

Faculdade de Engenharia Elétrica e de Computação

AVALIAÇÃO DE UMA NOVA PROPOSTA DE CONTROLE V/F EM MALHA ABERTA

Autor: Leonardo de Araujo Silva

Banca Examinadora:

Prof. Dr. Edson Bim - Orientador Prof. Dr. Clóvis Goldemberg – EPUSP Prof. Dr. João Mauricio Rosário – FEM - UNICAMP Prof. Dr. Carlos Rodrigues de Souza – FEE - UNICAMP

> Dissertação apresentada à Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Elétrica

Dezembro/2000

Resumo:

Este trabalho tem como objetivo avaliar o desempenho de uma nova proposta de controle de velocidade em malha aberta do motor de indução baseada na técnica escalar *V/f.* O sistema em questão foi concebido visando a minimização do erro de velocidade pela introdução das seguintes estratégias: compensação de tensão realizada a partir da análise vetorial das variáveis de entrada; compensação da freqüência de acionamento considerando a característica não-linear da curva de torque e estimação do escorregamento através da consideração das perdas magnéticas na determinação da potência que atravessa o entreferro. A implementação deste sistema foi realizada com o auxilio de um processador digital de sinais (DSP). A partir dos resultados obtidos com esta implementação e de aspectos teóricos discutidos ao longo da presente dissertação pôde-se identificar as vantagens e limitações do método para várias situações de acionamento bem como a sua aplicabilidade em sistemas industriais.

Abstract:

This work has the aim of making the performance evaluation of a new open loop speed control method based on the scalar *V/f* technique for induction motors. The proposed system has been designed intending to minimize speed error through the introduction of the following compensation techniques: Voltage compensation based on the phasor analysis of the input variables; frequency compensation design took into consideration the non-linear relationship between torque and slip frequency; and slip estimation pondering magnetic losses on the determination of the air-gap power. The system has been implemented using a Digital Signal Processor (DSP). Through the obtained results of the implemented system and the issues that were discussed on this dissertation, the advantages as well as the limitations of this method for many driving conditions as well as the applicability of it in industrial systems were identified.

Aos meus pais, José Silva e Nilta, e irmãos, Maciel e Sheylla

Agradecimentos

Agradeço...

Aos meus tios Paulo e Adélia e primos Pedro e André pela ajuda, amizade e apoio oferecidos durante o período de realização deste trabalho.

Ao prof. Edson Bim, pela oportunidade de realizar este trabalho, excelente orientação e confiança a mim atribuída.

Às minhas avós Eva e Melânia pelo incentivo e apoio oferecidos.

Ao amigo Zanoni Dueire Lins, pelo apoio técnico, tempo dispensado e ajuda prestada na elaboração do modelo da máquina que inclui perdas magnéticas .

Aos amigos Lino Rosell Valdenebro e Jayme Reyes Hernandes , pela ajuda na elaboração do algoritmo de controle, apoio técnico e tempo dispensado.

Ao amigo Torrico Altura pelo apoio técnico e tempo dispensado.

Aos amigos Luiz Cláudio, Luiz Geromel, Valmir Machado, José Francisco e José Eduardo Garcia Castro.

À Laura Pimentel pelo apoio, amizade e incentivo oferecidos.

Aos professores das matérias cursadas pela contribuição para minha formação acadêmica.

À CAPES pelo apoio financeiro.

Lista de Figuras

Figura 2.1 -	Estratégia de controle em malha fechada de velocidade	7
Figura 2.2 -	Estratégia de controle em malha fechada com controle de escorregamento	8
Figura 2.3 -	Modelo de acionamento V/f em malha aberta	9
Figura 2.4 -	Acionamento em malha aberta com estimação de escorregamento.	10
Figura 2.5 -	Proposta de controle com redução de fluxo	10
Figura 2.6 -	Circuito equivalente da máquina de indução	11
Figura 2.7 -	Curvas de variação da tensão de alimentação em relação à freqüência	13
Figura 2.8 -	Circuito equivalente usado para orientação por fluxo de rotor	14
Figura 2.9 -	Compensação de tensão para manter fluxo de entreferro constante para variações no escorregamento.	15
Figura 2.10 -	Torque eletromagnético gerado e Aproximações lineares das curvas de torque	17
Figura 2.11 -	 (a) Aproximação linear das curvas de torque (b) Princípio de compensação em freqüência 	18
Figura 2.12 -	Curvas de torque para fluxo nominal e reduzido	20
Figura 2.13 -	Diagramas fasoriais para diversos fluxos de operação	20
Figura 3.1 -	Regulação de velocidade pelo uso da interpolação linear. (a) Operação com torque de carga acima do nominal. (b)Operação com torque de carga abaixo do nominal	22
Figura 3.2 -	Deterioração da regulação provocada por erro na estimação do torque eletromagnético.	23
Figura 3. 3 -	Circuito equivalente da máquina de indução considerando perdas no núcleo.	24
Figura 3.4 -	Perdas magnéticas obtidas através de ensaio e obtida através da equação 3.3-7 nominais	26
Figura 3.5 -	Diagrama fasorial das tensões do modelo em regime	27
Figura 3.6 -	Diagrama fasorial da tensão e corrente de estator	28
Figura 3.7 -	Diagrama de blocos da compensação proposta	31

Figura 3.8 -	Curvas estáticas de torque para operação com fluxo de entreferro constante, Fluxo de estator constante e obtidas pela aproximação linear.	32
Figura 3.9 -	Diagrama de blocos da compensação em freqüência em malha aberta.	32
Figura 3.10 -	Curvas estáticas de torque para operação com fluxo de estator constante e aproximação não-linear das mesmas.	35
Figura 3.11 -	Esquema geral de controle da estratégia de controle proposta.	38
Figura 3.12 -	Modelo da máquina desenvolvido no "Simulink" Considerando perdas magnéticas para Simulação	41
Figura 4.1 -	Diagrama esquemático do sistema implementado.	43
Figura 4.2 -	Método de contagem de pulsos	45
Figura 4.3 -	Método de largura de pulsos	45
Figura 4.4 -	Inversor trifásico acionando carga equilibrada	50
Figura 4.5 -	Representação dos vetores fixos de tensão para as diferentes combinações de estados das chaves no plano $\alpha\beta$	52
Figura 4.6 -	Decomposição do vetor girante de referência, V [*] .	53
Figura 4.7 -	 Seqüências de chaveamento corretas (a) Seqüência usando como vetor nulo V₀(000) (b) Seqüência usando como vetor nulo V₇(111) 	54
Figura 4.8 -	Estratégia utilizando dois vetores nulos	55
Figura 4.9 -	 (a) Filtro passa-baixa para verificação da modulação. (b) Formas de onda normalizadas do sinal SVM por fase, de sua fundamental e da distorção triangular introduzida (simulação computacional); (c) Sinais a e b filtrados com filtro RC, Ch1 –Ch2 (resultados experimentais), (d) diferença entre estes sinais filtrados, math = ch1 – ch2 (resultado experimental). 	56
Figura 4.10 -	(a) Região estável no do plano S (b) região correspondente no Z com o uso da equação bilinear.	58
Figura 4.11 -	Mapeamento do plano S em Z pela equação a diferenças.	59
Figura 4.12 -	Resposta do filtro atraso obtida ($\tau = 0.001$ s), e "zoom" do mesmo sinal na borda positiva.	61
Figura 4.13 -	Circuito de acondicionamento dos sinais de corrente.	61
Figura 4.14 -	Simulação no Software SPICE da aplicação de um vetor fixo no plano $\alpha\beta$ de módulo 0.85, e em um ângulo de 30°. (a)- Corrente na fase a; (b) Pulso de acionamento da chave superior do inversor da fase a; (c) Pulso de acionamento da chave superior do inversor da fase b; (d) Pulso de acionamento da chave superior do inversor da fase c.	62

Figura 4.15 -	Sincronismo da amostragem da corrente	63
Figura 4.16 -	Diagrama de blocos da inicialização	64
Figura 4.17 -	Diagrama de blocos da interrupção de Amostragem das correntes	64
Figura 4.18 -	Diagrama de blocos da interrupção de controle (T1CMPINT)	65
Figura 4.19 -	Diagrama de blocos da interrupção de medição de velocidade (INTM)	66
Figura 5.1 -	Teste de transitório de carga, (a) Freqüência mecânica de referência, , (b) Tensão de referência, V_s^* , (c) Corrente de fase, i_{as} (d) Velocidade de eixo, Ω_m .	69
Figura 5.2 -	Teste de transitório de carga, (a) Velocidade de eixo, Ω_m , (b) Valor	70
	de pico da corrente, $I_s \cdot \sqrt{2}$ (c) Componente real da corrente, $2 \cdot i_{s,d} / 3$ (d) Corrente de fase. i_{as} ,	
Figura 5.3 -	Teste de transitório de carga, $T_c = T_{sn}$ (a) Freqüência de referência, f_s , (b) Tensão de referência, V_s^* (c) Corrente de fase, i_{as} (d) Velocidade de eixo, Ω_m .	70
Figura 5.4 -	Teste de transitório de carga, 1,5 T_{sn} , (a) Velocidade de eixo, $\Omega_{\rm m}$	71
	(b) Valor de pico da corrente, $I_s \cdot \sqrt{2}$ (c) Componente real da corrente, $2 \cdot i_{s,d} / 3$ (d) Corrente de fase, i_{as} .	
Figura 5.5 -	Teste de transitório de carga, , $T_c = T_{sn}$ (a) Freqüência de referência, f_s . (b) Tensão de referência, V_s (c) Corrente de fase, i_{as} (d) Velocidade de eixo, ω_m .	71
Figura 5.6 -	Teste de transitório de carga, , $T_c = T_{sn}$ (a) Velocidade de eixo, Ω_m , (b) Corrente de pico, $I_s \cdot \sqrt{2}$, (c) Componente real da corrente, $2 \cdot I_{sre} / 3$, (d) Corrente de fase, i_{as} .	72
Figura 5.7 -	Teste de transitório de carga, , $T_c = 1.5 \cdot T_{sn}$ (a) Freqüência mecânica de referência, Ω_m^* , (b) Tensão de referência, V_s^* , (c) Corrente de fase, i_{as} , (d) Velocidade de eixo, Ω_m .	72
Figura 5.8 -	Teste de transitório de carga, $T_c = 1.5 \cdot T_{sn}$ (a) Velocidade de eixo, Ω_m , (b) Corrente de pico, $I_s \cdot \sqrt{2}$, (c) Componente real da corrente, $2 \cdot i_{as} / 3$ (d) Corrente de fase, i_{as} .	73
Figura 5.9 -	Teste de transitório de carga, , $T_c = 1.5 \cdot T_{sn}$ (a) Freqüência mecânica de referência, Ω_m^* , (b) Tensão de referência, V_s^* (c) Corrente de fase, i_{as} (d) Velocidade mecânica de eixo, Ω_m .	73
Figura 5.10 -	Teste de transitório de carga, , $T_c = 1.5 \cdot T_{sn}$ (a) Velocidade mecânica de eixo, Ω_m , (b) Corrente de pico, $I_s \cdot \sqrt{2}$, (c) Componente real da corrente, $2 \cdot i_{s,d} / 3$, (d) Corrente de fase, i_{as} .	74

Figura 5.11 –	Teste de variação de velocidade de referência. Variação de 0 à 1500 rpm em \cong 4s., (a) Velocidade de referência, $\Omega_m *$, (b) Velocidade no eixo, Ω_m .	76
Figura 5.12 –	Teste de variação de velocidade , tempo de subida ≅ 2s , carga inercial. (a) Velocidade de referência, .(b) Velocidade de eixo.	76
Figura 5.13 –	Teste de variação de velocidade , tempo de subida $\cong 2s$ (a) Freqüência mecânica de acionamento, Ω_s , (b) velocidade de rotor, Ω_m .	77
Figura 5.14 –	Comportamento da corrente de entrada durante teste de variação de velocidade, (a) Velocidade de referência, Ω_m^* , (b) Corrente de carga do capacitor do barramento DC do inversor.	77
Figura 5.15 –	Teste de variação de velocidade de referência. Variação de 0 à 1500 rpm em \cong 4s., (a) Velocidade de referência, $\Omega_m *$, (b) Velocidade no eixo, Ω_m .	78
Figura 5.16 –	Comportamento das correntes nos testes de variação de velocidade, (a) Valor de pico da corrente de fase, $I_s \cdot \sqrt{2}$ (b) Componente na direção de V_s , $2 \cdot i_{s,d} / 3$.	78
Figura 5.17 –	Transitório de aceleração (a) Corrente da fase i_{as} , (b) velocidade de referência, $\Omega_m *$.	79
Figura 5.18 -	Resposta à rampa de velocidade de referência com máquina a vazio, (a) Velocidade de referência, Ω_m^* , variando de 0 à 1500 em \cong 700ms, (b) Velocidade de eixo, Ω_m .	79
Figura 5.19 -	Teste de variação de velocidade com carga inercial acoplada ao eixo. (a) - Velocidade de referência, $\Omega_m *$,(b) Velocidade de eixo, Ω_m .	80
Figura 5.20 –	Rampa de velocidade, (a) Corrente de fase, i_{as} (b) Valor de pico, $I_s \cdot \sqrt{2}$.(c) Velocidade de referência, $\Omega_m *$.	80
Figura 5.21 –	Resposta dinâmica a variações bruscas na velocidade de referência para máquina a vazio. (a) Velocidade de referência, $\Omega_m *$, (b) Velocidade de eixo, Ω_m .	82
Figura 5.22 -	Teste de variação de velocidade similar à mostrada na Figura 5.8,com carga inercial acoplada ao eixo. (a) Velocidade de referência, $\Omega_m *$,(b) Velocidade da máquina, Ω_m .	82
Figura 5.23 –	Transitório de variação brusca de velocidade de referência. (a) Tensão de referência, V_s^* , (b) Valor de pico da corrente de fase, $I_s \cdot \sqrt{2}$, (c) Velocidade de referência, Ω_m^* ,(d) Velocidade de eixo, Ω_m .	83

Figura 5.24 –	Erro provocado pela saturação nos sensores de corrente. (a) Valor de pico obtido pela fórmula, $I_s \cdot \sqrt{2}$, (b) Corrente medida i_{as} .	83
Figura 5.25 -	Regulação de velocidade para diferentes temperaturas de operação, (a) Velocidade mecânica de eixo, Ω_m , máquina a temperatura ambiente. (b) Mesma variável para temperatura de operação superior ao caso anterior.	85

Lista de Tabelas

Tabela 4.1 –	Estado das chaves e tensões de saída	50
Tabela 4.2 –	Estado das chaves e tensões	51
Tabela 5.1 –	Regulação de velocidade	84

Lista de Variáveis

R_s	Resistência de estator
R_r	Resistência de rotor referida ao estator
L_s	Indutância própria de estator
L_r	Indutância própria de rotor
L_{ls}	Indutância de dispersão do estator
L_{lr}	Indutância de dispersão do rotor
L_m	Indutância mútua
X_s	Reatância de estator
X_r	Reatância de rotor
X_{ls}	Reatância de dispersão de estator
X_{lr}	Reatância de dispersão de rotor
X_m	Reatância de magnetização
V_s	Valor eficaz da tensão de alimentação
E_s	Valor eficaz da tensão induzida de estator
E_g	Valor eficaz da tensão induzida pelo fluxo de entreferro
I_s	Valor eficaz da corrente de estator
I_r	Valor eficaz da corrente de rotor
I_m	Valor eficaz da corrente de magnetização
<i>i</i> _{ks}	Corrente instantânea da fase genérica k.
$i_{s,xy}$	Vetor espacial corrente de estator , referentes aos eixos genéricos x e y

$\mathcal{V}_{s,xy}$	Vetor espacial tensão de estator, referentes aos eixos genéricos x e y,
e _{s ry}	Vetor espacial tensão induzida de estator, referente aos eixos genéricos x e y
$\lambda_{s,xy}$	Vetor espacial tensão induzida de estator, referente aos eixos genéricos x e y
p	Número de pólos
Р	Número de pares de pólos
т	Número de fases
S	Escorregamento
ω_s	Freqüência elétrica de alimentação de estator (rad/s)
$\boldsymbol{\omega}_{r}$, $\boldsymbol{\omega}_{slip}$	Freqüência elétrica do circuito do rotor (rad/s)
ω_m	Freqüência elétrica equivalente à velocidade de rotor, $P \cdot \Omega_m$
ω_m	Freqüência mecânica (rad/s).
ω_s	Velocidade mecânica da máquina
Ω_{s}	Velocidade mecânica do campo girante de estator $\Omega_s = \omega_s / P$
Ω_{s}	Velocidade mecânica do rotor
P_{gap}	Potência que atravessa o entreferro
$P_{\acute{u}til}$	Potência útil
$P_{entrada}$	Potência de entrada
P_{ferro}	Potência dissipada no circuito magnético da máquina
$P_{s_{cobre}}$	Potência dissipada na resistência de estator
В	Indução magnética
Φ	Fluxo magnético
k_w	Constante de enrolamento
T_{em}	Torque eletromagnético
T_{bd}	Torque máximo
ω_{rbd}	Freqüência de rotor referente ao torque máximo
,αβ	Índice relativos ao sistema de eixos estacionário
,dq	Índice relativos ao sistema de eixos girante
*	Índice relativo ao valor de referência da variável
N	Índice relativo ao valor nominal da variável

Sumário

Resumo		II
Abstract		II
Lista de Figu	ras	V
Lista de Tabe	elas	IX
Lista de Varia	áveis	IX
Capítulo 1 -	Introdução	1
Capítulo 2 -	Técnicas de Controle Escalar Aplicadas à Máquina de Indução	3
2.1 Introdução	D	3
2.2 Revisão Bi	ibliográfica	4
2.3 Estratégia	s de Controle Escalar	6
2.3-1 Propo	osta em Malha Fechada de Velocidade	6
2.3-2 Propo	osta em Malha Aberta de Velocidade	8
2.3-3 Propo	osta em Malha Aberta com Estimador de Velocidade	9
2.3-4 Propo	osta de controle por redução de fluxo	10
2.4 Modelame	nto matemático da máquina	11
2.5 Compensa	ção de Tensão	12
2.6 Compensa	ção de Frequência	16
2.7 Redução d	e Fluxo	19
Capítulo 3 -	Discussão Sobre a Estratégia de Controle Escalar Implementada	21

3.1 Introdução	21
3.2 Discussão sobre as principais limitações dos métodos propostos	21
3.3 Melhoramentos Propostos pela Estratégia Implementada	23
3.3-1 Modelamento das Perdas Magnéticas	24
3.3-2 Estratégia de compensação de tensão fasorial	26
3.3-3 Estratégia Não-Linear de Controle da Freqüência da Acionamento	32
3.3-5 Esquema geral	38
3.4 Modelo para Simulação da Máquina Incluindo Perdas Magnéticas	38
Capítulo 4 - Descrição do Sistema Implementado	43
4.1 - Introdução	43
4.2 - Sistema geral	43
4.3 - Medição de Velocidade	45
4.3 - 1 Método da contagem de pulsos	45
4.3 - 2 Método da largura dos pulsos	46
4.3 - 3 Discussão sobre precisão e Aspectos práticos da implementação	47
4.4 - Implementação da Modulação por Vetores Espaciais (SVM)	49
4.4 -1 Representação dos estados do inversor nas coordenadas $lphaeta$	50
4.4 -2 Geração do vetor espacial girante	52
4.4 -3 Discussão sobre métodos de implementação e resultados	55
4.5 – Filtros Passa-baixa Digitais	58
4.6 – Amostragem da corrente	62
4.7 - Algoritmo de Controle	64
Capítulo 5 - Resultados Experimentais	69
5.1 - Introdução	69
5.2 - Procedimentos Experimentais	67
5.3 - Resultados	70
5.3-1 Transitórios de Aplicação de Carga	70
5.3-2 Variações lentas de velocidade	76
5.3-3 Variações bruscas de velocidade	83

5.3 - 4 Resposta em Regime		86
Capítulo 6 -	Conclusões e Sugestões para Trabalhos Futuros	89
6.1 Conclusõe	28	89
6.2 Sugestões	para Trabalhos Futuros	91
Referências E	Bibliográficas	93
Apêndice		97

Capítulo 1

INTRODUÇÃO

Desde o surgimento do controle vetorial por orientação por fluxo, a maioria das pesquisas em acionamento de máquinas elétricas estão voltadas a este método e muito pouco tem sido estudado sobre as técnicas escalares de controle. Contudo, passados quase 30 anos do surgimento do controle vetorial, a maioria das aplicações industriais utilizam o controle escalar V/f, pois a maioria destas aplicações não requererem alto desempenho e portanto podem ser executadas com estratégias de controle simples e de baixo custo.

O surgimento das novas tecnologias de processamento digital permitiu que novas técnicas de implementação sejam incorporadas, aumentando-se o desempenho dos sistema escalares de controle das máquinas elétricas em acionamentos.

Este trabalho tem como objetivo avaliar o desempenho de uma nova proposta de controle de velocidade em malha aberta do motor de indução baseada na técnica escalar V/f. A avaliação desta proposta será fundamentada nos resultados obtidos experimentalmente e nas técnicas usadas na concepção do sistema, as quais visam principalmente a minimização do erro de velocidade.

Organização do Texto

No capítulo 2 é apresentada uma revisão das diversas técnicas de controle escalar tradicionalmente usadas em acionamentos industriais, buscando-se discutir as suas limitações e vantagens. Com esta revisão pretende-se introduzir os conceitos de compensação de tensão e freqüência em malha aberta de velocidade também utilizados na proposta estudada neste trabalho.

No Capítulo 3 é apresentada a estratégia de controle escalar em malha aberta, voltada às aplicações que requerem uma boa regulação de velocidade. O sistema se diferencia dos esquemas tradicionais de acionamento em malha aberta por algumas técnicas usadas no controle, tais como: a adoção de uma técnica de compensação de tensão baseada na representação fasorial das variáveis da máquina; da compensação do escorregamento baseado na característica não linear da curva de torque; e a inclusão das perdas magnéticas para uma determinação mais precisa do torque eletromagnético. No decorrer do capítulo discute-se os melhoramentos teóricos frente aos métodos tradicionais de controle.

No Capítulo 4 são documentadas as técnicas usadas na implementação do sistema de controle, a qual foi realizada através do uso de um processador digital de sinais (DSP). As estratégias usadas no desenvolvimento do algoritmo de controle, na aquisição de sinais e na modulação usada no acionamento, pertinentes na avaliação dos resultados obtidos, encontramse detalhadas neste capítulo. Este capítulo contém ainda, informações que facilitam o desenvolvimento de trabalhos futuros.

No Capítulo 5 são apresentados os resultados obtidos nos testes experimentais. A escolha destes testes foi feita de forma a verificar o desempenho do sistema sob vários aspectos, tais como: transitórios diante de perturbações de carga, regulação de velocidade, e variações da velocidade de referência. No decorrer do capítulo os resultados obtidos nos testes são discutidos verificando os méritos do sistema e identificando, quando for o caso, agentes e razões causadores de distúrbios. Possíveis melhorias visando a diminuição das limitações apontadas são discutidas no Capítulo de Conclusões e Trabalhos Futuros.

Capítulo 2

TÉCNICAS DE CONTROLE ESCALAR APLICADAS À MÁQUINA DE INDUÇÃO

2.1 Introdução

A escolha de uma estratégia de controle é vital na determinação das características e desempenho de um sistema de acionamento. Em muitas aplicações em sistemas de acionamento industrial, o requisito principal do desempenho de um acionamento é a resposta em regime. Nestes casos, a dinâmica do acionamento, embora importante, é levado em conta apenas como critério secundário. Desta forma, a estratégia de controle V/f em malha fechada de velocidade ocupa lugar de destaque, já que a mesma é usada em grande parte dos acionamentos industriais, justamente por satisfazer tais requerimentos. Alternativamente, seja pela redução de custos, seja pela impossibilidade prática quanto ao uso do sensor de velocidade, estratégias de controle em malha aberta de velocidade tem sido desenvolvidas visando diminuir a diferença de desempenho das mesmas quando comparadas aos métodos em malha fechada de velocidade.

Em geral, o conversores usados no acionamento possuem uma pequena margem de segurança quanto à capacidade de corrente, durante a operação normal. Assim, independentemente da estratégia de controle escolhida para o acionamento, deve-se garantir a operação em regiões de elevada taxa torque/ampère, aproximando-se das condições nominais da máquina e do inversor e minimizando-se as perdas. Isto pode ser obtido adotando a estratégia V/f com a limitação da velocidade de escorregamento. Assim, evita-se a operação em regiões onde o desempenho ou rendimento da máquina são baixos.

O princípio de controle V/f baseia-se na manutenção do fluxo de estator constante e igual ao seu valor nominal, independente da freqüência de acionamento e da carga no eixo do motor. Desta maneira, mantém-se a capacidade de torque da máquina tornando possível o acionamento em ampla faixa de velocidades. Uma aproximação freqüentemente usada na tentativa de manter fluxo constante é através da alimentação a uma taxa V/f constante, mas isto como mostrado nas seções seguintes, faz com que o fluxo da máquina diminua a medida que se diminui a freqüência de acionamento impossibilitando o acionamento com desempenho satisfatório em velocidades baixas.

A diminuição do fluxo não é o único problema da utilização do princípio V/f para o acionamento em velocidades baixas. Em acionamentos em malha aberta, a regulação de velocidade piora muito com a diminuição da velocidade de acionamento e isto está relacionado com o fato da velocidade de escorregamento $s \cdot \omega_s$ manter-se constante para um dado torque.

Este capítulo busca apresentar as várias técnicas de controle usando a técnica de compensação escalar ou V/f, tradicionalmente usadas na indústria bem como os recentes desenvolvimentos propostos e agregados a tais métodos. Inicialmente, é feita uma breve revisão bibliográfica dos métodos de controle em malha aberta, alvo principal desta dissertação; em seguida é apresentada a teoria envolvida nas diversas estratégias de controle escalar de velocidade.

2.2 Revisão Bibliográfica

As equações que descrevem o desempenho dinâmico tornam-se bastante simples quando se despreza as quedas de tensão nas impedâncias do estator da máquina. Contudo, tais aproximações, conduzem a um enfraquecimento do módulo do fluxo magnético da máquina, o que pode ser comprometedor em um sistema de acionamento em malha aberta de velocidade, devido a diminuição da capacidade de acionamento de torque da máquina.

Várias técnicas de compensação das quedas de tensão nas impedâncias série tem sido tradicionalmente empregadas [1]-[3] e a maioria delas usam uma relação V/f fixa. Em [4] foi proposta a implementação de uma técnica de compensação de fluxo baseada em uma relação V/f não linear predeterminada em conjunto com uma estratégia de geração da modulação por vetores espaciais. Este sistema foi implementado com o uso de um microprocessador e circuitos dedicados para a implementação do controlador Fuzzy. A relação não linear da curva V/f foi obtida em simulação computacional usando os parâmetros da máquina. O controle foi baseado em regras envolvendo a variação V/f e a largura dos pulsos de acionamento do inversor para implementação SVM. O uso de circuitos externos dedicados fez com que o algoritmo de controle fosse simplificado possibilitando sua implementação em microprocessadores de baixo custo.

Em [5] foi proposto um método de controle escalar em malha fechada de velocidade na qual a compensação de tensão foi desenvolvida. Adotando a orientação por fluxo de rotor, determinou-se o módulo de elevação de tensão necessária de modo a manter a corrente de campo constante e consequentemente do fluxo de rotor. Este equacionamento foi então usado na determinação de uma função que relaciona a corrente de eixo direto de estator com a freqüência de escorregamento. O acréscimo de tensão a ser aplicado, de acordo com as variações de torque, é obtido com uma outra função de transferência que relaciona às variações da corrente de estator à variações de tensão necessária à compensação. A resposta dinâmica obtida com o método proposto, quanto a resposta dinâmica, foi comparável ao conseguido com o controle vetorial por orientação de fluxo.

Em [6] uma outra estratégia de implementação da compensação de tensão foi introduzida, levando-se em conta o módulo da queda de tensão na impedância série. O fato de não ser considerado o fator de potência de entrada fez com que a compensação acabasse sendo maior que a necessária. Este erro na compensação não trouxe conseqüências graves, porém, a

utilização deste método em conjunto com uma estratégia de compensação em freqüência poderia conduzir a uma suposição errônea sobre a real curva estática de torque em função da velocidade da máquina.

Com o advento dos microprocessadores rápidos tornou-se possível a implementação de estratégias de compensação de tensão ainda mais sofisticadas. Em [7], foi introduzida uma compensação vetorial, levando-se em conta o fator de potência da corrente de entrada e, desta forma, pôde-se obter uma compensação da tensão mais precisa através da diminuição da queda na resistência de estator mantendo-se a relação Φ_s / f constante.

Tradicionalmente, o controle V/f em malha aberta de velocidade é usado em acionamento em velocidades altas e em aplicações onde não se exige um controle de velocidade preciso. Isto se deve ao fato de que, para velocidades baixas, mesmo com a compensação da perda de fluxo provocada pelas perdas na resistência série, a variação de velocidade para um dado torque acaba sendo pelo menos igual a variação para operação em velocidades altas, o que prejudica bastante a regulação para operação em baixas velocidades.

Uma melhor regulação de velocidade é conseguida com o emprego de técnicas de compensação de freqüência. Estes métodos de compensação consistem, de maneira indireta, na determinação do escorregamento, o qual é então usado na elevação da freqüência de alimentação da máquina fazendo com que se consiga uma melhor regulação de velocidade. Tradicionalmente, a compensação em freqüência é feita a partir das curva de torque da máquina em função da freqüência de acionamento e da velocidade do motor. Estas curvas apresentam características que tornam a compensação de freqüência mais fácil, já que o torque é uma grandeza escalar e, desde que se opere com fluxo constante, depende quase que exclusivamente da freqüência de escorregamento, sendo independente da freqüência de acionamento. Contudo, vale salientar, que a curva de torque é função não linear da velocidade e depende da estratégia de compensação de tensão utilizada.

Em [8] foi sugerido um método de compensação de freqüência, baseado em uma aproximação linear da curva estática de torque, o qual foi implementado a partir de uma função obtida de torque. Também foram apresentados estudos sobre a estabilidade do sistema proposto de compensação e os resultados obtidos mostram a diminuição drástica do erro de velocidade em regime, além de apresentar uma resposta dinâmica superior àquela dos métodos tradicionais de controle escalar.

Um método um pouco mais sofisticado sobre a compensação em freqüência, apresentado em [7], também se utiliza da curva aproximada de torque. Com a adoção de uma aproximação não linear e com um equacionamento rigoroso na estimação do escorregamento da máquina, foi possível determinar de maneira quase precisa o torque, possibilitando a operação em velocidades ainda mais baixas.

Em acionamentos V/f clássicos, trabalha-se com fluxo constante e igual ao nominal até a velocidade nominal sendo diminuindo, a partir daí para obtenção de velocidades maiores. Dentro da estratégia de controle escalar, alguns métodos de diminuição de fluxo para operação com torque e velocidade abaixo do nominal têm sido propostos com o intuito de fazer com que a máquina opere em ponto de operação em que se consegue minimizar as perdas [1].

A diminuição de fluxo necessária à implementação dos métodos de eficiência faz com que a resposta dinâmica obtida em tais acionamentos seja comprometida. Devido a isto, assim como o V/f, este tipo de controle é aplicado a processos cujo interesse principal é a resposta em regime, favorecendo o casamento entre estes métodos. Além disso, a diminuição natural da eficiência da máquina para operação em velocidades baixas faz com que o uso de engrenagens e sistemas com polias sejam preferidos em processos nos quais a eficiência do acionamento é de suma importância [9].

Em [10] propôs-se um controlador minimizador de perdas em malha aberta, no qual, para cada ponto de operação calcula-se o torque, varia-se a corrente de campo do modelo e ajusta-se a tensão de armadura de forma a evitar distúrbios na velocidade até que a condição de máxima eficiência de operação seja alcançada. Este tipo de modelo, também conhecido como controlador de busca, possui a vantagem de não necessitar do conhecimento dos parâmetros da máquina porém as características da curva de perdas quando se trabalha próximo a região de menor eficiência faz com que haja problemas de oscilação em torno do ponto ótimo.

Em [11] chega-se a uma expressão simples que relaciona as perdas totais da máquina operando em regime. Baseada nas perdas para operação próxima as condições de velocidade e torque nominais da máquina pôde-se determinar os valores de tensão e freqüência usados no acionamento a fim de se minimizar as perdas na máquina. Este tipo de equacionamento, assim como os descritos em [12] abrem espaço para o surgimento de métodos que usam a estratégia de controle escalar em processos de controle de eficiência. Em [10] também se descreve um deste processos. Apesar da vantagem de evitar problemas com estabilidade em torno do ponto ótimo de operação, os controladores baseados no modelamento matemático das perdas possuem a desvantagem de serem dependentes da correta determinação dos parâmetros da máquina e das possíveis variações que os mesmos sofrem em condições normais de operação.

2.3 Estratégias de Controle Escalar

Com o intuito de melhor situar a discussão feita nas demais seções deste capítulo, esta seção em especial faz um resumo das diversas técnicas de controle escalar tradicionalmente usadas na indústria, focalizando suas diferenças e semelhanças, e abordando aspectos que serão discutidos mais pormenorizadamente nas seções seguintes.

2.3-1 Proposta em malha fechada de velocidade

Nas figuras 2.1 e 2.2 estão ilustrados alguns dos métodos tradicionais de controle de velocidade em malha fechada da máquina de indução. Em todos os casos, o sistema de acionamento é composto de um conversor estático capaz de alimentar o motor segundo os sinais de controle de tensão e freqüência requeridos.

No primeiro caso, mostrado na figura 2.1, o sinal medido de velocidade é comparado com o sinal de referência de velocidade. A subtração entre estes sinais gera um sinal de erro, que por sua vez, passa por um controlador, tipicamente um PI, gerando um sinal usado para calcular a freqüência de acionamento da máquina. O controlador atua de forma a anular o erro em regime entre os sinais de referência e medido.

Como ocorre a realimentação de velocidade direta do sensor de velocidade, a tensão de acionamento não é responsável por erros na resposta de velocidade. Ela é ajustada apenas para garantir o fluxo próximo ao nominal, garantido o acionamento da carga, qualquer que seja a freqüência de referência. As fontes de erro para a resposta em regime da velocidade são a

incapacidade por parte do conversor de gerar as referências de freqüência de acionamento definidas pelo controle e um eventual erro na medição de velocidade.

Devido a capacidade de variação de freqüência e tensão de acionamento muito rápida, quase sempre é necessário uma limitação da corrente de acionamento. Neste método, conforme mostrado na figura 2.1, esta limitação está sendo feita de forma a atuar no sentido de diminuir a tensão e freqüência de acionamentos.

Figura 2.1 - Estratégia de controle em malha fechada de velocidade

Uma segunda estratégia de controle em malha fechada está ilustrada na figura 2.2. Assim como na configuração apresentada anteriormente, o sinal de velocidade de referência é subtraído do sinal de velocidade medido com o auxílio do sensor de velocidade. A diferença entre estes sinais passa por um controlador de velocidade cujo sinal de saída é novamente somado ao sinal vindo do sensor. O sinal de saída do controlador em regime deve portanto convergir para a freqüência de escorregamento $s \cdot \omega_s$, e como no caso anterior, isto faz com que o erro de velocidade do eixo da máquina seja nulo.

O gerador de funções usa uma relação V/f fixa e predeterminada de tensão em função da freqüência de acionamento. A tensão de referência gerada V_s^* é obtida de uma forma nãolinear fazendo com que a relação V/f seja maior para baixas freqüências de acionamento. Desta maneira, reduz-se o efeito de diminuição de fluxo em baixas freqüências e melhora-se a capacidade de acionamento da máquina nestas regiões. Neste caso, as oscilações nos valores de referência de tensão e freqüência são menores durante a ocorrência de transitórios de carga. Isto se deve ao fato do método usado na realimentação ser superior ao adotado no caso anterior, pois a saída do controlador converge para a velocidade de escorregamento e não para a velocidade síncrona como no caso anterior. Uma forma alternativa de limitação de corrente neste caso poderia ser obtida de maneira indireta com a introdução de um bloco que limite a freqüência de escorregamento, de modo a operar em regiões em que a corrente exigida pela máquina seja baixa.

Figura 2. 2 - Estratégia de controle em malha fechada com controle de escorregamento.

Quando uma variação repentina de velocidade é requerida, o controlador de velocidade limita a freqüência de escorregamento do rotor de forma que esta seja menor que a freqüência para a qual ocorre o torque máximo ("breakdown frequency") garantindo, desta maneira, que o motor desenvolva uma aceleração rápida para a velocidade desejada. Uma redução brusca de velocidade é obtida trabalhando-se com escorregamento negativo, ou seja, a máquina opera temporariamente como gerador. Nestes casos, o conversor deve ser capaz de manipular esta potência gerada, seja pelo retorno da mesma para a rede de alimentação, seja pelo armazenamento temporário ou, até mesmo, pela dissipação da mesma.

2.3-2 Proposta em malha aberta de velocidade

Um dos modelos mais simples de acionamento em malha aberta de velocidade está mostrado na figura 2.3. A velocidade mecânica de referência é usada para o cálculo da freqüência de escorregamento. Neste tipo de acionamento o escorregamento é desprezado e a velocidade mecânica do eixo só é igual a velocidade de referência para operação a vazio. Desde que a velocidade de escorregamento é desprezada, este tipo de acionamento apresenta baixa regulação de velocidade. O uso deste modelo está restrito a velocidades altas já que, para velocidades baixas, a regulação piora consideravelmente. Isto pode ser entendido se lembrarmos que, operando-se com um fluxo aproximadamente constante e para um mesmo torque de acionamento, a velocidade de escorregamento independe da velocidade da máquina,

fazendo com que haja uma degradação na regulação de velocidade a medida que se diminui a velocidade de operação.

Figura 2.3 – Modelo de acionamento V/f em malha aberta

2.3-3 Proposta em malha aberta com estimador de velocidade

A estratégia em questão é similar a descritas nas seções 2.3-1. A diferença é que neste caso não há medição da velocidade através de um transdutor e a velocidade é estimada através de parâmetros conhecidos do sistema. Portanto, a estratégia de controle passa a requerer o conhecimento da relação entre o escorregamento e as variáveis conhecidas (tensão, corrente, freqüência e parâmetros da máquina). A partir do conhecimento da velocidade síncrona e do escorregamento, pode-se obter a velocidade da máquina. Tradicionalmente, o método é empregado na estimação de velocidade de escorregamento é a aproximação das curvas de torque para diversas freqüências de acionamento por retas de inclinação constante. Como será mostrado na seção 3.2, esta aproximação é satisfatória para operação com valores baixos de torque de carga, tipicamente abaixo do nominal, mas pode conduzir a erros consideráveis quando se trabalha com torque de carga acima do nominal.

2.3-4 Proposta de controle por redução de fluxo

A operação próxima ao fluxo nominal da máquina resulta em uma boa utilização do ferro e alto torque por ampere e o torque nominal pode ser desenvolvido em todas as freqüências de alimentação. Estas são uma das razões que fazem com que os métodos de controle escalar com fluxo constante sejam bastante utilizados. Porém, quando se opera em baixas cargas, o fluxo de entreferro é maior que o necessário para o desenvolvimento do torque requerido. A relação V/f pode então ser ajustada em função da carga do motor, buscando a máxima eficiência através da redução da tensão e aumento do escorregamento.

Figura 2.4 – Acionamento em malha aberta com estimação de escorregamento

A estratégia de controle do fluxo pode ser empregada em conjunto com qualquer uma das técnicas mostradas anteriormente. A diferença da técnica em questão está no controle independente entre tensão e freqüência que permite a variação do fluxo. Diversas são as configurações de controle de fluxo possíveis dependendo das variáveis de controle escolhidas no equacionamento para a otimização da eficiência do motor. Um exemplo de configuração de controle para maximização da eficiência está mostrada na figura 2.5.

Figura 2.5 – Proposta de controle com redução de fluxo

O princípio de funcionamento deste esquema é semelhante aos apresentados nas figuras 2.2 e 2.4. Conforme será deduzido na seção 2.7, o escorregamento que determina a condição de minimização das perdas é função apenas dos parâmetros da máquina e da freqüência de acionamento da máquina. O valor de escorregamento ótimo obtido pode ser comparado com a freqüência de acionamento atual de forma a gerar o sinal de erro, e este sinal, por sua vez, passa por um controlador de tensão que gera a tensão de referência. Em regime, como o controlador de tensão tem um ganho integral, o sinal de erro imediatamente antes do controlador de tensão se anula, ou seja, a freqüência de escorregamento se iguala a freqüência de escorregamento ótima e a máquina atinge a condição de eficiência máxima.

É importante lembrar que este tipo de controle depende dos parâmetros da máquina e, devido a isto, um valor incorreto dos seus valores faz com que haja erros na determinação do escorregamento ótimo.

2.4 Modelamento matemático da máquina

A operação da máquina de indução em regime pode ser analisada através do seu circuito equivalente. Com o intuito de simplificar a análise, algumas hipóteses são geralmente feitas: 1) o efeito Skin é desprezado; 2) as reatâncias são lineares e diretamente proporcionais a freqüência acionamento; 3) os efeitos causados pela saturação são desprezados; 4) as perdas no ferro são desprezadas e, assim, o ramo de magnetização é composto apenas de uma reatância de magnetização (X_m).

