UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA

ILA SIBLIOTECA MP SECÃO CIRCULANT

Dissertação de Mestrado

ESTUDO DA EXTENSÃO DO MODELO BIVARIADO EXPONENCIAL DE MARSHALL E OLKIN PARA DADOS DE CONFIABILIDADE

Autora: Luzia Pedroso de Oliveira

Orientadora: Profa. Dra. Cicilia Yuko Wada

Campinas, SP Janeiro, 2001

> UNICAMP EXELIOTECA CENTINAL

ESTUDO DA EXTENSÃO DO MODELO BIVARIADO EXPONENCIAL DE MARSHALL E OLKIN PARA DADOS DE CONFIABILIDADE

Este exemplar corresponde à redação final da dissertação devidamente corrigida e defendida por Luzia Pedroso de Oliveira e aprovada pela comissão julgadora.

a

Campinas, 15 de janeiro de 2001.

Profa. Dra. Cicilia Yuko Wada Orientadora

Banca Examinadora:1. Profa. Dra. Cicilia Yuko Wada2. Prof. Dr. Francisco Louzada Neto3. Prof. Dr. Ronaldo Dias

Dissertação apresentada ao Instituto de Matemática, Estatística e Computação Científica, UNICAMP, como requisito parcial para obtenção do Título de Mestre em Estatística.

. D. 4 UNIDADE. N.º CHAMADA : C JNI V. TOMBO BC/ PROC. 16 -D C PRECE -R.S. 24 DATA N.º CPD

CM-00155146-7

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO IMECC DA UNICAMP

Oliveira, Luzia Pedroso de

OL4e

Estudo da extensão do modelo bivariado exponencial de Marshall e Olkin para dados de confiabilidade / Luzia Pedroso de Oliveira - Campinas, [S.P. :s.n.], 2001.

Orientadora : Cicilia Yuko Wada

Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica.

 Confiabilidade - Métodos estatísticos. 2. Estimativa do parâmetro.
 Testes de sobrevivência acelerados. I. Wada, Cicilia Yuko. II. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. III. Título. Dissertação de Mestrado defendida em 15 de dezembro de 2000 e aprovada

ı

Pela Banca Examinadora composta pelos Profs. Drs.

Die Prof (a). Dr (a). CICÍLIA YUKO VADA Prof (a). Dr (a), RONALDO DIAS W Prof (a). Dr (a). FRANCISCO LOUZADA NETO

À toda a minha família,

em especial a minha filha Carla Vitória

. 1

AGRADECIMENTOS

A Deus pelas minhas conquistas;

. 1

à professora Dra. Cicilia Yuko Wada pela orientação;

ao CNPQ pelo apoio financeiro;

ao professor Dr. Jorge Alberto Achcar pelas sugestões no início do trabalho;

aos meus pais pelo exemplo de perseverança e pelo apoio financeiro;

aos amigos prof. Dr. Carlos Alberto Diniz e Aline de Holanda Nunes Maia pelo conforto nos momentos difíceis;

aos companheiros da pós-graduação, em especial à Daniela Gonçalves Lenci e ao Mário Tarumoto, pela amizade;

aos funcionários da biblioteca, da secretaria, da limpeza e da manutenção do IMECC pelo cumprimento eficiente de seu trabalho;

enfim, gostaria de agradecer a todos que direta ou indiretamente contribuíram para a realização desse trabalho.

SUMÁRIO

ı

LISTA DE FIGURAS	
LISTA DE TABELAS	xv
RESUMO	xix
INTRODUÇÃO	1
CAPÍTULO I - REVISÃO BIBLIOGRÁFICA	5
1.1 A Distribuição Exponencial Bivariada de Marshall e Olkin e a sua Extensão	5
1.1.1 Derivação das Distribuições BVE e EBVE	5
1.1.2 Comparação entre as Distribuições BVE e EBVE	13
1.2 Modelo para Tempo Acelerado	17
1.3 Análise Clássica	2 1
1.3.1 Estimação dos Parâmetros usando o Método de Máxima Verossimilhança (MV)21
1.3.2 Propriedades dos Estimadores de MV	24
1.3.3 Diagnóstico de Normalidade Multivariada dos Estimadores de MV	25
1.4 Análise Bayesiana	26
1.4.1 Principais Conceitos	26
1.4.2 Métodos de Simulação Iterativa usados na Inferência Bayesiana	28
1.4.3 Critério de Convergência de Gelman e Rubin	30
CAPÍTULO II - ANÁLISE CLÁSSICA DA DISTRIBUIÇÃO EBVE	33
2.1 Geração de Dados da Distribuição EBVE	33
2.1.1 Geração de Dados da Distribuição EBVE usando o Método da Rejeição	34
2.1.2 Verificação da Validade das Amostras Geradas	35
2.2 Análise de Dados Bivariados sem Censura da Distribuição EBVE	36
2.2.1 Estimação dos Parâmetros usando o Método de MV e suas Propriedades	37
2.2.1.1 Exemplo de Aplicação	38
2.2.1.2 Simulações para Estudar as Propriedades dos Estimadores de MV	39

2.3 Análise de Dados Bivariados com Censura	47
2.3.1 Estimação dos Parâmetros usando o Método de MV: Simulações	47
CAPÍTULO III - ANÁLISE BAYESIANA DA DISTRIBUIÇÃO EBVE	53
	50
3.1 Analise Bayesiana utilizando os Metodos de Gibbs e Metropolis Hastings	
3.1.1 Exemplo de Aplicação	54
3.1.2 Estudo dos Parametros da Distribuição EBVE sob a Abordagem Bayes-Empirica	60
CAPÍTULO IV - A DISTRIBUIÇÃO EBVE PARA TEMPOS ACELERADOS	69
4.1 Formulação de um Modelo para Testes Acelerados cujos Tempos Seguem a EBVE	69
4.2 Estimação dos Parâmetros usando o Método de MV	75
4.2.1 Exemplo de Aplicação	75
4.2.2 Estudo de Simulação	79
CONCLUSÕES	91
APÊNDICES	93
A - Funções de Sobrevivência da EBVE.	93
A ₁ - Obtenção da Função de Sobrevivência de Z _i	93
A ₂ - Obtenção da Função de Sobrevivência Bivariada de (T_1, T_2)	95
A ₃ - Forma Geral da Distribuição EBVE e Três Casos Especiais	98
B - Programa Computacional Implementado para a Geração de Dados da Distribuição	
EBVE pelo Método da Rejeição	101
C - Programa Computacional Implementado para Estimação dos Parâmetros da Distribui	ição
EBVE considerando Dados Completos	103
D - Programa Computacional Implementado para Estimação dos Parâmetros da	
Distribuição EBVE considerando Dados com Censuras	125
E - Programa Computacional Implementado para Estudar os Parâmetros da Distribuição	
EBVE sob a abordagem Bayes-Empírica	131
F - Programa Computacional Implementado para Estimação dos Parâmetros da Distribui	ição
EBVE considerando Tempos Acelerados	.149
REFERÊNCIAS BIBLIOGRÁFICAS	163

LISTA DE FIGURAS

ı

Figura 1.1 -	Gráfico da função de densidade conjunta da EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1,$,
	$\lambda_{12}=0,2 \text{ e } s_1=s_2=0,5$	11
Figura 1.2 -	Gráfico da função de sobrevivência conjunta da EBVE com parâmetros	
	$\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2 \text{ e } s_1 = s_2 = 0, 5.$	11
Figura 1.3 -	Gráficos das funções marginais de sobrevivência, de densidade e de risco dos	
	tempos X_i , Z_i e T_i , da EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$	12
Figura 2.1 -	Gráficos da densidade EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2 \text{ e } s_1 = s_2 = 0, 5$	
	(interseções no plano $t_1=0$ e $t_2=0$)	35
Figura 2.2 -	Gráfico das médias das estimativas de MV e dos erros quadráticos médios dos	
	estimadores dos parâmetros da EBVE com $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2 \text{ e } s_1 = s_2 = 0, 5,$	
	considerando dados sem censura	43
Figura 2.3 -	Gráficos das coberturas dos intervalos de confiança aproximados, com	
	coeficientes 90% e 95%, usando dados sem censura4	13
Figura 2.4 -	Histogramas das estimativas de MV (n=30, 50 e 100)4	4
Figura 2.5 -	Histogramas das estimativas de MV (n=200, 300 e 500)4	1 5
Figura 2.6 -	Gráficos normais probabilísticos das estimativas de MV (n=30, 50 e 500)4	16
Figura 2.7 -	Gráficos das Médias das estimativas de MV dos parâmetros da EBVE para dad	OS
	censurados	51
Figura 3.1 -	Gráficos das densidades marginais a priori dos parâmetros assumidas no	
	exemplo de aplicação	56
Figura 3.2 -	Gráficos das trajetórias das cadeias, correspondentes ao exemplo de aplicação.	57
Figura 3.3 -	Gráficos das correlações dentro das cadeias, no exemplo de aplicação	58
Figura 3.4 -	Gráfico das densidades marginais a posteriori dos parâmetros obtidas no	
	exemplo de aplicação	59
Figura 3.5 -	Gráficos das estimativas de MV, médias e medianas das densidades marginais	а
	posteriori dos parâmetros juntamente com os intervalos de confiança e	
	Bayesianos	53

- Figura 4.1 Gráficos das funções marginais de sobrevivência, de densidade e de risco, nos níveis de voltagens v₀=1,5, v₁=2, v₂=2,5 e v₃=3......74
- Figura 4.3 Gráficos das médias dos erros quadráticos médios dos estimadores dos parâmetros do modelo para tempos acelerados com $\beta_{01}^* = \beta_{02}^* = 0,0296$,

$$\beta_{03}^* = 0,0593, \ \beta_{04}^* = \beta_{03}^* = 0,148, \ \beta_{11} = \beta_{12} = \beta_{13} = 3 \text{ e na voltagem usual, } v_0 = 1,5,$$

Figura 4.4 - Cobertura dos intervalos aproximados, com 90% e 95% de confiança, dos parâmetros da distribuição EBVE para tempos acelerados com $\beta_{\alpha \nu}^* = \beta_{\alpha \nu}^* = 0.0296, \ \beta_{\alpha \nu}^* = 0.0593, \ \beta_{\alpha \nu}^* = \beta_{\alpha \nu}^* = 0.148 \text{ e } \beta_{\nu \nu} = \beta_{\nu \nu} = \beta_{\nu \nu} = 3......88$

LISTA DE TABELAS

...

Tabela 2.1 - Resumo da distribuição EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2$ e
<i>s</i> ₁ = <i>s</i> ₂ =0,5
Tabela 2.2 - Média das médias, variâncias e correlações dos tempos (t_1, t_2) das 500 amostras
geradas da EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$
Tabela 2.3 - Estimativas de MV e intervalos de confiança aproximados dos parâmetros da
EBVE, no exemplo de aplicação
Tabela 2.4 - Estimativas de MV e intervalos de confiança aproximados das funções
marginais, de confiabilidade e de risco, avaliadas no tempo t=5, correspondentes
ao exemplo de aplicação
Tabela 2.5 - Estimativas dos quartis das distribuições marginais de T_1 e T_2 , correspondentes
ao exemplo de aplicação
Tabela 2.6 - Descrição das amostras simuladas com dados sem censura
Tabela 2.7 - Médias das 500 estimativas de MV, dos desvios padrões (dp) e dos erros
quadráticos médios (eqm) dos estimadores dos parâmetros da distribuição EBVE
com $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2 \text{ e } s_1 = s_2 = 0, 5$, considerando dados sem censura
Tabela 2.8 - Cobertura dos intervalos de confiança aproximados, com coeficientes 90% e
95%, considerando dados sem censura42
Tabela 2.9 - Razões entre os erros quadráticos médios das estimativas de MV42
Tabela 2.10 - Diagnóstico de normalidade multivariada dos estimadores de MV,
considerando dados sem censura42
Tabela 2.11 - Resultados do teste de Ryan-Joiner para verificar normalidade univariada43
Tabela 2.12 - Descrição das amostras simuladas considerando dados censurados
Tabela 2.13 - Médias das 500 estimativas de MV, dos desvios padrões e dos erros
quadráticos médios dos estimadores dos parâmetros da distribuição EBVE com
$\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2 \text{ e } s_1 = s_2 = 0, 5, considerando dados censurados$
Tabela 2.14 - Cobertura dos intervalos de confiança aproximados, com coeficientes 90% e
95%, usando dados censurados50
Tabela 3.1 - Parâmetros das densidades a priori usados no exemplo de aplicação55

Tabela 3.2 -	Índices de convergência obtidos pelo critério de Gelman e Rubin5
Tabela 3.3 -	Resumo das densidades marginais a posteriori correspondentes ao exemplo de
	aplicação60
Tabela 3.4 -	Resumo das estimativas dos parâmetros da EBVE obtidas no Estudo de
	Simulação 3.1
Tabela 3.5 -	Cobertura dos intervalos Bayesianos e de confiança aproximados,
	correspondentes ao Estudo de Simulação 3.1
Tabela 3.6 -	Parâmetros das densidades a priori usados no Estudo de Simulação 3.2
Tabela 3.7 -	Resumo das estimativas dos parâmetros da EBVE obtidas no Estudo de
	Simulação 3.2
Tabela 3.8 -	Cobertura dos intervalos Bayesianos e de confiança aproximados,
	correspondentes ao Estudo de Simulação 3.267
Tabela 4.1 -	Estimativas de MV e intervalos de confiança assintóticos dos parâmetros da
	distribuição EBVE para tempos acelerados, obtidas no exemplo de aplicação7
Tabela 4.2 -	Estimativas de MV e intervalos de confiança dos parâmetros na voltagem
	v ₀ =1,5
Tabela 4.3 -	Estimativas de MV e intervalos de confiança das funções marginais de
	confiabilidade e de risco, avaliadas no tempo t=1, nas voltagens $v_0=1,5, v_1=2,$
	$v_2=2,5, v_3=3$, correspondentes ao exemplo de aplicação72
Tabela 4.4 -	Estimativas de MV e intervalos de confiança das funções marginais de
	confiabilidade e de risco, da parte específica de cada componente, avaliadas no
	tempo $t=1$, nas voltagens $v_0=1,5$, $v_1=2$, $v_2=2,5$ e $v_3=3$
Tabela 4.5 -	Estimativas de MV e intervalos de confiança das funções marginais de
	confiabilidade e de risco, da parte comum de cada componentes, avaliadas no
	tempo $t=1$, nas voltagens $v_0=1,5$, $v_1=2$, $v_2=2,5$ e $v_3=3$
Tabela 4.6 -	Estimativas pontuais dos quartis da distribuição EBVE para tempos acelerados
	nos níveis de voltagens $v_0=1,5, v_1=2, v_2=2,5$ e $v_3=3$
Tabela 4.7 -	Descrição das amostras simuladas com tempos acelerados
Tabela 4.8 -	Média das médias, variâncias e correlações dos tempos (t_1, t_2) das 500 amostras
	geradas da EBVE para tempos acelerados com $\beta_{01}^* = \beta_{02}^* = 0,0296, \beta_{03}^* = 0,0593,$
	$\beta_{04}^* = \beta_{05}^* = 0,148 \text{ e } \beta_{11} = \beta_{12} = \beta_{13} = 382$

- Tabela 4.9 Resumo dos valores teóricos da distribuição EBVE para tempos acelerados com $\beta_{01}^* = \beta_{02}^* = 0,0296, \ \beta_{03}^* = 0,0593, \ \beta_{04}^* = \beta_{05}^* = 0,148 \text{ e } \beta_{11} = \beta_{12} = \beta_{13} = 3.....82$
- Tabela 4.10 Média das 500 estimativas de MV, dos desvios padrões e dos erros quadráticos médios dos estimadores dos parâmetros da distribuição EBVE para tempos acelerados com $\beta_{01}^* = \beta_{02}^* = 0,0296$, $\beta_{03}^* = 0,0593$, $\beta_{04}^* = \beta_{05}^* = 0,148$ e

RESUMO

Dentre as várias distribuições exponenciais bivariadas apresentadas na literatura, a distribuição de Marshall e Olkin (BVE) recebe grande destaque. Devido a isso, Ryu (1993) propôs uma extensão da BVE que também possui propriedades com interpretações simples e úteis, com a vantagem de ser absolutamente contínua.

Neste trabalho estudamos a distribuição proposta por Ryu (EBVE) e formulamos um modelo para testes acelerados, onde os tempos até as falhas seguem essa distribuição, assumindo uma relação de potência inversa entre os tempos e a voltagem.

Foram gerados dados da EBVE e da distribuição formulada, usando o método da rejeição e feitas algumas simulações para verificar a validade das amostras obtidas.

Estudamos as propriedades assintóticas dos estimadores de máxima verossimilhança dos parâmetros da distribuição EBVE, considerando amostras com dados completos e censurados e também as dos parâmetros da distribuição EBVE para tempos acelerados.

Apresentamos uma análise Bayesiana do modelo, na qual assumimos densidades *a priori* informativas e encontramos as densidades marginais *a posteriori* dos parâmetros, utilizando os métodos de Gibbs e Metropolis Hastings.

INTRODUÇÃO

Os modelos de confiabilidade e de sobrevivência desempenham um papel importante em pesquisas de diversas áreas, especialmente em engenharia e ciências biomédicas, pois descrevem, respectivamente, o tempo até a falha de componentes e o tempo de sobrevivência de unidades biológicas.

Para modelar o tempo de um único componente ou de uma unidade biológica, são utilizados os modelos univariados, sendo as distribuições mais importantes, a exponencial, Weibull, gamma, valor extremo e log-normal. No estudo de dois ou mais componentes ou unidades, os modelos multivariados são mais apropriados do que os univariados, uma vez que conseguem explicar uma possível associação entre os tempos até as falhas ou de sobrevivência. Um caso particular dos modelos multivariados são os modelos bivariados, que descrevem dados pareados.

Métodos estatísticos têm sido extensamente desenvolvidos para os modelos univariados, enquanto que estudos sobre os modelos bivariados começam a aparecer na literatura somente nas últimas décadas.

Para modelar tempos pareados as distribuições exponencias bivariadas são geralmente consideradas. Diferentemente da distribuição normal, não existe uma extensão natural única para a distribuição exponencial. Várias distribuições exponenciais bivariadas têm sido propostas. Gumbel (1960) propôs algumas distribuições com marginais exponenciais, mas não discutiu em que situações esses modelos se aplicam. Freund (1961) apresentou uma extensão exponencial específica para um sistema com dois componentes, onde o sistema pode continuar funcionando mesmo depois da falha de um dos componentes. Marshall e Olkin (1967) propuseram uma distribuição exponencial bivariada (BVE), para modelar a probabilidade de sobrevivência conjunta para tempos até as falhas de dois componentes

2

sujeitos a choques fatais, provenientes de três fontes independentes. Essa distribuição é bastante aceita, pois possui propriedades com interpretações físicas simples e úteis e satisfaz as propriedades de falta de memória marginal e conjunta, extendendo para o caso bivariado a propriedade de falta de memória da distribuição exponencial univariada. Contudo, ela apresenta a desvantagem de não ser absolutamente contínua, pois os componentes podem falhar simultaneamente com probabilidade positiva. Outras distribuições exponenciais bivariadas foram propostas por Downton (1970), Hawkes (1972) e Paulson (1973).

Devido à grande aceitação da BVE, várias distribuições exponenciais bivariadas têm sido propostas tentando preservar algumas das suas propriedades importantes, mas considerando que os componentes não falham simultaneamente. Block e Basu (1974) mostraram que a única distribuição bivariada absolutamente contínua que satisfaz as propriedades de falta de memória marginal e conjunta, é a distribuição bivariada com exponenciais independentes. Neste mesmo artigo, Block e Basu propuseram uma distribuição exponencial bivariada absolutamente contínua, a ACBVE, que conserva a propriedade de falta de memória conjunta e cujas distribuições marginais são médias ponderadas de exponenciais. Considerando os resultados de Block e Basu, as distribuições comparáveis com a BVE de Marshall e Olkin, propostas posteriormente, não consideram algumas das propriedades de falta de memória. Sarkar (1987) deriva uma distribuição exponencial bivariada absolutamente contínua, a ACBVE₂ com marginais exponenciais. Rvu (1993) propôs uma extensão da BVE, que chamaremos de EBVE. A EBVE apresenta funções de risco marginais crescentes e também não satisfaz a propriedade de falta de memória conjunta, entretanto, ela permite ter as propriedades de falta de memória marginal e conjunta para algum grau de aproximação.

O objetivo desta dissertação é estudar a distribuição EBVE sob os seguintes aspectos:

- a- comparação das suas propriedades com as da distribuição BVE;
- b- geração de dados através do método da rejeição e verificação da validade das amostras obtidas;
- c- estimação dos parâmetros e de suas funções usando o método de máxima verossimilhança (MV), para amostras com dados não censurados e com censura do tipo I;

- d- estimação dos parâmetros através da inferência Bayesiana, assumindo densidades a priori informativas;
- e- formulação de um modelo para tempos acelerados e estimação dos parâmetros do modelo proposto usando o método de MV.

