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RESUMO 

Recentes estudos demonstram que a ativação de receptores P2X3,2/3 pelo 

ATP endógeno contribui para a hiperalgesia inflamatória. Portanto, os objetivos 

desse trabalho foram: (1) Estudar o mecanismo pelo qual a ativação dos 

receptores P2X3,2/3 pelo ATP endógeno contribui para a hiperalgesia mecânica 

induzida no modelo da inflamação causada pela carragenina, (2) Verificar se o 

ATP endógeno e a ativação dos receptores P2X3,2/3 contribui para a hiperalgesia 

induzida pelos mediadores inflamatórios Bradicinina, TNF-α, IL-1β, IL-6, CINC-1, 

PGE2 e dopamina e, verificar o mecanismo pelo qual essa contribuição ocorre, e 

(3) Estudar o mecanismo pelo qual a ativação dos receptores P2X1,3,2/3 induz 

hiperalgesia mecânica. De acordo com o objetivo (1): A co-administração do 

antagonista seletivo de receptor P2X3,2/3, A-317491, ou do antagonista de 

receptor P2X1,3,2/3,1/5, TNP-ATP, com carragenina bloqueou a hiperalgesia 

mecânica, reduziu significativamente o aumento na concentração de TNF-α e 

CINC-1 mas não de IL-1β, e reduziu levemente a migração de neutrófilos induzida 

pela carragenina. Administração intratecal de oligonucleotídeos antisense contra 

receptor P2X3 reduziu significativamente a expressão de receptores P2X3 no 

nervo safeno e a hiperalgesia mecânica induzida pela carragenina. De acordo com 

o objetivo (2): A co-administração de A-317491 ou TNP-ATP com bradicinina, mas 

não com TNF-α, IL-1β, IL-6, CINC-1, PGE2 ou dopamina, preveniu de forma dose-

dependente a hiperalgesia mecânica. TNP-ATP ou A-317491 não afetou a 

migração de neutrófilos nem a liberação das citocinas TNF-α, IL-1β, IL-6 e CINC-1 

induzidas pela bradicinina. De acordo com o objetivo (3): A administração 

subcutânea do agonista de receptor P2X1,3,2/3, α,β-meATP, induziu hiperalgesia 

mecânica dose-dependente, que foi significativamente reduzida pelo A-317491, 

pelo inibidor de cicloxigenase, indometacina, e pelos antagonistas β1 ou β2-

adrenérgicos, atenolol e ICI 118,551 respectivamente, pelo antagonista seletivo de 

receptor de bradicinina B1 ou B2, DALBK e Bradyzide respectivamente, e pelo 
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inibidor não seletivo das selectinas, fucoidan. Além disso, α,β-meATP induziu 

liberação endógena das citocinas TNF-α, IL-1β, IL-6 e CINC-1 e migração de 

neutrófilos. Os resultados do primeiro objetivo demonstram que a ativação dos 

receptores P2X3,2/3 pelo ATP endógeno contribui para a hiperalgesia induzida 

pela carragenina através da sensibilização indireta dos nociceptores aferentes 

primários mediada pela liberação prévia de TNF-α, e através da sensibilização 

direta dos nociceptores aferentes primários. Os resultados do segundo objetivo 

demonstram que a ativação dos receptores P2X3,2/3 pelo ATP endógeno contribui 

para a hiperalgesia induzida pela bradicinina por um mecanismo que independe 

da liberação de citocinas e migração de neutrófilos. Finalmente, os resultados do 

terceiro objetivo demonstram que o α,β-meATP induz hiperalgesia mecânica 

através de uma sensibilização indireta dos nociceptores aferentes primários 

mediada pela síntese de prostaglandinas, liberação de aminas simpatomiméticas, 

liberação de citocinas e migração de neutrófilos. Em uma perspectiva clínica-

terapêutica, esses resultados sugerem que, como a ativação dos receptores 

P2X3,2/3 pelo ATP endógeno é fundamental para o desenvolvimento da 

hiperalgesia inflamatória, os receptores P2X3,2/3 podem ser alvos farmacológicos 

interessantes para o desenvolvimento de medicamentos usados no controle da 

dor inflamatória. Ressalta-se ainda que o efeito analgésico dos antagonistas de 

receptores P2X3,2/3 inibiu a hiperalgesia em uma magnitude comparável à dos 

antiinflamatórios esteroidais.   

  

 

Palavras-chave: ATP, receptores purinérgicos, hiperalgesia, neutrófilos, 

mediadores inflamatórios, antisense.  
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ABSTRACT 

Activation of P2X3,2/3 receptors by endogenous ATP contributes to the 

development of inflammatory hyperalgesia. Therefore, the aims of this study were: 

(1) To study the mechanism underlying activation of P2X3,2/3 receptors by 

endogenous ATP contributes to mechanical hyperalgesia induced by the 

carrageenan model of inflammation, (2) To verify whether endogenous ATP and 

P2X3,2/3 receptors activation contributes to the hyperalgesia induced by 

inflammatory mediators bradykinin, TNF-α, IL-1β, IL-6, CINC-1, PGE2 and 

dopamine and, to verify the mechanism underlying this contribution occurs, (3) To 

study the mechanism underlying activation of P2X1,3,2/3 receptors induces 

mechanical hyperalgesia. According to the first aim: Co-administration of the 

selective P2X3,2/3 receptors antagonist, A-317491, or the P2X1,3,2/3,1/5 

receptors antagonist, TNP-ATP, with carrageenan blocked the mechanical 

hyperalgesia, significantly reduced the increased concentration of TNF-α and 

CINC-1 but not of IL-1β, and reduced only slightly neutrophil migration induced by 

carrageenan. Intrathecal administration of oligonucleotides antisense against P2X3 

receptors significantly reduced the expression of P2X3 receptors in the saphenous 

nerve and significantly reduced the mechanical hyperalgesia induced by 

carrageenan. According to the second aim: Co-administration of A-317491 or TNP-

ATP with bradykinin, but not with TNF-α, IL-1β, IL-6, CINC-1, PGE2 or dopamine, 

prevented mechanical hyperalgesia in a dose-response manner. TNP-ATP or A-

317491 did not affect either neutrophil migration or the release of TNF-α, IL-1β, IL-

6 and CINC-1 induced by bradykinin. According to the third aim: Subcutaneous 

injection of the P2X1,3,2/3 receptors agonist, α,β-meATP, induced a dose-

dependent mechanical hyperalgesia, which was significantly reduced by local 

injection of A-317491, the cyclo-oxygenase inhibitor, indomethacin, the β1-

adrenoceptor antagonist atenolol or the β2- adrenoceptor antagonist ICI 118,551, 

the selective B1-receptor antagonist DALBK or B2-receptor antagonist bradyzide, 

and the nonspecific selectin inhibitor fucoidan. Also, α,β-meATP induced the 
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release of the cytokines TNF-α, IL-1β, IL-6 and CINC-1 and neutrophils migration. 

The results of the first aim demonstrate that P2X3,2/3 receptors activation by 

endogenous ATP contributes to carrageenan-induced mechanical hyperalgesia by 

an indirect sensitization of the primary afferent nociceptors dependent on the 

previous release of TNF-α and by a direct sensitization of the primary afferent 

nociceptors. The results of the second aim demonstrate that endogenous ATP via 

activation of P2X3,2/3 receptors mediated bradykinin-induced mechanical 

hyperalgesia by a mechanism that was not dependent on neutrophil migration or 

release of cytokines. Finally, the results of the third aim demonstrate that, α,β-

meATP induces mechanical hyperalgesia by an indirect action on the primary 

afferent nociceptor of the subcutaneous tissue of rat’s hind paw mediated by 

release of bradykinin, prostaglandin, sympathomimetic amines, pro-inflammatory 

cytokines and by neutrophil migration. In a clinical and therapeutic perspective, 

these results suggest that, considering that activation of P2X3,2/3 receptors by 

endogenous ATP is essential to the development of inflammatory hyperalgesia, 

these P2X3,2/3 receptors may be potential targets for the development of new 

drugs to control inflammatory pain. Also, it is important to point out that the 

analgesic effect of P2X3,2/3 receptors antagonists inhibited the hyperalgesia in a 

magnitude comparable to steroidal anti-inflammatory drugs 

 
 

 

Key words: ATP, purinergic receptors, hyperalgesia, neutrophils, inflammatory 

mediators, antisense. 
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1. INTRODUÇÃO 

A dor é um dos problemas mais sérios da nossa sociedade e a principal 

causa da procura pela assistência à saúde. Gera altos custos aos cofres públicos, 

uma vez que milhares de pessoas se afastam do trabalho temporariamente ou 

permanentemente devido às diversas condições dolorosas (Phillips, 2003; 

Steenstra et al., 2006). Dentre as várias causas de dor, a de origem inflamatória é 

a mais comum em nossa sociedade. Embora antiinflamatórios com ação 

analgésica sejam amplamente utilizados no controle da dor inflamatória, os efeitos 

colaterais provocados por esses medicamentos têm motivado os estudos sobre os 

mecanismos envolvidos no desenvolvimento da dor inflamatória, com a finalidade 

de se descobrir novos alvos farmacológicos que servirão de base para o 

desenvolvimento de novos medicamentos.  

Dor pode ser definida como uma percepção desagradável associada à 

nocicepção. Essa definição envolve dois componentes: percepção e nocicepção. 

Percepção dolorosa é uma função integrativa modulada por condições 

motivacionais, emocionais, psicológicas e pela história pregressa individual 

(Mersky, 1986). Nocicepção resulta da ativação de uma população específica de 

neurônios aferentes primários que transmitem informação nociceptiva para o 

sistema nervoso central (Millan, 1999, Julius and Basbaum, 2001). Após uma 

lesão tecidual, uma resposta inflamatória é gerada por macrófagos locais e 

amplificada por células sanguíneas migratórias, como os neutrófilos (van Furth et 

al., 1985, Laskin and Pendino, 1995). Tem sido sugerido que durante esse 

processo ocorra liberação de mediadores inflamatórios, tais como a bradicinina, 

TNF-α, IL-1β, IL-6, IL-8 (Cunha et al., 1992, Ferreira et al., 1993a), que estimulam 

a síntese das prostaglandinas e liberação das aminas simpatomiméticas, as quais 

sensibilizam diretamente os nociceptores aferentes primários (Gold et al., 1996, 

Rush and Waxman, 2004). Além desses mediadores inflamatórios, recentes 

estudos demonstram o importante papel do nucleotídeo adenosina 5’-trifosfato 
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(ATP) como mediador da hiperalgesia inflamatória (Wu et al., 2004, McGaraughty 

et al., 2005, Oliveira et al., 2005, Wang et al., 2007). 

O ATP está presente em concentrações milimolares em todas as células do 

corpo (McCleskey and Gold, 1999), uma vez que é uma importante fonte de 

energia das células. Experimentos realizados em 1959 demonstraram que 

algumas fibras nervosas sensoriais liberavam ATP (Holton, 1959) e essa 

descoberta levou em 1972 à proposição do termo neurônios purinérgicos 

(Burnstock, 1972). Esses achados foram muito significativos, pois evidenciaram o 

papel extracelular do ATP, que até então era somente conhecido pela sua função 

intracelular. Atualmente existem inúmeras evidências da ação do ATP extracelular 

como molécula sinalizadora em diversos processos fisiológicos e patológicos 

(Khakh and North, 2006). No meio extracelular o ATP exerce suas funções por 

meio da ativação de receptores conhecidos como purinérgicos. Em 1978, 

Burnstock propôs a distinção de dois tipos de receptores purinérgicos, nomeados 

de P1 e P2, os quais medeiam as funções fisiológicas da adenosina e do ATP, 

respectivamente (Abbracchio and Burnstock, 1998). Entre 1992-1996, vários 

estudos demonstraram a diversificada distribuição desses receptores nos tecidos 

de mamíferos. Em 1994, estudos que evidenciaram as diferenças estruturais e 

propriedades eletrofisiológicas dos receptores P2 levaram Abbracchio e Burnstock 

a propor um novo sistema de divisão dos receptores P2 em duas grandes famílias: 

Receptores P2X ― (ionotrópicos ligante-dependentes) ― e receptores P2Y ― 

acoplados à proteína G (metabotrópicos). 