Figura 2.6 – Circuito equivalente da máquina de indução

A onda de fluxo girante de estator induz uma f.e.m. E_s nos enrolamentos do estator. Na operação da máquina como motor, o sentido do fluxo de potência da máquina faz com que esta f.e.m. seja necessariamente menor que a tensão terminal aplicada. Considerando que o fluxo girante de estator apresenta uma distribuição senoidal no espaço e o fluxo concatenado por cada bobina possui uma variação senoidal no tempo. Assim o fluxo instantâneo concatenado por uma bobina, pode ser escrito como:

$$\phi_s = \Phi_s \cdot sen(\omega_s \cdot t) \tag{2.3-1}$$

na qual, Φ_s é o valor de pico do fluxo de estator.

A tensão instantânea induzida nas bobinas de uma fase de N_s espiras em série é, devido a esta variação senoidal de fluxo, dada por

$$e_{s} = k_{w} \cdot N_{s} \cdot \left(\frac{d\phi_{s}}{dt}\right) = \omega_{s} \cdot \Phi_{s} \cdot \cos(\omega_{s} \cdot t)$$
(2.3-2)

com o seu valor eficaz dado por

$$E_s = \frac{2 \cdot \pi \cdot k_w \cdot N_s}{\sqrt{2}} \cdot f_s \cdot \Phi_s.$$
(2.3-3)

A razão entre a tensão de estator e a freqüência de alimentação pode, então, ser escrita como

$$\frac{E_s}{\omega_s} = \Phi_s \cdot Kw \cdot sen(\omega_s \cdot t)$$
(2.3-4)

na qual, Kw é o fator de enrolamento.

2.5 Compensação de tensão

A partir da equação (2.3-4) pode-se concluir que um fluxo de entreferro constante pode ser obtido quando a razão E_s / f é constante. Caso a queda na resistência série R_s seja pequena, o fluxo de entreferro será aproximadamente constante se a relação entre a tensão e freqüência de alimentação V_s / f_s também o for.

Desprezando-se a resistência série, um fluxo constante é então obtido pela variação linear da tensão de entrada em função da freqüência. A reta que define a variação destes parâmetros para que se mantenha o fluxo nominal, passa pela origem e pelo ponto correspondente a tensão e freqüência nominais. Contudo, a operação em freqüências baixas, para este tipo de acionamento, é comprometida devido a queda de tensão nesta resistência ser significativa, quando comparada com a tensão aplicada. Somando-se as resistências do ramo do rotor, conforme mostrado na figura 2.6, chega-se a:

$$R_r(s) = \frac{R_r}{s} = R_r \cdot \frac{\omega_s}{\omega_{slip}}$$
(2.3-5)

Assim, para uma velocidade de escorregamento fixa, observando o circuito da figura 2.6, chega-se a conclusão de que todos os parâmetros, com exceção da resistência de estator, sofrem uma variação proporcional a freqüência de acionamento. A medida que se diminui esta freqüência, para operação à velocidades menores, todas as impedâncias do circuito diminuem com uma relação proporcional a mesma, com exceção da resistência série de estator, a qual se mantém. Isto faz com que a queda de tensão na mesma assuma parcelas cada vez mais significativas da tensão de alimentação fazendo com que a aproximação de se desprezar a queda na mesma, não mais seja válida. A conseqüência disto é a diminuição do fluxo na máquina e a conseqüente diminuição do torque gerado que isto provoca.

A solução mais simples que pode ser adotada para a resolução deste problema é uma elevação da tensão de alimentação a medida que se diminui a freqüência de acionamento. A figura 2.4 mostra alguns dos métodos de elevação da tensão adotados em acionamento industriais.

Figura 2.7 - Curvas de variação da tensão de alimentação em relação à freqüência

Os métodos propostos e ilustrados na figura 2.7 conduzem a resultados bastante satisfatórios para acionamento de cargas que possuem curvas de torque em função da velocidade invariante no tempo. Isto porque, a partir do conhecimento desta curva pode-se determinar a forma de variação da corrente de entrada da máquina em cada ponto de operação e, desta maneira, pode-se obter a curva de variação de tensão em função da freqüência de maneira a eliminar o problema da queda de tensão em R_s e a conseqüente diminuição do fluxo que isto provoca.

Para cargas variáveis, não se obtém resultados satisfatórios com o emprego da técnica em questão. Isto porque, caso a elevação de tensão seja pré-programada para fornecer fluxo de entreferro aproximadamente nominal para a condição de plena carga, a relação V/f é excessiva à baixas cargas causando saturação magnética e altas correntes de magnetização. Portanto, a obtenção de melhores resultados para operação com carga variável no tempo, requer uma estratégia de compensação mais adequada.

Uma das formas adotadas para a implementação de tais estratégias é através da operação com fluxo de entreferro constante e expressando as equações da máquina no sistema de eixos de referência síncrono [6]. Uma análise simplificada de como fazê-lo será mostrada a

seguir. A equação de tensão do estator neste sistema de eixos para uma máquina de indução é dada por:

$$v_{s,dq} = R_s \cdot i_{s,dq} + L_s \cdot \omega_s \cdot i_{s,dq} + L_m \cdot \omega_e \cdot i_{r,dq}$$
(2.3-6)

Orientando-se o fluxo de rotor com o eixo direto, o que faz com que $\lambda_{r,q} = 0$ e $i_{r,dq} = 0$ [13], a equação da tensão de estator é escrita como:

$$v_{s,dq} = R_s \cdot i_{s,dq} + L_{ls} \cdot \omega_s \cdot i_{s,dq} + L_m \cdot \omega_s \cdot \left(i_{s,d} + j \cdot i_{s,q} + j \cdot i_{r,q}\right)$$
(2.3-7)

Dado que, com a orientação de fluxo de rotor, tem-se:

$$\lambda_{r,d} = L_m \cdot i_{s,d} \tag{2.3-8}$$

e

$$i_{r,q} = -\frac{L_m}{L_r} \cdot i_{s,q} \tag{2.3-9}$$

a equação da tensão de estator o (2.3-6) pode ser escrita como:

$$v_{s,dq} = R_s \cdot i_{s,dq} + L_{ls} \cdot \omega_s \cdot i_{s,dq} + L_m \cdot \omega_s \cdot \left(i_{s,d} + j \cdot \left(1 - \frac{L_m}{L_r} \right) \cdot i_{r,q} \right)$$
(2.3-10)

Esta expressão define o circuito equivalente mostrado na figura 2.8 que é similar ao convencional, mostrado na figura 2.4. A diferença é que o equacionamento permite a separação entre o componente da corrente responsável pela magnetização I_{sd} e o componente I_{sq} , responsável pelo torque.

Figura 2.8- Circuito equivalente usando orientação por fluxo de rotor

Este modelamento permite, ainda, que se decomponha o valor eficaz da tensão de entrada V_s em duas parcelas, uma proporcional à freqüência de acionamento e uma dependente do escorregamento da máquina. Matematicamente tem-se:

$$V_s = V_s' + \Delta V_s = \frac{2}{3} \cdot \frac{1}{\sqrt{2}} \omega_{sI} \cdot L_m \cdot i_{ds} + \Delta V_s$$
(2.3-11)

Para um melhor entendimento de como isto pode ser usado na compensação, suponha que, inicialmente estejamos operando na região de motorização, $\omega_{slip} > 0$, no ponto "A", conforme mostrado na figura 2.9, e que haja uma mudança de freqüência de acionamento sem que haja mudança de torque de carga, mantendo o escorregamento constante, ou seja, do ponto de operação "A" para "B". Como não há mudança de velocidade de escorregamento, as impedâncias dos ramos onde passam as correntes i_{sd} e i_{sq} , conforme mostrado no circuito da figura 2.8, sofrem uma variação proporcional a freqüência. Assim, para que se mantenha a corrente de magnetização i_{sd} constante, deve haver uma variação em V_s ' de $\omega_{sl} \cdot L_m$ para $\omega_{s2} \cdot L_m$ enquanto que o ganho de compensação de escorregamento ΔV_s mantém-se praticamente constante.

Figura 2.9 – Compensação de tensão para manter fluxo de entreferro constante para variações no escorregamento.

Suponhamos agora uma mudança de carga fazendo com que o escorregamento cresça de ω_{slip1} para ω_{slip2} , ou seja, uma mudança do ponto "B" para o ponto "C". Um aumento do escorregamento, conforme mostrado na figura, fará com que a impedância do ramo, que passa a componente de torque i_{qs} diminua, forçando a queda da tensão induzida pelo fluxo de entreferro E_g . Neste caso, o controlador deve atuar de forma a aumentar a parcela de tensão devida ΔV_s de ΔV_{s1} para ΔV_{s2} .

Assim, a compensação da tensão de alimentação devido a variações de escorregamento requer, portanto, o conhecimento das funções de transferência que relacionam as variações de tensão ΔV_s com as variações da velocidade de escorregamento, quando se opera com fluxo de entreferro constante.

2.6 Compensação em freqüência

A compensação de freqüência pode ser feita de duas formas: utilizando uma estratégia de controle em malha fechada, conforme mostrado nas figura 2.1 e 2.2; ou adotando-se uma estratégia de compensação de freqüência em malha aberta de velocidade, estimando-se a velocidade por um método indireto através de medições das variáveis do sistema, conforme mostrado na figura 2.4.

Tradicionalmente, o torque eletromagnético é a variável utilizada na determinação do escorregamento. Dentre os motivos que levam a esta escolha estão o fato de se tratar de uma grandeza escalar e a forma de variação do mesmo em função da velocidade de escorregamento. Estes fatores fazem com que a realização da estratégia de compensação de escorregamento através do torque seja mais simples quando comparada com outras variáveis da máquina.

Como já citado, uma das limitações da operação deste tipo de controle em velocidades baixas é a incapacidade de acionamento devido a diminuição do torque em baixas freqüências. Esta diminuição de torque em baixas freqüências pode ser comprovada pela análise do circuito equivalente da máquina de indução. Sabe-se que a potência útil da máquina é dada por uma fração da potência na resistência dependente do escorregamento. Esta potência é dada por:

$$P_{util} = 3 \cdot \left(\frac{1-s}{s}\right) \cdot R_r \cdot I_r^2 = 3 \cdot \left(\frac{\omega_r}{\omega_{slip}}\right) \cdot R_r \cdot I_r^2$$
(2.3-12)

O torque eletromagnético pode ser obtido pela divisão desta potência pela velocidade mecânica do rotor. Assim temos:

$$T = \frac{p \cdot m}{2 \cdot \omega_s} \cdot I_r^2 \cdot \frac{R_r}{s}$$
(2.3-13)

A corrente de rotor I_r pode ser expressa em função dos parâmetros do circuito equivalente e da velocidade da máquina. Assim o fazendo e substituindo o resultado na equação (2.3-13) obtém-se a seguinte expressão para o torque eletromagnético:

$$T = \frac{p \cdot m}{2} \cdot \left(\frac{V}{\omega_s}\right)^2 \cdot \frac{\omega_r \cdot X_m^2 / R_r}{\left[R_s - \frac{\omega_r}{\omega_s \cdot R_r} \cdot \left(X_s \cdot X_r - X_m^2\right)\right]^2 + \left(X_s + \frac{\omega_r \cdot R_s \cdot X_r}{\omega_s \cdot R_r}\right)^2}$$
(2.3-14)

na qual :

$$X_{s} = X_{ls} + X_{m}$$
$$X_{r} = X_{lr} + X_{m}$$

O uso desta expressão para várias freqüências de acionamento ω_s , mantendo-se constante a relação entre a tensão de alimentação e esta freqüência, gera-se a família de curvas de torque eletromagnético em função da velocidade da máquina, como mostradas na figura 2.10 (em azul) :

Obs.: Estas curvas foram obtidas a partir dos parâmetros do motor usado em laboratório.

É importante ressaltar que as curvas mostradas na figura dependem da tensão de alimentação e, consequentemente, da estratégia de compensação de tensão escolhida. Como será visto mais adiante, estratégias mais sofisticadas de compensação de tensão que mantém o módulo do fluxo constante permitem que se obtenha curvas uniformes, ou seja, curvas de mesmo formato e para todas as freqüências de acionamento. Devido a isto, a elaboração de uma estratégia eficiente de compensação em freqüência é enormemente simplificada.

Na operação como motor, pode-se notar a diminuição do torque gerado em baixa freqüências, devido a diminuição no valor do fluxo, conforme discutido anteriormente. Porém, na região de operação como gerador, pelo fato da inversão do fluxo de potência, a queda de tensão provocada na resistência de estator R_s , devida a componente ativa da corrente é revertida, resultando em um incremento da tensão E_s . Uma elevação na tensão E_s significa aumento no fluxo de estator ou seja, o contrário do que ocorre para operação como motor. Na operação como gerador, o fluxo da máquina aumenta com o aumento da carga e, se

desconsiderarmos o efeito da saturação, valores maiores de torque eletromagnético seriam produzidos com a diminuição da freqüência de acionamento. Na prática o efeito da saturação limitaria os valores máximos de torque obtidos nesta região, fazendo com que os valores de torque eletromagnéticos obtidos para operação como gerador sejam bem menores que os mostrados na figura 2.10.

As estratégias adotadas normalmente adotadas na aproximação das curvas é a aproximação linear, fazendo com que as curvas de torque mostradas na figura sejam aproximadas por retas passando pelo ponto de cruzamento das curvas reais da máquina com o eixo das velocidades, assim como mostrado na figura 2.10 (em vermelho). Pode ser mostrado, através de aproximações, que a inclinação destas retas é constante, não dependendo da freqüência de acionamento[14].

Figura 2.11 – a) Aproximação linear das curvas de torque b) Princípio de compensação em freqüência

Suponhamos que se deseja acionar uma carga com velocidade fixa correspondente ao ponto A, conforme mostrado na figura 2.11-b. Caso haja um incremento no torque de carga aplicado, resultando no valor T_c e que não haja mudança da freqüência de acionamento, o ponto de operação do motor se deslocaria de "A" para "B". A técnica de compensação em freqüência consiste em aumentar a freqüência de alimentação de modo que com o incremento de carga, o motor não altere sua velocidade. Ou seja, a medida que a carga aumenta, aumenta-se a freqüência de alimentação. No caso mostrado na figura 2.11-b, um incremento de carga seria compensado por um aumento na tensão de alimentação de ω_{s1} para ω_{s2} , e, consequentemente a velocidade do rotor se manteria e o novo ponto de operação seria "C".

Assim, uma vez conhecida a característica de torque da máquina a partir de um método de estimação do torque, pode-se compensar a freqüência de alimentação de modo que a velocidade do eixo, em regime, se mantenha constante e independente de variações do torque de carga. Vale a pena resaltar que, no caso mostrado na figura 2.10, a aproximação linear para a freqüência nominal de 60Hz, só é uma boa aproximação para torques de carga abaixo do nominal. A medida que se diminui a freqüência de acionamento, a aproximação linear só conduz a bons resultados para torques de carga ainda menores.

A partir de aproximações lineares das curvas estáticas da máquina, ilustradas na figura 2.11, a queda de velocidade é proporcional ao torque de carga no eixo, ou seja, o escorregamento é constante desde que o torque de carga também o seja. Isto permite que a freqüência de acionamento seja facilmente compensada sob a condição de torque de carga constante. De acordo com esta figura, a equação que relaciona o torque eletromagnético à freqüência de escorregamento é dada por:

$$T_{em} = \frac{T_{emN}}{\omega_N \cdot s_N} \cdot f_{slip}$$
(2.3-16)

A partir da equação (2.3-12) pode-se deduzir que o torque eletromagnético também pode ser dado por:

$$T_{em} = \frac{P}{2 \cdot \pi} \cdot \frac{P_{gap_N}}{f_m^* + f_{slip}}$$
(2.3-17)

na qual P_{gap} é a potência que atravessa o entreferro. Esta potência também pode ser obtida através do circuito equivalente, conforme mostra a figura 2.6.

Substituindo a equação (2.3-16) em (2.3-17), chegamos a seguinte equação:

$$f_{slip}^{2} + f_{m} \cdot f_{slip} - \frac{p}{4 \cdot \pi} \cdot \frac{f_{slip_{N}}}{T_{em_{N}}} \cdot P_{gap} = 0$$
(2.3-18)

resolvendo esta equação para f_{slip} , tem-se:

$$\omega_{slip} = \frac{1}{2} \cdot \sqrt{\omega_m^{*2} + \frac{P \cdot \pi \cdot s_N \cdot \omega_{sN}}{T_{emN}} \cdot P_{gap}} - \omega_m^{*}$$
(2.3-19)

na qual, as variáveis com índices "N" são referentes aos valores nominais. O uso desta equação permite que se possa determinar a velocidade de escorregamento em função das variáveis de entrada. Lembrando-se que ω_m^* é variável de controle e que todos os demais parâmetros da equação 2.3-19 são constantes, com exceção de P_{gap}, pode-se, supondo operação em regime, determinar a velocidade de escorregamento da máquina e, como descrito nas seções 2.3-1 e 2.3-3, minimizar o erro de velocidade do sistema.

2.7 – Redução de Fluxo

Com um controle independente de tensão e freqüência, pode-se obter várias combinações de tensão de operação P, conforme mostrado na figura 2.12. Cada par

tensão/freqüência define uma curva que passa pelo ponto P especificado, porém, dependendo da curva escolhida, a eficiência de operação varia significativamente. Se a taxa V/f é muito alta, corrente de magnetização e as perdas no núcleo são elevadas enquanto que as correntes da máquina , com exceção da corrente de magnetização são baixas, fazendo com que as perdas no cobre também o sejam baixas. Se a taxa V/f é muito baixa as perdas no núcleo são reduzidas, porém, a freqüência de rotor, ω_{r2} , cresce demasiadamente aumentado as perdas no núcleo do rotor, além de haver aumento também nas correntes de rotor e estator provocando e aumentando também das perdas no cobre. Consequentemente, há uma ótima relação tensão freqüência de operação no ponto P especificado.

Figura 2.12 – Curvas se torque para fluxo nominal e reduzido.

A figura 2.13 torna clara a existência de um ponto ótimo. No primeiro caso (a), a relação V/f é alta, assim E_s é alto, e também o é a corrente de magnetização I_m . Como o escorregamento é baixo a corrente I_r é baixa. A corrente total é alta e as perdas no cobre do estator é alta. Reduzindo-se a fem E_s pela metade (b), a corrente de magnetização também é reduzida pela metade e a corrente total I_s diminui, portanto, as perdas no estator também diminuem. A diminuição das perdas magnéticas e no cobre do estator mais que compensam o aumento das perdas no cobre do rotor e assim, as perdas totais são reduzidas. Uma nova redução de E_s , pela metade, fará com que a corrente I_r aumente demasiadamente o que provocará um aumento da corrente total I_s , como mostrado em (c). Assim as perdas no cobre do rotor e estator aumentam demasiadamente não sendo compensadas pela diminuição das perdas magnéticas. As perdas totais acabam aumentando em relação a situação mostrada em (b).

Figura 2.13 - Diagramas fasoriais para diversos fluxos de operação

Capítulo 3

A ESTRATÉGIA DE CONTROLE ESCALAR IMPLEMENTADA

3.1 Introdução

Neste capítulo serão apresentadas e discutidas técnicas que podem ser empregadas no melhoramento de um sistema de acionamento escalar em malha aberta. Através destas técnicas busca-se solucionar ou minimizar os problemas encontrados nestes acionamentos.

3.2 Discussão sobre as principais limitações dos métodos propostos

Como mostrado na seção 2.6, a compensação em freqüência através da curva de torque requer uma boa aproximação da mesma, independente da freqüência de acionamento escolhida. Três eram as principais desvantagens da estratégia de controle:

- 1) a curva real da máquina é não linear e a aproximação linear não conduz a bons resultados quando se trabalha em regiões com torque acima do nominal;
- a medida que se diminuía a freqüência de acionamento, dependendo da estratégia de compensação de tensão escolhida, existia uma grande variação do comportamento destas curvas e a aproximação linear conduzia a resultados ainda piores e
- nos esquemas propostos não se considerava as perdas magnéticas da máquina de indução, gerando um erro na determinação da potência que atravessa o entreferro e conseqüentemente erros na determinação correta da velocidade de escorregamento, expressão (2.3-19).

Todas estas fontes de erro contribuem para uma piora na regulação da velocidade de regime obtida. Isto pode ser explicado pela análise do processo usado na compensação da velocidade como mostrado na figura 3.1.

Pela figura 3.1-a pode-se entender melhor o erro provocado pela aproximação linear quando se opera em velocidades acima do nominal. Nela estão mostradas as curvas de torque para operação com fluxo constante, igual ao valor nominal, e suas respectivas aproximações lineares.

Suponhamos, inicialmente, que o motor opere com torque de carga nulo e velocidade de referência ω_0 . Uma variação no torque de carga acima do nominal, como mostrado na figura 3.1-a, faz com que o algoritmo de controle implementado, baseado na aproximação linear, eleve a freqüência da acionamento de Δf . Porém, devido ao erro de aproximação, o aumento na freqüência Δf para esta elevação de torque é insuficiente para manter a velocidade da máquina. No caso, a elevação de freqüência para que se mantivesse a velocidade a acionamento deveria ser $\Delta f'$ e não Δf . Devido a isto, a velocidade do rotor cai e a máquina passa a operar no ponto B correspondente a uma velocidade ω_L , ligeiramente menor que a velocidade inicial.

a) Operação com torque de carga acima do nominal.

b) Operação com torque de carga abaixo do nominal.

Figura 3.1 – Regulação de velocidade pelo uso da interpolação linear.

Se a variação no torque de carga for inferior ao torque nominal, o sentido do erro na regulação de velocidade é o oposto ao do caso anterior, ou seja, a regulação de velocidade seria negativa. Desta forma, no caso mostrado na figura, o incremento de freqüência gerado pelo controle é maior que o necessário ($\Delta f' > \Delta f$) e a máquina, neste caso, operaria em uma velocidade acima da inicial para operação em vazio.

É importante ressaltar que estes erros dependem da forma da curva estática de torque do motor e o grau de relevância dos mesmos na regulação de velocidade depende do tipo de motor usado no acionamento. Isto significa que, dependendo da característica de torque em função da velocidade de escorregamento e do ponto onde ocorre o torque nominal nesta curva, os efeitos discutidos nos parágrafos anteriores podem ou não ser significativos.

Erros provocados na regulação de velocidade por erros na compensação de tensão podem ser igualmente explicados. Estes tipos de erro provocam alteração nos valores de torque obtidos pois, dependendo das estratégias de compensação de tensão escolhidas, as
curvas estáticas de torque da máquina sofrem variações diminuindo ou aumentando de acordo com a fonte de erro na compensação de tensão.

Um outra desvantagem dos métodos tradicionais de controle é o fato de não se considerar as perdas magnéticas. Como mostrado a seguir, a não consideração de tais perdas, provoca erro na estimação do torque de carga e conseqüente deterioração da regulação de velocidade.

Na figura 3.2 estão mostradas as funções aproximadas do torque eletromagnético. Se os erros devido a aproximação linear da curva de torque forem desconsiderados, de modo que as retas mostradas na figura representem fielmente as curvas estáticas reais da máquina, podese analisar o efeito que um erro na determinação do torque tem na regulação de velocidade. Suponhamos inicialmente a operação em vazio com velocidade inicial ω_0 e que seja então aplicado um torque de carga igual a T_L , caso não houvesse compensação de escorregamento, a velocidade cairia para ($\omega_0 - \Delta f$) e a máquina passaria a operar no ponto C. Supondo também a ocorrência de um erro fazendo com que do algoritmo de estimação de torque obtivesse um torque de carga T_L' , a compensação de escorregamento aumentaria a freqüência de acionamento de $\Delta f'$. Isto faria com que a curva estática de torque sofresse um deslocamento conforme mostrado na figura. Assim, caso não houvesse mudança no torque, o ponto de operação passaria a ser B. Contudo, como o torque real de carga aplicado é T_L pela nova curva a máquina passa a operar no ponto A, o qual corresponde a velocidade ω_{TL} ligeiramente maior que a velocidade inicial ω_0 .

Figura 3.2 – Deterioração da regulação provocada por erro na estimação do torque eletromagnético.

3.3 Melhoramentos Propostos pela Estratégia Implementada

O sistema de controle implementado em laboratório busca a solução ou minimização destes problemas e está baseado no esquema proposto em [7]. Nesta seção será apresentada e discutida a teoria envolvida no sistema em questão.

Existe uma necessidade em se desenvolver um equacionamento mais rigoroso para as perdas da máquina a fim de se operar com velocidades baixas sem que haja uma perda significativa de sua regulação. Isto advém do fato de se estimar a velocidade da máquina através da função de torque, função que apresenta uma singularidade em $\omega_s = 0$. A função que relaciona a potência de entreferro a velocidade síncrona é dada por:

$$T = q \cdot \frac{P_{gap}}{\omega_s}$$
(3.3-1)

Geralmente, nos sistemas de acionamento busca-se operação em regiões onde o desempenho do motor seja satisfatório e assim sendo, para acionamentos em velocidades baixas, necessariamente trabalha-se com uma freqüência síncrona baixa a fim de que o escorregamento da máquina seja baixo. Desta maneira, supondo um acionamento com torque de carga fixo, pela expressão (3.3-1) pode-se notar que a medida que a velocidade de acionamento diminui a potência que atravessa o entreferro também o faz. Como conseqüência, a sensibilidade a variação das grandezas medidas e aproximações feitas no cálculo de P_{gap} é enormemente aumentada e as limitações práticas da determinação correta do valor de P_{gap} impossibilitam a operação em velocidades baixas.

3.3-1 Modelamento das Perdas Magnéticas

Como discutido anteriormente, um dos aspectos não considerados, porém pertinentes em operação em velocidades baixas, são as perdas magnéticas da máquina. Apesar de serem baixas, estas perdas podem ter grande influência na correta determinação da velocidade de escorregamento da máquina, principalmente em velocidades baixas.

O circuito equivalente da máquina de indução, considerando-se as perdas magnéticas está mostrado na figura 3.3. Conforme discutido em [15], as perdas magnéticas são dependentes da freqüência de acionamento, do escorregamento e do módulo do fluxo da máquina. Como a tensão E_g é proporcional ao fluxo de entreferro, pode ser mostrado que a resistência de perdas magnéticas é função apenas do escorregamento e da freqüência de acionamento.

As perdas em um material magnético uniforme qualquer submetido a um campo eletromagnético uniforme de amplitude B podem ser expressas por:

$$P_{ferro} = K_h \cdot B_{max}^{\ n} \cdot f + K_e \cdot B_{max}^{\ 2} \cdot f^2$$
(3.3-2)

na qual: K_h é uma constante de proporcionalidade de perdas por histerese. Seu valor depende principalmente do volume e tipo de material ferromagnético.

n é um coeficiente constante é dependente das propriedades do material tipicamente assume valores entre 1,5 e 2,5 [16],

 K_e é a constante de proporcionalidade de perdas por foucault dependente da geometria da máquina, da largura da laminação, volume e resistividade do material magnético.

e f é a freqüência do campo que o material está submetido.

Aplicando-se a equação (3.3-2) para o estator da máquina obtem-se:

$$P_{ferro_s} = K_{h_s} \cdot B^{n_s} \cdot f_s + K_{e_s} \cdot B^2 \cdot f_s^2$$
(3.3-3)

Para o rotor tem-se:

$$P_{ferro_r} = K_{h_r} \cdot B^{n_r} \cdot f_r + K_{e_r} \cdot B^2 \cdot f_r^2$$
(3.3-4)

Uma aproximação usada em [7] e [17] foi considerar que $K_{h_s} = K_{h_s} = K_h$, que $K_{e_s} = K_{e_r} = K_e$ e que $n_s = n_r = 2$. Assim, somando-se as parcelas de perdas no estator e no rotor, pode-se obter uma função de aproximação para a curva de perdas no núcleo da máquina.

$$P_{ferroTotal} = (l+s) \cdot K_h \cdot B_{max}^2 \cdot f_s + (l+s^2) \cdot K_e \cdot B_{max}^2 \cdot f_s^2$$
(3.3-5)

O valor nominal desta potência pode ser obtido pela substituição dos valores nominais das variáveis. Assim obtém-se que:

$$P_{ferro_{N}} = (l + s_{N}) \cdot K_{h} \cdot B_{max_{N}}^{2} \cdot f_{s_{N}} + (l + s_{N}^{2}) \cdot K_{e} \cdot B_{max_{N}}^{2} \cdot f_{s_{N}}^{2}$$
(3.3-6)

Tomando-se a razão entre as equações (3.3-5) e (3.3-6) e lembrando-se que o controle proposto trabalha com fluxo nominal em todo ponto de operação pode-se deduzir que:

$$\frac{P_{ferroTotal}}{P_{ferroN}} = \frac{1}{2} \cdot \left[\frac{(1+s)}{(1+s_N)} \cdot \frac{f_s}{f_N} + \frac{(1+s^2)}{(1+s_N^2)} \cdot \left(\frac{f_s}{f_N}\right)^2 \right]$$
(3.3-7)

Apesar das considerações feitas na dedução desta equação (3.3-7), os resultados obtidos utilizando-se a mesma na aproximação dos dados obtidos em ensaios em laboratório são bastante satisfatórios. A figura 3.4 mostra a curva de aproximação obtida a partir da função de aproximação de funções não lineares (genfit) do software MATHCAD. Através do uso da função pode-se determinar o melhor valor para a potência nominal de perdas no núcleo de modo a obter os menores erros ao longo de toda a faixa de freqüências de acionamento. O valor obtido para as perdas magnéticas nominais da máquina usada foi 127W. O gráfico obtido a partir deste valor com o uso da equação (3.3-7) também está mostrado na figura 3.4.

3.3-2 Estratégia de compensação de tensão fasorial

Como discutido na seção 2.5 um fluxo de estator constante pode ser obtido mantendose a relação E_s/f constante, seguindo a mesma linha de raciocínio, pode ser mostrado que um fluxo de entreferro constante pode ser obtido por uma relação E_g/f constante. A escolha do fluxo de entreferro constante dar-nos-ia condições de obtenção de torques mais elevados, porém a implementação desta técnica de controle de fluxo apresenta alguns inconvenientes. O primeiro é a maior dificuldade em se compensar a queda de tensão na indutância. Ela depende da derivada da corrente sendo portanto bastante sensível a "ripple" presente na mesma e de ruído advindos do sistema de aquisição dos sinais. Um outro aspecto importante é a diminuição da estabilidade do sistema quando se opera com fluxo de entreferro constante. Conforme apresentado em [18], a estabilidade de acionamento da máquina aumenta com o diminuição da resistência de estator e a indutância de dispersão age de modo a atenuar a oscilação durante ocorrência de transitórios. Na discussão apresentada aqui, trabalhar-se-á com fluxo de estator constante.

A compensação vetorial da queda de tensão na resistência série pode ser feita a partir da análise do diagrama fasorial das tensões e correntes de entrada da máquina. Na figura 3.5 está mostrado este diagrama para os valores eficazes destas variáveis.

Figura 3.5 - Diagrama fasorial das tensões do modelo em regime

Da figura pode-se obter a seguinte relação:

$$E_s^2 = V_s^2 + (I_s \cdot R_s)^2 - 2 \cdot V_s \cdot (I_s \cdot R_s) \cdot \cos(\phi)$$
(3.3-8)

Como discutido na seção 2.3, a relação E_s/f deve ser constante e igual ao seu valor nominal, assim E_s deve-se relacionar à freqüência síncrona por :

$$E_{s} = \frac{f_{s}^{*} \cdot E_{s_{N}}}{f_{s_{N}}}$$
(3.3-9)

Substituindo a equação (3.3-9) na equação (3.3-8) chega-se a uma equação de segundo grau da variável V_s , cuja solução é:

$$V_{s} = R_{s} \cdot I_{s} \cdot \cos(\phi) + \sqrt{\left(\frac{E_{s_{N}} \cdot f_{s}^{*}}{f_{s_{N}}}\right)^{2} - R_{s}^{2} \cdot I_{s}^{2} + R_{s}^{2} \cdot \left[I_{s} \cdot \cos(\phi)\right]^{2}}$$
(3.3-10)

O valor de eficaz de corrente de estator I_s pode ser obtido a partir dos valores instantâneos das correntes de fase. O fasor espacial de corrente i_s pode ser obtido pela seguinte equação:

$$i_{s,\alpha\beta} = i_{as} + a \cdot i_{bs} + a^2 \cdot i_{cs} \tag{3.3-11}$$

e a amplitude deste fasor pode ser relacionada ao valor eficaz da corrente de fase se substituirmos os valores instantâneos das correntes da seguinte forma:

$$i_{as} = \sqrt{2} \cdot I_s \cdot \cos(\omega \cdot t - \phi) = \sqrt{2} \cdot I_s \cdot \frac{e^{j \cdot (\omega \cdot t - \phi)} + e^{-j \cdot (\omega \cdot t - \phi)}}{2}$$
(3.3-12)

Procedendo-se da mesma maneira para i_{bs} e i_{cs} e substituindo na equação (3.3-11) chega-se a:

$$i_{as} + e^{j\frac{2\cdot\pi}{3}} \cdot i_{bs} + e^{j\frac{4\cdot\pi}{3}} \cdot i_{cs} = \frac{\sqrt{2}}{2} \cdot I_s \cdot \begin{cases} e^{j\omega t} \cdot e^{j\phi} + e^{-j\omega t} \cdot e^{-j\phi} \\ e^{j\omega t} \cdot e^{j\phi} + e^{-j\omega t} \cdot e^{-j\phi} \cdot e^{j\frac{4\pi}{3}} \\ e^{j\omega t} \cdot e^{j\phi} + e^{-j\omega t} \cdot e^{j\phi} \cdot e^{j\frac{2\pi}{3}} \end{cases}$$
(3.3-13)

Simplificando-se esta equação, chega-se a uma função que relaciona a amplitude do vetor girante $I_{s,\alpha\beta}$ obtido pela equação (3.3-11) e o valor eficaz da corrente de fase I_s presente na equação (3.3-10). Esta função é dada por:

$$\left|i_{s,\alpha\beta}\right| = \frac{3}{\sqrt{2}} \cdot I_s \cdot e^{j\omega t} \cdot e^{-j\phi}$$
(3.3-14)

Os valores eficazes da corrente, I_s , e sua componente em fase com o fasor de tensão, $I_s \cdot cos(\phi)$, necessárias a resolução da equação (3.3-10), podem ser obtidos a partir da análise do diagrama fasorial de correntes mostrado na figura 3.6.

Figura 3.6 – Diagrama fasorial das tensão e corrente de estator

Pelo diagrama, o fasor *i*^s é composto por partes real e imaginária dadas por:

$$i_{s,\alpha\beta} = \left[i_{as} - \frac{1}{2} \cdot i_{cs} - \frac{1}{2} \cdot i_{bs}\right] + j \cdot \left[\frac{\sqrt{3}}{2} \cdot i_{cs} - \frac{\sqrt{3}}{2} \cdot i_{bs}\right]$$
(3.3-15)

Calculando-se o módulo do vetor i_s através das equações (3.3-14) e (3.3-15), e igualando-se o resultado obtém-se:

$$\left(\frac{3}{\sqrt{2}}\right)^{2} \cdot I_{s}^{2} = \left[i_{as} - \frac{1}{2} \cdot i_{cs} - \frac{1}{2} \cdot i_{bs}\right]^{2} + \left[\frac{\sqrt{3}}{2} \cdot i_{cs} - \frac{\sqrt{3}}{2} \cdot i_{bs}\right]^{2}$$
(3.3-16)

Considerando-se acionamento de um sistema a três fios, uma das correntes pode ser eliminada e a equação pode ser simplificada para:

$$\frac{9}{2} \cdot I_s^2 = \left[-\frac{3}{2} \cdot i_{as} \right]^2 + \left[\sqrt{3} \cdot i_{cs} - \frac{\sqrt{3}}{2} \cdot i_{as} \right]^2$$
(3.3-17)

Assim, o valor de I_s usado na equação (3.3-10) pode ser escrito como:

$$I_{s} = \sqrt{\frac{2}{3}} \cdot \sqrt{i_{as} \cdot (i_{as} + i_{cs}) + i_{cs}^{2}}$$
(3.3-18)

Adotando-se como eixo de referência o eixo da tensão V_s , pode-se determinar a componente em fase da corrente necessária para a resolução da equação (3.3-10). Substituindo o valor de *a* na equação (3.3-11) tem-se:

$$\dot{i}_{s,\alpha\beta} = \dot{i}_{as} + e^{j\frac{4\pi}{3}} \cdot \dot{i}_{bs} + e^{j\frac{2\pi}{3}} \cdot \dot{i}_{cs}$$
(3.3-19)

Como supõe-se o acionamento de carga sem conexão de neutro a equação (3.3-19) pode ser escrita como:

$$i_{s,\alpha\beta} = i_{as} \cdot \left[I - e^{j\frac{4\pi}{3}} \right] + i_{cs} \cdot \left[e^{j\frac{2\pi}{3}} - e^{j\frac{4\pi}{3}} \right]$$
(3.3-20)

que, por sua vez, pode ser simplificada em,

$$\dot{\mathbf{i}}_{s,\alpha\beta} = \dot{\mathbf{i}}_{as} \cdot \left[\sqrt{3} \cdot e^{j\frac{\pi}{6}}\right] + \dot{\mathbf{i}}_{cs} \cdot \left[\sqrt{3} \cdot e^{j\frac{\pi}{2}}\right]$$
(3.3-21)

A representação deste vetor no sistema de coordenadas girante d,q orientado segundo a tensão de estator V_s , conforme mostrado na figura 3.6, pode ser encontrada tomando-se o produto do mesmo por um operador de rotação unitário $e^{-j\cdot\omega \cdot t}$ na mesma direção e sentido do vetor V_s . Desta maneira tem-se:

$$i_{s,dq} = i_{s,\alpha\beta} \cdot e^{-j\omega t} = i_{as} \cdot \left[\sqrt{3} \cdot e^{j\left(\frac{\pi}{6} - \omega t\right)}\right] + i_{cs} \cdot \left[\sqrt{3} \cdot e^{j\left(\frac{\pi}{2} - \omega t\right)}\right]$$
(3.3-22)

Tomando-se a parte real, e simplificando-se o resultado chega-se a:

$$i_{s,d} = \sqrt{3} \cdot \left[i_{as} \cdot \cos\left(\omega t - \frac{\pi}{6}\right) - i_{cs} \cdot \sin(\omega t) \right]$$
(3.3-23)

O fasor espacial $i_{s,dq}$ também pode ser obtido mudando-se o sistema de eixos de referência na equação (3-14), assim tem-se:

$$i_{s,dq} = i_{s,\alpha\beta} \cdot e^{j\alpha t} = \frac{3}{\sqrt{2}} \cdot I_s \cdot \left(\cos(\phi) + j \cdot sen(\phi)\right)$$
(3.3-24)

Igualando-se a parte real da equação (3.3-24) à equação (3.3-23) tem-se que:

$$i_{sd} \cdot \frac{\sqrt{2}}{3} = I_s \cdot \cos(\phi) = \frac{\sqrt{2}}{\sqrt{3}} \cdot \left[i_{as} \cdot \cos(\omega t - \frac{\pi}{6}) - i_{cs} \cdot \sin(\omega t) \right]$$
(3.3-25)

A partir das equações (3.3-10), (3.3-18) e (3.3-25) pode-se montar a estratégia de compensação de tensão. A única suposição feita na análise foi a consideração de operação com um sistema trifásico equilibrado sem conexão de neutro. De modo que as equações são válidas mesmo durante ocorrência de fenômenos transitórios provocando alterações bruscas nas correntes de entrada da máquina.

No entanto, com o intuito de diminuir o efeito de ruído e de eventuais componentes harmônicas presentes nas correntes de alimentação, introduz-se uma função de transferência do tipo atraso conforme mostrado na figura 3.7. Note que, o atraso é aplicado apenas à parcela do sinal de tensão de referência dependente das correntes da máquina. A parcela dependente da freqüência de referência influi diretamente, sem atraso, na tensão de referência.

Figura 3.7- Diagrama de blocos da compensação proposta

Idealmente, a estratégia de compensação proposta garante que a queda de tensão em R_s seja totalmente compensada, de forma que, para efeito de análise do circuito equivalente em regime, é como se R_s fosse nulo e a tensão de alimentação nominal da máquina fosse o valor da tensão induzida pelo fluxo de estator nominal, E_{sN} .

Seguindo a mesma linha de raciocínio, caso estivéssemos usando uma estratégia de compensação de tensão visando a obtenção de um fluxo de entreferro constante, e esta estratégia fosse implementada com sucesso, o circuito equivalente em regime poderia ser simplificado fazendo-se não só R_s zero, mas L_{ls} . Assim, a tensão nominal de alimentação seria igual a tensão de induzida pelo fluxo de entreferro nominal, $V_{sN} = E_{mN}$.

Desta maneira, através da equação (2.3-15), pode-se obter as curvas estáticas de torque para a máquina no caso do controle do fluxo de entreferro e para o caso de controle de fluxo de estator, estas curvas estão mostradas na figura 3.5. Como mencionado anteriormente, pode ser verificado que o valor máximo de torque conseguido quando se usa fluxo de entreferro constante é maior que aquele obtido com fluxo de estator.

De fato, para uma dada tensão de alimentação, a medida que se aumenta a velocidade de escorregamento, a corrente da máquina aumenta. Assim, para valores de velocidade de escorregamento acima do nominal, a corrente de entrada é invariavelmente é maior que seu valor nominal. Conseqüentemente, a queda de tensão nas impedâncias em série também assumem valores maiores quando comparadas às respectivas quedas em condições normais de operação. No entanto, quando controla-se o módulo do fluxo de estator a queda de tensão na reatância indutiva série X_{ls} não é considerada e o valor de torque obtido neste caso é menor quando comparado ao valor de torque obtido com controle por fluxo de entreferro.