No Capítulo I fazemos uma revisão das distribuições BVE e EBVE e apresentamos alguns conceitos básicos de inferência clássica e Bayesiana.

No Capítulo II geramos amostras da distribuição EBVE, utilizando o método da rejeição e fazemos um estudo de simulação para verificar a validade das amostras geradas. Ainda neste capítulo, obtemos as estimativas de MV dos parâmetros da EBVE e estudamos as propriedades assintóticas dos estimadores de MV, considerando tempos não censurados e com censura do tipo I.

No Capítulo III estudamos o modelo EBVE sob a abordagem Bayes-empírica. Assumimos densidades *a priori* informativas para os parâmetros e encontramos as densidades marginais *a posteriori*, utilizando os métodos de simulação iterativa, o amostrador de Gibbs e o algoritmo de Metropolis Hastings (M-H). Apresentamos um exemplo de aplicação e fazemos simulações para estudar o modelo.

No Capítulo IV formulamos um modelo para testes acelerados, onde os tempos até as falhas seguem a EBVE, utilizando a relação de potência inversa. Apresentamos um exemplo de aplicação e estudamos as propriedades dos estimadores de MV através de simulações.

No Apêndice A mostramos como foram obtidas as funções de sobrevivência da EBVE. Apresentamos os programas computacionais implementados, para a geração de dados da EBVE, pelo método da rejeição (Apêndice B), para estudo dos estimadores de MV dos parâmetros da EBVE, utilizando dados não censurados (Apêndice C) e dados com censura do tipo I (Apêndice D). No Apêndice E, encontra-se o programa implementado para estudar os parâmetros do modelo sob a abordagem Bayes-empírica e finalmente no Apêndice F o programa computacional para estudar os estimadores de MV, considerando amostras da EBVE para tempos acelerados.

CAPÍTULO I REVISÃO BIBLIOGRÁFICA

1.1 A Distribuição Exponencial Bivariada de Marshall e Olkin e a sua Extensão

Existem várias distribuições exponenciais bivariadas propostas na literatura estatística, sendo que a distribuição exponencial bivariada de Marshall e Olkin (1967), BVE, recebe maior destaque, devido ao fato de ter propriedades com interpretações físicas simples e úteis. Entretanto, como conseqüência das condições sob as quais foi derivada, essa distribuição não é apropriada em situações onde dois componentes não falham simultaneamente ou quando não podemos garantir as propriedades de falta de memória, marginal e conjunta. Por esta razão, Ryu (1993), propôs um modelo exponencial bivariado, que é adequado para as situações não contempladas pela BVE e que também possui propriedades com interpretações simples. Ryu considerou o modelo proposto como uma extensão da BVE, que chamaremos de EBVE.

Nesta seção fazemos uma revisão das distribuições BVE e EBVE, onde mostramos como elas foram derivadas e comparamos as suas propriedades.

1.1.1 Derivação das Distribuições BVE e EBVE

a) <u>A Distribuição BVE</u>

Primeiramente descrevemos os modelos de choque fatal e os modelos de choques não fatais com os quais se obtém a função de sobrevivência, ou função de confiabilidade, conjunta, para tempos até a falha que seguem a distribuição BVE.

No modelo de choque fatal os componentes de um sistema com dois componentes falham depois de receber um choque que é sempre fatal. Assume-se que os choques são regidos por três processos de Poisson independentes $\{Z_1(t), t \ge 0; \lambda_1\}, \{Z_2(t), t\ge 0; \lambda_2\}, \{Z_{12}(t), t\ge 0; \lambda_{12}\}$ onde λ_1, λ_2 e λ_{12} são as intensidades dos processos. Os eventos no processo $\{Z_i(t), t\ge 0; \lambda_1\}, i=1, 2$, são choques no componente *i* e os eventos no processo $\{Z_{12}(t), t\ge 0; \lambda_{12}\}$ são os choques que ocorrem nos dois componentes. Considerando as variáveis aleatórias T_1 e T_2 os tempos até as falhas dos componentes 1 e 2 respectivamente, a função de sobrevivência conjunta é dada por:

$$S_{T_{1},T_{2}}(t_{1},t_{2}) = P(T_{1} > t_{1},T_{2} > t_{2}) = P[Z_{1}(t_{1};\lambda_{1}) = 0, Z_{2}(t_{2};\lambda_{2}) = 0, Z_{12}(\max(t_{1},t_{2});\lambda_{12}) = 0]$$

$$= \exp(-\lambda_{1}t_{1} - \lambda_{2}t_{2} - \lambda_{12}\max(t_{1},t_{2})).$$
(1.1)

No modelo de choques não fatais os choques que ocorrem nos componentes não são necessariamente fatais. Os choques são regidos por três processos de Poisson independentes $\{Z_1(t), t \ge 0; \beta_1\}, \{Z_2(t), t \ge 0; \beta_2\}, \{Z_{12}(t), t \ge 0; \beta_{12}\}$ onde $\beta_{I_1}, \beta_2 \in \beta_{I2}$ são as intensidades dos processos.

Descrevendo as condições dos componentes pelos pares ordenados (0, 0), (0, 1), (1, 0)e (1, 1), onde as coordenadas representam o primeiro e o segundo componente sendo que 1 indica que o componente está funcionando e 0 que o componente falhou, os eventos no processo $\{Z_l(t), t \ge 0; \beta_l\}$ são choques que ocorrem no primeiro componente causando uma transição da condição (1, 1) para (0, 1) com probabilidade p_l e para (1, 1) com probabilidade $(1 - p_l)$. Similarmente, os eventos no processo $\{Z_2(t), t\ge 0; \beta_2\}$ são choques que ocorrem no segundo componente causando uma transição da condição (1, 1) para (1, 0) com probabilidade p_2 e para (1, 1) com probabilidade $(1 - p_2)$. Os eventos no processo $\{Z_{l2}(t), t\ge 0; \beta_{l2}\}$ são choques que ocorrem em ambos os componentes e causam uma transição da condição (1, 1) para (0, 0), (0, 1), (1, 0), (1, 1) com as respectivas probabilidades: $p_{00}, p_{01}, p_{10}, p_{11}$.

Assume-se também que cada choque em um componente representa uma chance independente para falha. Considerando as variáveis aleatórias T_1 e T_2 , tempos até as falhas do primeiro e segundo componente, temos para $t_1 \le t_2$ e $t_1 \ge t_2$ respectivamente:

$$S_{T_{1},T_{2}}(t_{1},t_{2}) = P\left(T_{1} > t_{1},T_{2} > t_{2}\right) = \left[\sum_{k=0}^{\infty} e^{-\beta_{1}t_{1}} \frac{(\beta_{1}t_{1})^{k}}{k!} (1-p_{1})^{k}\right] \left[\sum_{l=0}^{\infty} e^{-\beta_{2}t_{2}} \frac{(\beta_{2}t_{2})^{l}}{l!} (1-p_{2})^{l}\right] \\ \times \left[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left(e^{-\beta_{12}t_{1}} \frac{(\beta_{12}t_{1})^{m}}{m!} (p_{11})^{m}\right) \left(e^{-\beta_{12}(t_{2}-t_{1})} \frac{(\beta_{12}(t_{2}-t_{1}))^{n}}{n!} (p_{11}+p_{0l})^{n}\right)\right] \\ = exp\left[-t_{1}(\beta_{1}p_{1}+\beta_{12}p_{0l}) - t_{2}(\beta_{2}p_{2}+\beta_{12}(1-p_{11}-p_{0l}))\right]$$
(1.2)

e

$$S_{T_1,T_2}(t_1,t_2) = \exp\left[-t_1(\beta_1 p_1 + \beta_{12}(1 - p_{11} - p_{10})) - t_2(\beta_2 p_2 + \beta_{12} p_{10})\right].$$
(1.3)

Consequentemente, combinando (1.2) e (1.3) a função de sobrevivência conjunta é dada por (1.1), onde $\lambda_1 = \beta_1 p_1 + \beta_{12} p_{01}$, $\lambda_2 = \beta_2 p_2 + \beta_{12} p_{10}$, $\lambda_{12} = \beta_{12} p_{00}$.

A distribuição BVE também pode ser derivada da relação de independência entre os tempos restantes até a falha dos componentes que não falharam até um certo tempo e o tempo de funcionamento dos mesmos, ver Marshall e Olkin (1967).

b) A Distribuição EBVE

Da mesma forma que na BVE, na distribuição EBVE assume-se que os choques, que ocorrem nos dois componentes, são regidos por três processos de Poisson independentes, $\{N_1(t), t \ge 0; \lambda_1\}, \{N_2(t), t \ge 0; \lambda_2\}$ e $\{N_{12}(t), t \ge 0; \lambda_{12}\}$, onde as variáveis aleatórias $N_i(t), i=1, 2$, medem o número de choques que ocorrem na parte específica do componente *i* no intervalo $(0, t] \in N_{12}(t)$ mede o número de choques que ocorrem nas partes comuns dos componentes 1 e 2 em (0, t]. Os parâmetros λ_i , $i=1, 2, e \lambda_{12}$ representam respectivamente, o número médio de choques que ocorrem na parte específica do componente *i* e nas partes comuns dos componentes 1 e 2, durante um intervalo de tempo unitário.

Assume-se que a função de risco condicional aos processos de Poisson, no tempo t para falha do componente i, i=1, 2, é dada por:

$$h_i(t) = d_i N_i(t) + s_i N_{12}(t), \tag{1.4}$$

onde d_i refere-se ao aumento na função de risco, devido a choques na parte específica do componente *i* e s_i refere-se ao aumento na função de risco, devido a choques na parte comum

do componente *i*, *i*=1, 2. Para que a distribuição seja realmente comparável com a BVE e para uma simplificação dos cálculos é assumido que $d_1=d_2=\infty$ Dessa forma, tem-se que a ocorrência de um choque fatal, na parte específica do componente *i*, *i*=1, 2 resulta na falha imediata do componente, enquanto que os choques não fatais, que ocorrem nas partes específicas, não afetam as condições físicas dos componentes. Por outro lado, os choques não fatais na parte comum causam um desgaste importante nos componentes, aumentando a função de risco para a falha do componente *i* pela quantidade *s_i*. Observemos que se $s_1=s_2=\infty$ então o modelo se reduz a BVE, onde os choques não fatais que ocorrem tanto nas partes específicas quanto nas partes comuns não são acumulativos.

A função de sobrevivência conjunta para o modelo geral, juntamente com alguns casos particulares são apresentados no Apêndice A₃. Neste capítulo apresentamos a derivação da EBVE considerando $d_1=d_2=\infty$.

Representemos por X_i , i=1, 2, a variável aleatória que mede o tempo até o primeiro salto no processo $\{N_i(t), t \ge 0; \lambda_i\}$, ou seja, o tempo até a ocorrência de um choque na parte específica do componente *i*, por Z_i , i=1, 2, o tempo até a ocorrência de um choque fatal nas partes comuns do componente *i* e por T_i , i=1, 2, o tempo até a falha do componente *i*, onde $T_i=min(X_i, Z_i)$.

Das considerações anteriores tem-se que $X_i \sim Exp(\lambda_i)$ e portanto a função de sobrevivência de X_i é dada por:

$$S_{X_i}(t) = P(X_i > t) = \exp(-\lambda_i t), \qquad (1.5)$$

logo, a função de risco de X_i que é definida como:

$$h_{X_i}(t) = \lim_{\Delta t \to \infty} \frac{P(t \le X_i < t + \Delta t \mid X_i \ge t)}{\Delta t} = \frac{f_{X_i}(t)}{S_{X_i}(t)} = \frac{-\frac{\partial}{\partial t}S_{X_i}(t)}{S_{X_i}(t)} = -\frac{\partial}{\partial t}\log S_{X_i}(t)$$

é constante em t, ou seja,

$$h_{\chi_i}(t) = \lambda_i. \tag{1.6}$$

A função de sobrevivência de Z_i (Apêndice A₁) é dada por:

$$S_{Z_{i}}(t) = P(Z_{i} > t) = exp\left(-\lambda_{12} t + \frac{\lambda_{12}}{s_{i}}(1 - e^{-s_{i}t})\right)$$
(1.7)

e a função de risco de Z_i é dada por:

$$h_{2i}(t) = \lambda_{12} \left(1 - e^{-s_i t} \right). \tag{1.8}$$

Observemos que h_{zi} é uma função crescente em t a menos que $s_i = \infty$.

Como X_i e Z_i são independentes, a função de risco de T_i é dada pela soma das funções de riscos, ou seja,

$$h_{T_{i}}(t) = \lambda_{i} + \lambda_{I2} \left(1 - e^{-s_{i}t} \right).$$
(1.9)

Da última equação obtém-se a função de sobrevivência de T_i , uma vez que

 $S_{T_i}(t) = \exp\left(-\int_0^t h_{T_i}(u) du\right),$

dada por:

$$S_{T_{i}}(t) = P(T_{i} > t) = \exp\left(-\lambda_{i} t - \lambda_{12} t + \frac{\lambda_{12}}{s_{i}}(1 - e^{-s_{i} t})\right).$$
(1.10)

A função de densidade de T_i é obtida através da relação

$$f_{T_i}(t) = -\frac{\partial}{\partial t} S_{T_i}(t)$$

pois $S_{T_i}(t)$ é absolutamente contínua, e resulta em

$$f_{T_i}(t) = \left[\lambda_i + \lambda_{12} \left(1 - e^{-st}\right)\right] exp\left(-\lambda_i t - \lambda_{12} t + \frac{\lambda_{12}}{s_i} \left(1 - e^{-st}\right)\right).$$
(1.11)

Remarcamos que se $s_i = \infty$, a distribuição se reduz a uma distribuição exponencial com função de risco constante $\lambda_i + \lambda_{12}$ e assim satisfaz a propriedade de falta de memória marginal.

A função de sobrevivência conjunta de (T_i, T_2) é obtida (Apêndice A₂) de forma similar à função de sobrevivência de Z_i e apresenta a seguinte forma:

$$S_{T_{i},T_{2}}(t_{i},t_{2}) = \begin{cases} exp\left(-(\lambda_{1}+\lambda_{12})t_{1}-\lambda_{2}t_{2}+\frac{\lambda_{12}}{s_{1}}(1-e^{-s_{1}(t_{1}-t_{2})})+\frac{\lambda_{12}}{s_{1}+s_{2}}(e^{-s_{1}(t_{1}-t_{2})}-e^{-s_{1}t_{1}-s_{2}t_{2}})\right) \\ se \ t_{1} > t_{2} \\ exp\left(-\lambda_{1}t_{1}-(\lambda_{2}+\lambda_{12})t_{2}+\frac{\lambda_{12}}{s_{2}}(1-e^{-s_{2}(t_{2}-t_{1})})+\frac{\lambda_{12}}{s_{1}+s_{2}}(e^{-s_{2}(t_{2}-t_{1})}-e^{-s_{1}t_{1}-s_{2}t_{2}})\right) \\ se \ t_{1} \le t_{2}. \end{cases}$$

$$(1.12)$$

Como
$$f_{T_1,T_2}(t_1,t_2) = \frac{\partial^2}{\partial t_1 \partial t_2} S_{T_1,T_2}(t_1,t_2)$$
, pois $S_{T_1,T_2}(t_1,t_2)$ é absolutamente contínua, a

densidade conjunta de (T_1, T_2) é dada por:

Mudando a distribuição de X_i de exponencial para Weibull obtém-se uma generalização da distribuição EBVE e neste caso a função de sobrevivência conjunta é dada por:

$$S_{T_{1},T_{2}}(t_{1},t_{2}) = \begin{cases} exp\left(-\lambda_{1}t_{1}^{\alpha_{1}}-\lambda_{12}t_{1}-\lambda_{2}t_{2}^{\alpha_{2}}+\frac{\lambda_{12}}{s_{2}}\left(1-e^{-s_{1}(t_{1}-t_{2})}\right)+\frac{\lambda_{12}}{s_{1}+s_{2}}\left(e^{-s_{1}(t_{1}-t_{2})}-e^{-s_{1}t_{1}-2t_{2}}\right)\right) \\ se \ t_{1} > t_{2} \\ exp\left(-\lambda_{1}t_{1}^{\alpha_{1}}-\lambda_{2}t_{2}^{\alpha_{2}}-\lambda_{12}t_{2}+\frac{\lambda_{12}}{s_{2}}\left(1-e^{-s_{2}(t_{2}-t_{1})}\right)+\frac{\lambda_{12}}{s_{1}+s_{2}}\left(e^{-s_{2}(t_{2}-t_{1})}-e^{-s_{1}t_{1}-2t_{2}}\right)\right) \\ se \ t_{1} \le t_{2} \end{cases}$$

$$(1.14)$$

Note que se $\alpha_1 \rightarrow 1$ e $\alpha_2 \rightarrow 1$ a função de sobrevivência em (1.14) se reduz a (1.12).

A seguir apresentamos os gráficos das funções conjuntas de sobrevivência e de densidade, Figuras 1.1 e 1.2 respectivamente e também das funções marginais de sobrevivência, de densidade e de risco, Figura 1.3 da distribuição EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$.

Figura 1.1 Gráfico da função de densidade conjunta da EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1$, $\lambda_{12} = 0, 2 \text{ e } s_1 = s_2 = 0, 5.$

Figura 1.2 Gráfico da função de sobrevivência conjunta da EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1$, $\lambda_{12} = 0, 2 \text{ e } s_1 = s_2 = 0, 5.$

11

Figura 1.3 Gráficos das funções marginais de sobrevivência, de densidade e de risco dos tempos X_i , Z_i e T_i da EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1$, $\lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$.

