foi igual a 3,0 × 10⁻³ g cm⁻³, valor próximo ao determinado por KRAVCHUK *et al.*, 1992 (3,4 x 10⁻³ g cm⁻³). A solução de SnC₄H₄O₆.XH₂O foi também preparada pela dissolução do sal em água destilada e deionizada. Houve a formação de precipitado branco devido à saturação da solução, sendo separado por filtração. A solubilidade do SnC₄H₄O₆.XH₂O foi determinada por análise gravimétrica. O valor obtido foi igual a 2,5 × 10⁻³ g cm⁻³. Os volumes das soluções precursoras foram entre 3 e 16 ml por grama de suporte óxido.

Antes do processo de impregnação o material foi secado a 400 K durante 24 h e calcinado em ar estático a 1200 K durante 12 h. O processo de impregnação foi realizado no dispositivo experimental mostrado na Figura 2.1. O suporte foi colocado dentro do balão do dispositivo experimental (Parte A, Figura 2.1) e a solução aquosa do precursor foi colocada na bureta da parte superior do dispositivo (Parte B, Figura 2.1). A temperatura do banho termostático (QUIMIS, Mod. Q214S) foi ajustado a 365 K e a bomba de vácuo (FANEM 089-CAL, vácuo máx. 74,7 kPa) foi ligada para remover continuamente os vapores do solvente durante o processo de impregnação. A solução precursora foi adicionada gota a gota sobre o suporte e misturados com o auxilio de um bastão de vidro.

Na preparação dos sólidos Pd-Sn/ZrO₂, inicialmente a solução de Sn foi adicionada ao suporte, os sólidos foram secados em ar estático a 400 K por 24 horas e calcinados a 800 K por 4 horas. Em seguida, a solução de Pd foi adicionada ao ZrO₂ contendo Sn que foram secados a 400 K por 24 horas e calcinados a 800, 1100 e 1400 K por 12 horas. Na preparação de Pd/ZrO₂, após impregnação, os sólidos foram secados em ar estático por 24 horas e calcinados a 800, 1100 e 1400 K por 12 horas e os sólidos Sn/PdO₂, após impregnação, foram secados em ar estático por 24 horas e depois calcinados a 800, 1100 e 1400 K por 12 horas e calcinados a 800 K por 4 horas e depois calcinados a 800, 1100 e 1400 K por 12 horas. Na etapa de secagem foi utilizada uma estufa FANEM, Mod. 515/C e na etapa de calcinação um forno-mufla QUIMIS, Mod. Q214S.

Figura 2.1. Dispositivo experimental de impregnação

2.1.2. Caracterização dos Catalisadores

Análise de elementos

Os teores de Pd e Sn foram determinados por espectroscopia de emissão atômica com plasma acoplado indutivamente ICP-AES (ICP Varian Vista MPX). As amostras (ca. 400 mg) foram digeridas em cápsula de platina com água régia / ácido fluorídrico conforme o método padrão SW-846-3550B-USEPA-1986 (*Test Method for Evaluating Solid Waste Report Number 846, Washington, DC - USA*).

Microscopia eletrônica de transmissão

A microscopia eletrônica de transmissão é uma técnica que permite obter informações diretas sobre o tamanho das partículas metálicas e morfologia cristalina, através de imagens amplificadas da ordem de 10⁵ e 10⁶ vezes. No

entanto, devido à pequena área superficial da amostra utilizada na análise ($\approx 1 \ \mu m^2$), os dados obtidos nem sempre são representativos, devendo-se considerar estas informações como complementares (LEOFANTI *et al.*, 1997).

As análises por TEM foram realizadas em um microscópio marca Philips (Mod. CM200) com potencial de aceleração de elétrons de 200 kV, equipado com um aparelho EDX (Princeton Gamma Tech – PGT, Mod. Prism). As amostras foram preparadas por imersão de um porta-amostra (micrograde de cobre) em uma suspensão do sólido (1,5 mg) em etanol (10 cm³) previamente agitada por ultra-som durante 10 minutos. A micrograde foi secada à temperatura ambiente e iniciada a análise de TEM. Na obtenção das fotomicrografias foi utilizada a técnica de campo claro e as partículas de Pd e Sn foram confirmadas por espectroscopia de energia dispersiva de raios-x (EDX).

Difração de raios-X

A técnica de difração de raios-x (XRD) permite obter informações sobre as propriedades estruturais de sólidos cristalinos e policristalinos. Os raios-x têm um comprimento de onda da ordem de 10⁻¹⁰ m, equivalente às dimensões das distâncias interatômicas existentes em um cristal. Os raios-x espalhados através dos cristais fornecem informações sobre arranjos e orientações cristalográficas, análise quantitativa de fases, tamanhos de partículas, etc.

A fase cristalina dos sólidos foi analisada por XRD para amostras em pó (Philips, Mod. X'Pert). Os difratogramas foram obtidos na escala 20 de 10° até 70°, tamanho de passo 0,02° e tempo por passo 1,8 s com comprimento de onda CuK α_1 = 0,154056 nm, intensidade de 40 kV e corrente de 40 Amp. As análises dos difratogramas foram realizadas utilizando o programa da Philips PC-APD v. 4.0d.

Redução a temperatura programada

A redução a temperatura programada (TPR) é uma técnica que utiliza uma mistura redutora (e.g., 5% H₂/He) que flui através de um porta-amostra, que contém uma quantidade fixa do sólido, previamente oxidado ou não, submetido a

um aumento linear da temperatura. Segundo CHANG *et al.* (1985) durante o processo de redução de uma amostra sólida contendo PdO acontecem as seguintes reações:

Redução	:	$PdO + H_2 \rightarrow Pd + H_2O$	(Eq. 2.1.)
Adsorção	:	$2Pd_{S}$ + $H_{2} \rightarrow 2Pd_{S}H$	(Eq. 2.2.)
		$2Pd_P + H_2 \rightarrow 2Pd_PH$	(Eq. 2.3.)
Dessorção	:	$2Pd_{S}H \rightarrow 2Pd_{S} + H_{2}$	(Eq. 2.4.)
		$2Pd_{P}H \rightarrow 2Pd_{P} + H_{2}$	(Eq. 2.5.)

onde Pd_s são os átomos de paládio localizados na superfície das partículas de paládio; Pd_P são os átomos de paládio localizados no interior das partículas de paládio (*bulk*). As informações que podem ser obtidas da TPR referem-se ao estado de oxidação e à interação entre os componentes das amostras (PINNA, 1998).

A caracterização dos sólidos por TPR foi realizada após a etapa de calcinação, seguindo a técnica utilizada por TAKEGUCHI *et al.* (2003). O aparelho utilizado foi um QUANTACHROME Instrument (Mod. ChemBet 3000 TPD/TPR). Aproximadamente 100 mg de amostra foram acondicionadas dentro de um tubo de quartzo. Uma mistura gasosa de 5% H₂ e 95%He (v/v), mantendo uma vazão de 60 cm³min⁻¹, foi alimentada no tubo de quartzo. O sistema foi aquecido desde a temperatura ambiente até aproximadamente 900 K com uma taxa de aquecimento de 5 K min⁻¹. O programa utilizado para aquisição e tratamento de dados foi TPRWin v. 1.50.

Medidas de adsorção

A adsorção seletiva de gases (e.g., H₂, O₂ e CO) é a técnica mais freqüentemente utilizada para medir a superfície ativa dos catalisadores metálicos suportados. As moléculas de gás adsorvido na superfície metálica dos catalisadores formam uma monocamada que permite estimar a área superficial, a

fração de átomos expostos e o tamanho médio das partículas metálicas, se a estequiometria de adsorção é conhecida.

Neste trabalho foram realizadas as medidas de adsorção de H₂, O₂ e CO e titulação de O adsorvido com H₂ baseadas nas metodologias seguidas por PRELAZZI *et al.* (1999), O'REAR *et al.* (1990) e BENSON *et al.* (1973). As medidas de adsorção foram obtidas em um aparelho volumétrico marca Micromeritics Instrument Corporation – ASAP 2010C (Figura 2.2). Os gases usados nos experimentos foram H₂ (Instituto de Física - UNICAMP, 99,999% v/v), O₂ (Air-Liquide, 99,99% v/v) e CO (AlphaGas, 99,99% v/v).

Antes das medidas de adsorção de 0,2 a 1,0 g de amostra foram reduzidas a 673 K por 1h em fluxo de H₂ (30 cm³ min⁻¹). As amostras foram evacuadas a $1,3 \times 10^{-6}$ kPa a 683 K durante 2 h. A temperatura do sistema foi então diminuída sob vácuo até a temperatura de análise e evacuada por 10 minutos para garantir a estabilização da temperatura. A temperatura de medida de adsorção para o O₂ e H₂ foi 373 K e para adsorção de CO foi de 310K. Em todos os casos foram obtidas duas isotermas com pressões de equilíbrio entre 0,5 e 30 kPa. A segunda isoterma foi obtida após evacuação da amostra na temperatura de análise (310 K ou 373 K) durante 15 minutos. A diferença das duas isotermas, e a sua subseqüente extrapolação à pressão zero, permitiu determinar a quantidade de gás adsorvido irreversivelmente por unidade de massa da amostra. A titulação de oxigênio adsorvido com H₂ foi realizada logo após a adsorção de O₂. A amostra foi evacuada a 373 K por 15 min e em seguida as duas isotermas foram obtidas de forma similar ao descrito acima.

As propriedades estruturais da fase ativa para os sólidos Pd/ZrO_2 e Pd-Sn/ZrO₂, foram estimadas a partir das medidas de adsorção de H₂, utilizando como estequiometrias de adsorção H/Pd = 1. As equações utilizadas para determinação dos parâmetros estruturais da fase ativa são mostradas a seguir:

- (A, B, ... E) Válvulas de entrada dos gases de análise
 - (He) Entrada de gás hélio
 - (V1) Vácuo primário
 - (V2) Vácuo secundário

- (CC) Câmera de calibração
 - (M) Manômetro diferencial
 - (T) Termopar
 - (R) Tubo da amostra
 - (X) Válvula de saída
 - (F) Forno

Figura 2.2. Aparelho volumétrico - ASAP 2010C

a) Área metálica exposta:

 $S_{M} = \frac{S_{Pd}}{f_{Pd}}$ (Eq. 2.6.)

$$S_{Pd} = \frac{2Q_{H}}{y}$$
 (Eq. 2.7.)

onde S_M é a área metálica exposta por grama de amostra (m² g⁻¹); S_{Pd} é a quantidade de paládio superficial por grama de amostra (mol g⁻¹); f_{Pd} é a densidade superficial média de átomos de Pd expostos por metro quadrado de superfície (2,11 × 10⁻⁵ mol Pd m⁻²). Esse último valor foi o resultado da divisão da densidade superficial de átomos de Pd (1,27 × 10¹⁹ átomos Pd m⁻²) pelo Número de Avogadro (6,02 × 10²³ átomos mol⁻¹); **Q**_H é o número de moles de H₂ adsorvido por grama de amostra (mol g⁻¹).

b) Fração de átomos expostos de paládio:

$$F_{Pd} = 10642 \times \frac{S_{Pd}}{W_{Pd}}$$
 (Eq. 2.8.)

onde: \mathbf{F}_{Pd} é a fração de átomos de paládio expostos; \mathbf{S}_{Pd} é a quantidade de paládio superficial por grama de amostra (mol g⁻¹); \mathbf{W}_{Pd} é o teor de Pd (% p/p).

c) Tamanho médio das partículas metálicas de paládio:

$$d_{Pd} = \frac{1,12}{F_{Pd}}$$
(Eq. 2.9.)

onde: \mathbf{d}_{Pd} é o tamanho médio das partículas metálicas de paládio (nm). A equação 2.9 assume que as partículas de Pd são esféricas, apresentando uma densidade superficial de átomos igual a $1,27 \times 10^{19}$ átomos Pd m⁻² (BOUDART e HWANG, 1975).

2.2. Resultados e Discussão

Na Tabela 2.1 são mostrados os teores de Pd e/ou Sn e a temperatura de calcinação dos sólidos Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂. A seguir são analisadas as propriedades físicas dos sólidos.

2.2.1. Microscopia Eletrônica de Transmissão

Nas Figuras 2.3 até 2.5 são mostradas as fotomicrografias TEM, ampliadas entre 70000× e 135000×, para os três sistemas de sólidos Pd/ZrO₂, Sn/ZrO₂ e Pd-Sn/ZrO₂, calcinadas entre 800 e 1400 K. Nas imagens as áreas escuras correspondem às regiões de alta densidade atômica e as áreas claras às regiões de baixa densidade atômica (BARONI, 2006).

N⁰	TEORES METÁLICOS ⁽¹⁾ (% p/p)	TEMPERATURA DE CALCINAÇÃO (K)
01	4,0%Pd/ZrO ₂	800
02	4,0%Pd/ZrO ₂	1100
03	3,9%Pd/ZrO ₂	1400
04	2,8%Pd – $2,3%$ Sn/ZrO ₂	800
05	2,8%Pd – $2,3%$ Sn/ZrO ₂	1100
06	$2,8\%Pd - 2,2\%Sn/ZrO_2$	1400
07	2,6%Sn/ZrO ₂	800
08	2,6%Sn/ZrO ₂	1100
09	2,5%Sn/ZrO ₂	1400
10	0,8%Pd/ZrO ₂	1100
11	0,8%Pd - 0,9%Sn/ZrO ₂	1100
12	1,0%Sn/ZrO ₂	1100
13	0,7%Pd – 2,5%Sn/ZrO ₂	1100
14	3,6%Pd - 0,9%Sn/ZrO ₂	1100
15	1,6%Pd – 1,1%Sn/ZrO ₂	1100

Tabela 2.1. Teores metálicos e temperaturas de calcinação de Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂

⁽¹⁾ Teores de Pd e Sn foram determinados por ICP-AES.

Na fotomicrografia do sólido 4,0%Pd/ZrO₂ calcinado a 800 K (Figuras 2.5a), as imagens dos contornos das partículas de Pd são difusas. O baixo contraste de difração é devido à pequena diferença dos pesos moleculares existente entre o PdO (122,4 g mol⁻¹) e ZrO₂ (123,2 g mol⁻¹). Segundo FUJIMOTO *et al.* (1998) a fase ativa de catalisadores de Pd com baixos teores de Pd (< 3% p/p) é constituído por partículas de PdO não cristalinas ou muito pequenas. Na Figura 2.3a não foram detectadas partículas pequenas de PdO, sugerindo que as partículas de Pd suportadas sobre ZrO₂ após calcinadas a 800 K foram completamente oxidadas produzindo fases de baixa cristalinidade. No entanto, o contorno das imagens para as partículas de Pd nos sólidos 3,9%Pd/ZrO₂ calcinadas a 1400 K são distinguíveis (Figura 2.3b) sendo possível identificar partículas metálicas de Pd de diversos tamanhos variando entre 10 e 100 nm.

Esses resultados estão de acordo com os observados por RODRIGUEZ *et al.* (1995) e FARRAUTO *et al.* (1992). As partículas de PdO calcinadas a temperaturas > 1170K são decompostas à Pd metálico e sofrem sinterização com aumento da temperatura de calcinação.

Nas fotomicrografias dos sólidos 2,6%Sn/ZrO₂ (Figura 2.4a e 2.4b) e 2,5%Sn/ZrO₂ (Figuras 2.4c) calcinados a 800 K e 1400 K, respectivamente, apresentam imagens bem mais definidas. As partículas de SnO₂ são mais escuras que as partículas de ZrO₂. Nas amostras calcinadas a 800 K as partículas de SnO₂ apresentam formas irregulares semi-esféricas com tamanhos variando entre 25 e 50 nm. Nas amostras calcinadas a 1400 K as partículas de SnO₂ apresentaram tamanhos entre 50 e 200 nm. O ZrO₂ forma aglomerados de partículas com contornos claros. No entanto, não foi observada a diluição ou fusão do SnO₂ no ZrO₂ (Figura 2.4c).