Uma vez que o ATP é normalmente encontrado no citoplasma das células, 

existem diversas circunstâncias nas quais o ATP pode ser liberado e atuar como 

um mediador periférico de dor (Hamilton, 2002). Sob situações de inflamação, o 

ATP pode deixar o meio intracelular e contribuir com o desenvolvimento da 

hiperalgesia inflamatória via ativação dos receptores P2X. Essa idéia vem se 

consolidando cientificamente após evidências de que o RNAm dos receptores 

P2X3, um dos sete subtipos clonados do receptor P2X (P2X1 – P2X7), é 
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abundantemente expresso nos neurônios sensoriais nociceptivos dos gânglios das 

raízes dorsais da medula espinhal (Chen et al., 1995, Kennedy and Leff, 1995, 

Lewis et al., 1995), especialmente nos neurônios sensoriais de pequeno diâmetro, 

particularmente as fibras C (Chen et al., 1995). Recentes estudos, que utilizaram 

modelos comportamentais nociceptivos (Bland-Ward and Humphrey, 2000, Jarvis 

et al., 2002, McGaraughty et al., 2003, Wu et al., 2004, McGaraughty et al., 2005, 

Oliveira et al., 2005), animais knockout para receptor P2X3 (Cockayne et al., 2000, 

Souslova et al., 2000), oligonucleotideos antisense P2X3 (Barclay et al., 2002, 

Honore et al., 2002a) e antagonistas seletivos de receptores P2X3,2/3 (Jarvis et 

al., 2002, McGaraughty et al., 2003, Wu et al., 2004, McGaraughty et al., 2005, 

Sharp et al., 2006), demonstraram que o ATP endógeno e os receptores P2X3,2/3 

estão envolvidos com o desenvolvimento da dor em diferentes condições 

inflamatórias. Além disso, demonstrou-se que a administração do agonista seletivo 

de receptores P2X1,3,2/3, α,β-metileno ATP (α,β-meATP), induz hiperalgesia 

térmica (Hamilton et al., 1999, Waldron and Sawynok, 2004), alodinía mecânica 

(Tsuda et al., 2000, Wang et al., 2007) e hiperalgesia mecânica (Barclay et al., 

2002) na pele da pata de ratos.  

Entretanto, o mecanismo pelo qual o ATP endógeno, via ativação dos 

receptores P2X3,2/3, participa do desenvolvimento da hiperalgesia inflamatória 

permanece desconhecido. Portanto, os objetivos desse trabalho foram: (1) Estudar 

o mecanismo pelo qual a ativação dos receptores P2X3,2/3 pelo ATP endógeno 

contribui para a hiperalgesia mecânica induzida no modelo da inflamação causada 

pela carragenina. Para isso, avaliamos se a ativação dos receptores P2X3,2/3 

pelo ATP endógeno contribui para a hiperalgesia mecânica induzida pela 

carragenina mediada pela sensibilização indireta e/ou direta dos nociceptores 

aferentes primários. Para testar a hipótese da ação indireta, avaliamos se 

antagonistas seletivos de receptores P2X3,2/3 reduzem a liberação endógena das 

citocinas inflamatórias TNF-α, IL-1β e CINC-1 e a migração de neutrófilos 

induzidos pela carragenina. Para testar a hipótese da ação direta, avaliamos se o 

tratamento com a administração intratecal de oligonucleotídeo antisense P2X3 
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reduz a hiperalgesia mecânica induzida pela carragenina. (2) Verificar se a 

ativação dos receptores P2X3,2/3 pelo ATP endógeno contribui para a 

hiperalgesia induzida pelos mediadores inflamatórios bradicinina, TNF-α, IL-1β, IL-

6, CINC-1, PGE2 e dopamina e, verificar o mecanismo pelo qual essa contribuição 

ocorre. Para testar a hipótese de que o ATP e a ativação dos receptores P2X3,2/3 

contribui para a hiperalgesia induzida pelos mediadores inflamatórios, testamos a 

habilidade dos antagonistas de receptores P2X3,2/3 em reduzir a hiperalgesia 

mecânica induzida pela Bradicinina, TNF-α, IL-1β, IL-6, CINC-1, PGE2 e 

dopamina. Para avaliarmos se o ATP e a ativação dos receptores P2X3,2/3 

contribui para a hiperalgesia induzida pelos mediadores inflamatórios através de 

um mecanismo indireto, testamos a habilidade dos antagonistas de receptores 

P2X3,2/3 em reduzir a migração de neutrófilos e a liberação de citocinas induzidas 

pelos mediadores inflamatórios cuja hiperalgesia é mediada pelo ATP endógeno. 

(3) Estudar o mecanismo pelo qual a ativação dos receptores P2X1,3,2/3 induz 

hiperalgesia mecânica. Para isso, avaliamos se o agonista de receptor P2X1,3,2/3 

α,β-meATP induz hiperalgesia mecânica no tecido subcutâneo da pata de ratos 

através da sensibilização indireta dos nociceptores aferentes primários. Para 

testar a hipótese da ação indireta verificamos se os antagonistas seletivos de 

receptores B1 ou B2, DALBK e bradyzide, respectivamente, o inibidor da 

cicloxigenase indometacina e os antagonistas seletivos de receptores β1- ou β2 

atenolol ou ICI 118,551, respectivamente, reduzem a hiperalgesia mecânica 

induzida pelo α,β-meATP. Testamos também se o α,β-meATP induz liberação das 

citocinas TNF-α, IL-1β, IL-6 e CINC-1 e migração de neutrófilos, que participam do 

desenvolvimento da hiperalgesia induzida pela ativação dos receptores 

P2X1,3,2/3. 
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CAPÍTULO 1 

O presente artigo foi submetido ao periódico “Pain”. 
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Abstract 

 

Activation of P2X3,2/3 receptors by endogenous ATP contributes to the 

development of inflammatory hyperalgesia. Given the clinical importance of 

mechanical hyperalgesia in inflammatory states, we hypothesized that the activation 

of P2X3,2/3 receptors by endogenous ATP contributes to carrageenan-induced 

mechanical hyperalgesia, and, that this contribution is mediated by an indirect 

and/or a direct sensitization of the primary afferent nociceptors. Co-administration of 

the selective P2X3,2/3 receptors antagonist, A-317491, or the P2X1,3,2/3,1/5 

receptors antagonist, TNP-ATP, with carrageenan blocked the mechanical 

hyperalgesia induced by carrageenan, significantly reduced the increased 

concentration of TNF-α and CINC-1 but not of IL-1β induced by carrageenan, and 

slightly reduced the neutrophil migration induced by carrageenan. Given that pro-

inflammatory cytokines induce neutrophil migration, this partial reduction of 

neutrophil migration probably resulted from the inability of the P2X3,2/3 receptors 

antagonist in inhibiting the production of IL-1β in the site of inflammation. Intrathecal 

administration of oligonucleotides antisense against P2X3 receptors during seven 

days significantly reduced the expression of P2X3 receptors in the saphenous nerve 

and significantly reduced the mechanical hyperalgesia induced by carrageenan. We 

concluded that activation of P2X3,2/3 receptors by endogenous ATP is essential to 

the development of the mechanical hyperalgesia induced by carrageenan. 

Furthermore, we showed that this essential role of P2X3,2/3 receptors in the 
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development of carrageenan-induced mechanical hyperalgesia is mediated by an 

indirect sensitization of the primary afferent nociceptors dependent on the previous 

release of TNF-α and by a direct sensitization of the primary afferent nociceptors.  

 

Keywords: mechanical inflammatory hyperalgesia, P2X3,2/3 receptors, ATP, 

carrageenan, cytokines, antisense.
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Introduction 

 

P2X receptors are a family of ligand-gated ion channels activated by 

extracellular ATP that are involved in pain mechanisms. Recent reports using 

behavioral nociceptive models with gene knockout methods (Cockayne et al., 2005), 

antisense oligonucleotide technologies (Barclay et al., 2002, Honore et al., 2002a) 

and selective P2X3,2/3 receptors antagonist (Jarvis et al., 2002, McGaraughty et al., 

2003, Wu et al., 2004, McGaraughty et al., 2005, Sharp et al., 2006) indicate that 

the activation of P2X3,2/3 receptors by endogenous ATP contributes to the 

development of inflammatory hyperalgesia.  

The subcutaneous administration of carrageenan has been widely used as a 

model of inflammatory hyperalgesia because similarly to many inflammatory 

conditions in humans, it induces a hyperalgesic response that is reduced by 

nonsteroidal anti-inflammatory drugs (Moncada et al., 1973, Ferreira et al., 1974). 

Despite the clinical importance of mechanical hyperalgesia in inflammatory states, it 

is not known whether the activation of P2X3,2/3 receptors also contributes to the 

development of mechanical hyperalgesia in this model, and, if so, which 

mechanisms underlie the contribution of P2X3,2/3 receptors to this hyperalgesic 

response. 

Therefore, the aims of this study were to test the hypothesis that the 

activation of P2X3,2/3 receptors by endogenous ATP contributes to carrageenan-

induced mechanical hyperalgesia, and, that this contribution is mediated by an 

indirect and/or a direct sensitization of the primary afferent nociceptors. To test the 
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hypothesis that the activation of P2X3,2/3 receptors by endogenous ATP contributes 

to carrageenan-induced mechanical hyperalgesia, we explored the ability of 

P2X3,2/3 receptor antagonists to reduce carrageenan-induced mechanical 

hyperalgesia. To test the hypothesis that this contribution of P2X3,2/3 receptors is 

mediated by an indirect sensitization of the primary afferent nociceptors, we 

explored the ability of P2X3,2/3 receptor antagonists to reduce the endogenous 

release of the inflammatory cytokines TNF-α, IL-1β and CINC-1 and the neutrophil 

migration induced by carrageenan (Ferreira et al., 1993b, Jain et al., 2001, Loram et 

al., 2007). Finally, to test the hypothesis that the activation of P2X3,2/3 receptors by 

endogenous ATP contributes to carrageenan-induced mechanical hyperalgesia 

through a direct sensitization of the primary afferent nociceptors, we evaluated if 

treatment with intrathecal administration of oligonucleotides (ODN) antisense 

against P2X3 receptors reduces carrageenan-induced mechanical hyperalgesia.  
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Experimental procedures 

 

Drugs and doses 

The following drugs were used: carrageenan (Cg; 30, 100, 300 and 

600µg/paw); the P2X1,3,2/3,1/5 receptor antagonist, 2′,3′-O-(2,4,6-trinitrophenyl) 

adenosine 5′-triphosphate (TNP-ATP; 80, 160 and 240µg/paw),  the selective 

P2X3/2/3 receptor antagonist, 5-([(3-Phenoxybenzyl) [(1S)-1,2,3,4-tetrahydro-

1naphthalenyl] [amino]carbonyl)-1,2,4-benzene- tricarboxylic acid (A-317491; 6.0, 

20, 60 and 180µg/paw) and the nonspecific selectin inhibitor fucoidan (25mg/Kg, i.v., 

(Zhang et al., 2001) were obtained from Sigma Chemicals (St Louis, Missouri, USA). 

TNF-α (0.8pg/paw), IL-1β (0.15 pg/paw) and CINC-1 (1.0pg/paw) were obtained 

from R&D Systems (Minneapolis, USA). Those doses of cytokines are the sub-

maximal doses obtained from a previous dose-response experiment (data not 

shown). All drugs were dissolved in saline (0.9% NaCl).  

 

Subjects 

Male albino Wistar rats weighing 200 – 350g were used. Experiments were 

conducted in accordance with the guidelines of the Committee for Research and 

Ethical Issues of IASP on using laboratory animals (Zimmermann, 1983). All animal 

experimental procedures and protocols were approved by the Committee on Animal 

Research of the State University of Campinas - Unicamp. Animal suffering and the 

number of animals per group were kept at a minimum. Animals were housed in 
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plastic cages with soft bedding (five/cage) on a 12:12 light cycle (lights on at 06:00 

A.M.) with food and water available ad libitum. They were maintained on a 

temperature-controlled room test (± 23ºC) for a 1-hour habituation period prior to the 

test. 

 

Subcutaneous Injections 

Drugs or their vehicle were subcutaneously injected in the dorsum of the rat’s 

hind paw by tenting the skin and puncturing it with a 30-gauge needle prior to 

injecting the test agent, as previously described (Oliveira et al., 2007a). The needle 

was connected to a catheter of polyethylene and also to a Hamilton syringe (50 µl). 

The animals were briefly restrained and the volume of injection was 50µl. 