3.3-3 Estratégia Não-Linear de Controle da Freqüência da Acionamento

A partir dos resultados já mostrados nas seções anteriores, o diagrama de blocos da compensação do escorregamento, considerando as perdas magnéticas, é o mostrado na figura 3.9.

Figura 3.9 – Diagrama de blocos da compensação de freqüência em malha aberta

No diagrama de blocos, o torque eletromagnético usado no controle é calculado a partir da potência que atravessa o entreferro.

$$P_{gap} = P_{entrada} - P_{ferro} - P_{s_{cobre}}$$
(3.3-26)

na qual:

 $P_{entrada}$ é a potência de entrada nos terminais da máquina;

 $P_{s_{max}}$ é a potência dissipada no cobre do estator, resitência R_s do modelo;

 P_{ferro} é a potência dissipada no circuito magnético da máquina.

O cálculo da potência dissipada no núcleo é feito de acordo com o apresentado na seção (3.3-1). Já o cálculo das parcelas referentes a potência de entrada e de perdas no cobre de estator são feitas aproveitando-se as variáveis obtidas na seção (3.2-2). Supondo que a tensão aplicada aos terminais da máquina seja exatamente a tensão gerada pelo controle, seus respectivos valores em função daquelas variáveis anteriormente deduzidas são dados por:

$$P_{entrada} = \sqrt{2} \cdot V_s^* \cdot Re\{i_{s,v_s}\}$$
(3.3-27)

$$P_{s_{core}} = R_s \cdot i_{s,d}^{2}$$
(3.3-28)

Substituindo estes resultados na equação (3.3-26), tem-se:

$$P_{gap} = \sqrt{2} \cdot V_s^* \cdot i_{s,d} - R_s \cdot i_{s,d}^2 - P_{ferro}$$
(3.3-29)

Portanto, para que se complete o diagrama da figura 3.9, deve-se, a fim de facilitar o algoritmo de implementação, deduzir uma expressão da freqüência de acionamento em função da potência que atravessa o entreferro.

Como comentado anteriormente, a compensação de tensão permite a manutenção do fluxo de estator; sendo assim o valor máximo do torque eletromagnético é constante. Portanto, a única mudança provocada nas curvas estáticas de torque por uma variação da freqüência de acionamento é um deslocamento no eixo freqüência destas curvas, assim como mostra a figura 3.8. Aproveitando-se disto e da simplificação no circuito em regime quando opera-se com fluxo de entreferro constante, pode-se escrever a equação do torque de forma simplificada, em função do seu valor de torque máximo, T_{bd} , e da velocidade de escorregamentento na qual o mesmo ocorre ω_{rbd} .

Na operação com fluxo de entreferro constante, para uma dada freqüência de acionamento, a tensão de entreferro E_m é proporcional à freqüência de acionamento. Isto permite um equacionamento mais simples para a estratégia de compensação proposta. Além disto, como será mostrado, desde que se ajuste o valor do torque máximo, e da freqüência que este ocorre, o resultado obtido também pode ser usado quando se opera com fluxo de estator constante.

Pelo circuito equivalente da figura 3.3 tem-se:

$$I_{r} = E_{m} / \left[\left(\frac{R_{r}}{s} \right)^{2} + X_{lr}^{2} \right]^{\frac{1}{2}}$$
(3.3-30)

que substituindo na equação (2.3-13) permite demonstrar que o torque eletromagnético é dado por:

$$T_{em} = m \cdot p \cdot \frac{\omega_r}{\omega_s^2} \cdot \frac{E_m^2 \cdot R_r}{\left[R_r + \omega_r^2 \cdot L_r^2\right]}$$
(3.3-31)

Como o formato das curvas mostradas na figura 3.8 independem da freqüência de acionamento, o ponto máximo das mesmas, T_{bd} , ocorre para uma freqüência de rotor fixa, ω_{rdb} . Diferenciando-se a equação (3.3-31) pode-se determinar esta freqüência, ou seja,:

$$\frac{dT}{d\omega_r} = m \cdot P \cdot \frac{E_m \cdot R_r}{\omega_s^2} \cdot \left[\frac{1}{\left[R_r + \omega_{r_{bd}}^2 \cdot L_r^2\right]} - \frac{2 \cdot \omega_{r_{bd}}^2 \cdot L_r^2}{\left[R_r^2 + \omega_{r_{bd}}^2 \cdot L_r^2\right]^2} \right] = 0$$
(3.3-32)

consequentemente, o valor da freqüência ω_{rbd} é dada por:

$$\omega_{r_{bd}} = \pm \frac{R_r}{L_r} \tag{3.3-33}$$

Ou seja, para a operação com fluxo de entreferro constante, a freqüência de rotor correspondente ao torque máximo é igual ao inverso da constante de tempo do rotor τ_r . Substituindo-se este resultado na expressão (3.3-31), pode-se mostrar que o torque máximo é dado por:

$$T_{bd} = m \cdot P \cdot \frac{E_s^2}{\omega_s^2} \cdot \frac{1}{2 \cdot L_r^2}$$
(3.3-34)

A razão entre o torque eletromagnético e o seu valor máximo é obtido através das equações (3.3-31) e (3.3-34), simplificando o resultado tem-se:

$$\frac{T}{T_{bd}} = \frac{2 \cdot R_r \cdot L_r \cdot \omega_r}{\left[R_r^2 + \omega_r^2 \cdot L_r^2\right]}$$
(3.3-35)

Usando-se novamente a equação (3.3-33) chega-se a:

$$\frac{T}{T_{bd}} = \frac{2 \cdot \frac{R_r}{L_r} \cdot \omega_r}{\left[\frac{R_r}{L_r^2}^2 + \omega_r^2\right]} = \frac{2 \cdot \omega_{rbd} \cdot \omega_r}{\omega_{rbd}^2 + \omega_r^2}$$
(3.3-36)

que finalmente pode ser simplificada de forma a depender apenas dos valores de T_{bd} e ω_{bd} .

$$\frac{T}{T_{bd}} = \frac{2}{\frac{\omega_{rbd}}{\omega_r} + \frac{\omega_r}{\omega_{rbd}}}$$
(3.3-37)

A expressão acima foi obtida considerando-se fluxo de entreferro constante. Contudo, através dela pode-se, uma vez ajustados os valores de T_{bd} e ω_{rbd} , obter uma excelente aproximação da curva estática de torque da máquina para operação com fluxo de estator constante. É importante ressaltar que os valores de T_{bd} e ω_{rbd} , que serão usados no controle são diferentes dos obtidos nos catálogos do fabricantes já que estes últimos, por serem obtidos sem compensação de tensão, são menores. Pode-se verificar este fato, comparando-se os valores máximos dos torques mostrados nas figuras 2.10 e 3.8. Ambas as curvas foram obtidas a partir dos parâmetros da mesma máquina.

Na figura 3.10 estão mostradas as curvas estáticas de torque do motor usado em laboratório para fluxo de estator constante aproximadas pela equação (3.3-37). Como pode ser verificado a aproximação é praticamente perfeita e, segundo os aspectos discutidos no início desta seção, conduzem a resultados melhores, para operação em altos escorregamentos, quando comparados aos métodos de aproximação linear, mostrados na figura 3.8.

Definindo-se uma constante k_0 de modo que:

$$T_{\rm N} = \frac{T_{\rm bd}}{k_0}$$
(3.3-38)

e substituindo na equação (3.3-37) tem-se:

$$\frac{1}{k_0} = \frac{2}{\frac{\omega_{rbd}}{\omega_{rN}} + \frac{\omega_{rN}}{\omega_{rbd}}}$$
(3.3-39)

Da mesma forma, definindo-se a razão entre $\omega_{r_{bd}}$ e ω_{r_N} como k tem-se

$$\frac{l}{k_0} = \frac{2}{k + \frac{l}{k}} \qquad \Rightarrow \qquad k^2 - 2 \cdot k_0 \cdot k + l = 0 \tag{3.3-40}$$

$$k = k_0 \pm \sqrt{k_0^2 - 1} \tag{3.3-41}$$

Pela característica não linear da curva pode-se concluir que a razão entre $\omega_{r_{bd}} \in \omega_{r_N}$, k, deve ser maior que a razão entre $T_{bd} \in T_N$, k_0 . assim a solução correta da equação é:

$$k = k_0 + \sqrt{k_0^2 - 1} = \frac{1}{k_0 - \sqrt{k_0^2 - 1}}$$
(3.3-42)

Da mesma forma feita para a freqüência de rotor nominal, tem-se:

$$\frac{\omega_{\rm r}}{\omega_{\rm bd}} = \frac{T_{\rm bd}}{T_{\rm em}} - \sqrt{\left(\frac{T_{\rm bd}}{T_{\rm em}}\right)^2 - 1}$$
(3.3-43)

Substituindo a equação (3.3-38) tem-se:

$$\frac{\omega_r}{\omega_{bd}} = \frac{k_0 \cdot T_N}{T_{em}} - \sqrt{\left(\frac{k_0 \cdot T_N}{T_{em}}\right)^2 - 1}$$
(3.3-44)

Substituindo a equação (2.3-17) tem-se:

$$f_{slip} = \frac{1}{A} \cdot \frac{\left(f_{m}^{*} + f_{slip}\right)}{P_{gap}} \cdot \left[1 - \sqrt{1 - B \cdot \frac{P_{gap}^{2}}{\left(f_{m}^{*} + f_{slip}\right)^{2}}}\right]$$
(3.3-45)

onde:

$$A = \frac{p}{4 \cdot \pi \cdot k_0 \cdot k \cdot s_N \cdot f_N \cdot T_N}$$
(3.3-46)

e

$$B = \left(\frac{p}{4 \cdot \pi \cdot k_0 \cdot T_N}\right)^2 \tag{3.3-47}$$

Através da manipulação da equação (3.3-45) chegamos á:

$$\left(I - \frac{2}{A \cdot P_{gap}}\right) \cdot f_{slip}^{2} + \left(-\frac{2 \cdot f_{m}^{*}}{A \cdot P_{gap}}\right) \cdot f_{slip} + \left(\frac{B}{A^{2}}\right) = 0$$
(3.3-48)

que pode ser resolvida obtendo-se, desta maneira, a expressão para cálculo de f_{slip} em função da potência que atravessa o entreferro e da freqüência de acionamento, dada por:

$$f_{slip} = \frac{f_m^* \pm \sqrt{f_m^* - B \cdot P_{gap}^2 + 2 \cdot \frac{B}{A} \cdot P_{gap}}}{A \cdot P_{gap} - 2}$$
(3.3-49)

Na equação (3.3-49), se $A \cdot P_{gap} = 2$, existe uma indeterminação da equação. Neste ponto, o valor da freqüência de escorregamento pode ser determinado usando a , equação (3.3-48) assim tem-se:

$$\left(-\frac{2\cdot f_m^*}{A\cdot P_{gap}}\right)\cdot f_{slip} + \left(\frac{B}{A^2}\right) = 0$$
(3.3-50)

E para este caso, a freqüência de escorregamento deve ser calculada por:

$$f_{slip} = \left(\frac{B}{A^2 \cdot f_m^*}\right) \tag{3.3-51}$$

As equações (3.3-49) e (3.3-51) são as equações usadas no cálculo da freqüência de escorregamento. Na implementação, devido a problemas de imprecisão no cálculo, primeiro testa-se o denominador da equação (3.3-49), caso o valor absoluto deste denominador seja menor que uma constante pequena e predeterminada, ou seja, um valor próximo a zero, a equação (3.3-51) passa a ser a equação usada.

A partir das equações (3.3-7), (3.3-29) e (3.3-49) e (3.3-51), pode-se montar a estratégia de compensação de freqüência de escorregamento, cujo diagrama lógico foi mostrado na figura 3.9. A aplicação da equação (3.3-29) executa a função do bloco de cálculo da potência de entrada, do bloco de perdas no cobre e do somador, enquanto que através da aplicação das equações (3.3-49) e (3.3-51) executa-se o papel dos blocos de cálculo do torque e da freqüência de escorregamento.

3.3-5 Esquema geral

O esquema geral de controle, segundo o equacionamento proposto, está mostrado na figura 3.11. Observe que, as únicas grandezas medidas são as correntes de duas das fases ($\mathbf{a} \in c$), e que não há medição das tensões de saída do inversor. O valor de tensão adotado nos cálculos é o próprio valor de referência. Ou seja, considera-se que o inversor é capaz de gerar exatamente os valores determinados no controle.

Figura 3.11 – Esquema geral de controle da estratégia de controle proposta

3.4 Modelo para Simulação da Máquina Incluindo Perdas Magnéticas

No sistema de controle proposto, considera-se as perdas magnéticas da máquina, portanto é conveniente usar um modelo para a simulação da máquina que também considere tais perdas. Em [19] foi apresentado um modelo da máquina com resistência de magnetização série para motores de indução do tipo EV (Electric Vehicle). Para esta classe de motores, as perdas relacionadas à histerese podem ser desprezadas frente as perdas por Foucault o que torna o modelo da máquina mais simples. Para o caso de motores de indução convencionais esta aproximação não é válida. Contudo, um modelo para simulação da máquina pode ser obtido com as equações da máquina com a inclusão de uma resistência no ramo de magnetização. Estas equações são dadas por:

$$\frac{di_{s,\alpha}}{dt} = \frac{1}{L_{ls}} \cdot \left[v_{s,\alpha} - R_s \cdot i_{s,a} - L_m \cdot \frac{di_{m,\alpha}}{dt} \right]$$
(3.5-1)

$$\frac{di_{s,\beta}}{dt} = \frac{1}{L_{ls}} \cdot \left[v_{s,\beta} - R_s \cdot i_{s,\beta} - L_m \cdot \frac{di_{m,\beta}}{dt} \right]$$
(3.5-2)

$$\frac{di_{r,\alpha}}{dt} = \frac{1}{L_{ls}} \cdot \left[v_{r,\alpha} - R_r \cdot i_{r,a} - L_m \cdot \frac{di_{m,\alpha}}{dt} - P \cdot \omega_m \cdot \left(L_m + L_{lr} \right) \cdot i_{r,\beta} \right]$$
(3.5-3)

$$\frac{di_{r,\beta}}{dt} = \frac{1}{L_{ls}} \cdot \left[v_{r,\beta} - R_r \cdot i_{r,\beta} - L_m \cdot \frac{di_{m,\beta}}{dt} - P \cdot \omega_m \cdot \left(L_m + L_{lr} \right) \cdot i_{r,\alpha} \right]$$
(3.5-4)

$$\frac{di_{m,\alpha}}{dt} = \frac{R_m(s, f_s)}{L_M} \cdot \left[i_{s,\alpha} + i_{r,\alpha} - i_{m,\alpha} \right]$$
(3.5-5)

$$\frac{di_{m,\beta}}{dt} = \frac{R_m(s, f_s)}{L_M} \cdot \left[i_{s,\beta} + i_{r,\beta} - i_{m,\beta}\right]$$
(3.5-6)

$$T_{em} = \frac{3}{2} \cdot P \cdot \Im \Big[i_{s,\beta} \cdot i_{r,\alpha} - i_{s,\alpha} \cdot i_{r,\beta} \Big]$$
(3.5-7)

O Valor de R_m usado nas equações de (3.5-1) à (3.5-7) estão no sistema estacionário obtidas com k = 2/3 [13], assim a potência por fase neste sistema bifásico equivalente, é mantida, ou seja a potência por fase é igual potência por fase do modelamento trifásico real (sistema abc). Portanto, a potência total de entrada é 2/3 da potência da máquina real. O fator 3/2 na equação (2.5-8) corrige o valor da a potência de saída fazendo com que a potência de saída do modelo bifásico, usando as equações de (3.5-1) à (3.5-7), seja igual à potência de saída da máquina real.

A obtenção da resistência de perdas no ramo de magnetização deve ser obtida em concordância com o modelamento para perdas proposto, o qual foi discutido na seção 3.3-1. Algumas suposições foram feitas para que se chegasse na expressão final para o cálculo das

perdas, expressão 3.3-7, dentre elas a de que o fluxo da máquina era constante, ou seja, supunha-se de antemão que a estratégia de controle de tensão apresentada na sessão 3.3-2 fosse capaz de manter o fluxo da máquina constante. Contudo, um dos objetivos da simulação é justamente verificar esta estratégia de compensação e por isto uma expressão para o cálculo das perdas sem a suposição de operação com fluxo constante deve ser obtida. Procedendo-se de forma similar à feita para a dedução de (3.3-7), pode-se obter a seguinte expressão de perdas magnéticas para operação com fluxo variável:

$$\frac{P_{ferro}}{P_{ferro_N}} = \frac{1}{2} \cdot \left[\frac{(l+s)}{(l+s_N)} \cdot \frac{f_s}{f_{s_N}} + \frac{(l+s^2)}{(l+s_N^2)} \cdot \left(\frac{f_s}{f_{s_N}}\right)^2 \right] \cdot \left(\frac{B}{B_N}\right)^2$$
(3.5-8)

Pelo circuito da figura 2.6, e pela equação o valor de $R_m(s, f_s)$ deve ser :

$$R_m(s, f_s) = \left(\frac{E_{g_{pico}}}{\sqrt{2}}\right)^2 \left/ \left[\frac{1}{3} \cdot P_{ferro}(s, f_s)\right] \right.$$
(3.5-9)

Sabe-se que a tensão induzida de entreferro é:

$$E_g = 4.44 \cdot k_w \cdot N \cdot f \cdot B \tag{3.5-10}$$

Aplicando-se esta equação para os valores nominais de indução magnética e freqüência, chega-se a seguinte relação entre os valores E_g e E_{gN} :

$$\frac{E_g}{E_{g_N}} = \frac{f \cdot B}{f_N \cdot B_N}$$
(3.5-11)

Substituindo as equações (3.5-9) e (3.5-12) em (3.5-10) tem-se que:

$$R_{m}(s,f_{s}) = 3 \cdot E_{g_{N}}^{2} \left/ \left\{ \left[\frac{(1+s)}{(1+s_{N})} \cdot \frac{f_{s_{N}}}{f_{s}} + \frac{(1+s^{2})}{(1+s_{N}^{2})} \right] \cdot P_{ferro_{N}} \right\}$$
(3.5-12)

A partir das equações (3.5.1) à (3.5-7) e da equação (3.5-12) pode-se montar o modelo para simulação da máquina, o qual foi elaborado no "software simulink" e está mostrado na figura 3.12.

Figura 3.12 - Modelo da máquina desenvolvido no "Simulink" Considerando perdas magnéticas para Simulação

Capítulo 4

DESCRIÇÃO DO SISTEMA IMPLEMENTADO

4.1 Introdução

No projeto do sistema de controle é fundamental o conhecimento dos parâmetros do modelo do processo a ser controlado. No caso das máquinas de indução, parâmetros do seu modelo tal como as resistências elétricas são dependentes da temperatura e da freqüência elétrica, enquanto as indutâncias são fortemente afetadas pela saturação magnética.

Contudo, a dificuldade de se modelar matematicamente tais variações faz com que, este modelamento não seja feito de forma suficientemente precisa, resultando, com isto, o surgimento de erros que afetam o desempenho do sistema.

A distorção harmônica provocada não só pela estratégia de modulação implementada como também pelas não linearidades intrínsecas da máquina, o ruído eletromagnético provocado pelo chaveamento e a concorrência de interrupções, que faz com que a execução de uma dada rotina seja atrasada em função da ocorrência de outras de maior prioridade são alguns aspectos pertinentes e que, muitas das vezes, são difíceis de serem levados em conta na concepção do sistema de controle.

A implementação de um sistema experimental e os respectivos testes têm como objetivo inicial validar o sistema proposto bem como verificar a sua robustez diante dos aspectos acima citados.

Este capítulo tem como objetivo descrever o sistema de controle implementado. Inicialmente, é apresentada uma breve discussão sobre o sistema geral implementado (seção 4-2); em seguida, são descritos, mais pormenorizadamente, as estratégias e métodos usados, incluindo as técnicas na medição de velocidade (seção 4-3), da modulação vetor espacial ("Space Vector Modulation") (seção 4-4) e aquisição de sinais (seção 4-5). Finalmente, o fluxograma das etapas descritas anteriormente e executadas pelo DSP é apresentado.

4.2 Sistema Geral

O diagrama esquemático do sistema implementado está colocado na Figura 4.1. A parte de potência do sistema implementado, consiste simplesmente de um retificador trifásico ligado diretamente à rede de alimentação, um inversor PWM industrial composto por 6 chaves do tipo IGBT e os respectivos "drivers". Este inversor é ligado ao estator trifásico do motor de

indução de alta eficiência, rotor gaiola de esquilo; o motor de indução é conectado a uma máquina de corrente contínua, através de seus eixos, formando um conjunto motor-gerador.

As únicas grandezas medidas no sistema são as correntes de estator I_{as} e I_{cs} e a velocidade do eixo do motor, sendo que esta última é utilizada, exclusivamente, para verificação dos resultados nos testes de transitórios de carga, lembrando que a proposta de controle é em malha aberta de velocidade.

O software de controle é implementado através do uso do Processador Digital de Sinais de ponto fixo TMS320C240, que tem, entre outras [20] e [21], as seguintes características: tamanho da palavra 16 bits; 20MHz de "clock"; paralelismo de execução que torna possível a execução de uma instrução por ciclo de "clock"; 2 conversores A/D de 10 bits; 3 temporizadores programáveis de 16 bits; unidades de comparação para geração de sinais PWM; unidade lógica para geração de tempo morto ("dead time"); 28 pinos de entrada/saída individualmente programáveis; unidade de multiplicação de 16 X 16 bits; 544 palavras de 16 bits de memória de acesso dual; 16K de memória para alocação de programa e dados; barramento de acesso a mais 16K memória externa.

Figura 4.1 - Diagrama esquemático do sistema implementado.

O sistema foi implementado com o auxílio de um módulo emulador composto de uma placa de emulação (Evaluation Board), e software de desenvolvimento. Este módulo emulador esta ligado a um PC, que permite, através de uma conector JTAG transferência de dados e depuração passo a passo do programa. A placa de emulação possui ainda 4 conversores D/A de 12bits com saídas entre 0 e 5V.

O acionamento do inversor se dá com auxílio das unidades de comparação presentes no DSP. Estas unidades consistem em um hardware que compara a contagem de um dos temporizadores, selecionado previamente, com o valor de alguns registradores específicos. A ocorrência de uma coincidência entre os valores deste dispositivos pode ser programada para mudança do estado de uma das saídas de forma a gerar os sinais de chaveamento dos IGBTs. A técnica de acionamento do inversor, bem como as estratégias usadas na implementação estão discutidas na seção 3.1. A tensão em cada uma das seis 6 saídas da unidade de comparação estão entre os níveis 0 e 5V. Estas saídas podem estar em três estados distintos: alto, baixo e em estado de alta impedância, sendo que este último só ocorre quando a unidade de comparação está desabilitada. Estando habilitada, as seis saídas são barradas duas a duas com exceção do intervalo de tempo correspondente ao tempo morto. Foi necessário, portanto, um circuito de interfaceamento que desabilitasse os pulsos do inversor para que fosse possível desligar o sistema além de elevar o nível de tensão dos sinal para 0-15V. Não foi necessário realizar a isolação entre o DSP e a parte de potência do inversor, pois este último, por se tratar de um produto voltado para aplicações industriais, já possuía a isolação necessária .

Foi necessário projetar um outro circuito de interfaceamento entre o sistema de controle e o transdutor digital de velocidade ("encoder"), como mostrado na figura 4-1. O papel deste circuito é o condicionamento dos sinais do "encoder" garantido que sejam mantidas as larguras dos pulsos além de promover isolamento óptico entre a parte elétrica ligada ao "encoder", alimentada com fonte independente, e a parte elétrica ligada ao DSP. Desta maneira garante-se que o ruído eletromagnético introduzido ao sistema seja minimizado. Apesar de possuirmos um encoder com pulsos em quadratura (A e B), apenas um destes sinais foi usado na medição de velocidade (A). Este sinal é utilizado para gerar uma interrupção por hardware através do pino INTM do DSP. A estratégia de medição é detalhada na seção 4-3.

4.3 - Medição de Velocidade

A medição de velocidade é feita utilizando um gerador rotativo incremental de pulsos "encoder") acoplado ao eixo do motor, de 1500 ppr (pulsos por revolução), sendo que as amplitudes dos pulsos assumem valores na faixa de 0 a 5 V.

Tradicionalmente, existem dois métodos de medição de velocidade com utilização de "encoder": (1) o método baseado na medição do número de pulsos recebidos em um período fixo e pré- determinado e (2) o método de medição baseado na largura ou período de pulso [22].

Alguns fatores devem ser considerados na escolha do método adotado para a medição de velocidade, como a faixa de velocidade que se deseja medir, tempo de atualização da velocidade, precisão da medição, complexidade do algoritmo e hardware necessários e as características do "encoder" disponível. É importante ressaltar a existência de métodos híbridos que combinam estes dois métodos básicos com o intuito de tirar proveito das vantagens oferecidas por ambos. Diversas são as formas possíveis para se combinar os métodos porém as formas de como faze-lo não serão tratadas aqui. A seguir são apresentados aspectos dos dois métodos básicos de medição de velocidade e as formas possíveis.

4.3.1 Método da Contagem de pulsos

Este método consiste em medir a quantidade de pulsos recebidos em um período de tempo fixo e pré-determinado, como ilustrado na Figura 4.2. O período deve ser determinado levando-se em conta a faixa de velocidades que se deseja medir, o tempo de atualização da velocidade medida e as características do gerador rotativo incremental de pulsos disponível. A precisão da medição deste método está diretamente ligada a quantidade de pulsos por revolução gerados pelo "encoder".

Figura 4.2 - Método de contagem de pulsos

A velocidade é obtida tomando-se a quantidade de pulsos medidos no período e multiplicando-se esta quantidade de pulsos por uma constante que vai escalar a velocidade de acordo com a unidade utilizada. Para um mesmo período de medição, uma taxa de pulsos maior implica em uma maior quantidade de pulsos recebidos, e, consequentemente, em uma maior precisão da medição. O tempo de atualização da velocidade está diretamente relacionado ao período de medição dos pulsos e, assim sendo, existe um compromisso entre precisão e tempo de atualização da medição que deve ser levado em conta na escolha do período de medição de velocidade. Geralmente, utiliza-se "encoder" que geram pulsos em quadratura, permitindo que se quadruplique a freqüência de pulsos gerados através do uso de portas lógicas melhorando as características do método em questão. Este tipo de medição de velocidade é mais indicada para medições de velocidade são lentas; nestes casos, pode-se usar um período de medição maior e conseguir medições de velocidades mais precisas. O mesmo não pode ser feito em medições de transitórios em sistemas com constante de tempo dinâmica baixa onde é necessário que se tenha um taxa de atualização alta.

4.3.2 Método da largura dos pulsos

Este método está mostrado na figura 4.3. A medição é feita com base na medição do período dos pulsos gerados pelo encoder. Para isto deve-se dispor de um temporizador com uma freqüência muito superior a freqüência máxima dos pulsos do "encoder". A partir da quantidade de pulsos por revolução gerados pelo encoder, sabe-se o passo angular correspondente ao intervalo entre duas transições positivas da onda quadrada gerada pelo encoder. Medindo-se o tempo entre estas transições e fazendo-se a divisão do passo angular por este tempo, obtém-se a velocidade de rotação do eixo.

Figura 4.3 - Método de largura de pulsos

A implementação deste tipo de medição de velocidade é mais trabalhosa e complexa quando comparada ao método da contagem de pulsos. Uma das dificuldades é o fato da mesma requerer uma interrupção extra na transição positiva ou negativa dos pulsos do encoder para que o DSP leia o temporizador. Isto não seria necessário na implementação pelo método descrito anteriormente já que o período para a contagem dos pulsos poderia ser um múltiplo do período de outras rotinas no programa.

Além disto, esta nova interrupção deve ter uma prioridade superior às demais para que sua latência, tempo entre a transição do pulso e o reconhecimento da interrupção pelo DSP, seja o mais constante possível. Em outras palavras, a presença de outras interrupções com prioridade superior provocaria atrasos variáveis entre o momento da transição e o momento da leitura do temporizador ocasionando medições de período maiores ou menores que o período real do pulso, originando com isto erros na determinação da velocidade.

Apesar destas adversidades, este foi o método escolhido para medição de velocidade. As razões para esta escolha foi o interesse na realização de ensaios de transitórios onde a taxa de atualização da velocidade é importante e a disponibilidade de hardware que permitiu a implementação do mesmo sem maiores dificuldades. O fato de ser possível obter uma nova medida de velocidade a cada pulso gerado pelo "encoder", faz com que se consiga atingir uma taxa de atualização alta.

Como será mostrado, mesmo operando-se em velocidades baixas a taxa de atualização conseguida é muito superior à requerida pela maioria das aplicações. Isto nos permitiu, em detrimento desta taxa de atualização, melhorar a precisão do método com a implementação de um "buffer" circular de medidas de velocidade no DSP. Este "buffer" consiste em uma área na memória que armazena as trinta últimas medições de velocidade. A medida que se executa novas medições de velocidade, substitui-se as medições mais antigas. O valor de velocidade final medida é a média dos valores contidos neste "buffer".

4.3.3 Discussão sobre precisão e Aspectos práticos da implementação

O encoder utilizado na implementação é de 1500 ppr , ou seja, um pulso a cada 0.24° . O temporizador utilizado, já disponível no DSP, apresenta um clock de freqüência 20 MHz , período de 50 η s.

A velocidade é obtida pela fórmula seguinte:

$$\Omega_{mec} = \frac{Cte}{V_{temporizador}}$$
(4.3-1)

Na qual,

Cte é uma constante que vale $60(s/min)/(1500ppr \cdot 50 \cdot 10^{-9}s)$ para obtenção de resultado em rpm,

 $V_{temporizador}$ é um valor inteiro que representa a largura do pulso do "encoder" em quantidade de ciclos de "clock" do temporizador.

Como foi usado o método de medição de largura do pulso, a taxa de atualização de velocidade, é variável e depende da velocidade da máquina já que uma nova medida de velocidade é feita por período da onda quadrada gerada pelo "encoder". Em velocidades de eixo baixas esta taxa de atualização diminui, e, como estamos fazendo uma média das últimas 30 medidas de velocidade, para a obtenção da velocidade atual, há um pequeno atraso entre sinal de velocidade real e o valor obtido com o método. Este atraso não é simplesmente um deslocamento entre os dois sinais, mas sim uma distorção similar à provocada por um filtro passa-baixas. De fato o buffer de velocidades funciona como um filtro passa-baixas não convencional.

Admitindo-se que a menor velocidade que se deseja medir seja estabelecida, pode-se realizar uma análise quantitativa deste atraso. Supondo que a velocidade mínima que se deseja medir seja de 50 rpm e lembrando que estamos trabalhando com um "encoder" de 1500 ppr o período da onda gerada pelo "encoder" para operação nesta velocidade é:

$$T_{pulso} = \left(\frac{50}{60} \cdot 1500\right)^{-1} = 800 \,\mu s \tag{4.3-2}$$

Pode-se obter o tempo de atraso máximo no sinal medido de velocidade pela multiplicação do período do sinal do encoder para a menor velocidade de operação pelo número de medidas de velocidade usadas no buffer de velocidades. Assim temos:

$$t_{atraso} = 30 \cdot 800 \mu s = 24 ms \tag{4.3-3}$$

Este número representa o tempo máximo necessário para que se obtivesse o valor correto de velocidade uma vez que a velocidade do eixo da máquina atingisse o regime.

Um outro aspecto importante a ser ressaltado é a precisão obtida com este tipo de implementação. Seguindo o mesmo raciocínio descrito anteriormente, para a velocidade de 1800rpm o pode-se mostrar que o período do pulso do sinal do "encoder" é aproximadamente igual a 22,22 μ s, ou seja, aproximadamente 444,44 períodos de "clock" do temporizador. Supondo o erro de 1 período de "clock" no valor de *V_{temporizador* tem-se:}

$$\Omega_{mec} = \frac{1800 \cdot 444,44}{444} = 1801,80rpm \tag{4.3-4}$$

$$\Omega_{mec} = \frac{1800 \cdot 444,44}{445} = 1797,75rpm \tag{4.3-5}$$

Portanto, o erro de velocidade causado por erro na medição do período de 1 bit é menor que 4,05 *rpm* já que, para velocidades menores o erro seria menor pois a largura dos pulsos do encoder representariam mais períodos de "clock" do temporizador. Além disso, como dito anteriormente, faz-se a média das 30 últimas medições e isto faz com que o erro no valor de velocidade seja bastante minimizado.

Este método de medição de velocidade faz com que as maiores fontes de erro passem a ser as variações entre as larguras de pulso provocadas por imperfeições do próprio "encoder", por vibrações mecânicas, e a variação da latência na interrupção. A variação da latência de interrupção ocorre devido a diferença no tempo de execução de algumas instruções. Na ocorrência de uma interrupção deve terminar a execução da instrução corrente e, dependendo da instrução, de algumas instruções seguintes a esta, para que, depois disto, possa-se iniciar a execução do procedimento que leva até a rotina principal da interrupção [20]. Estes tipos de erro na medição do período do pulso do "encoder" fogem ao nosso controle e a quantização exata do erro causado pelos mesmo é de difícil determinação e fogem do propósito principal desta dissertação.

4.4 Implementação da Modulação por Vetores Espaciais (SVM)

O eficiente controle de potência elétrica se constitui em uma das mais importantes exigências na moderna produção automatizada e, sendo assim, o uso de conversores eletrônicos de potência tornam-se alvo de grande atenção.

Os conversores transferem energia de uma fonte para um processo de forma controlada, usando chaves semicondutoras que operam em altas freqüências de chaveamento. A lógica com que as chaves são ativadas e desativadas depende da estratégia de modulação utilizada. Os algoritmos que geram as funções de chaveamento, ou técnicas PWM, podem ser de estruturas simples, como por exemplo as técnicas de modulação por onda quadrada ou mais complexas envolvendo inclusive métodos de otimização em tempo real como o caso de alguns inversores controlados por corrente.

A estrutura básica do sistema de alimentação do motor é conseguida com o emprego de dois conversores: um retificador e um inversor trifásico. Geralmente, o conversor AC-DC escolhido é um retificador trifásico de onda completa não controlado, enquanto que a escolha do inversor, principalmente com relação as chaves utilizadas, depende basicamente da potência do sistema a ser acionado e da freqüência requerida. As chaves do inversor utilizado na implementação deste trabalho são do tipo IGBT.

A utilização de um capacitor na entrada do inversor tem a função de filtro e, apesar de piorar o fator de potência de entrada e aumentar os níveis de radiação de interferência eletromagnética, melhora a qualidade da tensão DC disponível, minimizando o "ripple" presente na mesma [23].

A operação em modo chaveado assegura que a eficiência do conversor seja alta. As perdas com o chaveamento são praticamente nulas em estado desligado e baixas quando fechadas. Perdas adicionais ocorrem durante as transições entre os estados ligado e desligado e vice-versa. Em conseqüência, as perdas nas chaves acabam tendo uma relação direta com a freqüência de chaveamento.

A freqüência de chaveamento deve ser preferencialmente alta a fim de minimizar o "ripple" da corrente e demais efeitos do fluxo descontínuo de potência provocado pelo chaveamento. Em contrapartida, o aumento nesta freqüência é limitado devido a capacidade limitada de dissipação de potência das chaves e o conseqüente aquecimento das mesmas decorrente deste aumento de freqüência. De fato, a não ser que seja empregada alguma técnica de comutação suave, as transições entre os estados ligado e desligado ou vice-versa, representam um pico de potência dissipada na chave semicondutora [24].

Um outro aspecto importante relacionado com a freqüência de chaveamento é o ruído acústico audível. As correntes chaveadas produzem mudanças rápidas nos campos eletromagnéticos que geram forças mecânicas de Lorentz nos condutores além de forças magnetostrictivas de deformação em materiais ferromagnéticos [25]. O grau destes efeitos depende da técnica de modulação escolhida e está associado ao conteúdo harmônico e espalhamento espectral introduzido pela técnica em questão. Embora o ideal seja operar com uma freqüência de chaveamento alta evitando a faixa audível do ruído, muitas vezes isto é inviável, devido à restrição de limite de dissipação de potência das chaves, principalmente em conversores de maior potência.

Uma das técnicas mais empregadas em tais processos de conversão é a modulação por largura de pulso senoidal, a chamada PWM senoidal. Através desta técnica as correntes senoidais são obtidas com a variação senoidal no tempo da razão cíclica que é a razão entre o tempo em que uma chave está ativa e o período de chaveamento [23]-[24].

Outra técnica bastante empregada de modulação para geração de tensões trifásicas equilibradas e a técnica de modulação por vetores espaciais (SVM) [25]. Esta estratégia de modulação, diferentemente de estratégias menos sofisticadas, considera a mudança nas variações nas tensões de linha na saída, qualquer que seja a mudança feita em qualquer uma das chaves do conversor. Tem sido mostrado que o emprego desta estratégia de modulação traz algumas vantagens quando comparada à outras estratégias de modulação. Quando comparada à modulação senoidal, ela apresenta níveis de distorção harmônica da corrente menores [2], [4] e [26] e um valor máximo da fundamental da tensão na saída maior [2], [25] e [26]. Além disso, o melhor controle sobre o estado das chaves permite que, em função das estratégias utilizadas na implementação, algumas vantagens extras sejam obtidas, como por exemplo, a minimização do número de comutações nas chaves semicondutoras. Também é possível a implementação de uma técnica em que a número de coincidências do instante em que ocorre a comutação em duas chaves de ramos diferentes do inversor seja minimizado. Dentre as vantagens do emprego de tais estratégias estão a diminuição das perdas nas chaves, cerca de 30%, e dos níveis da radiação de IEM (interferência eletromagnética) quando comparada com a técnica PWM senoidal com portadora simétrica [27].

Esta seção trata da implementação da técnica de modulação SVM simétrica, utilizada no acionamento proposto.

4.4-1 Representação dos estados do inversor nas coordenadas $\alpha\beta$

Na análise de um sistema de acionamento pela estratégia de modulação por vetores espaciais é conveniente transformar as variáveis no sistema *abc* para o sistema de coordenadas bifásico estacionário $\alpha\beta$. Isto é feito não só para o inversor como também para o sistema trifásico senoidal que se deseja gerar.

As tensões de saída do inversor no sistema $\alpha\beta$ pode ser conseguida a partir dos estados, ligado ou desligado, de cada uma das chaves do inversor. Nesta análise desconsiderase o tempo morto no qual, em um mesmo ramo do inversor, nenhuma chave está ativa. Considera-se também que, com exceção do tempo morto, o estado dos transistores da parte inferior, ligados ao lado negativo do barramento DC é sempre, oposto ao estado dos transistores da parte superior. Estas considerações conduzem a um modelo idealizado mostrado na figura 4.4.

A partir desta topologia básica idealizada, o inversor é visto como tendo três chaves de duas posições, Sa, Sb, e Sc, sendo que cada uma se liga ao terminal positivo ou negativo do barramento DC. Denotando o estado positivo das chaves por "1" e o estado negativo por "0", obtemos oito combinações diferentes dos estados de chaveamento, como mostrado na tabela 4.1.

Figura 4.4 – Inversor 3 ϕ acionando carga equilibrada.

	Tabela 4-1		Estado das enaves e tensões de saída						
	Sa	Sb	Sc	V _{ab} /V _{dc}	V _{bc} /V _{dc}	V _{ca} /V _{dc}	V _{an} /V _{dc}	V _{bn} /V _{dc}	V _{cn} /V _{dc}
V_0	0	0	0	0	0	0	0	0	0
V_1	1	0	0	1	0	-1	2/3	-1/3	-1/3
V ₂	1	1	0	0	1	-1	1/3	1/3	-2/3
V ₃	0	1	0	-1	1	0	-1/3	2/3	-1/3
V_4	0	1	1	-1	0	1	-2/3	1/3	1/3
V_5	0	0	1	0	-1	1	-1/3	-1/3	2/3
V_6	1	0	1	1	-1	0	1/3	-2/3	1/3
V_7	1	1	1	0	0	0	0	0	0

Tabela 4-1 – Estado das chaves e tensões de saída

Conforme mostrado na tabela, duas destas oito combinações, $V_0 e V_7$, são nulas já que a tensão aplicada em cada uma das fases da carga é nula.

Cada um destes estados pode ser representado por vetores no plano $\alpha\beta$. Como estamos supondo acionamento de carga equilibrada sem conexão de neutro, a transformação de coordenadas *abc* em $\alpha\beta$ pode ser representada na forma simplificada mostrada na equação (4.4-2).

$$v_{\alpha\beta,s} = v_{\alpha,s} + j \cdot v_{\beta,s} \tag{4.4-1}$$

$$v_{\alpha\beta,s} = v_{an}(t) + j \cdot \frac{\sqrt{3}}{2} \cdot v_{bc}(t)$$
(4.4-2)

Tomando-se, então, as tensões de fase V_{an} e de linha V_{bc} da tabela 4.1 e substituindo na equação (4.4-2), podemos construir a tabela 4.2, que mostra os valores das componentes do vetor tensão do inversor em função dos estados de chaveamento.