Os tamanhos das partículas de SnO₂ para 2,6%Sn/ZrO₂ e 2,5%Sn/ZrO₂ calcinados a 800 K ou 1400 K foram semelhantes às observadas para 2,8%Pd-2,3%Sn/ZrO₂ e 2,8%Pd-2,2%Sn/ZrO₂ (Figura 2.5). A mesma distribuição das partículas de PdO ou Pd observadas para 4%Pd/ZrO2 calcinada a 800 K (Figura 2.3a) também foi observada para 2,8%Pd-2,3%Sn/ZrO₂ (Figura 2.5a). Na amostra 2,8%Pd-2,2%Sn/ZrO₂ calcinada a 1400 K (Figura 2.5b) foram identificadas partículas pequenas de Pd com tamanhos menores que 10 nm, além das partículas de SnO₂, ZrO₂ e das partículas aglomeradas de Pd. A formação dessas partículas de Pd com tamanhos menores de 10 nm pode ser devido à interação do Pd com o Sn como fora observado anteriormente por EGUCHI e ARAI (2001) sobre amostras de Pd/SnO₂.

Figura 2.4. Fotomicrografias TEM: (a) e (b) 2,6 %Sn/ZrO₂ - 800 K; (c) 2,5%Sn/ZrO₂ - 1400 K

2.2.2. Difração de Raios-X

Antes de incorporar os precursores de Pd e Sn no suporte, a zircônia (ZrO₂) foi calcinada a 1200 K durante 12 h. Os dados de difração de raios-X mostraram uma fase homogênea e cristalina monoclínica com área BET igual a 19,6 m²g⁻¹ (Figura 2.6). Os difratogramas dos catalisadores Pd e Sn calcinados em ar estático a temperaturas \leq 1100K não apresentaram nenhuma modificação mantendo a forma cristalina e área BET próxima a 20 m²g⁻¹ semelhante ao ZrO₂ puro. No entanto, a área BET dos sólidos calcinados a 1400 K diminuiu até 5 m² g⁻¹ e o suporte apresentou uma pequena transformação para a fase tetragonal (\approx 2%), evidenciado através da linha de difração 2 θ = 30,3° correspondente ao plano

Figura 2.6. Difração de raios-x: ZrO₂ monoclínico – 1200 K

cristalino da ZrO₂ tetragonal (011) como mostrada na Figura 2.7 (SANTOS *et al.*, 2008; CARUSO *et al.*, 2004; VALDEZ *et al.*, 2004 e SEKIZAWA *et al.*, 2000).

Segundo SANTOS (2003) e FUJIMOTO et al. (1998), em catalisadores com teores metálicos menores do que 3%, através de XRD é difícil detectar algum sinal que corresponda aos planos cristalinos de PdO suportado em ZrO₂ possivelmente devido à formação de partículas de PdO não cristalinas ou muito pequenas. TAKEGUCHI *et al.* (2003), observaram que mesmo em amostras com 22%PdO/SnO₂ dificilmente são observadas as linhas de difração de raios-X do PdO. No entanto, neste trabalho, para os sólidos 3,9%Pd/ZrO₂ e 2,5%Sn/ZrO₂, após calcinação a 1400 K durante 12 h, foi possível detectar as

Figura 2.7. Difração de raios-x: ZrO₂ monoclínico / tetragonal – 1400 K

linhas de difração nos ângulos 20: 46,8° e 26,7°, correspondentes aos planos cristalinos Pd (200) – PDF n° 01-1201 e SnO_2 (110) – PDF n° 01-0657 como mostrado nas Figuras 2.8 e 2.9, respectivamente.

Comportamento similar foi observado nos sólidos 2,8%Pd-2,2%Sn/ZrO₂ calcinados a 1400 K. Nos outros óxidos, calcinados a temperaturas \leq 1100K, não foi possível identificar as linhas de difração correspondentes às espécies metálicas ou óxidas do Pd e Sn. Nesses mesmos difratogramas não foram identificadas as linhas de difração correspondentes ao plano cristalino do Pd (111) como fora encontrado por SANTOS (2003) sobre sólidos com 4%Pd suportados sobre γ -Al₂O₃, no ângulo 20 = 40,04° - PDF nº 46-1043 e nº 05-0681. A presença de partículas metálicas de Pd, nos sólidos de Pd/ZrO₂ e Pd-Sn/ZrO₂ calcinados a 1400 K, confirmam as observações realizadas por RODRIGUEZ *et al.* (1995) de que, o PdO acima de 1170 K se decompõe e sinteriza formando grandes partículas metálicas de Pd.

Segundo GARBOWSKI et al. (1994), geralmente as partículas metálicas de Pd tendem a formar planos cristalinos densos constituídos de arranjos atômicos hexagonais, e.g. Pd(111) (Figura 2.10a). No entanto, o PdO caracteriza-se por Pd⁺² são apresentar uma estrutura cristalina tetragonal onde os íons localizados nos vértices da estrutura tetragonal (Figura 2.10c). Dada a impossibilidade do PdO formar planos cristalinos com arranjos atômicos hexagonais, durante o processo de oxidação das partículas de Pd (111), existe uma grande movimentação dos átomos de Pd para formar a estrutura tetragonal do PdO. Porém, partículas de Pd com planos cristalinos Pd(200) (Figura 2.10b), permitem a transformação reversível de Pdº a PdO sem drásticas mudanças nos parâmetros da rede cristalina (Figura 2.10d). Os mesmos autores sugerem que a presença de partículas de Pd (200) favorece a maior atividade do sólido em aplicações de adsorção e catálise. Nesse sentido, a atividade dos sólidos Pd/ZrO2 e Pd-Sn/ZrO₂ seriam favorecidos pela tendência de formar planos cristalinos Pd (200).

Figura 2.10. Arranjos atômicos: **(a)** Pd(111); **(b)** Pd (200); **(c)** PdO (001); **(d)** Possível formação de PdO sobre superfícies de Pd(200)

O plano cristalino detectado para o SnO₂ (110) na amostra 2,5%Sn/ZrO₂ permite confirmar que o SnO₂ permanece estável em contato com a ZrO₂ a temperaturas de 1400 K. Esses resultados estão em concordância com as observações realizadas por microscopia de transmissão para os sólidos Sn/ZrO₂ (Figura 2.4c). Segundo RAY *et al.* (2003) a zircônia em presença de íons tetravalentes de Sn⁺⁴, apresenta alta estabilidade. A estabilidade do suporte é maior com o aumento da concentração do Sn.

2.2.3. Redução a Temperatura Programada

Segundo RAGAINI *et al.* (1994) a redução de PdO acontece na faixa de temperaturas de 170 a 270 K, com a conseqüente adsorção de H₂ nas partículas de Pd formando espécies do tipo α -H-Pd, β -H-Pd e γ -H-Pd (Figura 2.11). As primeiras duas espécies caracterizam-se por apresentar ligações fracas podendo ser facilmente removidas, sob vácuo, a temperaturas de 305 K. No entanto, a

Figura 2.11. Dessorção térmica a temperatura programada de H₂ sobre Pd/Al₂O₃ (RAGAINI *et al.*, 1994)

terceira espécie apresenta uma ligação forte (próximo de 370K), podendo ser removida somente acima de 570 K.

O estanho somente pode ser reduzido de Sn⁺⁴ até Sn⁺², sendo muito difícil a sua redução para Sn^o e a redução do SnO₂ acontece próximo de 1050 K (PARK *et al.*, 1999; TAKEGUCHI *et al.*, 2003). No entanto, HOFLUND (1994) sugeriu que as camadas mais externas da superfície das partículas de SnO₂ podem ser parcialmente transformadas para SnO_x ($1 \le x < 2$), a partir da exposição de SnO₂ em atmosfera redutora (5 %H₂) à temperatura de 470 K, não existindo migração dessas espécies monóxidas para as camadas mais internas das partículas de SnO₂.

Na Figura 2.12 são mostradas as curvas de TPR, na faixa de temperatura de 300 a 900 K com uma taxa de aquecimento de 5 K min⁻¹, para os sólidos PdO- SnO_2/ZrO_2 com teores de Pd variando entre 0,7% e 3,6% e teores de Sn variando inversamente entre 2,5% e 0,9% e para os sólidos PdO/ ZrO_2 com 4,0% Pd e

Figura 2.12. TPR dos sólidos PdO/ZrO₂ e PdO-SnO₂/ZrO₂

 SnO_2/ZrO_2 com 2,6% Sn. A dessorção de H₂ ocorreu entre 335 e 365 K e a quantidade de H₂ dessorvido aumentou com o aumento do teor de Pd, sugerindo que o PdO foi facilmente reduzido em contato com H₂. Similarmente o pico que corresponde a redução de SnO_2 detectado acima de 800 K, também aumentou com o aumento da concentração de Sn nas amostras.

Na faixa de temperatura entre 400 K e 700 K, não foi observada a formação de picos largos, sugerindo que PdO foi completamente reduzido a temperatura ambiente e que o SnO₂ permanece estável até 700 K sob as condições utilizadas neste trabalho. O ponto máximo do pico de redução de SnO₂ observado entre 800 e 900 K para os sólidos contendo Pd e Sn é levemente deslocado para temperaturas menores em relação aos sólidos contendo somente Sn/ZrO₂. A mudança na temperatura de redução sugere que o H adsorvido na superfície de Pd é facilmente acessado para redução parcial do SnO₂, no entanto, nenhuma afirmação pode ser feita sobre a distância das partículas de Pd e de SnO₂, nem a existência de uma forte interação entre Pd e Sn ou formação de ligas Pd-Sn.

2.2.4. Medidas de Adsorção

As medidas de adsorção e titulação foram baseadas nas metodologias seguidas por PRELAZZI *et al.* (1999), O'REAR *et al.* (1990) e BENSON *et al.* (1973). No processo experimental foram considerados os seguintes fatores:

- (i) Segundo RODRIGUEZ et al. (1995) o Pd é completamente oxidado à temperatura de 600 K e quando o PdO é suportado sobre ZrO₂, decompõe a temperatura de 1170 K. Por outro lado, neste trabalho através de análises XRD (Figura 2.9) foi observado que o SnO₂ permanece estável, mesmo após calcinado a temperatura de 1400 K. Assim, pode-se afirmar que o Pd e o Sn presentes na superfície dos sólidos Pd/ZrO₂ e Pd-Sn/ZrO₂ calcinados entre 800 K e 1100 K, encontram-se completamente oxidados formando estruturas do tipo PdO/ZrO₂ e PdO-SnO₂/ZrO₂, respectivamente, e a superfície dos sólidos calcinados a 1400 K são formados por partículas sinterizadas de Pd/PdO e SnO₂ suportados sobre ZrO₂.
- (ii) A temperatura utilizada nas medidas de adsorção de H₂ e da titulação de O adsorvido com H₂ foi de 370K. Nessa temperatura o H₂ é adsorvido fortemente na superfície de Pd, formando espécies γ-H-Pd e evitando a formação de outras espécies hidrogenadas fracas. Segundo BENSON *et al.* (1973) os resultados de dispersão para os catalisadores metálicos obtidos a 370 K são semelhantes aos obtidos por outras técnicas (e.g. XRD, TEM).

- (iii) A temperatura utilizada na medida de adsorção de O₂ foi de 370 K, semelhante às condições utilizadas na titulação de O adsorvido com H₂, já que as duas medidas foram realizadas em seqüência. Segundo SANTOS (2003) a adsorção de O₂ sobre catalisadores de 2,1%Pd/γ-Al₂O₃, 0,4%Pd/ZrO₂, 1,4%Pd/ZrO₂ e 2,5%Pd/ZrO₂ não apresenta nenhuma mudança significativa na faixa de temperatura de 300 até 400 K.
- (iv) As medidas de adsorção de CO foram realizadas à temperatura ambiente (310K), conforme técnica seguida por SCHOLTEN e MONTFOORT (1962). A partir dos resultados de adsorção de CO mostrados na Figura 2.13 pode-se sugerir que a adsorção de CO não apresenta nenhuma mudança significativa na faixa de temperaturas entre 300 e 400 K.

Figura 2.13. Medidas de adsorção de CO em função da temperatura (4,0%Pd/ZrO₂ – 800K)

(v) A faixa de pressão de equilíbrio utilizada neste trabalho (0,5 kPa até 30 kPa) estão em concordância com a literatura. Segundo SANTOS (2003) as medidas de adsorção de H₂ realizadas a baixas pressões, de 2,7×10⁻³ kPa a

2,0 kPa, e altas pressões, de 2 kPa a 27 kPa, apresentam diferenças menores que 5%. Contudo, pressões de H₂ maiores do que 30 kPa tendem a aumentar a quantidade de H₂ fixado pelo Pd.

Nas figuras 2.14 a 2.17 são mostradas isotermas de adsorção realizadas sobre o catalisador 4,0%Pd/ZrO₂ calcinado a 800 K. Em todos os casos as duas isotermas sempre foram paralelas e a diferença entre elas sempre foi uma linha reta, que extrapolada a pressão zero resulta no número de mols de gás adsorvido por unidade de massa.

Figura 2.14. Adsorção de O₂ – 4,0%Pd/ZrO₂ (800K)

Figura 2.15. Titulação de O adsorvido com H₂ – 4,0%Pd/ZrO₂ (800K)

Figura 2.16. Adsorção de H₂ – 4,0%Pd/ZrO₂ (800K)

Figura 2.17. Adsorção de CO – 4,0%Pd/ZrO₂ (800K)

Os resultados das medidas de adsorção e titulação obtidas para os sólidos Pd/ZrO₂, Sn/ZrO₂ e Pd-Sn/ZrO₂ são mostrados na Tabela 2.2.

Nos primeiros três grupos de sólidos preparados com teores de Pd e Sn próximos a 4,0%Pd/ZrO₂, 2,8%Pd-2,3%Sn/ZrO₂ e 2,6%Sn/ZrO₂, calcinados entre 800 e 1400 K, foi observado que com o aumento da temperatura de calcinação o volume de gases adsorvidos diminuiu, sendo mais significativo para os sólidos calcinados a 1400 K. Isto é, para os sólidos calcinados entre 800 e 1100 K, a área BET do suporte (ZrO₂) manteve-se constante (ca. 20 m²g⁻¹), portanto, nesses sólidos a queda no volume de adsorção de gases foi devido unicamente à sinterização das partículas de Pd. No entanto, nos sólidos calcinados a 1400 K, a área BET do suporte diminuiu até aproximadamente 5 m²g⁻¹. Sendo assim, a queda significativa no volume de gases adsorvido nos sólidos calcinados a 1400 K foi atribuída à sinterização das partículas metálicas de Pd e a sinterização do suporte.

AMOSTRA	TEMPERATURA CALCINAÇÃO	Qo	Т _н	Q _H	Q _{CO}	
	(K)	mol 0 ₂ g ⁻¹ × 10 ⁻⁸ m	mol $O_2 g^{-1} \times 10^{-6}$ mol $H_2 g^{-1} \times 10^{-6}$ mol $H_2 g^{-1} \times 10^{-6}$ mol C_2			
ZrO ₂	1200	0,1	0,1	-	-	
4,0%Pd	800	33,9	88,5	16,9	25,8	
4,0%Pd	1100	26,0	65,6	13,3	21,8	
3,9%Pd	1400	5,7	11,8	1,5	2,4	
2,8%Pd - 2,3%Sn	800	146,5	137,9	4,3	8,3	
2,8%Pd - 2,3%Sn	1100	102,8	99,4	3,0	5,7	
2,8%Pd - 2,2%Sn	1400	6,7	12,0	1,9	2,7	
2,6%Sn	800	80,1	38,0	-	-	
2,6%Sn	1100	49,1	21,0	-	-	
2,5%Sn	1400	2,0	0,8	-	-	
0,8%Pd	1100	19,4	47,2	10,0	16,3	
0,8%Pd - 0,9%Sn	1100	56,1	61,7	2,0	4,0	
1,0%Sn	1100	25,3	11,3	-	-	
0,7%Pd - 2,5%Sn	1100	88,0	86,8	1,2	1,7	
3,6%Pd - 0,9%Sn	1100	54,8	96,2	5,8	12,3	
1,6%Pd - 1,1%Sn	1100	88,7	95,8	3,1	6,0	

Tabela 2.2. Medidas de adsorção de H₂, O₂, CO e Titulação de O adsorvido com H₂

Qo, adsorção de O2; TH, titulação de O adsorvido com H2; QH, adsorção de H2; Qco, adsorção de CO.