 

Intrathecal injections 

The method for intrathecal ODN injection was based on the technique of 

Papir-Kricheli and colleagues (Papir-Kricheli et al., 1987). Briefly, for each injection 

rats were anesthetized with 1/3 O2 – 2/3 N2O and halothane at 5 and 1.5%, 

respectively (Le Bars et al., 1979). A 26-gauge needle was inserted in the 

subarachnoid space on the midline between L4 and L5 vertebrae. ODN was injected 

at 1 µl/ s. The animals regained consciousness approximately 1 min after 

discontinuing the anesthetic. A dose of 80 µg of P2X3 receptor ODN antisense or 

mismatch was intrathecally administered in a volume of 10 µl once daily for 7 days 

(Barclay et al., 2002). The behavioral assessment was conducted on next day of the 

last injection.  
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Mechanical paw withdrawal nociceptive threshold test  

Testing sessions took place during light phase (between 09:00 AM and 5:00 

PM) in a quiet room maintained at 23ºC (Rosland, 1991). The Randall-Selitto 

nociceptive paw-withdrawal flexion reflex test (Randall and Selitto, 1957) was 

performed using an Ugo-Basile analgesymeter (Stoelting, Chicago, IL, USA), which 

applies a linearly increasing mechanical force to the dorsum of the rat's hind paw 

(Oliveira et al., 2007a). The nociceptive threshold was defined as the force in grams, 

which the rat withdrew its paw.  The baseline paw-withdrawal threshold was defined 

as the mean of three tests performed at 5-min intervals before test agents were 

injected. Mechanical hyperalgesia was quantified as the change in mechanical 

nociceptive threshold calculated by subtracting the mean of three mechanical 

nociceptive threshold measurements taken after injection of the test agent from the 

mean of the three baseline measurements. 

 

Antisense oligodeoxynucleotides (ODNs) 

The functional blockade of P2X3 receptors expression on peripheral sensory 

neurons was realized by the intrathecal injection of ODN antisense. The followed 

ODN antisense sequence of 19-mer was used: 5’-

T A A T C C G A C A C G T C C A T G A -3’. The mismatch-ODN sequence, 5′-

T A T T C C C A C T C G A C G A T C A -3′, corresponded to the antisense 

sequence except that six bases were changed (denoted by bold face). The 

corresponding GenBank accession number and ODN position within the cDNA 

sequence are X90651 and 401-420. A search of the NCBI database to Rattus 
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norvegicus identified no other sequences homologous to that used in this 

experiment. The ODN was purchased from Erviegas (SP, Brazil), lyophilized and 

reconstituted in 0.9% NaCl. The ODN was aliquoted and stored at –20ºC.  

 

Western blot analysis of P2X3 receptor expression 

Eight animals in each group were used for immunoblot study. To assess the 

efficacy of antisense ODN treatment, immediately after the behavioral test a 1.0 cm 

section of saphenous nerves of anesthetized rats were removed 1.5 cm proximal to 

the knee-level bifurcation, in order for detectable levels of protein, homogenized in 

cold RIPA buffer (1 % Igepal CA-630, 0.5 % sodium deoxycholate, 0.1% SDS, 1 mM 

PMSF, 10 mg/ml aprotinin, 1 mM sodium orthovanadate in PBS buffer, pH 7.4) and 

stored at -70ºC (Parada et al., 2003a). The protein concentration was determined by 

using the Micro BCA protein assay kit with bovine serum albumin as the standard 

(Pierce Chemical, Rockford, IL, USA). Aliquots containing 40µg total protein were 

boiled in loading Laemmli buffer (BioRad, USA); thereafter, each aliquot was loaded 

onto an 8% polyacrylamide gel. After electrophoresis separation, proteins were 

transferred to a nitrocellulose membrane (Bio-Rad). Membrane was blocked in 

TBST (20 mM Tris-HCL, 150 mM NaCl, and 0.1 % Tween 20) containing 5 % non-

fat dry milk for 2h at room temperature, followed by incubation with P2X3 rabbit 

polyclonal IgG (1:1000; Neuromics) overnight at 4ºC, rinsed six times with TBST, 

and then incubated for 1h in goat anti-rabbit IgG peroxidase conjugate (1:3000, 

Sigma). Membrane was visualized using ECL solution (Pierce), and exposure to x-
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ray film (Kodak) in a dark room. Films were scanned into Image Quant 5.2 for 

analysis. Banding specificity was determined by omission of primary antibody from 

the Western blot protocol. To compensate for any differences in the amount of 

loaded protein, the intensity of the P2X3 receptor band was divided by the intensity 

of α-tubulin (Sigma, USA) band for each sample. 

 

ELISA procedure 

An adaptation of ELISA (Safieh-Garabedian et al., 1995) was used to 

determine if TNP-ATP or A-317491 was able to reduce the carrageenan-induced 

release of TNF-α, IL-1β and CINC-1. The subcutaneous tissues of dorsum of the 

rat’s hind paw were collected 180min post the subcutaneous injection of 

carrageenan or its vehicle (0.9% NaCl). These tissues were weighed and 

homogenized in the same weigh/volume proportion in a solution of phosphate-

buffered saline (PBS) containing 0.4M NaCl, 0.05% Tween 20, 0.5% bovine serum 

albumine (BSA), 0.1mM phenyl-methyl-sulfonyl fluoride, 0.1mM benzotonic chloride, 

10mM EDTA, and 20Kl/ml aprotinine (Sigma, USA). The samples were centrifuged 

at 10,000rpm for 15min at 4ºC and the supernatants were stored at -70ºC for 

posterior use to evaluate the protein levels of TNF-α, IL-1β and CINC-1 in the 

subcutaneous tissue of rat’s hind paw. The cytokines were quantified by the follows 

kits: TNF-α - Rat TNF-alpha/TNFSF1A Quantikine ELISA Kit (R&D Systems, catalog 

number RTA00); IL-1β - Rat IL-1 beta/IL-1F2 Quantikine ELISA Kit (R&D Systems, 

catalog number RLB00) and CINC-1 - Rat CINC-1 Quantikine ELISA Kit (R&D 
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Systems, catalog number RCN100). All procedures followed the instructions of the 

manufacturer R&D Systems. All procedures were repeated five times to guarantee 

the authenticity of the results. 

 

Measurement of myeloperoxidase activity (MPO) 

The neutrophil migration to the site of carrageenan administration in the skin 

of rat’s hind paw was evaluated by the myeloperoxidase (MPO) kinetic-colorimetric 

assay as previously described (Bradley et al., 1982). Approximately 0.5 cm2 of 

cutaneous tissue was harvested 180 minutes after the subcutaneous injection of 

carrageenan. The samples  were homogenized in pH 4.7 buffer (0.1 M NaCl, 0.02 M 

NaPO4, 1.015 M NaEDTA) followed by centrifugation at 3000 rpm for 15 min. The 

pellet was subjected to hypotonic lyses (1.5 mL of 0.2% NaCl solution followed 30 s 

later by addition of an equal volume of a solution containing NaCl 1.6% and glucose 

5%). After further centrifugation, the pellet was resuspended in 0.05 M NaPO4 buffer 

(pH 5.4) containing 0.5% hexadecyltrimethylammonium bromide (HTAB). After that, 

the pellet was snap-frozen in liquid nitrogen three times and was centrifuged at 

10,000 rpm for 15 min and was re-homogenized. Myeloperoxidase activity in the 

resuspended pellet was assayed by measuring the change in optical density at 

450 nm using tetramethylbenzidine (1.6 mM) and H2O2 (0.5 mM). Results were 

calculated by comparing the optical density of hind paw tissue supernatant with a 

standard curve of neutrophil (> 95% purity) numbers. The results were presented as 

number of neutrophils x 106/mg tissue. All procedures were repeated two times to 

guarantee the authenticity of the results. 
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Statistical analysis 

To determine if there were significant differences (p< 0.05) between treatment 

groups, one-way ANOVA or t-test was performed. If there was a significant 

between-subjects main effect of treatment group following one-way ANOVA, post-

hoc contrasts, using the Tukey test, were performed to determine the basis of the 

significant difference. Data are expressed in figures by the decrease with paw-

withdrawal threshold and presented as means ± S.E.M.  
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Results 

 

Carrageenan-induced mechanical hyperalgesia  

Subcutaneous injection of carrageenan (300µg/paw) in the dorsum of the 

rat’s hind paw induced a significant mechanical hyperalgesia 60, 120 or 180 min. 

after its administration, that peaked at 180 min. (Fig. 1A, p<0.05, Tukey test). 

Therefore, in further experiments, the mechanical hyperalgesia was evaluated only 

180 min after the injection of carrageenan.  

Subcutaneous injection of carrageenan (100, 300 or 600µg/paw) induced a 

dose-related mechanical hyperalgesia (Fig.1B, p<0.05, Tukey test) that reached its 

maximum at the dose of 300µg/paw. 

 

Effect of P2X3,2/3 receptors antagonists on carrageenan-induced mechanical 

hyperalgesia  

Co-administration of the P2X1,3,2/3,1/5 receptors antagonist TNP-ATP (Fig. 

2A; 160 or 240µg/paw) or the selective P2X3,2/3 receptors antagonist A-317491 

(Fig. 2B; 60 or 180µg/paw) with carrageenan (300µg/paw) blocked carrageenan-

induced mechanical hyperalgesia. The highest doses of these antagonists did not 

affect carrageenan-induced mechanical hyperalgesia when applied on the 

contralateral paw (Figs. 2A and 2B, p>0.05, Tukey test) confirming their peripheral 

action.  
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Co-administration of TNP-ATP (240µg/paw) with carrageenan (300µg/paw) 

and the administration of this antagonist 60 min (Fig. 2C, p<0.05, Tukey test), but 

not 120 or 180 min (Fig. 2C, p>0.05, Tukey test) after the carrageenan 

administration significantly reduced carrageenan-induced mechanical hyperalgesia.  

 

Effect of P2X3,2/3  receptors antagonists on carrageenan-induced local increase in 

cytokines concentration  

To verify whether endogenous ATP via activation of P2X3,2/3 receptors 

contributes to the release of pro-inflammatory cytokines induced by carrageenan, 

TNP-ATP (240µg/paw), A-317491 (60µg/paw) or 0.9% NaCl was co-administrated 

with carrageenan (300µg/paw) in the subcutaneous tissue of the rat’s hind paw and 

the local concentrations of TNF-α, IL-1β and CINC-1 were quantified 180 min after 

the administration of carrageenan. TNP-ATP and A-317491 significantly reduced 

(p<0.05, Tukey test) the concentration of TNF-α (Fig. 3A) and CINC-1 (Fig. 3C), but 

not (p>0.05, Tukey test) that of IL-1β (Fig. 3B). The concentration of TNF-α and 

CINC-1 induced by the co-administration of TNP-ATP or A-317491 with 

carrageenan was significantly greater than that induced by 0.9% NaCl alone 

(p<0.05, T test). The subcutaneous injection of 0.9% NaCl alone did not affect 

(p>0.05, Tukey test) the endogenous concentration of TNF-α, IL-1β and CINC-1.  
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Effect of TNP-ATP on neutrophils migration induced by carrageenan 

To verify whether endogenous ATP via activation of P2X1,3,2/3,1/5 receptors 

contributes to the neutrophils migration induced by carrageenan, TNP-ATP 

(240µg/paw) or 0.9% NaCl was co-administrated with carrageenan (300µg/paw) and 

the MPO activity in the subcutaneous tissue of rat’s hind paw was quantified 180 

min after the carrageenan injection. TNP-ATP significantly reduced (Fig. 4A, p<0.05, 

Tukey test) the MPO activity induced by carrageenan when compared to 0.9% NaCl 

(control group). Also, pre-treatment with fucoidan (25mg/Kg, i.v.) 20 min before the 

carrageenan injection significantly reduced (Fig. 4A, p<0.05, Tukey test) the MPO 

activity when compared to either rats treated with TNP-ATP or 0.9% NaCl.  

To verify whether neutrophils migration contributes to carrageenan-induced 

mechanical hyperalgesia, rats were treated with fucoidan (25 mg/kg, i.v.) 20 min 

before the carrageenan injection and 180 min later, the mechanical nociceptive 

threshold was evaluated. Pre-treatment with fucoidan significantly reduced (Fig. 4B, 

p<0.05, Tukey test) the mechanical hyperalgesia induced by carrageenan, and this 

reduction was not significantly different from that induced by TNP-ATP (Fig. 4B, 

p>0.05, Tukey test).  

 

Effect of intrathecal treatment with ODN antisense against P2X3 receptors on 

carrageenan-induced mechanical hyperalgesia 

To verify whether neuronal P2X3 receptor contributes to carrageenan-

induced mechanical hyperalgesia, rats were pre-treated with ODN (80µg/day, 7 
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days) antisense or mismatch against P2X3 receptor. ODN antisense significantly 

reduced the P2X3 receptor expression on saphenous nerve (Fig. 5A) and the 

carrageenan-induced mechanical hyperalgesia (Fig. 5B) when compared to 

mismatch (p<0.05, paired t-test).   
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Discussion 

 

Role of P2X3,2/3 receptor in carrageenan-induced mechanical hyperalgesia 

Co-administration of the selective P2X3,2/3 receptors antagonist A-317491 

(Jarvis et al., 2002) or the P2X1,3,2/3,1/5 receptors antagonist TNP-ATP (Jarvis et 

al., 2001) with carrageenan blocked carrageenan-induced mechanical hyperalgesia. 