K	V_{o}/V_{cc}	V_{β}/V_{cc}
V_0	0	0
\mathbf{V}_1	2/3	0
V_2	1/3	$\sqrt{3}/2$
V_3	-1/3	$\sqrt{3}/2$
V_4	2/3	0
V_5	-1/3	$-\sqrt{3}/2$
V_6	1/3	$-\sqrt{3}/2$
V_7	0	0

Tabela 4-2 – Estado das chaves e tensões de saída

Os vetores não nulos obtidos da transformação apresentam módulo 2/3. A expressão analítica para os vetores representativos das tensões do inversor no plano $\alpha\beta$ é dada por:

$$v_{\alpha\beta,s}^{s} = \frac{2}{3} \cdot V_{dc} \cdot e^{\frac{j \cdot (k-1) \cdot \frac{\pi}{3}}{3}} \qquad k = 1..6$$
(4.4-3)

$$v_{\alpha\beta,s}^{s} = 0$$
 $k = 0 \ e \ 7$ (4.4-4)

4.4-2 Geração do vetor espacial girante

A representação dos vetores no plano $\alpha\beta$ das 6 combinações não nulas, também chamadas vetores base, conforme mostrado na figura 4.5. A área entre dois vetores consecutivos no plano é chamada de setor e, portanto, há 6 setores distintos.

A representação de um sistema trifásico equilibrado também pode ser obtido a partir da equação (4.4-2), e sua representação no sistema de eixos estacionário $\alpha\beta$ é dada pelo vetor V^{*}, mostrado na figura 4.6.

Qualquer vetor dentro da área limitada pelo hexágono, pode ser obtido através da combinação entre os vetores limitantes, ou vetores base $(V_x \in V_y)$, do setor em que este vetor

está contido, como mostrado na figura 4.6. Neste caso, os vetores base, $V_x e V_y$, são $V_2 e V_3$ respectivamente. Como a operação do inversor é feita exclusivamente em modo chaveado, é preciso dividir o tempo de aplicação de cada um destes vetores base para que se possa sintetizar o vetor original.

Figura 4.5 – Representação dos vetores fixos de tensão para as diferentes combinações de estados das chaves no plano α,β .

Definindo-se um período fixo chamado período de chaveamento, suficientemente pequeno, pode-se determinar frações deste período, dx e dy, conforme mostrado na figura 4.6, durante as quais devem ser aplicados os vetores base. Durante o tempo excedente, ou o tempo que sobra da subtração do período de chaveamento pelas frações correspondentes aos dois vetores não nulos, é aplicado um dos vetores nulos. A representação de um vetor fora do hexágono resultaria em componentes dx e dy cuja soma seria maior que 1. Isto faz com que, devido à uma limitação de tempo, não seja possível sintetizar vetores fora do hexágono.

Uma vez definido o período de chaveamento (T_{SVM}), a freqüência de rotação (f^*) do vetor girante é dada pelo passo angular de variação do vetor de referência. Este passo é dado por:

$$\Delta \alpha = 2 \cdot \pi \cdot f^* \cdot T_{SVM} \quad \text{(radianos)} \tag{4.4-5}$$

O ângulo α é obtido pela soma incremental, a cada período de chaveamento, deste incremento angular, $\Delta \alpha$.

O raio máximo da trajetória circular que pode ser sintetizada no plano $\alpha\beta$ dentro do hexágono é:

$$V_{\alpha\beta-max} = \left(\sqrt{3}/2\right) \cdot \left(2/3\right) \cdot V_{dc} = V_{dc}/\sqrt{3}$$
(4.4-8)

Como a transformação, usando a equação (4.4-2) mantém a amplitude de fase, a tensão fundamental de pico por fase no lado AC, para este caso, é igual à:

Figura 4.6 - Decomposição do vetor girante de referência, V^{*}.

$$V_{f-pico-max} = V_{\alpha\beta-max} = V_{dc} / \sqrt{3}$$
(4.4-9)

resultando na tensão de linha de valor eficaz igual à:

$$V_{L-max} = V_{dc} \cdot /\sqrt{3} \cdot \left(\sqrt{3} / \sqrt{2}\right) = V_{dc} \cdot /\sqrt{2}$$

$$(4.4-10)$$

que é a própria tensão eficaz de alimentação do retificador do inversor, ou seja, utilizando-se esta técnica de modulação pode-se obter uma amplitude de fundamental igual a amplitude da senoidal de entrada do retificador.

Definindo-se o índice de modulação, M, como a divisão entre o módulo do vetor de referência V^* e o raio da circunferência inscrita ao hexágono, ou seja, a divisão entre a amplitude da fundamental da tensão de saída e a tensão no link DC do inversor, pode-se deduzir as seguintes expressões para as componentes dx e dy, da tensão de referência [2].

$$dx = M \cdot \sin(60 - \alpha) \tag{4.4-11}$$

$$dy = M \cdot \sin(\alpha) \tag{4.4-12}$$

Uma vez conhecidos os tempos que cada vetor deve ser aplicado dentro do período de chaveamento, uma nova preocupação na implementação é como ativar ou desativar as chaves exatamente neste tempo e qual a seqüência a ser seguida para que o número de chaveamentos seja reduzido.

4.4 – 3 Discussão sobre métodos de implementação e resultados

O DSP utilizado conta com hardware que torna a implementação desta técnica de modulação mais fácil quando comparados aos métodos de implementação com lógica baseada exclusivamente em "software". Utiliza-se um timer em contagem ascendente e descendente (geração do SVM simétrico), conforme mostrado na figura 4.7. O valor deste timer é comparado a valores carregados em três registradores de comparação, correspondendo cada um aos três ramos do inversor. No momento em que o valor do timer coincide com o valor de um destes registradores, um hardware dedicado interno ao DSP se encarrega de ativar a saída PWM da chave correspondente. É necessário portanto calcular os valores de comparação de acordo com as frações dx e dy do tempo de chaveamento, com valor máximo do timer e com o setor atual. O setor é importante pois a seqüência correta de chaveamento depende do mesmo.

Observando-se a figura 4.7 pode-se entender como seqüência de chaveamento pode influir no número total de chaveamentos por ciclo. Nesta figura estão mostradas duas seqüências de chaveamento ditas corretas. Em cada mudança entre vetores aplicados há apenas uma chave da parte superior do inversor mudando de estado. Caso efetuássemos uma seqüência diferente destas, como, por exemplo:

$$\begin{array}{c} V_0 \rightarrow V_2 \rightarrow V1 \rightarrow V_2 \rightarrow V_0 \\ 000 \rightarrow 110 \rightarrow 100 \rightarrow 110 \rightarrow 000 \end{array}$$

Estaríamos fazendo duas comutações na mudança entre os vetores V_0 e V_2 , aumentando o número de chaveamento desnecessariamente, aumentando a perda de potência nas chaves e piorando a qualidade de tensão na saída.

b) Sequencia usando com vetor nulo $V_7(111)$

A técnica de SVM assimétrico pode ser obtido de forma similar. A diferença seria o uso de uma dente de serra ao invés de uma triangular. Assim, para este caso, as três chaves da parte superior, ou da parte inferior, do inversor são ligadas simultaneamente e desligadas de acordo com a razão cíclica ou vice-versa, enquanto que para o SVM simétrico, o tempo em que as chaves são ligadas e desligadas é simétrico em relação a metade do período, ou seja, a maioria do chaveamento não ocorre ao mesmo tempo. Isto faz com que haja uma redução da EMI (interferência eletromagnética) devido a dv/dt e di/dt em 66% comparado com o método assimétrico.

Um outro melhoramento que pode ser agregado à técnica é a aplicação de não apenas um dos vetores nulos, mas ambos. Esta situação está mostrada na figura 4.8. Isto faz com que o número de chaveamentos por ciclo seja aumentado de 2. Este aumento no número de comutações ocasiona um aumento das perdas nas chaves. Tipicamente este acréscimo de potência perdida nas chaves é cerca de 30% maior quando comparado ao método de minimização do número de comutações. Em contrapartida, consegue-se diminuir sensivelmente o ripple da corrente de saída e melhorar a distribuição de potência entre as chaves, já que tanto as chaves da parte superior do inversor quanto as chaves da parte inferior estão sendo usadas na geração do vetor nulo.

Figura 4.8 - Estratégia utilizando os dois vetores nulos.

Como mostrado anteriormente, com a utilização da técnica SVM consegue-se uma amplitude de fundamental igual a $V_{dc} / \sqrt{2}$. Usando-se a técnica de PWM senoidal teríamos uma fundamental de fase igual a $V_{dc} / (2 \cdot \sqrt{2})$ e, consequentemente, uma tensão de linha máxima de $V_{dc} \cdot \sqrt{3} / (2 \cdot \sqrt{2})$. Ou seja, utilizando-se a técnica SVM consegue-se uma amplitude máxima de fundamental $2/\sqrt{3}$ vezes a amplitude conseguida com PWM senoidal convencional. Ou seja, considerando operação na região linear, dentro do hexágono consegue-se um ganho de cerca de 15% na amplitude da fundamental. A obtenção de índices de modulação ainda maiores pode ser conseguida com o uso de alguma técnica de sobre-modulação [25].

A explicação para obtenção de um índice de modulação maior na região linear está no fato de haver introdução intrínseca de harmônicas nas tensões de fase quando se utiliza a técnica SVM. Isto pode ser verificado quando se filtra os pulsos de comandos das chaves eliminando as componentes de alta freqüência conforme a figura 4.9-a. A figura 4.9-c mostra os pulsos das chaves superiores das fases a e b do inversor filtrados.

Apesar de haver distorção intrínseca nas tensões de fase, os componentes harmônicos possuem ordem múltipla de 3, ou seja, são de modo comum. Como conseqüência a tensão de linha não apresenta estas harmônicas. Isto pode ser verificado fazendo-se a subtração entre os sinais dos pulsos filtrados, mostrado na figura 4.9-d. A figura 4.9-b mostra alguns resultados obtidos por simulação. Nela estão mostrados: o sinal SVM obtido pelo cálculo do valor médio por período de chaveamento de uma das fases do inversor, similar à onda filtrada mostrada na figura 4.9-c; a componente fundamental desta onda, e a subtração da forma de onda SVM por sua fundamental, onda triangular. Por esta figura fica fácil entender o porquê de se obter uma fundamental maior que a onda original. A distorção intrínseca introduzida pela técnica atua em cada fase de modo a reduzir a amplitude do sinal modulado possibilitando que se atinja índices de modulação maiores. A introdução desta distorção, onda triangular, às senóides usadas na modulação senoidal possibilita a obtenção de índices de modulação similares aos obtidos com a estratégia SVM [26].

Estes resultados foram obtidos para um SVM implementado à 20kHz, período de chaveamento 50us, e praticamente no limiar da saturação, ou seja, módulo do vetor no plano $\alpha\beta$ igual a 99.8% do raio da circunferência inscrita no hexágono.

Figura 4. 9 – a) Filtro passa-baixas para verificação da modulação. **b)** Formas de onda normalizadas do sinal SVM por fase, de sua fundamental e da distorção triangular introduzida (Simulação computacional); **c)** Sinais a e b filtrados com filtro RC, Ch1 e Ch2 (resultados experimentais), **d)** Diferença entre estes sinais filtrados, Math = Ch1 - Ch2 (Resultado Experimental).

4.5 - Filtros Passa-baixa Digitais

A realimentação da freqüência de escorregamento estimada e a compensação de tensão na resistência de estator exigem o uso de dois filtros cujas funções de transferência são dadas pela equação (4.5-1).

$$H(s) = \frac{l}{l + \tau \cdot s} \tag{4.5-1}$$

Apesar do ajuste das constantes τ depender das condições de operação da máquina como velocidade e torque, pode-se conseguir um ajuste que proporcione respostas satisfatórias para qualquer ponto de operação.

A escolha das constantes de tempo dos filtros foi feita a partir de simulações computacionais do sistema nas quais foram feitos testes de variação de velocidade de referência e de torque de carga. Foram aplicados sinais do tipo degrau com variação de zero ao valor nominal, tanto nos testes de variação da velocidade de referência, quanto nos testes de variação de torque de carga. Verificou-se então o comportamento do sistema para diversos ajustes das constantes de tempo no que diz respeito a tempo de estabilização e sobre-sinal máximo ("overshoot") da resposta de velocidade. Os valores obtidos para as constantes de tempo τ , dos filtros foram 0.001s para o atraso em freqüência e 0.01s para o filtro de tensão. As freqüências de corte dos filtros são, portanto, respectivamente iguais à 159Hz e 15.9Hz.

Como os filtros foram implementados com o auxílio do DSP foi necessário obter a forma discretizada das funções de transferência. Em [28] são descritas algumas técnicas de transformação como a invariância de impulso, a aproximação pela equação a diferenças ("Backward-Difference Aproximation") e a transformação bilinear. Dentre estas técnicas, a transformação bilinear apresenta algumas vantagens: (1) não necessitar de uma sobre-amostragem do sinal e evitar, desta maneira, problemas de sub-amostragem ("aliasing problems"); (2) sempre obtermos, a partir de um sistema estável em tempo contínuo, um sistema estável em tempo discreto. A explicação para isto está na maneira com que o plano S é mapeado no plano Z.

O mapeamento do plano S em Z pode ser obtido a partir da própria equação de transformação. No caso do uso da equação bilinear a equação de transformação é:

$$z = \frac{I + \left(\frac{T}{2}\right) \cdot s}{I - \left(\frac{T}{2}\right) \cdot s}$$
(4.5-2)

na qual, T é o período de amostragem. O sistema foi concebido de forma que o algoritmo que realiza a filtragem esteja na mesma rotina de interrupção que realiza a SVM. Assim, da forma como foi implementado, o período de amostragem T da fórmula (4.5-2), é o mesmo período de chaveamento da modulação SVM. A vantagem de assim o fazer está em não ser necessária a criação de uma nova interrupção para a filtragem, o que dificultaria o desenvolvimento do software de controle. O cuidado a ser tomado com o uso de tal procedimento é garantir que a
taxa de amostragem seja suficiente. Pelo teorema de Nyquist, a taxa de amostragem do filtro da malha de freqüência, filtro com menor constante de tempo, seria de 500 µs enquanto que o período de chaveamento da modulação implementada foi de 300us. Portanto, a taxa de amostragem é suficiente para o filtro em questão e é muito maior que a mínima requerida pelo filtro da malha de tensão.

No plano S, a reta de separação entre as regiões estável, semiplano esquerdo, e instável, semiplano direito, pode ser representada por: $s = j \cdot \omega$. Substituindo na equação do filtro temos:

$$z = \frac{1 + \frac{j \cdot \omega \cdot T}{2}}{1 - \frac{j \cdot \omega \cdot T}{2}}$$
(4.5-3)

Na forma polar temos:

$$z = \frac{\left[1 + \left(\frac{\omega \cdot T}{2}\right)^{2}\right] \cdot e^{j \cdot \arctan(\omega \cdot T/2)}}{\left[1 + \left(\frac{\omega \cdot T}{2}\right)^{2}\right] \cdot e^{-j \cdot \arctan(\omega \cdot T/2)}} = e^{j \cdot 2 \cdot \arctan(\omega \cdot T/2)}$$
(4.5-4)

Esta equação define uma circunferência de raio unitário centrada na origem. Ou seja, a utilização da equação bilinear faz com que o semiplano esquerdo do plano S seja mapeado exatamente na região estável no plano Z, um circulo de raio unitário centrado na origem. Como mostrado na figura 4.11 (b).

Figura 4.10 – **a)** Região estável no do plano S **b)** região correspondente no Z com o uso da equação bilinear.

Este resultado não é válido para outras transformações. Caso procedêssemos da mesma forma, encontrando o lugar mapeado em Z pela reta $s = j \cdot \omega$, e usando-se a equação a diferenças, equação (4.5-5), obteríamos a equação (4.5-6).

$$z = \frac{l}{l - sT} \tag{4.5-5}$$

$$z = \frac{1}{2} \cdot \left[1 + e^{j \cdot 2 \cdot \arctan g \cdot \omega \cdot T} \right]$$
(4.5-6)

Esta equação define no plano Z uma circunferência de raio 0.5 centrada em $0.5 \cdot e^{j\cdot \theta}$. Isto significa que a transformação transfere toda a região estável em S, semi-plano esquerdo, para esta circunferência de raio 0.5 em Z. Sabe-se, contudo, que a região estável do plano Z é a área interna à circunferência de raio 1 centrada na origem. Ou seja, um sistema instável em S, pode, através da transformação, se tornar um sistema estável em Z, o que caracteriza em erro provocado pela transformação. De fato, pela transformação através da equação a diferenças, o sistema em S é fielmente reproduzido em Z apenas quando se trabalha com $\omega \cdot T$ pequeno [28]. Veja a figura 4.11.

Figura 4.11 – Mapeamento do plando S em Z pela equação a diferenças.

Uma conseqüência de se trabalhar com $\omega \cdot T$ pequeno é uma limitação na largura de banda quando esta transformação é utilizada. A obtenção de bons resultados na utilização deste método está vinculada à taxa de amostragem do sinal que se deseja filtrar. A taxa de

amostragem deve ser muito maior que a mínima necessária pelo teorema de Nyquist. Desta forma, trabalha-se em a região onde o erro provocado pela transformação é minimizado. Em outras palavras, se quisermos simular uma dado sistema pela equação diferencial, usando a transformação a diferenças, a freqüência de amostragem 1/T deve ser escolhida de forma a ser muito maior que 2 vezes a máxima freqüência do sinal, para que o erro causado pela transformação seja pequeno.

Lembrando que o período de amostragem é de 300µs, e que o mínimo requerido pelo teorema da amostragem é de 500µs, o uso da equação a diferenças, por sua menor complexidade, resultaria em uma economia de alguns ciclos de "clock" no programa mas que talvez não resultasse em resultados fieis quando comparados ao filtro original em tempo contínuo. Isto provocaria erros nas comparações entre os resultados experimentais e simulados.

Isolando-se s na (4.5-2) obtém-se a equação de transformação bilinear, dada por:

$$s = \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}} \tag{4.5-7}$$

Substituindo-a na equação do filtro, (4.5-1), temos:

$$H(z) = \frac{I}{1 + \tau \cdot \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}}$$
(4-5-8)

Fazendo-se $H(z) = Y_k / X_k$ e lembrando que, sendo A_k o valor de uma discreta no instante de tempo k, $z \cdot A_k = A_{k-1}$, desenvolvendo a equação, chega-se em:

$$Y_{k} = \frac{I}{\left(I + \frac{2 \cdot \tau}{T}\right)} \cdot \left[X_{k} + X_{k-l} - \left(I - \frac{2 \cdot \tau}{T}\right) \cdot Y_{k-l}\right]$$
(4-5-9)

Como dito anteriormente, a filtragem é feita na mesma rotina do SVM, assim, o período de amostragem, T, na fórmula acima é o próprio período de chaveamento da SVM, 300µs.

A figura 4.12 mostra a resposta ao degrau, variação de -1pu à 1pu (-220V à 220V), do filtro de tensão ($\tau = 0.001$) implementado. Pela curva do lado direito, pode-se verificar, como esperado, que o tempo para que a resposta atinja 63% do valor final é aproximadamente 1ms. A pequena diferença se deve ao fato de a constante de tempo não ser múltipla do período de amostragem.

Figura 4.12 - Resposta do filtro atraso obtida ($\tau = 0.001$ s), e zoom do mesmo sinal na borda positíva.

4.6 - Amostragem da corrente

Pela proposta de controle implementada, é necessária a medição das correntes nas fases a e c. Para isto, utilizou-se sensores de efeito Hall. O circuito de condicionamento do sinal está mostrado na figura 4.14. A função deste circuito consiste simplesmente em uma transformação linear que aplicada a estes sinais de corrente vindos do sensor, com amplitude máxima limitada pela saturação do mesmo, em um sinal entre 0 e 5V, faixa de trabalho do conversor analógico-digital utilizado.

Figura 4.13 - Circuito de acondicionamento dos sinais de corrente.

A estratégia de modulação SVM implementada, SVM simétrico utilizando ambos os vetores nulos, permite que se faça a amostragem dos sinais de corrente apenas uma vez por

período da portadora, sem que com isto haja problemas de sub-amostragem. Isto é conseguido fazendo-se a amostragem da corrente exatamente no início ou na metade do ciclo da SVM, como mostrado na figura 4.14.

Nesta figura estão mostrados alguns resultados de simulação, utilizando-se o programa SPICE. Foi simulado um inversor acionando uma carga indutiva, RL, equivalente a máquina de indução usada na implementação operando nas suas condições nominais de freqüência e potência. Nesta simulação, o inversor está aplicando um vetor no plano $\alpha\beta$ fixo de módulo $0.85 / \sqrt{2}$, ou seja, 85% do máximo para operação na região linear, e ângulo 30° no setor 1. No gráfico da parte superior da figura está mostrada a corrente, passado o transitório inicial, na fase a do inversor.

Esta estratégia de amostragem permite que se tenha o valor médio da corrente durante o período de chaveamento e evita eventuais problemas com ruídos advindos do chaveamento no sinal de entrada dos conversores A/D, como mostra a figura 4.15. A vantagem deste método é clara quando não se trabalha com um índice de modulação muito alto. O problema é que a medida que o índice de modulação aumenta, menor é o tempo de aplicação do vetor zero, por conseguinte a instante de amostragem fica mais próximo ao momento do chaveamento aumentado, assim, a susceptibilidade a tais ruídos, conforme mostrado nas figuras 4.14 e 4.15.

Figura 4.14 - Simulação no Software SPICE da aplicação de um vetor fixo no plano $\alpha\beta$ de módulo 0.85, e em um ângulo de 30°. a)- Corrente na fase a; b) Pulso de acionamento da chave superior do inversor da fase a; c) Pulso de acionamento da chave superior do inversor da fase b; d) Pulso de acionamento da chave superior do inversor da fase c.

Figura 4.15 - Sincronismo da amostragem da corrente

O tempo necessário entre um evento que gera a interrupção e o início de execução da rotina para esta interrupção é chamado de latência de interrupção. Para que se consiga executar a amostragem, usando a estratégia de medição na metade do ciclo, foi necessária a implementação de uma nova interrupção de comparação. Esta interrupção atua na coincidência da contagem do timer com a de um registrador de comparação, assim como mostrado na figura 4.15. O ajuste do valor do registrador de comparação depende, portanto, da latência de interrupção e do tempo gasto com a execução de eventuais instruções antes da instrução de início de conversão.

Lembrando que a interrupção mais prioritária é a interrupção gerada pelos pulsos do "encoder", o início da conversão pode, fatalmente ser atrasado devido a ocorrência da mesma. Felizmente, o tempo total para execução desta interrupção e o "ripple" da corrente são baixos, 5 a 10µs e 0 a 0.05A, respectivamente. Nenhum problema foi constatado devido a isto.

4.7 – Algoritmo de Controle

O programa foi desenvolvido em "assembler" com a ajuda de um software em ambiente DOS ("EVM C Source Debuger"). A escolha de se programar em "assembler" se deu devido a não disponibilidade de um compilador C otimizado para o hardware usado. O uso de um compilador C não otimizado poderia aumentar muito o tempo de realização das rotinas de controle e, em consequência, comprometer o desempenho do sistema de controle.

Apesar das facilidades encontradas na implementação do SVM devido a existência de hardware que facilita o mesmo, várias foram as dificuldades encontradas na implementação do algoritmo de controle. Um dos grandes problemas da implementação de tal algoritmo, além da programação em "assembler", foi a grande quantidade de fórmulas necessárias à realização do mesmo e o fato de se contar para isto com um DSP de ponto fixo.

A figura 4.16 mostra a rotina de inicialização do programa. Esta rotina é executada sempre que ocorre um evento de "reset" no sistema, nela se encontram alguns procedimentos necessários ao bom funcionamento do mesmo. Uma descrição detalhada sobre o funcionamento de cada etapa, bem como das demais interrupções pode ser encontrada no próprio corpo do programa apresentado no anexo.

Figura 4.16 - Diagrama de blocos da inicialização

Um dos procedimentos presentes nesta inicialização é a medição dos "offsets" dos canais do conversor A/D. Ela é feita pela média de 512 amostras antes que se inicie o chaveamento do inversor, ou seja, quando a corrente de entrada do motor é nula. Após o procedimento de inicialização, o programa entra em um laço de espera. O programa sai deste laço apenas na ocorrência de alguma interrupção ou de um eventual "reset" do sistema.

Três são as interrupções habilitadas:

- 1) INTM, interrupção que leva a execução da rotina de medição de velocidade;
- T1CMPINT, interrupção de comparação do timer 1, corresponde a rotina de amostragem de corrente;
- 3) T1UFINT, Interrupção por "under-flow" do timer 1, correspondente a de interrupção de execução do algoritmo de controle. O diagrama de blocos destas rotinas estão mostrados nas Figuras 4.17, 4.18 e 4.19 respectivamente.

Figura 4.17 - Diagrama de blocos da interrupção de Amostragem das correntes.

Figura 4.18 - Diagrama de blocos da interrupção de controle (T1CMPINT)

A interrupção de maior prioridade é a interrupção INTM, assim esta interrupção pode eventualmente interromper as demais. Não há problemas de concorrência entre as outras duas interrupções, T1CMPINT e T1UFINT, pois apesar da existência de uma prioridade entre as mesmas, elas ocorrem em instantes de tempo distintos, respectivamente no início e no meio do período do "timer", e como estamos trabalhando com um período de chaveamento relativamente alto, no momento da ocorrência de uma a outra já terá sido atendida.

O período total de execução das rotinas, de medição de velocidade, rotina de controle de amostragem de corrente, são respectivamente iguais a, 70, 10 e 5µs respectivamente. O tempo total de ocupação da CPU é variável, aumentando com o aumento da velocidade do motor. Isto ocorre devido ao fato de o número de interrupções geradas pelos pulsos do "encoder" aumentar. Para operação a 1800 rpm, velocidade síncrona nominal, a ocupação da CPU ficou em aproximadamente 35%.

Figura 4.19 - Diagrama de blocos da interrupção de medição de velocidade (INTM)

Capítulo 5

RESULTADOS EXPERIMENTAIS

5.1 Introdução

Neste capítulo são apresentados resultados de testes experimentais bem como alguns resultados de simulação do sistema estudado e apresentado no Capítulo 4. O objetivo destes testes foi verificar a estabilidade do sistema perante variações na velocidade de referência e perturbações de torque de carga.

A apresentação dos resultados está organizada em quatro seções: 5.2-1 - transitórios de aplicação de carga; 5.2-2 variações bruscas da velocidade de referência; 5.2-3 variações lentas da velocidade de referência e 5.2-4 testes de regulação de velocidade em regime.

5.2 Procedimentos experimentais

Os testes com carga foram feitos utilizando uma máquina de corrente contínua operando como gerador acoplado diretamente ao eixo da máquina de indução. Os dados da máquina de indução são:

Fabricante: WEG (Motor de Auto Rendimento PLUS), NBR 7094 Motor de Indução de Gaiola, Cat. N, Isolação B, Reg. S1, FS 1.15 Potência: (3 c.v.- 2.2kW), 4pólos, 60 Hz, 220/380V $I_N = 8.34/4.83$; Ip/In = 6.7, N_N=1730 rpm; J=0.0067 Kg·m², Parâmetros do Circuito Equivalente (Condições Nominais de Operação e temperatura 20°C): $R_s = 2.229 \Omega$; $R_r = 1.66 \Omega$; $R_{m_N} = 955 \Omega$ $L_r = 0.250 H$; $L_s = 0.244 H$; $L_m = 0.238 H$.

A tensão de entrada do retificador trifásico que carrega o barramento DC do inversor é 220V, e por conta disto não foi possível alimentar o motor de indução sob testes com sua tensão nominal que é de 380 V. A solução adotada para contornar este problema e, ainda assim executar os testes de carga, foi operar com fluxo reduzido.

Devido ainda ao fato se trabalhar com tensão reduzida, não foi possível operar o motor em altos torques por conta das limitações de corrente da máquina. Desta maneira, nos testes com carga definiu-se um torque equivalente para o motor operando com tensão de 220 V e escorregamento nominal; este torque, denotado por T_{sN} , é 1/3 do torque nominal da máquina quando ela opera com tensão e freqüências nominais. Os resultados obtidos não foram comprometidos devido a esta redução de tensão pois, o importante era mostrar a regulação de velocidade sob condições de operação onde o escorregamento está acima do nominal, ou seja, mostrar a regulação de velocidade para operação na região onde a relação entre torque e escorregamento não mais pode ser considerada linear.

Variações no torque no eixo da máquina foram obtidas através de variações na carga do gerador de corrente contínua. A regulação fina desta carga foi realizada através de um reostato de campo que permitiu variar a tensão gerada e consequentemente a potência a fornecida à carga.

O objetivo deste sistema era simular variações do tipo degrau no torque de carga através de chaveamento de carga no gerador CC. O torque pode ser determinado realizando a divisão do resultado da soma da potência dissipada na carga do gerador com as perdas mecânicas e elétricas do sistema pela velocidade de eixo do motor. Desta maneira, com o fechamento da chave o acréscimo do torque de carga é determinado pelo resultado da divisão entre a soma da potência dissipada na carga do gerador e na resistência de armadura pela velocidade de eixo do rotor. Contudo, o sistema em questão pode apresentar algumas limitações. A primeira destas limitações, relacionada a taxa de variação de torque, está associada à indutância de armadura da máquina CC. Esta indutância limita a variação de corrente o que impede variações bruscas na potência gerada e, consequentemente, do torque no eixo. Uma segunda limitação está relacionada a variações na tensão gerada, devido a variações na velocidade durante transitórios de carga. Como a carga do gerador é uma carga passiva, a potência dissipada na mesma depende da tensão aplicada em seus terminais, desta maneira, uma perturbação na velocidade se reflete em uma perturbação de torque no eixo.

5.3 Resultados

5.3-1 Transitórios de Aplicação de Carga

Nas figuras 5.1 e 5.2 está mostrado o comportamento de algumas variáveis envolvidas no controle durante a ocorrência de variações de torque de carga, para uma velocidade de referência fixa e igual a 300rpm. Nestas figuras tem-se os transitórios envolvidos quando o motor é exigido para uma determinada carga no gerador, com também a situação na qual retira-se esta carga. A carga do gerador foi calculada para que houvesse na velocidade em questão uma variação no torque de T_{sn} .

A aplicação do torque de carga fez com que, inicialmente, a velocidade do motor caísse e que, em conseqüência do aumento de escorregamento provocado por esta mudança, a corrente da máquina aumentasse. Então, simultaneamente a estes fenômenos, a estratégia de controle implementada, de acordo com o novo valor de corrente eficaz I_s e da componente i_{sd} , atua de forma a elevar a freqüência e tensão de acionamento de forma que a velocidade volte a seu valor inicial de regime.

A retirada da carga conectada ao gerador provoca uma aceleração do sistema que, de maneira análoga a descrita anteriormente, é compensada pela diminuição da freqüência e

tensão de acionamento. Desta maneira, passado o transitório, a velocidade volta ao seu valor de referência.

Diferentes variações dos testes de aplicação de carga das figuras 5.1 e 5.2, são apresentadas nas figuras 5.3 a 5.10. Nas figuras 5.3 e 5.4 são apresentados transitórios obtidos com o aumento do torque de carga igual a T_{sn} , para uma velocidade de 900 rpm.; enquanto que, os transitórios de retirada do torque de carga são mostrados nas figuras 5.5 e 5.6. Estes mesmos testes também foram realizados com um torque de carga 1,5 T_{sN} , e os resultados referentes aos mesmos estão mostrados nas figuras 5.7 e 5.8. O testes correspondentes de retirada de carga estão mostrados nas figuras, 5.9 e 5.10.

Figura 5.1 - Teste de transitório de carga, (a) Frequência mecânica de referência, , (b) Tensão de referência, V_s^* , (c) Corrente de fase, i_{as} (d) Velocidade de eixo, Ω_m .

Figura 5.2 - Teste de transitório de carga, (a) Velocidade de eixo, $\Omega_{\rm m}$, (b) Valor de pico da corrente, $I_s \cdot \sqrt{2}$ (c) Componente real da corrente, $2 \cdot i_{s,d} / 3$ (d) Corrente de fase. i_{as} ,

Figura 5.3 - Teste de transitório de carga, $T_c = T_{sn}$ (a) Frequência de referência, f_s , (b) Tensão de referência, V_s^* (c) Corrente de fase, i_{as} (d) Velocidade de eixo, Ω_m .

Figura 5.4 - Teste de transitório de carga, 1,5 T_{sn}, (a) Velocidade de eixo, $\Omega_{\rm m}$ (b) Valor de pico da corrente, $I_s \cdot \sqrt{2}$ (c) Componente real da corrente, $2 \cdot i_{s,d} / 3$ (d) Corrente de fase, i_{as} .

Figura 5.5 - Teste de transitório de carga, , $T_c = T_{sn}$ (a) frequência de referência, f_s . (b) Tensão de referência, V_s (c) Corrente de fase, i_{as} (d) Velocidade de eixo, ω_m .

Figura 5.6 - Teste de transitório de carga, , $T_c = T_{sn}$ (a) Velocidade de eixo, Ω_m , (b) Corrente de pico, $I_s \cdot \sqrt{2}$, (c) Componente real da corrente, $2 \cdot I_{sre} / 3$, (d) Corrente de fase, i_{as} .

Figura 5.7 - Teste de transitório de carga, , $T_c = 1.5 \cdot T_{sn}$ (a) Frequência mecânica de referência, Ω_m^* , (b) Tensão de referência, V_s^* , (c) Corrente de fase, i_{as} , (d) Velocidade de eixo, Ω_m .

Figura 5.8 - Teste de transitório de carga, $T_c = 1.5 \cdot T_{sn}$ (a) Velocidade de eixo, Ω_m , (b) Corrente de pico, $I_s \cdot \sqrt{2}$, (c) Componente real da corrente, $2 \cdot i_{as} / 3$ (d) Corrente de fase, i_{as} .

Figura 5.9 - Teste de transitório de carga, , $T_c = 1.5 \cdot T_{sn}$ (a) Frequência mecânica de referência, Ω_m^* , (b) Tensão de referência, V_s^* (c) Corrente de fase, i_{as} (d) Velocidade mecânica de eixo, Ω_m .

Figura 5.10 - Teste de transitório de carga, , $T_c = 1.5 \cdot T_{sn}$ (a) Velocidade mecânica de eixo, Ω_m , (b) Corrente de pico, $I_s \cdot \sqrt{2}$, (c) Componente real da corrente, $2 \cdot i_{s,d} / 3$, (d) Corrente de fase, i_{as} .

5.3-2 Variações lentas de velocidade

Nas Figuras 5.11 a 5.20, estão mostrados resultados relativos à variação da velocidade de referência. A velocidade de referência imposta nestes testes foi do tipo triangular com variação entre 300 e 1500rpm. Na Figura 5.11 mostra-se a velocidade mecânica de eixo para o acionamento da máquina em vazio e uma variação relativamente rápida da onda de referência, com tempo de subida de aproximadamente 1,2 s. Como pode ser observado, o desempenho do sistema de controle no teste em questão foi bastante satisfatório, já que a velocidade de saída acompanhou a de referência.

Um teste similar está apresentado na Figura 5.12, porém com uma inércia maior, já que neste caso o gerador CC estava acoplado à maquina de indução. Apesar da resposta na variação positiva da velocidade de referência ter sido satisfatória, o mesmo não aconteceu para variações negativas. A resposta de velocidade obtida na fase de desaceleração apresentou oscilações. Na Figura 5.13 está mostrada a freqüência de acionamento obtida no teste em questão. Como esperado, na de fase aceleração, pela diferença entre a freqüência de acionamento e a freqüência de eixo, pode-se observar que existe um escorregamento constante, ou seja, um torque eletromagnético constante. Na fase de desaceleração, apesar das oscilações nas formas de onda apresentadas, pode-se notar que existe um escorregamento médio negativo ligeiramente menor ao obtido na aceleração. Esta ligeira diferença se deve ao fato de que, para o caso de variação negativa de velocidade, o torque de ventilação e de atrito dos mancais atuam de forma a ajudar na variação de velocidade.

Duas razões podem ser apontadas para as oscilações durante a descida:

- 1) Como opera-se com escorregamentos negativos, a máquina opera como gerador. Contudo, o conversor utilizado não é apropriado para operações sob tais condições por não apresentar a capacidade de devolver a energia gerada ao sistema de alimentação. Na figura 5.14 está mostrada a forma de onda da corrente na conexão entre o retificador e o capacitor no lado DC do inversor. Note que não há corrente carregando o capacitor na fase de desaceleração e isto é conseqüência da tensão no barramento DC ser maior que o valor de pico da tensão de linha da entrada. De fato, parte da energia gerada é temporariamente armazenada no capacitor do barramento DC provocando aumento da tensão no mesmo. Apesar disto, o algoritmo de controle, da forma como foi implementado, pressupõe operação com tensão fixa no barramento DC. Desta forma, pode ser que esta alteração na tensão no capacitor de entrada do inversor esteja sendo suficiente para causar erros significativos entre a referência de tensão imposta pelo controle e o valor real aplicado aos terminais da máquina, causando instabilidade.
- 2) A variação súbita na inclinação na curva da velocidade de referência provoca uma variação brusca na freqüência de rotor. O transitório causado nesta transição pode estar resultando em um desvio inicial significativo entre a velocidade real e de referência, provocando oscilações similares às que serão discutidas nos testes com variação brusca de velocidade.

O teste com a mesma carga acoplada ao eixo com uma variação mais lenta na velocidade de referência, apresentado na figura 5.15, não apresentou tais oscilações. A figura 5.16 mostra os valores de corrente eficaz de entrada e componente de eixo direto em escala apropriada para comparação, $3 \cdot i_{s,dq} / \sqrt{2}$, de forma que a razão entre estas grandezas é o valor de $\cos(\phi)$ da figura 3.5. Pode-se notar que, embora a variação de velocidade seja baixa, ainda há energia sendo gerada, $\cos(\phi) < 0$, durante a desaceleração da máquina. A figura 5.17 mostra a corrente de fase durante a aceleração.

Nas figuras 5.18, 5.19 e 5.20 estão mostrados os testes de variação de velocidade com valor de velocidade inicial nulo. Segundo os aspectos discutidos na seção 3.3, o sistema mostrou uma certa instabilidade nos momentos iniciais de aceleração. Outros problemas relacionados à velocidades baixas de operação serão discutidos na seção que trata dos testes de regulação em regime.

Figura 5.11 – Teste de variação de velocidade de referência. Variação de 0 à 1500 rpm em \cong 4s., (a) Velocidade de referência, Ω_m^* , (b) Velocidade no eixo, Ω_m^* .

Figura 5.12 – Teste de variação de velocidade , tempo de subida ≅ 2s , carga inercial (a) Velocidade de referência, .(b) Velocidade de eixo.

Figura 5.13 – Teste de variação de velocidade , tempo de subida $\cong 2s$ (a) Frequência mecânica de acionamento, Ω_s , (b) velocidade de rotor, Ω_m .

Figura 5.14 – Comportamento da corrente de entrada durante teste de variação de velocidade, (a) Velocidade de referência, Ω_m^* , (b) Corrente de carga do capacitor do barramento DC do inversor.

Figura 5.15 – Teste de variação de velocidade de referência. Variação de 0 à 1500 rpm em \cong 4s., (a) Velocidade de referência, Ω_m^* , (b) Velocidade no eixo, Ω_m^* .

Figura 5.16 – Comportamento das correntes nos testes de variação de velocidade, (a) Valor de pico da corrente de fase, $I_s \cdot \sqrt{2}$ (b) Componente na direção de V_s , $2 \cdot i_{s,d} / 3$.

Figura 5.17 – Transitório de aceleração (a) Corrente da fase i_{as} , (b) velocidade de referência, Ω_m^* .

Figura 5.18 - Resposta à rampa de velocidade de referência com máquina a vazio, (a) Velocidade de referência, $\Omega_{\rm m}$ *, variando de 0 à 1500 em \cong 700ms, (b) Velocidade de eixo, $\Omega_{\rm m}$.

Figura 5.19 - Teste de variação de velocidade com carga inercial acoplada ao eixo. (a) - Velocidade de referência, $\Omega_m *$,(b) Velocidade de eixo, Ω_m .

Figura 5.20 – Rampa de velocidade, (a) Corrente de fase, i_{as} (b) Valor de pico, $I_s \cdot \sqrt{2}$.(c) Velocidade de referência, Ω_m^* .

5.3-3 Variações bruscas de velocidade

A importância de tais testes está no fato de que, no algoritmo de controle em malha aberta proposto, adota-se a velocidade de referência como sendo a velocidade real da máquina. Isto pode ser verificado quando se observa os procedimentos adotados para a obtenção da equações (3.3-49) e (3.3-51). Em regime, como a velocidade da máquina idealmente se iguala a velocidade de referência, este procedimento não traz conseqüências graves. Contudo, devido a inércia do sistema, necessariamente existe diferença entre a velocidade da máquina e a velocidade de referência quando ocorre variações bruscas nesta última. Por conseguinte, durante tais transitórios a equação conduz a resultados inválidos e podem ocorrer erros como valor negativo da expressão interna a raiz da equação (3.3-49). Estes erros também foram verificados em simulação.

Outros problemas relacionados aos testes com variação brusca de velocidade são a limitação do sinal de corrente na entrada dos conversores AD placa de avaliação do DSP. Estes sinais são condicionados pelo circuito mostrado na figura 4.14. Naquele circuito há diodos na saída que limitam o sinal entre 0 e 5V. Na ocorrência de transitórios provocados por variações bruscas da velocidade de referência, a corrente de entrada da máquina pode atingir valor várias vezes superior a corrente nominal da máquina. Contudo, caso o circuito de interface de aquisição de sinais, mostrado na figura 4.14, seja ajustado para que não haja problemas de saturação do sinal de saída durante a ocorrência de tais fenômenos, quando se opera em regime a amplitude do sinal de entrada no conversor seria bastante baixa. Desta maneira, a precisão das medidas seria baixa fazendo com que o ajuste fosse inadequado para o cálculo das variáveis de controle o que poderia influir na regulação de velocidade.