Adsorção de O₂

A quantidade de O_2 adsorvido (Q_0) nos sólidos calcinados a 800 K apresentaram a seguinte ordem decrescente 2,8%Pd-2,3%Sn/ZrO₂ > 2,6%Sn/ZrO₂ > 4,0%Pd/ZrO₂. A mesma tendência foi observada nos sólidos calcinados a 1100 K com altos teores de Pd e Sn (2,8% Pd-2,3% Sn/ZrO₂ > 2,6% Sn/ZrO₂ 4,0% Pd/ZrO₂) e com baixos teores metálicos (0,8%Pd-0,9%Sn/ZrO₂ > 1,0%Sn/ZrO₂ > 0,8%Pd/ZrO₂). Nos sólidos calcinados a 1400 K as quantidades de O₂ adsorvido foram relativamente baixas quando comparadas com dos sólidos calcinados a 800 K e 1100 K e a adsorção de O₂ na ZrO₂ (suporte) foi praticamente zero. Em todos os casos, o aumento da temperatura de calcinação resultou na diminuição da quantidade de O₂ adsorvido. Segundo CHANG (1980) as superfícies de SnO₂ adsorvem O₂ predominantemente como O₂⁻¹ abaixo de 420 K e como O⁻¹ e O⁻² acima de 420 K. Por outro lado, segundo HOFLUND (1994) quando o SnO₂ é exposto a 5% H₂ (\approx 470K), este pode ser parcialmente reduzido para SnO_x (1 ≤ x < 2). Subseqüentemente quando o SnO_x e colocado em contanto com O₂ resulta na reconstrução da superfície do sólido para SnO₂. Sendo assim, as Equações 2.10 e 2.11 descrevem os processos de redução e adsorção de O₂ nas superfícies de SnO₂ durante a etapa de pré-tratamento dos sólidos em atmosfera redutora (H₂, 673 K) e durante as medidas de adsorção de O₂ realizadas neste trabalho sobre amostras de Pd-Sn/ZrO₂ e Sn/ZrO₂.

Pré-tratamento (H₂, 673K): SnO₂ + (2-x)H₂ → SnO_x + (2-x)H₂O (Eq. 2.10)

*Adsorção de O*₂ (373*K*) : SnO_x + $\frac{1}{2}[(2-x) + w]O_2 + \bullet \rightarrow SnO_2 + O_w \bullet$ (Eq. 2.11)

onde **x** é o número médio de átomos de O contidos nas espécies SnO_x (1 \le x < 2); **w** é o número médio de átomos de O adsorvidos em sítios vazios localizados próximo ou na superfície do SnO_2 ; • são os sítios ativos vazios localizados próximo ou na superfície do SnO_2 .

Em relação às superfícies de Pd, LAM e BOUDART (1977) observaram que além do PdO outras espécies óxidas do tipo PdO₂ e Pd₂O₃ podem ser formadas quando O₂ é adsorvido abaixo de 470 K. Segundo CIUPARU *et al.* (2002), catalisadores de Pd suportado sobre ZrO_2 adsorvem mais O₂ do que o Pd suportado sobre γ -Al₂O₃. Os mesmos autores sugerem que a alta mobilidade dos átomos de oxigênio entre a zircônia e as partículas de Pd pode ser a responsável pelo aumento da quantidade de O₂ adsorvida na superfície de Pd (Figura 18). Sendo assim, as equações 2.12 e 2.13 representam os processos de redução e adsorção de O₂ nas superfícies de Pd durante a etapa de pré-tratamento dos sólidos em atmosfera redutora (H₂, 673 K) e durante as medidas de adsorção de O₂ realizadas neste trabalho sobre amostras de Pd/ZrO₂ e Pd-Sn/ZrO₂.

Pré-tratamento (H₂, 673K) : $Pd_sO_{x'} + \frac{1}{2}(2x'+r)H_2 \rightarrow Pd_sH_r + x'H_2O$ (Eq. 2.12) *Adsorção de O₂ (373k)* : $Pd_sH_r + \frac{1}{4}[2x+r]O_2 \rightarrow Pd_sO_x + \frac{1}{2}rH_2O$ (Eq. 2.13) onde **Pd**_s é o número de átomos expostos de Pd; **x'** é o número médio de átomos de O adsorvidos nas superfícies de Pd após os processos de calcinação e resfriamento até temperatura ambiente; **x** é o número médio de átomos de O adsorvidos irreversivelmente em cada Pd_s; **r** é o número médio de átomos de H adsorvido na superfície de Pd após redução e evacuação.

Quando comparados os valores de adsorção de O₂ dos sólidos Pd/ZrO₂ e Sn/ZrO₂ pode-se observar que os sólidos contendo Sn adsorvem maior quantidade de O₂ (Tabela 2.2). Isso sugere que o Sn comporta-se de forma similar ao Cério (Ce) como agente de armazenamento de O₂. Por outro lado, o fato dos sólidos Pd-Sn/ZrO₂ adsorverem O₂ numa quantidade equivalente ou maior ao somatório da quantidade de O₂ adsorvido por Pd/ZrO₂ e Sn/ZrO₂, sugere que o volume de O₂ adsorvido nos sólidos Pd-Sn/ZrO₂ deve-se a contribuição individual do Pd e do Sn. Por exemplo, de acordo com os resultados de adsorção de O₂ mostrados na Tabela 2.2, tem-se que a quantidade de O₂ adsorvida em 0,8%Pd-0,9%Sn/ZrO₂ é próxima da soma da quantidade de O₂ adsorvida em 0,8%Pd/ZrO₂ e 1,0%Sn/ZrO₂. O mesmo é observado para quantidade de O₂ adsorvida em 3,6%Pd-0,9%Sn/ZrO₂ que é próxima da soma da quantidade de O₂ adsorvida em 4,0%Pd/ZrO₂ e 1,0%Sn/ZrO₂. Assim, pode-se sugerir que a adsorção de O₂ nas amostras Pd-Sn/ZrO₂ ocorre independentemente de qualquer interação entre Pd e Sn ou formação de liga Pd-Sn.

Para os sólidos 3,9%Pd/ZrO₂ e 2,8%Pd-2,2%Sn/ZrO₂ calcinados a 1400 K a baixa adsorção de O₂ se deve à sinterização das partículas metálicas que de acordo com RODRIGUEZ *et al.* (1995) é mais significativo acima de 1170 K.

Figura 2.18. Mecanismo da mobilidade de átomos de O entre o suporte e as partículas metálicas: 1) Adsorção de O₂ da fase gasosa nas partículas de Pd; 2) Intercâmbio de O entre a superfície da ZrO₂ e as partículas de Pd, formando espécies PdO_x; 3) Intercâmbio de O entre as espécies PdO_x e a fase gasosa; 4) Intercâmbio de O entre a fase gasosa e a superfície do ZrO₂; 5) Equilíbrio de O entre a superfície e o *bulk* do ZrO (CIUPARU *et al.*, 2002)

Titulação de Oxigênio Adsorvido com H₂

Contrariamente ao observado na adsorção de O_2 (Q_0) o consumo de H_2 na titulação de oxigênio adsorvido com H_2 (T_H) foi maior nos sólidos Pd/ZrO₂ em relação aos sólidos Sn/ZrO₂. Isso se deve ao fato de que durante o processo de T_H das espécies Pd_sO_x parte do H_2 é consumido na redução do óxido e outra parte é consumida na adsorção das partículas de Pd (Equação 2.14). No entanto, para os sólidos Sn/ZrO₂ a quantidade de H_2 consumido na T_H é menor porque somente é consumido H_2 para remover o excesso de O_2 adsorvido irreversivelmente próximo ou na superfície do SnO₂ (Equação 2.15) não havendo ou sendo pouco significativo a redução parcial da superfície de SnO₂ à temperatura de 370 K.

$$Pd/ZrO_{2} - T_{H} (373K) : Pd_{s}O_{x} + \frac{1}{2}(2x+z)H_{2} \rightarrow Pd_{s}H_{x} + xH_{2}O$$
(Eq. 2.14)
$$Sn/ZrO_{2} - T_{H} (373K) : O_{w} + wH_{2} \rightarrow wH_{2}O + \bullet$$
(Eq. 2.15)

onde Pd_s é o número de átomos expostos de Pd; w é o número médio de átomos de O adsorvidos em sítios localizados próximo ou na superfície de SnO₂; x é o número médio de átomos de O adsorvidos irreversivelmente em cada Pd_s; z é o número médio de átomos de H adsorvidos irreversivelmente em cada Pd_s na titulação de O adsorvido com H₂; são os sítios ativos vazios localizados próximo ou na superfície de SnO₂; • são os sítios ativos vazios localizados próximo ou na superfície do SnO₂;

Em relação aos sólidos Pd-Sn/ZrO₂ o consumo de H₂ na T_H foi maior que nos sólidos Pd/ZrO₂ e Sn/ZrO₂. Similar ao observado nas medidas de adsorção de O₂, o maior consumo de H₂ nos sólidos Pd-Sn/ZrO₂ durante as medidas de T_H foi atribuído as contribuições individuais do Pd e do Sn.

Adsorção de H₂

A quantidade de H₂ adsorvido (Q_H) nos sólidos 4,0%Pd/ZrO₂, calcinados a 800 K e 1100 K foram próximos. Para o sólido 3,9% Pd/ZrO₂ calcinado a 1400 K, a quantidade de H₂ adsorvido diminuiu drasticamente. A adição de Pd ao ZrO₂ contendo Sn resultou em um decréscimo da quantidade de H₂ adsorvido (4,0%Pd/ZrO₂ > 2,8%Pd-2,3%Sn/ZrO₂ e 0,8%Pd/ZrO₂ > 0,8%Pd-0,9%Sn/ZrO₂). No entanto, o aumento do teor de Pd mantendo constante o teor de Sn resultou no aumento da quantidade de H₂ adsorvido (3,6%Pd-0,9%Sn/ZrO₂ > 1,6%Pd-1,1%Sn/ZrO₂ > 0,8%Pd-0,9%Sn/ZrO₂).

Segundo TAKEGUCHI *et al.* (2003) para os sólidos preparados por impregnação do Pd no SnO₂ (1 – 22%PdO/SnO₂) e por co-precipitação de Pd e Sn (1 – 22%PdO-SnO₂) as partículas de Pd foram reduzidas e H₂ foi adsorvido na superfície de Pd mesmo em temperatura ambiente. No entanto, segundo ADURIZ *et al.* (1989) o consumo de H₂ foi maior para Pd/ γ -Al₂O₃ do que para Pd-Sn/ γ -Al₂O₃ com o mesmo tamanho médio de partículas metálicas de Pd reduzidos a 570 ou 770 K, sugerindo que o H₂ foi adsorvido preferentemente na superfície de Pd^o e que a presença de Sn inibe a adsorção de H₂. Portanto, as medidas de adsorção de H₂ no sólido contendo Pd e Sn podem estar subestimadas. Nos sólidos contendo unicamente estanho (Sn/ZrO₂) não houve adsorção de H₂.

Adsorção de CO

A quantidade de CO adsorvido (Q_{CO}) nos sólidos Pd/ZrO₂ e Pd-Sn/ZrO₂ também diminuiu com o aumento da temperatura de calcinação. A quantidade de CO adsorvida no Pd-Sn/ZrO₂ também foi menor do que aquele no Pd/ZrO₂ (4,0%Pd/ZrO₂ > 2,8%Pd-2,3%Sn/ZrO₂ e 0,8%Pd/ZrO₂ > 0,8%Pd-0,9%Sn/ZrO₂).

A baixa adsorção de CO obtida para a amostra 2,8%Pd-2,3%Sn/ZrO₂ quando comparada a amostra 4,0%Pd/ZrO₂ se deve ao maior tamanho médio das partículas metálicas de Pd e/ou a influência de Sn na adsorção de CO. De acordo com MELLE-FRANCO e PACCHIONI (2000) a adsorção de CO na superfície de SnO₂ é fraca e de natureza electrostática. LEE *et al.* (1997) observou que em ligas de Pd-Sn o CO é seletivamente adsorvido no Pd quando a razão Pd/Sn é maior do que 3. No presente estudo, a razão Pd/Sn foi entre 1 e 3, no entanto, foi possível obter as medidas de adsorção de CO para todos os sólidos contendo Pd e Pd-Sn. Mas nenhuma adsorção de CO foi obtida para Sn/ZrO₂.

Razão de Quimissorção e Razão de Titulação

A estimação dos parâmetros estruturais da fase ativa através das medidas de adsorção e titulação depende dos valores das razões estequiométricas de adsorção. As reações envolvidas na adsorção de H_2 e O_2 e na titulação de O adsorvido com H_2 podem ser escritas como mostradas a seguir (PRELAZZI *et al.,* 1999 e O'REAR *et al.*, 1990):

Adsorção H₂:
$$Pd_{s}H_{r} + \left(\frac{y-r}{2}\right)H_{2} \rightarrow Pd_{s}H_{y}$$
 (Eq. 2.16.)

Adsorção O_2 : $Pd_sH_r + \left(\frac{2x+r}{4}\right)O_2 \rightarrow Pd_sO_x + \frac{r}{2}H_2O$ (Eq. 2.17.)

*Tit. O ads. H*₂:
$$Pd_sO_x + \left(\frac{2x+z}{2}\right)H_2 \rightarrow Pd_sH_z + xH_2O$$
 (Eq. 2.18.)

A estequiometria de reação para adsorção de CO, assumindo que o CO é adsorvido seletivamente no Pd (LEE *et al.*, 1997; BARNICKEL e WOKAUN, 1991), pode-se escrever da forma a seguir:

Adsorção CO :
$$Pd_sH_r + (v) CO \rightarrow Pd_s(CO)_v + \frac{r}{2}H_{2(g)}$$
 (Eq. 2.19.)

onde **Pd**_s é o número de átomos expostos de Pd; **r** é o número médio de átomos de H adsorvido na superfície de Pd após redução e evacuação; **x** é o número médio de átomos de O adsorvidos irreversivelmente em cada Pd_s; **y** é o número médio de átomos de H adsorvidos irreversivelmente em cada Pd_s; **z** é o número médio de átomos de H adsorvidos irreversivelmente em cada Pd_s na titulação de O adsorvido com H₂; υ é o número médio de moléculas de CO adsorvidos irreversivelmente em cada Pd_s na titulação de Ser relacionadas através dos valores de r, x, y, z e υ da seguinte forma:

$$\mathbf{Q}_{\mathbf{H}} = \mathbf{S}_{\mathsf{Pd}} \left(\frac{\mathbf{y} - \mathbf{r}}{2} \right) \tag{Eq. 2.20.}$$

$$\mathbf{Q}_{\mathbf{O}} = \mathbf{S}_{\mathsf{Pd}}\left(\frac{2\mathbf{x}+\mathbf{r}}{4}\right) \tag{Eq. 2.21.}$$

$$\mathbf{T}_{\mathsf{H}} = \mathbf{S}_{\mathsf{Pd}} \left(\frac{2\mathsf{x} + \mathsf{z}}{2} \right) \tag{Eq.2.22.}$$

$$\mathbf{Q}_{\mathbf{CO}} = \mathbf{S}_{\mathsf{Pd}} \quad (\upsilon) \tag{Eq.2.23.}$$

onde \mathbf{Q}_{H} é o número de moles de H₂ adsorvido por grama de amostra (mol g⁻¹); \mathbf{Q}_{O} é o número de moles de O₂ adsorvido por grama de amostra (mol g⁻¹); \mathbf{T}_{H} é o número de moles de H₂ consumido na titulação de O adsorvido por grama de amostra (mol g⁻¹); \mathbf{Q}_{CO} é o número de moles de CO adsorvido por grama de amostra (mol g⁻¹); \mathbf{S}_{Pd} é a quantidade de paládio superficial por grama de amostra (mol g⁻¹). As razões de adsorção R_{QO/QH} e R_{QCO/QH} e a razão de titulação, R_t, foram obtidas através das Equações 2.16 a 2.19, da seguinte forma:

$$\mathbf{R}_{QO/QH} = \frac{Q_0}{Q_H} = \frac{2x+r}{2(y-r)}$$
 (Eq. 2.24.)

$$R_{QCO/QH} = \frac{Q_{CO}}{Q_{H}} = \frac{2v}{(y-r)}$$
 (Eq. 2.25.)

$$\mathbf{R}_{t} = \frac{T_{H}}{Q_{H} + 2Q_{O}} = \frac{2x + z}{2x + y}$$
 (Eq. 2.26.)