1.1.2 Comparação entre as Distribuições BVE e EBVE

A seguir fazemos uma comparação entre as distribuições BVE e EBVE com relação aos componentes que elas podem modelar (a) e às suas propriedades (b), (Ryu, 1993).

a) Situações Físicas Modeladas pelas Distribuições

Os modelos BVE e EBVE são apropriados para descrever a confiabilidade conjunta de dois componentes satisfazendo as seguintes condições:

- i) Os componentes possuem partes que apresentam o mesmo risco de falha (parte comum) e partes que são específicas (parte específica).
- ii) Os componentes estão sujeitos a choques não fatais e fatal. Os choques que ocorrem na parte comum são independentes dos choques que ocorrem na parte específica e os choques que ocorrem na parte específica de um componente são independentes dos choques que ocorrem na parte específica do outro componente.
- iii) Cada um dos componentes apresenta uma estrutura em série, ou seja, um componente falha quando ocorre um choque fatal em qualquer parte, comum ou específica.
- iv) Na BVE os choques não fatais que ocorrem nas partes comum e específicas não afetam as condições físicas dos componentes. Por outro lado, na EBVE os choques não fatais podem afetar as condições físicas dos componentes.
- iv) Na BVE a ocorrência de um choque fatal na parte comum acarreta falha nos dois componentes o que necessariamente não ocorre na EBVE.

b) Propriedades das Distribuições

 i) A BVE não é uma distribuição absolutamente contínua como é a distribuição EBVE, pois na BVE se um choque fatal ocorre na parte comum precedendo um choque nas partes específicas então o tempo até a falha dos dois componentes será o mesmo. Se denotarmos por X_i, i=1,2, a variável aleatória que representa o tempo até a ocorrência de um choque fatal nas partes específicas do componente i e denotarmos por Z a variável aleatória que representa o tempo até a ocorrência de um choque fatal na parte comum dos componentes então:

$$P\left(T_{1} = T_{2}\right) = P\left(Z < X_{1}, Z < X_{2}\right) = P\left(Z < \min\left(X_{1}, X_{2}\right)\right)$$

$$= \int_{0}^{\infty} \int_{z}^{\infty} f_{Z,\min(X_{1},X_{2})}(z, x) dx dz$$

$$= \int_{0}^{\infty} \int_{z}^{\infty} f_{Z}(z) f_{\min(X_{1},X_{2})}(x) dx dz$$

$$= \int_{0}^{\infty} \int_{z}^{\infty} \lambda_{12} e^{-\lambda_{12}z} \left(\lambda_{1} + \lambda_{2}\right) e^{-(\lambda_{1} + \lambda_{2})x} dx dz$$

$$= \int_{0}^{\infty} \lambda_{12} e^{-\lambda_{12}z} \left[\int_{z}^{\infty} (\lambda_{1} + \lambda_{2}) e^{-(\lambda_{1} + \lambda_{2})x} dx\right] dz$$

$$= \int_{0}^{\infty} \lambda_{12} e^{-\lambda_{12}z} e^{-(\lambda_{1} + \lambda_{2})z} dz$$

$$= \lambda_{12} \int_{0}^{\infty} e^{-(\lambda_{1} + \lambda_{2} + \lambda_{12})z} dz$$

$$= \frac{\lambda_{12}}{\lambda_{1} + \lambda_{2} + \lambda_{12}},$$

e portanto, na BVE a probabilidade que os componentes falhem simultaneamente é dada por:

$$P(T_1 = T_2) = \frac{\lambda_{12}}{\lambda_1 + \lambda_2 + \lambda_{12}}.$$

- *ii)* A distribuição EBVE é a BVE quando $s_1 = s_2 = \infty$.
- iii) Como a BVE, a EBVE foi derivada baseada em uma situação física e possui propriedades com interpretações físicas simples, o que difere das outras distribuições que também são comparáveis com a BVE como por exemplo a ACBVE e a ACBVE₂.
- *iv)* A BVE apresenta a propriedade de falta de memória marginal sendo as distribuições marginais exponenciais com parâmetros ($\lambda_i + \lambda_{12}$). Por outro lado, as distribuições

marginais da EBVE não são exponenciais apresentando dessa forma riscos de falha crescentes, o que a torna mais apropriada em algumas situações práticas.

 v) A BVE apresenta a propriedade de falta de memória conjunta, ou seja, a probabilidade de sobrevivência de dois componentes que já tem um certo tempo de funcionamento é a mesma do que a de dois componentes novos, ou seja,

$$P(T_1 > t_1 + t, T_2 > t_2 + t | T_1 > t, T_2 > t) = P(T_1 > t_1, T_2 > t_2)$$

para todo t_1 , t_2 , $t \ge 0$. Na EBVE a probabilidade que os componentes não falhem até um certo tempo é menor para os componentes com menor tempo de uso. Assim sendo,

$$P(T_1 > t_1 + t, T_2 > t_2 + t | T_1 > t, T_2 > t) \le P(T_1 > t_1, T_2 > t_2)$$

para todo t_1 , $t_2 e t \ge 0$, pois

$$\begin{split} &P\left(T_{1} > t_{1} + t, T_{2} > t_{2} + t \mid T_{1} > t, T_{2} > t\right) \leq P\left(T_{1} > t_{1}, T_{2} > t_{2}\right) \\ \Leftrightarrow \frac{P\left(T_{1} > t_{1} + t, T_{2} > t_{2} + t, T_{1} > t, T_{2} > t\right)}{P\left(T_{1} > t, T_{2} > t\right)} \leq P\left(T_{1} > t_{1}, T_{2} > t_{2}\right) \\ \Leftrightarrow \frac{P\left(T_{1} > t_{1} + t, T_{2} > t_{2} + t\right)}{P\left(T_{1} > t, T_{2} > t\right)} \leq P\left(T_{1} > t_{1}, T_{2} > t_{2}\right) \\ \Leftrightarrow \frac{P\left(T_{1} > t_{1} + t, T_{2} > t_{2} + t\right)}{P\left(T_{1} > t, T_{2} > t\right)} \leq P\left(T_{1} > t_{1}, T_{2} > t_{2}\right) \\ \Leftrightarrow \frac{P\left(T_{1} > t_{1}, T_{2} > t_{2}\right)P\left(T_{1} > t, T_{2} > t_{2}\right)}{P\left(T_{1} > t_{1} + t, T_{2} > t_{2} + t\right)} \geq 1 \end{split}$$

e como para todo $t_1, t_2 \ge 0$,

$$\frac{P(T_1 > t_1, T_2 > t_2)P(T_1 > t, T_2 > t)}{P(T_1 > t_1 + t, T_2 > t_2 + t)} = exp\left(\frac{\lambda_{12}}{s_1 + s_2} \left(1 - e^{-(s_1 + s_2)t}\right)\left(1 - e^{-s_1t_1 - s_2t_2}\right)\right)$$

e sendo λ_{12} , s_1 , $s_2 \geq 0$, tem-se que,

$$\left(\frac{\lambda_{12}}{s_1 + s_2} \left(1 - e^{-(s_1 + s_2)t}\right) \left(1 - e^{-s_1 t_1 - s_2 t_2}\right)\right) \ge 0$$

e portanto,

$$exp\left(\frac{\lambda_{12}}{s_1+s_2}\left(1-e^{-(s_1+s_2)t}\right)\left(1-e^{-s_1t_1-s_2t_2}\right)\right) \ge 1.$$

vi) Na BVE a variável $min(T_1, T_2)$ tem distribuição exponencial com parâmetro $(\lambda_1 + \lambda_{12})$, enquanto que na EBVE a função de sobrevivência do $min(T_1, T_2)$ é dada por:

$$S_{\min(T_{1},T_{2})}(t) = P\left(\min(T_{1},T_{2}) > t\right) = P\left(T_{1} > t, T_{2} > t\right)$$

= $P\left(\min(X_{1},Z_{1}) > t,\min(X_{2},Z_{2}) > t\right)$
= $P\left(X_{1} > t, Z_{1} > t, X_{2} > t, Z_{2} > t\right)$
= $P\left(X_{1} > t\right) P\left(X_{2} > t\right) E\left(P\left(Z_{1} > t, Z_{2} > t \mid N_{12}\right)\right)$
= $exp\left(-(\lambda_{1} + \lambda_{2})\right) t E\left(exp\left(-(s_{1} + s_{2})\int_{0}^{t} N_{12}(u)du\right)\right)$
= $exp\left[-(\lambda_{1} + \lambda_{2} + \lambda_{12})t + \frac{\lambda_{12}}{s_{1} + s_{2}}\left(1 - e^{-(s_{1} + s_{2})t}\right)\right].$

vii) Na BVE o min (T_1, T_2) é independente de T_1 - T_2 , ou seja,

$$P(\min(T_1,T_2) > t, T_1 - T_2 > u) = P(\min(T_1,T_2) > t)P(T_1 - T_2 > u)$$

enquanto que na EBVE a igualdade acima não ocorre a não ser que $\lambda_{12}=0$ ou $s_1+s_2=\infty$. Isto significa que na distribuição EBVE o tempo até a falha de um componente fornece informação útil sobre o tempo restante do outro componente, a menos que não ocorram choques nas partes comuns ($\lambda_{12}=0$) ou que um choque nas partes comuns seja fatal para pelo menos um dos componentes ($s_1=\infty$ ou $s_2=\infty$ ou $s_1=s_2=\infty$).

viii) Na EBVE a probabilidade de que os componentes não falhem até um certo tempo é maior do que na BVE, pois

$$\frac{S_{T_{1},T_{2}}(t_{1},t_{2})}{S_{T_{1},T_{2}BVE}(t_{1},t_{2})} = exp\left(\frac{\lambda_{12}}{\bar{s}}\left(1 - e^{-\bar{s}|t_{1}-t_{2}|}\right) + \frac{\lambda_{12}}{\bar{s}_{1}+\bar{s}_{2}}\left(e^{-\bar{s}|t_{1}-t_{2}|} - e^{-\bar{s}|t_{1}-\bar{s}_{2}t_{2}}\right)\right)$$
(1.15)

onde $\overline{s} = s_1$ se $t_1 > t_2$ e $\overline{s} = s_2$ se $t_1 \le t_2$. Como

$$\left(\frac{\lambda_{12}}{\overline{s}}\left(1-e^{-\overline{s}|t_1-t_2|}\right)+\frac{\lambda_{12}}{s_1+s_2}\left(e^{-\overline{s}|t_1-t_2|}-e^{-s_1t_1-s_2t_2}\right)\right)\geq 0$$

então, a razão entre as funções de sobrevivência é maior ou igual a 1. Mais ainda,

$$max_{T_{1},T_{2}} \frac{S_{T_{1},T_{2}}(t_{1},t_{2})}{S_{T_{1},T_{2} BVE}(t_{1},t_{2})} \leq exp\left(\frac{\lambda_{12}}{min(s_{1},s_{2})}\right).$$

De fato, observando que a razão dada em (1.15) está aumentando em t_1 para $t_1 > t_2$ e em t_2 para $t_1 \le t_2$, temos que

$$\frac{S_{T_1,T_2}(t_1,t_2)}{S_{T_1,T_2,BVE}(t_1,t_2)} = \begin{cases} \leq \exp\left(\frac{\lambda_{12}}{s_1}\right) & p / t_1 > t_2 \\ \\ \leq \exp\left(\frac{\lambda_{12}}{s_2}\right) & p / t_1 \leq t_2 \end{cases}$$

logo,

$$\frac{S_{T_1,T_2}(t_1,t_2)}{S_{T_1,T_2,BVE}(t_1,t_2)} \leq exp\left(\frac{\lambda_{12}}{\min(s_1,s_2)}\right).$$

Note que, nos casos onde $\lambda_{12}=0$, ou seja, quando não ocorrem choques comuns e quando os choques agem de forma não acumulativa $s_1=s_2=\infty$,

$$\frac{S_{T_1,T_2}(t_1,t_2)}{S_{T_1,T_2,BVE}(t_1,t_2)} = 1$$

1.2 Modelo para Tempo Acelerado

Para estimar a confiabilidade de componentes manufaturados é necessário analisar uma amostra de seus tempos até as falhas. Entretanto, devido a alta confiabilidade de muitos componentes torna-se impraticável esperar que eles falhem naturalmente, ou seja, sob condições usuais de operação. Assim sendo, visando reduzir o tempo e o custo para a realização desses experimentos os componentes são colocados em teste sob alguns níveis de *stress* mais severos do que o usual de forma a acelerar os seus tempos até as falhas. Os *stress* de aceleração são escolhidos de acordo com as características dos componentes sendo os mais usuais temperatura, voltagem, cargas mecânicas, umidade e vibração e podem ser aplicados de várias formas incluindo *stress* constante, cíclico, progressivo, aleatório sendo o primeiro o mais utilizado, ver por exemplo, Nelson (1990).

Através do ajuste de um modelo para tempos acelerados que inclui além da distribuição dos tempos até a falha uma relação entre esses tempos e os *stress* de aceleração, é possível obter informações a respeito da confiabilidade dos componentes sob condições usuais de operação.

Representemos por T a variável aleatória tempo até a falha de um componente submetido a condições usuais de operação e por T | v, a variável aleatória tempo até a falha, quando o componente é submetido à aceleração através de variáveis de *stress* $v = (v_1, v_2, v_p)'$. Assumindo que o efeito dessa aceleração é multiplicativo sobre o tempo até a falha do componente, o tempo até a falha acelerada é dado por:

$$T \mid \underbrace{v}_{\sim} = exp\left(\varphi\left(\underbrace{v,\beta}_{\sim}\right)\right)T, \tag{1.16}$$

onde $\varphi \begin{pmatrix} v, \beta \\ - - \end{pmatrix}$ é uma função linear em β , $v = (v_1, v_2, ..., v_p)'$ é um vetor de p covariáveis de aceleração (temperatura, voltagem, etc.), $\beta = (\beta_1, \beta_2, ..., \beta_p)'$ é um vetor dos correspondentes coeficientes. A função exponencial em (1.16) garante a positividade de $T \mid v$.

A função do stress, dada por, $exp\left(\varphi\left(v,\beta\right)\right)$ é incorporada na função de sobrevivência do tempo em condições usuais de modo que a função de sobrevivência dos tempos acelerados é dada por:

$$S_{T|\underline{v}}(t) = P\left(T \mid \underline{v} > t\right) = P\left(exp\left(\varphi\left(\underline{v}, \beta\right)\right)T > t\right)$$
$$= P\left(T > exp\left(-\varphi\left(\underline{v}, \beta\right)\right)t\right) = S_{T}\left(exp\left(-\varphi\left(\underline{v}, \beta\right)\right)t\right).$$
(1.17)

Note que a função de sobrevivência de T | v é a função de sobrevivência de T avaliada no tempo acelerado pelo *stress*.

A relação entre as funções de risco de $T \mid v \in T$ é dada por:

$$h_{T\underline{v}}(t) = \frac{f_{T\underline{v}}(t)}{S_{T\underline{v}}(t)} = \frac{-\frac{\partial}{\partial t}S_{T\underline{v}}(t)}{S_{T\underline{v}}(t)} = \frac{-\frac{\partial}{\partial t}S_{T}\left(exp\left(-\varphi\left(\underline{v},\beta\right)\right)t\right)}{S_{T}\left(exp\left(-\varphi\left(\underline{v},\beta\right)\right)t\right)}$$
$$= \frac{f_{T}\left(exp\left(-\varphi\left(\underline{v},\beta\right)\right)t\right)exp\left(-\varphi\left(\underline{v},\beta\right)\right)}{S_{T}\left(exp\left(-\varphi\left(\underline{v},\beta\right)\right)t\right)}$$
$$= h_{T}\left(exp\left(-\varphi\left(\underline{v},\beta\right)\right)t\right)exp\left(-\varphi\left(\underline{v},\beta\right)\right)t\right). \tag{1.18}$$

Estendendo (1.16) para o caso bivariado temos:

$$T_{I} \mid \underbrace{v}_{\sim} = exp\left(\varphi\left(\underbrace{v}_{\sim}, \beta_{I}\right)\right) T_{I} \qquad e \qquad T_{2} \mid \underbrace{v}_{\sim} = exp\left(\varphi\left(\underbrace{v}_{\sim}, \beta_{2}\right)\right) T_{2}, \qquad (1.19)$$

onde T_1 e T_2 são os tempos até as falhas dos componentes 1 e 2 respectivamente nas condições usuais. A relação entre as funções de sobrevivência dos tempos até as falhas em condições usuais e com aceleração é dada por,

$$S_{T_{I_{2}}[\underline{v},T_{2}]\underline{v}}(t_{1},t_{2}) = P\left(T_{1} \mid \underline{v} > t_{1}, T_{2} \mid \underline{v} > t_{2}\right)$$

$$= P\left(exp\left(\varphi\left(\underline{v},\beta_{1}\right)\right)T_{1} > t, exp\left(\varphi\left(\underline{v},\beta_{2}\right)\right)T_{2} > t\right)$$

$$= P\left(T_{1} > exp\left(-\varphi\left(\underline{v},\beta_{1}\right)\right)t, T_{2} > exp\left(-\varphi\left(\underline{v},\beta_{2}\right)\right)t\right)$$

$$= S_{T_{1},T_{2}}\left(exp\left(-\varphi\left(\underline{v},\beta_{1}\right)\right)t_{1}, exp\left(-\varphi\left(\underline{v},\beta_{2}\right)\right)t_{2}\right).$$
(1.20)

A função do *stress* pode assumir várias formas. Em particular, quando se considera um único fator de aceleração, geralmente são utilizadas as relações de potência inversa para voltagens e de Arrhenius para temperaturas, ou ainda, generalizações dessas relações.

Descrevemos a seguir, as relações de potência inversa (i) e de Arrhenius (ii) (Nelson, 1990).

19

i) Relação de Potência Inversa

A relação de potência inversa entre o tempo até a falha t_j do componente e a voltagem v_j é dada por:

$$t_j = \frac{A}{v_j^P} \qquad A>0, \tag{1.21}$$

onde A e P são parâmetros que caracterizam a geometria, tamanho, fabricação, método de teste entre outros fatores e dependem do modo de falha, sendo que os componentes com mais de um modo de falha apresentam diferentes valores de A e P para cada modo. Esta relação se verifica, por exemplo, em isolamentos elétricos e dielétricos, lâmpadas incandescentes e lâmpadas para flash. Em termos de variáveis aleatórias, usando (1.16) temos a seguinte relação para cada nível de voltagem:

$$T \mid v_j = \exp\left(\varphi\left(v_j, \beta\right)\right) T = \exp\left(\ln\beta_0 + \beta_1(-\ln\nu_j)\right) T = \beta_0 v_j^{-\beta_1} T, \qquad (1.22)$$

onde $\beta_0 \in \beta_1$ correspondem aos parâmetros A e P respectivamente em (1.21). Portanto, a função do *stress* para o modelo de potência inversa é dada por:

$$exp\left(\varphi\left(v_{j},\beta\right)\right) = exp\left(ln\beta_{0} + \beta_{1}(-lnv_{j})\right) = \beta_{0}v_{j}^{-\beta_{1}},$$
(1.23)
onde $\varphi\left(v_{j},\beta\right) = ln\beta_{0} + \beta_{1}(-lnv_{j}).$

ii) Relação de Arrhenius

O modelo de Arrhenius relaciona o tempo até a falha t_j com a temperatura τ_j da seguinte forma:

$$t_j = exp\left(\frac{E}{k\tau_j}\right),\tag{1.24}$$

onde τ_j é a temperatura *Kelvin* absoluta, equivalente a temperatura *Celsius*+273°C e a temperatura *Fahrenheit*+459.7°F; k é a constante de *Boltzmann*, 8.6171×10⁻⁵ elétron-volts por °C; E é a energia de ativação da reação, geralmente em elétron-volts. Esta relação é

aplicada em testes para plásticos, lubrificantes, filamentos de lâmpadas incandescentes, entre outros. Para este modelo a função do *stress* apresenta a seguinte forma:

$$exp(\varphi(\tau_j, \alpha)) = exp(\alpha \tau_j^{-1}), \qquad (1.25)$$

onde α corresponde a $\frac{E}{k}$ em (1.24).

Vejamos um caso univariado, onde T tem distribuição exponencial com parâmetro λ , $T \sim Exp(\lambda)$, e a relação entre o tempo até a falha e o *stress* é dada pelo modelo de potência inversa.

Exemplo. Suponha que a função de sobrevivência de T é dada por $S_T(t) = exp(-\lambda t)$ e a função de sobrevivência de $T | v_j, j=1,2,...,k$ obtida usando a relação em (1.17) é dada por:

$$S_{T|v_j}(t) = S_T \left(exp(-\varphi(v_j,\beta))t \right)$$

= $S_T \left(exp(-ln\beta_o - \beta_1(-lnv_j))t \right)$
= $S_T \left(e^{-ln\beta_o} v_j^{\beta_1} t \right)$
= $exp(\lambda \beta_o^{-1} v_j^{\beta_1} t)$
= $exp(\beta_o^* v_j^{\beta_1} t)$

onde $\beta_0^* = \lambda \beta_0^{-1}$, logo $T | v_j \sim Exp(\beta_0^* v_j^{\beta_j})$. Então, usando (1.18) obtemos a função de risco de $T | v_j$ dada por $h_{T|v_j}(t) = \beta_0^* v_j^{\beta_j}$.

Este exemplo mostra, portanto, que a forma da distribuição de $T|v_j$ para cada nível j=1, 2, ..., k de *stress* é a mesma de T.

1.3 Análise Clássica

1.3.1 Estimação dos Parâmetros usando o Método de Máxima Verossimilhança

Consideremos Y_1 , Y_2 , ..., Y_n variáveis aleatórias independentes identicamente distribuídas com função densidade $f_{Y_1}(y; \theta)$ onde $\theta = (\theta_1, ..., \theta_p)$ é um vetor de parâmetros desconhecidos assumindo valores em um conjunto $\Theta \subset \mathbb{R}^p$.

Obtidos os valores amostrais $y_1, y_2, ..., y_n$, a função $f_{Y_1}(y; \theta)$ pode ser considerada uma função dos parâmetros, denominada função de verossimilhança de θ dado $y_1, y_2, ..., y_n$ e apresenta a seguinte forma (veja, Lawless, 1982):

$$L\left(\begin{array}{c} \theta \mid y \\ \tilde{\varphi} \quad \tilde{\varphi} \end{array}\right) = f_{Y}\left(\begin{array}{c} y; \theta \\ \tilde{\varphi} \quad \tilde{\varphi} \end{array}\right) = \prod_{i=1}^{n} f_{Y_{i}}\left(y_{i}; \theta\right).$$
(1.26)

No caso de variáveis aleatórias bivariadas $(Y_{11}, Y_{21}), ..., (Y_{1n}, Y_{2n})$, independentes e identicamente distribuídas com função densidade conjunta $f_{Y_1,Y_2}\left(y_1, y_2; \theta\right)$ a função de verossimilhança é dada por:

$$L\left(\underbrace{\theta}_{i} \mid y_{1}, y_{2}_{i}\right) = f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}; \theta\right) = \prod_{i=1}^{n} f_{Y_{1i}, Y_{2i}}\left(y_{1i}, y_{2i}; \theta\right).$$
(1.27)

Em análise de sobrevivência ou confiabilidade, o tempo até a falha pode ser censurado e neste caso, a função de verossimilhança é dada por:

$$L\left(\underbrace{\theta}_{i} \mid \underbrace{t}_{i}\right) = \prod_{i=1}^{n} f_{T_{i}}\left(t_{i}; \underbrace{\theta}_{i}\right)^{\delta_{i}} S_{T_{i}}\left(t_{i}; \underbrace{\theta}_{i}\right)^{1-\delta_{i}}, \qquad (1.28)$$

onde $\delta_i = \begin{cases} 1, \text{ se } t_i & \text{é o tempo até a falha} \\ 0, \text{ se } t_i & \text{é o tempo da censura} \end{cases}$

A análise de dados bivariados censurados já apresenta mais dificuldades. Consideremos por exemplo, que ambos os tempos possam ser censurados. Neste caso, os valores amostrais pertence a uma das 4 classes descritas a seguir:

C₁: $t_{1i} \in t_{2i}$ são tempos até as falhas;

C₂: t_{1i} é um tempo até a falha e t_{2i} é um tempo censurado (conhecemos apenas que $T_{2i} \ge t_{2i}$);

C3: t_{2i} é um tempo até a falha e t_{1i} é um tempo censurado;

C4: $t_{1i} \in t_{2i}$ são tempos censurados, $t_{1i} = t_{2i}$.