These findings strongly suggest that the activation of P2X3,2/3 receptors by 

endogenous ATP not only contributes but  is essential to the development of the 

mechanical hyperalgesia induced by carrageenan. Importantly, the role of P2X3,2/3 

receptors in this hyperalgesic response seems to be essential only to its 

development but not to its maintenance. This is because TNP-ATP blocked 

carrageenan-induced mechanical hyperalgesia when it was co-administered with 

carrageenan, but not when it was administered 60, 120 or 180 min after the 

carrageenan administration.  

It is well known that carrageenan induces hyperalgesia by two distinct  

pathways that ultimately result in the local release of prostaglandins and 

sympathomimetic amines (Cunha et al., 1991, Cunha et al., 1992, Ferreira et al., 

1993a). These inflammatory mediators directly sensitize the primary afferent 

nociceptor (Gold et al., 1996, Rush and Waxman, 2004). Therefore, the blockade of 

carrageenan-induced inflammatory hyperalgesia induced by the co-administration of 

P2X3,2/3 receptor antagonists with carrageenan suggests that the activation of 

P2X3,2/3 receptors must be crucial to prostaglandin- and sympathomimetic amines-

mediated sensitization of the primary afferent nociceptor. 
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Mechanisms underlying the essential role of P2X3,2/3 receptors in the development 

of carrageenan-induced mechanical hyperalgesia   

 

Release of cytokines 

Co-administration of A-317491 or TNP-ATP with carrageenan significantly 

reduced the increased concentration of TNF-α and CINC-1 induced by carrageenan. 

The importance of TNF-α on the development of mechanical hyperalgesia was 

previously demonstrated by the ability of thalidomide or polyclonal rat TNF-α 

antibody to block carrageenan-induced hyperalgesia (Parada et al., 2003a). Taken 

together, these findings indicate that the essential role of P2X3,2/3 receptors in the 

development of carrageenan-induced mechanical hyperalgesia is mediated, at least 

in part, by the release of cytokines, in particular the TNF-α. Although A-317491 and 

TNP-ATP have reduced the TNF-α concentration, they did not block it. This finding 

suggests that the increased concentration of TNF-α induced by carrageenan may be 

mediated by distinct pathways and that only one of them depends on P2X3,2/3 

activation. The mechanism by which the activation of P2X3,2/3 receptors by 

endogenous ATP induces the release of TNF-α is unknown; however, it is presently 

under investigation in our laboratory.  

Surprisingly, the co-administration of A-317491 or TNP-ATP with 

carrageenan did not alter the concentration of IL-1β, suggesting that the release of 

IL-1β may not depend on the presence of TNF-α, as previously suggested (Cunha 

et al., 1992, Lorenzetti et al., 2002). Importantly, the suggestion that the release of 
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IL-1β depends on the presence of TNF-α was not based on the quantification of  

cytokines but rather on the findings that the hyperalgesia induced by the injection of 

carrageenan, but not IL-1β, is prevented by the administration of antibody anti-TNF-

α (Cunha et al., 1992). Indeed, consistent with the idea that the release of IL-1β 

does not depend on the presence of TNF-α, it has been demonstrated that the 

concentration of IL1-β but not of TNF-α is increased after the injection of 

carrageenan in the gastrocnemius muscle (Loram et al., 2007). However, we can not 

exclude the possibility that the residual concentration of TNF-α observed after the 

co-administration of A-317491 or TNP-ATP with carrageenan could be enough to 

keep the concentration of IL1-β elevated. 

 

Induction of neutrophil migration 

We confirmed that neutrophil migration contributes to carrageenan-induced 

inflammatory hyperalgesia (Jain et al., 2001) by showing that pre-treatment with the 

non specific selectin inhibitor fucoidan significantly reduced the neutrophil migration 

and the mechanical hyperalgesia induced by carrageenan. Therefore, the activation 

of P2X3,2/3 receptors by endogenous ATP may mediate the development of 

carrageenan-induced mechanical hyperalgesia, at least in part, through the 

induction of neutrophil migration. Co-administration of TNP-ATP with carrageenan 

completely inhibited the mechanical hyperalgesia, but slightly reduced the neutrophil 

migration. Because pro-inflammatory cytokines induce neutrophil migration (Ramos 

et al., 2003, Bombini et al., 2004, Oliveira et al., 2007b), the partial reduction of 
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neutrophils migration induced by TNP-ATP probably resulted from the inability of 

this P2X3,2/3 receptors antagonists in inhibiting the production of IL1-β in the site of 

inflammation.  

 

Direct sensitization of the primary afferent nociceptor  

Intrathecal administration of ODN antisense against P2X3 receptors during 

seven days significantly reduced the expression of these receptors in the saphenous 

nerve, as previously demonstrated (Barclay et al., 2002, Honore et al., 2002a), and 

significantly reduced the mechanical hyperalgesia induced by carrageenan. These 

findings suggest that the activation of neuronal P2X3 receptors by endogenous ATP 

contributes to the development of carrageenan-induced mechanical hyperalgesia 

and are consistent with the high expression of mRNA of the P2X3 receptors in 

nociceptive sensory neurons (Chen et al., 1995, Kennedy and Leff, 1995, Lewis et 

al., 1995). Thus, the essential role of P2X3,2/3 receptors in the development of 

carrageenan-induced mechanical hyperalgesia is mediated, at least in part, by a 

direct sensitization of the primary afferent nociceptor.    

In summary, we concluded that activation of P2X3,2/3 receptors by 

endogenous ATP is essential to the development of the mechanical hyperalgesia 

induced by carrageenan. Furthermore, we showed that this essential role of 

P2X3,2/3 receptors in the development of carrageenan-induced mechanical 

hyperalgesia is mediated by an indirect sensitization of the primary afferent 

nociceptors dependent on the previous release of TNF-α and by a direct 
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sensitization of the primary afferent nociceptors. Finally, the finding that blockade of 

P2X3,2/3 receptors prevented the development of inflammatory hyperalgesia  

suggests that selective antagonists for the P2X3,2/3 receptors may be more 

effective than the currently available drugs in the treatment of inflammatory pain.  
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Figures and legends 
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Fig. 1_ Hyperalgesic effect induced by carrageenan  

 Subcutaneous administration of carrageenan (300µg/paw) but not of 0.9% NaCl 

induced a significant mechanical hyperalgesia 60, 120 and 180 min. after its 

administration (A). Carrageenan (100, 300 or 600µg/paw) induced a dose-related 

mechanical hyperalgesia (B). In this and in the subsequent figures the mechanical 

hyperalgesia was measured 180 min. after carrageenan administration and the 

number of rats used is between parentheses. The symbol “*” indicates a response 

significantly greater than that induced by 0.9% NaCl (p<0.05, Tukey test).   
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Figure 2 
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Fig. 2_Effect of P2X3,2/3 receptors antagonists on carrageenan-induced 

mechanical hyperalgesia  

Co-administration of the P2X1,3,2/3,1/5 receptors antagonist TNP-ATP (160 or 

240µg/paw, A), or of the P2X3,2/3 receptors antagonist A-317491 (60 or 

180µg/paw, B) with carrageenan (C, 300µg/paw) blocked carrageenan-induced  

mechanical hyperalgesia. The highest doses of the antagonists applied on the 

contralateral paw (ct) did not affect carrageenan-induced mechanical hyperalgesia.  

Co-administration of TNP-ATP (240µg/paw) with carrageenan or administration of 

this antagonist 60 min, but not 120 or 180 min after the carrageenan administration 

significantly reduced carrageenan-induced mechanical hyperalgesia (C). The 
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symbol “*” indicates a response significantly lower than that induced by carrageenan 

plus 0.9% NaCl (p<0.05, Tukey test).   
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Fig. 3_ Effect of TNP-ATP or A-317491 on carrageenan-induced release of 

cytokines 

Co-administration of TNP-ATP (240µg/paw) or A-317491 (60µg/paw) with 

carrageenan (C, 300 µg/paw) significantly reduced the increased concentration of 

TNF-α (A) and CINC-1 (C), but not that of IL-1β (B) induced by carrageenan 180 

min. after its injection. The concentration of TNF-α and CINC-1 induced by the co-

administration of TNP-ATP or A-317491 with carrageenan was significantly greater 

than that induced by 0.9% NaCl alone. The local administration of 0.9% NaCl did not 

induce the release of cytokines. The symbol “*” indicates a response significantly 

greater than that induced by 0.9% NaCl (p<0.05, Tukey test) and the symbol “#” 

indicates a response significantly lower than that induced by carrageenan plus 0.9% 

NaCl (p<0.05, Tukey test).   
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Figure 4 
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Fig.4_ Effect of TNP-ATP on carrageenan-induced neutrophils migration   

Co-administration of TNP-ATP (240µg/paw) with carrageenan (C, 300µg/paw) or 

pre-treatment with fucoidan (25mg/Kg i.v.) 20 min. before the injection of 

carrageenan significantly reduced the MPO activity (A) and the mechanical 

hyperalgesia (B). The symbol “*” indicates a response significantly greater than that 

induced by 0.9% NaCl (p<0.05, Tukey test); the symbols “#” and “§” indicate a 

response significantly lower than those induced by carrageenan plus 0.9% NaCl and 

carrageenan plus TNP-ATP, respectively (p<0.05, Tukey test).   
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Fig. 5_ Effect of intrathecal treatment with ODN antisense against P2X3 receptor on 

carrageenan-induced mechanical hyperalgesia 

Daily treatment with ODN antisense (80 µg/day, 7 days), but not mismatch, 

significantly reduced the P2X3 receptor expression on saphenous nerve (A) and the 

carrageenan (C, 300µg/paw)-induced mechanical hyperalgesia (B). Immunoblot for 

P2X3 receptor expression with the corresponding blot for α-tubulin is shown. The 

symbol “*” indicates a response significantly lower than that induced by mismatch 

(p<0.05, paired t-test).   
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Abstract 

Activation of P2X3,2/3 receptors by endogenous ATP contributes to the 

development of inflammatory hyperalgesia. The aim of this study was to verify 

whether the activation of P2X3,2/3 receptors by endogenous ATP contributes to  

the mechanical hyperalgesia induced by bradykinin, TNF-α, IL-1β, IL-6, CINC-1, 

PGE2 or dopamine. Co-administration of the selective P2X3,2/3 receptors 

antagonist A-317491 or the P2X1,3,2/3,1/5 receptors antagonist TNP-ATP with 

bradykinin, but not with TNF-α, IL-1β, IL-6, CINC-1, PGE2 or dopamine, prevented 

in a dose-response manner the mechanical hyperalgesia. We also verified whether 

neutrophil migration or cytokines released is involved in the role that P2X3,2/3 

receptors activation plays in bradykinin-induced hyperalgesia. TNP-ATP or A-

317491 did not affect either neutrophil migration or the release of TNF-α, IL-1β, IL-

6 and CINC-1 induced by bradykinin. These findings demonstrated that 

endogenous ATP via activation of P2X3,2/3 receptors mediates bradykinin-induced 

mechanical hyperalgesia by a mechanism that is not dependent on neutrophil 

migration or cytokines release.   

 

Keywords: Kinins, P2X3 receptor, ATP, inflammation, hyperalgesia, neutrophils, 

cytokines. 
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Introduction  

ATP released from damaged tissues plays an important role in the 

development of inflammatory pain by activating P2X receptors. Recent reports using 

inflammatory pain models, such as local administration of carrageenan 

(McGaraughty et al., 2003), Complete Freund Adjuvant (Honore et al., 2002a, Jarvis 

et al., 2002, McGaraughty et al., 2003, Wu et al., 2004, McGaraughty et al., 2005) or 

formalin (Souslova et al., 2000, Honore et al., 2002a, McGaraughty et al., 2005) in 

the rat hind paw, and nerve injury (Honore et al., 2002a, Jarvis et al., 2002, 

McGaraughty et al., 2003, McGaraughty et al., 2005) indicate that the activation of 

P2X3,2/3 receptors by endogenous ATP contributes to the development of 

inflammatory hyperalgesia.  