Antes das medidas de adsorção, todos os sólidos foram reduzidos a 670 K em um fluxo de H₂ de 30 cm³min⁻¹ e então evacuadas por duas horas a 680 K. De acordo com ABEN (1968) a quantidade de H₂ residual que permanece na superfície de Pd após evacuação a 570 K é \approx 11% e \approx 3% quando evacuada a 670 K. Em amostras 0,5%Pd/ZrO₂ e 1,5%Pd/ γ -Al₂O₃ após evacuadas a 670 K por 24 horas, SANTOS (2003) observou que as isotermas de adsorção são similares daquelas obtidas após evacuação a 570 K por duas horas, sugerindo que a quantidade de H adsorvido após redução dos sólidos sob as condições utilizadas neste trabalho é desprezível (r \approx 0).

Para os sólidos Pd/ZrO₂ calcinados entre 800 ou 1100 K o valor médio de $R_{QO/QH}$ e R_t foram de 2,0 e 1,0 respectivamente (Tabela 2.3). SANTOS (2003) obteve $R_{QO/QH} = 1,8$ e $R_t = 1,1$ para catalisadores com 0,5% a 2,5%Pd/ZrO₂ e PRELAZZI *et al.* (1999) obteve valores próximos a 1,0 para $R_{QO/QH}$ e R_t para Pd/ γ -Al₂O₃, Pd/SiO₂ e Pd/ γ -Al₂O₃-SiO₂. Em todos os casos o valor da razão de titulação foi próximo de um. No entanto, os valores de $R_{QO/QH}$ obtidos pelos autores citados acima foram diferentes.

Segundo O'REAR *et al.* (1990) a razão de adsorção, $R_{QO/QH}$, para catalisadores de Pt/ γ -Al₂O₃ varia entre 0,4 e 0,8. Os mesmos autores sugeriram que valores maiores de 0,8 são obtidos em condições de redução severa. Isto é, quando átomos de oxigênio são removidos do suporte óxido. No presente estudo a quantidade de O₂ adsorvido no ZrO₂ puro foi ca. 1×10^{-7} mol g⁻¹. Esse valor é menor do que 1% da quantidade de O₂ adsorvida no sólidos 4,0%Pd/ZrO₂ calcinado a 800 K, sendo considerado dentro do erro experimental de ± 5% (Tabela 2.2). Por outro lado, a quantidade de H₂ adsorvido em ZrO₂ foi próxima de zero. Esses resultados indicam que o ZrO₂ permanece estável não apresentando nenhuma contribuição nos processos de adsorção de O₂ e H₂.

AMOSTRA	TEMPERATURA CALCINAÇÃO (K)	R _{QO/QH}	R _{QC0/QH}	R _t
4,0%Pd	800	2,0	1,5	1,0
4,0%Pd	1100	2,0	1,6	1,0
3,9%Pd	1400	3,8	1,6	0,9
2,8%Pd - 2,3%Sn	800	34,1	1,9	0,5
2,8%Pd - 2,3%Sn	1100	33,8	1,9	0,5
2,8%Pd - 2,2%Sn	1400	3,6	1,4	0,8
2,6%Sn	800	-	-	0,2
2,6%Sn	1100	-	-	0,2
2,5%Sn	1400	-	-	0,2
0,8%Pd	1100	1,9	1,6	1,0
0,8%Pd - 0,9%Sn	1100	28,7	2,0	0,5
1,0%Sn	1100	-	-	0,2
0,7%Pd - 2,5%Sn	1100	71,1	1,4	0,5
3,6%Pd - 0,9%Sn	1100	9,4	2,1	0,8
1,6%Pd - 1,1%Sn	1100	29,0	2,0	0,5

Tabe	ela 2.3	 Razões 	s de ac	lsorção	e titu	lação
------	---------	----------------------------	---------	---------	--------	-------

R_{QO/QH}, razão de adsorção = Q_O/Q_H

Roco/QH, razão de adsorção = Q_{CO}/Q_H

 R_t , razão de titulação = $T_H \times (Q_H + 2Q_O)^{-1}$

Segundo CIUPARU *et al.* (2002) a afinidade de O_2 é maior para Pd/Zr O_2 do que para Pd/ γ -Al₂ O_3 . Também, além do PdO, outros óxidos como PdO₂ e Pd₂ O_3 podem ser formados através da adsorção de O_2 sobre o Pd (LAM e BOUDART, 1977). Isto pode explicar o fato de que a quantidade de O_2 no Pd/Zr O_2 é maior do que a quantidade de H₂ adsorvido na mesma amostra, como evidenciado pela razão R_{QO/QH} a mesma que, neste trabalho, sempre foi maior do que um (Tabela 2.3).

As razões $R_{QO/QH}$ e R_t para Pd-Sn/ZrO₂ calcinados a 800 ou 1100 K variaram entre 9,4 e 71,1 e entre 0,5 e 0,8, respectivamente. Os valores altos de $R_{QO/QH}$ para Pd-Sn/ZrO₂ foram devido a contribuição de Sn nos processos de adsorção de O₂ e H₂. A quantidade de O₂ adsorvida nos sólidos Pd-Sn/ZrO₂ foi ca. 4 vezes maior que nos sólidos Pd/ZrO_2 e a quantidade de H_2 adsorvido nos sólidos $Pd-Sn/ZrO_2$ foi ca. 4 vezes menor que nos sólidos Pd/ZrO_2 , sugerindo que o O_2 é adsorvido no Sn mas não o H_2 .

A razão de adsorção R_{QCO/QH}, para os sólidos Pd/ZrO₂ e Pd-Sn/ZrO₂, apresentou menor variação entre 1,4 e 2,1. A adsorção do H₂ e CO é seletiva sobre a superfície de Pd, sendo fraca a adsorção de H₂ e CO na superfície de SnO₂ e ZrO₂ (MELLE-FRANCO e PACCHIONI, 2000; LEE *et al.*, 1997; BARNICKEL e WOKAUN, 1991 e ADURIZ *et al.*, 1989). Estudos prévios de adsorção de H₂ permitem assumir que o hidrogênio é preferentemente absorvido na superfície dos cristalitos de Pd com uma estequiometria H/Pd = 1 (PRELAZZI *et al.*, 1999; HICKS *et al.*, 1984; MOSS *et al.*, 1979 e ABEN, 1968). No entanto, a estequiometria de adsorção CO/Pd depende da orientação dos planos cristalinos da superfície de Pd, resultando na formação de diferentes ligações de CO com os átomos da superfície de Pd, como mostrado na Tabela 2.4 (LISCHKA *et al.*, 2004; KATO *et al.*, 1999; KUHN *et al.*, 1992; TESSIER *et al.*, 1992 e CONRAD *et al.*, 1974). Em adição, a razão CO/Pd também depende da estrutura e natureza do suporte (VOOGT *et al.*, 1997 e SHEU *et al.*, 1989).

O valor médio da estequiometria de adsorção de CO sobre Pd pode ser estimado a partir dos valores de $Q_H e Q_{CO}$ (Tabela 2.5). Considerando os valores da razão de adsorção CO/Pd para os planos cristalinos Pd(111), Pd(100) e

DESCRIÇÃO	Pd (111)	Pd(100)	Pd(110)	Pd(210)
Densidade de átomos de $Pd \times 10^{19} m^{-2}$	1,53	1,33	0,94	0,53
Máxima densidade de moléculas de CO adsorvido × 10 ¹⁹ m ⁻² a temperatura ambiente	0,77	~ 0,80	0,94	0,89
Razão CO/Pd	0,5	~ 0,7	1,0	1,5

 Tabela 2.4. Razões de adsorção de CO/Pd em função da orientação dos planos cristalinos de Pd

Fonte: LISCHKA *et al.* (2004); KATO et al. (1999); KUHN et al. (1992); TESSIER et al. (1992) e CONRAD *et al.* (1974).

Pd(110) dados na Tabela 2.4 e assumindo que a estequiometria de adsorção de H sobre Pd é igual a unidade, a densidade média de átomos de Pd é $1,27 \times 10^{19}$ átomos Pd m⁻² e a densidade média de moléculas adsorvidas por metro quadrado de superfície de Pd é $0,84 \times 10^{19}$ moléculas CO m⁻² Pd, a Equação 2.25 pode ser re-escrita do modo a seguir:

$$\upsilon = \frac{y}{2} \times \frac{QCO}{QH} \times \frac{1.27 \times 10^{19} \text{ átomos Pd m}^{-2}}{0.84 \times 10^{19} \text{ moléculas CO m}^{-2} / \text{átomos Pd m}^{-2}} \text{ (Eq. 2.27)}$$

Da equação 2.27, o valor médio da estequiometria de adsorção do CO sobre Pd para os sólidos Pd/ZrO₂ e Pd-Sn/ZrO₂ é de 1,3 \pm 0,2. Esse valor esta dentro da faixa de estequiometria de adsorção, entre 0,5 e 1,5, obtidos para os diferentes planos cristalinos de Pd (Tabela 2.4). Porém é superior ao valor comumente utilizado por outros autores, entre 0,5 e 1,06 (VOOGT *et al.*, 1997; HICKS *et al.*, 1990; ICHIKAWA *et al.*, 1985 e MOSS *et al*, 1979). O alto valor de CO/Pd sugere que a fase ativa (PdO), depois da redução em H₂, poderia estar constituída por partículas de Pd com arranjos cristalinos de baixa densidade semelhante a Pd(200) e Pd(210) (LISCHKA *et al.*, 2004; Li W B *et al.*, 2004 e GARBOWSKI *et al.*, 1994). No entanto, para explicar os resultados da estequiometria de adsorção CO/Pd obtida neste trabalho é necessária a realização de análises mais específicas relacionadas à natureza microestrutural dos sólidos da fase ativa proposta neste trabalho.

Estimação dos Parâmetros Estruturais da Fase Ativa dos Sólidos Pd/ZrO₂ e Pd-Sn/ZrO₂

As propriedades estruturais da fase ativa para os sólidos Pd/ZrO_2 e Pd-Sn/ZrO₂, foram estimadas a partir das medidas de adsorção de H₂, assumindo a estequiometrias de adsorção H/Pd = 1 (Tabela 2.5).

	TEMPERATURA CALCINAÇÃO K	ÁREA ⁽¹⁾	PARÂMETROS ESTRUTURAIS DOS SÓLIDOS ESTIMADOS A PARTIR DA ADSORÇÃO DE HIDROGÊNIO					
AMOSIRA		BET m ² g ⁻¹	FRAÇÃO ÁTOMOS EXPOSTOS DE Pd ¹²¹	TAMANHO MÉDIO DAS PATÍCULAS DE Pd ¹⁹¹ nm	S _{Pd} ⁽⁴⁾ mol g ⁻¹ × 10 ⁻⁸	S _M ⁽⁶⁾ m ² g ⁻¹		
4,0%Pd	800	18,9	0,09	12	33,88	1,61		
4,0%Pd	1100	19,8	0,07	16	26,67	1,26		
3,9%Pd	1400	4,4	0,01	141	2,98	0,14		
2,8%Pd - 2,3%Sn	800	20,9	0,03	34	8,59	0,41		
2,8%Pd - 2,3%Sn	1100	20,1	0,02	49	6,08	0,29		
2,8%Pd - 2,2%Sn	1400	5,4	0,01	79	3,76	0,18		
2,6%Sn	800	21,2	-	-	-	-		
2,6%Sn	1100	19,4	-	-	-	-		
2,5%Sn	1400	4,6	-	-	-	-		
0,8%Pd	1100	22,4	0,27	4	20,05	0,95		
0,8%Pd - 0,9%Sn	1100	21,3	0,05	23	3,91	0,19		
1,0%Sn	1100	22,5	-	-	-	-		
0,7%Pd - 2,5%Sn	1100	21,1	0,04	30	2,48	0,12		
3,6%Pd - 0,9%Sn	1100	19,6	0,04	32	11,69	0,55		
1,6%Pd - 1,1%Sn	1100	18,3	0,04	28	6,11	0,29		

Tabela 2.5. Parâmetros estruturais dos sólidos Pd/ZrO₂ e Pd-Sn/ZrO₂

(1) Determinado por adsorção de N2 a 77 K (ASAP 2010 - Microméritics Instrument Corporation);

(2) Fração de átomos de Pd expostos = 10642 × S_{Pd} × w_{Pd}⁻¹. Onde: S_{Pd}, átomos de Pd expostos expressada em número de moles de paládio por grama de amostra (mol g⁻¹); w_{Pd}, teor de Pd (% p/p);

(3) Tamanho médio das partículas de Pd = 1,12 × F_{Pd}⁻¹. Onde: F_{Pd}, fração de átomos de Pd expostos (BOUDART e HWANG, 1975);

(4) Átomos de Pd expostos determinado por adsorção de H₂ = 2 × QH × y⁻¹. Onde: QH, adsorção de H₂ (mol g⁻¹);
 y, razão estequiométrica H/Pd = 1;

(5) Área metálica exposta por grama de amostra = S_{Pd} × f_{Pd}⁻¹. Onde: S_{Pd}, átomos de Pd expostos por grama de amostra determinado por adsorção de H₂ (mol g⁻¹); f_{Pd}, densidade média de átomos de Pd expostos por metro quadrado de superfície dividida pelo nº de Avogadro (2,11 × 10⁻⁵ mol Pd m⁻²).

O tamanho médio das partículas metálicas de Pd (d_{Pd}) para todos os sólidos aumentou com a temperatura de calcinação, essa observação está em concordância com o observado por RIBEIRO *et al.* (1994) e HICKS *et al.* (1990). Nos sólidos contendo Pd e Sn, o tamanho médio das partículas metálicas de Pd foi maior com aumento da quantidade de Sn na amostra. No entanto, as partículas de Pd nas amostras Pd-Sn/ZrO₂ apresentaram menor segregação com aumento

da temperatura de calcinação em comparação aos sólidos Pd/ZrO₂. Por exemplo, as partículas de Pd sobre 2,8%Pd-2,2%Sn/ZrO₂ calcinado a 1400 K apresentaram tamanhos médios de partículas metálicas de Pd duas vezes maiores em relação aos sólidos 2,8%Pd-2,2%Sn/ZrO₂ calcinados a 800 K e nos sólidos 3,9%Pd/ZrO₂ calcinados a 1400 K apresentaram tamanhos médios de partículas metálicas de Pd 10 vezes maiores em relação aos sólidos 4%Pd/ZrO₂ calcinados a 800 K. Isto é, as partículas metálicas de Pd suportadas sobre ZrO₂ em presença de Sn mostraram menor mobilidade em relação àquelas suportadas sobre ZrO₂ em ausência de Sn.

2.3. Conclusões

- As partículas de Pd nos sólidos contendo Pd ou Pd-Sn calcinados a 800K foram completamente oxidadas formando fases com baixo grau de cristalinidade.
- Nos sólidos contendo Pd ou Pd-Sn calcinados a 1400K a fase ativa foi decomposta a Pd^o e sinterizada, formando partículas de Pd com planos cristalinos expostos de baixa densidade Pd(200).
- O Sn permaneceu estável nos sólidos contendo Pd-Sn ou somente Sn calcinados entre 800 e 1400 K. As partículas de SnO₂ apresentaram planos cristalinos SnO₂(110).
- A quantidade de O₂ adsorvido em sólidos contendo Pd-Sn ou Sn suportados sobre ZrO₂ foi significativamente maior que a quantidade de O₂ adsorvido em sólidos contendo unicamente Pd suportado sobre ZrO₂.
- Os tamanhos médios das partículas metálicas de Pd, determinados através da adsorção de H₂, foram maiores para os catalisadores contendo Sn a temperaturas inferiores a 1100 K.
- As partículas de Pd suportadas sobre ZrO₂ em presença de Sn mostraram menor mobilidade em relação àquelas suportadas sobre ZrO₂ em ausência de Sn.