Dessa forma, a função de verossimilhança é dada por:

$$L\left(\begin{array}{c} \theta \mid t_{1}, t_{2} \\ \tilde{e} \mid \tilde{e}_{1}, t_{2} \end{array}\right) = \left\{\prod_{i \in C_{I}} f_{T_{II}, T_{2i}}(t_{1i}, t_{2i})\right\} \left\{\prod_{i \in C_{2}} \frac{-\partial}{\partial t_{1i}} S_{T_{II}, T_{2i}}(t_{1i}, t_{2i})\right\} \\ \times \left\{\prod_{i \in C_{3}} \frac{-\partial}{\partial t_{2i}} S_{T_{II}, T_{2i}}(t_{1i}, t_{2i})\right\} \left\{\prod_{i \in C_{4}} S_{T_{II}, T_{2i}}(t_{1i}, t_{2i})\right\}.$$

$$(1.29)$$

Consideremos $(T_{11} | v_j, T_{21} | v_j), ..., (T_{1n} | v_j, T_{2n} | v_j), j=1, 2..., k$ os tempos bivariados até as falhas aceleradas por cargas de *stress* constantes, v_j , mais elevadas do que a usual. Assumindo que os tempos em cada nível j de *stress* são independentes, com densidade $f_{T_1|v_j,T_2|v_j}(t_{1i},t_{2i};\theta)$, onde $\theta \in \Theta \subset \mathbb{R}^p$, a função de verossimilhança é dada por:

$$L\begin{pmatrix} \theta \mid t_{1}, t_{2} \\ \tilde{ } & \tilde{ } & \tilde{ } \end{pmatrix} = \prod_{j=l}^{k} \prod_{i=l}^{n_{j}} f_{T_{l} \mid v_{j}, T_{2} \mid v_{j}} \left(t_{1i}, t_{2i}; \theta \right),$$
(1.30)

O princípio da estimação de máxima verossimilhança (MV) consiste em obter os valores de θ que maximizam a função de verossimilhança ou equivalentemente os valores que maximizam o logaritmo natural da função de verossimilhança, uma vez que a função log é crescente.

Em casos gerais, os estimadores de MV de θ , θ pode ser encontrado resolvendo as chamadas equações de verossimilhança, dadas por:

$$U_i(\theta) = 0, \ i = 1, ..., p,$$
 (1.31)

onde

$$U_i(\underline{\theta}) = \frac{\partial}{\partial \theta_i} \log L\left(\underline{\theta} \mid \underline{y}\right), \qquad i = 1, \dots, p.$$

A função $U_i(\theta)$ é chamada escore e o vetor $U(\theta) = (U_i(\theta), ..., U_p(\theta))$ de vetor escore.

Em algumas situações não é possível encontrar θ analiticamente sendo necessária a utilização de métodos numéricos. Também há casos onde o máximo não existe.

23
1.3.2 Propriedades dos Estimadores de MV

Sejam Y_1 , Y_2 , ..., Y_n variáveis aleatórias independentes, com função de densidade $f_{r_i}(y;\theta), \ \theta \in \Theta \subset \mathbb{R}^p$. Sob as condições de regularidade, descritas em (i) e (ii) a seguir, o estimador de MV de θ , θ apresenta as seguintes propriedades assintóticas (veja Leite e Singer, 1990):

- 1) $\hat{\theta}$ é um estimador consistente de θ .
- 2) $\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N_p(\theta, I(\theta)^{-1})$, onde $I(\theta)^{-1}$ é a inversa da matriz de informação

de Fisher definida na condição (ii) a) abaixo.

As condições de regularidade são:

(i) Para
$$i, j = 1, ..., p, \frac{\partial}{\partial \theta_i} f(y; \theta) \in \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(y; \theta)$$
 existem em quase toda parte e são tais
que $\left| \frac{\partial}{\partial \theta_i} f(y; \theta) \le H_i(y) \right|$ e $\left| \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(y; \theta) \right| \le G_{ij}(y)$ onde $\int_R H_i(y) dy < \infty$ e
 $\int_R G_{ij}(y) dy < \infty;$

Para $i, j = 1, ..., p, \frac{\partial}{\partial \theta_i} f(y; \theta) \in \frac{\partial^2}{\partial \theta_i \partial \theta_i} f(y; \theta)$ existem em quase toda parte e são tais (ii) que:

a) a matriz de informação de Fisher,

$$I(\underline{\theta}) = E\left\{ \left(\frac{\partial}{\partial \theta} \log f(Y_1; \theta) \right)^t \left(\frac{\partial}{\partial \theta} \log f(Y_1; \theta) \right) \right\},$$
(1.32)

onde $\left(\frac{\partial}{\partial \theta} \log f(Y_1; \theta)\right) = \left(\frac{\partial}{\partial \theta_1} \log f(Y_1; \theta), \dots, \frac{\partial}{\partial \theta_p} \log f(Y_1; \theta)\right)$ é finita e positiva

definida.

b)
$$E_{\theta}\left\{\sup_{\substack{\{h:||h||\leq\delta\}}} ||\frac{\partial^2}{\partial\theta\,\partial\theta^t}\log f(Y_1;\theta+h) - \frac{\partial^2}{\partial\theta\,\partial\theta^t}\log f(Y_1;\theta)\right\} = \Psi_{\delta}$$
, onde
 $\frac{\partial^2}{\partial\theta\,\partial\theta^t}\log f(Y_1;\theta) = \left[\frac{\partial^2}{\partial\theta\,\partial\theta^t}\log f(Y_1;\theta)\right]_{ij}$, converge para zero com $\delta \to 0$.

Um estimador consistente da matriz de informação de Fisher é dado pela matriz de informação observada, $I_o(\theta)$, com elementos

$$I_{o,ij} = \frac{1}{n} \frac{-\partial^2}{\partial \theta_i \partial \theta_j} \log L\left(\frac{\theta}{\partial t_i} t_i, t_j\right) \bigg|_{\substack{\theta = \hat{\theta} \\ \theta = \theta}}$$
(1.33)

Portanto, usando as propriedades assintóticas dos estimadores de MV, os intervalos de confiança para θ_i são dados por:

$$IC(\theta_i) = \left(\hat{\theta}_i - z_{\alpha/2} \frac{I_{\theta, ii}}{\sqrt{n}}; \hat{\theta}_i + z_{\alpha/2} \frac{I_{\theta, ii}}{\sqrt{n}}\right), \tag{1.34}$$

e os intervalos de confiança aproximados para funções dos parâmetros $g(\theta)$, obtidos usando o método DELTA (veja, Leite e Singer, 1990), são dados por:

$$IC\left(g(\theta)\right) = \left(g(\hat{\theta}) - z_{\alpha/2} \frac{\sqrt{\operatorname{var} g(\theta)}}{\sqrt{n}} ; g(\hat{\theta}) + z_{\alpha/2} \frac{\sqrt{\operatorname{var} g(\theta)}}{\sqrt{n}} \right), \quad (1.35)$$

onde

$$\hat{var}\left(g(\theta)\right) = \left(\frac{\partial}{\partial\theta_1}g(\theta), \frac{\partial}{\partial\theta_2}g(\theta), \dots, \frac{\partial}{\partial\theta_p}g(\theta)\right)^t \bigg|_{\theta=\hat{\theta}} I_{\theta}^{-1}\left(\frac{\partial}{\partial\theta_1}g(\theta), \frac{\partial}{\partial\theta_2}g(\theta), \dots, \frac{\partial}{\partial\theta_p}g(\theta)\right)\bigg|_{\theta=\hat{\theta}}.$$
(1.36)

1.3.3 Diagnóstico de Normalidade Multivariada dos Estimadores de MV

Existem vários métodos que podem ser utilizados para verificar se a distribuição dos estimadores de MV de $\theta = (\theta_1, \theta_2, ..., \theta_p)$ se aproxima da distribuição normal multivariada, os

25

quais, em geral, produzem medidas que são difíceis de calcular e interpretar. Devido a isto, Kass e Slate (1992) propuseram algumas medidas, baseadas nas terceiras derivadas da função de verossimilhança, avaliadas nas estimativas de MV que são fáceis de serem obtidas. Uma dessas medidas é dada por:

$$STD = \sum_{ijklmn} b_{ij} b_{lm} b_{kn} d_{ijk} d_{lmn}, \qquad (1.37)$$

onde, b_{ij}, i, j=1, 2, ..., p, são os elementos da inversa da matriz de informação observada e

$$d_{ijk} = \frac{\partial^3}{\partial \theta_i \partial \theta_j \partial \theta_k} \log L \left(\begin{array}{c} \theta \mid y \\ - \end{array} \right) \bigg|_{\substack{\theta = \theta \\ \theta = \theta}}$$

O valor de *STD* deve ser pequeno para que a distribuição dos estimadores seja normal. Para julgar o quanto pequeno deve ser esse valor, Kass e Slate (1992) acharam razoável considerar STD , onde p é a dimensão do vetor de parâmetros.

1.4 Análise Bayesiana

A inferência Bayesiana é uma abordagem da Estatística que além de fazer uso de toda a informação contida nos dados, também leva em conta o grau de conhecimento do pesquisador, a respeito dos parâmetros antes da observação dos dados.

Nesta seção fazemos uma revisão dos principais conceitos de inferência Bayesiana e dos dois métodos de simulação iterativa que são utéis para esta abordagem, o amostrador de Gibbs e o algoritmo de Metropolis-Hastings (M-H), juntamente com o critério de convergência de Gelman e Rubin.

1.4.1 Principais Conceitos

Consideremos uma amostra aleatória de tamanho *n*, $Y = (Y_1, Y_2, ..., Y_n)$, com função de densidade $f_Y\left(y;\theta\right)$, onde $\theta = (\theta_1,...,\theta_p)$, é um vetor de parâmetros.

Seja π_i (θ_i), i=1, 2, ..., p, uma função de densidade *a priori* para θ_i , que representa as informações sobre θ_i antes da coleta dos dados. Assumindo independência das densidades *a priori*, a densidade *a priori* conjunta para θ é dada por:

$$\pi\left(\theta_{1}\right) = \pi_{1}\left(\theta_{1}\right) \pi_{2}\left(\theta_{2}\right) \dots \pi_{p}\left(\theta_{p}\right).$$

$$(1.38)$$

A densidade *a posteriori* de θ , que representa o conhecimento a respeito de θ após a observação dos dados $y = (y_1, y_2, ..., y_n)$, é obtida da fórmula de Bayes,

$$\pi\left(\begin{array}{c} \theta \mid y \\ \tilde{\varphi} \end{array}\right) = \frac{\pi\left(\theta\right) f_{Y}\left(\begin{array}{c} y \mid \theta \\ \tilde{\varphi} \end{array}\right)}{f_{Y}\left(\begin{array}{c} y \\ \tilde{\varphi} \end{array}\right)},$$
(1.39)

onde
$$f_{\underline{Y}}\left(\underline{y}\right) = \begin{cases} \int f_{\underline{Y}}\left(\underline{y} \mid \underline{\theta}\right) \pi\left(\underline{\theta}\right) d\,\underline{\theta}, & \text{p/} \quad \underline{\theta} \text{ contínuo,} \\ \\ \sum f_{\underline{Y}}\left(\underline{y} \mid \underline{\theta}\right) \pi\left(\underline{\theta}\right), & \text{p/} \quad \underline{\theta} \text{ discreto,} \end{cases}$$
 (1.40)

e a soma ou a integral em (1.40) é calculada para o intervalo admissível de θ .

Como
$$f_{\underline{y}}\left(\underline{y}\right)$$
 é constante em relação a $\underline{\theta}$, então tem-se que,
 $\pi\left(\underline{\theta} \mid \underline{y}\right) = c\pi\left(\underline{\theta}\right)f_{\underline{y}}\left(\underline{y} \mid \underline{\theta}\right),$

onde c é uma constante necessária para que a soma ou integral da densidade *a posteriori* em (1.39) seja igual a 1.

A informação de θ proveniente dos dados é contida na função de verossimilhança de θ . Dessa forma, a densidade *a posteriori* conjunta é proporcional ao produto entre a densidade *a priori* conjunta e a função de verossimilhança, ou seja,

$$\pi \left(\begin{array}{c} \theta & y \\ \varphi & z \end{array} \right) \propto \pi \left(\begin{array}{c} \theta \\ \theta \end{array} \right) L \left(\begin{array}{c} \theta & y \\ \varphi & z \end{array} \right). \tag{1.41}$$

A partir da densidade *a posteriori* conjunta são obtidas as densidades marginais *a* posteriori de θ_i , dadas por:

$$\pi\left(\theta_{i} \mid \underline{y}\right) = \int \dots \int \pi\left(\theta_{i} \mid \underline{y}\right) d\theta_{i-i}, \qquad (1.42)$$

onde θ_{-i} é o vetor θ sem o *i*-ésimo elemento.

As inferência sobre os parâmetros são feitas através das densidades marginais *a posteriori*. As informações nelas contidas podem ser resumidas através de medidas de locação, como a média e mediana, medidas de dispersão, como a variância e desvio padrão e também pelos intervalos Bayesianos (veja Box e Tiao, 1973).

Os conceitos apresentados para o caso univariado podem ser estendidos para mais de uma variável. Por exemplo, para o caso bivariado tem-se que

$$\pi\left(\underbrace{\theta}_{\widetilde{\rho}} | (y_1, y_2)\right) \propto \pi\left(\underbrace{\theta}_{\widetilde{\rho}}\right) L\left(\underbrace{\theta}_{\widetilde{\rho}} | (y_1, y_2)\right), \tag{1.43}$$

onde $(y_1, y_2) = ((y_{11}, y_{21}), \dots, (y_{1n}, y_{2n})).$

Em alguns modelos as integrais em (1.42) podem não apresentar solução analítica, sendo necessário o uso de métodos de aproximações ou numéricos, que por sua vez, em alguns modelos, são de difícil implementação. Nestes casos, métodos de simulação iterativa podem ser usados, entre eles os algoritmos de Gibbs e de M-H.

1.4.2 Métodos de Simulação Iterativa usados na Inferência Bayesiana

Utilizando os métodos de simulação iterativa é possível gerar observações de uma distribuição marginal indiretamente, sem precisar calcular a sua densidade.

Os métodos de simulação iterativa mais utilizados na inferência Bayesiana são, o amostrador de Gibbs e o algoritmo M-H. O amostrador de Gibbs foi proposto por Geman e Geman (1984) e o algoritmo M-H foi desenvolvido por Metropolis, Rosenbluth, Rosenbluth, Teller e Teller (1953) e generalizado por Hastings (1970). Posteriormente, os dois métodos foram discutidos com mais detalhes por Casella e George (1992), que estudaram o amostrador de Gibbs e por Chib e Greenberg (1995) que descreveram o algoritmo M-H.

O amostrador de Gibbs consiste em amostrar de uma cadeia de Markov, cujo núcleo de transição é dado pelas distribuições condicionais completas. O algoritmo do amostrador de Gibbs é apresentado a seguir (veja Gamerman, 1996):

- *i*) inicializar o contador de iterações da cadeia, *j*=1, e arbitrar valores iniciais $\theta_{i}^{(0)} = (\theta_{l}^{(0)}, ..., \theta_{p}^{(0)});$
- *ii)* obter um novo valor $\theta_{p}^{(j)} = (\theta_{1}^{(j)}, ..., \theta_{p}^{(j)})$ gerado das distribuições condicionais

$$\begin{aligned}
\theta_{l}^{(j)} &\sim f(\theta_{l} \mid \theta_{2}^{(j-1)}, ..., \theta_{p}^{(j-1)}) \\
\theta_{2}^{(j)} &\sim f(\theta_{2} \mid \theta_{l}^{(j-1)}, \theta_{3}^{(j-1)}, ..., \theta_{p}^{(j-1)}) \\
\vdots \\
\theta_{p}^{(j)} &\sim f(\theta_{p} \mid \theta_{l}^{(j-1)}, ..., \theta_{p-l}^{(j-1)});
\end{aligned}$$
(1.44)

iii) mudar o contador j para j+1 até obter o tamanho de amostra desejado.

No caso das distribuições condicionais completas serem desconhecidas, associa-se ao amostrador de Gibbs, o algoritmo M-H.

Para implementar o algoritmo M-H é necessário especificar uma densidade que gere os candidatos à distribuição de interesse. Uma possibilidade seria escrever as distribuições condicionais da seguinte forma: (veja Chib e Greenberg, 1995)

$$f(\theta_{1} \mid \theta_{2}, \theta_{3}..., \theta_{p}) \propto \psi_{1}(\theta_{1}, \theta_{2},..., \theta_{p}) h_{i}(\theta_{1})$$

$$f(\theta_{2} \mid \theta_{1}, \theta_{2},..., \theta_{p}) \propto \psi_{2}(\theta_{1}, \theta_{2},..., \theta_{p}) h_{i}(\theta_{2})$$

$$\vdots$$

$$f(\theta_{p} \mid \theta_{1}, \theta_{2},..., \theta_{p-1}) \propto \psi_{p}(\theta_{1}, \theta_{2},..., \theta_{p}) h_{i}(\theta_{p}),$$

$$(1.45)$$

onde ψ_i (θ_l , θ_2 ,..., θ_p) é uniformemente limitada e $h_i(\theta_i)$ é uma densidade que pode ser amostrada, denominada núcleo de transição.

Através de $h_i(\theta_i)$ são gerados os candidatos que serão aceitos com uma certa probabilidade de movimento, dada por:

$$\alpha_{i}\left(\theta_{i}^{(j)},\theta_{i}^{(cand)}\right) = min\left(\frac{\psi_{i}\left(\theta_{i}^{(cand)},\theta_{i}\right)}{\psi_{i}\left(\theta_{i}^{(j)},\theta_{i}\right)},1\right)$$
(1.46)

onde θ_{-i} é o vetor θ sem o *i*-ésimo elemento.

- O algoritmo de M-H (veja Gamerman, 1996) é apresentado a seguir:
- *i*) inicializar o contador de iterações da cadeia, j=1, e arbitrar valores iniciais, $\theta^{(0)} = (\theta_1^{(0)}, \dots, \theta_k^{(0)});$

- *ii)* inicializar o contador de elementos de θ , *i*=1;
- *iii)* gerar da distribuição $h_i(\theta_i)$ um candidato para θ_i , dado por $\theta_i^{(cand)}$;
- *iv)* calcular a probabilidade de movimento $\alpha_i(\theta_i^{(j-1)}, \theta_i^{(cand)});$
- v) gerar $u \sim U(0,1)$. Aceitar o candidato se $u \leq \alpha_i$, $\theta_i^{(j)} = \theta_i^{(cand)}$, caso contrário $\theta_i^{(j)} = \theta_i^{(j-1)}$;
- vi) repetir iii), iv), v) para i=2 até p;
- vii) mudar o contador de j para j+1 e retornar a ii) até obter o tamanho de amostra desejado.

1.3.3 Critério de Convergência de Gelman e Rubin

Para que as amostras, geradas pelos métodos de simulação iterativa, possam ser utilizadas para inferência é necessário verificar se as mesmas estão convergindo para a distribuição de equilíbrio. Existem alguns procedimentos gráficos para monitorar a convergência, por exemplo, a similaridade da trajetória da cadeia, ao longo das iterações, é um forte indício de convergência. Uma outra indicação de convergência é dada pela baixa autocorrelação entre os elementos da cadeia. Existem também inúmeros critérios para diagnosticar convergência, sendo os mais utilizados, os propostos por Gelman e Rubin (1992), Geweke (1992), Raftery e Lewis (1992) e Heidelberger e Welch (1983).

Nesta seção apresentamos o método proposto por Gelman e Rubin (1992). Os autores sugerem utilizar várias cadeias paralelas, inicializadas em pontos distintos. O método é baseado na comparação das variâncias dentro e entre as cadeias para cada parâmetro. Esta comparação é utilizada para estimar o quanto o parâmetro de escala da distribuição de interesse pode ser reduzido quando a cadeia vai para o infinito. Para calcular esse fator de redução deve-se obter para cada variável:

1. A variância entre as *m* médias das cadeias $\{\theta_{i1}, \theta_{i2}, ..., \theta_{in}\}, i=1, 2, ..., m$, dada por:

$$\frac{E}{n} = \sum_{i=1}^{m} \frac{\left(\overline{\theta}_{i.} - \overline{\theta}_{..}\right)^{2}}{\left(m-1\right)},$$

onde
$$\overline{\theta}_{i.} = \sum_{i=1}^{m} \theta_{ij}$$
 e $\overline{\theta}_{i.} = \sum_{i=1}^{m} \sum_{j=1}^{m} \theta_{ij}$.