Devido a estes fatores, preferiu-se permitir a atuação dos limitadores de saída a fim de se obter uma melhor precisão em condições normais de operação, onde a corrente é baixa. Nas figuras 5.23 estão mostradas a tensão de referência e o valor eficaz da corrente durante a ocorrência de variação brusca de velocidade de referência. Na figura 5.24 está mostrada, em escala de tempo reduzida, esta corrente distorcida pela limitação causada pelos diodos, além disso, na figura, também estão mostrados o valor eficaz obtido pela expressão (3.3-18). A tensão de referência durante este transitório assume valores elevados porém, como apresentado na sessão 4.4 que trata da modulação SVM, este sinal é limitado ao inferior do hexágono e seu valor é limitado em 220V.

Nas figuras 5.21 e 5.22 estão mostrados testes em que ocorrem variações bruscas de velocidade. Na primeira delas mostra-se um teste no qual a máquina opera a vazio. Já no segundo caso, apresentado na figura 5.22, mostra-se um teste semelhante porém, com carga inercial acoplada ao eixo. Neste caso, foi preciso, devido ao aumento no tempo de estabilização, alterar o tempo de permanência em cada nível de velocidade de referência. A estabilidade apresentada na resposta é razoável. Os erros apontados nos parágrafos anteriores não podem ser considerados os únicos responsáveis pelas oscilações verificadas nestes testes. Sabe-se que a resposta de velocidade da estratégia de controle escalar apresenta oscilações intrínsecas que dependem do ponto de operação no plano V-f[18] e um método de redução das mesmas através do uso de sensores de aceleração pode ser encontrado em [29].

Figura 5.21 – Resposta dinâmica a variações bruscas na velocidade de referência para máquina a vazio. (a) Velocidade de referência, Ω_m^* , (b) Velocidade de eixo, Ω_m .

Figura 5.22 - Teste de variação de velocidade similar à mostrada na Figura 5.8,com carga inercial acoplada ao eixo. (a), Velocidade de referência, Ω_m^* , (b) Velocidade da máquina, Ω_m^* .

Figura 5.23 – Transitório de variação brusca de velocidade de referência. (a) Tensão de referência, V_s^* , (b) Valor de pico da corrente de fase, $I_s \cdot \sqrt{2}$, (c) Velocidade de referência, Ω_m^* ,(d) Velocidade de eixo, Ω_m .

Figura 5.24 – Erro propocado pela saturação nos sensores de corrente. (a) Valor de pico obtido pela fórmula, $I_s \cdot \sqrt{2}$, (b) Corrente medida i_{as} .

5.3-4 Resposta em Regime

A tabela 5.1 mostra os resultados obtidos nos testes de regulação de velocidade perante variações do torque de carga. Pela tabela nota-se que o sistema proposto foi capaz de realizar uma regulação de velocidade bastante razoável para velocidades acima de 300rpm. A medida que se diminuiu-se a velocidade, segundo os aspectos discutidos na sessão 3.3, existe uma piora considerável na regulação de velocidade. Contudo, é importante ressaltar que um boa regulação em velocidades baixas está ligada a determinação correta dos parâmetros, das técnicas usadas na implementação e, sobretudo, da capacidade do inversor de gerar as referências de tensão e freqüência impostas pelo controle. Dentre os problemas ligados ao inversor pode-se citar que:

- 1) a regulação da tensão no link DC dependente da tensão de linha e conseqüentemente está sujeita a quaisquer variações na mesma;
- a corrente conduzida pelos diodos e IGBTs provocam queda de tensão nestas chaves fazendo com que a tensão real aplicada à máquina se afaste dos valores de referência impostos pelo controle;
- 3) é necessário que haja um determinado tempo morto, entre o intervalo em que uma chave de um determinado ramo do inversor é desligada e o tempo no qual a outra chave, deste mesmo ramo, seja ligada. O efeito da introdução deste tempo na tensão de saída, como discutido em [24], é um valor DC somado ao sinal gerado. Por sua vez, este sinal DC depende da duração do tempo morto, da freqüência de chaveamento e do sentido da corrente.

Velocidade	Potência	Degrau de Torque aplicado.				
de referência	em Watts	Obs.: T_{sn} é o Torque correspondente ao escorregamento nominal.				
	p/ Tsn	$0 \cdot T_{sn}$	$0.5 \cdot T_{sn}$	$1 \cdot T_{sn}$	1.25 · T _{sn}	1.5 · T _{sn}
100 rpm	42.4	105.5 rpm	-	-	-	-
150 rpm	63.6	158.0 rpm	143.0 rpm	-	-	-
200 rpm	84.8	208.2 rpm	198.2 rpm	191.5 rpm	-	-
300 rpm	127.2	306.5 rpm	301.7 rpm	299.0 rpm	300.5 rpm	301.4 rpm
450 rpm	190.7	454.6 rpm	454.6 rpm	454.6 rpm	456.5 rpm	459.3 rpm
		453.8 rpm	450.0 rpm	445.2 rpm	444.7 rpm	443.5 rpm
600 rpm	254.3	603.0 rpm	601.2 rpm	598.5 rpm	596.9 rpm	596.6 rpm
		602.0 rpm	600.7 rpm	598.0 rpm	595.2 rpm	598.5 rpm
900 rpm	381.5	901.7 rpm	903.0 rpm	905.1 rpm	908.8 rpm	915.9 rpm
		900.7 rpm	900.0 rpm	900.3 rpm	900.0 rpm	900.3 rpm
1200 rpm	508.7	1199 rpm	1200 rpm	1200 rpm	1200 rpm	1201 rpm
1500 rpm	635.8	1500 rpm	1500 rpm	1499 rpm	1500 rpm	1495 rpm
Valor obtido com máquina fria						
——— Valor obtido com a temperatura da máquina superior ao caso anterior.						

Tabela 5.1 – Regulação em Regime

No sistema implementado, por se utilizar um inversor de potência elevada (40 kW), o tempo morto necessário foi relativamente alto, da ordem de 3µs. Segundo os aspectos discutidos em [24] apenas o erro devido ao item 3) é cerca de 2% da tensão no link DC. Desta maneira, como este erro não depende da freqüência de acionamento para velocidades de

referência baixas, esta distorção relativa da tensão é elevada e, sem dúvida, prejudica consideravelmente a correta geração da tensão de referência.

Para as velocidades de 450, 600 e 900 rpm foram realizados testes em duas situações diferentes. Os resultados impressos em vermelho foram obtidos com a máquina operando com temperatura superior a correspondente aos casos mostrados em azul. A temperatura do rotor nestes ensaios mostrados não está indicada devido a dificuldades técnicas envolvidas nos procedimentos de determinação da mesma já que conta-se com um motor comercial para os testes. Contudo, nota-se uma diminuição da velocidade com o aumento da temperatura de operação do motor. Na figura 5.25 também está mostrado um transitório em que pode se verificar a diferença de regulação nos dois casos para um torque de carga igual a $1.5 \cdot T_{sn}$. A explicação para isto está no fato de que a inclinação da curva de torque ser dependente da resistência do rotor e, sendo assim, o ajuste da curva em questão não é único e depende da temperatura da máquina.

As causas das oscilações presentes nas curvas de velocidade mostradas na figura 5.25 imediatamente antes da aplicação de carga na máquina não foram identificadas. Sabe-se contudo que as mesmas não podem ser atribuídas a falhas no sistema de medição de velocidade, já que durante os ensaios podia-se notar vibrações do sistema e ruído audível, sendo portanto um efeito real.

Figura 5.25 - Regulação de velocidade para diferentes temperaturas de operação, (a) Velocidade mecânica de eixo, Ω_m , máquina a temperatura ambiente. (b) Mesma variável para temperatura de operação superior ao caso anterior.

Capítulo 6

CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

6.1 Conclusões

No decorrer deste trabalho foram estudadas e discutidas diversas estratégias de controle escalar de velocidade no motor de indução. Na apresentação destes estudos, foram analisadas principalmente as técnicas usadas no controle de tensão e de freqüência de escorregamento. Dentre as estratégias estudadas, foi dado destaque aos métodos em malha aberta de velocidade, objetivo principal deste trabalho. Através das análises feitas, as principais desvantagens e limitações das técnicas tradicionais foram identificadas.

Em laboratório, foi implementada uma técnica escalar de controle de velocidade em malha aberta na qual foram agregados aos métodos tradicionais estratégias mais sofisticadas de controle de fluxo e de compensação de escorregamento bem como métodos mais rigorosos de modelamento.

A estratégia de controle implementada apresentou um bom desempenho na regulação de velocidade, para velocidades superiores a 300 rpm. A limitação mais evidente do desempenho obtido nestes testes de regulação foi a variação da inclinação da característica de torque-velocidade do motor devido às variações na temperatura do rotor. De fato, a temperatura de operação influi no valor da resistência de rotor, a qual tem influência direta na inclinação da curva em questão. Uma vez que o desempenho dos sistemas de acionamentos em geral é significativamente degradado com a variação desta resistência, significativos esforços de correção deste problema tem sido feitos. Porém, em sistemas em que há estimação de velocidade, como é o caso do sistema implementado, a solução deste problema envolve uma complexidade maior. A dificuldade está no fato de que nos métodos propostos na literatura, usa-se uma relação entre o escorregamento e a resistência do rotor, e a determinação da velocidade exige o conhecimento desta resistência; se o caso for estimar a resistência há a necessidade de se conhecer a velocidade [30]. Geralmente, os sinais de entrada de um sistema adaptativo desta natureza devem conter freqüências distintas a fim de que se possa obter mais de uma relação entre o escorregamento e a resistência de rotor, tornando possível, desta maneira, a determinação destes parâmetros. Em outras palavras, seria necessária a introdução de uma componente harmônica na tensão para que houvesse duas relações não dependentes entre escorregamento e resistência de rotor.

Problemas com a regulação de velocidade foram apresentados em baixas velocidades de operação. Em parte, estes problemas estão relacionados com a maior sensibilidade dos

métodos de compensação do escorregamento para operações em velocidades baixas. Segundo o equacionamento apresentado, isto pode ser explicado verificando-se que a medida que a freqüência de acionamento diminui, menor é a potência que atravessa o entreferro para um mesmo torque eletromagnético, seção (3.3-3). Desta maneira, como a determinação do torque eletromagnético é feita pela divisão destas duas variáveis, a sensibilidade às variações da potência aumenta significativamente, provocando erros de regulação.

Por outro lado, por se tratar de uma técnica de controle baseada na tensão e não estar sendo realizada realimentação desta variável, em baixas velocidades de acionamento, a regulação é prejudicada devido às não–linearidades do inversor. De fato, a medida que a freqüência de acionamento diminui, o erro entre a tensão real fornecida pelo inversor e a tensão de referência exigida pelo controle aumenta significativamente. A rigor, existe um aumento e distorção do fluxo provocando erros na estimação do escorregamento. Contudo, há métodos que minimizam este efeito não linear e, certamente, a regulação de velocidade em baixas freqüências, abaixo de 300 rpm, poderia ser significativamente melhorada com o emprego dos mesmos.

Dentro das restrições dinâmicas da estratégia de controle escalar, as respostas obtidas nos testes de variação de velocidade foram satisfatórias. O sistema apresentou um grau de estabilidade razoável com pequenas perturbações de velocidade quando submetido às variações de torque de carga. Talvez, o desempenho nestes testes seria melhor se solucionássemos os problemas inerentes ao equacionamento proposto para o cálculo do escorregamento. De fato, na dedução de algumas equações relacionadas ao cálculo do escorregamento, foi necessário considerar que a velocidade real da máquina fosse igual a velocidade de referência. Esta aproximação é perfeitamente válida para operação em regime ou com variações suficientemente lentas, já que nestas situações a diferença entre estas velocidades é mínima. No entanto, devido a inércia da máquina, a velocidade real não pode variar na mesma taxa da velocidade de referência quando ocorre uma variação brusca desta última. Nestes casos, há erros na determinação do escorregamento os quais influenciam na resposta de velocidade obtida. A solução deste problema poderia ser conseguida com a obtenção de novas equações de controle nas quais não seja necessário supor a igualdade entre a velocidade real e de referência.

Durante alguns dos ensaios com variação negativa de velocidade ocorreram oscilações de velocidade. Atribuiu-se como causa mais provável destes distúrbios a inadequação do conversor estático de freqüência utilizado. Contudo, seria necessária uma averiguação mais criteriosa a respeito do assunto a fim de se determinar a real causa do problema. Isto confirmaria, a aplicabilidade do método em sistemas em que o torque de carga pode ser negativo.

O "hardware" mínimo para o funcionamento do sistema implementado é bastante simples, necessitando naturalmente de um inversor, dois sensores de corrente com circuito de interface e um DSP ou micro controlador apropriado. No entanto, o software de controle mostrou-se complexo. Em parte, esta complexidade deveu-se a alguns fatores como: programação em "assembler"; execução em DSP de ponto fixo e a necessidade de elaborar a rotina para gerar os pulsos de acionamento das chaves do inversor. No entanto, a diminuição da freqüência de execução da rotina de controle diminuiria significativamente a capacidade de processamento exigida para a execução do programa o que tornaria possível o desenvolvimento do "software" em ambiente "C", simplificando a implementação do sistema proposto.

Apesar do que foi comentado, dentro das característica de desempenho requeridas em aplicações industriais, o sistema proposto apresentou um desempenho satisfatório e poderia ser usado na substituição das atuais técnicas de controle. Em grande parte dos sistemas de acionamento microprocessados a mudança para esta técnica de controle poderia ser feita apenas substituindo-se os atuais "softwares" de controle.

6.2 Sugestões para Trabalhos Futuros

Como tópicos para trabalhos futuros pode-se sugerir:

- Reformulação do equacionamento feito para obtenção do escorregamento;
- Averiguação e buscas de soluções para os problemas relacionados às variações negativas de velocidade de referência;
- Implementação de uma técnica de compensação das não linearidades do inversor na tentativa de melhorar a regulação de velocidade em velocidades baixas de acionamento;
- Estudo e Implementação de estratégias de estimação "on-line" da resistência de rotor em conjunto com a estratégia de controle proposta.

Referências Bibliográficas

- J. M. D. Murphy, J.M.D. and F. G. Turnbull, "Power Electronic control of AC Motors" Pergamon Press and F. G. TurnBull, 1st Edition, 1988.
- [2] Z. Yu and D. Figoli "AC Induction Motor Control Using Constant V/Hz Principle and Space Vector PWM Technique with TMS320C240" Application Report: SPRA284A, Digital Signal Processing Solutions, Texas Instruments April 1998.
- [3] W. Slabiak and L. J. Lawson, "Precise Control of a Three-Phase Squirrel-Cage Induction Motor Using a Practical Cycloconvertes" IEEE- Transactions on Industry and General Appications, Vol. IGA-2, Nº 4, July/August 1966.
- [4] Neacsu D. O., Stincescu R., Raducanu J., Donescu V. "Fuzzy Logic Control of an V/F PWM inverter-Fed Drive" ICEM 94, International Conference on Electrical Machines, 1994, pp. 12-17.
- [5] B. K. Bose, "Scalar Decoupled Control of Induction Motor", IEEE Transactions on Industry Appications, Vol. IA-20, N^o 1, January/February 1884.
- [6] R. Echavarría, S. Horta, M. Oliver "A three Phase Motor Drive Using IGBT's and Constant V/F Speed Control with Slip Regulation", IV IEEE International Power Electronics Congress. Technical Proceedings. DIEP (cat. Nº 95TH8145) pp. 87-91.
- [7] A. Muñoz-Garcia, T. A. Lipo, D. W. Novotny, "A new induction Motor Open-Loop Speed Control Capable of Low Frequency Operation", IEEE - Transactions on Industry Appications, Vol. 34, Nº 4, July/August 1998, pp. 813-820.
- [8] K. Koga, R. Ueda, T. Sonoda, "Constitution of V/f Control for Reducing the Steady Speed Error to Zero in Induction Motor Drive System" in Conf. Rec. IEEE-IAS Annu. Meeting, May 1990, pp. 639-646.
- [9] S. Nishikata and D. W. Novotny, "Efficiency considerations for low Frequency Operation", IEEE Transactions on Industry applications, 1988.

- [10] A. Kusko and D. Galler, "Control Means for Minimizaton of Losses in AC and DC Motor Drives", IEEE – Transactions on Industry Applications, Vol. IA-19, N^o 4, July/August 1983, pp. 561-.
- [11] P. J. Tsivitse and E. A. Klingshirn, "Optimum Voltage and Frequency for Polyphase Induction Motor Operating with Variable Freequency Power Supplies"
- [12] H. G. Kim and M. H. Park, "Optimal Efficiency Drive of a Current Sorce Inverter Fed Induction Motor", IEEE – Transactions on Industry Applications, Vol. IA-20, Nº 6, November/December 1984, pp. 1453 - 1459.
- [13] Edson Bim, "Apostílas do Curso Controle de Máquinas CC e de Indução IT542", Pós-Graduação FEEC – UNICAMP, 2000.
- [14] M. Chilikin, "Electric Drive", Mir Publishers, Moscou, 1978.
- [15] Say M. G., "Alternating Current Machines" Ed. Pitman 4^a edição Great Britain, 1976.
- [16] P. C. Sem, "Principles of Electric Machines and Power Electronics" E.U. A. John Wiley and Sons, 2nd Edition, 1977.
- [17]G. C. D. Sousa, "Application of Fuzzy Logic For Performance Enhancement of Drives", Dissertation Presented for the Doctor of Philosophy Degree, University of Tennessee, Knoxville.
- [18] R. Ueda, T. Sonoda, K. Koga and M. Ichikawa, "Stability Analysis in Induction Motor Driven by V/f controlled General – Purpose Inverter" IEEE – Transactions on Industry Appications, Vol 28. Nº 2, March-April 1992, pp. 472-481.
- [19] Jung J. , Nam K. , " A Vector Control Scheme for EV Induction Motors with a Series Iron Loss Model", in IEEE Transactions on Industrial Electronics, Vol. 45 N° 4, August 1998.
- [20] Texas Instruments, "TMS320C24x DSP Controllers, CPU, System, and Instruction Set", Reference Set, Vol. 1,1997.
- [21] Texas Instruments, "TMS320C24x DSP Controllers, Peripheral Library and Specific Devices", Reference Set, Vol. 2,1997.
- [22] David Alter, "Using the Capture Units for Low Speed Velocity Estimation on a TMS320C240", Designer's Notebook, Texas Instrumentes Application brief: SPRA363, July 1997.
- [23] Muhammad H. Rashid, "Power Electronics, Circuits, Devices and Applications", Prentice Hall International Editions, 2nd Edition, 1993.
- [24] Mohan, Undeland and Robbins "Power Electronics, Converters, Applications and Design", 2nd Edition, John Wiley & Sons, Inc. E.U.A., 1995.
- [25] Holtz J., "Pulsewidth Modulation for Electronic Power Conversion", in Proceedings of the IEE, Vol. 82, Nº 8, August 1994.
- [26] Heinz W., Van. D. B.e Hans S. M, "Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors" IEEE Transactions on industry applications, Vol. 24, pp. 142-150, January/February 1988.
- [27] Martin S. ,"Reduced Electromagnetic Interference (EMI) with the TMS320C24x DSP", Application Report SPRA501, Texas Instruments, December 1998.
- [28] A. V. Oppenheim, A. S. Willsky whith IAN T. Young, "Signals and Systems", Prentice Hall International Editions, 1983,
- [29] S. Higuchi, M. Ishida and T. Hori, "Reduction Control of Induction Motor Vibration with Pulsating Load by Repetitive Control Using an Acceleration Sensor" Translated from D. G. Ronbunshi, Vol. 115-D, № 9, September 1995, 1123-1130.
- [30] Hisao K. and Kouki M., "Speed Sensorless Field-Oriented Control of Induction Motor with Rotor Resistance Adaptation", Transaction on Industry Application vol. 30 Nº 5 pp. 1219-1224, September/October 1994.

Apêndice

;*****	* * * * * * * * *	******	********	*****	B2_MSK B1 MSK	.set .set	0004h 0002h	;Bit Mask for 2 ;Bit Mask for 1
; Nome	do Arqui	vo: Tctes	e.ASM		BOMSK	.set	0001h	;Bit Mask for 0
; Auto	r: Leonar	do de Ara	ujo Silva		WSGR	.set	0FFFFh	
; Unive	ersidade	Estadual	de Campinas	s - Unicamp	DP PF1	.set	0E0h	;page 1 of peripheral file (7000h/80h)
; Siste	ema : Mód	ulo de Av	aliação F24	10 (Texas Instruments)	DP PF2	.set	0E1h	;page 2 of peripheral file (7080h/80h)
*****	* * * * * * * * *	*******	*********	***************************************	DP PF3	.set	0E2h	;page 3 of peripheral file (7100h/80h)
,		.includ	le C240APP.H	I	DPEV	.set	0E8h	;EV register data mem page (7400h/80h)
		.sect "	sart"	;Inserir tabela de raíz guadrada do arguivo	-			, 1 <u>5</u> 111 1 <u>1</u> 1 <u>3</u> 1 (11 , 11 ,
raiz.ta	ab		-		;			
beginso	qrt	.includ	le raiz.tab	;este arq. possui	; Declaração d	le Constant	tes	
";=====					,			
;=====					Vmax	.set	0FFFh	;220V/220V = 1 in Q12
					Vmin	.set	022Fh	;30V/220V = 0,13 in Q12
;Declar	rações de	I/O e Re	gistrador d	lo EVM	FINI	.set	1000h	;Freg. ini. para operação em malha aberta 30Hz
;=====					TPWM	.set	0bb8h	;Periodo do timer 2 que gera o SVM simétrico.
DAC0		.set	0000h	;DAC Channel 0 Register				;fpwm=5KHz ou 200uS de periodo (2*2000 x 50nS)
DAC1		.set	0001h	;DAC Channel 1 Register	DELAY	.set	1A0Bh	;+ ou - 2 segundos (1A0Bh=6667)6667*300us=2.00s
DAC2		.set	0002h	;DAC Channel 2 Register	K PASSO	.set	06E98h	;K PASSO=300us*2pi*fbase*256/(pi/3)=27.648 Q(10)
DAC3		.set	0003h	;DAC Channel 3 Register	-			;ou DD2F em Q11. (49bA para operação em 5kHz)
DAC UPI	DATE	.set	0004h	;DAC Update Register	;ZERO	.set	0000h	;zero
SWITCH	ES	.set	0008h	;DIP Switch Register	WPILHA	.set	0200h	;Início da pilha de velocidades.
LEDS		.set	000Ch	;LEDs Register	TPILHA	.set	0021h	;Tamanho da pilha de velocidades usada (33d).
temp		.set	8000h					;Tpilha - 1 para o cálculo da velocidade.
p		.set	0FF00h		K VELOC	.set	3CAEh	;1/1440 em Q25 Constante usada para cálculo da
p1		.set	0FF01h		-		;veloci	dade real a partir da qtd. de pulsos
-							;medido	s. Para velocidade nominal (1p.u.),mede- ;se
;	;						;1440 p	ulsos em 40 med.(5b07-5KHz)(3CAE-3.3kHz)
					TRINTA	.set	080h	
;	.def	GPR0		;General purpose registers.	SESSENTA	.set	100h	
;	.def	GPR1			;OFFSETIA	.set	3EC0h	;Este valor está multiplicado por 2^6. (502*2^5)
;	.def	GPR2			;OFFSETIC	.set	3E20h	Este valor está multiplicado por 2^6. (496*2^5)
;	.def	ALPHAH			K CORRENTE	.set	4FFEh	;Ver caderno.
;	.def	ALPHAL			K CORRENTE	.set	743Dh	;Cte de escalonamento das corr. (Ver caderno).
;	.def	dx			-			
;	.def	dy			;			
;	.def	Ta			; Máqui	na cinza		
;	.def	Tb			;			
;	.def	Tc			;RS	.set	49FFh	;Rs pu = 2.757/(220/(4,98*220/380))= 0,0361312pu
;	.def	V						;Este valor está em Q19.
;	.def	LOOP_ON	I_FLG		;VSO	.set	4661h	;Valor em p.u. de "Em" nominal ;(209,52/220)/sqrt(3).
;								;= 0,553721 = 46E0h em Q15.
; Decla	aração de	Constant	es		;SNMAIS1	.set	4331h	;(Pcoren/(220*4.98*220/380))/(1+sn) em Q18.
;					;SN2MAIS1	.set	4635h	;(Pcoren/(220*4.98*220/380))/(1+sn^2) em Q18.
					; APU	.set	4965h	;Apu=(1/(K*Ko*Tnpu*sn)) = 0.573414 = 4965h em
B15_MSH	ĸ	.set	8000h	;Bit Mask for 15	Q15.			
B14_MSH	ĸ	.set	4000h	;Bit Mask for 14	;BPU	.set	5859h	;Bpu=(1/(Ko*Tnpu))^2 = 0.0431389 = 5859h em Q19.
B13_MSH	ĸ	.set	2000h	;Bit Mask for 13	;BPUX2DAPU	.set	4D0Ah	;2*Bpu/Apu em Q17.
B12_MSH	ĸ	.set	1000h	;Bit Mask for 12	;BPUDAPU2	.set	432Dh	;Bpu/Apu^2 em Q17.
B11_MSH	ĸ	.set	0800h	;Bit Mask for 11	;DIVIDENDH	.set	6F1Ch	;Constante para medir veloc. pela largura de
B10_MSH	ĸ	.set	0400h	;Bit Mask for 10	pulsos			
B9_MSK		.set	0200h	;Bit Mask for 9				;inv(60/(1800*1500)*1/50e-9) 444,44 em Q5.
B8_MSK		.set	0100h	;Bit Mask for 8	DIVIDENDH	.set	42Abh	;Cte. para medir veloc. pela largura de pulsos
B7_MSK		.set	0080h	;Bit Mask for 7				;inv(60/(1800*1250)*1/50e-9) 533,33 em Q5.
B6_MSK		.set	0040h	;Bit Mask for 6	;DIVIDENDL	.set	71C7h	
B5_MSK		.set	0020h	;Bit Mask for 5				
B4_MSK		.set	0010h	;Bit Mask for 4	;			
B3_MSK		.set	0008h	;Bit Mask for 3	; Máqui	na azul co	nsiderand	o escorregamento nominal de 1730

,							
RS	.set	3A62h	;Rs pu = 2.757/(220/(4,98*220/380))= 0,0361312pu	;			
VSO	.set	4801h	;Este valor esta em Q19. :Valor em p.u. de "Em" nominal	; Maqui	na azul co	nsideranc	lo escorregamento nominal de 1690
			;209,52/220)/sqrt(3).	,			
			;0,553721 = 46E0h em Q15.	;SNMAIS1	set	457Fh	;(Pcoren/(220*4.98*220/380))/(1+sn) em Q18.
;SNMAIS1	.set	46fch	;(Pcoren/(220*4.98*220/380))/(1+sn) em Q18.	;SN2MAIS1	set	4978h	;(Pcoren/(220*4.98*220/380))/(1+sn ²) em Q18.
;SN2MAIS1	.set	49a2h	;(Pcoren/(220*4.98*220/380))/(1+sn^2) em Q18.	;APU	set	4C78h	;Apu=(1/(K*Ko*Tnpu*sn)) = 0.573414 = 4965h em
;APU	.set	7b03h	(1/(K*Ko*Tnpu*sn)) = 0.573414 = 4965h em	Q15.		7220b	$D_{\rm min} (1/(K_{\rm c}+m_{\rm min}))^{2} = 0.0421200 = 5050h {\rm cm} 010$
. DDII	aot	70 - Ch	; U_{15} . $P_{11} = (1/(K_0 + T_{12} + T_{12}))^2 = 0.0421289 = 5859 \text{ or } 019$; BPU	set	733211 605Ph	;Bpu=(1/(KO*IIIpu)) 2 = 0.0431389 = 585911 em Q19.
, BPU , BDIIY2DADII	.set	704011 3005h	$(1/(KO^{111}pu)) = 0.0431369 = 565911 em Q19.$, BPUAZDAPU	set	5034h	;2~Bpu/Apu em Q17. ·Bpu/Apu^2 em O17
BPUDAPU2	.set	2048h	2 Βρα/Αρα επ 017. :Βρα/Αρα^2 em 017.	, DI ODAI OZ	BCC	JUATI	, bþu/Aþu 2 em Q1/.
,			,, = = = = = = = = = = = = = = =	;			
; ; Máquin	na azul	considerando	escorregamento nominal de 1726 Tbd=3.3*Tn	; Máqui ;	na azul co	onsiderand	lo escorregamento nominal de 1685
;				CNIMA T C 1		45516	(Decimer / (220+4, 00+220/200)) / (1, cm), cm, 010
CNMA T C 1	aot	46 abb	$(P_{a}) = \frac{1}{2} \left(\frac{1}{2} + 1$; SNMAISI	.set	4551fl	(Pcoren/(220*4.98*220/380))/(1+sn) em Q18.
SN/MAISI SN2MAISI	.set	490Dh	(Pcoren/(220*4.98*220/380))/(1+sn) em Q18	, 3NZMAISI • ADII	.set	497211 48EEh	(1/(K*Ko*Tnnu*sn)) = 0.573414 - 4965h em
APU	.set	7433h	(1/(K*Ko*Tnpu*sn)) = 0.573414 = 4965h em	015.		TOPPHI	/npa=(1/ (n no mpa bn/) = 0.5/5111 = 1905h cm
			;015.	;BPU	.set	7274h	$(1/(Ko*Tnpu))^2 = 0.0431389 = 5859h em O19.$
BPU	.set	79b6h	$(1/(Ko*Tnpu))^2 = 0.0431389 = 5859h em Q19.$;BPUX2DAPU	.set	6470h	;2*Bpu/Apu em Q17.
BPUX2DAPU	.set	4308h	;2*Bpu/Apu em Q17.	; BPUDAPU2	.set	5824h	;Bpu/Apu^2 em Q17.
BPUDAPU2	.set	24ebh	;Bpu/Apu^2 em Q17.				
;				; Máqui	na azul co	onsiderand	lo escorregamento nominal de 1680
; Máquin	na azul	considerando	escorregamento nominal de 1710	;			
;SNMAIS1	.set	463Ch	;(Pcoren/(220*4.98*220/380))/(1+sn) em Q18.	;SNMAIS1	.set	4523h	;(Pcoren/(220*4.98*220/380))/(1+sn) em O18.
;SN2MAIS1	.set	498fh	;(Pcoren/(220*4.98*220/380))/(1+sn^2) em Q18.	SN2MAIS1	.set	496Bh	;(Pcoren/(220*4.98*220/380))/(1+sn^2) em Q18.
;APU	.set	59E2h	;Apu=(1/(K*Ko*Tnpu*sn)) = 0.573414 = 4965h em ; 015.	;APU 015.	.set	45AFh	;Apu=(1/(K*Ko*Tnpu*sn)) = 0.573414 = 4965h em
;BPU	.set	75E0h	$(1/(Ko*Tnpu))^2 = 0.0431389 = 5859h em Q19.$;BPU	.set	71C6h	;Bpu=(1/(Ko*Tnpu))^2 = 0.0431389 = 5859h em Q19.
;BPUX2DAPU	.set	4Fc5h	;2*Bpu/Apu em Q17.	;BPUX2DAPU	.set	687Eh	;2*Bpu/Apu em Q17.
;BPUDAPU2	.set	35fbh	;Bpu/Apu^2 em Q17.	;BPUDAPU2	.set	5FF9h	;Bpu/Apu^2 em Q17.
; ; Máquin	na azul	considerandc	escorregamento nominal de 1700	; ; Máqui	na azul co	onsiderand	lo escorregamento nominal de 1670
,				,			
;SNMAIS1	.set	45DDh	;(Pcoren/(220*4.98*220/380))/(1+sn) em Q18.	;SNMAIS1	.set	44C7h	; (Pcoren/(220*4.98*220/380))/(1+sn) em Q18.
;SN2MAISI	.set	4984h	;(Pcoren/(220*4.98*220/380))/(1+sn 2) em Q18.	; SN2MAISI	.set	495Ch	; (Pcoren/(220*4.98*220/380))/(1+sn 2) em Q18.
;APU	.set	5469h	(1/(K*Ko*Tnpu*sn)) = 0.573414 = 4965h em	; APU	.set	3FF1n	;Apu=(1/(K*Ko*Tnpu*sn)) = 0.573414 = 4965h em
·BPII	get	7480h	(2^{13}) $(R_{1}) = (1/(K_{0} * T_{1}))^{2} = 0.0431389 = 5859h em 019$	·BPII	get	706dh	\cdot Bnu=(1/(Ko*Tunu))^2 = 0 0431389 = 5859h em 019
BPUX2D	.set	581Dh	:2*Bpu/Apu em 017	, BPUX2DAPU	.set	7087h	$(17 (RO III)^{2} = 0.0451505 = 505511 em Q15$
;BPUDAPU2		.set	42A5h ;Bpu/Apu ² em Q17.	;BPUDAPU2	.set	70A2h	;Bpu/Apu ² em Q17.
				;			
;; Máquin	na azul	considerando	escorregamento nominal de 1695	; Declaraçao c	de variave	1S 	
;				has	GPR0.1		:300 :Registradores de propósito geral
:SNMATS1	set	45aeb	:(Pcoren/(220*4.98*220/380))/(1+sn) em 018	.bss .hss	GPR1.1		:301
SN2MAIS1	set	497fb	;(Pcoren/(220*4.98*220/380))/(1+sn ²) em O18.	.bss	GPR2.1		; 302
;APU	set	5059h	;Apu=(1/(K*Ko*Tnpu*sn))=0.573414 = 4965h em O15.	.bss	GPR3.1		; 303
DDU	set	73d1h	$(1/(Ko*Tnpu))^2 = 0.0431389 = 5859h \text{ em O19}.$.bss	GPR4.1		; 304
;BPU					/		• • •
;BPU ;BPUX2DAPU	set	5c3fh	;2*Bpu/Apu em Q17.	.bss	GPR5,1		; 305

.bss	DAC1VAL,1	;307 - DAC1 Channel Value	.bs:	ics,1	;33C - Corrente na fase c
.bss	DAC2VAL,1	;308 - DAC2 Channel Value	.bss	imax,1	;33D -
.bss	DAC3VAL, 1	:309 - DAC3 Channel Value	.bss	imin.1	:33E -
bss	Fmec.1	:30A - Frequencia mecânica de referência em 015.	bss	tempol.1	:33F -
hss	V. 1	:30B - Tensão atual	hss	tempo2.1	:340 -
hss	SOMA 1	:30C - Soma dos pulsos do buffer de velocidades	bss	s Is.1	:341 -
hee	W 1	30D - Velocidadedo rotor	.bbr	Vg 1	•342 -
hee	V NORM 1	30E - Tengão normalizada (n.u.)	.bbr	Fref 1	,3/3 -
.baa	C TADIE 1	20E - Enderego do gomego da tabola do gonog	.ba	, Pa 1	343
	S_IADLE, I	210 Ârmula atual na ratar (rauta alta)		NEC 1	244 - E a resiscencia de estator p.u. em Q12
.bss	ALFAH, I	310 - Angulo atual no setor (parte alta)	.DSS	VSO,1	;345 - Valor nominal de Em.
.bss	ALFAL, I	;311 - Angulo atual no setor (parte baixa)	.bss	S DVSH,1	;346 - Entrada do filtro de tensão (parte alta)
.bss	DALFAH, 1	;312 - Variação de angulo, prop. a frequencia	.bs:	s DVsL,1	;347 - Entrada do filtro de tensão (parte baixa)
		; (parte alta)	.bss	DVsHa,1	;348 - Valor anterior da variavel DvsH
.bss	DALFAL,1	;313 - Variação de ângulo, prop. à frequência	.bss	s DVsLa,1	;349 - Valor anterior da variável DvsL
		;(parte_baixa)	.bs:	B DVsfH,1	;34A - Sinal de saída do filtro (parte alta)
.bss	THETAH, 1	;314 - Ângulo de entrada na tabela de seno	.bss	s DVsfL,1	;34B - Sinal de saída do filtro (parte baixa)
		;(parte alta)	.bss	SinalDVsf,1	;34C - Sinal do sinal de saída do filtro
.bss	THETAL,1	;315 - Ângulo de entrada na tabela de seno	.bss	vsf,1	;34D - Tensão de referência
		;(parte baixa)	.bss	aux1,1	;34E - Registradores auxiliares usados na
.bss	THETA30H,1	;316 - Ângulo de entrada na tabela de seno			;variação
		; (parte alta)	.bss	aux2,1	;34F - da velocidade de referência
.bss	THETA30L,1	317 - Ângulo de entrada na tabela de seno	.bss	Sinal,1	:350 -
	,	:(parte baixa)	bss	Corrente alta.1	:351 - Reg. p\ controle da proteção de
hee	sinal s 1	·318 - Sinal do seno			sobrecorrente
hee	sinal c 1	319 - Sinal do coseno	her	SnMaig1 1	(1+Sn)
.baa	ginal gn20 1	1210 - Sinal do coseno	.ba	Sninaisi,i	(1+5n)
.uss	sinai_cps0,i	21B Comp	.us:	Ealin 1	254 Enominaio de esservesemente
.DSS	seno,i	;31B - Sello	.DS:	Brewell 1	2554 - Frequencia de escorregamento
.bss	coseno, i	31C - COSENO	. DSs	PCOPER, 1	355 - Potencia no nucleo nominal (parte alta)
.bss	cosenop30,1	;31D - Coseno de Wt+30	.bs	PCOTEL, 1	;356 - Potencia no nucleo nominal (parte baixa)
.bss	senoc2,1	;31E - Seno em complemento de 2	.bss	Apu,1	;357 - Constante (A em p.u.)
.bss	cosenoc2,1	;31F - Coseno em complemento de 2	.bs:	Bpu,1	;358 - Constante (B, em p.u.)
.bss	cosenop30c2,1	;320 - Coseno de Wt+30 em complemento de 2	.bs:	Bpux2dApu,1	;359 - Constante (2*B/A)
.bss	SR_ADDR,1	;321 - Endereço do setor	.bss	BpudApu2,1	;35A - Constante (B/A^2)
.bss	SECTOR,1	;322 - Setor atual do PWM-SVM 0-5 para setor de	.bss	PgapH,1	;35B - Potência que atravessa o entreferro
		;1-6			;(parte alta)
.bss	vf slope,1	;323 - Inclinação da curva Vf	.bss	PgapL,1	;35C - Potência que atravessa o entreferro
.bss	V TIMER1,1	;324 - Contador virtual			;(parte baixa)
.bss	LOOP ON FLG.1	:325 -	.bss	GPRC0,1	35D - Registradores de propósito geral
bss	stk1.1	:326 - usado para salvar STO	bss	GPRC1.1	:35E - usados exclusivamente na interrupção de .
hss	stk2.1	:327 - Usado para salvar ST1	hss	GPRC2.1	:35F - medição de corrente
hee	atk3 1	-328 - Usado para salvar ACCL	here here	GPRC3 1	·360 -
hee	stk4 1	329 - Ugado para galvar ACCH	.bbr	FelipFH 1	;361 - Freq de escorregemento filtrada (parte
.baa	atkh1 1	,323 - ugado para galvar STO		, raiprii,i	, olto)
	stable 1	22D Usede neve selver CT1	har	Delimpt 1	; alla) 262 - Europe de essenversente filtunde (nombe
.bss	SLKD2,1	;32B - Usado para salvar SII	.DSs	s FSIIPFL,I	(362 - Freq. de escorregamento filtrada (parte
.bss	stkb3,1	;32C - Usado para salvar ACCL			;balxa)
.bss	stkb4,1	;32D - Usado para salvar ACCH	.bss	s Fslipa,l	;363 - Frequência de escorregamento anterior
.bss	stkb5,1	;32E - usado para salvar STO	.bss	s Tpulso,1	;364 - Largura do pulso do encoder em ciclos de
.bss	stkb6,1	;32F - Usado para salvar ST1			;clock
.bss	stkb7,1	;330 - Usado para salvar ACCL	.bss	s Temppulso,1	;365 - Valor do temp. no instante de medição do
.bss	stkb8,1	;331 - Usado para salvar ACCH			;pulso
.bss	k_corrente,1	;332 - constante de escalonamento	.bss	Temppulsoa,1	;366 - atual e do instante anterior,
.bss	offsetia,1	;333 - Offset do canal que mede a corrente ia			;respectivamente
.bss	offsetic,1	;334 - Offset do canal que mede a corrente ic	.bss	DividendH,1	;367 - Cte. usada na rotina de div. da medição
.bss	k passo,1	;335 -			;de veloc.
.bss	k veloc,1	;336 -	; .bss	DividendL.1	;368 -
.bss	zero,1	:337 - zero	, has	SOMAH. 1	:369 -
bas	trinta.1	:338 - constante (30 graus)	hee	SOMAL 1	:36A -
hee	sessenta 1	(339 - constante (60 graus))	.bbr	intcor 1	· 36B -
baa.	Tero 1	.331 - Darte real do fagor do corronto	.05:	,	,500
.uss	ing 1	,35A FAILE LEAL UD LABUL DE CUITENLE	· Charles Martin	r DWM galg mariables	
.uss	ids,i	,550 - CUITENCE Na Lase d	,space vecto	r rwm care variables	