2.4. Referências Bibliográficas

- ABEN, P. C. Palladium areas in supported catalysts Determination of palladium surface areas in supported catalyst by means of hydrogen chemisorption. *Journal of Catalysis*, v. 10, p. 224-229, 1968.
- ADURIZ, H. R., BODNARIUK, P., COQ, B., FIGUERAS, F. Alumina-supported bimetallics of palladium alloyed with germanium, tin, lead, or antimony from organometallic precursors - I. Preparation and characterization. *Journal of Catalysis*, v. 119, p. 97-107, 1989.
- BARNICKEL, P., WOKAUN, A. Surface species on a palladium/zirconia CO oxidation catalyst prepared from a glassy metal precursor. *Journal Chemical Society Faraday Transactions*, v. 87, n. 2, p. 333-336, 1991.
- BARONI, M. P. M. A., TEIXEIRA, S. R., DIXON, J. B., WHITE, G.N., Aplicação de programa de análise de imagens na interpretação de fotomicrografias de alta resolução de argilominerais. *Cerâmica*, v. 52, p. 179-184, 2006.
- BENSON, J. E., HWANG, H. S., BOUDART, M. Hydrogen-oxygen titration method for the measurement of supported palladium surface areas. *Journal of Catalysis*, v. 30, p. 146-153, 1973.
- BOUDART, M., HWANG, H. S. Solubility of hydrogen in small particles of palladium. Journal of Catalysis, v. 39, p. 44-52, 1975.
- CARUSO, R., SANCTIS, O., MACÍAS-GARCÍA, A., BENAVIDEZ, E., MINTZER, S.R. Influence of pH value and solvent utilized in the sol-gel synthesis on properties of derived ZrO₂ powders. *Journal of Materials Processing Technology*, v. 152, nº 3, p. 299-303, 2004.
- CHANG, S. C. Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements. *Journal Vacuum Science Technology*, v. 17, n. 1, p. 366-369, 1980.
- CHANG, T. C., CHEN, J. J., YEH, C. T. Temperatura-programmed reduction and temperature resolved sorption studies of strong metal-support interaction in supported palladium catalysts. *Journal of Catalysis*, v. 96, p. 51-57, 1985

- CIUPARU, D., BOZON-VERDURAZ, F., PFEFFERLE, L. Oxygen exchange between palladium and oxide supports in combustion catalysts. *Journal of Physical Chemical B*, v. 106, p. 3434-3443, 2002.
- CONRAD, H., ERTL, G., KOCH, J., LATTA, E. E. Adsorption of CO on Pd single crystal surfaces. *Surface Science*, v. 43, p. 462-480, 1974.
- EGUCHI, K., ARAI, H. Low temperature oxidation of methane over Pd-based catalysts effect of support oxide on the combustion activity. Applied Catalysis A: General, v. 222, p. 359-367, 2001.
- FARRAUTO, R. J., HOBSON, M. C., KENNELLY, T., WATERMAN, E. M. Catalytic chemistry of supported palladium for combustion of methane. Applied Catalysis A: General, v. 81, p. 227-237, 1992.
- FUJIMOTO, K., RIBEIRO, F. H., AVALOS-BORJA, M., IGLESIA, E. Structure and reactivity of PdO_x/ZrO₂ catalysts for methane oxidation at low temperatures. *Journal of Catalysis*, v. 179, p. 431-442, 1998.
- GARBOWSKI, E., FEUMI-JANTOU, C., MOUADDIB, N., PRIMET, M. Catalytic combustion of methane over palladium supported on alumina catalysts:
 Evidence for reconstruction of particles. *Applied Catalysis A: General*, v. 109, p. 277-291, 1994.
- HICKS, R. F., QI, H., YOUNG, M. L., LEE, R. G. Structure sensitivity of methane oxidation over platinum and palladium, *Journal of Catalysis*, v. 122, p. 280-294, 1990.
- HICKS, R. F., YEN, Q., BELL, A. T. Effects of metal-support interactions on the chemisorptions of H₂ and CO on Pd/SiO₂ and Pd/La₂O₃. *Journal of Catalysis*, v. 89, p. 498-510, 1984.
- HOFLUND, G. B. Characterization study of oxidized polycrystalline tin oxide surfaces before and after reduction in H₂. *Chemical Materials*, v. 6, p. 562-568, 1994.
- ICHIKAWA, S., POPPA, H., BOUDART, M. Disproportionation of CO on small particles of silica-supported palladium. *Journal of Catalysis*, v. 91, p. 1-10, 1985.

- KATO, H., YOSHINOBU, J., KAWAI, M. Determination of six types of vibrational mode for bridge CO on Pd(110). *Surface Science*, v. 427-428, p. 69-73, 1999.
- KRAVCHUK, L. S., STEL'MAK, E. I., IVASHCHENKO, N. I., VALIEVA, S. V., MOLOD'YANOVA, V. S. Formation and physicochemical properties of the system PdO/ZrO₂. *Kinetika i Kataliz*, v. 33, n. 3, p. 672-677, 1992.
- KUHN, W. K., SZANYI, J., GOODMAN, W. CO adsorption on Pd(111): the effects of temperature and pressure. *Surface Science Letters*, v. 274, p. L611-L618, 1992.
- LAM, Y. L. BOUDART, M. Oxidation of small palladium particles. *Journal of Catalysis*, v. 47, p. 393-398, 1977.
- LEE, A. F., BADDELEY, C. J., TIKHOV, M. S., LAMBERT, R. M. Structural and electronic properties of Sn overlayers and Pd/Sn surface alloys on Pd(111). *Surface Science*, v. 373, p. 195-209, 1997.
- LEOFANTI, G., TOZZOLA, G., PADOVAN, M., PETRINI, G., BORDIGA, S., ZECCHINA, A. Chapter 4 - Catalyst characterization: characterization techniques. *Catalysis Today*, v. 34, p. 307-327, 1997.
- Li W B, Yuichiro, M., Masanao, O., Kunio, J., Suminori, T., Keiichiro, M., Toshihiro, M., Eiji, K., Ichiro, N. Effect of CeO₂ addition on the change of crystal structure of PdO supported on .CHI.-Al₂O₃ under the methane atmosphere. *Journal of the Ceramic Society of Japan*, v. 112, n. 1303, p. 149-152, 2004.
- LISCHKA, M., MOSCH, C., GROβ, A. CO and hydrogen adsorption on Pd(210). Surface Science, v. 570, n. 3, 2004.
- MELLE-FRANCO, M., PACCHIONI, G. CO adsorption on SnO₂ (110): cluster and periodic ab initio calculations. *Surface Science*, v. 461, p. 54-66, 2000.
- MOSS, R. L., POPE, D., DAVIS, B., J. EDWARDS, D. H. The structure and activity of supported metal catalysts. VIII. Chemisorption and benzene hydrogenation on palladium/silica catalysts. *Journal of Catalysis*, v. 58, p. 206-219, 1979.
- O'REAR, D. J., LÖFFLER, D. G., BOUDART, M. Stoichiometry of the titration by dihydorgen of oxygen adsorbed on platinum. *Journal of Catalysis*, v. 121., p. 131-140, 1990.

- PARK, P. W., HUNG, H. H., KIM, D. W., KUNG, M. C. Characterization of SnO₂/Al₂O₃ lean NO_x catalysts. *Journal of Catalysis*, v. 184, p. 440-454, 1999.
- PINNA, F. Supported metal catalysis preparation. *Catalysis Today*, v. 41, p. 129-137, 1998.
- PRELAZZI, G., CERBONI, M., LEOFANTI, G. Comparison of H₂ adsorption, O₂ adsorption, H₂ titration, and O₂ titration on supported palladium catalysts. *Journal of Catalysis*, v. 181, p. 73-79, 1999.
- RAGAINI, V., GIAANANTONIO, R., MAGNI, P. LUCARELLI, L., LEOFANTI, G. Dispersion measurement by the single introduction method coupled with the back-sorption procedure: A chemisorption and TPD study of the different chemisorbed hydrogen species – II. Pd on Alumina. *Journal of Catalysis*, v. 146, p. 116-125, 1994.
- RAY, J. C., SAHA, C. R., PRAMANIK, P. Chemical síntesis of nanocrystalline tindoped cubil ZrO₂ powders. *Materials Letters*, v. 57, p. 2140-2144, 2003.
- RIBEIRO, F. H., CHOW, M., DALLA BETA, R. A. Kinetics of the complete oxidation of methane over supported palladium catalysts. *Journal of Catalysis*, v. 146, p. 537-544, 1994.
- RODRIGUEZ, N. M., OH, S. G., DALLA-BETTA, R. A., BAKER, R. T. K. In situ electrón microscopy studies of palladium supported on Al₂O₃, SiO₂, and ZrO₂ in oxygem. *Journal of Catalysis*, v. 157, p. 676-686, 1995.
- SANTOS, J. B. O. *Oxidação total de metano sobre catalisadores de paládio*. Tese de doutorado em engenharia química, FEQ-UNICAMP, Campinas-SP, 2003.
- SANTOS, V., ZENI, M., BERGMANN, C. P., HOHEMBERGER, J. M. Correlation between thermal treatment and tetragonal/monoclinic nanostructured zirconia powder obtained by sol-gel process. *Review Advance Materials Science*, v. 17, p. 62-70, 2008.
- SCHOLTEN, J. J. F., MONTFOORT, A. The determination of the fle-metal surface area of palladium catalysis. *Journal of catalysis*, v. 1, p. 85-92, 1962.

- SEKIZAWA, K., WIDJAJA, H., MAEDA, S., OZAWA, Y., EGUCHI, K. Low temperature oxidation of methane over Pd catalyst supported on metal oxides. *Catalysis Today*, v. 59, p. 69-74, 2000.
- SHEU, L., KARPINKSI, Z., SACHTLER, W. M. H. Effects of palladium particle size and palladium silicide formation on fourier transform infrared spectra of CO adsorbed on Pd/SiO₂ catalysts. *Journal of Physical Chemistry*, v. 93, p. 4890-4894, 1989.
- TAKEGUCHI, T., TAKEOH, O., AOYAMA, S., UEDA, J., KIKUCHI, R., EGUCHI, K. Strong chemical interaction between PdO and SnO₂ and the influence on catalytic combustion of methane. *Applied Catalysis A: General*, v. 255, p. 205-214, 2003.
- TESSIER, D., RAKAI, A., BOZON-VERDURAZ, F. Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium-alumina catalysts. *Journal Chemical Society-Faraday Transaction*, v. 88, p. 741-749, 1992.
- VALDEZ, J. A., TANG, M., CHI, Z., PETERS, M. I. SICKAFUS, K. E. Characterization of an ion irradiation induced phase transformation in monoclinic zirconia. *Nuclear Instrument and Methods in Physics Research B*, v. 218, p. 103-110, 2004.
- VOOGT, E. H., COULIER, L. GIJZEMAN, O. L. J., GEUS, J. W. Adsorption of carbon monoxide on Pd(111) and palladium model catalysts. *Journal of Catalysis*, v. 169, p. 359-364, 1997.

CAPITULO III

CINÉTICA DA OXIDAÇÃO DE METANO

O objetivo deste Capítulo é o estudo da influência das propriedades físicas dos sólidos Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂ e dos produtos de reação na taxa de oxidação de CH₄.

3.2. Materiais e Métodos

A combustão catalítica de CH₄ sobre catalisadores de Pd e Sn suportados sobre ZrO₂ foi estudada em um reator de fluxo continuo a pressão atmosférica (Figura 3.1). Os gases foram alimentados no reator através de controlador de fluxo mássico de quatro válvulas (MKS Instrument, Mod. 247D-4). Os gases utilizados foram N₂ (White Martins, Praxair INC, 99,999%), ar sintético 20% O₂ - 80% N₂ (White Martins, Praxair INC, 99,997%), CH₄ (White Martins, Praxair INC, 99,995%), O₂ (White Martins, Praxair INC, 99,999%) e CO₂ (White Martins, Praxair INC, 99,998%).

O sistema reacional foi construído em vidro borosilicato, constituído de um borbulhador, um condensador e um reator instalados em série. O reator na forma de tubo em U ($\emptyset \approx 1,3$ mm) foi provido de torneiras de teflon e um poço para inserção de um termopar. A temperatura reacional foi controlada por um forno tubular, acoplado a um programador de temperatura (EDGCON 5P, EDG Equipamentos). Os gases efluentes do reator foram analisados em um cromatógrafo a gás da HP 6890 equipado com uma coluna cromatográfica CarboxenTM 1000 (4,6 m × 3,2 mm \emptyset , Lote N⁰: 100796) e um detector de condutividade térmica (TCD). Os parâmetros de operação do cromatógrafo são mostrados na Tabela 3.1.

DESCRIÇÃO	VALORES
Gás de referência e de arraste	Nitrogênio analítico 5.0
Vazão gás de arraste	15 cm ³ min ⁻¹
Vazão gás de referência	10 cm³ min⁻¹
Vazão gás make up	5 cm ³ min ⁻¹
Temperatura injetor	473 K
Temperatura da válvula	473 K
Temperatura da coluna	423 K
Temperatura do detector	523 K
Tempo por cromatograma	9 min

Tabela 3.1. Parâmetros de operação do cromatógrafo HP 6890

A massa dos catalisadores, entre 10 e 30 mg, foi misturada com suporte puro (ZrO_2) de maneira que a massa final sempre foi igual a 200 mg. Em seguida a massa dos sólidos foi colocada no reator, que foi acoplado ao sistema reacional, purgado com N₂ a temperatura ambiente por 1 h e aquecido até 600 K a uma taxa de 10 K min⁻¹ onde permaneceu por 30 minutos.

A mistura reagente (2%CH₄/ar sintético) foi então enviada ao reator com uma vazão volumétrica de 100 cm³ min⁻¹. A pressão total foi igual à pressão atmosférica local (\approx 95,5 kPa). A primeira injeção cromatográfica foi realizada após 5 min do início da reação. A reação foi monitorada por 24 h e os pontos experimentais foram coletados a cada 30 minutos.

Após 24 h de reação e mantendo a mistura reagente de 2%CH₄/ar sintético, o reator foi resfriado até 450 K e em seguida o reator foi aquecido até 750 K a uma taxa de 2,5 K min⁻¹. Depois o reator foi resfriado novamente até 450 K. A taxa de reação foi monitorada através de análises cromatográficas dos produtos da reação a cada 10 minutos. Os pontos experimentais foram selecionados com um nível de confiança de 95%. A relação de Arrhenius para os pontos experimentais tomados em diferentes temperaturas de reação foi linear com um coeficiente de correlação (R^2) próximo de um ($\approx 0,99$). A conversão, a taxa de reação e a TOR da reação da oxidação de CH₄ à temperatura de 550 K, a energia de ativação aparente nos regimes cinético e difusional e a temperatura de transição entre os regimes cinético e difusional (temperatura *light off*) foram determinados para todos os catalisadores.

Para determinar a ordem de reação em relação ao CH₄, O₂, CO₂ e H₂O, catalisadores frescos foram pré-tratados com N₂ a temperatura ambiente por 1 h e aquecidos até 600 K com uma taxa de 10 K min⁻¹. Após 30 minutos, os sólidos foram colocados em contato com 2%CH₄/ar sintético em um fluxo de 100 cm³ min⁻¹ por 24 horas. Posteriormente, a temperatura de reação foi diminuída até 550 K e o sistema foi purgado com N₂ durante 30 minutos. Então, uma mistura de gases constituída por 1% CH₄, 4% O₂, 0,2% CO₂ e ca. 0,4% H₂O em N₂ foi introduzida no reator. As frações molares de CH₄, O₂, CO₂ e H₂O foram variadas separadamente. A concentração de CH₄ foi variada de 0,2% até 2%, a concentração de O₂ foi variada de 2% até 4%, a concentração de CO₂ foi variada de 0,2% até 2%. A água foi adicionada ao sistema, passando a mistura CH₄, O₂, CO₂ e N₂ através do borbulhador contendo água líquida. A fração molar de H₂O foi controlada através da temperatura do condensador. A concentração de H₂O foi determinada através da equação de Antoine.

$$Log_{10}(P) = A + \frac{B}{(T+C)}$$
 (Eq. 3.1)

onde **P** é a pressão (bar); **T** é a temperatura (K); **A**, **B** e **C** são as constante de Antoine para determinação da pressão de vapor da água, sendo, A = 5,40221, B = 1838,675 e C = -31,737 válidos para a faixa de temperaturas entre 273 K e 304 K.