2. A média das *m* variâncias dentro das cadeias, s_i^2 , cada uma delas baseada em *n*-1 graus de liberdade, dada por:

$$D=\sum_{i=1}^m\frac{s_i^2}{m}\,.$$

- 3. Uma estimativa da média da distribuição de interesse, dada pela média amostral dos $m \times n$ valores simulados de θ_i , $\hat{\mu} = \overline{\theta_n}$.
- 4. Uma estimativa não viciada da variância da distribuição de interesse, dada pela média ponderada entre as variâncias dentro e entre as cadeias, dada por:

$$\hat{\sigma}^2 = \left(\frac{(n-1)}{n}\right)D + \frac{1}{n}E.$$

5. Os parâmetros de escala $\sqrt{\hat{V}} = \sqrt{\hat{\sigma}^2 + \frac{E}{mn}}$ e graus de liberdade $gl = \frac{2\hat{V}^2}{\hat{var}(\hat{V})}$ da

distribuição t de Student aproximada para θ_i , onde

$$\hat{var}(\hat{V}) = \left(\frac{(n-1)}{n}\right)^2 \frac{1}{m} \hat{var}(s_i^2) + \left(\frac{(m+1)}{mn}\right)^2 \frac{2}{(m-1)} E^2 + 2\left(\frac{(m+1)(n-1)}{mn^2}\right) \times \frac{n}{m} \left(\hat{cov}(s_i^2, \overline{\Theta}_{i..}^2) - 2\overline{\Theta}_{i..}(\hat{cov}(s_i^2, \overline{\Theta}_{i..}))\right),$$

e as variâncias e covariâncias estimadas são obtidas dos *m* valores de $\overline{\theta}_{i.}$ e $s_{i.}^{2}$.

6. Finalmente, o fator de redução do parâmetro de escala é dado por:

$$\sqrt{\hat{R}} = \sqrt{\left(\frac{\hat{V}}{\hat{W}}\frac{gl}{gl-2}\right)}$$
(1.47)

que converge para 1 quando $n \rightarrow \infty$.

Uma vez que \hat{R} está próximo de 1 para todas as variáveis de interesse, os autores sugerem utilizar a segunda metade das observações de cada cadeia para as inferências.

CAPÍTULO II

ANÁLISE CLÁSSICA DA DISTRIBUIÇÃO EBVE

Este capítulo é dividido em duas seções. Na seção 2.1 geramos amostras da distribuição EBVE, usando o método da rejeição e fazemos um estudo de simulação para verificar a validade das amostras geradas. Na seção 2.2 estimamos os parâmetros da distribuição EBVE, utilizando o método de MV, considerando amostras com dados não censurados e com censura do tipo I, ou seja, quando o tempo para realização do experimento é fixado previamente. Em ambos os casos, fazemos simulações, considerando amostras de vários tamanhos, visando estudar as propriedades assintóticas dos estimadores de MV.

2.1 Geração de Dados da Distribuição EBVE

Existem vários métodos de simulação estocástica que são usados para gerar quantidades de uma distribuição de interesse. Entre eles, o método da rejeição tem sido bastante utilizado. Este método foi descrito inicialmente por von Neumann (1951) e algumas modificações deste método apareceram posteriormente na literatura.

Nesta seção geramos amostras da distribuição EBVE, usando a versão do método da rejeição descrita por Kennedy (1980). A seção é dividida em duas partes, sendo que na primeira mostramos como obter as amostras e na segunda apresentamos um estudo de simulação para verificar a qualidade das amostras geradas.

UNICAMP SIBLIOTECA CENTRA SECÃO CIRCULANT

2.1.1 Geração de Dados da Distribuição EBVE usando o Método da Rejeição

O método da rejeição (veja Kennedy, 1980) consiste em:

- 1) gerar x de uma distribuição q(x);
- gerar u de uma U(0, 1);
- aceitar x se uM(x) ≤ f(x), onde M(x) é uma função integrável, conhecida como envelope superior, tal que, M(x) ≥ f(x); caso contrário retornar ao passo 1).

Para gerar dados da densidade da EBVE, dada por $f_{T_1,T_2}(t_1,t_2)$ em (1.13), consideramos x no passo 1) acima, um vetor com dois elementos (x_1,x_2) e q uma distribuição uniforme em $G = [a_1,b_1] \times [a_2,b_2]$. Uma vez que $(X_1,X_2) \sim U(G)$ então X_1 e X_2 são independentes (James, 1981). Dessa forma, geramos x_1 de $U=[a_1, b_1]$ e x_2 de $U=[a_2, b_2]$.

A probabilidade de rejeição dos candidatos é menor quando as funções M e f em 3) estão próximas. Entretanto, atualmente com a rapidez dos computadores este fato torna-se menos importante e assim sendo, escolhemos $M(x_1,x_2)$ igual a uma constante, garantindo facilmente o envelope para f. Essa constante foi escolhida baseada na análise dos gráficos da densidade bivariada, apresentados na Figura 2.1. Portanto, para os parâmetros considerados, $\lambda_1 = \lambda_2 = 0, 1, \ \lambda_{12} = 0, 2, \ s_1 = s_2 = 0, 5$ utilizamos $M(x_1, x_2) = 0,046$. Os valores $a_1 = a_2 = 0$ e $b_1 = b_2 = 35$ também foram escolhidos baseados nos gráficos da Figura 2.1.

Como a densidade da EBVE é definida de forma diferente para $t_1 > t_2$ e $t_1 \le t_2$, utilizamos a variável *ber* ~*bernoulli*(0,5) para classificar os pares.

Resumindo, o programa para a geração de (T_1, T_2) , apresentado no Apêndice B, é feito do algoritmo mostrado a seguir.

- 1. Gerar $x_1 \sim U(0, 35) e x_2 \sim U(0, 35)$.
- 2. Gerar ber ~bernoulli(0,5)

se ber = 0 usar o par $(min(x_1, x_2), max(x_1, x_2)) = (c_1, c_2)$

se ber = 1 usar o par $(max(x_1, x_2), min(x_1, x_2)) = (c_1, c_2)$ como candidato.

3. Gerar $u \sim U(0, 0, 046)$.

Se $u \le f(c_1, c_2)$ aceitar o candidato, caso contrário retornar ao passo 1.

Figura 2.1 - Gráficos da densidade EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$ (interseções no plano $t_1 = 0$ e $t_2 = 0$).

2.1.2 Verificação da Validade das Amostras Geradas

Nesta seção apresentamos um estudo de simulação para verificarmos a qualidade das amostras geradas pelo método da rejeição, descrito anteriormente.

Inicialmente calculamos os valores teóricos, esperança, variância e correlação da distribuição, considerando os parâmetros utilizados na geração, ou seja, $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2, s_1 = s_2 = 0, 5$. Os resultados foram obtidos numericamente e se encontram na Tabela 2.1.

Para verificar a eficiência do método da rejeição, geramos 500 amostras considerando vários tamanhos, n=20, 30, 50, 100, 200, 300 e 500 e para cada uma delas calculamos as médias de t_1 , t_2 , $min(t_1, t_2)$, as variâncias e a correlação entre t_1 e t_2 . Na Tabela 2.2 são apresentadas as médias dos valores obtidos nas 500 amostras e o tempo gasto nas simulações, usando um processador *Pentium* II – 350 MHz com 128 *MB* de *RAM*.

35

$E(T_I)$	$E(T_2)$	$E min(T_1, T_2)$	$Var(T_1)$	$Var(T_2)$	$Corr(T_1, T_2)$
4,31	4,31	2,89	12,83	12,83	0,32

Tabela 2.1 - Resumo da distribuição EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1,$

Tabela 2.2 – Média das médias, variâncias e correlações dos tempos (t_1, t_2) das 500 amostras geradas da EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$

.n	médias t_1	médias t_2	médias $min(t_1, t_2)$	var t_I	var t_2	$\operatorname{corr}(t_1, t_2)$	tempo
	média (dp)	média (dp)	média (dp)	média (dp)	média (dp)	média (dp)	
20	4,28 (0,77)	4,29 (0,80)	2,89 (0,57)	11,70 (6,43)	12,08 (7,15)	0,32 (0,26)	1'01
30	4,28 (0,61)	4,30 (0,65)	2,89 (0,47)	12,09 (5,43)	12,40 (5,89)	0,32 (0,21)	1'32
50	4,28 (0,47)	4,29 (0,51)	2,88 (0,35)	12,27 (4,18)	12,64 (4,88)	0,32 (0,16)	2'33
100	4,29 (0,34)	4,30 (0,36)	2,88 (0,24)	12,53 (3,21)	12,69 (3,47)	0,33 (0,12)	5'05
200	4,30 (0,25)	4,31 (0,24)	2,88 (0,18)	12,75 (2,34)	12,71 (2,30)	0,32 (0,09)	10'11
300	4,31 (0,20)	4,31 (0,20)	2,89 (0,15)	12,73 (1,92)	12,73 (1,84)	0,32 (0,08)	15'15
500	4,30 (0,16)	4,30 (0,16)	2,89 (0,12)	12,71 (1,48)	12,73 (1,43)	0,32 (0,06)	25'22

Observamos que as médias das médias, variâncias e correlações dos dados gerados estão próximas dos valores da distribuição e que os desvios padrões dessas medidas parecem pequenos, principalmente para $n \ge 100$.

Mais precisamente, considerando que a distribuição das médias amostrais se aproxima da distribuição normal, podemos interpretar os resultados da Tabela 2.2 como segue: por exemplo, para n=200, aproximadamente 68% das médias de t_1 , das 500 amostras geradas, estão dentro do intervalo $(\bar{t}_1 - s, \bar{t}_1 + s) = (4,05, 4,55)$, ou ainda, que 95% das médias de t_1 estão dentro do intervalo $(\bar{t}_1 - 2s, \bar{t}_1 + 2s) = (3,80, 4,80)$ onde \bar{t}_1 e s são respectivamente, a média e o desvio padrão das 500 médias de t_1 .

2.2 Análise de Dados Bivariados sem Censura da Distribuição EBVE

Nesta seção encontramos as estimativas de MV dos parâmetros da distribuição EBVE, usando dados sem censura e estudamos as propriedades assintóticas desses estimadores através de simulações, considerando amostras de vários tamanhos.

2.2.1 Estimação dos Parâmetros Usando o Método de MV e suas Propriedades

Seja $\begin{pmatrix} T_1, T_2 \\ \ddots \end{pmatrix} = ((T_{11}, T_{21}), ..., (T_{1n}, T_{2n}))$, uma amostra aleatória dos tempos até as falhas

de n pares de componentes, com função de distribuição EBVE.

Obtidos os valores amostrais, o logaritmo da função de verossimilhança dos parâmetros (λ_1 , λ_2 , λ_{12} , s_1 , s_2) é dado por:

$$\begin{split} \log L\bigg(\frac{\theta}{z} | t_{j}, t_{j} \bigg) &= \\ & \left[\exp \bigg(- (\lambda_{1} + \lambda_{12}) t_{j_{1}} - \lambda_{2} t_{2i} + \frac{\lambda_{12}}{s_{1}} (1 - e^{-s_{1}(t_{j_{1}} - t_{j_{1}})}) + \frac{\lambda_{12}}{s_{1} + s_{2}} \left(e^{-s_{1}(t_{j_{1}} - t_{j_{1}})} - e^{-s_{2}t_{j_{1}} - s_{2}t_{j_{2}}} \right) \right) \\ & \times \bigg(\lambda_{1} + \lambda_{12} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} - \frac{\lambda_{12}}{s_{1} + s_{2}} \left(s_{2} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} + s_{1} e^{-s_{1}t_{j_{1}} - s_{2}t_{j_{2}}} \right) \bigg) \\ & \times \bigg(\lambda_{2} + \lambda_{12} - \lambda_{12} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} + \frac{s_{2}\lambda_{12}}{s_{1} + s_{2}} \left(e^{-s_{1}(t_{j_{1}} - t_{j_{2}})} \right) \bigg) \\ & + \exp \bigg(- (\lambda_{1} + \lambda_{12}) t_{j_{1}} - \lambda_{2} t_{2i} + \frac{\lambda_{12}}{s_{1}} \left(1 - e^{-s_{1}(t_{j_{1}} - t_{j_{2}})} \right) + \frac{\lambda_{12}}{s_{1} + s_{2}} \left(e^{-s_{1}(t_{j_{1}} - t_{j_{1}})} - e^{-s_{1}t_{j_{1}} - s_{2}t_{j_{1}}} \right) \bigg) \\ & \times \bigg(s_{2}\lambda_{12} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} - \frac{s_{2}\lambda_{12}}{s_{1} + s_{2}} \left(s_{2} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} + s_{1} e^{-s_{1}t_{j_{1}} - s_{2}t_{j_{2}}} \right) \bigg) \\ & \times \bigg(\lambda_{1} + \lambda_{12} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} - \frac{\lambda_{12}}{s_{1} + s_{2}} \left(s_{2} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} + s_{1} e^{-s_{1}t_{j_{1}} - s_{2}t_{j_{2}}} \right) \bigg) \\ & \times \bigg(\lambda_{1} + \lambda_{12} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} - \frac{\lambda_{12}}{s_{1} + s_{2}} \left(s_{2} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} + s_{1} e^{-s_{1}t_{j_{1}} - s_{2}t_{j_{2}}} \right) \bigg) \\ & \times \bigg(s_{2}\lambda_{12} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} - \frac{\lambda_{12}}{s_{1} + s_{2}} \left(s_{2} e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} + s_{1} e^{-s_{1}t_{j_{1}} - s_{2}t_{j_{2}}} \right) \bigg) \\ & + \exp \bigg(- \lambda_{1}t_{j_{1}} - \left(\lambda_{2} + \lambda_{j_{2}}\right) t_{2j_{1}} + \frac{\lambda_{j_{2}}}{s_{2}} \left(1 - e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} + \frac{\lambda_{12}}{s_{1} + s_{2}} \left(e^{-s_{2}(t_{j_{1}} - t_{j_{1}})} - e^{-s_{2}t_{j_{1}} - s_{2}t_{j_{2}}} \right) \bigg) \\ & \times \bigg(\lambda_{2} + \lambda_{j_{2}} - \lambda_{j_{2}} e^{-s_{2}(t_{j_{2} - t_{j_{1}})} + \frac{s_{2}\lambda_{j_{2}}}}{s_{1} + s_{2}} \left(e^{-s_{2}(t_{j_{1} - t_{j_{1}})} - e^{-s_{2}t_{j_{1}} - s_{2}t_{j_{2}}} \right) \bigg) \\ & \times \bigg(\lambda_{1} + \lambda_{12} e^{-s_{2}(t_{j_{2} - t_{j_{2}}}) t_{2j_{1}} + \frac{\lambda_{j_{2}}}{s_{2}} \left(1 -$$

Os estimadores de MV, neste caso, não podem ser obtidos analiticamente e dessa forma, maximizamos a função (2.1) através do método numérico de *quasi-Newton* BFGS, veja Fletcher (1987), já implementado em Ox, (Doornik, 1999).

2.2.2.1 Exemplo de Aplicação

Primeiramente geramos uma amostra de tamanho *n*=500, da distribuição EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$, usando o método da rejeição, apresentado na seção 2.1.

As estimativas de MV e os intervalos de confiança aproximados, obtidos usando (1.34) são apresentados na Tabela 2.3, abaixo.

Tabela 2.3 Estimativas de MV e intervalos de confiança aproximados dos parâmetros da EBVE, no exemplo de aplicação

	EMV	IC 95%
λ_1	0,092	(0,067; 0,118)
λ_2	0,099	(0,074; 0,125)
λ_{12}	0,201	(0,164; 0,238)
S ₁	0,567	(0,356; 0,778)
<i>s</i> ₂	0,540	(0,333; 0,748)

Calculamos as estimativas de MV das funções marginais de confiabilidade e de risco, avaliadas no tempo t=5, para cada uma das partes, específica e comum dos componentes. Para isso, substituímos respectivamente, nas expressões (1.5), (1.6), (1.7) e (1.8) as estimativas de MV dos parâmetros, apresentadas na Tabela 2.3, acima. As estimativas encontradas e os intervalos de confiança obtidos usando (1.35) são mostrados na Tabela 2.4.

Também obtivemos as estimativas dos percentis (t_p) , $p \times 100$, das distribuições marginais dos tempos, igualando-as a p e resolvendo, numericamente, essas equações em t. Na Tabela 2.5, apresentamos as estimativas dos quartis das distribuições marginais de T_1 e T_2 .

Tabela 2.4 Estimativas de MV e intervalos de confiança aproximados, das funções marginais de confiabilidade e de risco, avaliadas no tempo t=5, correspondentes ao exemplo de aplicação

tempo	S(t)	IC 95%	h(t)	IC 95%
Xı	0,630	(0,551; 0,710)	0,092	(0,067; 0,118)
Z_1	0,511	(0,450; 0,572)	0,189	(0,158; 0,221)
T_{I}	0,332	(0,290; 0,354)	0,282	(0,256; 0,307)
X_2	0,609	(0,530;0,687)	0,099	(0,074; 0,125)
Z_2	0,518	(0,457; 0,579)	0,187	(0,157; 0,218)
T_2	0,315	(0,283; 0,348)	0,287	(0,261; 0,313)

Tabela 2.5 Estimativas dos quartis das distribuições marginais de T_1 e T_2 , correspondentes ao exemplo de aplicação

componente i	100×p	t _p
1	25	1,738
	50	3,395
	75	5,892
2	25	1,703
	50	3,344
	75	5,801

2.2.1.2 Simulações para Estudar as Propriedades dos Estimadores de MV

Nesta seção apresentamos os resultados obtidos em um estudo de simulação, feito com 500 amostras de tamanhos *n*=30, 50, 100, 200, 300, 500, da distribuição EBVE com parâmetros $\lambda_1 = \lambda_2 = 0, 1, \lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$, geradas pelo método da rejeição, descrito na seção 2.1.1. Para cada uma das amostras foram obtidas as estimativas de MV, os desvios padrões, os erros quadráticos médios dos estimadores, a medida *STD* (seção 1.3.3) e os intervalos de confiança aproximados, com coeficientes nominais 90% e 95%. Neste estudo, foram consideradas as amostras cujas estimativas pertenceram aos intervalos: $\hat{\lambda}_1 < 1$, $\hat{\lambda}_2 < 1$, $\hat{\lambda}_{12} < 2$, $\hat{s}_1 < 5$ e $\hat{s}_2 < 5$. O total de amostras que não convergiram ou não satisfizeram as condições acima, para os tamanhos de amostras considerados, são apresentados na Tabela 2.6. O programa utilizado encontra-se no Apêndice C.

Na Tabela 2.7 apresentamos as médias das 500 estimativas de MV. Os valores encontrados estão próximos dos apresentados por Ryu (1993), Tabela 1. Ainda na Tabela 2.7, se encontram as médias dos desvios padrões e dos erros quadráticos médios dos estimadores e nas Figuras 2.2 e 2.3 mostramos os gráficos referentes a essa tabela. Observamos que os erros quadráticos médios de λ_1 e λ_2 estão próximos de zero, mesmo para amostras com n=30, enquanto que o estimadores de λ_{12} parecem apresentar vícios e variabilidade pequenos para amostras maiores do que 100 e os de s_1 e s_2 para amostras com n>300.

Na Tabela 2.8 se encontram as coberturas dos intervalos com 90% e 95% de confiança, as quais não parecem próximas das coberturas nominais, ainda para n=500.

Na Tabela 2.9 apresentamos algumas razões entre os erros quadráticos médios e verificamos que a eficiência dos estimadores aumenta consideravelmente, com o aumento do tamanho das amostras.

As médias e os desvios padrões das medidas *STD*, apresentadas na Tabela 2.10, estão diminuindo a medida que o tamanho das amostras aumenta, como era esperado. Entretanto, mesmo para amostras de tamanho 500, a média de *STD* > 0,648, indica que a distribuição dos estimadores de MV parece não se aproximar da normal multivariada (veja seção 1.3.3). Estudamos também as distribuições univariadas dos estimadores. Nas Figuras 2.4 e 2.5 estão os histogramas e na Figura 2.6, os gráficos normais probabilísticos das estimativas de MV. A Tabela 2.11 contém os resultados do teste de Ryan Joiner, que é similar ao teste de Shapiro Wilk (veja Lawless, 1982), para verificar a normalidade univariada. Mesmo considerando amostras de tamanho 500, o *p-value* para $s_1 e s_2$, foi menor do que 0,01 e portanto, ainda para um nível de significância α =0,01 a hipótese de normalidade é rejeitada (α é um valor fixado previamente que indica a probabilidade de rejeitar a hipótese de normalidade quando a distribuição é de fato normal).