Lose 7.1 Lose 7	.bss .bss	dx,1 dy,1	; variáveis ; variav ;	s de entrada -> Ias el de saída -> Is	(Q13), Ics(Q13) s(Q12)
	.bss	T,1 Ta 1	FORMIILA 3318	macro	
i M A CR 0 - Definições ADO 108 (023 BR (028) 1023 BR (028) SRITO Marco LAC DOA ADO 108 (023) BR (028) SRITO Marco LAC DOA ADO 108 (0127)-025 BR (01127)-025 SRITO MAR (0127) BR (01127)-025 SRITO MAR (0127) BR (01127)-025 SRITO MAR (0127) BR (01127)-025 SRITO MAR (01127)-025 BR (01127)-025 SRITO (01127)-021 MAR (01127)-025 <t< th=""><th>.bss .bss .bss</th><th>Tb,1 Tc,1</th><th>formula3318:</th><th>SETC SXM SPM 1</th><th>;Shift para esquerda de 1.</th></t<>	.bss .bss .bss	Tb,1 Tc,1	formula3318:	SETC SXM SPM 1	;Shift para esquerda de 1.
i. M. J. C. R. O beclinic/Gene ADD is in [013 SSIT0 .macro INA, Mark (Char bit Macro INA, Mark INA, Mark				LACC ias	:013
: M & C & O - PetilicCee 	;			ADD ics	;Q13
<pre>sarto santo s</pre>	; MACRO-De	efinições		SFR	;Q12
SBIT0	;			SACL GPRO ZAC	
DMM, MARK ;:Clar bit Macro MPC (PR0 ;:Freg cet& em (013-12)=025 ADD FM ADD FM SQRA ics ;:Clar cet & mode ADD FM ADD FM SQRA ics ;:Clar cet & mode ADD FM ADD FM SQRA ics ;:Clar cet & mode SHI1 macro macro macro SACC DMA SCRD ics ;:Clar cet & mode macro SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: SCRD ics ;:Clar cet & mode SACC DMA Positivo: Positivo: Positivo: SACC DMA Positivo:<	SBIT0	.macro		LT ias	
LACE DMA ADD # (OF 27772-NDAR) ADD # (OF 277		DMA, MASK ;Clear bit Macro		MPY GPR0	;Preg está em Q(13+12)=Q25
Audi FUPPER-ANSA) PUL > 1/22-1. SACL DWA .enda sBITI .enda Imacro .macro DMA, MASK .stdl Macro SACL DWA .enda SACL DWA .enda .enda .		LACC DMA		SQRA ics ;Q(13*2)=Q26. Preg e passado para o acc em
sedu MA .exdu SBIT1 .exdu SBIT .exdU		AND #(0FFFFh-MASK)		CDM 0	;Q(25+1)=Q26.
SITI		SACL DMA		SPM 0 ADAC	;Sem Shift :Obtem_ge Icg^2+Ta*(Iag+Icg) em O26 O valor
DNT DPG, MSK ; set bit Macro BCND Fositivo, T Description,	CRTT1			AFAC	;máximo deste produto á aprov 18 75
LACC TMA SPLK #0000D, 1s ⁻ OR HASK sACL TMA Positivo: SACH GPR0 ;GPR0 fica em Q10. .endm SACH GPR0 ;GPR0 fica em Q10. KICK_DOG .macro ;Macro usada para resetar Matchdog IT GPR2 JDP #000b ;Macro usada para resetar Matchdog IT GPR2 JDP #000b ;GPR0 fica em Q10. SACH GPR0 ;GPR0 fica em Q10. SILK #00AAAD, 00PZ2 ;(2/3) em Q16. IT GPR2 JDP #00b ;GPR0 fica em Q10. SELK #00AAAD, 00PZ2 ;(2/3) em Q16. .endm SPLK #00AAAD, 00PZ2 ;(2/4) em Q16. SPLK #00AAAD, 00PZ2 POINT_F00 endm ;GPR0 (GPR1 ;(2/2) POINT_B0 endm SPLK ;(2/2) POINT_B1 .macro SPLK SPLK #00AAD SPLK #00AAD .endm c.endm SACL GPR3 SACL GPR3 POINT_B0 .macro LDP #06h SACL GPR3 SACL GPR3 .endm IACC *AR6 SACL GPR3 SACL GPR3 POINT_F72 .macro SACL GPR3 SACL GPR3 .endm IACC *AR6 SACL GPR3 POINT_F72 .macro SACL GPR3 .endm .acro SACL GPR3 .endm SACL GPR3 SACL GPR3 .endm SACL GPR3 <td< td=""><td>ODITI</td><td>DMA. MASK :Set bit Macro</td><td></td><td>BCND Positivo.GT</td><td>, deste produco e aprox. 10,75.</td></td<>	ODITI	DMA. MASK :Set bit Macro		BCND Positivo.GT	, deste produco e aprox. 10,75.
OR. #MAGX Positivo: B Meg SACL GPR0 ;GPR0 fica em Q10. SACL GPR1 ;226 JLD #00S0h SPLX #03AAAA, GPR2 SPLX #03S555, ND_KTY PAC SPLX #03S555, ND_KTY PAC SPLX #03AAAA, ND_KTY PAC .endm PAC POINT_B0 .endm POINT_B1.macro PAC LDP #06h okl: .endm PAC POINT_B0 PAC POINT_B0 PAC POINT_B0 PAC POINT_PC PAC LDP #06h okl: .endm PAC POINT_B0 PAC POINT_PC PAC LDP #06h SACL GPR3 .endm PAC POINT_PC		LACC DMA		SPLK #0000h,Is	
sACL DPR 1		OR #MASK		B Neg	
.endm SACL GPR1 ;Q26 XLCK_DOG .macro ;Macro usada para resetar Watchdog LT GPR2 ;(2/3) em Q16. LDP #00Boh SPLX #03AAAh, WD_KSY PAC ;0 resultado cetá em Q(16+26)=Q42 SPLX #03AAAh, WD_KSY PAC ;0 resultado cetá em Q(16+26)=Q42 .endm SPLX #03AAAh, WD_KSY PAC ;0 resultado cetá em Q(16+26)=Q42 .endm SPLX #03AAAh, WD_KSY PAC ;0 resultado cetá em Q(16+26)=Q42 .endm .endm SPLX #03AAA, WD_KSY PAC .endm SPLX #02AAAA, WD_KSY .endm PAC .endm SPLX #02AAAA, WD_KSY .endm .endm POINT_POO		SACL DMA	Positivo:	SACH GPRO	;GPR0 fica em Q10.
KICK_DOG.mero ;Macro usada para resetar Watchdog SPLK #0AAAAh, GPR3 ;(2/3) em Q16. LDP #00E0h SPLK #0AAAAh, WD_KEY SPLK #0AAAAh, WD_KEY SACH GPR1 ;0 resultado está em Q(16+26)=Q42 LDP #0Abh, WD_KEY SACH GPR1 ;0 (2-16)=Q(26) PAC .endm PAC ADDS GPR1 ;0 (20-16)=Q(26) POINT_F60 .acro JDP #00h PAC .endm SACH GPR1 ;0 (20-16)=Q(26) POINT_F60 .acro JDP #00h .endm SACH GPR1 ;0 (20-16)=Q(26) POINT_B1.macro .codm SACH GPR3 POINT_B0.macro .codm SACH GPR3 POINT_F60 .endm SACL GPR3 POINT_P60 .endm SACL GPR3 POINT_PF1 .macro LACC 40800h.4 .endm SACL GPR3 JACC 4080 POINT_PF2 .macro LAC GPR3 .endm JAC 4.AR6 JACC 4.AR6 POINT_PF2 .macro JACC 4.AR6 .endm .endm JACC 4.AR6 POINT_PF2 .macro JACC 4.AR6 .endm		.endm		SACL GPR1	;Q26
LDP #0050h SFLK #03555h, WD_KEY SFLK #03A3Ah, WD_KEY LDP #0h .endm POINT_PG0 .macro LDP #06h .endm POINT_B1.macro POINT_B1.macro POINT_B1.macro POINT_B1.macro POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #06h .endm POINT_PF1 .macro LDP #06h .endm POINT_PF1 .macro LDP #06h .endm POINT_PF1 .macro LDP #06h .endm POINT_PF1 .macro LDP #06h .endm POINT_PF1 .macro LDP #06h .endm POINT_PF1 .macro LDP #06h .endm POINT_PF1 .macro LDP #06h .endm POINT_PF2 .macro .DD #06h .endm POINT_PF2 .macro .DD #06h .endm POINT_PF2 .macro .DD #06h .endm POINT_PF2 .macro .DD #06h .endm POINT_PF2 .macro .DD #06h .cndm .DD #06h .cndm .macro .DD #06h .cndm .macro .pro .macro	KICK_DOG .macro	;Macro usada para resetar Watchdog		SPLK #0AAAAh,GPR LT GPR2	2 ;(2/3) em Q16.
SPLK #05555h, MD_KEY PAC ;0 resultado está em Q(16+26)-Q42 SPLK #05ABAAh, MD_KEY SACH GPR1 ;Q(42-16)-Q(26) .endm PAC ADDS GPR1 POINT_PG0 .macro SFL ;Q23. .endm SFL ;Q23. POINT_B1 .macro SACH GPR3 ;overflow. POINT_B1 .macro IDP #06h ;oterflow. POINT_B1 .macro IDP #06h ;oterflow. POINT_B0 .macro LDP #06h okl: .endm SACH GPR3 ;overflow. POINT_B0 .macro LDP #06h SACL GPR3 .endm SACL GPR3 SACL GPR3 POINT_PF1 .macro LAR AF6, GPR3 .endm SACL GPR3 SACL GPR3 POINT_PF1 .macro LACC *, A86 .endm SACL GPR3 SACL GPR3 .endm ADD #1 SACL GPR3 .endm ADD #1 SACL GPR3 .endm SACL GPR3 SACL GPR3 .endm SACL GPR3 SACL GPR3 .endm SACL GPR3 SACL GPR3 .endm .and SACL GPR3 .endm .and SACL GPR3 .endm .and SACL GPR3 .endm .and<		LDP #00E0h		MPYU GPR1	
SPLK #0AAAA, WD_KEY LDP #0h .endm POINT_PG0 .macro LDP #00h .endm POINT_B1.macro POINT_B1.macro POINT_B1.macro POINT_B0.macro LDP #06h .endm POINT_B0.macro LDP #40h .endm POINT_B0.macro LDP #40h .endm POINT_B0.macro LDP #40h .endm POINT_PF1 .macro LDP #40h .endm POINT_PF2 .macro LDP #40h .endm POINT_PF2 .macro LDP #40h .endm POINT_PF2 .macro LDP #40h .endm POINT_PF2 .macro LDP #40h .endm POINT_PF2 .macro LDP #40h .endm .endm .endm POINT_PF2 .macro LDP #0Eh .endm		SPLK #05555h, WD_KEY		PAC	;O resultado está em Q(16+26)=Q42
LDP #01 PAC ADDS GPR1 ADDS GPR1 ADDS GPR1 ADDS GPR1 C28		SPLK #0AAAAh, WD_KEY		SACH GPR1	Q(42-16) = Q(26)
Perindia de la componente de Corrente em fase com Vs POINT_EV .macro POINT_PF2 POINT_P		andm		MPYU GPRU	;Q(10+16)=Q(26)
POINT_PG0 .macro SFL ;027. LDP #00h SFL ;028. POINT_B1.macro BNG SFL ;028. POINT_B1.macro LDP #06h okl: SACH GPR3 .endm SACL GPR3 SACL GPR3 .endm SACL GPR3 SACL GPR3 .endm MRR *, AR6 LACC #0800h, 4 POINT_B1 .macro LACC #0800h, 4 .endm SACL GPR3 SACL GPR3 .endm LAP #080h SACL GPR3 .endm LAP #080h SACL GPR3 .endm SACL GPR3 LACC *, AR6 .endm SACL GPR3 LACC *, AR6 .endm SACL GPR3 SACL GPR3 .endm SACL GPR3 <		.endm		ADDS CDP1	
LDP #00h .endm SFL ;028. .endm SFL ;028. .endm SFL #2441h,1s .endm N SACL GFR3 .endm SACL IS LDP #050h .endm LDP #050h .endm SACL GFR3 .endm SACL GFR3 .endm SACL GFR3 .endm SACL SS .endm SACL SS .endm SACL SS .endm SACL GFR3 .endm SACL GFR3 .end	POINT PG0	macro		SFL	:027.
.endm BCND okl,GEQ ;Verifica se o bit 32 é 0, ou seja, se não houve SPLK #2d4h,Is ;overflow. B Neg B Neg B Neg ADS GPR3 LDP #06h .endm ADS GPR3 LDP #40h .endm AR6,GPR3 ARCC 40800h,4 ADS GPR3 ARCC 40800h,4 ADS GPR3 ARCC 40800h,4 ADS GPR3 ARCC 40800h,4 ADS GPR3 ARCC 40800h,4 ADS GPR3 ARCC 40800 ARC 4,R6 ARC 4,R6		LDP #00h		SFL	;Q28.
POINT_B1.macro SPLK #2d41h,Is ;overflow. POINT_B1.macro B Neg POINT_B0.macro SACH GPR3 LDP #40h ACC #0800h,4 .endm ADDS GPR3 .endm MAR *, AR6 POINT_FP1 macro .endm LACC #0800h,4 POINT_FP1 macro .endm MAR *, AR6 POINT_FP1 macro .endm LACC #083 POINT_FP1 macro .endm AAR *, AR6 POINT_FP2 macro .endm ADD #1 POINT_FP2 .macro .endm ARA *, AR6 POINT_FV, macro SACL GPR3 .endm LAR AR6, GPR3 .endm LAR AR6, GPR3 .endm LAR AR6, GPR3 .endm SACL GPR3 .		.endm		BCND ok1,GEQ	;Verifica se o bit 32 é 0, ou seja, se não houve
POINT_B1.macro B Neg LDP #06h SACL GPR3 .endm ADDS GPR3 POINT_B0.macro ADDS GPR3 LDP #04h SACL GPR3 .endm MAR *, AR6 .endm LAR AR6, GPR3 .endm LAR AR6, GPR3 .endm LAR AR6, GPR3 .endm LAR AR6, GPR3 .endm LACC *, AR6 .endm ADD #1 POINT_PF2 .macro .endm ADD #1 POINT_PF2 .macro .endm ADD #1 POINT_EV .macro SACL GPR3 .endm LAR AR6, GPR3 .endm SACL G				SPLK #2d41h,Is	;overflow.
LDP #06h .endm ok1: SACH GPR3 .endm BDS GPR3 LACC #0800h,4 LACC #0800h,4 LACC #0800h,4 LADS GPR3 .endm MAR *,AR6 LAP #040h .endm LAR AR6,GPR3 LAP #050h .endm LACC *,AR6 LOP #050h .endm LACC GPR3 .endm ADD #1 POINT_PF2 .macro LACC GPR3 .endm ADD #1 POINT_PF2 .macro SACL GPR3 .endm LACC GPR3 .endm LACC GPR3 .endm LACC #,AR6 .endm LACC GPR3 .endm LACC GPR3 .endm LACC GPR3 .endm LACC GPR3 .endm LACC GPR3 .endm LACC GPR3 .endm LACC #,AR6 .endm LACC #,AR6 .endm LACC #,AR6 .endm LACC #,AR6 .endm LACC #,AR6 .endm SUB IS .endm S	POINT_B1 .macro			B Neg	
.endm SACL GPR2 POINT_B0.macro ADDS GPR3 LDP #0h SACL GPR3 .endm MAR *, AR6 POINT_PF1 .macro .endm LAR AR6, GPR3 POINT_PF1 .macro .endm LACC */AR6 .endm LACC GPR3 POINT_PF2 .macro .endm ADD #1 POINT_PF2 .macro .endm SACL GPR3 POINT_PF2 .macro .endm LAC *, AR6 POINT_PF2 .macro .endm LAC *, AR6 POINT_PF2 .macro .endm LAC *, AR6 POINT_EV.macro SACL GPR3 FOUNT_EV.macro SACL GPR3 .endm SA		LDP #06h	ok1:	SACH GPR3	
POINT_B0.macro LACC #0800n,4 LDP #40h SACL GPR3 .endm MAR *,AR6 POINT_PF1 macro LDP #0E0h SACL GPR3 .endm LACC *,AR6 .endm LACC GPR3 POINT_PF2 macro .endm LACC GPR3 .endm SACL GPR3 POINT_PF2 macro .endm ADD #1 POINT_PF2 macro .endm LACC *,AR6 POINT_PF2 macro .endm LACC *,AR6 POINT_VEV.macro SACL GPR3 POINT_EV.macro SACL GPR3 .endm LACC *,AR6 .endm SACL GPR3		.endm		SACL GPR2	
POINT_B0 .macPo LDP #40h SACL GPR3 .endm LAR AR6, GPR3 POINT_PF1 .macro LACC *, AR6 .endm ADD #1 POINT_PF2 .macro SACL GPR3 .endm ADD #1 POINT_PF2 .macro SACL GPR3 .endm ADD #1 POINT_PF2 .macro SACL GPR3 .endm ADR *, AR6 .endm LACC *, AR6 POINT_EV .macro SACL GPR3 .endm LACC *, AR6 .endm LACC *, AR6 .endm LACC *, AR6 .endm SACL GPR3 .endm LACC *, AR6 .endm LACC *, AR6 .endm LACC *, AR6 .endm SACL GPR3 .endm LACC *, AR6 .endm SACL GPR3 .endm SACL GPR3 <td>DOTIM DO mesere</td> <td></td> <td></td> <td>LACC #0800h,4</td> <td></td>	DOTIM DO mesere			LACC #0800h,4	
LDP #0E8h .endm SACL GPR3 LAR AR6, GPR3 LAR AR6, GPR3 LAC *, AR6 LDP #0E0h .endm ADD #1 POINT_PF2 .macro SACL GPR3 ADD #1 POINT_PF2 .macro LDP #0E1h .endm LAR AR6, GPR3 LACC *, AR6 LDP #0E8h .endm SACL GPR3 LACC *, AR6 SACL GPR3 LT GPR2	POINT_BU .macro	1 DD #40b		ADDS GPR3	
POINT_PF1 .macro LAR AR6, GPR3 POINT_PF1 .macro LACC *, AR6 LDP #0E0h .endm ADD #1 POINT_PF2 .macro SACL GPR3 LDP #0E1h .endm MAR *, AR6 .endm LAR 6, GPR3 LAR AR6, GPR3 LACC *, AR6 SACL GPR3 LACC *, AR6 SACL GPR3 LACC *, AR6 SACL GPR3 LACC *, AR6 SACL GPR3 LDP #0E8h .sendm SACL GPR3 .endm LACC *, AR6 SACL GPR3 LDP #0E8h .sendm SACL GPR3 .endm LDP #0E8h .sendm SACL GPR3 .endm		endm		MAR * AR6	
POINT_PF1 .macro LACC *, AR6 LDP #0E0h .endm LACC GPR3 ADD #1 POINT_PF2 .macro SACL GPR3 LDP #0E1h .endm LAR AR6, GPR3 LDP #0E8h .endm LACC *, AR6 SACL GPR3 LDP #0E8h .endm SACL GPR3 LDP #0E8h .endm SACL GPR3 JT GPR3 SUB Is SACL GPR3 JT GPR3 JT GPR2 JT GPR2 JT GPR2 MPYU GPR3		. Chum		LAR AR6.GPR3	
LDP #0E0h .endm SACL Is LACC GPR3 ADD #1 POINT_PF2 .macro LDP #0E1h .endm LAR AR6, GPR3 ACL GPR3 MAR *, AR6 LAR AR6, GPR3 LACC *, AR6 SACL GPR3 LACC *, AR6 SACL GPR3 SACL GPR3 SACL GPR3 SUB IS SACL GPR3 SUB IS SACL GPR3 LDP #0E8h .endm SACL GPR3 LDP #0E8h .endm SACL GPR3 LDP #0E8h .endm SACL GPR3 .endm SACL GPR3 SUB IS SACL GPR3 SUB IS SACL GPR3 SUB IS SACL GPR3 SACL GPR3 SACL GPR3 SUB IS SACL GPR3 SACL GPR3 SUB IS SACL GPR3 SACL GPR3 SACL GPR3 SUB IS SACL GPR3 SACL GPR3 SUB IS SACL GPR3 SACL GPR3	POINT PF1	.macro		LACC *, AR6	
.endm LACC GPR3 ADD #1 POINT_PF2 .macro SACL GPR3 LDP #0E1h ARR , AR6 .endm LAR AR6, GPR3 LACC *, AR6 POINT_EV .macro SACL GPR3 LACC *, AR6 SACL GPR3 LACC *, AR6 SUB Is SUB Is .endm SACL GPR3 .endm LT GPR2 ;	-	LDP #0E0h		SACL IS	
ADD #1 POINT_PF2 .macro SACL GPR3 LDP #0E1h .endm LARC *,AR6 POINT_EV .macro LDP #0E8h .endm SACL GPR3 LDP #0E8h .endm SACL GPR3 .endm LDP #0E8h .endm LDP #0E8h .endm SACL GPR3 .endm LT GPR2 ;		.endm		LACC GPR3	
POINT_PF2 .macro SACL GPR3 LDP #0E1h MAR *, AR6 .endm LAR AR6, GPR3 LACC *, AR6 POINT_EV .macro SACL GPR3 LDP #0E8h SUB IS .endm SACL GPR3 .endm SACL GPR3 .endm LDP #0E8h SUB IS .endm TGPR2 ;				ADD #1	
LDP #0Elh .endm MAR *, AR6 .endm LAR AR6, GPR3 LACC *, AR6 POINT_EV .macro SACL GPR3 .endm SACL GPR3 .endm SACL GPR3 .endm LT GPR2 ;	POINT_PF2	.macro		SACL GPR3	
.endm LAR AR6, GPR3 LACC *, AR6 POINT_EV.macro SACL GPR3 LDP #0E8h SUB Is .endm SACL GPR3 .endm LT GPR2 ; Fórmula 3.3-18 - Cálculo da Componente de Corrente em fase com Vs PAC		LDP #0E1h		MAR *,AR6	
POINT_EV.macro LDP #0E8h .endm ;		.endm		LAR AR6, GPR3	
SACL GPR3 LDP #0E8h SUB Is .endm SACL GPR3 ;	DOINT EV month			LACC *,AR6	
iendm SGCL GPR3 ;	FOINT_EV .macro	IND #0E8h		SACL GPK3	
; Dick Grk3 LT GPR2 MPYU GPR3 ; Fórmula 3.3-18 - Cálculo da Componente de Corrente em fase com Vs PAC		endm		SACL GPR3	
; MPYU GPR3 ; Fórmula 3.3-18 - Cálculo da Componente de Corrente em fase com Vs PAC		· 0.14m		LT GPR2	
; Fórmula 3.3-18 - Cálculo da Componente de Corrente em fase com Vs PAC	;			MPYU GPR3	
	; Fórmula 3.3-18	3 - Cálculo da Componente de Corrente em fase com Vs		PAC	

	ADDH Is ADD #80h,8		;	ADDH senoc2	;cos(wt+30)=cos(wt)cos(30)- ;sen(wt)*sin(30)
	SACH Is	;Is está em Q12	;	SFR	;multiplicar por seno de 30 = 0,5.
Neg:			;	LT cosenoc2	
			;	SPLK #06EDAh,GP	PRO
;			;	MPY GPR0	;SQRT(3)/2 em Q15.
;Programa usado	para testar form	nula	;	SPAC	
;			;	NEG	
			;	SACH GPR1	
	SPLK #5A82h,GP	R0 ;5A82=sqrt(2) em Q14.	;	lacc cosenop30c	2
	LT GPR0		;	sub GPR3	
	PAC	;O Resultado está em Q26	;	bcnd nada3,leq	
	SFL	;Q27	;	lacc cosenop30c	2
	SFL	;Q28	;	sacl GPR3	
	ADD #80h,8		;nada3:		
	SACH GPR0	;GPR0 está em Q12.	;	lacc cosenop30c	:2
	LACC GPR0		;	sub GPR4	
	ADD #2048		;	bcnd nada4,geq	
;	SACL DAC3VAL		;	lacc cosenop30c	:2
;	OUT DAC3VAL,DA	23	;	sacl GPR4	
	zac		;nada4:		
	LACC ics		;	LACC cosenop30c	2,12
	ADD #1		;	SPLK #800h,GPR0	
	SFR		;	ADDH GPR0	
	ADD #2048		;	SACH DAC2VAI	L
;	SACL DAC1VAL		;	OUT DAC2VAI	L,DAC2
;	OUT DAC1VAL, DA	21	;	LACC senoc2,12	
			;	SPLK #800h, GPR0	
	zac		;	ADDH GPR0	
	LACC ias		;	SACH DACOVAI	L
	ADD #1		;	OUT DACOVAI	L,DAC0
	SFR		,	LACC cosenoc2.1	2
	ADD #2048		,	SPLK #800h.GPR0	
:	SACL DACOVAL		,	ADDH GPR0	
;	OUT DACOVAL, DAG	.0	,	SACH DACIVAL	T,
,	,		,	OUT DACIVAL	L. DAC1
	OUT DACOVA	L.DAC UPDATE	,		
/		_,	,		
	endm		; Programa u	usado para testar form	mula 3.3-25
			;		
;			;	ZAC	
; Fórmula 3.3-2	5 - Cálculo da Co	omponente de Corrente em fase com Vs	;	ADDH senoc2	;Q(15+16). cos(wt-30)=
; variáveis	de entrada -> Ia	as (Q13), Ics(Q13)			;cos(wt)*cos(30)+sen(wt)*sin(30)
; C	osenop30c2 (Q15)	= cos(wt+30) em Complemento de 2	;	zac	;multiplicar por coseno de 90.
; s	enoc2 (Q15)	= seno(wt) em Complemento de 2	;	SFR	;Q(31). mult. pelo modulo do seno de 30 = 0,5.
; variave	el de saída ->	Isre(Q12)	;	LT cosenoc2	;Q(15)
;			;	SPLK #06EDAh,GP	PR0;SQRT(3)/2 em Q15.
			;	SPLK #07fffh,GP	PR0;1 em q15
FORMULA 3325	.macro		;	MPY GPR0	;SORT(3)/2 em 015. O resultado fica em
formula3325:	POINT PG0		•		(0(15+15+1)=0(31))
	SETC SXM		;	APAC	
	SPM 1	shift para esquerda de 1.	,	NEG	
	POINT B1	,	,	SFR	
			, -	SFR	
			· · · · ·	ADD #4000b 11	
· Programa usad	o para testar foi	 mula 3 3-25	,	SACH iag	:0(13)
;	Cobtar 10		·	onen 145	
;			;	ZAC	
;	ZAC		;	ADDH cosenoc2	;cos(wt+120-30)=cos(wt)*cos(90)-sen(wt)*sin(90)

;multiplicar pelo modulo do seno de 30 = 0,5. SACH GPR1 SFR ; ;multiplicar por coseno de 90 SUBH GPR0 ;0(12+16)=028.; zac LT senoc2 BCND modulo ok, GEQ ;Pula se acumulador maior ou iqual a SPLK #7fffh,GPR0 ;1 em O(15) ;zero. SPLK #06EDAh, GPR0 LACC Isre ; MPY GPRO ;SORT(3)/2 em 015. BCND mod pos2,GEQ LACC GPR1 SPAC NEG NEG SACL Isre SFR B modulo ok SFR SACH ics mod pos2: LACC GPR1 SACL Isre zac modulo ok: NOP LACC ics ; SFR : ADD #2048 ;------: SACL DAC1VAL ;Sequnda parte do programa usado para testar formula . ;------OUT DAC1VAL, DAC1 : zac LT Isre ; ; LACC ias SPLK #5555h,GPR0 ;Para podermos comparar Isre com as ; SFR ; correntes ias ; ADD #2048 ;e ics devemos dividir por 1.5 ou seja ; ; SACL DACOVAL ;multiplicar ; OUT DACOVAL, DACO ;por 0.6666= 5555h em Q15. ; : LT GPR0 ; ;-----MPY Isre ; PAC ;0 resultado está em Q(15+12+1)=Q28 ; ;ias e ics estão em Q13. SACH GPR1 LT ias MPY cosenop30c2 ;Cosenop30c2 e senoc2 estão em Q15. zac PAC ;Q(15+13+1)=Q(29)LACC GPR1 ;GPR1 está em 012. LT senoc2 ;0(15) SFR MPY ics ;0(13) ADD #2048 ;2048 ;0 resultado está em Q(13+15+1)=029. SPAC SACL DAC2VAL SACH GPR1 ;O resultado fica em Q13. OUT DAC2VAL, DAC2 SACL GPR2 ;0(29) .endm SPLK #06EDAh,GPR0 ;SQRT(3) em Q14. ;-----LT GPR0 ; Fórmula 3.3-10 - Cálculo da Tensão de Entrada, Vs MPYU GPR2 variáveis de entrada -> Is (Q12), Isre(Q12), fref(Q15) : PAC ;Q(29+14+1)=Q(44)variavel de saída -> Vs(Q12) SACH GPR2 ; O(44 - 16) = O(28);-----MPY GPR1 ;Q(13) PAC ;0 resultado está em Q(14+13+1)=Q28 FORMULA 3310 .macro ADDS GPR2 ;0(28) formula3310: SETC SXM ADD #800,4 ;Arredonda. SPM 0 SACH Isre ;Isre fica em Q12. POINT B1 LT Rs ;Rs está em Q19. ------MPY Isre ;Isre está em 012. ; Rotina para qarantir que Isre seja menor que 1,5*sqrt(2)*Is PAC ;O resultado está em Q(19+12)=Q31 ;------SFL ;032 SACH GPR1 ;GPR1 está em Q(32-16)=Q16. BCND mod pos1, GEQ SQRA GPR1 NEG PAC ;O resultado está em Q(16*2)=Q32. mod_pos1: SACH GPR0 SFL ;Q33 SPLK #43E2h,GPR1 ;GPR0 está em Q(33-16)=Q17. ;43e2h = 1,5*sqrt(2) em Q13. SACH GPR0 LT IS ;Is é positivo e está em Q12. SPLK #71C6h,GPR3 ;71C6 = 2/9 em Q17. MPY GPR1 LT GPR0 PAC ;0 resultado está em 0(13+12+1)=026. MPY GPR3 ;0 resultado está em 0(17+17)=034. SFL PAC SFL ;028. SFL ;035.

	SACH GPRO LT Rs MPY Is PAC	;GPR0 está com 2/9*(Isre*Rs)^2 em Q19. ;Resistência de estator p.u. em Q19. ;Is está em Q12. ;O acumulador está em Q(19+12)=Q31.	; ; ;	SPLK #0000h,DVsfI SPLK #0ffffh,DVsF SPLK #0f000h,DVsI	Ja Ja Ja
	SFL	;Q32	filtroT: POINT_B	1	
	SFL	;Q33		SETC SXM	Chiffe de Casera dissile
	SACH GPRZ	;GPR2 esta em Q(33-16)=Q17.		SPM 3	;Shift de 6 para direita.
	ZAC			LT VSO	:015
	SPAC	:0 resultado está em 0(17*2)=034.		MPYU Fref	;Fref está em 015.
	SFL	;Q35.		SPAC	;0 resultado está em Q(15+15-6)=Q24
	ADDH GPR0	;35-19=16		SACH DVsH	;DvsH está em Q8.
	SACH GPR0	;GPR0 está com 2/9*(Isre*Rs)^2-(Is*Rs)^2 ;em Q(35-16)=Q19.		SACL DVsL	;DVsL está em Q24.
	LT Vso	;46E0h = 0,5537 p.u. em Q15.		SPM 0	
	MPYU Fref	;Fref está em Q15.		ZALH DVsfH	;DVsfH está em Q12.
	PAC CDD2	; O resultado esta em $Q(15+15)=Q30$.		ADDS DVSIL	;Acumulador em Q28.
	SACH GPR2	(GPR2 esta em Q(30-16)=Q14.		BCND DVsfpos GEO	
	PAC	, :0 resultado está em 0(14+14)=028.		SPLK #1.SinalDVsf	
	SFL	;Q29.		NEG	
	ADD GPR0,10	;29-19=10		SACH DVsfH	
	BCND Positivo2,G	T		SACL DVsfL	
	SPLK #0000h,GPR0		_		
Desition	B Neg2	000	DVsfpos: CLRC SX	M apik #0000h app1	
POSILIVOZ:	SFR SACH CDDO	;Q28. .CDR0 está em 0(28-16)-012		LT CDP1	;-(1-2*1a1/1)=9 em Q8.
	LACC #800h,4 ADDS GPR0	, SING CECU C 9 (20 10) - 912.		MPYU DVsfL	;DVsfL é a parte baixa da saída anterior em Q28.
	SACL GPR0			PAC	;O resultado está em Q(28+8)=Q36.
	MAR *,AR6			SACH GPR2	;GPR2 está em Q(36-16)=Q(20).
	LAR AR6,GPR0			SACL GPR3	;GPR3 está em Q36.
	LACC *,AR6			LACC GPR3,4	;Q40.
	SACL GPR0	;GPRO está em Q12.		SACH GPR3	;4 bits mais sigGPR3 está em Q(36+4-16)=Q24.
Neg2:	SPLK #78ADh,GPR2	(78AD = sqrt(2)/3 em Q16.		SPM 2 MDV DVafu	;shift para esquerda de 4.
	MPV GPR2	GPRI ESCA EM Q16.		PAC	;Q12 O resultado está em O(12+4+8)=024
	PAC	:0 resultado está em 0(16+16)=032		ADD GPR2.4	:0(20+4)=024.
	SFL	;033		ADDS GPR3	;GPR3 já está em Q24.
	SACH GPR1	;Q(33-16)=Q17		SACH GPR2	
	ZAC			SACL GPR3	
	ADDH GPR0	;O acumulador está em Q(12+16)=Q28			
	ADD GPR1,11	;28-17=11		SETC SXM	
	BCND Positivo3,G	ľ		LACC SinalDVsi	
Positivo3.	SACH VG	·Está em 012		ZALH GPR2	
100101000.	.endm			ADDS GPR3	
				NEG	
;				SACH GPR2	
; Filtro de Ter	nsão - Cálculo da Po	otência de Perdas Magnéticas		SACL GPR3	
; variável	de entrada -> Vs (212)	DVsfpos2:	ZALH GPR2	
;		DVSH(Q8), $DVSL(Q24)DvsfU2(012)$ $DvsfU2(028)$		ADDS GPR3	; O acumulador esta em Q24.
; · variav	rel de saída -> Du	rgHf(012) DygLf (028)		ADDR DVSR ADDS DVsI.	;Soma a parte arta de DVS. Q(8+16)=Q(24).
;				ADDH DVsHa	;Soma a parte alta de DVsa. Q(8+16)=O(24).
				ADDS DVsLa	. <u>.</u>
Filtro_T .macro)			SACH GPR2	
				SACL GPR3	
;	SPLK #0001h,Vs			SPLK #0,Sinal	
;	SPLK #0ffffh,DVs	fH		BCND Sinalpos,GEQ	\tilde{D}

	SPLK #1,Sinal				
	NEG		FORMULA 337	.macro	
	SACH GPR2		formula337:	SPM 0	;Shift para esquerda de 0.
	SACL GPR3			POINT B1	, <u> </u>
Sinalpos:	SPM 0			SETC SXM	
F	CLRC SXM			LACC Eslip	:016
	SDIK #5D17b CDP1	·5D17 & 1/(1+2*Tal/T)-1/(1+2*0 001/0 0002)		ADD #1	/210
	SFER #SDI/H,GERI	, 5D17 C 17 (1+2 141/1) = 17 (1+2 0,001/0,0002)		CED #1	
	IT CDD1	,em Qio.		CACL CDD4	- 01 F
	LI GPRI	(DD2) anté nome a service haire en 004		SACL GPR4	;Q15
	MPIU GPR3	GPR3 esta com a parte baixa em Q24.		BCND FSIIP_pos,G	٢Q
	PAC	; U resultado esta em $Q(24+18)=Q(42)$.		NEG	
	SACH GPR3	;GPR3 esta em Q(42-16)=Q26.	Fslip_pos:	ADDS Frei	
	MPY GPR2	;GPR2 esta com a parte alta em Q8.		SACL GPRO	;Q15
	PAC	; O resultado esta em $Q(8+18)=Q26$.		LT GPRO	
	ADDS GPR3			MPYU SnMaisl	;SnMais està em Q18.
	SFL			ZAC	
	SFL	;Q28.		SQRA GPR4	;O resultado da multiplicação anterior passa
	SACH DVsfH	;Armazena parte alta do resultado em Q12.			;para o ACC.
	SACL DVsfL	;Armazena parte baixa do resultado em Q28.		SFR	
	LACC Sinal			SACH GPR0	;O resultado está em Q(15+18-16-1)=Q16.
	SETC SXM			SACL GPR1	;Q32.
	BCND Sinalpos2,EQ	2		ZAC	
	ZALH DVsfH			SQRA Fref	;Q15
	ADDS DVsfL			APAC	;Soma Fslip^2+Fref^2
	NEG			SACH GPR2	;Q(15*2-16)=Q14.
	SACH DVsfH	;012.		SACL GPR3	; O(15*2)=O30
	SACL DVsfL	:028.		LT Sn2Mais1	;018.
Sinalpos2:	LT VSO	:015.		MPYU GPR3	:030.
	MPYII Fref	:015		PAC	(0(18+30)=048
	PAC	(0 regultado está em 0(15+15)=030)		SACH GPR3	(48-16) = 0.32
	GED	,0 105410400 0504 0m g(15115)=g50.		MDV CDP2	/2(10 10)-202.
	CED	,029.		DAC	(0(14,19) - 022)
	ADDU DVafu	,0(12,16)		ADDG CDB3	$\frac{1}{2}$
	ADDR DVSIN	(Q(12+10))		ADDS GFRS	(16, 16) 022.
	ADDS DVSIL	,0 acumulador esta em 020.		ADDA GPRO	(2(10+10) - 232)
	ADD #1,15	Maf anti an 010		ADDS GPRI	(22, 10) 010 Prove fire or 017 rais bé un 1/2
	SACH VSI	;VSI esta em Q12.		SACH PCOPEH	;Q(32-16)=Q16 PCOTE LICA em Q17 pois na um 1/2
					;na formula.
;	SFR			SACL PCOTEL	;Q(33). O maximo de Pcore e 0,25 p.u.
;	SFR			.endm	
;	SPLK #0800h,GPR0				
;	ADDH GPR0		;		
;	SACH DAC2VAL		; Fórmula 3.3-29	- Cálculo da Potê	ència que atravesa o entreferro
;	OUT DAC2VAL,DAC2		; variável d	le entrada -> Isre	(Q12), Vsf (Q12), Is (Q12)
			; variave	l de saída -> Pgap	H (Q11), PgapL (Q27)
	LACC Vsf		;		
	BCND Vsfpos,GT				
	SPLK #0000h,Vsf	i	FORMULA 3329	.macro	
Vsfpos: CLRC SXI	M		formula3329:	SPM 2	;Shift para esquerda de 4.
-	LACC DVsH	;Estas quatro instruções salvam a		POINT B1	
	SACL DVsHa	entrada atual como entrada anterior		SETC SXM	
	LACC DVsL	para a próxima execução da rotina.		LT Isre	;012.
	SACL DVsLa			MPY Vsf	:012.
	.endm			PAC	:0(12+12+4)=028. 0 shift para a esquerda.
					;é possível pois Isrezsart(8) e Vsfz2
				SACH GPR1	:0(28-16)=012
				SACL GPR2	:028
, Fórmula 3 3-7	- Cálculo da Potên	cia de Perdas Magnéticas		SPM 1	Shift para esquerda de 1
, rormana 5.5-7	o optrada -> falia	(016) Frof (016)		CDIV #ENOCh CDDA	, part (2) om 014
, variavel u	e encraua -> ISIIp l do gaída -> Dgorr	$(Q_{10}), f_{1C1} (Q_{10})$		IT CDDO	;5410(2) Cm Q14.
; varlave.	i ue saiua -> PCOr	en (Q1/), PCOTEL (Q33)		LI GPKU	
;				MPIU GPKZ	