Os parâmetros da cinética da oxidação de metano foram obtidos a partir das seguintes relações.

A energia de ativação aparente determinada através do logaritmo da relação de Arrhenius em função da taxa de reação de CH₄.

 $Ln [r_{CH4}] = \beta_0 + \beta_1 E_A$ (Eq. 3.2)

$$\beta_{o} = \ln A \tag{Eq. 3.3}$$

$$\beta_1 = \frac{1}{\mathsf{RT}} \tag{Eq. 3.4}$$

onde \mathbf{r}_{CH4} é a taxa de reação da oxidação de CH₄ (mol s⁻¹ g⁻¹); $\mathbf{E}_{\mathbf{A}}$ é a energia de ativação aparente (kJ mol⁻¹); \mathbf{A} é o fator pré-exponencial da equação de Arrhenius; \mathbf{R} é a constante universal dos gases (8,31 x 10³ kJ mol⁻¹ K⁻¹); \mathbf{T} é a temperatura de reação (K).

A taxa de reação de metano definida como o número de mols de metano consumidos por unidade de tempo e unidade de massa de catalisador.

$$r_{CH_4} = \frac{P_{CH_4}^{o} V_{CH_4}^{o}}{R T_{amb} m_{cat}} \chi_{CH_4}$$
 (Eq. 3.5)

onde \mathbf{r}_{CH4} é a taxa de reação da oxidação de CH₄ (mol s⁻¹ g⁻¹); \mathbf{P}^{0}_{CH4} é a pressão parcial de CH₄ na entrada do reator (kPa); \mathbf{V}^{0} é a vazão total de gases na entrada do reator (cm³ s⁻¹); χ_{CH4} é a conversão de metano; **R** é a constante universal dos gases (8,31 × 10³ kJ mol⁻¹ K⁻¹); \mathbf{T}_{amb} é a temperatura ambiente (K); \mathbf{m}_{cat} é a massa do catalisador (g).

Taxa de giro (TOR) definido como a razão entre o número de mols de metano consumidos por unidade de tempo e o número de sítios presentes no catalisador.

$$TOR = \frac{r_{CH4}}{S_{Pd}}$$
(Eq. 3.6)

onde **TOR** é a taxa de giro (*turnover-rate*, s⁻¹); \mathbf{r}_{CH4} é a taxa de reação da oxidação de CH₄ (mol s⁻¹ g⁻¹); \mathbf{S}_{Pd} é a quantidade de paládio superficial por grama de amostra (mol g⁻¹). Os valores de S_{Pd} foram determinados através das medidas de adsorção de H₂ (Q_H), sendo:

$$S_{Pd} = 2Q_{H} \tag{Eq. 3.7}$$

Ordens de reação do CH₄, O₂, H₂O e CO₂ determinadas através da equação

$$- r_{CH4} = k [CH_4]^{\alpha} [O_2]^{\beta} [H_2 O]^{\gamma} [CO_2]^{\delta}$$
(Eq. 3.8)

onde - \mathbf{r}_{CH4} é taxa de reação da oxidação de CH₄; **k** é taxa constante da equação de Arrhenius; [CH₄], [O₂], [H₂O] e [CO₂] são as concentrações de metano, oxigênio, água e dióxido de carbono; α , β , γ e δ são as ordens de reação em relação a metano, oxigênio, água e dióxido de carbono, respectivamente.

3.2. Resultados e Discussão

Os parâmetros de preparação e estruturais dos sólidos Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂ são mostrados na Tabela 2.8.

3.2.1. Taxa de Reação da Oxidação de CH₄ em Função do Tempo

Período de transição

A taxa de reação para oxidação catalítica de CH₄ geralmente se inicia com um período de transição onde a taxa de reação aumenta ou diminui dependendo do catalisador. Para catalisadores preparados com precursores clorados a taxa de oxidação de metano aumenta gradualmente até atingir o estado estacionário. Este período é conhecido como período de ativação do catalisador (GÉLIN e PRIMET, 2002 e MARCEAU *et al.*, 1996). No presente estudo, o Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂ foram preparados com precursores não clorados. Nesses sólidos a taxa de oxidação de metano diminuiu até atingir o estado estacionário (Figuras 3.2 e 3.3).

Figura 3.2. Oxidação de CH_4 medida a 600 K sobre catalisadores de Pd/ZrO_2 calcinados entre 800 e 1400 K

Figura 3.3. Oxidação de CH₄ medida a 600 K sobre catalisadores de Pd-Sn/ZrO₂ calcinados entre 800 e 1400 K

Os sítios ativos para oxidação de CH₄ são PdO, enquanto átomos de Pd metálico (Pd^o) não são ativos para esta reação (YANG *et al.*, 2000; FUJIMOTO *et al.*, 1998; BURCH e URBANO, 1995 e FARRAUTO *et al.*, 1992). No entanto, existe um consenso de que a oxidação de CH₄ depende da presença de ambas as espécies Pd^o e PdO_x (0 < x ≤ 1) formadas durante a reação. A taxa de oxidação de CH₄ é maior quando as partículas de Pd são completamente oxidadas para Pd⁺² (PdO_x, x = 1) e é menor quanto maior for a quantidade de Pd reduzido. A taxa de oxidação de CH₄ tende a zero quando todas as espécies de Pd estão completamente reduzidas (PdO_x, x = 0).

Sendo assim, a diminuição inicial da taxa de oxidação de CH₄ observada no período de transição para o sólido 4,0%Pd/ZrO₂ calcinado a 800 K (Figura 3.2.) pode ser atribuída à redução parcial do PdO pelo CH₄ até atingir o estado estacionário onde são formadas as espécies Pd⁰/PdO_x (0 < x ≤ 1). Para os sólidos 4,0%Pd/ZrO₂ e 3,9%Pd/ZrO₂ calcinados a 1100 e 1400 K, respectivamente, o período de transição foi menor com o aumento da temperatura de calcinação dos sólidos (Figura 3.2). Isso sugere que a fase ativa dos sólidos calcinados entre 1100 e 1400 K podem estar constituídos por cristalitos de Pd e PdO_x semelhantes as espécies Pd⁰/PdO_x (0 < x ≤ 1) propostos pelos autores citados acima. Esse mesmo comportamento foi observado nos sólidos Pd-Sn/ZrO₂ calcinados entre 800 e 1400 K (Figura 3.3).

Estado estacionário

Após atingido o estado estacionário, a taxa de oxidação de CH₄ em todos os catalisadores Pd/ZrO₂ e Pd-Sn/ZrO₂ manteve-se aproximadamente constante. A atividade catalítica dos sólidos é mostrada na Tabela 3.2.

A diminuição da taxa de reação no Pd/ZrO₂ e Pd-Sn/ZrO₂ após 24 horas de operação contínua variou entre 0 e 26%. O valor médio de diminuição da taxa de oxidação de CH₄ para Pd/ZrO₂ foi 7% e para Pd-Sn/ZrO₂ foi 11%. A desativação com o tempo desses sólidos sugere a transformação progressiva da fase ativa para uma fase menos ativa. De acordo com FUJIMOTO *et al.* (1998) a dissociação

AMOSTRA	TEMPERATURA CALCINAÇÃO	TAXA DE F OXIDAÇÃO D	REAÇÃO DE E CH₄ A 600 K	ATIVIDADE DOS SÓLIDOS A 600 K	
	(К)		r _(t=24h) ⁽²⁾	a _(t=24h) ⁽³⁾	
4,0%Pd	800	16,53	15,20	0,92	
4,0%Pd	1100	8,73	8,66	0,99	
3,9%Pd	1400	2,03	1,73	0,85	
0,8%Pd	1100	3,64	3,48	0,96	
2,8%Pd - 2,3%Sn	800	11,51	9,85	0,86	
2,8%Pd - 2,3%Sn	1100	6,41	4,73	0,74	
2,8%Pd - 2,2%Sn	1400	1,78	1,55	0,87	
0,8%Pd - 0,9%Sn	1100	1,58	1,54	0,97	
0,7%Pd - 2,5%Sn	1100	2,59	2,51	0,97	
3,6%Pd - 0,9%Sn	1100	3,86	3,16	0,82	
1,6%Pd - 1,1%Sn	1100	2,69	2,68	1,00	

Tabela 3.2.	Atividade dos sólidos Pd/ZrO2 e Pd-Sn/ZrO2 na reaçã	ăo da	oxidação	de
	CH ₄ a 600 K		-	

⁽¹⁾ Taxa de reação da oxidação de CH₄ (mol s⁻¹ g⁻¹) no período estacionário extrapolada para t = 0 h;

⁽²⁾ Taxa de reação da oxidação de CH₄ (mol s⁻¹ g⁻¹) após transcorrido 24 h;

⁽³⁾ Atividade do catalisador no tempo t = 24 h: a $(t=24 h) = 1 - [r_{(t=0)} - r_{(t=24 h)}] / r_{(t=0)};$

molecular do CH₄ sobre os sítios ativos dos catalisadores resulta na formação de grupos hidroxila (OH⁻) e espécies CH_x. Considerando que a recombinação dos grupos hidroxila e a dessorção da água são processos lentos, a diminuição progressiva da taxa de oxidação de CH₄ se deve a formação de Pd(OH)₂ (BURCH *et al.,* 1995 e 1996) ou de espécies adsorvidas de carbono na superfície de paládio, PdC_x (BALDWIN e BURCH, 1990).

3.2.2. Influência da Temperatura na Taxa de Reação da Oxidação de Metano

Para todos os catalisadores a taxa de reação da oxidação de CH₄ aumentou com o aumento da temperatura de reação entre 450 e 750 K (Figura 3.4). Durante o processo de resfriamento (750 até 450 K) nos perfis das taxas de oxidação de CH₄ em função da temperatura de reação não foram observadas nenhuma formação de histerese, como fora observado por FARRAUTO *et al.* (1992) para os catalisadores Pd/ γ -Al₂O₃ na faixa de temperaturas de reação entre 1070 a 920K. O que sugere que os sítios disponíveis para reação de oxidação de CH₄ não apresentam mudanças na faixa de temperatura de reação entre 450 e 750 K.

Figura 3.4. Taxa de reação da oxidação de CH_4 em função da temperatura em 4,0%Pd/ZrO₂ calcinado a 800 K

Além disso, nas condições reacionais utilizadas neste trabalho, a taxa de reação da oxidação de CH₄ em função da temperatura de reação sobre os sólidos Sn/ZrO₂ não apresentaram atividade significativa como os obtidos para os sólidos Pd/ZrO₂ e Pd-Sn/ZrO₂, conforme mostrada na Figura 3.5. Mesmo quando o oxigênio é adsorvido na superfície do SnO₂.

A taxa de oxidação de CH₄ em função da temperatura de reação sobre o suporte puro (ZrO₂) foi praticamente nula (Figura 3.5), o que leva a inferir que a oxidação de CH₄ é realizada preferencialmente nos sítios ativos fornecidos pelas superfícies de Pd.

Tendo como base os perfis das taxas de oxidação de CH_4 em função da temperatura de reação foram obtidas as energias de ativação aparente (E_A) tanto nos regimes cinético e difusional e as temperaturas *light off* conforme ilustrado na Figura 3.6.

Figura 3.6. Energia de ativação aparente e temperatura *light off* para o catalisador 4%Pd/ZrO₂ calcinado a 1100 K

De acordo com LEE e TRIMM (1995) a temperatura *light off* é a temperatura de transição entre o regime cinético, onde a reação é controlada pela configuração da fase ativa do catalisador e o regime difusional, onde a reação torna-se controlada pelos fenômenos de transferência de massa e calor. Os valores da temperatura *light off*, obtidos neste trabalho, são mostrados na Tabela 3.3. O valor médio da temperatura *light off* foi de 674 K ± 40 K. Portanto, neste estudo foi considerado que abaixo temperatura de 630 K a reação de oxidação de CH₄ acontece no regime cinético e acima de 710 K a reação de oxidação de CH₄ acontece no regime difusional.
AMOSTRA	TEMPERATURA CALCINAÇÃO (K)	E _A ⁽¹⁾ REGIME CINÉTICO (kJ mol ⁻¹)	TEMPERATUR A <i>LIGHT OFF</i> (K)	E _A ⁽¹⁾ REGIME DIFUSIONAL (kJ mol ⁻¹)
4,0%Pd	800	75	640	30
4,0%Pd	1100	72	662	39
3,9%Pd	1400	82	660	49
2,8%Pd - 2,3%Sn	800	68	661	30
2,8%Pd - 2,3%Sn	1100	68	670	41
2,8%Pd - 2,2%Sn	1400	68	693	50
2,6%Sn	800	99	673	56
2,6%Sn	1100	97	672	52
2,5%Sn	1400	99	676	55
0,8%Pd	1100	85	642	44
0,8%Pd - 0,9%Sn	1100	67	718	38
1,0%Sn	1100	117	670	57
0,7%Pd - 2,5%Sn	1100	77	662	41
3,6%Pd - 0,9%Sn	1100	68	707	37
1,6%Pd - 1,1%Sn	1100	78	704	43

Tabela 3.3. Energia de ativação aparente e temperatura *light off* da reação da oxidação de CH₄ nos sólidos Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂

⁽¹⁾ Energia de ativação aparente obtida a partir da relação de Arhenius.

No regime cinético, a E_A variou entre 68 e 85 kJ mol⁻¹ para Pd/ZrO₂ e Pd-Sn/ZrO₂ (Tabela 3.3). Esses valores são similares aqueles encontrados por RIBEIRO *et al.* (1994) entre 75 a 90 kJ mol⁻¹ e YAO (1980) entre 71 a 84 kJ mol⁻¹. Para Pd/ZrO₂ o valor médio para E_A foi de 78,5 kJ mol⁻¹ enquanto que para Pd-Sn/ZrO₂ o valor médio de E_A foi 71 kJ.mol⁻¹. A tendência dos valores de E_A serem ca. 10% menores para os sólidos Pd-Sn/ZrO₂ em relação aos sólidos Pd/ZrO₂ sugere uma possível interação entre o Pd e o Sn.

Com os valores de E_A e utilizando a relação de Arrhenius foram determinados os parâmetros cinéticos para os sólidos Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂ à temperatura de 550 K, resultados que são mostrados na Tabela 3.4.

TEMPERAT AMOSTRA CALCINAÇ (K)	TEMPERATURA	PARÂMETROS ESTRUTURAIS DOS SÓLIDOS ESTIMADOS A PARTIR DA ADSORÇÃO DE H ₂		PARÂMETROS CINÉTICOS DA REAÇÃO DE OXIDAÇÃO DE CH₄A 550 K		
	(K)	TAMANHO DE S _M ⁽¹⁾ PATÍCULA (m ² g ⁻¹) (nm) (m ² g ⁻¹)	S _M ⁽¹⁾	CONVERSÃO	TAXA DE REACÃO	TOR
			(m*g*')	(%)	(mols ⁻¹ g ⁻¹ ×10 ⁻⁶)	(s ^{.1} × 10 ^{.2})
ZrO ₂	1200	-	-	0,02	0,00	-
4,0%Pd	800	12	1,61	3,11	4,06	12
4,0%Pd	1100	16	1,26	1,55	2,38	9
3,9%Pd	1400	141	0,14	0,56	0,44	15
2,8%Pd - 2,3%Sn	800	34	0,41	2,75	3,48	41
2,8%Pd - 2,3%Sn	1100	49	0,29	1,50	2,40	39
2,8%Pd - 2,2%Sn	1400	79	0,18	0,96	0,59	16
2,6%Sn	800	-	-	0,02	0,03	-
2,6%Sn	1100	-	-	0,05	0,05	-
2,5%Sn	1400	-	-	0,02	0,00	-
0,8%Pd	1100	4	0,95	1,27	1,26	6
0,8%Pd - 0,9%Sn	1100	23	0,19	1,10	0,52	13
1,0%Sn	1100	-	-	0,01	0,01	-
0,7%Pd - 2,5%Sn	1100	30	0,12	0,96	0,65	26
3,6%Pd - 0,9%Sn	1100	32	0,55	1,17	1,59	14
1,6%Pd - 1,1%Sn	1100	28	0,29	0,68	0,58	9

Tabela 3.4. Parâmetros cinéticos de reação da oxidação do CH₄ a 550 K nos sólidos Pd/ZrO₂, Pd-Sn/ZrO₂ e Sn/ZrO₂

⁽¹⁾ Área metálica exposta por grama de amostra.