10) 0 8	50 0 0	100 0 0	200 0 0	300 0	500 0
)* 0 8	0 0	0 0	0	0	0
0 B	0	0	0	0	0
8	2			U	0
	3	0	0	0	0
3	9	1	0	0	0
4	11	2	0	0	0
1	22	3	0	0	0
18	107	23	1	0	0
С	0	0	0	0	0
	3 4 1 18 0	3 9 4 11 1 22 18 107 0 0	3 9 1 4 11 2 1 22 3 18 107 23 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabela 2.6 - Descrição das amostras simuladas com dados sem censura

Tabela 2.7	Médias das 500 estimativas de MV, dos desvios padrões (dp) e dos erros
	quadráticos médios (eqm) dos estimadores dos parâmetros da distribuição EBVE
	com $\lambda_1 = \lambda_2 = 0.1$, $\lambda_{12} = 0.2$, $s_1 = s_2 = 0.5$, considerando dados sem censura.

-			tamanho das am	ostras		
média (dp)	30	50	100	200	300	500
â	0,095 (0,046)	0,097 (0,041)	0,095 (0,033)	0,098 (0,024)	0,097 (0,019)	0,099 (0,014)
â	0,092 (0,049)	0,090 (0,041)	0,096 (0,033)	0,098 (0,023)	0,099 (0,019)	0,099 (0,014)
â	0,268 (0,191)	0,244 (0,108)	0,225 (0,063)	0,211 (0,038)	0,208 (0,030)	0,206 (0,022)
\hat{s}_1	0,762 (0,767)	0,629 (0,584)	0,583 (0,385)	0,537 (0,215)	0,530 (0,161)	0,510 (0,116)
ŝ,	0,794 (0,814)	0,683 (0,606)	0,580 (0,398)	0,530 (0,214)	0,519 (0,166)	0,508 (0,113)
$dp \lambda_1$	0,056 (0,018)	0,044 (0,013)	0,032 (0,008)	0,022 (0,004)	0,018 (0,003)	0,014 (0,001)
dp λ_2	0,058 (0,028)	0,046 (0,017)	0,032 (0,007)	0,022 (0,004)	0,018 (0,002)	0,014 (0,001)
dp λ_{12}	0,255 (1,23)	0,101 (0,238)	0,056 (0,036)	0,035 (0,008)	0,028 (0,005)	0,021 (0,003)
dp s ₁	0,667 (0,815)	0,465 (0,592)	0,303 (0,286)	0,188 (0,090)	0,149 (0,054)	0,110 (0,029)
dp s ₂	0,720 (1,10)	0,500 (0,591)	0,316 (0,532)	0,185 (0,099)	0,146 (0,056)	0,109 (0,027)
eqm λ_1	0,006 (0,004)	0,004 (0,003)	0,002 (0,002)	0,001 (0,001)	0,001 (0,001)	4×10 ⁻⁴ (3×10 ⁻⁴)
eqm λ_2	0,007 (0,009)	0,004 (0,004)	0,002 (0,002)	0,001 (0,001)	0,001 (0,001)	4×10 ⁻⁴ (3×10 ⁻⁴)
eqm λ_{12}	1,62 (23,96)	0,081 (1,06)	0,009 (0,027)	0,003 (0,003)	0,002 (0,002)	0,001 (0,001)
eqm s ₁	1,77 (5,22)	0,924 (3,74)	0,329 (1,23)	0,091 (0,165)	0,052 (0,074)	0,026 (0,031)
eqm s ₂	2,47 (13,87)	1,00 (3,42)	0,548 (5,68)	0,091 (0,213)	0,052 (0,082)	0,025 (0,029)
tempo simulações.	2:01'25''	1:29'51''	2:26'09''	4:27`52''	6:33'17''	15:27'03''

coeficientes 90% e 95%, usando dados sem censura

n	λ_{I}	22	λ_{12}	<i>S</i> ₁	S1
30	93,0 ^a	91,8	95,2	85,6	86,4
	96,8 ^b	95,0	96,4	88,4	89,6
50	89,4	88,8	92,8	83,0	88,6
	95,0	94,4	96,6	85,8	91,2
100	86,8	88,4	90,0	85,8	87,2
	93,0	93,8	95,2	89,0	91,0
200	89,4	87,4	89,6	86,4	86,6
	94,4	92,4	95,4	92,0	90,0
300	88,2	87,2	89,6	87,8	86,6
	93,0	91,6	94,4	92,6	91,8
500	88,4	90,6	88,8	88,6	89,4
	94.2	95.0	95.6	92.0	93.4

Tabela 2.8 Cobertura dos intervalos de confiança aproximados, com

^{a,b} Coeficientes de confiança 90% e 95%, respectivamente

Tabela 2.9 Razões entre os erros quadráticos médios

das estimativas de MV

	eqm(n=30)	eqm(n=30)	eqm(n=30)
	eqm(n=50)	eqm(n=100)	eqm(n=500)
2,	1,44	2,46	14,12
λ_2	1,58	3,03	17,00
212	20,04	180,6	1655,0
SI	1,91	5,37	66,74
S2	2,47	4,50	96,87

Tabela 2.10 Diagnóstico de normalidade multivariada

dos estimadores de MV, considerando dados sem censura

n	STD
	média (dp)
30	3345,5 (49642,0)
50	167,78 (2964,8)
100	13,1 (71,6)
200	3,32 (2,09)
300	2,06 (1,17)
500	1,12 (0,28)

	<i>n</i> =30		n	=50	n=	=500
	R	p-value	R	p-value	R	p-value
â,	0,992	<0,01	0,996	0,032	0,999	0,048
â,	0,969	<0,01	0,992	<0,01	0,999	0,047
â,	0,780	<0,01	0,882	<0,01	0,994	0,021
\hat{s}_1	0,861	<0,01	0,829	<0,01	0,984	<0,01
S.	0,840	<0,01	0,845	<0,01	0,983	<0,01

Tabela 2.11 Resultados do teste de Ryan-Joiner para verificar normalidade univariada

Figura 2.2 – Gráficos das médias das estimativas de MV e dos erros quadráticos médios dos estimadores dos parâmetros da EBVE com $\lambda_1 = \lambda_2 = 0,1$, $\lambda_{12} = 0,2$, $s_1 = s_2 = 0,5$, considerando dados sem censura.

Figura 2.3 – Gráficos das cobertura dos intervalos de confiança aproximados, com coeficientes 90% e 95%, usando dados sem censura.

Figura 2.4 Histogramas das estimativas de MV (n=30, 50 e 100).

Figura 2.5 Histogramas das estimativas de MV (n=200, 300 e 500).

Figura 2.6 Gráficos normais probabilísticos das estimativas de MV (n=30, 50, 500).

2.3 Análise de Dados Bivariados Censurados

Nesta seção obtemos as estimativas de máxima verossimilhança dos parâmetros da EBVE considerando dados censurados e fazemos um estudo de simulação fixando alguns tempos de censuras.

2.3.1 Estimação dos Parâmetros usando o Método de MV: simulações

Para obter dados da distribuição EBVE considerando censura do tipo I, geramos amostras completas, utilizando o método da rejeição, apresentado na seção 2.1.1 e igualamos a τ , fixado previamente, todos os tempos excedendo esse valor. Foram usados os seguintes valores para os parâmetros, $\lambda_1 = \lambda_2 = 0, 1$, $\lambda_{12} = 0, 2$ e $s_1 = s_2 = 0, 5$.

O estudo de simulação foi feito com 500 amostras de tamanhos 30, 50, 100 e 500, utilizando τ =7, 8, 10 e 12, correspondendo as probabilidades de censura 0,29, 0,22, 0,13 e 0,07, respectivamente.

As estimativas de MV dos parâmetros da EBVE foram obtidas numericamente, maximizando o log da verossimilhança em (1.29), onde $f \in S$ são dadas, respectivamente em (1.13), (1.12) e

$$\begin{aligned} \frac{-\partial}{\partial t_{1i}}S(t_{1i},t_{2i}) &= \exp\left(-\lambda_{1}t_{1} - (\lambda_{2} + \lambda_{12})t_{2} + \frac{\lambda_{12}}{s_{2}}\left(1 - e^{-s_{2}(t_{2} - t_{1})}\right) + \frac{\lambda_{12}}{s_{1} + s_{2}}\left(e^{-s_{2}(t_{2} - t_{1})} - e^{-s_{1}t_{1} - s_{2}t_{2}}\right)\right) \\ &\times\left(\lambda_{1} + \lambda_{12}e^{-s_{2}(t_{2} - t_{1})} - \frac{\lambda_{12}}{s_{1} + s_{2}}\left(s_{2}e^{-s_{2}(t_{2} - t_{1})} + s_{1}e^{-s_{1}t_{1} - s_{2}t_{2}}\right)\right) \\ &\frac{-\partial}{\partial t_{2i}}S(t_{1i}, t_{2i}) = \exp\left(-(\lambda_{1} + \lambda_{12})t_{1} - \lambda_{2}t_{2} + \frac{\lambda_{12}}{s_{1}}\left(1 - e^{-s_{1}(t_{1} - t_{2})}\right) + \frac{\lambda_{12}}{s_{1} + s_{2}}\left(e^{-s_{1}(t_{1} - t_{2})} - e^{-s_{1}t_{1} - s_{2}t_{2}}\right)\right) \\ &\times\left(\lambda_{2} + \lambda_{12}e^{-s_{1}(t_{1} - t_{2})} - \frac{\lambda_{12}}{s_{1} + s_{2}}\left(s_{1}e^{-s_{1}(t_{1} - t_{2})} + s_{2}e^{-s_{1}t_{1} - s_{2}t_{2}}\right)\right). \end{aligned}$$

As amostras cujas estimativas não convergiram ou não pertenceram aos intervalos : $\hat{\lambda}_1 < 1$, $\hat{\lambda}_2 < 1$, $\hat{\lambda}_{12} < 2$, $\hat{s}_1 < 5$ e $\hat{s}_2 < 5$ foram descartadas. O total de amostras nessas condições, para os tamanhos de amostras e tempos de censuras considerados são apresentados na Tabela 2.11. O programa computacional implementado está incluído no Apêndice D. O tempo gasto nas simulações utilizando um processador *Pentium* II-350MHz com 128 MB de RAM são apresentados na Tabela 2.12. As médias das estimativas de MV obtidas são apresentadas na Figura 2.7. Na Tabela 2.12 também estão as médias dos desvios padrões e dos erros quadráticos médios dos estimadores.

Com os resultados obtidos, observamos que: para n fixo, diminuindo as censuras as médias das estimativas vão convergindo para os valores dos parâmetros, mas muito lentamente; para t fixo aumentando o tamanho das amostras as estimativas dos parâmetros não melhoram, uma vez que o número de amostras censuras também aumenta. As estimativas de MV para dados com censuras parecem apresentar grandes vícios.

As cobertura dos intervalos de confiança assintóticos (Tabela 2.14) não estão próximas da cobertura nominal, uma vez que as variâncias dos estimadores parecem convergir para zero mais rapidamente do que os seus vícios.

n	tempo censura	λ;>1	λ₂>1	λ ₁₂ >2	s ₁ >5	s ₂ >5	$\lambda_{1}, \lambda_{2} > I$ ou $\lambda_{12} > 2$ ou $s_{1}, s_{2} > 5$	não conver- giram.	cov negativa
30	7	0	0	90	26	27	129	842	0
	8	0	0	56	31	29	104	579	0
	10	0	0	26	22	21	63	443	0
	12	0	0	11	21	21	50	416	2
50	7	0	0	52	7	6	64	328	2
	8	0	0	21	4	7	30	200	1
	10	0	0	7	7	7	20	137	0
	12	0	0	5	5	7	17	135	0
100	7	0	0	35	2	2	37	78	0
	8	0	0	9	1	2	11	40	0
	10	0	0	2	0	0	2	28	0
	12	0	0	1	0	1	2	28	1
500	7	0	0	2	0	0	2	0	0
	8	0	0	0	0	0	0	0	0
	10	0	0	0	0	0	0	0	0
	12	0	0	0	0	0	0	0	0

Tabela 2.12 - Descrição das amostras simuladas considerando dados censurados

Número de amostras

Tabela 2.13 - Médias das 500 estimativas de MV, dos desvios padrões e dos erros quadráticos médios dos estimadores dos parâmetros da distribuição EBVE com $\lambda_1 = \lambda_2 = 0,1$, $\lambda_{12} = 0,2$, $s_1 = s_2 = 0,5$, considerando dados censurados

n	τ	Â	$dp \lambda_1$	$\hat{\lambda}_2$	dp λ_2	$\hat{\lambda}_{12}$	$dp \lambda_{12}$	\hat{s}_1	dp s ₁	\$2	dp s ₂	tempo
30	7	0,070	$(0,058)^{a}$ $(0,041)^{b}$	0,07	(0,056) (0,043)	0,532	(0,539) (0,353)	0,686	(0,585) (0,805)	0,672	(0,544) (0,833)	2:45'58''
	8	0,075	(0,058) (0,042)	0,075	(0,057) (0,045)	0,499	(0,569) (0,336)	0,604	(0,514) (0,743)	0,575	(0,477) (0,666)	1:37'55''
	10	0,084	(0,058) (0,045)	0,085	(0,058) (0,046)	0,375	(0,383) (0,239)	0,633	(0,558) (0,694)	0,622	(0,550) (0,690)	1:12'25''
	12	0,088	(0,058) (0,046)	0,087	(0,057) (0,047)	0,312	(0,218) (0,193)	0,691	(0,590) (0,703)	0,692	(0,635) (0,721)	1:28'51''
50	7	0,067	(0,045)	0,063	(0,044) (0,035)	0,594	(0,497) (0,350)	0,463	(0,343) (0,593)	0,451	(0,327) (0,573)	2:37'45
	8	0,073	(0,045) (0,036)	0,070	(0,044) (0,036)	0,492	(0,352) (0,277)	0,441	(0,311) (0,534)	0,445	(0,312) (0,496)	1:34'47''
	10	0,084	(0,046) (0,040)	0,080	(0,046) (0,039)	0,365	(0,219) (0,183)	0,488	(0,355) (0,521)	0,511	(0,367) (0,520)	1:03'00''
	12	0,091	(0,046)	0,085	(0,047)	0,296	(0,147) (0,126)	0,558	(0,410) (0,560)	0,582	(0,432) (0,542)	59'23''
100	7	0,062	(0,031) (0,028)	0,063	(0,031) (0,028)	0,626	(0,390) (0,311)	0,314	(0,166) (0,391)	0,293	(0,153) (0,256)	2:31'05''
	8	0,070	(0,032) (0,031)	0,072	(0,032) (0.031)	0,490	(0,259) (0,222)	0,344	(0,184) (0,356)	0,328	(0,171) (0,289)	1:36'19''
	10	0,082	(0,034) (0,033)	0,083	(0,033) (0,032)	0,341	(0,120) (0,120)	0,424	(0,222) (0,395)	0,409	(0,213) (0,327)	1:20'11''
	12	0,088	(0,034) (0,034)	0,089	(0,033) (0,033)	0,278	(0,079) (0,080)	0,494	(0,267) (0,408)	0,490	(0,259) (0,407)	1:16'34''
500	7	0,063	(0,014) (0,014)	0,063	(0,014) (0,013)	0,581	(0,119) (0,164)	0,227	(0,054) (0,075)	0,228	(0,054) (0,075)	5:26 ` 50''
	8	0,071	(0,014) (0,014)	0,071	(0,014) (0,014)	0,437	(0,065) (0,076)	0,269	(0,058) (0,074)	0,270	(0,058) (0,075)	5:13'44''
	10	0,084	(0,015) (0,015)	0,084	(0,015) (0,015)	0,310	(0,038) (0,036)	0,348	(0,076) (0,092)	0,346	(0,075) (0,088)	4:53'00''
	12	0,091	(0,015) (0,015)	0,091	(0,015) (0,015)	0,255	(0,029) (0,027)	0,414	(0,093) (0,106)	0,412	(0,092) (0,102)	4:44'14''

^a Média das estimativas dos desvios padrões dos estimadores

^b Desvio padrão das estimativas

n	tempo censura	2,	λ_2	λ12	<i>s</i> ₁	\$2
30	7	86,2ª	86,2	97,2	75,0	75,4
		92,0 ^b	92,6	99.8	82,0	80,0
	8	88,8	88.8	98.2	69.8	71.0
		93.8	92.2	99.8	75.0	77.6
	10	90,8	91,8	99,4	75.8	76.2
		94,6	95,0	99,6	79,8	81.2
2	12	92,2	90,8	99,0	80,0	81,0
		95.8	94.2	99.2	82.2	85.6
50	7	78,8	76,6	86,0	58,8	59,2
		86,6	83,6	97.4	65,6	65,8
	8	86,4	82,4	90,6	59,6	60,4
		91,2	89,0	98,6	63,8	67,8
	10	89,0	85,8	91,8	64,8	69,8
		92,6	91,8	99,2	70,4	74,4
	12	88,8	88,6	94,6	74,4	79,4
		93,6	93,6	99,0	79,4	83,2
100	7	63,0	65,6	46,0	38,6	38,2
		72,4	73,0	68,0	44,2	44,8
	8	71,6	72,0	49,2	43,2	44,0
		80,4	80,8	73,8	50,4	50,4
	10	82,0	83,4	67,6	59.2	59,8
		88,0	90,4	88,2	67,2	64,8
	12	85,6	86,6	83,2	73,2	72,2
1 -		92,4	92,8	93,6	78,6	78,6
500	7	16,6	15,6	1,40	2,80	3,40
		25,4	24,0	2,00	4,60	4,80
	8	37,0	35,2	0,00	8,00	7,40
		48,6	45,8	0,40	10,4	11,4
	10	68,6	70,0	2,20	34,8	37,0
		76,8	78,6	6,60	43,4	43,2
	12	81,4	83,4	38,2	65,4	62,8
		89,8	91,2	55,6	73,6	70,8

Tabela 2.14 Cobertura dos intervalos de confiança aproximados, com coeficientes 90% e 95%, usando dados

censurados

a,b Intervalos de 90% e 95% de confiança respectivamente.

Figura 2.7 - Gráficos das médias das estimativas de MV dos parâmetros da EBVE para dados censurados

CAPÍTULO III

ANÁLISE BAYESIANA DA DISTRIBUIÇÃO EBVE

Neste capítulo encontramos as densidades marginais *a posteriori* dos parâmetros da EBVE assumindo densidades *a priori* informativas e usando os algoritmos de Gibbs com Metropolis Hastings (M-H). Apresentamos um exemplo de aplicação e fazemos simulações para estudar o modelo sob a abordagem Bayes-empírica.

3.1 Análise Bayesiana utilizando os métodos de Gibbs e Metropolis Hastings

Consideremos uma amostra aleatória, $\begin{pmatrix} T_1, T_2 \\ Z & Z \end{pmatrix} = (T_{11}, T_{21}), \dots, (T_{1n}, T_{2n})$, dos tempos até as falhas de *n* pares de componentes, com função de densidade EBVE, dada em (1.13).

Assumimos densidades marginais *a priori* gama $\Gamma(a_i, b_i)$, *i*=1, 2, ..., 5, independentes para os parâmetros, uma vez que essa distribuição é definida para valores positivos sendo bastante flexível através das escolhas de a_i e b_i . Dessa forma, a densidade *a priori* conjunta é dada por:

$$\pi (\lambda_1, \lambda_2, \lambda_{12}, s_1, s_2) = \pi_1 (\lambda_1) \pi_2 (\lambda_2) \pi_3 (\lambda_{12}) \pi_4 (s_1) \pi_5 (s_2)$$

$$\propto \lambda_1^{b_1 - 1} \lambda_2^{b_2 - 1} \lambda_{12}^{b_3 - 1} s_1^{b_4 - 1} s_2^{b_3 - 1} \exp(-(a_1 \lambda_1 + a_2 \lambda_2 + a_3 \lambda_{12} + a_4 s_1 + a_5 s_2))$$

Os parâmetros das densidades *a priori* devem ser escolhidos de acordo com a experiência do pesquisador. Neste trabalho, os valores de (a_i, b_i) , i=1, 2, ..., 5, foram obtidos usando informações contidas nos dados. Assim sendo, estudamos os parâmetros da distribuição EBVE sob a abordagem Bayes-empírica.

A densidade a posteriori conjunta de $(\lambda_1, \lambda_2, \lambda_{12}, s_1, s_2)$ é dada por:

$$\pi\left(\left(\lambda_{1},\lambda_{2},\lambda_{12},s_{1},s_{2}\right)|\left(t_{1},t_{2}\right)\right) \propto \pi\left(\lambda_{1},\lambda_{2},\lambda_{12},s_{1},s_{2}\right)L\left(\left(\lambda_{1},\lambda_{2},\lambda_{12},s_{1},s_{2}\right)|\left(t_{1},t_{2}\right)\right)$$
(3.1)

onde $L\left((\lambda_1, \lambda_2, \lambda_{12}, s_1, s_2) | (t_1, t_2)\right)$ é a função de verossimilhança.