Following tissue injury, in addition to ATP other inflammatory mediators,  

that are released at the site of the injury,  induce or/and maintain the inflammatory 

hyperalgesia (Verri et al., 2006). It has been proposed that the inflammatory 

mediator bradykinin, which is early released during inflammation, triggers the 

subsequent release of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and 

IL-8 (Ferreira et al., 1993a, Ferreira et al., 1993b). These cytokines induce the 

synthesis of final inflammatory mediators, such as prostaglandins and 

sympathomimetic amines, which in turn, directly sensitize the primary afferent 

nociceptors (Gold et al., 1996, Rush and Waxman, 2004). Furthermore, these 

cytokines also induce neutrophils migration (Ramos et al., 2003, Bombini et al., 
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2004, Oliveira et al., 2007b) that contributes to the development of inflammatory 

hyperalgesia (Jain et al., 2001, Tambeli et al., 2006, Oliveira et al., 2007a).  

However, it is not known whether endogenous ATP via P2X3,2/3 receptors 

activation contributes to the hyperalgesia induced by inflammatory mediators and, 

if so, whether this contribution is mediated by an indirect sensitization of the 

primary afferent nociceptors. To test the hypothesis that ATP via P2X3,2/3 

receptors activation contributes to the hyperalgesia induced by inflammatory 

mediators,  we explored the ability of P2X3,2/3 receptors antagonists to reduce the 

mechanical hyperalgesia induced by bradykinin, TNF-α, IL-1β, IL-6, CINC-1 (rat IL-

8 related chemokine), PGE2 and dopamine. To test the hypothesis that ATP and 

P2X3,2/3 receptors activation contributes to the hyperalgesia induced by 

inflammatory mediators by an indirect mechanism, we explored the ability of 

P2X3,2/3 receptors antagonists to reduce the neutrophil migration and release of 

endogenous cytokines induced by the inflammatory mediators whose hyperalgesia 

is mediated by endogenous ATP.  
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Experimental procedures 

 

Drugs and doses 

The follow drugs were used: the P2X1,3,2/3,1/5 receptor antagonist, 2′,3′-O-

(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP; 9.6, 48 and 

240µg/paw); the selective P2X3/2/3 receptor antagonist, 5-([(3-Phenoxybenzyl) 

[(1S)-1,2,3,4-tetrahydro-1naphthalenyl] [amino] carbonyl)-1,2,4-benzene-

tricarboxylic acid (A-317491; 6.0, 20 and 60µg/paw); bradykinin (0.15, 0.5 and 

1.5µg/paw), prostaglandin (0.05, 0.1 and 0.2µg/paw) and dopamine (1.0, 3.0, 10 

and 30µg/paw) were obtained from Sigma Chemicals (St Louis, Missouri, USA). 

TNF-α (0.25 and 0.8pg/paw); IL-1β (0.01, 0.05 and 0.15pg/paw); IL-6 (0.03, 0.1and 

0.3ng/paw); CINC-1 (0.3, 1.0 and 3.0pg/paw) were obtained from R&D Systems 

(Minneapolis, USA). All drugs were dissolved in PBS (Sigma Chemicals, St Louis, 

Missouri, USA).  

 

Subjects 

Male albino Wistar rats weighing 150–250g were used, and the experiments 

were conducted in accordance with the IASP guidelines on using laboratory 

animals (Zimmermann, 1983). All animal experimental procedures and protocols 

were approved by the Committee on Animal Research of the State University of 

Campinas-Unicamp. Animal suffering and number of animals per group were kept 

at a minimum. The animals were housed in plastic cages with soft bedding 
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(five/cage) on a 12:12 light cycle (lights on at 06:00 A.M.) with food and water 

available ad libitum. They were maintained on a temperature-controlled room test 

(± 23ºC) for a 1-hour habituation period prior to the test. 

 
Subcutaneous Injections 

Drugs or their vehicle were subcutaneously injected in the dorsum of the rat’s 

hind paw by tenting the skin and puncturing it with a 30-gauge needle prior to 

injecting the test agent, as previously described (Oliveira et al., 2007a). The needle 

was connected to a catheter of polyethylene and also to a Hamilton syringe (50 µl). 

The animals were briefly restrained and the volume of injection was 50µl. 

  

Mechanical paw withdrawal nociceptive threshold test  

Testing sessions took place during light phase (between 09:00 AM and 5:00 

PM) in a quiet room maintained at 23ºC (Rosland, 1991). The Randall-Selitto 

nociceptive paw-withdrawal flexion reflex test (Randall and Selitto, 1957) was 

performed using an Ugo-Basile analgesymeter (Stoelting, Chicago, IL, USA), which 

applies a linearly increasing mechanical force to the dorsum of the rat's hind paw 

(Oliveira et al., 2007a). The nociceptive threshold was defined as the force in grams, 

which the rat withdrew its paw. The baseline paw-withdrawal threshold was defined 

as the mean of three tests performed at 5-min intervals before test agents were 

injected. Mechanical hyperalgesia was quantified as the change in mechanical 

nociceptive threshold calculated by subtracting the mean of three mechanical 
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nociceptive threshold measurements taken after injection of the test agent from the 

mean of the three baseline measurements. 

Measurement of myeloperoxidase activity (MPO) 

The neutrophil migration in the skin of rat’s hind paw was evaluated by the 

myeloperoxidase (MPO) kinetic-colorimetric assay as previously described (Bradley 

et al., 1982). Approximately 0.5 cm2 of cutaneous tissue was harvested 3 hours after 

the subcutaneous injection of stimuli. The samples  were homogenized in pH 4.7 

buffer (0.1 M NaCl, 0.02 M NaPO4, 1.015 M NaEDTA) followed by centrifugation at 

3000 rpm for 15 min. The pellet was subjected to hypotonic lyses (1.5 mL of 0.2% 

NaCl solution followed 30 s later by addition of an equal volume of a solution 

containing NaCl 1.6% and glucose 5%). After further centrifugation, the pellet was 

resuspended in 0.05 M NaPO4 buffer (pH 5.4) containing 0.5% 

hexadecyltrimethylammonium bromide (HTAB). After that, the tissue was snap-

frozen in liquid nitrogen three times and was centrifuged at 10,000 rpm for 15 min 

and was re-homogenized. Myeloperoxidase activity in the resuspended pellet was 

assayed by measuring the change in optical density at 450 nm using 

tetramethylbenzidine (1.6 mM) and H2O2 (0.5 mM). Results were calculated by 

comparing the optical density of hind paw tissue supernatant with a standard curve 

of neutrophil (> 95% purity) numbers. The results were presented as number of 

neutrophils x 106/mg tissue. All procedures were repeated two times to guarantee 

the authenticity of the results. 
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ELISA procedure 

The subcutaneous tissues of dorsum of the rat’s hind paw were collected 3-

hour post the subcutaneous injection of Bradykinin or its vehicle (0.9% NaCl). 

These tissues were weighed and homogenized in the same weigh/volume 

proportion in a solution of phosphate-buffered saline (PBS) containing 0.4M NaCl, 

0.05% Tween 20, 0.5% bovine serum albumine (BSA), 0.1mM phenyl-methyl-

sulfonyl fluoride, 0.1mM benzotonic chloride, 10mM EDTA, and 20Kl/ml aprotinine 

(Sigma, USA). The samples were centrifuged at 10000 rpm for 15min at 4ºC and 

the supernatants were stored at -70ºC for posterior use to evaluate the protein 

levels of TNF-α, IL-1β, IL-6 and CINC-1 in the subcutaneous tissue of rat’s hind 

paw. The cytokines were quantified by the follows kits: TNF-α - Rat TNF-

alpha/TNFSF1A Quantikine ELISA Kit (R&D Systems, catalog number RTA00); IL-

1β - Rat IL-1 beta/IL-1F2 Quantikine ELISA Kit (R&D Systems, catalog number 

RLB00), IL-6 - Rat IL-6 Quantikine ELISA Kit, 2nd Generation (R&D Systems, 

catalog number: R6000B) and CINC-1 - Rat CINC-1 Quantikine ELISA Kit (R&D 

Systems, catalog number RCN100). All procedures followed the instructions of the 

manufacturer R&D Systems. All procedures were repeated two times to guarantee 

the authenticity of the results. 

 

Statistical analysis 

To determine if there were significant differences (p<0.05) between 

treatment groups, one-way ANOVA or t-test was performed. If there was a 

significant between-subjects main effect of treatment group following one-way 
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ANOVA, post-hoc contrasts, using the Tukey test, were performed to determine the 

basis of the significant difference. Data are expressed in figures by the decrease 

with paw-withdrawal threshold and presented as means ± S.E.M. 
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Results  

Effect of P2X3,2/3 receptors antagonists on mechanical hyperalgesia induced by 

bradykinin, TNF-α, IL-1β, IL-6, CINC-1, PGE2 or dopamine 

Bradykinin (0.5 and 1.5µg/paw, Fig.1A), TNF-α (0.8pg/paw, Fig.1C), IL-1β 

(0.05 and 0.15pg/paw, Fig. 1D), IL-6 (0.1, 0.3 and 1.0ng/paw, Fig. 1E), CINC-1 (1.0 

and 3.0pg/paw, Fig. 1F), PGE2 (0.1and 0.2µg/paw, Fig. 1G) or dopamine (3.0, 10 

and 30µg/paw, Fig 1H) induced mechanical hyperalgesia in a dose-dependent 

manner 3 h after their injection in subcutaneous tissue of rat’s hind paw.  

To verify whether ATP via activation of P2X3,2/3 receptors mediates the 

mechanical hyperalgesia induced by bradykinin, TNF-α, IL-1β, IL-6, CINC-1, PGE2 

or dopamine, TNP-ATP or A-317491 was co-administered with each one of these 

mediators. Co-administration of TNP-ATP (240µg/paw) or A-317491 (20 and 

60µg/paw) significantly reduced (p<0.05, Tukey test) the mechanical hyperalgesia 

induced by bradykinin (1.5µg/paw, Fig. 1B) when compared with PBS (control 

group), but did not affect the mechanical hyperalgesia when administered on 

contralateral rat hind paw (p>0.05, Tukey test, Fig. 1B), rulling out its systemic 

effect. Co-administration of the TNP-ATP (240µg/paw) or A-317491 (60µg/paw) did 

not reduce (p>0.05, Tukey test) the hyperalgesic response induced by TNF-α 

(0.8pg/paw, Fig.1C), IL-1β (0.15pg/paw, Fig. 1D), IL-6 (0.1ng/paw, Fig. 1E), CINC-

1 (1.0pg/paw, Fig. 1F), PGE2 (0.1µg/paw, Fig. 1G) or Dopamine (10µg/paw, Fig. 

1H) when compared with PBS control group. 
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Effect of P2X3,2/3 receptors antagonists on local increase of neutrophil migration 

induced by bradykinin 

Because only the hyperalgesia induced by bradykinin was reduced by 

P2X3,2/3 receptors antagonists, we verify whether endogenous ATP via activation 

of P2X3,2/3 receptors mediates neutrophils migration induced by bradykinin. TNP-

ATP, A-317491 or PBS was co-administrated with bradykinin and the MPO activity 

in subcutaneous tissue of rat’s hind paw was quantified 3h after their injections. 

TNP-ATP (240µg/paw) or A-317491 (60µg/paw) did not reduce (p>0.05, Tukey test) 

the MPO activity induced by bradykinin (1.5µg/paw, Fig. 2) when compared with 

PBS control group.  

 

Effect of P2X3,2/3 receptors antagonists on local increase in cytokines 

concentration induced by bradykinin 

To verify whether endogenous ATP via activation of P2X3,2/3 receptors 

mediates the release of pro-inflammatory cytokines induced by bradykinin, TNP-

ATP, A-317491 or PBS was co-administrated with bradykinin in subcutaneous tissue 

of rat’s hind paw and the local concentration of TNF-α, IL-1β, IL-6 and CINC-1 were 

quantified 3h after the administration of bradykinin. TNP-ATP (240µg/paw) or A-

317491 (60µg/paw) did not affect (p>0.05, Tukey test) the increase in concentration 

of TNF-α (Fig. 3A), IL-1β (Fig.3B), IL-6 (Fig. 3C) and CINC-1 (Fig. 3D) induced by 

bradykinin (1.5µg/paw) when compared with PBS control group.  
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Discussion 

In this study we demonstrated that the selective P2X3,2/3 receptors 

antagonist A-317491 (Jarvis et al., 2002) or the P2X1,3,2/3,1/5 receptors 

antagonist TNP-ATP (Jarvis et al., 2001) prevented the bradykinin-induced 

mechanical hyperalgesia, whereas the mechanical hyperalgesia induced by TNF-

α, IL-1β, IL-6, CINC-1, PGE2 or dopamine was not affect. These findings suggest 

that bradykinin in the subcutaneous tissue, as well as in culture cells (Chopra et al., 

2005, Zhao et al., 2007), induces the release of ATP, which mediates bradykinin-

induced hyperalgesia through P2X3,2/3 receptor activation.  