Em todos os testes catalíticos a conversão de CH₄ foi sempre menor que 3,5%, valor similar daqueles usados por SANTOS (2003) e RIBEIRO *et al.* (1994). A taxa de oxidação de CH₄ sobre os catalisadores 4,0%Pd/ZrO₂ e 2,8%Pd-2,3%Sn/ZrO₂ foi fortemente dependente da temperatura de calcinação e a taxa de oxidação de CH₄ sobre os sólidos SnO₂/ZrO₂ foi pequena em comparação com Pd/ZrO₂ ou Pd-Sn/ZrO₂.

Para reação de oxidação de CH₄ à temperatura de 550 K a TOR nos sólidos 2,8%Pd-2,3%Sn/ZrO₂ calcinados a 800 ou 1100 K foram maiores (ca. 4 vezes) do que nos sólidos 4,0%Pd/ZrO₂ calcinados nas mesmas temperaturas. Tendências similares foram observadas para catalisadores com diferentes cargas de Pd e Sn

calcinados à temperatura de 1100 K. Assim, os valores da TOR para os catalisadores 0,8%Pd-0,9%Sn/ZrO₂, 0,7%Pd-2,5%Sn/ZrO₂ e 1,6%Pd-1,1Sn/ZrO₂ foram de 2 a 4 vezes maiores do que para os catalisadores 0,8%Pd/ZrO₂. No entanto, os valores da TOR para os sólidos 2,8%Pd-2,2%Sn/ZrO₂ e 3,9%Pd/ZrO₂ calcinados a 1400 K foram próximos do que para 4,0%Pd/ZrO₂ calcinados a 800 ou 1100 K. Neste último caso pode-se sugerir que com aumento da temperatura de calcinação a contribuição do Sn na reação de oxidação de CH₄ diminui, sendo praticamente nula à temperatura de 1400 K.

Essa mesma tendência foi evidenciada no perfil dos valores de TOR em função da temperatura de reação obtidas entre 450 e 750 K. Por exemplo, na Figura 3.7 observa-se que os sólidos Pd-Sn/ZrO₂ calcinados entre 800 e 1100 K apresentaram valores de TOR maiores do que para os sólidos Pd/ZrO₂ calcinados na mesma faixa de temperaturas. Outra particularidade foi observada também na Figura 3.8. Os sólidos contendo diferentes teores de Pd e Sn calcinados à mesma temperatura (1100 K) apresentaram três diferentes grupos. Os sólidos com altos valores de TOR correspondem aos sólidos contendo ~ 1%Sn. O terceiro grupo com baixos valores de TOR corresponde aos sólidos sem Sn.

Como fora observado através das medidas de adsorção de oxigênio (Tabela 2.5), a quantidade de oxigênio adsorvido nos sólidos 2,8%Pd-2,3%Sn/ZrO₂ calcinados a 800 ou 1100 K foi ca. 4 vezes maior do obtido nos sólidos 4,0%Pd/ZrO₂ calcinados nas mesmas temperaturas (800 ou 1100 K). Assim, a presença de Sn nos catalisadores Pd/ZrO₂ contribuiu no aumento da quantidade de oxigênio adsorvido disponível para reação, igual ao observado para catalisadores Pd/ZrO₂ dopados com óxido de cério, CeO₂ (GÉLIN e PRIMET, 2002 e HECK e FARRAUTO, 2001). Como fora evidenciado neste trabalho as superfícies de SnO₂ não apresentam sítios específicos para reação de oxidação de CH₄. Por outro lado, segundo CIUPARU *et al.* (2002) e CIUPARU e PFEFFERLE (2002) o oxigênio do PdO e do ZrO₂ para o PdO. Também foi sugerida a troca de ¹⁸O₂ entre a fase gasosa e a superfície do catalisador (Figura

2.18). Portanto, em base nos resultados obtidos neste trabalho pode-se inferir que os valores maiores de TOR obtidos para os sólidos Pd-Sn/ZrO₂ em relação aos sólidos Pd/ZrO₂ deve-se ao fato que o Sn fornece um reservatório de oxigênio adsorvido que é facilmente transferido às superfícies de Pd.

Figura 3.7. Taxa de giro (TOR) em função da temperatura de reação para Pd/ZrO₂ e Pd-Sn/ZrO₂ calcinados a 800, 1100 e 1400 K

Figura 3.8. Taxa de giro (TOR) em função da temperatura de reação para Pd/ZrO₂ e Pd-Sn/ZrO₂ calcinados a 1100 K

Na Figura 3.9 é mostrada a relação entre o tamanho médio das partículas metálicas de Pd dos sólidos Pd/ZrO₂ e Pd-Sn/ZrO₂ com os valores de TOR obtidos para esses mesmos sólidos à temperatura de 550 K. A partir desses dados podese observar que não existe nenhuma correlação entre o tamanho médio das partículas metálicas de Pd e os valores de TOR_{550K}, o que sugere que a reação de oxidação de CH₄ é insensível a estrutura. No entanto, é possível observar que os sólidos Pd-Sn/ZrO₂ calcinados na faixa de temperaturas de 800 a 1100 K tendem a formar partículas metálicas de Pd e valores de TOR maiores do que os sólidos Pd/ZrO₂.

Figura 3.9. Variação da taxa de giro (TOR) determinado a 550 K com o tamanho médio das partículas metálicas de Pd

3.2.3. Ordem de Reação

Na tabela 3.5. são mostradas as ordens de reação para o CH₄, O₂, H₂O e CO₂ determinadas a 550 K, mantendo a conversão de CH₄ abaixo de 2%, para os catalisadores 4%Pd/ZrO₂ e 2,8%Pd-2,3%Sn/ZrO₂ calcinados a 1100 K. Na Figura 3.10 é ilustrado o efeito das concentrações de CH₄, O₂, H₂O e CO₂ na taxa da oxidação de metano para 4%Pd/ZrO₂ calcinado a 1100 K. Os valores encontrados foram similares aos obtidos por SANTOS (2003); MONTEIRO *et al.* (2001) e FUJIMOTO *et al.* (1998).

	TEMPERATURA CALCINAÇÃO (K)	ORDEM DE REAÇÃO				
AMOSTRA		CH₄	0.	H ₂ O	CO ₂	
			02		$(f_{co2}^{(1)} < 0,007)$	(f _{co2} > 0,007)
4,0%Pd	1100	1,07	0,23	-1,00	-0,09	-2,04
2,8%Pd - 2,3%Sn	1100	1,04	0,18	-0,95	-0,07	-1,92
(1) $f_{1} = f_{2} = \frac{1}{2} \int_{-\infty}^{\infty} f_{2} =$						

Tabela 3.5. Ordens de reação de CH₄, O₂, H₂O e CO₂

(1) f_{CO2} = fração molar de CO₂

Os resultados para as ordens de reação em relação a todos os componentes estão de acordo com a maioria dos mecanismos de reação de oxidação de CH₄ propostos na literatura (GROPPI, 2003; GÉLIN e PRIMET, 2002; GIEZEN *et al.*, 1999; FUJIMOTO *et al.*, 1998 e CULLIS e WILLATT, 1983). A taxa de oxidação de CH₄ é praticamente independente da ordem de reação do O_2 , sendo esta igual a 0.2 ± 0.1 .

A ordem de reação em relação à H_2O é -1,0 ± 0,1. De acordo com RIBEIRO et al. (1994) a água é adsorvida de forma competitiva nos mesmos sítios disponíveis para CH₄. De acordo com IBASHI *et al.*, (2003) e BURCH *et al.* (1995 e 1996) a perda de sítios ativos se deve a quebra das ligações C-H do CH₄, que resulta na formação do Pd(OH)₂ a partir de PdO ou através da adsorção dissociativa de H₂O sobre pares de sítios vizinhos de Pd-PdO. A inibição de H₂O é reversível em baixas temperaturas uma vez que Pd(OH)₂ é decomposto a 520 K. No entanto, a inibição por H₂O é efetiva até 670 K e insignificante acima de 720 K (IBASHI *et al.*, 2003; CIUPARU *et al.*, 2001; BURCH e HAYES, 1995; BURCH *et al.*, 1995 e RIBEIRO *et al.*, 1994).

A influência da concentração do CO_2 foi dividida em duas faixas de concentração de CO_2 , mais especificamente, para concentração molar de CO_2 menor ou maior do que 0,7%. Para a concentração molar de CO_2 menor do que 0,7%, a ordem de reação em relação ao CO_2 foi igual a -0,1 ± 0,1 e no caso contrario foi de -2,0 ± 0,1. Esse resultado está de acordo com o observado por SANTOS (2003) e RIBEIRO *et al.* (1994), onde a inibição da reação devido ao CO_2 para catalisadores 1,4%Pd/ZrO₂ ou 7,7%Pd/Si-Al₂O₃ foi significativa quando a concentração molar de CO_2 na mistura reagente foi superior a 0,5% v/v. Segundo

Figura 3.10. Taxa de reação da oxidação de CH₄ vs. fração molar de CH₄ (♦), O₂ (□), H₂O (▲) and CO₂ (○) sobre 4,0%Pd/ZrO₂ calcinado a 800 K

BURCH *et al.* (1995) a inibição do CO_2 acontece quando a reação de oxidação de CH_4 é realizada em condições de baixas conversões, baixas temperaturas e em misturas reagentes secas ou sem a presença de H_2O . De acordo com IBASHI *et al.* (2003) o efeito do CO_2 tende a ser encoberto pela presença de H_2O , possivelmente pela suposta substituição do CO_2 adsorvido com a H_2O . Finalmente, em ausência ou em baixas concentrações de vapor de H_2O (< 0,4% molar), para concentrações molares de CO_2 menores do que 0,7% a taxa de oxidação de CH_4 em função do CH_4 , O_2 e H_2O pode ser escrita como

$$r_{CH_4} = \frac{k[CH_4]^{1,0}[O_2]^{0,2}}{[H_2O]^{1,0}}$$
(Eq. 3.10)

e para concentrações molares de CO_2 maiores do que 0,7% a queda da taxa de CH_4 tende a ser proporcional a $[CO_2]^{-2}$.

3.4. Conclusões

- Na reação da oxidação de CH₄ em catalisadores preparados a partir de precursores não clorados, o período de ativação não foi observado. No entanto, um decréscimo progressivo na taxa de reação foi observado.
- As taxas de giro (TOR) para os catalisadores Pd-Sn/ZrO₂ calcinados a temperaturas ≤ 1100K foram maiores do que para Pd/ZrO₂ devido a grande quantidade de O₂ adsorvida nos catalisadores contendo Sn além de Pd.
- Para o catalisador Pd-Sn/ZrO₂ calcinado a temperaturas de 1400 K, o valor da TOR foi similar ao obtido no catalisador Pd/ZrO₂ calcinado na mesma temperatura, o que sugere que com aumento da temperatura de calcinação a contribuição do Sn diminui, sendo praticamente nula a 1400 K.
- A taxa de oxidação de CH₄ em Sn/ZrO₂ foi pequena quando comparada ao Pd/ZrO₂ ou Pd-Sn/ZrO₂ mesmo quando o oxigênio é adsorvido na superfície do SnO₂.
- A reação da oxidação de CH₄ é insensível a estrutura. No entanto, os sólidos Pd-Sn/ZrO₂ calcinados na faixa de temperaturas de 800 a 1100 K tendem a formar partículas metálicas de Pd e valores de TOR maiores do que os sólidos Pd/ZrO₂.

3.5. Referências Bibliográficas

- BALDWIN, T. R., BURCH, R. Catalytic combustion of methane over supported palladium catalysts. II. Supported and possible morphological effects. *Applied Catalysis*, v. 66, p. 359 – 381, 1990.
- BURCH, R., HAYES, M. J. C-H bond activation in hydrocarbon oxidation on solid catalysts. *Journal of Molecular Catalysis A: Chemical*, v. 100, p. 13-33, 1995.

- BURCH, R., LOADER, P. K., URBANO, F. J. Some aspects of hydrocarbon activation on platinum group metal combustion catalysts. *Catalysis Today*, v. 27, p. 243-248, 1996.
- BURCH, R., URBANO, F. J. Investigation of the active state of supported palladium catalysts in the combustion of methane. *Applied Catalysis A: General*, v. 124, p. 121-138, 1995.
- BURCH, R., URBANO, F. J., LOADER, P. K. Methane combustion over palladium catalysts: The effect of carbon dioxide and water on activity. *Applied Catalysis A: General*, v. 123, p. 173-184, 1995.
- CIUPARU, D., KATSIKIS, N., PFEFFERLE, L. Temperature and time dependence of the water inhibition effect on supported palladium catalyst for methane combustion. *Applied Catalysis A: General*, v. 216, p. 209-215, 2001.
- CIUPARU, D., BOZON-VERDURAZ, F., PFEFFERLE, L. Oxygen Exchange between Palladium and Oxide Supports in Combustion Catalysts. *Journal Physical Chemical B*, v. 106, p. 3434-3442, 2002.
- CIUPARU, D., PFEFFERLE, L. Contributions of lattice oxygen to the overall oxygen balance during methane combustion over PdO-based catalysts. *Catalysts Today*, v. 77, p. 167-179, 2002.
- CULLIS, C. F., WILLATT, B. M. Oxidation of methane over supported precious metal catalysts. *Journal of Catalysis*, v. 83, p. 267-285, 1983.
- FARRAUTO, R. J., HOBSON, M. C., KENNELLY, T., WATERMAN, E. M. Catalytic chemistry of supported palladium for combustion of methane. *Applied Catalysis A: General*, v. 81, p. 227-237, 1992.
- FUJIMOTO, K., RIBEIRO, F. H., AVALOS-BORJA, M., IGLESIA, E. Structure and reactivity of PdO_x/ZrO₂ catalysts for methane oxidation at low temperatures. *Journal of Catalysis*, v. 179, p. 431-442, 1998.
- GÉLIN, P., PRIMET, M. Completa oxidation of methane at low temperature over noble metal based catlysts: a review. *Aplied Catalysis B: Environmental*, v. 39, p. 1-37, 2002.

- GIEZEN, J. C., BERG, F. R., KLEINEN, J. L., DILLEN, A. J., GEUS, J. W. The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane. *Catalysis Today*, v. 47, p. 287-293, 1999.
- GROPPI, G. Combustion of CH₄ over a PdO/ZrO₂ catalyst: an example of kinetic study under severe conditions. *Catalysis today*, v. 77, p. 335-346, 2003.
- HECK, R. M., FARRAUTO, R. J. Automobile exhaust catalysts. *Applied Catalysis A: General,* v. 221, p. 443-457, 2001.
- IBASHI, W., GROPPI, G., FORZATTI, P. Kinetic measurements of CH₄ over 10% PdO/ZrO₂ catlyst using a annular flow microreactor. *Catalysis Today*, v. 83, p. 115-129, 2003.
- LEE, J. H., TRIMM, D. L. Catalytic combustion of methane. *Fuel Processing Technology*, v. 42, p. 339-359, 1995.
- MARCEAU, E., CHE, M., JAINT-JUST, J., TATIBOUËT, J. M. Influence of chlorine ions in Pt/Al₂O₃ catalysts for methane total oxidation. *Catalysis Today*, v. 29, p. 415-419, 1996.
- MONTEIRO, R. S., ZEMLYANOV, D., STOREY, J. M., RIBEIRO, F. H. Turnover rate and reaction orders for the complete oxidation of methane on a palladium foil in excess dioxygen, *Journal of Catalysis*, v. 199, p. 291-301, 2001.
- RIBEIRO, F. H., CHOW, M., DALLA BETA, R. A. Kinetics of the complete oxidation of methane over supported palladium catalysts. *Journal of Catalysis*, v. 146, p. 537-544, 1994.
- SANTOS, J. B. O. Oxidação total de metano sobre catalisadores de paládio. Tese de doutorado em engenharia química, FEQ-UNICAMP, Campinas-SP, 2003.
- YANG, S., MAROTO-VALIENTE, A., BENITO-GONZALES, M, I. RODRIGUEZ-RAMOS, I. GUERRERO-RUIZ, A. Methane combustion over supported palladium catalysts. I. Reactivity and active phase. *Applied Catalysis B: Environmental*, n. 28, p. 223-233, 2000.
- YAO, Y. Y. Oxidation of alkanes over noble metal catalysts. *Industrial Engineering Chemical Production Research Developments*, v. 19, p. 293-298, 1980.