Para obter as densidades marginais *a posteriori* dos parâmetros, utilizamos o amostrador de Gibbs associado com o algoritmo M-H, apresentados na seção 1.4.2. As densidades condicionais usadas são dadas por:

$$\pi \left(\lambda_{1} \mid \lambda_{2}, \lambda_{12}, s_{1}, s_{2}, (t_{1}, t_{2}) \right) \propto \lambda_{1}^{b_{1}-1} exp(-a_{1}\lambda_{1}) L \left((\lambda_{1}, \lambda_{2}, \lambda_{12}, s_{1}, s_{2}) \mid (t_{1}, t_{2}) \right)$$

$$\pi \left(\lambda_{2} \mid \lambda_{1}, \lambda_{12}, s_{1}, s_{2}, (t_{1}, t_{2}) \right) \propto \lambda_{2}^{b_{2}-1} exp(-a_{2}\lambda_{2}) L \left((\lambda_{1}, \lambda_{2}, \lambda_{12}, s_{1}, s_{2}) \mid (t_{1}, t_{2}) \right)$$

$$\pi \left(\lambda_{12} \mid \lambda_{1}, \lambda_{2}, s_{1}, s_{2}, (t_{1}, t_{2}) \right) \propto \lambda_{12}^{b_{3}-1} exp(-a_{3}\lambda_{12}) L \left((\lambda_{1}, \lambda_{2}, \lambda_{12}, s_{1}, s_{2}) \mid (t_{1}, t_{2}) \right)$$

$$\pi \left(s_{1} \mid \lambda_{1}, \lambda_{2}, \lambda_{12}, s_{2}, (t_{1}, t_{2}) \right) \propto s_{1}^{b_{4}-1} exp(-a_{4}s_{1}) L \left((\lambda_{1}, \lambda_{2}, \lambda_{12}, s_{1}, s_{2}) \mid (t_{1}, t_{2}) \right)$$

$$\pi \left(s_{2} \mid \lambda_{1}, \lambda_{2}, \lambda_{12}, s_{1}, (t_{1}, t_{2}) \right) \propto s_{2}^{b_{3}-1} exp(-a_{5}s_{2}) L \left((\lambda_{1}, \lambda_{2}, \lambda_{12}, s_{1}, s_{2}) \mid (t_{1}, t_{2}) \right)$$
(3.2)

onde $L\left((\lambda_1, \lambda_2, \lambda_{12}, s_1, s_2) | (t_1, t_2)\right)$ é a função de verossimilhança.

3.1.1 Exemplo de Aplicação

Nesta seção encontramos as densidades marginais *a posteriori* dos parâmetros da EBVE, usando uma amostra de tamanho *n*=50, gerada pelo método da rejeição, apresentado na seção 2.1.1.

Utilizamos o seguinte critério na escolha dos parâmetros das densidades *a priori*: igualamos a estimativa de MV à média da distribuição gama, dada por $\frac{a_i}{b_i}$ e a estimativa da variância do estimador de MV à variância da gama, dada por $\frac{a_i}{b_i^2}$ e resolvemos o sistema formado por essas duas equações. Os valores de (a_i, b_i) obtidos e os gráficos das densidades marginais *a priori* estão apresentados na Tabela 3.1 e Figura 3.1.

As densidades marginais *a posteriori* foram obtidas gerando observações das distribuições condicionais completas, dadas em (3.2), através do algoritmo M-H, com núcleo de transição dado pelas densidades marginais *a priori*. Para cada variável (parâmetro), foram geradas 5 cadeias com 6000 iterações inicializadas em pontos arbitrários e desprezadas as 1000 primeiras iterações (*burn-in*). Das iterações restantes, foram selecionadas uma a cada dez, totalizando 500 iterações para cada cadeia.

Os gráficos das trajetórias e das autocorrelações dentro das cadeias são apresentados nas Figuras 3.2 e 3.3, respectivamente, e ambos deram indicações de convergência, uma vez que as cadeias apresentaram repetidamente o mesmo comportamento e que a autocorrelação dentro das cadeias parece ser pequena. Aplicamos o critério de Gelman e Rubin, apresentado na seção (1.4.3) e os resultados obtidos, Tabela 3.2, foram bastante próximos de 1. Assim sendo, selecionamos a segunda metade das iterações de cada cadeia para constituir as amostras das densidades marginais *a posteriori*. Foram feitos os histogramas dessas amostras e para cada uma delas, ajustamos uma distribuição gama, Figura 3.4. Um resumo das densidades marginais *a posteriori* são apresentados na Tabela 3.3.

Tabela 3.1 - Parâmetros das densidades *a* priori usados no exemplo de aplicação

i	ai	bi
1	8,45	73,7
2	3,59	48,5
3	11,5	55,5
4	4,20	13,2
5	2,40	4,07

Tabela 3.2 - Índices de convergência obtidos pelo critério de Gelman e Rubin

	λ_I	λ_2	λ_{12}	<i>S</i> 1	S2
$\sqrt{\hat{R}}$	1,000	0,999	1,000	1,001	1,001

Figura 3.1 - Gráficos das densidades marginais *a priori* dos parâmetros assumidas no exemplo de aplicação

Figura 3.2 - Gráficos das trajetórias das cadeias, correspondentes ao exemplo de aplicação

Figura 3.3 - Gráficos das correlações dentro das cadeias, no exemplo de aplicação

Figura 3.4 - Gráficos das densidades marginais *a posteriori* dos parâmetros obtidas no exemplo de aplicação

	λ_I	λ_2	λ_{12}	SI	S2
média	0,12	0,08	0,21	0,32	0,61
mediana	0,11	0,07	0,21	0,31	0,56
mínimo	0,041	0,01	0,09	0,10	0,08
máximo	0,23	0,24	0,38	0,83	2,6
variância	0,00069	0,00073	0,0015	0,012	0,085
d. padrão	0,026	0,027	0,039	0,107	0,292
IC 90%	(0,076;0,16)	(0,037;0,13)	(0, 15; 0, 28)	(0, 17; 0, 52)	(0, 25; 1, 17)
IC 95%	(0,069;0,17)	(0,031;0,13)	(0,14;0,29)	(0,15;0,56)	(0,20;1,34)

Tabela 3.3 - Resumo das densidades marginais *a posteriori* correspondentes ao exemplo de aplicação

3.1.2 Estudo dos Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica

Nesta seção apresentamos dois estudos de simulação dos parâmetros da distribuição EBVE, feitos com 500 amostras de tamanho 50. As amostras foram geradas pelo método da rejeição (2.1.1) e para cada uma delas encontramos as densidades marginais *a posteriori*, assumindo densidades *a priori* $\Gamma(a_{ij}, b_{ij})$, *i*=1, 2, ..., 5, para os parâmetros, onde a_{ij} e b_{ij} foram obtidos das informações contidas nos dados.

No primeiro estudo (Estudo de Simulação 3.1) os a_{ij} e b_{ij} , i=1, 2, ..., 5 foram escolhidos a partir das relações:

$$a_{1j} = \frac{\hat{\lambda}_{1j}^{2}}{v\hat{a}r(\lambda_{1j})} \qquad b_{1j} = \frac{\hat{\lambda}_{1j}}{v\hat{a}r(\lambda_{1j})}$$

$$a_{2j} = \frac{\hat{\lambda}_{2j}^{2}}{v\hat{a}r(\lambda_{2j})} \qquad b_{2j} = \frac{\hat{\lambda}_{2j}}{v\hat{a}r(\lambda_{2j})}$$

$$a_{3j} = \frac{\hat{\lambda}_{12j}^{2}}{v\hat{a}r(\lambda_{12j})} \qquad b_{3j} = \frac{\hat{\lambda}_{12j}}{v\hat{a}r(\lambda_{12j})}$$

$$a_{4j} = \frac{\hat{s}_{1j}^{2}}{v\hat{a}r(s_{1j})} \qquad b_{4j} = \frac{\hat{s}_{1j}}{v\hat{a}r(s_{1j})}$$

$$a_{5j} = \frac{\hat{s}_{2j}^{2}}{v\hat{a}r(s_{2j})} \qquad b_{5j} = \frac{\hat{s}_{2j}}{v\hat{a}r(s_{2j})}$$
(3.3)
onde $\hat{\lambda}_{1j}$, $\hat{\lambda}_{2j}$, $\hat{\lambda}_{12j}$, \hat{s}_{1j} , \hat{s}_{2j} , são as estimativas de MV e $v\hat{a}r(\lambda_{1j})$, $v\hat{a}r(\lambda_{2j})$, $v\hat{a}r(\lambda_{12j})$, $v\hat{a}r(\lambda_{12j})$, $v\hat{a}r(\lambda_{2j})$,

Para obter as densidades marginais *a posteriori* utilizamos o método de simulação iterativa de Gibbs (1.4.2) e para amostrar das distribuições condicionais completas desconhecidas (3.2), usamos o algoritmo M-H, com núcleo de transição dado pelas densidades *a priori*. Para cada parâmetro (variável) foram geradas 5 cadeias com 6000 iterações, inicializadas em pontos arbitrários e desprezadas as 1000 primeiras iterações (*burnin*). Das iterações restantes, foram selecionadas uma a cada dez, totalizando 500 iterações para cada cadeia. Para verificação da convergência utilizamos o critério de Gelman e Rubin e foram incluídas no estudo somente as amostras com $0,995 \le \sqrt{\hat{R}} \le 1,005$ para todos os parâmetros, onde $\sqrt{\hat{R}}$ é dada em (1.47). Das amostras selecionadas tomamos as últimas 240 iterações de cada cadeia, totalizando 1200 iterações, para constituir as amostras das densidades marginais *a posteriori*.

Para cada uma das 500 amostras que convergiram obtivemos:

- As estimativas de MV pelo método numérico BFGS e os intervalos aproximados com 90% e 95% de confiança.
- Um resumo das densidades marginais a posteriori incluindo média, mediana, desvio padrão e intervalos Bayesianos.
- Os erros quadráticos médios das estimativas de MV e das médias e medianas das densidades a posteriori.

Na Tabela 3.4 são apresentadas as médias e os desvios padrões dos resultados obtidos, referente aos itens 1, 2 e 3 acima, e na Tabela 3.5 estão as coberturas dos intervalos de confiança e Bayesianos. O tempo gasto nas simulações foi 296 horas e 47², utilizando um processador *Pentium* II – 350 *MHz* com 128 *MB* de *RAM*. O programa computacional implementado em Ox (Doornik, 1999) encontra-se no Apêndice E.

Com os resultados mostrados na Tabela 3.4 observamos que as médias e medianas das densidades *a posteriori* de λ_1 , λ_2 e λ_{12} parecem estar bem próximas dos valores dos parâmetros, enquanto que as de s_1 e s_2 não estão tão próximas e apresentam uma maior variabilidade. Ainda observamos que os erros quadráticos médios das estimativas de λ_1 , λ_2 e λ_{12} estão próximos de zero, enquanto que as estimativas de s_1 e s_2 parecem ser menos

eficientes. De acordo com a Tabela 3.5, a porcentagem de intervalos de confiança que contém o verdadeiro valor do parâmetro é maior do que a dos intervalos Bayesianos.

Tabela 3.4 - Resumo das estimativas dos parâmetros da EBVE obtidas no Estudo de Simulação 3.1

média×10 (dp×10)	λ_{I}	λ_2	λ_{12}	<i>S</i> 1	<i>s</i> ₂
estimativas	0,91 ^a (0,39)	0,91(0,38)	2,30 (0,72)	6,42 (4,94)	6,83 (5,68)
	$0,92^{b}(0,41)$	0,91 (0,40)	2,36 (0,75)	6,84 (5,71)	7,25 (6,32)
	$0,90^{\circ}(0,42)$	0,89 (0,42)	2,32 (0,73)	6,20 (4,91)	6,57 (5,40)
dp	$0,42^{a}(0,10)$	0,43 (0,11)	0,73 (0,35)	4,26 (4,33)	4,57 (5,03)
	$0,27^{b,c}(0,06)$	0,28 (0,06)	0,46 (0,21)	3,22 (3,80)	3,46 (4,50)
eqm	$0,04^{a}(0,02)$	0,04 (0,02)	0,13 (0,22)	6,32 (21,85)	8,17 (26,96)
	$0,03^{b}(0,02)$	0,03 (0,02)	0,10 (0,18)	6,06 (23,93)	7,72 (28,20)
	0,03°(0,03)	0,03 (0,02)	0,09 (0,16)	5,02 (18,64)	6,37 (22,42)

^a Estimativas de MV

^{b,c} Médias e medianas das amostras das densidades a posteriori, respectivamente.

 Tabela 3.5
 Cobertura dos intervalos Bayesianos e de confiança aproximados, correspondentes ao Estudo de Simulação 3.1

	λ_{I}	λ_2	λ_{12}	S1	S2
Intervalos 90%	89,8ª	88,6	93,6	87,4	86,6
	71,0 ^b	71,6	63,8	69,6	68,4
Intervalos 95%	94,4ª	94,2	97,8	90,4	88,0
	81,0 ^b	81,0	74,2	76,6	77,2

^{a,b} Intervalos de confiança e Bayesianos, respectivamente.

Na Figura 3.5 apresentamos os gráficos dos intervalos de confiança e Bayesianos dos parâmetros, para as 50 primeiras amostras estudadas e na Figura 3.6 os percentis 2,5 e 97,5 das densidades marginais *a priori* e *posteriori* dos parâmetros.

Com os gráficos das Figuras 3.5, 3.6 observamos que:

- a) as densidades a posteriori parecem ser sensíveis a escolha das densidades a priori para o tamanho de amostra considerado (n=50).
- b) os intervalos Bayesianos são sempre menores do que os intervalos de confiança como era esperado, uma vez que os intervalos Bayesianos foram obtidos considerando uma informação anterior.

Figura 3.5 - Gráficos das estimativas de MV, médias e medianas das densidades marginais *a* posteriori dos parâmetros, juntamente com os intervalos de confiança e Bayesianos

Figura 3.5 (cont)

Figura 3.6 - Gráficos das médias e dos percentis 2,5 e 97,5 das densidades marginais *a priori* e *posteriori* dos parâmetros

Figura 3.6 (cont)

No segundo estudo de simulação (Estudo de Simulação 3.2), os parâmetros das distribuições gama foram obtidos igualando as médias e variâncias das densidades *a priori* às médias das médias e dos desvios padrões das 500 estimativas de MV, para amostras de tamanho 500 (Tabela 2.6). Os parâmetros das densidades *a priori* são apresentados na Tabela 3.6 e os resultados das simulações nas Tabelas 3.7 e 3.8. O tempo gasto nas simulações foi 353 horas, utilizando um processador *Pentium* II – 350 *MHz* com 128 *MB* de *RAM*.

Tabela 3.6	Parâmetros	das	densidades a	a priori	usados
			THE WARDA GROUP OF UP IN		00000000

no Estudo de Simulação 3.2

i	a _{ij}	b _{ij}
1	5	50
2	5	50
3	4	20
4	1	2
5	1	2

Tabela 3.7 Resumo das estimativas dos parâmetros da EBVE obtidas no Estudo de Simulação 3.2

média×10 (dp×10)	λ_1	λ_2	λ_{12}	<i>S</i> 1	\$2
estimativas	0,95 ^a (0,39)	0,93 (0,39)	2,19 (0,77)	7,12 (5,46)	7,64 (6,64)
	$1,01^{b}(0,19)$	1,00 (0,18)	2,09 (0,34)	6,08 (1,89)	6,25 (2,08)
	$0,99^{\circ}(0,19)$	0,98 (0,18)	2,05 (0,33)	5,41 (1,81)	5,57 (1,99)
dp	$0,43^{a}(0,13)$	0,43 (0,16)	0,74 (0,61)	4,96 (5,61)	5,57 (7,05)
	$0,30^{b,c}(0,04)$	0,30 (0,04)	0,50 (0,10)	3,25 (1,00)	3,35 (1,04)
eqm	$0,04^{a}(0,03)$	0,04 (0,04)	0,15 (0,61)	9,03 (33,11)	13,15(50,69)
	$0,01^{b}(0,01)$	0,01 (0,01)	0,04 (0,02)	1,63 (1,39)	1,82 (1,73)
	0,01° (0,01)	0,01 (0,01)	0,04 (0,02)	1,50 (1,13)	1,65 (1,42)

^a Estimativas de MV.

^{b,c} Médias e medianas das amostras das distribuições a posteriori.

Tabela 3.8 Cobertura dos intervalos Bayesianos e de confiança aproximados, correspondentes

3	ao	Estudo	de	Simu	lação	3.2	
---	----	--------	----	------	-------	-----	--

	λ_I	λ_2	λ_{12}	<i>S</i> 1	\$2
intervalos 90%	90,6 ^a	89,4	91,0	90,8	90,8
	98,4 ^b	99,2	98,2	99,0	98,4
intervalos 95%	94,4ª	95,6	94,4	92,2	92,2
	99,4 ^b	100	99,6	99,8	99,4

^{a,b} Intervalos de confiança e Bayesianos, respectivamente.

A Tabela 3.7 mostra que os erros quadráticos médios das médias e medianas das densidades *a posteriori* parecem ser bem menores do que os das estimativas de MV, especialmente para os parâmetros s_1 e s_2 . Observamos também que a cobertura dos intervalos Bayesianos, Tabela 3.8 está próxima de 100%, mesmo utilizando os percentis 5 e 95 das

67

densidades a posteriori, possivelmente devido a informação contida nas densidades a priori assumidas.

Portanto, os resultados obtidos indicam uma possível sensibilidade com relação as densidades a priori.

CAPÍTULO IV

A DISTRIBUIÇÃO EBVE PARA TEMPOS ACELERADOS

Neste capítulo formulamos um modelo para tempos acelerados, ou seja, incluímos na função de sobrevivência bivariada uma covariável de aceleração, assumindo uma relação de potência inversa e fazemos algumas simulações considerando amostras de vários tamanhos para estudar os estimadores de MV.

4.1 Formulação do Modelo EBVE para Tempos Acelerados

Representemos por (T_i, T_2) os tempos até as falhas de dois componentes pareados, com $T_i = min(X_i, Z_i)$, onde X_i e Z_i são os tempos até as falhas das partes específica e comum respectivamente, do componente *i*, *i*=1,2.

Assumimos uma relação de potência inversa entre a voltagem e o tempo, de modo que o tempo até a falha acelerada da parte específica do componente i, i=1,2 é dado por:

$$X_{i} | v_{j} = \exp\left(\varphi\left(v_{j}, \beta\right)\right) X_{i} = \exp\left(\ln\beta_{0i} + \beta_{1i}(-\ln\nu_{j})\right) X_{i} = \beta_{0i}v_{j}^{-\beta_{1i}}X_{i}$$
(4.1)

e das partes que apresentam o mesmo risco de falha por:

$$Z_i \mid v_j = exp\left(\varphi\left(v_j, \beta\right)\right) Z_i = exp\left(ln\beta_{03} + \beta_{13}(-lnv_j)\right) Z_i = \beta_{03}v_j^{-\beta_{13}} Z_i,$$
(4.2)

onde $\beta_{0i} \in \beta_{1i}$, i=1, 2, 3, correspondem respectivamente aos parâmetros $A \in P \in (1.21) \in v_j \in$ a voltagem no nível j=1,2,...,k.