Considering that bradykinin is an inflammatory mediator released at the 

early phase of inflammatory hyperalgesia (Ferreira et al., 1993a, Ferreira et al., 

1993b), our results that A-317491 or TNP-ATP prevented the hyperalgesic 

response induced by bradykinin suggest that endogenous ATP via activation of 

P2X3,2/3 receptors has a role in the beginning of the development of inflammatory 

hyperalgesia.  

It has been described that bradykinin induces hyperalgesia by two distinct 

pathways that ultimately result in the local production of prostaglandins and in the 

local release of sympathomimetic amines (Ferreira et al., 1993a, Ferreira et al., 

1993b), which directly sensitize the primary afferent nociceptor (Gold et al., 1996, 

Rush and Waxman, 2004). Therefore, the prevention of bradykinin-induced 

inflammatory hyperalgesia by the co-administration of P2X3,2/3 receptor 

antagonists suggests that the activation of the P2X3,2/3 receptors must be crucial 

to prostaglandin- and sympathomimetic amines-mediated sensitization of the 
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primary afferent nociceptor. It has been proposed that bradykinin triggers the 

synthesis of prostaglandins and sympathomimetic amines through the release of 

pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and IL-8 (Ferreira et al., 

1993a, Ferreira et al., 1993b). Therefore, the findings that the co-administration of 

A-317491 or TNP-ATP with bradykinin did not affect the endogenous release of 

cytokines induced by bradykinin indicates that the mechanism by which the 

endogenous ATP via activation of P2X3,2/3 receptors mediates the mechanical 

hyperalgesia induced by bradykinin is not dependent on cytokines release. It is 

important to point out that it has been described that bradykinin-induced 

hyperalgesia depends on pro-inflammatory cytokines (Ferreira et al., 1993a, 

Ferreira et al., 1993b) and, as demonstrated in this study, bradykinin induces the 

release of cytokines. However, bradykinin but not pro-inflammatory cytokines-

induced hyperalgesia depends on P2X3,2/3 receptors. In addition, the release of 

cytokines by bradykinin does not depend on the endogenous release of ATP and 

the activation of P2X3,2/3 receptors. This apparent contradiction can be explained 

by the fact that the mechanism involved in the hyperalgesia induced by exogenous 

TNF-α, IL-1β, IL-6 or CINC-1 may differ from the mechanisms involved in the 

hyperalgesia induced by these cytokines when endogenously released by 

bradykinin. 

We also demonstrated that co-administration of A-317491 or TNP-ATP with 

bradykinin did not affect the neutrophil migration induced by bradykinin, indicating 

that the mechanism by which the endogenous ATP via activation of P2X3,2/3 
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receptors mediates the mechanical hyperalgesia induced by bradykinin is not 

dependent on neutrophil migration.  

The findings of this study also demonstrated that the hyperalgesia induced 

by PGE2 or dopamine was not affected by P2X3,2/3 receptors antagonists. These 

data suggest that, similarly to pro-inflammatory cytokines, the hyperalgesia 

induced by these final inflammatory mediators does not depend on the release of 

ATP and P2X3,2/3 receptor activation.  

 Considering that the mRNA distribution of P2X3 receptors is restricted to 

primary afferent neurons (Chen et al., 1995, Kennedy and Leff, 1995, Lewis et al., 

1995, Collo et al., 1996), it is plausible to hypothesize that the mechanism by which 

endogenous ATP contributes to mechanical hyperalgesia induced by bradykinin is 

by a direct action on P2X3 receptors expressed on primary afferent nociceptors. 

Studies that supports this hypothesis demonstrated that the treatment with 

oligonucleotide antisense against P2X3 receptors significantly reduced 

inflammatory hyperalgesia induced by Complete Adjuvant Freund (Barclay et al., 

2002, Honore et al., 2002a), carrageenan (data not published) or nerve injury 

(Barclay et al., 2002, Honore et al., 2002a). Recent studies have demonstrated that 

TNF-α acting on primary afferent nociceptor can increase its susceptibility to the 

development of inflammatory hyperalgesia induced by PGE2 (Parada et al., 2003a, 

Parada et al., 2003b). A similar sensitizing effect of the P2X3 neuronal receptor 

activation by ATP could be involved in the mechanism underlying bradykinin-

induced hyperalgesia.  
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In summary, we demonstrated that endogenous ATP via activation of 

P2X3,2/3 receptors mediates the mechanical hyperalgesia induced by bradykinin 

but not by TNF-α, IL-1β, IL-6, CINC-1, PGE2 or dopamine. The mechanism by 

which endogenous ATP via activation of P2X3,2/3 receptors mediates bradykinin-

induced mechanical hyperalgesia does not depend on the release of cytokines and 

on neutrophil migration. We suggest that endogenous ATP contributes to the 

mechanical hyperalgesia induced by bradykinin by a direct action on P2X3 

receptors expressed on the primary afferent nociceptors. 
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Figures and legends 

Figure 1 
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Fig_1.Effect of P2X3,2/3 receptors antagonists on mechanical hyperalgesia induced 

by TNF-α, IL-1β, IL-6, CINC-1, PGE2 or Dopamine 

The subcutaneous injection of Bradykinin (0.5 and 1.5µg/paw, A), TNF-α 

(0.8pg/paw, C), IL-1β (0.05 and 0.15pg/paw, D), IL-6 (0.1, 0.3 and 1.0ng/paw, E), 

CINC-1 (1.0 and 3.0pg/paw, F), PGE2 (0.1 and 0.2µg/paw, G) or dopamine (3.0, 10 

and 30µg/paw, H) induced mechanical hyperalgesia in a dose-dependent manner 

3h after each injection on subcutaneous tissue of rat’s hind paw (p<0.05, Tukey 

test). The co-administration of the P2X1,3,2/3,1/5 receptors antagonist TNP-ATP 

(T, 240µg/paw) or P2X3,2/3 receptors antagonist A-317491 (A, 20 and 60µg/paw) 

significantly reduced (p<0.05, ANOVA with pos hoc Tukey test)  the mechanical 

hyperalgesia induced by bradykinin (1.5µg/paw, B), but not by TNF-α (0.8pg/paw, 

C), IL-1β (1.5pg/paw, D), IL-6 (0.1ng/paw, E), CINC-1 (1.0pg/paw, F), PGE2 

(0.1µg/paw, G) or Dopamine (10µg/paw, H). The maximal dose of TNP-ATP or A-

317491 applied on the contralateral paw (c.t.) did not affect (p>0.05, t-test) 

bradykinin-induced hyperalgesia. The symbol “*” indicates statistically significant 

when compared with PBS. The symbol “#” indicates statistically significant when 

compared with PBS co-administered with bradykinin. 

 

 

 

 

 



 61

Figure 2 
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Fig.2_ Effect of P2X3,2/3 receptors antagonists on neutrophil migration induced by 

bradykinin 

Bradykinin (BK, 1.5µg/paw) induced significantly increase (p<0.05, t-test) on MPO 

activity on subcutaneous tissue of rats hind paw when compared with PBS control 

group. Co-administration of TNP-ATP (T, 240µg/paw) or A-317491 (A, 60µg/paw) 

with bradykinin did not affect (p>0.05, t-test) the MPO activity induced by 

bradykinin. The symbol “*” indicates statistically significant when compared with 

PBS 
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Figure 3 
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Fig.3_ Effect of P2X3,2/3 receptors antagonists on release of cytokines induced by 

bradykinin 

The administration of TNP-ATP (T, 240µg/paw) or A-317491 (A, 60µg/paw) did not 

affect (p>0.05, ANOVA with pos hoc Tukey test) the bradykinin (1.5µg/paw)-

induced local increase in the concentration of TNF-α (A), IL-1β (B), IL-6 (C) and 

CINC-1 (D).The symbol “*” indicates statistically significant when compared with 

PBS co-administered with bradykinin. 
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Abstract 

The aim of this study was to verify whether the P2X1,3,2/3 receptors agonist 

α,β-methylene ATP (α,β-meATP) induces mechanical hyperalgesia in the 

subcutaneous tissue of the rat’s hind paw by an indirect sensitization of the primary 

afferent nociceptors. Subcutaneous injection of α,β-meATP induced a dose-

dependent mechanical hyperalgesia. The α,β-meATP-induced mechanical 

hyperalgesia was significantly reduced by the selective P2X3,2/3 receptors 

antagonist A-317491, by the selective B1- or B2-receptor antagonist DALBK and 

bradyzide, respectively, by the cyclo-oxygenase inhibitor indomethacin, by the β1- 

or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively, and by the 

nonspecific selectin inhibitor fucoidan. α,β-meATP also induced release of the 

cytokines TNF-α, IL-1β, IL-6 and CINC-1 and neutrophil migration. Taken together, 

these findings suggest that α,β-meATP induces mechanical hyperalgesia by an 

indirect action on the primary afferent nociceptor of the subcutaneous tissue of  the 

rat’s hind paw mediated by release of bradykinin, prostaglandin, sympathomimetic 

amines, pro-inflammatory cytokines and by neutrophil migration.  

 

Key words: α,β-meATP, hyperalgesia, cytokines, neutrophil migration, P2X3,2/3 

receptors. 
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Introduction  

P2X receptors are a family of ligand-gated ion channels activated by 

extracellular ATP that are involved in pain mechanisms. Recent reports using 

behavioral nociceptive models with gene knockout methods (Cockayne et al., 2005), 

antisense oligonucleotide technologies (Barclay et al., 2002, Honore et al., 2002a) 

and selective P2X3,2/3 receptors antagonist (Jarvis et al., 2002, McGaraughty et al., 

2003, Wu et al., 2004, McGaraughty et al., 2005, Sharp et al., 2006) indicate that 

the activation of P2X3,2/3 receptors by extracellular ATP contributes to the 

development of inflammatory hyperalgesia. It has also been demonstrated that the 

administration of the selective P2X1,3,2/3 receptor agonist α,β-methylene ATP (α,β-

meATP) in rat’s hind paw induces mechanical hyperalgesia (Barclay et al., 2002), 

mechanical allodynia (Tsuda et al., 2000, Wang et al., 2007) and thermal 

hyperalgesia (Hamilton et al., 1999, Waldron and Sawynok, 2004).  

Following tissue injury, an inflammatory response is generated by local 

release of inflammatory mediators which induce and/or maintain the inflammatory 

hyperalgesia (Verri et al., 2006). It has been proposed that the release of 

inflammatory mediators, such as bradykinin, TNF-α, IL-1β, IL-6, IL-8, 

prostaglandins and sympathomimetic amines (Cunha et al., 1992, Ferreira et al., 

1993a, Loram et al., 2007) and the neutrophils migration (Jain et al., 2001, Tambeli 

et al., 2006, Oliveira et al., 2007a) participates of the development of inflammatory 

hyperalgesia.  
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Despite the role of extracellular ATP and P2X3,2/3 activation on 

inflammatory hyperalgesia,  the mechanism by which the selective P2X1,3,2/3 

receptor agonist α,β-meATP induces hyperalgesia is unknown. Therefore, the aim 

of this study was to verify whether the selective P2X1,3,2/3 receptor agonist α,β-

meATP induces mechanical hyperalgesia by an indirect action on primary afferent 

nociceptors. To this end, we tested the hypothesis that the cyclo-oxygenase 

inhibitor indomethacin,  the β1- or β2-adrenoceptor antagonist atenolol and ICI 

118,551, respectively, the selective B1- or B2-receptor antagonist DALBK and 

bradyzide, respectively, reduce the mechanical hyperalgesia induced by α,β-

meATP in the subcutaneous tissue of the rat’s hind paw. Also, we tested the 

hypothesis that α,β-meATP induces the release of the inflammatory cytokines 

TNF-α, IL-1β, IL-6 and CINC-1 (rat IL-8 related chemokine) and neutrophil 

migration, which participate in the development of P2X1,3,2/3 activation-induced 

hyperalgesia.  
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Experimental procedures 

 

Drugs and doses 

The follow drugs were used: the agonist of P2X1,3,2/3 receptors α,β-

methyleneATP lithium salt (α,β-meATP; 0.5, 10, 25, 50 and 100µg/paw), the 

antagonist of P2X3,2/3 receptors 5-([(3-Phenoxybenzyl)[(1S)-1,2,3,4-tetrahydro-1-

naphthalenyl]amino]carbonyl)-1,2,4-benzenetricarboxylic acid (A-317491; 6, 20 

and 60µg/paw); the bradykinin B1 receptor antagonist Des-Arg8-Leu9-BK (DALBK 

– 0.5, 1.5 and 3.0µg/paw); the bradykinin B2 receptor antagonist Bradyzide (0.15, 

0.5 and 1.5µg/paw); the β1 receptor antagonist atenolol (2.0 and 6.0µg/paw); the β2 

receptor antagonist ICI 118,551 (0.5, 1.0 and 1.5µg/paw); the cyclooxygenase 

inhibitor indomethacin (10, 25 and 50µg/paw) and the nonspecific selectin inhibitor 

fucoidan [25mg/Kg, i.v., (Zhang et al., 2001)] were all obtained from Sigma 

Chemicals, St Louis, Missouri, USA. All drugs were dissolved in saline (0.9% 

NaCl).  