CONCLUSÕES GERAIS

- A combustão de gás natural é limpa e uniforme, apresenta menores emissões de poluentes, ausência de particulados (fuligem) e alta seletividade para obtenção de CO₂ e H₂O.
- Catalisadores automotivos de veículos que usam gasolina ou diesel não são capazes de realizar a reação de oxidação completa de hidrocarbonetos dos gases de exaustão de veículos movidos a gás natural, devido às baixas temperaturas desses gases (< 750 K)
- Para reação de oxidação de CH₄, catalisadores de Pd suportado sobre SnO₂ são mais ativos que os catalisadores de Pd suportados sobre ZrO₂. Não obstante, o uso comercial dos catalisadores de Pd/SnO₂ pode ser limitada pela baixa área superfícial e menor estabilidade térmica do SnO₂ em relação ao ZrO₂.
- A quantidade de O₂ adsorvido em sólidos contendo Pd-Sn ou Sn suportados sobre ZrO₂ é significativamente maior que a quantidade de O₂ adsorvido em sólidos contendo unicamente Pd suportado sobre ZrO₂.
- Os tamanhos médios das partículas metálicas de Pd, determinados através da adsorção de H₂, são maiores para os catalisadores contendo Sn. As partículas de Pd nos sólidos contendo Pd ou Pd-Sn calcinados a 800K foram completamente oxidadas formando fases com baixo grau de cristalinidade. Nos sólidos contendo Pd ou Pd-Sn calcinados a 1400K a fase ativa foi decomposta a Pd^o e sinterizada, formando partículas de Pd com planos cristalinos expostos de baixa densidade Pd(200). O Sn permaneceu estável nos sólidos contendo Pd-Sn calcinados entre 800 e 1400 K. As partículas de SnO₂ apresentaram planos cristalinos SnO₂(110).
- A taxa de giro (TOR) para os catalisadores Pd-Sn/ZrO₂ calcinados a

temperaturas \leq 1100K é maior do que para Pd/ZrO₂ devido a grande quantidade de O₂ adsorvida nos catalisadores contendo Pd-Sn.

- Para o catalisador Pd-Sn/ZrO₂ calcinado a temperaturas de 1400 K, o valor da TOR foi similar ao obtido no catalisador Pd/ZrO₂ calcinado na mesma temperatura, sugerindo que com aumento da temperatura de calcinação a contribuição do Sn diminui, sendo praticamente nula a 1400 K.
- Os catalisadores de Pd-Sn/ZrO₂ podem ser utilizados para o desenvolvimento de catalisadores automotivos para veículos movidos a gás natural por apresentar alta atividade catalítica em baixas temperaturas (< 750K) e maior estabilidade mecânica fornecido pelo suporte, ZrO₂.

SUGESTÕES

- Para complementar os estudos realizados neste trabalho seria importante implementar as técnicas de XPS para determinar o estado de oxidação do Pd e Sn suportados sobre ZrO₂, e FTIR para verificar as possíveis espécies intermediarias formadas durante as medidas de adsorção de gases (e.g., H₂ e CO) e na reação de oxidação de CH₄.
- Considerando que a composição química do gás natural além de apresentar pequenas quantidades de hidrocarbonetos de maior peso molecular do que o CH₄, também contém algumas impurezas como enxofre e compostos nitrogenados, seria conveniente estudar a influência desses compostos nos sólidos propostos no presente estudo.
- Considerando, que na maioria dos processos de oxidação catalítica de hidrocarbonetos acontecem na faixa de temperaturas de 500 até 1100 K, seria importante ampliar o estudo para o regime difusional. Isto é, acima de 710 K.

ANEXO "A"

PROPRIEDADES FÍSICO-QUÍMICAS E INFORMAÇÕES DE SEGURANÇA DAS MATÉRIAS-PRIMAS

Nitratro de paládio hidratado

O nitrato de paládio hidratado, de fórmula molecular Pd[NO₃]₂.XH₂O, é um material sólido úmido cristalino em pó ou em lascas, com teor de Pd variando entre 37 e 42% p/p. O Pd[NO₃]₂.XH₂O é obtido da dissolução de paládio metálico em ácido nítrico. A estrutura cristalina do complexo hidratado de nitrato de paládio ortorrômbica constituída unidades Pd[NO₃]₂.2H₂O é de isoladas de interconectadas por ligações de hidrogênio, formando sucessivas camadas paralelas unidas através de forças de van der Waals (LALIGANT et al., 1991). O nitrato de paládio hidratado é um sólido higroscópico, de cor castanha intensa, inodoro, solúvel em ácido nítrico (HNO₃) e em água. Quando solubilizado em água apresenta uma intensa turbidez e é constituído por complexos hidratados de monóxido de paládio (THE MERCK INDEX, 1996).

O Pd[NO₃]₂.2H₂O é um material oxidante forte, corrosivo e não-combustível. O produto deve ser armazenado em recipientes completamente fechados para evitar adsorção da umidade do ar. Deve-se evitar colocá-lo em presença de ácidos, agentes redutores, compostos orgânicos, combustíveis e calor. Em caso de se envolver com fogo, não utilizar água. Usar CO₂ ou pó químico. Facilmente pode ser decomposto em PdO e gerar gases NO_x. Em contato direto com os olhos, pele e vias respiratórias pode causar irritações. Em casos de exposição foi observado aumento de incidência de câncer. Para manipulação de produtos químicos sempre utilizar os equipamentos de proteção individual (EPI) apropriados como: avental, luvas, óculos e máscara (SAFETY DATA SHEET, CAS # 10102-05-3, <u>http://www.sigmaaldrich.com</u>). O nitrato de paládio é utilizado como catalisador em síntese orgânica, na separação de cloro e iodo e como precursor na preparação de catalisadores metálicos suportados.

Tartarato de estanho (II)

O tartarato de estanho (II), de fórmula molecular $SnC_4H_4O_6.XH_2O$, é um sólido branco cristalino e inodoro, com teor de Sn próximo a 44% p/p, obtido a partir da reação entre o cloreto de estanho ($SnCI_2$) e o ácido tartárico ($C_4O_6H_6$) em meio básico (2 mol l⁻¹ de NH₄OH). O tartarato de estanho é solúvel em água, etanol e em ácido clorídrico diluído, insolúvel em solventes polares e estável fotoquimicamente (THE MERCK INDEX, 1996 e DAL SANTOS *et al.*, 2003).

O tartarato de estanho (II) é um material inflamável, devendo ser armazenado em recipientes bem fechados e refrigerado entre 2 e 8 °C. Evitar colocá-lo em presença de agentes oxidantes. Em caso de se envolver com fogo usar CO₂ ou pó químico. Como produtos de combustão geram gases CO, CO₂, H₂O e fumos de óxido metálico. Os compostos orgânicos de Sn são mais tóxicos que os compostos inorgânicos de Sn. Em contato direto com os olhos, pele e vias respiratórias pode causar irritações. Não apresenta propriedades carcinogênicas. Para manipulação de produtos químicos sempre utilizar os equipamentos de proteção individual (EPI) apropriados como: avental, luvas, óculos e máscara (SAFETY DATA SHEET, CAS# 815-85-0, <u>http://www.alfa.com</u>).

O tartarato de estanho é amplamente utilizado, em concentrações baixas da ordem de 3×10⁻⁵ molar, como agente redutor na preparação de soluções de complexos de tecnécio^{99m} (VII) aplicados em medicina nuclear como marcadores isotópicos para gerar imagens de varredura do sistema de irrigação sanguínea do cérebro (TROUTNER *et al.*, 1984).

Oxido de zircônio

O óxido de zircônio (ZrO₂), comumente conhecido como zircônia, é um sólido branco, inodoro, insípido, de baixa condutividade térmica, alta resistência à corrosão e alta resistência mecânica (THE MERCK INDEX, 1996). A zircônia pode

ser obtida por calcinação da sua forma hidróxida (e.g., Zr[OH]₂) a qual é preparada por hidrólise de sais de zircônio (e.g., ZrCl₂, Zr[NO₃]₂) e dependendo da temperatura de calcinação pode apresentar diferentes fases cristalinas: monoclínica, tetragonal ou cúbica (Figura A.1). À temperatura ambiente a zircônia é formada por uma fase cristalina monoclínica estável ou tetragonal metastável ou a mistura de ambas (fase amorfa). A transformação da fase tetragonal à fase monoclínica acontece entre 900 e 1000 K. A fase monoclínica é estável até ca. 1400 K e transforma-se em tetragonal até 1500 K. Sob resfriamento a fase tetragonal transforma-se na fase monoclínica entre 1300 e 1100 K, apresentando

Figura A.1. Fases cristalinas do ZrO₂ (DICKEY e PENNYCOOK, 1999 e STACHS *et al.*, 1997)

uma grande histerese. Acima de 1500 K a fase tetragonal é estável e transformase na fase cúbica em ca. 2200 K (CHUAH, 1999; CHUAH e JAENICKE, 1997 e YAMAGUCHI, 1994).

Na tabela A.1 são mostradas algumas propriedades termo-físicas do ZrO₂.

Tabela A.1. Propriedades termo-físicas do ZrO₂

Temperatura de fusão		2963 K		
Entalpia de fusão		$8,72 \times 10^4 \text{ J mol}^{-1}$		
Temperatura de ebulição		4573 K		
Entalpia de evaporação		$6,44 imes 10^5 ext{ J mol}^{-1}$		
Densidade		5,56 g cm ⁻³		
Ponto isoelétrico		pH \approx 6 (adsorve cátions e anions)		
Solubilidades:	$H_2SO_4 (pH = 2)$	< 1 \times 10 ⁻³ ppm dia ⁻¹ g ⁻¹		
	HNO ₃ (pH = 2)	$< 1 \times 10^{-3} \text{ ppm dia}^{-1} \text{ g}^{-1}$		
	HCI (pH = 2)	0		
	HF (pH = 3)	$< 1 \times 10^{-3}$ ppm dia ⁻¹ g ⁻¹		
	NaOH (pH = 12)	0		
	NH ₄ OH (pH = 11,5)	0		

FONTE: SHOJAI e MÄNTYLÄ (2001); FENGQIU et al. (2000) e LINS e BRANSTON (1999).

A superfície do ZrO₂ apresenta propriedades ácidas e básicas ^[9]. Por exemplo, o SiO₂-Al₂O₃ é um típico sólido de caráter ácido capaz de adsorver uma molécula básica como a amônia (NH₃), mas não o CO₂. O dióxido de carbono é

^[9] A classificação de acidez/basicidade é comumente feita através dos modelos clássicos de Lewis e Br\u00f6nsted, i. e., os sítios ácidos ou bases de Lewis são aqueles de recebem ou doam el\u00e9trons, respectivamente. E os sítios ácidos ou bases de Br\u00e9nsted s\u00e3o aqueles que doam ou recebem pr\u00f6tons, respectivamente. Os sítios ácidos da zircônia (ZrO₂) est\u00e3o associados a dois tipos de sítios: os átomos expostos de Zr localizados na camada mais externa da estrutura cristalina da superfície do \u00f6xido, geram os sítios \u00e1cidos de Lewis e os mesmos \u00e4tomos de Zr cuja carga \u00e9 compensada por pr\u00f6tons, resultam em sítios \u00e1cidos de Br\u00e4nsted. Os sítios b\u00e1sicos da zircônia, de forma geral, est\u00e3o associados aos \u00e4tomos expostos de oxig\u00e9nio localizados na camada mais externa da estrutura cristalina da superfície do \u00e9xido (ARAMENDÍA *et al*, 1999).

uma molécula ácida amplamente utilizada como adsorvato para caracterizar sólidos tipicamente básicos (e.g., MgO). A diferença entre a $SiO_2-Al_2O_3$ e ZrO_2 é que essa tem a propriedade de adsorver tanto a NH₃ quanto o CO₂. Isto faz com que a zircônia seja um óxido do tipo bifuncional apresentando sobre a sua superfície sítios ácidos e básicos (ARAMENDÍA *et al.* 1999 e 1997 e YAMAGUCHI, 1994).

O ZrO₂ é um material inerte, não apresenta perigo de explosão, é não inflamável, deve-se armazenar em recipientes bem fechados e evitar colocá-lo em presença de ácidos e agentes oxidantes. Não apresenta produtos perigosos de decomposição. Em contato direto com os olhos, pele e vias respiratórias pode causar irritações. Não apresenta propriedades carcinogênicas. Em caso de inalação de zircônia pode ocorrer granulomas pulmonares. Para manipulação de produtos químicos sempre utilizar os equipamentos de proteção individual (EPI) apropriados como: avental, luvas, óculos e máscara (SAFETY DATA SHEET, CAS# 1314-23-4, <u>http://www.alfa.com</u>).

O ZrO₂ apresenta diversas aplicações em refratários, cerâmica fina, componentes elétricos, condensadores cerâmicos, sensores de oxigênio, implantes ósseos, como catalisador na forma de simples óxido, como suporte de catalisadores metálicos e na foto-catálise da decomposição total de H₂O (YAMAGUCHI, 1994).

Referências Bibliográficas

- ARAMENDÍA, M. A., BORÁU, V., JIMÉNEZ, C., MARINAS, J. M., MARINAS, A., PORRAS, A., URBANO, F. J. Synthesis and characterization of ZrO₂ as acidbasic catalysts: Reactivity of 2-methyl-3-butyn-2-ol. *Journal of Catalysis*, v. 183, p. 240-250, 1999.
- ARAMENDÍA, M. A., BORÁU, V., JIMÉNEZ, C., MARINAS, J. M., PORRAS, A., URBANO, F. J. Synthesis and characterization of ZrO₂ as an acid-base catalyst dehydration-dehydrogenation of propan-2-ol. *Journal Chemical Society-Faraday Transaction*, v. 93, n. 7, p 1431-1438, 1997.

- CHUAH, G. K., JAENICKE, S. The preparation of high surface area zirconia influence of precipitating agent and digestion. *Applied Catalysis A: General*, v. 163, p. 261-273, 1997.
- DAL SANTOS, M. A., ANTUNES, A. C., RIBERO, C., BORGES, C. P. F., ANTUNES, S. R. M., ZARA, A. J., PIANARO, S. A. Electric and morphologic properties of SnO₂ films prepared by modified sol-gel process. *Material Letters*, v. 57, p. 4378-4381, 2003.
- DICKEY, E. C., FAN, X., PENNYCOOK, S. J. Direct atomic-scale imaging of ceramic interfaces. *Acta Materialia*, v. 47, n. 15-16, p. 4061-4068, 1999.
- FENGQIU, T., XIAOXIAN, H., YUFENG, Z., JINGKUN, G. Effect of dispersants on surface chemical properties of nano-zirconia suspensions. *Ceramics International*, v. 26, p. 93-97, 2000.
- LALIGANT, Y., FEREY, G., LE BAIL, A. Crystal structure of Pd(NO₃)₂(H₂O)₂. *Materials Research Bulletin*, v 26, n. 4, p. 269-275, 1991.
- LINS, G., BRANSTON, D. W. Evaporation of zirconia in an inductively coupled plasma. *Surface and Coatings Technology*, v. 116-119, p. 1249-1253, 1999.
- SHOJAI, F., MÄNTYLÄ, T. A. Chemical stability of yttria doped zirconia membranes in acid and basic aqueous solutions: chemical properties, effect of annealing and ageing time. *Ceramics International*, n. 27, p. 299-307, 2001.
- THE MERK INDEX: An encyclopedia of chemicals, drugs and biologicals. Whitehouse Station, N. J.: MERK & Co. Inc., Ed. 20, 1996.
- TROUTNER, D. E., VOLKERT, W. A., HOFFMAN, T. J., HOLMES, R. A. A neutral lipophilic complex of ^{99m}Tc with a multidentate amine oxime. *The international Journal of Applied Radiation and Isotopes*, v. 35, n. 6, p. 467-470, 1984.
- YAMAGUCHI, T. Application of ZrO₂ as a catalyst and a catalyst Support. *Catalysis Today*, v. 20, p. 199-218, 1994.