	PAC SACH GPR2	;Q(14+28+1)=Q43 ;Q(43-16)=Q27		МРҮ РдарН РАС	;Q11 ;Q(15+11+1)=Q(27)
	PAC ADDS GPR2	;Q(14+12+1)=Q27 :027.		ADDS GPR0 SUB #2000h,15 SPLK #0000h.Sinal	;Q(27) ;2000h = 2 em Q12. 27-12=15
	SACH GPR0 SACL GPR1	/ =		BCND subposit,GEQ SPLK #0001h,Sinal	
	SPM 2	;Shift de 4 para esquerda. Is^2 é no máximo ;7fffh em Q12.	subposit:	NEG SACH GPRO	;Sinal 0 se negativo, 1 se positivo ;Q(27-16)=Q(11)
	SQRA IS PAC	;Q12. :O(12*2+4)=O28		SACL GPR1 SUB #1000b.8	;Q(27). :aproximadamente 0 004 em 028
	SACH GPR2	;Q(28-16)=Q12		BCND F13a,GEQ	, apronimadamente etteri em giot
	SACL GPR3	;Q28;	F13b:	LACC #7FFFh	;1 em Q15
	LT Rs	;Q(19)		SUBC Fmec	;Q15
	MPYU GPR3	;Q(19+28) =Q(47)		SACL GPR2	;Parte alta da divisão Q(15-15)=Q0.
	PAC	;		XOR GPR2	;Zera parte baixa para continuar divisão.
	SACH GPR3	;Q(47-16)=Q31 ;O(12+19)=O31		OR #0FFFFh ppr #15	
	PAC	;		SUBC Fmec	
	ADDS GPR3	;Q(47-16)=Q31. O acumulador fica com Is ² *Rs em		SACL GPR3	;Parte baixa da divisão Q(15+16-15)=Q(16).
	23 GU GDD0	;Q31.		LT BpudApu2	;Q(17)
	SACH GPR2			MPYU GPR3	; $(17, 1, 16) = 0(24)$
	SFR	:030.		SACH GPR3	(0(34-16)=0(18)
	ADDH GPR2	1 2		MPY GPR2	;Q(0)
	ADDS GPR3	;O acumulador está com 3*Is^2*Rs em Q30.		PAC	;Q(17+1+0)=Q(18)
	SACH GPR2			ADDS GPR3	;Q(18)
	SACL GPR3	•0(15+17)=033		sir add #1	
	ADDS PcoreL	;0(33)		sfr	;0(16)
	SFR	;Q32		B F13fim	
	SFR	;Q31	F13a:	LACC #7fffh	;1 em Q15
	SFR	;Q30		RPT #15	0(11)
	ADDH GPR2 ADDS GPR3			SUBC GPRU	;Q(II) ·Parte alta da divisão O(15-11)-O3
	SFR			XOR GPR2	¿Zera parte baixa para continuar divisão.
	SFR			OR #0FFFFh	
	SFR	;Q27		RPT #15	
	SUBH GPR0			SUBC GPR0	Dente heine de dinieñe $O(15, 16, 11) O(20)$
	NEG			LACC GPRO	; Parte baixa da divisão $Q(15+16-11)=Q(20)$.
	SACH PgapH	;Q(27-16)=Q11 Pgap é no máximo 16 p.u.		ADD #1	
	SACL PgapL	;Q27.		SACL GPR0	
	.endm			LACC #7fffh	;1 em Q15.
				RPT #15	$\cdot O(11)$
, ; Fórmula 3.3 51	e 52 - Cálculo	da frequência de escorregamento		SACL GPR4	;Parte alta da divisão Q(15-11)=Q4.
; variável d	e entrada -> Pga	pH (Q11), PgapL (Q27), Fmec (Q15)		XOR GPR4	;Zera parte baixa para continuar divisão.
; variavel	de saída -> fs	lip (Q16)		OR #0ffffh	
;				RPT #15	
FORMULA 3349e51	.macro			SACL GPR5	;Parte baixa da divisão Q(15+16-11)=O(20).
formula3349e51:	SPM 1	;Shift para esquerda de 1.		ZAC	
	POINT_B1			ADDS GPR3	;Q(20)
	SETC SXM	.015		ADDH GPR2	;Q(4)
	MPYU Pgani	:027		SUBH GPR4	:0(20)
	PAC	;Q(15+27+1)=Q(43)		SACH GPR4	;Q(4)
	SACH GPR0	;Q(43-16)=Q(27)		SACL GPR5	;Q(20)

	LT GPR1	i		SFR	;Q(26)
	SPM 0	;Sem Shift para direita.		SUBS GPR0	;Q(26)
	MPYU GPR5	•		SUBH GPR1	;Q(10+16)=Q(26)
	PAC			SACH GPR1	
	SACH GPR5			SACL GPR0	
	MPYU GPR4			SPM 0	
	PAC			SQRA Fmec	;Q(15*2)=Q30
	ADDS GPR5			PAC	
	NEG			SFR	
	ADDH GPR2			SFR	
	ADDS GPR3			SFR	
	SACH GPR2	;Q(4)		ADD #1,15	
	SACL GPR3	;Q(20)		SFR	;Q(26)
		;GPR2 e GPR3 estão armazenando modulo do		ADDS GPR0	
		;resultado		ADDH GPRI	
		;final da divisão em Q(20).		SACL GPRO	;Q(26)
partelpos:	SPM 1	011		SACH GPRI	;Q(10)
	ZALH Pgaph	;011		BChd Raizi,GEQ	
	ADDS PgapL	; Q27		SPLK #ON,GPRO	
	NEC			SPLK #UN,GPRI	
Domog, SACU CI	NEG 0D1	.011		P rais ros	
ragpos: SACh Gr	SACI. CPPO	,027	Paiz1.	LACC #800b 4	·Início da tabela
	IT CDP1	; 02)	Raizi:	ADDG CDP1	, lincio da cabera
	MDVII CDDO			ADDS GFRI	,A cabela foi preparada para encrada e sarda em
	PAC			SACL GPR1	,g⊥2. •Entrando-se com 010 a saída é em 011
	SACH GPRO	(0(11+27+1-16)=023)		MAR * AR6	, Bheidhdo be com git a baida e cm gii.
	MPYIL GPR1	, g (11/2/11 10/-g25.		LAR AR6. GPR1	
	PAC	(0(11+11+1)=023)		LACC * AR6	
	ADDS GPR0			SACL GPR4	:GPR4 está em 011.
	ADDS GPR0	A soma dupla é devido a multiplicação.	Raiz2:	LACC GPR1	
	ADD #1	;0 erro desta multiplicação é no máx 2h em 023,		ADD #1h	Proximo ponto da tabela.
		; e é		SACL GPR1	
		;este o motivo da soma de 1. O erro se torna		MAR *, AR6	
		;<1.		LAR AR6,GPR1	
		;Note que não foi feita a mult. GPR0*GPR0.		LACC *,AR6	
	SACH GPR1	;GPR1 e GPR0 estão com o resultado de Pgap^2.		SACL GPR5	;GPR5 está em Q11.
	SACL GPR0	;em Q(23)		SUBS GPR4	
	LT Bpu	;Q19.		SACL GPR5	
	MPYU GPRO	;		LT GPR5	
	PAC	;Q(23+19+1)=Q(43).		MPYU GPRO	
	SACH GPR0	;Q(43-16)=Q(27).		SPM 0	
	MPY GPR1	;Q(7).		PAC	
	PAC	;Q(7+1+19)=Q(27)		ADDH GPR4	;Q(11+16)=Q(27)
	ADDS GPR0	;Q(27)	raiz_res:	SUB Fmec,12	;Fmec è positivo e està em Q(15). 27-15=12
	ADD #1			SACH GPR1	;Parte alta do resultado do que está entre () em
	SFR	;Passa para Q(26) evitando Over-flow.			;Q(11). Deute haine de normalite de de mos antés entres ()
	SACH GPRI	;Negativo com a soma seguinte.		SACL GPRU	;Parte baixa do resultado do que esta entre ()
	SACL GPRU	Bash 2+Bash		hand ginalnog CE	;em Q(27).
	SDM 0	;Pgap 2*Bpu.		Dend Sinaipos, GEQ	2
	LT Pruvedaru	$(2 \pm P_{D1})/(\Delta D_{11})$ om $O(17)$		SACH CDB1	
	MPVII Pgapi	,Z"Bpu/Apu em Q(17). ,Pappi, está em O(27)		SACI GPRI	
	PAC 19aph	113422 CDC4 Cm 2(2)/.		LACC Sinal	Zero se negativo. 1 se positivo
	SACH GPR5	(0(27+17-16)=0(28)		sub #1	, > mogacito, i bo pobicito.
	MPY PqapH	;PgapH está em Q(11)		SACL Sinal	
	PAC	O(11+17) = O(28)		Bcnd sinalpos.EO	
	ADDS GPR5	;0(28)		SPLK #1,Sinal	
	SFR	;Q(27)	sinalpos:	SPM 1	
	ADD #1		-	LT GPR0	;Q(27)

	MPYU GPR3	;Q(20)			SACH GPR2		
	PAC	;Q(27+20+1)=Q(48)			SACL GPR3		;Q23.
	ADD #1,15				SPM 1		;Shift para esquerda de 1.
	SACH GPR4	; O(48-16) = O(32)			SPLK #4168h,GPR1	;4168h é	1/(1+2*Tal/T) = 1/(1+2*0,050/0,0002)
	MPYU GPR2	; O(4)					; em Q23.
	PAC	O(27+4+1) = O(32)			LT GPR1		;
	ADDS GPR4				MPYU GPR3		, GPR3 está com a parte baixa em O23.
	ADD #1.15				PAC		:0 resultado está em $O(23+23+1)=O(47)$.
	SACH GPR4	(32-16) = 0(16)			SACH GPR3		:GPR3 está em 0(47-16)=031.
	LT GPR1	O(11)			MPY GPR2		GPR2 está com a parte alta em 07
	MPVII GPR3	·O(20)			PAC		(0 resultado está em 0(7+23+1)=031
	PAC	(0(11+20+1) = 0(32))			ADDS CPP3		,031
	ADD #1 15	, 2 (11 12 0 11) - 2 (32)			SEL.		,032
	SACH CDRO	(0(32-16)-0(16))			SACH FelipFH	· Armazon	,gsz. a parte alta do regultado em 016
	MDVII CDD2	$Q(32 \pm 0) - Q(\pm 0)$			SACI FalipFi	,Armagon	a parte alta do regultado em 022
	DAC	(2(1), (1), (1)) = 0(10)			CEL	, AI MAZCIN	a parte barka do resultado em Q52.
	PAC	(11)	;		SFL		
	ADDS GPRU	;Q(16)	;		SFL		
	ADDS GPR4	;Q(16)	;		SFL		
71.06			;		SFL		
FIJIM:	SACL FSIIP		;		SFL		
	SUB #06148n	;limitação de Islip em aprox 0,38 (6148n - Q16).	;		SFL		
		;0,38 e a frequencia de escorregamento	;		SFL		
		;em pu para torque max.	;		SFL		
	Bend nlimit,LT		;		SFL		
	SPLK #6148h,Fslip	р 	;		SFL		
nlimit:	LACC Sinal	;Zero se negativo, 1 se positivo.	;		SFR		
	Bcnd fslippos,GT		;		SFR		;Q12
	LACC Fslip		;		SPLK #0800h,GPR0		
	NEG		;		ADDH GPR0		
	SACL Fslip	;Q(16)	;		SACH DAC3VAL		
fslippos:	NOP		;		OUT DAC3VAL,DAC3		
	.endm				LACC Fslip		;Salva a entrada atual
					SACL Fslipa		;como entrada anterior
					.endm		
;							
; Filtro Digital	de atraso da malh	na de frequência	;				
; com constante	de tempo 50ms		; Declarati	lons do	os vetores de ende	ereço	
;			;				
Filtro_F .macro			.se	ect	".vectors"		
IIITLOR: POINT_B.			DOUTOT D				1
	SPM 0	;Sem Shift.	RSVECT B		START ; PM O R	eset Vect	or 1
	CLRC SXM		INTI B		XINTI ; PM 2 I	nt level	
	SPLK #0F98h,GPRI	;-(1-2*Tal/T)=499 em Q3. Tal=0,05s	INT2 B		GISR2 ; PM 4 1	nt level	2 5. Veja pagina 2-94, Vol. 2.
	LT GPRI		-		;Interru	pçao por	under flow do timer 1.
	WPIO FSTIDEL	;FslipFL e a parte baixa da saida anterior em	INT3 B		PHANTOM ; PM 6 Ir	nt level .	3 6
		;Q32.	INT4 B		PHANTOM ; PM 8 Ir	nt level 4	1 7
	PAC	;O resultado está em $Q(32+3)=Q35$.	INT5 B		PHANTOM ; PM A Ir	nt level !	5 8
	SACH GPR2	;GPR2 está em Q(35-16)=Q(19).	INT6 B		PHANTOM ; PM C Ir	nt level (5.9
	SACL GPR3	;GPR3 está em Q35.	RESERVED B		PHANTOM ; PM E (A	Analysis :	Int) 10
	LACC GPR3,4	;Q39.	SW_INT8 B		PHANTOM ; PM 10 U	Jser S/W :	int -
	SACH GPR3	;4 bits mais sigGPR3 está em Q(39-16)=Q23.	SW_INT9 B		PHANTOM ; PM 12 U	Jser S/W :	int -
	SETC SXM		SW_INT10 B		PHANTOM ; PM 14 U	Jser S/W :	int -
	SPM 2	;shift para esquerda de 4.	SW_INT11 B		PHANTOM ; PM 16 U	Jser S/W :	int -
	MPY FslipFH	;Q16	SW_INT12 B		PHANTOM ; PM 18 U	Jser S/W :	int -
	PAC	;O resultado está em Q(16+4+3)=Q23.	SW_INT13 B		PHANTOM ; PM 1A U	Jser S/W :	int -
	ADD GPR2,4	;Q(19+4)=Q23.	SW_INT14 B		PHANTOM ; PM 1C U	Jser S/W :	int -
	ADDS GPR3	;GPR3 já está em Q23.	SW_INT15 B		PHANTOM ; PM 1E U	Jser S/W :	int -
	ADD Fslip,7	;23-16=7	SW_INT16 B		PHANTOM ; PM 20 U	Jser S/W :	int -
	ADD Eglips 7	.23-16-7	TRAP B		PHANTOM : PM 22 T	Fran vecto	- r -

NMI	В	PHANTOM	;	ΡM	24	Non maskable Int 3
EMU_TRAP	В	PHANTOM	;	ΡM	26	Emulator Trap 2
SW_INT20	В	PHANTOM	;	ΡM	28	User S/W int -
SW_INT21	В	PHANTOM	;	ΡM	2A	User S/W int -
SW_INT22	В	PHANTOM	;	ΡM	2C	User S/W int -
SW INT23	В	PHANTOM	;	РM	2E	User S/W int -

.sect ".pvecs"

PVECTORS B PHANTOM ;01- Reserved pvector addr offset PHANTOM ;02- pvector addr offset 0x01 - XINT1 В PHANTOM ;03- Reserved pvector addr offset B В PHANTOM ;04- Reserved pvector addr offset ;05- pvector addr offset 0x04 - ADC В PHANTOM ;06- pvector addr offset 0x05 - SPI RX/TX ... В PHANTOM ;07- pvector addr offset 0x06 - SCI RX interrupt В PHANTOM В PHANTOM ;08- pvector addr offset 0x07 - SCI TX interrupt В PHANTOM ;09- Reserved pvector addr offset (0x08) В PHANTOM ;10- Reserved pvector addr offset (0x09) ;11- Reserved pvector addr offset (0x0a) В PHANTOM :12- Reserved pyector addr offset (0x0b) B PHANTOM В PHANTOM ;13- Reserved pvector addr offset (0x0c) B PHANTOM :14- Reserved pyector addr offset (0x0d) :15- Reserved pyector addr offset (0x0e) B PHANTOM ;16- Reserved pvector addr offset (0x0f) В PHANTOM В PHANTOM :17- pvector addr offset 0x10 - WDT real time ; int. В PHANTOM :18- pvector addr offset 0x11 - XINT2 PHANTOM ;19- Reserved pvector addr offset (0x12) В ;20- Reserved pvector addr offset (0x13) В PHANTOM В PHANTOM :21- Reserved pyector addr offset (0x14) В PHANTOM ;22- Reserved pvector addr offset (0x15) :23- Reserved pyector addr offset (0x16) B PHANTOM PHANTOM ;24- Reserved pvector addr offset (0x17) В В PHANTOM ;25- Reserved pvector addr offset (0x18) ;26- Reserved pvector addr offset (0x19) В PHANTOM ;27- Reserved pvector addr offset (0x1a) B PHANTOM PHANTOM ;28- Reserved pvector addr offset (0x1b) В В PHANTOM ;29- Reserved pvector addr offset (0x1c) В PHANTOM ;30- Reserved pvector addr offset (0x1d) В PHANTOM ;31- Reserved pvector addr offset (0x1e) ;32- pvector addr offset 0x1f - XINT3 В PHANTOM В PHANTOM ;33- pvector addr offset 0x20 - PDP interrupt В PHANTOM ;34- pvector addr offset 0x21 - Full Compare 1 ;int. В PHANTOM ;35- pvector addr offset 0x22 - 2 int. B PHANTOM ;36- pvector addr offset 0x23 - 3 int. В MED COR ;37- pvector addr offset 0x24 - S.Compare 1 int. В PHANTOM ;38- pvector addr offset 0x25 - // 2 int. В PHANTOM ;39- pvector addr offset 0x26 - // 3 int. В PHANTOM ;40- pvector addr offset 0x27 - T1 Period int. В PHANTOM ;41- pvector addr offset 0x28 - Compare int. В PWM ISR ;42- pvector addr offset 0x29 - Underflow int. В PHANTOM ;43- pvector addr offset 0x2a - Overflow int. В PHANTOM ;44- pvector addr offset 0x2b - T2 Period int. ;45- pvector addr offset 0x2c - Compare int. B PHANTOM В PHANTOM ;46- pvector addr offset 0x2d - Underflow int. ;47- pvector addr offset 0x2e - Overflow int. В PHANTOM В PHANTOM ;48- pvector addr offset 0x2f - T3 Period int. В PHANTOM ;49- pvector addr offset 0x30 - Compare int.

в	PHANTOM	;50- pvector addr offset 0x31 - Underflow int.
В	PHANTOM	;51- pvector addr offset 0x32 - Overflow int.
В	PHANTOM	;52- pvector addr offset 0x33 - Capture 1 int.
В	PHANTOM	;53- pvector addr offset 0x34 - Capture 2 int.
В	PHANTOM	;54- pvector addr offset 0x35 - Capture 3 int.
В	PHANTOM	;55- pvector addr offset 0x36 - Capture 4 int.

; O programa principal começa aqui

```
.text
```

START:

;

POINT PG0 ;Macro para apontar para página 0. ;Desabilita interrupções SETC INTM SPLK #0h, IMR ;Mascara todas Interrupções SPLK #0ffffh, IFR ;Reseta todos flags de interrupção CLRC SXM ;Clear Sign Extension Mode SETC OVM ;Set Overflow Mode SPM 0 CLRC CNF ;Configura o bloco B0 para memória de dados. POINT B1 SPLK #04h,GPR0 ;Set 0 wait states for XMIF OUT GPR0,WSGR ;página 0E0h - 224 POINT PF1 SPLK #00BBh,CKCR1 ;CLKIN(OSC)=10MHz,CPUCLK=20MHz SPLK #00C3h,CKCR0 ;CLKMD=PLL Enable,SYSCLK=CPUCLK/2 SPLK #40C0h,SYSCR ;CLKOUT=CPUCLK ;Disable WD if VCCP=5V SPLK #006Fh,WD CNTL KICK DOG •-----; Initialize Counter, Step parameters, & AR pointers ,-----INICIALIZACAO:

POINT B1 SPLK #STABLE, S TABLE ;#STABLE é o endereço do começo da tabela de ;senos. SPLK #vfslope,vf slope ;Used later for multiply. SPLK #K prop, Kp ;Init PI constants. ;#VF_SLOPE, K_prop, K_integ, são constantes. SPLK #K integ, Ki SPLK #K PASSO, k passo SPLK #K VELOC, k veloc SPLK #K_CORRENTE, k_corrente SPLK #RS,Rs SPLK #VSO.Vso SPLK #TRINTA, trinta SPLK #SESSENTA, sessenta SPLK #SNMAIS1, SnMais1 SPLK #SN2MAIS1, Sn2Mais1 SPLK #APU,Apu SPLK #BPU,Bpu SPLK #BPUX2DAPU, Bpux2dApu SPLK #BPUDAPU2, BpudApu2 SPLK #DIVIDENDH, DividendH SPLK #DIVIDENDL, DividendL SPLK #1h, intcor LACC #0h ;Start at 0 deg. SACL SOMAH

	SACL SOMAL			
	SACL Temppulsoa			
	SACL ALFAH	;Clear ANGLE integrator	;	
	SACL ALFAL	i	; Comfiguração dos temporizadores	5
	SACL offsetia		;	
	SACL offsetic			
	SACL Corrente alta		POINT B1	
	SACL Fslipa		LACC T	
	SACL DvsHa		POINT EV	
	SACL DVsLa		SACL T1PER	;GP Timer 1 period
	SACL DVsfH		SPLK #07FFFh, T3PER	usado para medição de veloc pelo sist larg de
	SACI, DVsfI.		billit ((o))iiii) ibillit	nulsos
	SPLK #1 aux1		SPLK #OFFFFh T2PFR	·usado para medição de veloc pelo sist atde de
	SPLK #1 aux2		billit ((official) ibillit	<pre>, abado para moarçao do verso pero pres, quas, do .nulsos</pre>
	SACT. aux2		SPLK #0000b T3CNT	/parbob.
<i>'</i> .	SACI 20081		SPIK #0000h, ISCNI	
,	SACI CDP2		SPIK #0000h TICNT	
	SACL GPRS		CDLK #(TDWM 70) COMDD1	oba . 70 é a mantidade de cicles entre
	CACL CECTOR	Thit Coston table index pointer	SPLK #(IPWM-70),SCMPRI	;obs.: 70 e a qualicidade de cicios encre
	SACL SECTOR	Prese V Wiree		;a ocorrencia da interidção e o start no AD.
	SACL V_TIMERI	;Reset V_IIMer		
	SACL SUMA	Start with open lean	Configuração das unalistas	redered de controle des
	SACL LOUP_ON_FLG	;start with open loop Deviade de newtodowe DVM	; contiguração dos registr	auores de controre dos
	SPLK #TPWM,T	; Periodo da portadora PWM.	; cemporizadores de proposito gei	ral
	LAR ARI, #CMPR1	; init Timer Comp reg pointers	;	
	LAK AR2,#CMPR2	;CMPR1, CMPR2, CMPR3 estão det. no arq.		
		; c240app.h	;5432109876543210	
	LAR AR3, #CMPR3	;e valem 7417h,7418h e 7419h respectivamente.	; ! ! ! ! ! ! ! !	
	LAR AR4,#T2CNT	;T2CNT=7405h. Aponta para o cont. de pulsos do	SPLK #100100000000000b,	T3CON ; Página 2-38, vol. 2.
		;encoder.	;bits 15-14 = 10 -> Op.	do timer ñ é afetd. pela suspensão pelo emulador.
	LAR AR5,#WPILHA	;Point to start of BC buffer. Constante = 200h	;bits 13-11 = 010 -> Mod	lo de contagem contínua e crescete.
	LAR AR7,#stk1		;bits 10-8 = 000 -> Fat	or de preescala do clock = x/1
	SPLK #FINI,Fmec	;Use open loop freq initially (3C00h).	;bit 7 = 0 -> Usar	TENABLE próprio.
;	SPLK #ZERO,zero		;bit 6 = 0 -> TEN	IABLE = 0, Timer Desabilitado.
			;bits 5-4 = 00 -> Usa	fonte de clock interna.
;			;bits 3-2 = 00 -> Reca	arregar registrador de comp. quando timer for 0;
;Config	guração do gerenciador de	eventos EV	;bit 1 = 0 -> Desa	abilitar operação de comparação
;			;bit 0 = 0 -> Usar	r registrador de período próprio.
EV_CONF	IG:		SPLK #1001000001000000b,	T3CON ;habilita timer3
	POINT_PF2		_	
	SPLK #0fff0h,OPCRA	;OCRA->7090h. Config. a porta A. Pág. 11-22,	;5432109876543210	
		;vol.2.	; 1 1 1 1 1 1 1 1	
	SPLK #0030h,OPCRB	;OCRB->7091h. Config. a porta B. Pág. 11-23, ;vol.2.	SPLK #1001100000110000b,	T2CON ;Página 2-38, vol. 2.
			;bits 15-14 = 10 -> Op.	do timer ñ é afetd pela suspensão pelo emulador.
EV_LP:			;bits 13-11 = 011 -> Mod	lo de contagem direcionada e crescete/decrescente.
_	SPLK #0f0fh,PADATDIR	;A3,A2,A1,A0 = O/P = 1, . Página 11-24, vol.2.	;bits 10-8 = 000 -> Fat	or de preescala do clock = x/1
	POINT EV	;DP => EV Registers	;bit 7 = 0 -> Usar	TENABLE próprio.
	SPLK #00000h,IMRA	;Mask all Group A interrupt flags	;bit 6 = 0 -> TEN	IABLE = 0, Timer Desabilitado.
	SPLK #00000h,IMRB	Mask all Group B interrupt flags	;bits 5-4 = 11 -> Usa	OEP como fonte de clock.
	SPLK #00000h,IMRC	Mask all Group C interrupt flags	;bits 3-2 = 00 -> Reca	arregar reg. de comparação guando timer for 0:
		,	:bit 1 = 0 -> Dega	abilitar operação de comparação
	Clear EV control regio	ters	bit 0 = 0 -> Ugar	registrador de período próprio
	SPLK #0000b TICON	·GP Timer 1 control	,510 0 = 0 9 USAI	- regreeraadt ac perioad propiro.
	SPLK #0000h TOCON	GD Timer 2 control	CDLK #1001100001110000b	T2CON
	CDIK #00001, 12CON	CD Timer 2 control	SPLK #IUUIIUUUUIIIUUUUD,	12CON ; HADIIICA CIMEIZ
	CDIV HOERAL DOWCON	Bond hand control register Sur - 2 50 2	E 4301 0007/E 4301 0	
	SPLK #USF8n, DBTCON	; Deau banu control register- 2us - 2-58 vol. 2	;5432109876543210	
	SPLK #UUUUN, COMCON	; Compare control	; ! ! ! ! ! ! ! !	
	SPLK #74F4h, CAPCON	;Capture control	SPLK #101010000000000b,	TICON ;Sym ; Pàgina 2-38, vol. 2.
	SPLK #00FFh,CAPFIFO	;Capture FIFO status bits. Página 2-84, vol.2.		

;bits 15-14 = 10 -> Op. do timer ñ é afetd pela suspensão pelo emulador. ;bits 13-11 = 101 -> Modo de contagem continua, crescete/decrescente. 5432109876543210 ; ; bits 10-8 = 000 -> Fator de preescala do clock = x/1 ; ;bit 7 = 0 -> Usar TENABLE próprio. SPLK #0010001100000111b, COMCON ;Compare Cntl. Veja página 2-48. ; bit 6 = 1 -> TENABLE = 1, Timer habilitado. SPLK #1010001100000111b, COMCON ;Compare Cntl ;bits 5-4 = 00 -> Fonte de clock interna. ;bits 3-2 = 00 -> Recarregar req. de comparação quando timer for 0; ;bit 15 = 1 -> Habilita operação de comparação. ;bit 1 = 0 -> Desabilitar operação de comparação ;bits 14-13 = 01 -> Recarregar reg. de comparação quando T1CNT=0. ;bit 0 = 0 -> Bit reservado para T1con ;bit 12 = 0 -> Desabilita o modo Space Vector. ;bit 11-10 = 00 -> Recarregar ACTR guando T1CNT=0. ;bit 9 = 1 -> Hab. saídas full comp. (ñ estão em alta impedância). SPLK #1010100001000000b, T1CON ;Habilita timer1. ;bit 8 = 0 -> Hab. saídas simple compare (estão em alta impedância). ;-----;bit 7 = 0 -> Selec. do timer 1 para as saídas de comp. simples; ;bits 6-5 = 00 -> Recarregar regs. de comparação, SCMPRx, qdo TyCNT=0. ; Configuração do registrador das unidades de captura ;bits 4-3 = 00 -> Recarregar SACTR quando TyCNT=0. ;bit 2 = 1 -> Seleção das saídas 6 e 5 para modo PWM. ;------;bit 1 = 1 -> Seleção das saídas 4 e 3 para modo PWM. ;bit 0 = 1 -> Seleção das saídas 2 e 1 para modo PWM. ; 5432109876543210 ; ||||!!!! ;-----SPLK #1111010011110100b, CAPCON ; Página 2-80, vol. 2. ; Configuração dos conversores AD ;------;bit 15 = 1 -> Não reseta registradores das unidades de captura. ;bits 14-13 = 11 -> Habilita QEP e desabilita as unds. de captura 1, 2. ;bit 12 = 1 -> Habilita unidade de captura 3. ;bit 11 = 0 -> Desabilita unidade de captura 4. POINT PF1 ;Página 224 que contém o reg. ADC CNTL2 (7034h). ;bit 10 = 1 -> Usar timer 3 para unidades de captura 3 e 4. ;bit 9 = 0 -> Não tem função quando se usa QEP. 5432109876543210 ; ;bit 8 = 0 -> CAP4 não é usado para iniciar ADC; ||||!!!! ; bits 7-6 = 11 -> \tilde{N} tem função qdo. o modo QEP é selec. p\ as un. 1 e 2. SPLK #00000000000000110h, ADC_CNTL2 ;Veja página 3-9 do vol. 2 para entender ; bits 5-4 = 11 -> \tilde{N} tem func. qdo. o modo QEP é selec. p \setminus as un. 1 e 2. ;estas configurações. ;bits 3-2 = 01 -> Não detecção de borda para unidade de captura 3. ;bit 15-11 = 0000-> Reservado. ;bits 1-0 = 00 -> Não detecção de borda para unidade de captura 4. ;bits 10 = 0 -> Desabilitar início da conversão pelo EV. ;bit 9 = 0 -> Desabilita início de conversão com sinal externo. ;-----;bit 8 = 0 -> Reservado. ;bit 7-6 = 00 -> Indicam o estado da pilha FIF02. ; Configuração dos registradores de comparação ;bit 5 = 0 -> Reservado. ;bit 4-3 = 00 -> Indicam o estado da pilha FIF01. ;bits 2-0 = 110-> Fator de pre-escala = 1/20. Veja página 3-5. 5432109876543210 ; . SPLK #0000011001100110b,ACTR ;Full Action Cntl. ; 5432109876543210 ;bit 15 = 0 -> Direção de rotação do Space Vector positiva. ; ||||!!!!||||!!!! ;bits 14-12 =000 -> Bits básicos do space vector. SPLK #0001100000100100b, ADC CNTL1 ;bits 11-10 = 01 -> Pino 6 de saída, (PWM6/CMP6), ativo baixo. ;bits 9-8 = 10 -> Pino 5 de saída,(PWM5/CMP5), ativo alto. ;bit 15 = 0 -> Para quando há uma suspensão pelo emulador. ;bits 7-6 = 01 -> Pino 4 de saída, (PWM4/CMP4), ativo baixo. ;bits 14 = 0 -> Operação determinada pela bit 15. ;bits 5-4 = 10 -> Pino 3 de saída,(PWM3/CMP3), ativo alto. ;bit 13 = 0 -> Início de conversão desabilitado. ;bit 12 = 0 -> ADC2 habilitado. ;bit 11 = 1 -> ADC1 habilitado. ;bits 3-2 = 01 -> Pino 2 de saída, (PWM2/CMP2), ativo baixo. ;bits 1-0 = 10 -> Pino 1 de saída, (PWM1/CMP1), ativo alto. ;bit 10 = 0 -> Modo de conversão contínua desabilitado. ;bit 9 = 0 -> Requisição de int. quando conversão está completa. 5432109876543210 ;bits 8 = 0 -> Indica se ocorreu alguma interrupção. ; = 0 -> Indica se a conv. terminou ou se ainda está em prog. ;bits 7 ;Full Action Cntl. ;bit 6-4 = 010 -> Seleção do canal 11 para o ADC2. SPLK #0000000000000010b, SACTR ;bit 3-1 = 010 -> Seleção do canal 3 para o ADC1. ; bit $15-6 = 0 \rightarrow Bita reservados.$;bit 0 = 0 -> Início de conv. desabilitado. Este bit é sombreado. ;bits 5-4 = 00 -> Pino 3 de saída de comparação simples,ativa alta. ;bits 3-2 = 00 -> Pino 2 de saída de comparação simples, forcada baixa. ;------;bits 1-0 = 10 -> Pino 1 de saída de comparação simples,forcada baixa. ; Procedimento para zerar buffer de velocidades.

;			; Enabl	;				
;;	MAR *,AR5 ZAC RPT #(TPILHA-1) SACL *+ LAR AR5,#WPILHA Procedimento para	a medição do offset das correntes ias e ics	;	POINT_EV ; 5432105 ; !!! SPLK #000000100	9876543210 ! !!! 0010000b,IMRA	; for Evt Mgr ;EVIMRA end. 742Ch. Veja página 2-101. ;Enable Underflow Int. ;disable simple compare 1 Int.		
;	POINT PG0		; As li ; Veja ; Os en	nhas seguintes li páginas 2-(96-100 dereços de IFRA,	mpam os registrad) para inf. mais IFRB e IFRC são 1	dores de flags de interrupção. detalhadas sobre estes reg. respectivamente 742Fh, 7430h e 7431h.		
	CLRC SXM POINT_B1 SPLK #0000h,GPR0 SPLK #0000h,GPR1			SPLK #0FFFFh,IF SPLK #0FFFFh,IF SPLK #0FFFFh,IF	RA RB RC	;Clear all Group A interrupt flags ;Clear all Group B interrupt flags ;Clear all Group C interrupt flags		
	SPLK #0000h,GPR2 POINT_PF1			POINT_PF1 SPLK #0005h,XIN	T1_CNTL	;Veja página 11-53, Vol.		
NEW_CONV	SPLK #0001100001 /: POINT_PF1 SPLK #0011100001	001010b,ADC_CNTL1 ;Veja Capítulo 3, vol.2		POINT_PG0 ; !!! ; 5432109 SPLK #000000000	! !!!! 0876543210 0000011b,IMR	;IMR-> endereço-0004h. Veja página 6-19.		
CONV_OFF: BIT ADC_CNTL1,8 BCND CONV OFF.TC		;Enable Int lvl 2 for DSP core & Emu Int and lvl : LACC IFR ;IFR-> endereço-0006h. Veja página 6-17. SACL IFR ;Clear any pending Ints CLRC INTM ;Enable global Ints			l 2 for DSP core & Emu Int and lvl 1. o-0006h. Veja página 6-17. ding Ints Ints			
	LACC ADC_FIF01,7 POINT_B1 ADDH offsetia ADDs GPR1 SACH offsetia SACL GPR1		MAIN: B ;====== ; MED_C ;=====	MAIN OR: Rotina para	medição das corre	entes nas fases a e c		
	POINT_PF1 LACC ADC_FIF02,7 POINT_B1 ADDH offsetic ADDs GPR2 SACH offsetic SACL GFR2		XINT1:	LARP AR7 SST #1,*+ SST #0,*+ SACL *+ SACH *+	; Save ; Save ; Save ; Save	ST1 - Forced Page 0 ST0 - Forced Page 0 ACCL ACCH		
	LACC GPR0 ADD #1 SACL GPR0 SUB #200h BCND NEW_CONV,LT LACC offsetia	;Evita que offsetia seja negativo em caso de o offset		POINT_PF2 LACC PADATDIR OR #0002h SACL PADATDIR POINT_EV LACC T3CNT SPLK #100010000 SPLK #000fh, T3	;A3,A2=O/P, A1, 0000000b,T3CON CNT	,AO=I/P, A3,A2=1,1. Pág. 11-24, vol.2. ;Página 2-38, vol. 2. ;tempo perdido para atender int.		
	SFR SACL offsetia LACC offsetic	;deste canal ser maior que 512.		SPLK #100010000	1000000b, T3CON	;verif. experimentalmente. ;Página 2-38, vol. 2.		
	SFR SACL offsetic SETC SXM			SACL Tpulso BCND Nover,NEQ				

SPLK #7fffh, Tpulso SACL *+ ;save ACCL SACH *+ Nover: ;save ACCH SETC SXM POINT EV LACC DividendH ;Q(5) LACC IVRA,1 ;read SYSIVR, shifted left by one bit RPT #22 ADD #PVECTORS ;Add offset vector to base vector SUBC Tpulso ;Q(0) BACC SACL W ;Q(12) MAR *, AR5 ;Modifica registrador auxiliar SACL *+ ;Incrementa AR5 e armazena ACC no endereço ; MED COR: Rotina para medição das correntes nas fases a e c ZAC _____ LACC W ;apontado por este AR. ;Soma nova medição com as somas de pulsos anteriores. ADDS SOMAL MED COR: ADDH SOMAH ;Carrega AR0 com o último end. da pilha. POINT B1 LAR ARO, # (WPILHA+TPILHA-1) CMPR 2 ;Compara se o atual AR (AR5) é > que AR0 LACC intcor BCND MED FIM, EQ BCND SAIR2,NTC ;Pula se não. SPLK #0, intcor LAR AR5, #WPILHA SAIR2: SUBS * ;subtrai a medição mais antiga. POINT PF2 SACL SOMAL :Armazena ACC em soma. LACC PADATDIR SACH SOMAH OR #0008h SFR SACL PADATDIR ;A3,A2=O/P, A1,A0=I/P, A3,A2=1,1. Página 11-24, vol.2. ADD #1 SFR CLRC SXM SFR SPM 1 ;Shift para a esquerda de 1. SFR ; SFR POINT PF1 ; SACL W ;Q(12) SPLK #0011100001001010b, ADC CNTL1 ; Veja Capítulo 3, vol.2 POINT PF2 CONV COR: LACC PADATDIR BIT ADC CNTL1,8 AND #0fffdh BCND CONV COR, TC LACC ADC_FIF01,14 SACL PADATDIR ;A3,A2,A1,A0=0/P, A3,A2=1,1. Página 11-24, vol.2. MAR *, AR7 POINT B1 MAR *-, AR7 SETC SXM ZALH *-;Zero low accumulator and load high accumulator. SACH GPRC0 ADDS *-;Restore ACCH. Restore ACCL. LST #0,*-;Load contents of stk1 into ST0. Restore ST0 SPLK #0h, Corrente alta LST #1,* ;Load contents of stk2 into ST1. Restore ST1 SPLK #3ff0h,GPRC1 SUBH GPRC1 CLRC INTM BCND iaok1,LT RET SPLK #1h,Corrente alta iaok1: SPLK #0010h,GPRC1 LACC GPRC0,15 ; GISR2: Rotina geral de interrupções do nível 2, SFL Neste grupo estão: SUBH GPRC1 ; - Interrupção para medição de correntes (MED COR) BCND iaok2,GEQ ; - Interrupção principal do programa (PWM ISR) SPLK #1h,Corrente alta ; iaok2: ; LACC GPRC0,15 SEL SUB offsetia,15 GISR2: SFL CLRC INTM SACH ias LARP AR7 SST #1,*+ ;save ST1 - Forced Page 0 ;save ST0 - Forced Page 0 CLRC SXM SST #0,*+

	POINT PF1			MPY k corrente	:k corrente = 743dh. O resultado está em 027.
	IACC ADC EIEO2 14			DAC	,
	DACC ADC_FIF02,14			PAC II A G G A	
				ADD #400,4	
	POINT_B1			SFL	;O resultado fica em Q29.
	SETC SXM			SACH ias	;Ias está em Q13. Ias está entre -2,4997 e 2,4948 p.u.
	SACH GPRC2				
			;	lacc ias	
	SPLK #3ff0h GPRC1			sub imax	
	CIPH CDPC1		,	band nada log	
	SUBH GPRCI		i	benu naua, req	
	BCND 1COKI,LT		;	lacc las	
	SPLK #1h,Corrente_alta		;	sacl imax	
icok1:			;nada:		
	SPLK #0010h,GPRC1		;	lacc ias	
	LACC GPRC2.15		;	sub imin	
	SEL		,	band nada? ded	
	SPE appai		,	benu nauaz,geq	
	SUBH GPRCI		;	lacc las	
	BCND 1COK2,GEQ		;	sacl imin	
	SPLK #1h,Corrente_alta		;nada2:		
icok2:					
	LACC GPRC2,15		;	zac	
	SFI.			LACC ics	
	CUD offectie 1E		,	ADD #512	
	SUB OIISetIC, 15		;	ADD #512	
	SFL		;	SFL	
	SACH ics		;	SFL	
			;	SACL DAC1VAL	
	LACC GPRC0,15		;	OUT DAC1VAL, DAC1	
	SFI.	·Resultado da conversão de jas		OUT DACOVAL	
	SUP offection 15	, Rebuildado da converbao de lab.	,	Directine	
	SUB offsetia, 15			T TT i was	
	SUB OIISELIC, 15			LIICS	
	ADDH GPRC2	;Resultado da conversão de ics.		MPY k_corrente	
	SPLK #2000h,GPRC1			PAC	
	ADDH GPRC1			ADD #400,4	
	SACH GPRC3			SFL	
	SPLK #3ff0h GPRC1			SACH ics	· Tos está em 013
	CUBU CDDC1			Brieff Teb	
	SUBH GPRCI				
	BCND 1bok1,LT				
	SPLK #1h,Corrente_alta			SPLK #0h,Corrent	e_alta ;Desabilita proteção contra sobre_corrente.
ibok1:					
	SPLK #0010h,GPRC1			POINT PF2	
	LACC GPRC3.15			LACC PADATDIR	
	SFI.			AND #Offf7h	
	CUBU CDDC1				
	SUBH GPRCI			SACL PADAIDIR	;A3,A2=0/P, A1,A0=1/P, A3,A2=1,1. Pagina 11-24, V01.2.
	BCND 1DOK2,GEQ				
	SPLK #1h,Corrente_alta		MED_FIM:		
ibok2:				MAR *,AR7	
	NOP			MAR *-,AR7	
	zac			7.AT.H *-	Zero low accumulator and load high accumulator
	IACC ing 12 sing og	tá om OE			Postoro ACCU Postoro ACC
		ta em ys.		ADDS -	, Rescore Acch. Rescore Acch.
	ADD #4096,15			LSI #0,*-	;Load contents of stki into sit. Restore sit
	SACH DAC2VAL			LST #1,*	;Load contents of stk2 into ST1. Restore ST1
	OUT DAC2VAL, DAC2			RET	
	zac		PWM ISR:		
	LACC ics,13				
	ADD #4096 15		•=====		
			,	Column modiatured	
	SACH DACSVAL		;	Saivar registrad	10169
	OUT DAC3VAL, DAC3		;		
	LT ias ;		;	POINT_EV	
				-	