 

Subjects 

Male albino Wistar rats weighing 200 – 350g were used. Experiments were 

conducted in accordance with the guidelines of the Committee for Research and 

Ethical Issues of IASP on using laboratory animals (Zimmermann, 1983). 

Experimental procedures and protocols were approved by the Committee on Animal 

Research of the State University of Campinas - Unicamp. Animal suffering and the 
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number of rats per group were kept at a minimum. Rats were housed in plastic 

cages with soft bedding (five/cage) on a 12:12 light cycle (lights on at 06:00 A.M.) 

with food and water available ad libitum. They were maintained on a temperature-

controlled room test (± 23ºC) for a 1-hour habituation period prior to the test. 

 
Subcutaneous Injections 

Drugs or their vehicle were locally administrated in the subcutaneous dorsal 

tissue of rat’s hind paw by tenting the skin and puncturing it with a 30-gauge needle 

prior to injecting the test agent, as previously described (Oliveira et al., 2007a). The 

needle was connected to a catheter of polyethylene and also to a Hamilton syringe 

(50 µl). The animals were briefly restrained and the volume of injection was 50µl.  

 
Mechanical paw withdrawal nociceptive threshold test  

Testing sessions took place during light phase (between 09:00 AM and 5:00 

PM) in a quiet room maintained at 23ºC (Rosland, 1991). The Randall-Selitto 

nociceptive paw-withdrawal flexion reflex test (Randall and Selitto, 1957) was 

performed using an Ugo-Basile analgesymeter (Stoelting, Chicago, IL, USA), which 

applies a linearly increasing mechanical force to the dorsum of the rat's hind paw 

(Oliveira et al., 2007a). The nociceptive threshold was defined as the force in grams, 

which the rat withdrew its paw.  The baseline paw-withdrawal threshold was defined 

as the mean of three tests performed at 5-min intervals before test agents were 

injected. Mechanical hyperalgesia was quantified as the change in mechanical 

nociceptive threshold calculated by subtracting the mean of three mechanical 
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nociceptive threshold measurements taken after injection of the test agent from the 

mean of the three baseline measurements. 

 

ELISA procedure 

The subcutaneous tissues of dorsum of the rat’s hind paw were collected 1-

hour post the subcutaneous administration of α,β-meATP or its vehicle (0.9% 

NaCl). These tissues were weighed and homogenized in the same weigh/volume 

proportion in a solution of phosphate-buffered saline (PBS) containing 0.4M NaCl, 

0.05% Tween 20, 0.5% bovine serum albumine (BSA), 0.1mM phenyl-methyl-

sulfonyl fluoride, 0.1mM benzotonic chloride, 10mM EDTA, and 20Kl/ml aprotinine 

(Sigma, USA). The samples were centrifuged at 10000rpm for 15min at 4ºC and 

the supernatants were stored at -70ºC for posterior use to evaluate the protein 

levels of TNF-α, IL-1β, IL-6 and CINC-1 in the subcutaneous tissue of rat’s hind 

paw. The cytokines were quantified by the follows kits: TNF-α - Rat TNF-

alpha/TNFSF1A Quantikine ELISA Kit (R&D Systems, catalog number RTA00); IL-

1β - Rat IL-1 beta/IL-1F2 Quantikine ELISA Kit (R&D Systems, catalog number 

RLB00), IL-6 - Rat IL-6 Quantikine ELISA Kit, 2nd Generation (R&D Systems, 

catalog number: R6000B) and CINC-1 - Rat CINC-1 Quantikine ELISA Kit (R&D 

Systems, catalog number RCN100). All procedures followed the instructions of the 

manufacturer R&D Systems. All procedures were repeated two times to guarantee 

the authenticity of the results. 
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Measurement of myeloperoxidase activity (MPO)  

The neutrophil migration to the site of α,β-meATP administration in the skin of 

rat’s hind paw was evaluated by the myeloperoxidase (MPO) kinetic-colorimetric 

assay as previously described (Bradley et al., 1982). Approximately 0.5 cm2 of 

cutaneous tissue was harvested 60 minutes after the subcutaneous injection of α,β-

meATP. The samples  were homogenized in pH 4.7 buffer (0.1 M NaCl, 0.02 M 

NaPO4, 1.015 M NaEDTA) followed by centrifugation at 3000 rpm for 15 min. The 

pellet was subjected to hypotonic lyses (1.5 mL of 0.2% NaCl solution followed 30 s 

later by addition of an equal volume of a solution containing NaCl 1.6% and glucose 

5%). After further centrifugation, the pellet was resuspended in 0.05 M NaPO4 buffer 

(pH 5.4) containing 0.5% hexadecyltrimethylammonium bromide (HTAB). After that, 

the tissue was snap-frozen in liquid nitrogen three times and was centrifuged at 

10,000 rpm for 15 min and was re-homogenized. Myeloperoxidase activity in the 

resuspended pellet was assayed by measuring the change in optical density at 

450 nm using tetramethylbenzidine (1.6 mM) and H2O2 (0.5 mM). Results were 

calculated by comparing the optical density of hind paw tissue supernatant with a 

standard curve of neutrophil (> 95% purity) numbers. The results were presented as 

number of neutrophils x 106/mg tissue. All procedures were repeated three times to 

guarantee the authenticity of the results. 

 

Statistical analysis 

To determine if there were significant differences (p<0.05) between 

treatment groups, one-way ANOVA or t-test was performed. If there was a 
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significant between-subjects main effect of treatment group following one-way 

ANOVA, post-hoc contrasts, using the Tukey test, were performed to determine the 

basis of the significant difference. Data are expressed in figures by the decrease 

with paw-withdrawal threshold and presented as means ± S.E.M. 
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Results 

α,β-meATP induced mechanical hyperalgesia  

Subcutaneous administration of α,β-meATP (50µg/paw) in the dorsum of the 

rat’s hind paw induced a significant mechanical hyperalgesia 60 min., but not 120 or 

180 min. after its administration (Fig. 1A, p<0.05, Tukey test). Therefore, in further 

experiments, the mechanical hyperalgesia was evaluated only 60 min. after the 

administration of α,β-meATP.  

Subcutaneous administration of α,β-meATP (50 and 100µg/paw) induced a 

dose-related mechanical hyperalgesia (Fig.1B, p<0.05, Tukey test). The sub-

maximal dose of 50µg/paw was used in following experiments.   

To verify whether the mechanical hyperalgesia induced by α,β-meATP was 

mediated by P2X3,2/3 receptors, the selective P2X3,2/3 receptor antagonist A-

317491 was co-administered with α,β-meATP. A-317491 (20 and 60µg/paw) 

significantly reduced (Fig. 1C, p<0.05, Tukey test) the mechanical hyperalgesia 

induced by α,β-meATP and did not affect (p>0.05, T test) the hyperalgesic 

response when administered on contralateral hind paw, rulling out a systemic 

effect. Co-administration of A-317491 (60µg/paw) with 0.9% NaCl did not change 

the mechanical withdrawal threshold. 
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Effect of cyclo-oxygenase inhibitor on mechanical hyperalgesia induced by α,β-

meATP 

To verify whether mechanical hyperalgesia induced by α,β-meATP was 

mediated by prostaglandins, rats were treated with local administration of 

indomethacin 30 min. before and the mechanical hyperalgesia was evaluated 60 

min. after α,β-meATP administration. Indomethacin (25 and 50µg/paw) significantly 

reduced (Fig.2, p<0.05, Tukey test) the mechanical hyperalgesia induced by α,β-

meATP when administered on the ipsilateral but not on the contralateral paw  

(p>0.05, Tukey test). Co-administration of indomethacin (50µg/paw) with 0.9% 

NaCl did not change the mechanical withdrawal threshold.  

 

Effect of β1- or β2- adrenoceptor antagonists on mechanical hyperalgesia induced 

by α,β-meATP 

To verify whether mechanical hyperalgesia induced by α,β-meATP was 

mediated by sympathomimetics amines, the β1- or β2- adrenoceptor antagonists 

atenolol and ICI 118,551, respectively, was co-administered with α,β-meATP. 

Atenolol (6.0µg/paw, Fig. 3A) or ICI 118,551 (1.0 and 1.5µg/paw, Fig. 3B) 

significantly reduced (p<0.05, Tukey test) the mechanical hyperalgesia induced by 

α,β-meATP and did not affect (p>0.05, Tukey test) the hyperalgesic response 

when administered on contralateral hind paw, rulling out a systemic effect. Co-

administration of atenolol (6.0µg/paw) or ICI 118,551 (1.5µg/paw) with 0.9% NaCl 

did not change the mechanical withdrawal threshold.  



 81

Effect of the bradykinin B1 or B2 receptor antagonists on mechanical hyperalgesia 

induced by α,β-meATP 

 To verify whether mechanical hyperalgesia induced by α,β-meATP was 

mediated by bradykinin, the bradykinin B1 or B2 receptor antagonists, DALBK and 

Bradyzide, respectively, was co-administered with α,β-meATP. DALBK (1.5 and 

3.0µg/paw, Fig. 4A) or bradyzide (0.5 and 1.5µg/paw, Fig. 4B) significantly reduced 

(p<0.05, Tukey test) the mechanical hyperalgesia induced by α,β-meATP and did 

not affect (p>0.05, Tukey test) the hyperalgesic response when administered on 

contralateral hind paw. Co-administration of DALBK (3.0µg/paw) or bradyzide 

(0.5µg/paw) with 0.9% NaCl did not change the mechanical withdrawal threshold.  

 

α,β-meATP induced increase in cytokines concentration in the subcutaneous tissue 

To verify whether α,β-meATP induces the release of pro-inflammatory 

cytokines, α,β-meATP or 0.9% NaCl was administrated in subcutaneous tissue of 

rat’s hind paw and the local concentration of TNF-α, IL-1β, IL-6 and CINC-1 were 

quantified 60 min. after stimuli. Local administration of α,β-meATP induced 

significant increase (p<0.05, Tukey test) in concentration of TNF-α (Fig.5A), IL-1β 

(Fig. 5B), IL-6 (Fig. 5C) and CINC-1 (Fig. 5D) when compared with 0.9% NaCl 

administration. The subcutaneous administration of 0.9% NaCl did not alter 

(p>0.05, Tukey test) the concentration of TNF-α, IL-1β, IL-6 and CINC-1 when 

compared with naïve group.  
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α,β-meATP induced neutrophil migration   

To verify whether α,β-meATP induces neutrophils migration, α,β-meATP or 

0.9% NaCl was locally administrated and the MPO activity in subcutaneous tissue of 

rat’s hind paw was quantified 60 min. after stimuli. The administration of α,β-meATP 

induced significant increase (p<0.05, Tukey test) in the MPO activity when 

compared with 0.9% NaCl administration (Fig. 6A). Also, pre-treatment with fucoidan 

(25mg/Kg, i.v.), 20 min before α,β-meATP significantly reduced (p<0.05, Tukey test) 

the MPO activity (Fig. 6A). 