;	LACC IFRA		SACL aux1		
;	SACL IFRA		SUB #0D05h		
;	SPLK #0210h,IFRA	; Clear all Group A interrupt flags	BCND nmuda, LEQ		
			SPLK #0,aux1		
	; 5432109876543210		LACC aux2		
	; 1111 1111	; for Evt Mgr	ADD #1		
			SACL aux2		
;	SPLK #0000001000010000b,IMRA	;EVIMRA endereço 742Ch. Veja pág. 2-101.	SUB #8h		
		;Enable Underflow Int.	BCND nmuda,LT		
		;Enable simple compare 1 Int.	nmuda:		
	POINT PF2		LACC aux2		
	LACC PADATDIR		SUB #1		
	OR #0004h				
	SACL PADATDIR ;A3,A2=O/P, A1,	A0=I/P, A3,A2=1,1. Página 11-24, vol.2.	BCND proximol,GT		
	POINT B1	-	SPLK #1555h,Fmec	;300 RPM em Q15	
	—		B fmect3ok		
;			proximo1:		
; TESTE	1 - Velocidade Fixa		- SUB #1		
;			BCND proximo2,GT		
			SPLK #6AABh,Fmec	;1500 RPM em Q15.	
;	SPLK #071Ch,Fmec ; 100]	RPM Q(15)	B fmect3ok		
;	SPLK #0AABh,Fmec ; 150]	RPM Q(15)	proximo2:		
;	SPLK #0E39h,Fmec ; 200 1	RPM Q(15)	SUB #1		
	SPLK #1555h, Fmec ; 300 1	RPM Q(15)	BCND proximo3,GT		
;	SPLK #2000h, Fmec ; 450 1	RPM Q(15)	SPLK #1555h,Fmec	;300 RPM em Q15	
;	SPLK #2AABh, Fmec ; 600 1	RPM Q(15)	B fmect3ok		
;	SPLK #4000h,Fmec ; 900 1	RPM Q(15)	proximo3:		
;	SPLK #471Ch,Fmec ;1000]	RPM Q(15)	SUB #1		
;	SPLK #5555h, Fmec ;1200]	RPM Q(15)	BCND proximo4,GT		
;	SPLK #6AABh,Fmec ;1500]	RPM Q(15)	SPLK #4000h,Fmec	;900 RPM em Q15	
			B fmect3ok		
;			proximo4:		
;TESTE	2 - Variação de velocidade por pot	enciômetro	SUB #1		
;			BCND proximo5,GT		
			SPLK #6AABh,Fmec	;1500 RPM em Q15	
	B teste2fim		B fmect3ok		
	POINT_PF1		proximo5:		
	CLRC SXM		SUB #1		
	ZAC		BCND proximo6,GT		
	SPLK #0000100000100100b, ADC_CNTL	1	SPLK #4000h,Fmec	;900 RPM em Q15	
	SPLK #0010100000100100b, ADC_CNTL	1	B fmect3ok		
CONV:			proximo6:		
	BIT ADC_CNTL1,8		SUB #1		
	BCND CONV, TC		BCND fmect3ok,GT		
	LACC ADC_FIF01,15		SPLK #1555h,Fmec	;300 RPM está em Q15	
	POINT_B1		B fmect3ok		
	SACH Fmec		fmect3ok:		
teste2f	fim:		teste3fim:		
;	2	1.			
;TESTE	3 - Variações bruscas de velocidad	1e	;TESTE 4 - Variação de veloci	dade triangular	
·			. /\ /\ /\ /\	· /\	
,					
' ·			\cdot		
,			, , , \/ \/ \/	\/ \	
	B teste3fim		'		
	POINT B1		B teste4fim		
	LACC aux1		POINT B1		
	ADD #1		SETC SXM		

LACC aux2 ;-----bcnd diminuit4,EQ LACC Fmec LACC Fmec ;Q15 ADD #02h SFR ; SACL Fmec sfr ; SUB #06AABh ;1500 RPM add #1 Bcnd fmect4ok, LEQ sfr SPLK #0,aux2 SACL DACOVAL SPLK #06AABh,Fmec OUT DACOVAL, DACO diminuit4: LACC Fmec LACC W ;Q15 SUB #02h sfr ; SACL Fmec sfr ; SUB #1555h ;300 rmp Velocidade mínima. add #1 ; Bcnd fmect4ok,GT sfr SPLK #0,Fmec ;Velocidade mínima = 0. SACL DAC1VAL SPLK #1555h, Fmec ;300 rpm Velocidade mínima. OUT DAC1VAL, DAC1 ; SPLK #1,aux2 fmect4ok: SPLK #800h,GPR0 ; teste4fim: ; LACC Vsf,15 ADDH GPR0 ; ;------SACH DAC3VAL ; ;TESTE 5 - Variação de velocidade triangular iniciando em 0 OUT DAC3VAL, DAC3 OUT DACOVAL, DAC UPDATE : LACC V ;Q12 _____ SACL DAC2VAL OUT DAC2VAL, DAC2 B teste5fim POINT B1 LACC Fref ;015 LACC aux2 add #1 bond diminuit5,EO sfr LACC Fmec SACL DAC3VAL ; ADD #0ch OUT DAC3VAL, DAC3 ; SACL Fmec OUT DACOVAL, DAC UPDATE SUB #6AABh ;1500 RPM Bcnd fmecot5k2,LEQ ;------SPLK #0,aux2 ; Procedimentos para verificação de frequência de referência válida SPLK #7FFFh,aux1 diminuit5: LACC Fmec SETC SXM SUB #0ch LACC Fmec SACL Fmec SUB #0001h ; Bcnd fmect5ok,GEQ SUB #0111h SPLK #0,Fmec Bcnd fmecpos,GEQ fmect5ok: SPLK #0111h, Fmec ;Frequência mecânica mínima de 15rpm. LACC aux1 SPLK #0001h,Fmec SUB #08h fmecpos: SACL aux1 NOP Bcnd fmect5ok2,GEQ LACC FslipFH ;Q16 SPLK #0,Fmec ADD #1 SPLK #7fffh,aux1 SFR ;Q15 SPLK #1,aux2 ADD Fmec ;Q15 SACL Fref ;Q15 fmect5ok2: SUB #0111h ; teste5fim: SUB #0001h Bcnd frefpos1,GEQ ;-----; SPLK #0111h.Fref ;Frequência de acionamento mínima de 15rpm. ; Rotina para mostrar variáveis nas saídas analógicas SPLK #0001h, Fref

frefpos1:

	SDM 0	
	LT Vsf	;Vsf é a RMS da tensão de fase, este valor deve,
	SPLK #6ED9h,GPR0 MPYS GPR0 PAC SFL SFL SACH V LACC V	;sqrt(3) em Q14. ;Preg está em Q(12+14)=Q26 ;Q28.
	SPLK #Vmax,GPR0 SUBS GPR0 BCND Vok,LEQ	;Vmax =0,999p.u em Q12=0fffh
Vok:	LACC GPRU SACL V NOP LACC Corrente alt	;V está em Q12
Tok ·	BCND Iok,EQ SPLK #0000h,V NOP	
IOK.	NOT	
; acior ; do âr ;	namento desejada e o ngulo do vetor de to	ensão.
	SETC SXM SPM 3	;deslocamento de 6 para direita.
	LI FIEL MPYU k_passo	<pre>;F esta em Q15. ;K_passo é uma constante preparada para gerar o passo ;angular na tabela de senos a partir da frequencia ;de acionamento desejada. ;k_passo vale 27,648 ou 6E98h em Q10 Orneutada de contribuiração esta en Q25</pre>
	PAC SFR SFR	;0 resultado da multipildado esta em Q25. ;0 resultado fica em Q19.
	SACH DALFAH	;DALFAH é a parte inteira do incremento de ângulo.na ;tabela.
	SACL DALFAL ADDS ALFAL ADDH ALFAH SACH ALFAH	;DALFAL é a parte fracionària.do inc. do àngulo em ql6.
	SPLK #0100h,GPR0 SUBH GPR0 BCND MUDA_ST,GEQ	; Verifica se alfa é maior que 60 graus. ;Pula se o accumulador for positivo. ;O angulo foi decrementado de 60 graus e
		;é necessário mudar de setor.
	Vok: Iok: ; A rot ; acior ; do âr ;	SPLK #6ED9h,GPR0 MPYS GFR0 PAC SFL SFL SACH V LACC V SPLK #Vmax,GPR0 BCND Vok,LEQ LACC GPR0 SACL V Vok: NOP LACC Corrente_alt BCND lok,EQ SPLK #0000h,V Iok: NOP ;

MUDA ST	:		OUADRAN	ITE1:	
-	SACH ALFAH			SPLK #0,sinal c	
	LACC SECTOR	;Carrega acumulador com o setor atual.		LACC ALFAH,15	
	SUB #05h	;Check if at last sector (S6)		SFL	
	BCND PISR1,EQ	;pula se = 0. , re-init AR1= 1st Sector (S1)		OR ALFAL	
	LACC SECTOR	;If no, select next Sector (Sn->Sn+1)		ADDH sessenta	;Soma 60 graus.
	ADD #01h			SACH THETAH	
	SACL SECTOR	;i.e. inc SECTOR_PTR		SACL THETAL	
	B BRANCH_WT			B CALCULO	
PISR1:					
	SPLK #00, SECTOR	;Reset Sector pointer to 0	QUADRAN	ITE2:	
				SPLK #1,sinal_c	
;		· · · · · · · · · · · · · · · · · · ·	-	SACH GPRO	
; Deter	minação e pulo para rotir	la para calculo de wi de acordo com osetor		SACL GPRI	0.0
;				LACC #18011,15	;90 graus
DDANCIL	pro-			SFL CUDU CDDA	
BRANCH_	MI:			SUBR GPRU	
	LACC #SECTOR WT			SOBS GERI SACH THETAH	
	ADD SECTOR			SACI. THETAL	
	TBLE SE ADDE			B CALCULO	
	LACC SR ADDR			Бещеене	
	BACC				
			;	Preparo para cálculo	de seno e coseno no Setor 3
;			. ;		
;	Preparo para cálculo de	seno e coseno no Setor 1	,		
;			SINCOS	SR3:	
			_	SPLK #0,sinal_s	
SINCOS_	SR1:			SPLK #1,sinal_c	
	SPLK #0,sinal_s			SPLK #1,sinal_cp30	
	SPLK #0,sinal_c			LACC #100h,15	;60 graus
	SPLK #0,sinal_cp30			SFL	
	LACC ALFAH,15			SUBH ALFAH	
	SFL			SUBS ALFAL	
	OR ALFAL			SACH THETAH	
	SACH THETAH			SACL THETAL	
	SACL THETAL			ZALH ALFAH	
	ZALH sessenta			ADDS ALFAL	
	SUBH ALFAH			SUBH trinta	;Subtrai de 30 graus
	SUBS ALFAL			BCND Quad2, LT	
	SACH THETAJOH		0	B Quad3	
	SACL THETAJUL		Quad2:	ZALU ALEAU	
	D CALCOLO			ADDC ALEAL	
				ADDS ALFAL	
,	Preparo para cálculo de	seno e cogeno no Setor 2		SACH THETASOH	
, 			_	SACI. THETASOL	
,				B CALCULO	
SINCOS	SB2.		Ouad3.	2 0120020	
	SPLK #0,sinal s		£	LACC #200h,15	
	SPLK #1, sinal cp30			SFL	
	LACC ALFAH, 15			SUBH ALFAH	
	SFL			SUBS ALFAL	
	OR ALFAL			SACH THETA30H	
	SACH THETA30H			SACL THETA30L	
	SACL THETA30L			B CALCULO	
	SUBH trinta	;Subtrai de 30 graus			
	BCND QUADRANTE1,LT		;		
	B QUADRANTE2		;	Preparo para cálculo	de seno e coseno no Setor 4
			;		

SINCOS_SR4: SPLK #1,sinal_s SPLK #1,sinal_c SPLK #1,sinal_cp30 LACC ALFAH,15 SFL OR ALFAL SACH THETAH SACL THETAL ZALH sessenta			SPLK #1, sinal_s SPLK #0, sinal_c SPLK #0, sinal_c LACC #100h,15 SFL SUBH ALFAH SUBS ALFAL SACH THETAH SACL THETAH SACL THETAL ZALH ALFAH ADDS ALFAL	p30 ;60 graus
SUBH ALFAH SUBS ALFAL			SUBH trinta BCND Quad4,LT	;Subtrai de 30 graus
SACH THETA30H SACL THETA30L		Quad4:	B Quad1	
B CALCULO		gaaari	ZALH ALFAH	
;			ADDS ALFAL ADDH sessenta	
; Preparo para cálcu ;	lo de seno e coseno no Setor 5		SACH THETA30H SACL THETA30L	
SINCOS SR5:		Ouad1:	B CALCULO	
SPLK #1, sinal_s		£	LACC #200h,15	
LACC ALFAH,15			SFL SUBH ALFAH	
SFL OR ALFAL			SUBS ALFAL SACH THETA30H	
SACH THETA30H			SACL THETA30L	
SUBH trinta	;Subtrai de 30 graus		B CALCULO	
BCND QUADRANTE3,LT B QUADRANTE4		CALCULO	:	
QUADRANTE3:		;;	Cálcul	o do seno
SPLK #1,sinal_c LACC ALFAH,15		;		
SFL OR ALFAL		SENO:	SDM 0	
ADDH sessenta SACH THETAH	;Soma 60 graus.		LACC THETAH ADD S_TABLE	;Carrega o acumulador com a parte alta do angulo, já ;preparada para ser entrada da tabela de senos.
SACL THETAL B CALCULO			TBLR seno ADD #1h TBLR GPR0	;seno=Sin(ALPHAH). obs.: O valor do seno obtido na ;tabela esta em Q15.
QUADRANTE4:			LACC GPR0	
SACH GPR0			SACL GPR1	
SACL GPR1 LACC #180h,15	;90 graus		LT THETAL MPYU GPR1	
SFL CDDO			PAC	
SUBS GPR1			SACH seno	
SACH THETAH SACL THETAL				
B CALCULO				
;		· ;	Cálcul	o do coseno de wt+30
; Preparo para calcu ;	lo ae seno e coseno no Setor 6	;		
SINCOS SR6:		COSENOp	30: SPM 0	
-				

	LACC THETA30H ADD S_TABLE TBLR cosenop30 ADD #1h TBLR GPR0 LACC GPR0 SUB cosenop30 SACL GPR1 LT THETA30L MPYU GPR1 PAC ADDH cosenop30 SACH cosenop30	;Carrega o acumulador com a parte alta do angulo, já ;preparada para ser entrada da tabela de senos. ;seno=Sin(ALPHAH). obs.: O valor do seno obtido na ;tabela esta em Q15.	SC30_NEG	BCND SC30_NEG,EQ LACC cosenop30 SACL cosenop30c2 B COS : LACC #0FFFFh XOR cosenop30 ADD #1 SACL cosenop30c2 LACC #1h SUBS sinal_c BCND SC_NEG,EQ LACC coseno SACL cosenoc2	;sinal_c é o sinal do coseno. (1-negativo, 0-positivo)
;;	Cálculo	do coseno	SC_NEG:	B TABELA	
;	LACC #180h,15 SFL SUBH THETAH	;90 graus		LACC #0FFFFh XOR coseno ADD #1 SACL cosenoc2	
	SUBS THETAL SACH GPR1 SACL GPR2		;; chaveame	Procedimento para ento	a cálculo de dx e dy de acordo com o período de
;	LACL GPR1 ADD S_TABLE TBLR COSENO ADD #1h TBLR GPR0 LACC GPR0 SUB COSENO SACL GPR1 LT GPR2 MPYU GPR1 PAC ADDH COSENO SACH COSENO	;Carrega o acumulador com a parte alta do angulo, já ;preparada para ser entrada da tabela de senos. ;seno=Sin(ALPHAH). obs.: O valor do seno obtido na ;tabela está em Q15.	;	CLRC SXM SPM 0 LACC ALFAH ADD S_TABLE TBLR dy ADD #1h TBLR GPR0 LACC GPR0 SUB dy SACL GPR1 LT ALFAL MPYU GPR1	;Carrega o acumulador com a parte alta do angulo, ;já preparada para ser entrada da tabela de senos. ;dy=Sin(ALPHAH). obs.: O valor do seno obtido na ;tabela está em Q15.
; ;em comp ;	Procedimento para Demento de 2.	a transformação do seno e coseno obtidos		PAC ADDH dy SACH dy	
	LACC #1h SUBS sinal_s BCND SS_NEG,EQ LACC seno SACL senoc2 P. COSP20C2	;sinal_s é o sinal do seno. (1-negativo, 0-positivo)		SPM 1 LT dy MPY V SPH dy LT dy MPY #0bb8h	<pre>;shift para esquerda de 1 ;dy is in Q15 ;V is in Q12 ;dy = V * Sin(ALPHA). Obs. O resultado esta em Q12 ;T está em Q0. Ñ se usa 7D0 evitar que o nível mais alto ;do comp atipia octo valor. O resultado fica om 012</pre>
SS_NEG: COSP30C2	LACC #0FFFFh XOR seno ADD #1 SACL senoc2			SACH dy, 3 LACC #0100h ADD S_TABLE SUB ALFAH TBLR dx SUB #1h TBLR GPR0	<pre>;0 shift para esquerda passa dy para Q(0). ;100 = 256 = 60 graus. ACC=60 deg ;dx=Sin(60-ALPHA)</pre>
positivo	LACC #1h SUBS sinal_cp30	;sinal_cp30 é o sinal do coseno de wt+30. (1-negativo, 0-		SPM 0 LACC dx SUB GPR0	

	SACL GPR1 LT ALFAL MPYU GPR1 PAC SACH GPR0 LACC dx SUB GPR0 SACL dx SPM 1 LT dx MPY V SPH dx LT dx MPY #0b8h PAC	LACC T SUB dx SUB dy SFR SACL Ta ADD dx SACL Tb LACC T SUB Ta SACL TC B LOAD_COMPARE ; Cálculos para o setor	<pre>;Acc = T ;Acc = T-dx ;Acc = T-dx-dy ;Acc = Ta = 1/2(T-dx-dy) <a> ;Acc = Tb = dx+Ta ;Acc = T ;Acc = T ;Acc = T-Ta ;Acc = Tc = T-Ta <c> S</c></pre>
	SACH dx, 3 SPM 0	SECTOR_SR2:	
	SETC SXM LACC dx SUB #2 BCND dxminok,GEQ SPLK #2,dx	LACC T SUB dx SUB dy SFR SACL Tb ADD dy	;Acc = T ;Acc = T-dx ;Acc = T-dx-dy ;Acc = Tb = 1/2(T-dx-dy) <a> ;Acc = Ta = dy+Tb
dxminok: dyminok:	LACC dy SUB #2 BCND dyminok,GEQ SPLK #2,dy	SACL TA LACC T SUB Tb SACL TC B LOAD_COMPARE	;ACC = T ;ACC = T-Tb ;ACC = Tc = T-Tb <c></c>
-	LACC dx ADD dy ADD #4	;;Cálculos para o setor ;	3 - a,b,c> c,a,b
	SUB 1 BCND modok, LT LACC dx SUB #2 SACL dx LACC dy SUB #2 SACL dy	SECTOR_SR3: LACC T SUB dx SUB dy SFR SACL Tb ADD dx	;Acc = T ;Acc = T-dx ;Acc = T-dx-dy ;Acc = Tc = 1/2(T-dx-dy) <a> ;Acc = Ta = dx+Tc
modok: ;;	CLRC SXM Determinação do endereço da rotina de cálculo dos valores de comp. do SVM	SACL TC LACC T SUB Tb SACL Ta B LOAD_	;ACC = T ;ACC = T-Tc ;ACC = Tb = T-Tc <c> COMPARES</c>
;		; ;Cálculos para o setor	4 - a,b,c> c,b,a & dx <> dy
BRNCH_SF	LACC #SECTOR_TBL ADD SECTOR TBLR SR_ADDR LACC SR_ADDR BACC	; SECTOR_SR4: LACC T SUB dx SUB dy SFR SACL TC	;Acc = T ;Acc = T-dx ;Acc = T-dx-dy ;Acc = Tc = 1/2(T-dx-dy) <a>
;Cálculc ; SECTOR_S	s para o setor 1 - a,b,c> a,b,c 	ADD dy SACL Tb LACC T SUB Tc	;Acc = Tb = dx+Ta ;ACC = T ;ACC = T-Tc

SACL Ta	;ACC = Ta = T-Tc <c></c>								
B LOAD_COMPARES	3	FD_END2	:						
;		-	POINT_B1						
;calculos para o secor	5 - a, D, C> D, C, a	_	SPLK #000111,111	COL					
,			MAR *, AR7						
SECTOR SR5:			MAR *-,AR7						
LACC T	;Acc = T		ZALH *-	;Zero]	Low a	ccumu	lator an	d load high accumul	ator.
SUB dx	;Acc = T-dx		ADDS *-	;Restor	ce AC	CH. R	estore A	CCL.	
SUB dy	;Acc = T-dx-dy		LST #0,*-	;Load d	conte	nts o	f stkl i	nto STO. Restore SI	0
SFR	;Acc = Tb = $1/2$ (T-dx-dy) <a>		LST #1,*	;Load d	conte	nts o	f stk2 i	nto ST1. Restore ST	1
SACL TC									
ADD dx	;Acc = Tc = dx+Ta 	;	CLRC INTM						
SACL Ta			RET						
LACC T	;ACC = T								
SUB Tc	;ACC = T-Tb	;							
SACL Tb	;ACC = Ta = T-Tb <c></c>	;Tabela	usada para calcu	lar ende	reço	corre	to da ro	tina de cálculo de	
B LOAD_COMPARES		;seno e	e coseno dependend	lo do set	orat	ual.			
—		;							
;		-							
;Càlculos para o setor	6 - a,b,c> a,c,b & dx <> dy	SECTOR_	WT:		O.T.N		1		
;		- SECTI	.word		SIN	icos_s	5KI 7D0		
		SECT2	.word		SIN	icos_s	SR2		
SECTOR_SR6:	ани — П	SECT3	.word		SIN	icos_s	SR3		
LACC T	;ACC = T	SECT4	.word		SIN	icos_s	SR4		
SUB dx	;ACC = T-dx	SECT5	.wora		SIN	icos_s	SR5		
SUB dy	;Acc = T-dx-dy	SECT6	.word		SIN	icos_s	SR6		
SFR	;Acc = Ta = 1/2(T-dx-dy) <a>								
SACL Ta		;	· · · · ·						
ADD dy	;Acc = Tc = dx+Ta 	;Sector	routine jump tak	ole - use	d wit	h BAC	C inst.		
SACL TC		;							
LACC T	;ACC = T								
SUB Ta	;ACC = T-Ta	SECTOR_	TBL:						
SACL Tb	;ACC = Tb = T-Ta <c></c>	SR0	.word		SEC	TOR_S	SR1		
		SR1	.word		SEC	TOR_S	SR2		
		SR2	.word		SEC	TOR_S	SR3		
;		- SR3	.word		SEC	TOR_S	SR4		
; Substituição dos novo	s valores de comparação	SR4	.word		SEC	TOR_S	SR5		
;		- SR5	.word		SEC	TOR_S	SR6		
LOAD_COMPARES:		;			 				
DOINT D1		; Tabela	Com 385 Valores	de seno (ue an	guios	entre u	-90 graus, Formato:	: Q15
POINI_BI	no início do programa AR1 AR2 o AR2 guardam	;							
MAR *, ARI	;no inicio do programa ARI, AR2 e AR3 guardam			0		0	0 000	0.0000	
LACC TA	;os endereços de CMPRI,CMPR2 e CMPR3 respectivamente	STABLE	.word	124	;	0	0.000	0.00000	
SACL *, 0, AR2	;Load Comparez Register with Ta		.word	134	;	T	0.234	0.00409	
LACC TD			.word	268	;	2	0.469	0.00818	
SACL *, 0, AR3	;Load Compares Register with Tb		.word	402	;	3	0.703	0.01227	
LACC TC			.word	536	;	4	0.938	0.01636	
SACL *,0,AR1	;Load Compare4 Register with Tc		.word	670	;	5	1.172	0.02045	
			.word	804	;	6	1.406	0.02454	
POINT_PF2			.word	938	;	7	1.641	0.02863	
LACC PADATDIR			.word	1072	;	8	1.875	0.03272	
AND #0FFFBh			.word	1206	;	9	2.109	0.03681	
SACL PADATDIR	;A3,A2=O/P, A1,A0=I/P, A3,A2=1,1. Página 11-24, vol.2.		.word	1340	;	10	2.344	0.04089	
			.word	1474	;	11	2.578	0.04498	
;		-	.word	1608	;	12	2.813	0.04907	
; Salvar os registrador	es e sair da rotina		.word	1742	;	13	3.047	0.05315	
;		-	.word	1875	;	14	3.281	0.05724	

.word	2009	;	15	3.516	0.06132
.word	2143	;	16	3.750	0.06540
.word	2277	;	17	3.984	0.06948
.word	2410	;	18	4.219	0.07356
.word	2544	;	19	4.453	0.07764
.word	2678	;	20	4.688	0.08172
.word	2811	;	21	4.922	0.08579
.word	2945	;	22	5.156	0.08987
.word	3078	;	23	5.391	0.09394
.word	3212	;	24	5.625	0.09801
.word	3345	;	25	5.859	0.10208
.word	3478	;	26	6.094	0.10615
.word	3612	;	27	6.328	0.11022
.word	3745	;	28	6.563	0.11428
.word	3878	;	29	6.797	0.11835
.word	4011	;	30	7.031	0.12241
.word	4144	;	31	7.266	0.12647
.word	4277	;	32	7.500	0.13052
.word	4410	;	33	7.734	0.13458
.word	4543	;	34	7.969	0.13863
.word	4675	;	35	8.203	0.14268
.word	4808	;	36	8.438	0.14673
.word	4940	;	37	8.672	0.15077
.word	5073	;	38	8.906	0.15481
.word	5205	;	39	9.141	0.15885
.word	5338	;	40	9.375	0.16289
.word	5470	;	41	9.609	0.16692
.word	5602	;	42	9.844	0.17096
.word	5734	;	43	10.078	0.17499
.word	5866	;	44	10.313	0.17901
.word	5998	;	45	10.547	0.18303
.word	6129	;	46	10.781	0.18705
.word	6261	;	47	11.016	0.19107
.word	6393	;	48	11.250	0.19508
.word	6524	;	49	11.484	0.19909
.word	6655	;	50	11.719	0.20310
.word	6786	;	51	11.953	0.20711
.word	6917	;	52	12.188	0.21111
.word	7048	;	53	12.422	0.21510
.word	7179	;	54	12.656	0.21909
.word	7310	;	55	12.891	0.22308
.word	7441	;	56	13.125	0.22707
.word	7571	;	57	13.359	0.23105
.word	7701	;	58	13.594	0.23503
.word	7832	;	59	13.828	0.23900
.word	7962	;	60	14.063	0.24297
.word	8092	;	61	14.297	0.24694
.word	8222	;	62	14.531	0.25090
.word	8351	;	63	14.766	0.25486
.word	8481	;	64	15.000	0.25881
.word	8610	;	65	15.234	0.26276
.word	8739	;	66	15.469	0.26670
.word	8868	;	67	15.703	0.27064
.word	8997	;	68	15.938	0.27458
.word	9126	;	69	16.172	0.27851
.word	9255	;	70	16.406	0.28244
.word	9383	;	71	16.641	0.28636
.word	9512	;	72	16.875	0.29028
.word	9640	;	73	17.109	0.29419
.word	9768	;	74	17.344	0.29809

.word	9896	;	75	17.578	0.30200
.word	10024	;	76	17.813	0.30589
.word	10151	;	77	18.047	0.30979
.word	10278	;	78	18.281	0.31367
.word	10406	;	79	18.516	0.31755
.word	10533	;	80	18.750	0.32143
.word	10659	÷	81	18,984	0.32530
.word	10786	÷	82	19.219	0.32917
word	10913		83	19 453	0 33303
word	11039		84	19 688	0 33688
.word	11165		04	10 000	0.33088
.word	11201	;	05	19.922	0.34073
.word	11291	;	86	20.156	0.3445/
.word	1141/	;	87	20.391	0.34841
.wora	11542	;	88	20.625	0.35224
.word	11668	;	89	20.859	0.35606
.word	11793	;	90	21.094	0.35988
.word	11918	;	91	21.328	0.36370
.word	12042	;	92	21.563	0.36750
.word	12167	;	93	21.797	0.37131
.word	12291	;	94	22.031	0.37510
.word	12415	;	95	22.266	0.37889
.word	12539	;	96	22.500	0.38267
.word	12663	;	97	22.734	0.38645
.word	12787		98	22,969	0.39022
word	12910		99	23 203	0 39398
word	13033		100	23 438	0 39774
.word	13156		101	23.130	0 40149
.word	12270		102	22.072	0.40522
.word	12401		102	23.900	0.40923
.word	13401	;	103	24.141	0.40897
.wora	13523	;	104	24.3/5	0.41269
.word	13645	;	105	24.609	0.41642
.word	13767	;	106	24.844	0.42013
.word	13888	;	107	25.078	0.42384
.word	14010	;	108	25.313	0.42754
.word	14131	;	109	25.547	0.43124
.word	14252	;	110	25.781	0.43492
.word	14372	;	111	26.016	0.43860
.word	14492	;	112	26.250	0.44228
.word	14613	;	113	26.484	0.44594
.word	14732	;	114	26.719	0.44960
.word	14852	;	115	26.953	0.45325
.word	14971	÷	116	27.188	0.45689
word	15090		117	27 422	0 46052
word	15209		118	27 656	0 46415
.word	15200		110	27.050	0.40413
.word	15320		120	27.091	0.40777
.word	15446	;	120	20.125	0.47138
.word	15564	;	121	28.359	0.47499
.wora	15682	;	122	28.594	0.4/858
.word	15800	;	123	28.828	0.48217
.word	15917	;	124	29.063	0.48575
.word	16034	;	125	29.297	0.48932
.word	16151	;	126	29.531	0.49288
.word	16267	;	127	29.766	0.49644
.word	16383	;	128	30.000	0.49998
.word	16499	;	129	30.234	0.50352
.word	16615	;	130	30.469	0.50705
.word	16730	;	131	30.703	0.51057
.word	16846	;	132	30.938	0.51409
.word	16960	;	133	31,172	0.51759
word	17075	΄.	134	31 406	0 52109
	1,0,0	'		31.100	0.02100

.word	17189	;	135	31.641	0.52457
.word	17303	;	136	31.875	0.52805
.word	17417	;	137	32.109	0.53152
.word	17530	;	138	32.344	0.53498
.word	17643	;	139	32.578	0.53843
.word	17756	;	140	32.813	0.54188
.word	17869	;	141	33.047	0.54531
.word	17981	;	142	33.281	0.54873
.word	18093	;	143	33.516	0.55215
.word	18204	;	144	33.750	0.55555
.word	18316	;	145	33.984	0.55895
.word	18427	;	146	34.219	0.56234
.word	18537	;	147	34.453	0.56571
.word	18648	;	148	34.688	0.56908
.word	18758	;	149	34.922	0.57244
.word	18868	;	150	35.156	0.57579
.word	18977	;	151	35.391	0.57913
.word	19086	;	152	35.625	0.58246
.word	19195	;	153	35.859	0.58578
.word	19303	;	154	36.094	0.58909
.word	19411	;	155	36.328	0.59239
.word	19519	;	156	36.563	0.59568
.word	19627	;	157	36.797	0.59896
.word	19734	;	158	37.031	0.60223
.word	19841	;	159	37.266	0.60549
.word	19947	;	160	37.500	0.60874
.word	20053	;	161	37.734	0.61198
.word	20159	;	162	37.969	0.61521
.word	20265	;	163	38.203	0.61843
.word	20370	;	164	38.438	0.62164
.word	20475	;	165	38.672	0.62484
.word	20579	;	166	38.906	0.62803
.word	20683	;	167	39.141	0.63121
.word	20787	;	168	39.375	0.63437
.word	20891	;	169	39.609	0.63753
.word	20994	;	170	39.844	0.64068
.word	21096	;	171	40.078	0.64381
.word	21199	;	172	40.313	0.64694
.word	21301	;	173	40.547	0.65005
.word	21403	;	174	40.781	0.65315
.word	21504	;	175	41.016	0.65624
.word	21605	;	176	41.250	0.65933
.word	21705	;	177	41.484	0.66240
.word	21806	;	178	41.719	0.66545
.word	21905	;	179	41.953	0.66850
.word	22005	;	180	42.188	0.67154
.word	22104	;	181	42.422	0.67456
.word	22203	;	182	42.656	0.67758
.word	22301	;	183	42.891	0.68058
.word	22399	;	184	43.125	0.68357
.word	22497	;	185	43.359	0.68655
.word	22594	;	186	43.594	0.68952
.word	22691	;	187	43.828	0.69248
.word	22788	;	188	44.063	0.69542
.word	22884	;	189	44.297	0.69835
.word	22979	;	101	44.531	0.70128
.word	23075	;	191	44.766	0.70419
.word	23170	;	192	45.000	0.70709
.word	23264	;	193 194	45.234	0.70997
.wora	23359	;	194	45.469	∪./1285

.word	23452	;	195	45.703	0.71571
.word	23546	;	196	45.938	0.71856
.word	23639	;	197	46.172	0.72140
.word	23731	;	198	46.406	0.72422
.word	23824	;	199	46.641	0.72704
.word	23915	;	200	46.875	0.72984
.word	24007	;	201	47.109	0.73263
.word	24098	;	202	47.344	0.73541
.word	24189	;	203	47.578	0.73818
.word	24279	;	204	47.813	0.74093
.word	24369	;	205	48.047	0.74367
.word	24458	;	206	48.281	0.74640
.word	24547	;	207	48.516	0.74911
.word	24636	;	208	48.750	0.75182
.word	24724	;	209	48.984	0.75451
.word	24811	;	210	49.219	0.75719
.word	24899	;	211	49.453	0.75985
.word	24986	;	212	49.688	0.76250
.word	25072	;	213	49.922	0.76514
.word	25158	;	214	50.156	0.76777
.word	25244	;	215	50.391	0.77039
.word	25329	;	216	50.625	0.77299
.word	25414	;	217	50.859	0.77558
.word	25498	;	218	51.094	0.77815
.word	25582	;	219	51.328	0.78071
.word	25666	;	220	51.563	0.78326
.word	25749	;	221	51.797	0.78580
.word	25832	;	222	52.031	0.78832
.word	25914	;	223	52.266	0.79083
.word	25996	;	224	52.500	0.79333
.word	26077	;	225	52.734	0.79581
.word	26158	;	226	52.969	0.79828
.word	26239	;	227	53.203	0.80074
.word	26319	;	228	53.438	0.80318
.word	26398	;	229	53.672	0.80561
.word	26478	;	230	53.906	0.80803
.word	26556	;	231	54.141	0.81043
.word	26635	;	232	54.375	0.81282
.word	26712	;	233	54.609	0.81520
.word	26790	;	234	54.844	0.81756
.word	26867	;	235	55.078	0.81991
.word	26943	;	236	55.313	0.82224
.word	27019	;	237	55.547	0.82456
.word	27095	;	238	55.781	0.82687
.word	27170	;	239	56.016	0.82916
.word	27245	;	240	56.250	0.83144
.word	27319	;	241	56.484	0.83371
.word	27393	;	242	56.719	0.83596
.word	27466	;	243	56.953	0.83820
.word	27539	;	244	57.188	0.84042
.word	27611	;	245	57.422	0.84263
.word	27683	;	246	57.656	0.84483
.word	27755	;	247	57.891	0.84701
.word	27826	;	248	58.125	0.84918
.word	27896	;	249	58.359	0.85133
.word	27966	;	250	58.594	0.85347
.word	28036	;	251	58.828	0.85559
.word	28105	;	252	59.063	0.85770
.word	28174	;	253	59.297	0.85980
.word	28242	;	254	59.531	0.86188

.word	28310	;	255	59.766	0.86395
.word	28377	;	256	60.000	0.86600
.word	28444	;	257	60.234	0.86804
.word	28510	;	258	60.469	0.87006
.word	28576	;	259	60.703	0.87207
.word	28641	;	260	60.938	0.87406
.word	28706		261	61.172	0.87604
word	28771	,	262	61 406	0 87801
word	28834		263	61 641	0 87996
word	20051		205	61.011	0.07550
word	20050		201	62 100	0.00100
.word	20901	'	205	62.109	0.00502
.word	29023	;	200	62.344	0.003/2
.word	29085	;	267	62.578	0.88761
.word	29147	;	268	62.813	0.88949
.word	29208	;	269	63.047	0.89135
.word	29268	;	270	63.281	0.89320
.word	29328	;	271	63.516	0.89503
.word	29388	;	272	63.750	0.89685
.word	29447	;	273	63.984	0.89865
.word	29505	;	274	64.219	0.90043
.word	29563	;	275	64.453	0.90221
.word	29621	;	276	64.688	0.90396
.word	29678	;	277	64.922	0.90570
.word	29735	;	278	65.156	0.90743
.word	29791	;	279	65.391	0.90914
.word	29846	;	280	65.625	0.91084
.word	29901		281	65.859	0.91252
word	29956	,	282	66 094	0 91418
word	30010		283	66 328	0 91583
word	30064		28/	66 563	0 91747
word	20117		201	66 707	0.01000
.word	30117	'	205	67 021	0.91909
.word	30169	;	200	67.031	0.92069
.word	30221	;	207	67.200	0.92226
.word	30273	;	288	67.500	0.92385
.word	30324	;	289	67.734	0.92541
.word	30374	;	290	67.969	0.92695
.word	30424	;	291	68.203	0.92848
.word	30474	;	292	68.438	0.92999
.word	30523	;	293	68.672	0.93148
.word	30571	;	294	68.906	0.93296
.word	30619	;	295	69.141	0.93443
.word	30667	;	296	69.375	0.93588
.word	30714	;	297	69.609	0.93731
.word	30760	;	298	69.844	0.93873
.word	30806	;	299	70.078	0.94013
.word	30852	;	300	70.313	0.94152
.word	30896	;	301	70.547	0.94289
.word	30941	;	302	70.781	0.94424
.word	30985		303	71.016	0.94558
.word	31028	,	304	71.250	0.94690
word	31071		305	71 484	0 94821
word	31113		306	71 719	0 9/950
word	31155		200	71 953	0 95077
word	31104		200	72 100	0.00077
.word	21227		200	72.100	0.95203
.word	21277	;	210	12.422	0.33328
.wora	31217	;	310	/2.050	0.95450
.wora	3131/	;	311	12.891	0.955/2
.word	31356	;	312	73.125	U.95691
.word	31395	;	313	73.359	0.95809
.word	31433	;	314	73.594	0.95925

.word	31470	;	315	73.828	0.96040
.word	31507	;	316	74.063	0.96153
.word	31544	;	317	74.297	0.96265
.word	31580	;	318	74.531	0.96375
.word	31616	;	319	74.766	0.96483
.word	31650	;	320	75.000	0.96590
.word	31685	;	321	75.234	0.96695
.word	31719		322	75.469	0.96798
word	31752		323	75 703	0 96900
word	31785		324	75 938	0 97000
.word	21017		225	76 172	0.97000
.word	21040		325	76.172	0.97099
.word	31849	;	326	76.406	0.97196
.wora	31880	;	327	76.641	0.97291
.word	31911	;	328	76.875	0.97385
.word	31941	;	329	77.109	0.97477
.word	31971	;	330	77.344	0.97567
.word	32000	;	331	77.578	0.97656
.word	32028	;	332	77.813	0.97743
.word	32057	;	333	78.047	0.97829
.word	32084	;	334	78.281	0.97913
.word	32111	;	335	78.516	0.97995
.word	32137	;	336	78.750	0.98076
.word	32163		337	78.984	0.98155
word	32189		338	79 219	0 98232
.word	222102		220	70 452	0.00202
.word	22213		240	79.455	0.98308
.word	32230	;	241	79.000	0.96362
.word	32261	;	242	79.922	0.96454
.word	32285	;	342	80.156	0.98525
.word	32307	;	343	80.391	0.98594
.word	32329	;	344	80.625	0.98661
.word	32351	;	345	80.859	0.98727
.word	32372	;	346	81.094	0.98791
.word	32392	;	347	81.328	0.98854
.word	32412	;	348	81.563	0.98915
.word	32432	;	349	81.797	0.98974
.word	32451	;	350	82.031	0.99031
.word	32469	;	351	82.266	0.99087
.word	32487	;	352	82.500	0.99141
.word	32504	;	353	82.734	0.99194
.word	32521	;	354	82.969	0.99245
.word	32537		355	83.203	0.99294
.word	32552		356	83.438	0.99342
word	32567		357	83 672	0 99388
word	32582		358	83 906	0 99432
.word	22502		250	01 1/1	0.00475
. word	32590	,	200	04.141	0.99475
.word	32609	;	360	04.375	0.99515
.word	32622	;	361	84.609	0.99555
.word	32634	;	362	84.844	0.99592
.word	32646	;	363	85.078	0.99628
.word	32657	;	364	85.313	0.99662
.word	32668	;	365	85.547	0.99695
.word	32678	;	366	85.781	0.99726
.word	32688	;	367	86.016	0.99755
.word	32697	;	368	86.250	0.99783
.word	32705	;	369	86.484	0.99809
.word	32713	;	370	86.719	0.99833
.word	32721	;	371	86.953	0.99856
.word	32728	;	372	87.188	0.99876
.word	32734	;	373	87.422	0.99896
word	32740	÷	374	87.656	0.99913
	52/10	'	J . 1	0000	5.55515

.word	32745	;	375	87.891	0.99929
.word	32749	;	376	88.125	0.99943
.word	32754	;	377	88.359	0.99956
.word	32757	;	378	88.594	0.99967
.word	32760	;	379	88.828	0.99976
.word	32763	;	380	89.063	0.99984
.word	32765	;	381	89.297	0.99989
.word	32766	;	382	89.531	0.99994
.word	32767	;	383	89.766	0.99996
.word	32767	;	384	90.000	0.99997

;======; I S R - PHANTOM ;

; Descrição: Interrupções expúrias

;

PHANTOM B PHANTOM