To verify whether neutrophils migration contributes to mechanical 

hyperalgesia induced by α,β-meATP, rats were treated with fucoidan 20 min. before 

and the mechanical hyperalgesia was evaluated 60 min. post α,β-meATP 

administration. Pre-treatment with fucoidan (25 mg/kg, i.v.) significantly reduced 

(p<0.05, Tukey test) the hyperalgesia induced by α,β-meATP (Fig 6B).   
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Discussion  

 

α,β-meATP induced mechanical hyperalgesia  

The α,β-meATP induced mechanical hyperalgesia in the subcutaneous 

tissue of the rat’s hind paw. Although α,β-meATP is a P2X1,3,2/3 receptors 

agonist, the involvement of P2X1 seems to be unlikely, because the hyperalgesia 

induced by α,β-meATP was completely reversed by A-317491, a selective 

P2X3,2/3 receptor antagonist in a dose response manner. In addition, IP5I, a 

potent and selective P2X1 receptor antagonist, was ineffective at reducing 

inflammatory pain (Honore et al., 2002b)  or mechanical hypersensitivity (Dai et al., 

2004). Recent reports using different inflammatory pain models, such as local 

administration in the hind paw tissue of carrageenan (McGaraughty et al., 2003), 

Complete Freund Adjuvant (Honore et al., 2002a, Jarvis et al., 2002, McGaraughty 

et al., 2003, Wu et al., 2004, McGaraughty et al., 2005) or formalin (Souslova et al., 

2000, Honore et al., 2002a, McGaraughty et al., 2005) indicate that the activation 

of P2X3,2/3 receptors by endogenous ATP contributes to the development of 

inflammatory hyperalgesia. Therefore, we suggest that the hyperalgesic response 

induced by α,β-meATP is mediated by activation of P2X3,2/3 receptors expressed 

on the subcutaneous tissue of rat’s hind paw.  
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Indirect mechanisms underlying the α,β-meATP induced mechanical hyperalgesia  

The findings of this study demonstrated that the cyclo-oxygenase inhibitor, β 

receptor antagonists or bradykinin receptor antagonists reduced the mechanical 

hyperalgesia induced by α,β-meATP. It has been described that the development 

of inflammatory hyperalgesia depends on local production of prostaglandins and 

local release of sympathomimetic amines that ultimately sensitizes the primary 

afferent nociceptors (Gold et al., 1996, Rush and Waxman, 2004). Although in 

carrageenan model of inflammation the hyperalgesia is the summation of the 

partial hyperalgesia induced by prostaglandin and sympathomimetic amines 

(Cunha et al., 1991, Cunha et al., 1992), our data demonstrated that in α,β-

meATP-induced hyperalgesia both prostaglandin and sympathomimetic act 

synergically to sensitize primary afferent nociceptor. The findings of this study also 

demonstrated that B2 receptor antagonist, bradyzide reduced the α,β-meATP-

induced hyperalgesia while the B1 receptor antagonist, DALBK blocked it. In 

contrast to B2 receptor, B1 receptors are generally absent in healthy tissues but its 

expression increases during an inflammatory process (Steranka et al., 1988, Davis 

and Perkins, 1994, Marie et al., 1999). Considering that, it is plausible to suggest 

that α,β-meATP induced an up-regulation of B1 receptors.  

 

α,β-meATP induced cytokines release and neutrophils migration 

Considering that the synthesis of prostaglandins and release of 

sympathomimetic amines depend on previous formation of cytokines (Cunha et al., 
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1991, Cunha et al., 1992, Ferreira et al., 1993a), this study also investigated 

whether local administration of α,β-meATP induces an increase on cytokines 

concentration in the subcutaneous tissue. The findings of this study demonstrated 

that α,β-meATP increases the concentration of TNF-α, IL-1β, IL-6 and CINC-1 (rat 

IL-8 related chemokine). Because it has been proposed that bradykinin induces 

release of the pro-inflammatory cytokines TNF-α, IL-1β/IL-6 and CINC-1 (Ferreira 

et al., 1993a, Ferreira et al., 1993b), it is plausible to hypothesize that α,β-meATP 

induced the release of bradykinin that, in turn, triggers the release of TNF-α, IL-1β, 

IL-6 and CINC-1. 

Although previous studies demonstrate that ATP induces the release of 

TNF-α (Hide et al., 2000, Suzuki et al., 2004), IL-1β (Perregaux and Gabel, 1998, 

Perregaux et al., 2000, Mehta et al., 2001), IL-6 (Inoue, 2002, Seiffert et al., 2006) 

and IL-8 (Idzko et al., 2003, Seiffert et al., 2006) via P2X7 receptor activation, the 

findings of this study demonstrated that the activation of P2X1,3,2/3 receptors by 

its exogenous agonist also induced cytokines release. However, because α,β-

meATP induces endogenous release of ATP (Kirkpatrick and Burnstock, 1994), it 

is possible that the release of cytokines induced by α,β-meATP depends on an 

indirect activation of P2X7 receptor by endogenous released ATP.   

The findings of this study also demonstrated that α,β-meATP induces 

neutrophils migration. Indeed, the release of pro-inflammatory cytokines and, in 

particular the chemokine CINC-1, induces neutrophils migration (Canetti et al., 

2001, Bochenska-Marciniak et al., 2003, Ramos et al., 2003). Therefore, the 
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neutrophil migration induced by α,β-meATP probably results from its ability to 

release TNF-α, IL-1β, IL-6 and CINC-1. It has been demonstrated that the release 

of cytokines (Cunha et al., 1991, Cunha et al., 1992, Ferreira et al., 1993a) and 

neutrophils migration (Jain et al., 2001, Tambeli et al., 2006, Oliveira et al., 2007a) 

participate of the development of inflammatory hyperalgesia. Although our data do 

not permit correlate the release of cytokines with the development of hyperalgesia 

induced by α,β-meATP, the findings of this study demonstrated that fucoidan, 

which inhibits the neutrophil migration also inhibited α,β-meATP-induced 

hyperalgesia.  

  In summary, this study suggest that the mechanical hyperalgesia induced 

by α,β-meATP via P2X3,2/3 receptors activation is mediated by an indirect action 

on the primary afferent nociceptor, which involves synthesis of prostaglandins, 

release of sympathomimetic amines, release of bradykinin, cytokines formation 

and neutrophil migration.  
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Figures and legends 

 
Figure 1 
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Fig.1_ α,β-meATP- induced mechanical hyperalgesia  

Subcutaneous administration of α,β-meATP (50µg/paw) induced a significant 

mechanical hyperalgesia 60 min. after its administration when compared with 0.9% 

NaCl administration (A). α,β-meATP (0.5-100µg/paw) induced a dose-related 

mechanical hyperalgesia (B). Co-administration of the P2X3,2/3 receptors 

antagonist A-317491 (60µg/paw, B) with α,β-meATP (50µg/paw) blocked α,β-

meATP -induced  mechanical hyperalgesia. The highest doses of the antagonist 

applied on the contralateral paw (ct) did not affect α,β-meATP -induced mechanical 

hyperalgesia (C).In this and subsequent figures hyperalgesia was measured 60 min 

after α,β-meATP administration and the number of rats used are in parentheses. 
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The symbol “*” indicates statistically significant when compared with 0.9% NaCl 

group (p<0.05, ANOVA with pos hoc Tukey test).   

 
 
Figure 2 
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Fig. 2_ Effect of indomethacin on mechanical hyperalgesia induced by α,β-meATP 

Local treatment with indomethacin 30 min. before prevented the mechanical 

hyperalgesia induced by α,β-meATP (50µg/paw) in a dose-related manner.  

Indomethacin (50µg/paw) administrated in contralateral (c.t.) hind paw or co-

administrated with 0.9% NaCl did not affect the the hyperalgesic response or the 

mechanical nociceptive threshold, respectively.  The symbol “*” indicates statistically 

significant when compared with 0.9% NaCl group (p<0.05, ANOVA with pos hoc 

Tukey test). The symbol “#” indicates statistically significant when compared with 

0.9% NaCl co-administered with α,β-meATP group (p<0.05, ANOVA with pos hoc 

Tukey test). 
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Figure 3 
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Fig. 3_Effect of β1- or β2- adrenoceptor antagonist on mechanical hyperalgesia 

induced by α,β-meATP 

Atenolol (A) or ICI 118,551 (B) completely prevented the mechanical hyperalgesia 

induced by α,β-meATP (50µg/paw) in dose-related manner.  Atenolol (6.0µg/paw) or 

ICI 118,551 (1.5µg/paw) administrated in contralateral (c.t.) hind paw or co-

administrated with 0.9% NaCl did not affect the the hyperalgesic response or the 

mechanical nociceptive threshold, respectively. The symbol “*” indicates statistically 

significant when compared with 0.9% NaCl group (p<0.05, ANOVA with pos hoc 

Tukey test). The symbol “#” indicates statistically significant when compared with 

0.9% NaCl co-administered with α,β-meATP group (p<0.05, ANOVA with pos hoc 

Tukey test). 
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Figure 4 
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Fig. 4_Effect of bradykinin B1 or B2 receptors antagonist on mechanical 

hyperalgesia induced by α,β-meATP 

DALBK (A) or bradyzide (B) prevented and significantly reduced, respectively, the 

mechanical hyperalgesia induced by α,β-meATP (50µg/paw) in a dose-related 

manner. DALBK (3.0µg/paw) or bradyzide (1.5µg/paw) administrated in contralateral 

(c.t.) hind paw or co-administrated with 0.9% NaCl did not affect the the 

hyperalgesic response or the mechanical nociceptive threshold, respectively. The 

symbol “*” indicates statistically significant when compared with 0.9% NaCl group 

(p<0.05, ANOVA with pos hoc Tukey test). The symbol “#” indicates statistically 

significant when compared with 0.9% NaCl co-administered with α,β-meATP group 

(p<0.05, ANOVA with pos hoc Tukey test). 
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Fig. 5_ α,β-meATP- induced release of cytokines 

Local administration of α,β-meATP (50µg/paw) induced significant local increase 

(p<0.05, Tukey test) of TNF-α (A), IL-1β (B), IL-6 (C) and CINC-1 (D) concentration 

when compared with 0.9% NaCl administration. The subcutaneous injection of 

0.9% NaCl did not alter the endogenous concentration of TNF-α, IL-1β, IL-6 and 

CINC-1 when compared with naïve group. The symbol “*” indicates statistically 

significant when compared with 0.9% NaCl group (p<0.05, ANOVA with pos hoc 

Tukey test). 
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Figure 6 
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 Fig. 6_ α,β-meATP -induced neutrophils migration   

Local administration of α,β-meATP (50µg/paw) induced significant increase in the 

MPO activity when compared with 0.9% NaCl administration (A). Treatment with 

fucoidan (25mg/Kg, i.v.) 20 min before α,β-meATP significantly reduced the MPO 

activity (A) and the mechanical hyperalgesia (B). The symbol “*” indicates 

statistically significant when compared with 0.9% NaCl group (p<0.05, ANOVA with 

pos hoc Tukey test). The symbol “#” indicates statistically significant when 

compared with α,β-meATP group (p<0.05, ANOVA with pos hoc Tukey test). 
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CONCLUSÕES 

 

O presente trabalho demonstrou que (1) o ATP endógeno via ativação dos 

receptores P2X3,2/3 contribui para a hiperalgesia mecânica induzida pela 

carragenina através de uma sensibilização indireta dos nociceptores aferentes 

primários, mediada pela liberação prévia de TNF-α, e através da sensibilização 

direta dos nociceptores aferentes primários; (2) o mecanismo pelo qual a ativação 

dos receptores P2X3,2/3 pelo ATP endógeno contribui para a hiperalgesia 

induzida pela bradicinina independe da liberação de citocinas e migração de 

neutrófilos; (3) o α,β-meATP induz hiperalgesia mecânica através de uma 

sensibilização indireta dos nociceptores aferentes primários mediada pela síntese 

de prostaglandinas, liberação de aminas simpatomiméticas, liberação de citocinas 

e migração de neutrófilos.  
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CONSIDERAÇÕES GERAIS 

Em uma perspectiva clínica-terapêutica, os resultados obtidos sugerem 

que, como a ativação dos receptores P2X3,2/3 pelo ATP endógeno é fundamental 

para o desenvolvimento da hiperalgesia inflamatória, os receptores P2X3,2/3 

podem ser alvos farmacológicos interessantes para o desenvolvimento de 

medicamentos usados no controle da dor inflamatória. Ressalta-se ainda que a 

magnitude do efeito analgésico dos antagonistas de receptores P2X3,2/3 na 

inibição da hiperalgesia é comparável à dos antiinflamatórios esteroidais. Do ponto 

de vista do uso dos antagonistas de receptores P2X3,2/3 como uma ferramenta 

farmacológica, os resultados deste trabalho, vistos de uma maneira global, 

demonstram que os mecanismos envolvidos na hiperalgesia induzida por 

mediadores inflamatórios não são necessariamente os mesmos mecanismos 

envolvidos no desenvolvimento da hiperalgesia induzida por um agente 

inflamatório. A ação sinérgica dos vários mediadores inflamatórios, aumentando a 

susceptibilidade dos neurônios nociceptivos aferentes primários à ação de 

mediadores finais como as prostaglandinas e aminas simpatomiméticas, parece 

ser um novo mecanismo envolvido no desenvolvimento da hiperalgesia 

inflamatória que deve ser melhor investigado a partir dos resultados deste 

trabalho.   
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