Dessa forma, os tempos até as falhas aceleradas dos dois componentes é dado por:

$$(T_1|v_j, T_2|v_j) = (\min(X_1|v_j, Z_1|v_j), \min(X_2|v_j, Z_2|v_j)).$$
(4.3)

A função de confiabilidade do tempo até a falha acelerada da parte específica do componente *i* é obtida a seguir:

$$S_{X_{i}|v_{j}}(t) = S_{X_{i}}\left(exp\left(-\varphi\left(v_{j},\beta\right)\right)t\right)$$
$$= S_{X_{i}}\left(exp\left(-\ln\beta_{0i}-\beta_{1i}(-\ln v_{j})\right)t\right)$$
$$= S_{X_{i}}\left(e^{-\ln\beta_{\alpha}}v_{j}^{\beta_{1i}}t\right)$$
$$= S_{X_{i}}\left(\beta_{0i}^{-1}v_{j}^{\beta_{1i}}t\right)$$
$$= exp\left(\lambda_{i}\beta_{0i}^{-1}v_{j}^{\beta_{1i}}t\right),$$

Assim sendo,

$$S_{X_i|v_j}(t) = \exp(\beta_{\alpha}^* v_j^{\beta_{i1}} t) \qquad i = 1, 2 \quad j = 1, 2, ..., k,$$
(4.4)

onde $\beta_{0i}^* = \lambda_i \beta_{0i}^{-1}$, ou seja, $X_i | v_j \sim Exp(\beta_{0i}^* v_j^{\beta_{1i}})$ e portanto a função de risco de $X_i | v_j$ é constante, dada por:

$$h_{X_i|v_i}(t) = \beta_{0i}^* v_j^{\beta_{1i}}, \qquad i = 1, 2 \quad j = 1, 2, \dots k.$$
(4.5)

A função de confiabilidade de $Z_i | v_j$ é obtida da seguinte forma:

$$\begin{split} S_{Z_{i}|v_{j}}(t) &= S_{Z_{i}} \left(exp\left(-\varphi\left(v_{j},\beta\right) \right) t \right) \\ &= S_{Z_{i}} \left(exp\left(-\ln\beta_{03} - \beta_{13}(-\ln v_{j}) \right) t \right) \\ &= S_{Z_{i}} \left(e^{-\ln\beta_{03}} v_{j}^{\beta_{13}} t \right) \\ &= S_{Z_{i}} \left(\beta_{03}^{-1} v_{j}^{\beta_{13}} t \right) \\ &= S_{Z_{i}} \left(\beta_{03}^{-1} v_{j}^{\beta_{13}} t \right) \\ \begin{pmatrix} (1.7) \\ = exp \left(-\lambda_{12} \beta_{03}^{-1} v_{j}^{\beta_{13}} t + \frac{\lambda_{12} \beta_{03}^{-1}}{s_{i} \beta_{03}^{-1}} \left(1 - e^{-s_{i} \beta_{03}^{-1} v_{j}^{\beta_{13}} t} \right) \right), \end{split}$$

portanto,

$$S_{Z_{l}|v_{j}}(t) = \exp\left(-\beta_{03}^{*}v_{j}^{\beta_{13}}t + \frac{\beta_{03}^{*}}{\beta_{0(3+i)}^{*}}\left(1 - e^{-\beta_{0(3+i)}^{*}v_{j}^{\beta_{13}}t}\right)\right) \qquad i = 1, 2 \quad j = 1, 2, \dots, k$$
(4.6)

onde $\beta_{03}^* = \lambda_{12}\beta_{03}^{-1}$ e $\beta_{0(3+i)}^* = s_i\beta_{03}^{-1}$, *i*=1,2. Logo, a função de risco de $Z_i|v_j$ é dada por:

$$h_{Zi|v_j}(t) = \beta_{03}^* v_j^{\beta_B} \left(1 - e^{-\beta_{0(3+i)}^* v_j^{\beta_B} t} \right) \qquad i = 1, 2 \qquad j = 1, 2, ..., k.$$
(4.7)

Na derivação da EBVE para (T_i , T_2), Ryu assumiu que X_i e Z_i são independentes, ou seja,

$$P(X_{i} < x_{i}, Z_{i} < z_{i}) = P(X_{i} < x_{i})P(Z_{i} < z_{i})$$
(4.8)

e $X_i | v_j$ e $Z_i | v_j$ são independentes desde que,

$$P(X_i \mid v_j < x_i, Z_i \mid v_j < z_i) = P(X_i \mid v_j < x_i)P(Z_i \mid v_j < z_i),$$

ou seja,

$$\Rightarrow P\left(exp\left(\varphi\left(v_{j},\beta\right)\right)X_{i} < x_{i},exp\left(\varphi\left(v_{j},\beta\right)\right)Z_{i} < z_{i}\right) = P\left(exp\left(\varphi\left(v_{j},\beta\right)\right)X_{i} < x_{i}\right)P\left(exp\left(\varphi\left(v_{j},\beta\right)\right)Z_{i} < z_{i}\right) = P\left(X_{i} < x_{i}exp\left(-\varphi\left(v_{j},\beta\right)\right)Z_{i} < z_{i}exp\left(-\varphi\left(v_{j},\beta\right)\right)Z_{i} < z_{i}exp\left(-\varphi\left(v_{j},\beta\right)\right)Z_{i}exp\left(-\varphi\left(v_{j},\beta\right)Z_{i}exp\left(-\varphi\left(v_{j},\beta\right)\right)Z_{i}exp\left(-\varphi\left(v_{j},\beta\right)Z_{i}exp\left(-\varphi\left(v_{j},\gamma\right)Z_{i}exp\left(-\varphi\left(v_{j},\gamma\right)Z_{i}exp\left(-\varphi\left(v_{j},\gamma\right)Z_{i}e$$

mas de (4.8) temos que esta última igualdade é válida e portanto, $X_i|v_j$ e $Z_i|v_j$ são independentes. Dessa forma, a função de risco de $T_i|v_j$ é dada pela soma das funções de riscos $X_i|v_j$ e $Z_i|v_j$, ou seja,

$$h_{T_{i}|v_{j}}(t) = \beta_{0i}^{*} v_{j}^{\beta_{1i}} + \beta_{03}^{*} v_{j}^{\beta_{13}} \left(1 - e^{-\beta_{0(3+i)}^{*} v_{j}^{\beta_{13}} t} \right) \qquad i = 1, 2 \quad j = 1, 2, \dots, k.$$

$$(4.9)$$

Da última equação obtemos a função de confiabilidade marginal de $T_i|v_j$, dada por:

$$S_{T_{i}|v_{j}}(t) = \exp\left(-\beta_{0i}^{*} v_{j}^{\beta_{1i}} t - \beta_{03}^{*} v_{j}^{\beta_{13}} t + \frac{\beta_{03}^{*}}{\beta_{0(3+i)}^{*}} \left(1 - e^{-\beta_{0(3+i)}^{*} v_{j}^{\beta_{13}} t}\right)\right) \quad i = 1, 2 \quad j = 1, 2, \dots, k.$$
(4.10)

71

Portanto, a função densidade marginal de $T_i | v_j$ é dada por:

$$f_{T_i|v_j}(t) = S_{T_i|v_j}(t) \left(\beta_{0i}^* v_j^{\beta_{1i}} + \beta_{0(\beta+i)}^* v_j^{\beta_{13}} \left(1 - e^{-\beta_{0(\beta+i)}^* v_j^{\beta_{13}} t} \right) \right) \quad i = 1, 2 \quad j = 1, 2, \dots, k.$$
(4.11)

A função de confiabilidade conjunta de $(T_1|v_j, T_2|v_j)$ pode ser escrita como:

$$\begin{split} S_{T_{l}|\nu_{j},T_{2}|\nu_{j}}(t_{1},t_{2})^{(a_{2},3)} &= E\left(S_{(T_{l}|\nu_{j},T_{2}|\nu_{j})N_{l2}}(t_{1},t_{2})\right) \\ &= E\left(P\left(T_{1} \mid \nu_{j} > t_{1},T_{2} \mid \nu_{j} > t_{2}\right) \mid N_{l2}\right) \\ &= E\left(P\left(\min\left(X_{1} \mid \nu_{j},Z_{1} \mid \nu_{j}\right) > t_{1},\min\left(X_{2} \mid \nu_{j},Z_{2} \mid \nu_{j}\right) > t_{2}\right) \mid N_{l2}\right) \\ &= E\left(P\left(X_{1} \mid \nu_{j} > t_{1},Z_{1} \mid \nu_{j} > t_{1},X_{2} \mid \nu_{j} > t_{2},Z_{2} \mid \nu_{j} > t_{2}\right) \mid N_{l2}\right) \\ &= E\left(P\left(\beta_{0l}\nu_{j}^{-\beta_{ll}}X_{1} > t_{1},\beta_{03}\nu_{j}^{-\beta_{l3}}Z_{1} > t_{1},\beta_{02}\nu_{j}^{-\beta_{l2}}X_{2} > t_{2},\beta_{03}\nu_{j}^{-\beta_{l3}}Z_{2} > t_{2}\right) \mid N_{l2}\right) \\ &= E\left(P\left(X_{1} > \beta_{0l}^{-l}\nu_{j}^{\beta_{ll}}t_{1}\right)P\left(X_{2} > \beta_{02}^{-l}\nu_{j}^{\beta_{l2}}t_{2}\right)P\left(Z_{1} > \beta_{03}^{-l}\nu_{j}^{\beta_{l3}}t_{1},Z_{2} > \beta_{03}^{-l}\nu_{j}^{\beta_{l3}}t_{2}\right) \mid N_{l2}\right) \end{split}$$

e de forma análoga ao apêndice A2 obtemos,

$$S_{T_{j}|v_{j},T_{2}|v_{j}}(t_{1},t_{2}) = \begin{cases} exp\left(-\beta_{0l}^{*}v_{j}^{\beta_{ll}}t_{1} - \beta_{02}^{*}v_{j}^{\beta_{l2}}t_{2} - \beta_{03}^{*}v_{j}^{\beta_{l3}}t_{1} + \frac{\beta_{03}^{*}}{\beta_{04}^{*}}\left(1 - e^{-\beta_{0d}^{*}v_{j}^{\beta_{l3}}(t_{j}-t_{2})}\right)\right) \\ \times exp\left(\frac{\beta_{03}^{*}}{\beta_{04}^{*} + \beta_{05}^{*}}\left(e^{-\beta_{0d}^{*}v_{j}^{\beta_{l3}}(t_{j}-t_{2})} - e^{-\beta_{0d}^{*}v_{j}^{\beta_{l3}}t_{1} - \beta_{03}^{*}v_{j}^{\beta_{l3}}t_{2}}\right)\right) \qquad se \ t_{1} > t_{2} \\ exp\left(-\beta_{0l}^{*}v_{j}^{\beta_{l1}}t_{1} - \beta_{02}^{*}v_{j}^{\beta_{l2}}t_{2} - \beta_{03}^{*}v_{j}^{\beta_{l3}}t_{2} - \frac{\beta_{03}^{*}}{\beta_{04}^{*}}\left(1 - e^{-\beta_{05}^{*}v_{j}^{\beta_{l3}}(t_{2}-t_{l})}\right)\right) \\ \times exp\left(\frac{\beta_{03}^{*}}{\beta_{04}^{*} + \beta_{05}^{*}}\left(e^{-\beta_{05}^{*}v_{j}^{\beta_{l3}}(t_{2}-t_{l})} - e^{-\beta_{04}^{*}v_{j}^{\beta_{l3}}t_{l} - \beta_{05}^{*}v_{j}^{\beta_{l3}}t_{2}}\right)\right) \qquad se \ t_{1} \le t_{2}, \end{cases}$$

$$(4.12)$$

onde $\beta_{01}^* = \lambda_1 \beta_{01}^{-1}, \ \beta_{02}^* = \lambda_2 \beta_{02}^{-1}, \ \beta_{03}^* = \lambda_{12} \beta_{03}^{-1}, \ \beta_{04}^* = s_1 \beta_{03}^{-1} \ e \ \beta_{05}^* = s_2 \beta_{03}^{-1}.$

A função densidade bivariada de $(T_1|v_j, T_2|v_j)$ é dada por:

$$\begin{split} & \int_{T_{l}[\nu_{j},T_{2}]\nu_{j}}(t_{l},t_{2}) \times \\ & \left(\beta_{02}^{*}v_{j}^{\beta_{l1}} + \beta_{03}^{*}v_{j}^{\beta_{l1}}e^{-\beta_{00}^{*}(t_{l}-t_{2})} - \frac{\beta_{03}^{*}}{\beta_{04}^{*} + \beta_{05}^{*}} \left(\beta_{0a}^{*}v_{j}^{\beta_{l1}}e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} + \beta_{03}^{*}v_{j}^{\beta_{l1}}e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} + g^{*}_{03}v_{j}v_{j}v_{l} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} + g^{*}_{03}v_{j}v_{j}v_{l} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} + g^{*}_{03}v_{j}v_{j}v_{l} - e^{-\beta_{0a}^{*}v_{j}^{\beta_{l1}}(t_{l}-t_{2})} + g^{*}_{03}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{l}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l} + g^{*}_{0a}v_{j}v_{l}v_{l}v_{l} - g^{*}_{0a}v_{j}v_{j}v_{l}} + g^{*}_{0a}v_{j}v_{j}v_{l}v_{l}v_{l} - g$$

onde $\beta_{01}^* = \lambda_1 \beta_{01}^{-1}, \ \beta_{02}^* = \lambda_2 \beta_{02}^{-1}, \ \beta_{03}^* = \lambda_{12} \beta_{03}^{-1}, \ \beta_{04}^* = s_1 \beta_{03}^{-1} \ e \beta_{05}^* = s_2 \beta_{03}^{-1}.$

Note que a função em (4.13) é a função de densidade da EBVE com parâmetros $\beta_{01}^* v_j^{\beta_{11}}$, $\beta_{02}^* v_j^{\beta_{12}}$, $\beta_{03}^* v_j^{\beta_{13}}$, $\beta_{04}^* v_j^{\beta_{13}}$ e $\beta_{05}^* v_j^{\beta_{13}}$. Portanto, da forma como a distribuição para tempos acelerados foi derivada é possível obter estimativas dos parâmetros nas condições usuais de operação. Neste trabalho, para ilustração, consideramos a voltagem usual, $v_0=1,5$.

Apresentamos a seguir, Figura 4.1, os gráficos das funções marginais, de sobrevivência, de densidade e de risco, da EBVE para tempos acelerados com parâmetros $\beta_{01}^* = \beta_{02}^* = 0,0296$, $\beta_{03}^* = 0,0593$, $\beta_{04}^* = \beta_{05}^* = 0,148$ e $\beta_{11} = \beta_{12} = \beta_{13} = 3$ nas voltagens, $\nu_0=1,5, \nu_1=2, \nu_2=2,5$ e $\nu_3=3$.

Figura 4.1 - Gráficos das funções marginais de sobrevivência, de densidade e de risco, nos níveis de voltagens v₀=1,5, v₁=2, v₂=2,5 e v₃=3.

4.2 Estimação dos Parâmetros usando o Método de MV

Consideremos uma amostra de *n* pares de componentes submetidos, desde o início até o fim do experimento, a uma carga de voltagem constante, mais elevada do que a usual. Suponha que 3 níveis de voltagens v_j , j=1, 2, 3, tenham sido utilizados e em cada nível n_j pares de componentes sejam colocados em teste.

Assumindo independência entre os componentes testados em cada nível de voltagem, a função de verossimilhança dos parâmetros é obtida usando (1.30) onde $f_{T_l|v_j,T_2|v_j}(t_{li},t_{2i};\theta)$ é dada em (4.13).

Apresentamos na seção 4.2.1 um exemplo de aplicação e na seção 4.2.2 fazemos algumas simulações para estudar as propriedades assintóticas dos estimadores de MV dos parâmetros da distribuição EBVE para tempos acelerados e dos parâmetros na voltagem usual.

4.2.1 Exemplo de Aplicação

Nesta seção analisamos uma amostra de tamanho $n=n_1+n_2+n_3$, com $n_i=170$, i=1, 2, 3, da distribuição EBVE para tempos acelerados, com $\beta_{01}^* = \beta_{02}^* = 0,0296$, $\beta_{03}^* = 0,0593$, $\beta_{04}^* = \beta_{05}^* = 0,148$, $\beta_{11} = \beta_{12} = \beta_{13} = 3$. Esses valores foram escolhidos, de modo que os parâmetros nas condições usuais de operação, $v_0=1,5$, fossem $\lambda_1=\lambda_2=0,1$, $\lambda_{12}=0,2$, $s_1=s_2=0,5$.

A amostra foi gerada pelo método da rejeição, apresentado na seção 2.1.1. Os parâmetros das distribuições uniformes, necessárias para a geração dos dados, foram obtidos a partir dos gráficos das funções de densidades bivariadas, dadas em 4.13, para os níveis de voltagens, $v_1 = 2$, $v_2 = 2.5$ e $v_3 = 3$. Dessa forma, utilizamos distribuições uniformes com os seguintes parâmetros: (0, 10), (0, 10), (0, 0,26) para $v_1 = 2$; (0, 5), (0, 5), (0, 0,88) para $v_2 = 2.5$ e (0, 3), (0, 3) e (0, 2,9) para $v_3 = 3$, sendo que a 1° e 2° distribuições uniformes geram os candidatos a T_1 e T_2 respectivamente e a 3° avalia se os candidatos não serão rejeitados.

Na Tabela 4.1 apresentamos as estimativas de MV e os intervalos de confiança assintóticos dos parâmetros da EBVE para tempos acelerados. Tabela 4.1 Estimativas de MV e intervalos de confiança assintóticos dos parâmetros da distribuição EBVE para tempos acelerados, obtidas no exemplo de aplicação

	EMV	IC 95%
$\beta_{o_1}^*$	0,021	(0; 0,050)
$\beta_{\scriptscriptstyle 02}^*$	0,018	(0; 0,042)
β_{03}^*	0,071	(0,031; 0,112)
$\beta_{_{04}}^{*}$	0,171	(0,041; 0,300)
β_{05}^{*}	0,170	(0,060; 0,279)
β_{11}	3,295	(1,842; 4,748)
$\beta_{_{12}}$	3,544	(2,177; 4,912)
β_{13}	2,803	(2,190; 3,416)

Obtivemos as estimativas de MV dos parâmetros nas condições usuais de operação, $v_0=1,5$, substituindo nas relações abaixo, as estimativas de MV apresentadas na Tabela 4.1. Essas estimativas e os intervalos de confiança assintóticos (1.35) são apresentados na Tabela 4.2.

$$\begin{aligned} \lambda_{1} \mid v_{0} &= \beta_{01}^{*} v_{0}^{\beta_{11}} \\ \lambda_{2} \mid v_{0} &= \beta_{02}^{*} v_{0}^{\beta_{12}} \\ \lambda_{12} \mid v_{0} &= \beta_{03}^{*} v_{0}^{\beta_{13}} \\ s_{1} \mid v_{0} &= \beta_{04}^{*} v_{0}^{\beta_{13}} \\ s_{2} \mid v_{0} &= \beta_{05}^{*} v_{0}^{\beta_{13}} \end{aligned}$$

	EMV	IC 95%
$\lambda_1 \mid v_0$	0,080	(0,016; 0,143)
$\lambda_2 v_0$	0,077	(0,020; 0,134)
$\lambda_{12} \mid v_0$	0,221	(0,144; 0,300)
$s_1 \mid v_0$	0,532	(0,221; 0,843)
$s_2 \mid v_0$	0,528	(0,280; 0,777)

Tabela 4.2 Estimativas de MV e intervalos de confiança dos parâmetros na voltagem $v_0=1.5$.

Nas tabelas 4.3, 4.4 e 4.5 apresentamos as estimativas de MV das funções marginais de confiabilidade e de risco, avaliadas no tempo t=1, correspondentes as voltagens $v_0=1,5$, $v_1=2$, $v_2=2,5$ e $v_3=3$, para os tempos dos componentes e também de suas partes, específica e comum, respectivamente, junto com os intervalos de confiança assintóticos.

Tabela 4.3 - Estimativas de MV e intervalos de confiança das funções marginais de confiabilidade e de risco, avaliadas no tempo t=1, nas voltagens v₀=1,5, v₁=2, v₂=2,5, v₃=3, correspondentes ao exemplo de aplicação

Componente	ei	$S_{T_t v_j}(t)$	IC 95%	$h_{T_i v_j}(t)$	IC 95%
1	v ₀	0,879	(0,832; 0,926)	0,171	(0,114; 0,228)
	v_l	0,663	(0,614; 0,712)	0,551	(0,467; 0,634)
	<i>v</i> ₂	0,374	(0,340; 0,408)	1,255	(1,144; 1,365)
	<i>v</i> ₃	0,147	(0,110; 0,184)	2,288	(1,960; 2,617)
2	v_0	0,881	(0,837; 0,925)	0,168	(0,113; 0,222)
	v_I	0,659	(0,609; 0,706)	0,558	(0,475; 0,640)
	v_2	0,359	(0,325; 0,393)	1,296	(1,184; 1,409)
	v_3	0,131	(0,096; 0,166)	2,405	(2,078; 2,731)

77

Tabela 4.4 - Estimativas de MV e intervalos de confiança das funções marginais de confiabilidade e de risco, da parte específica de cada componente, avaliadas no tempo t=1, nas voltagens v₀=1,5, v₁=2, v₂=2,5 e v₃=3.

Component	e i	$S_{X_i v_j}(t)$	IC 95%	$h_{X_i v_j}(t)$	IC 95%
1	v ₀	0,923	(0,865; 0,982)	0,080	(0,016; 0,143)
	vI	0,814	(0,742; 0,887)	0,205	(0,117; 0,294)
	v_2	0,652	(0,575; 0,728)	0,428	(0,311; 0,545)
	v_3	0,458	(0,324; 0,591)	0,781	(0,489; 1,073)
2	v_0	0,926	(0,873; 0,978)	0,077	(0,020; 0,134)
	v_l	0,808	(0,739; 0,876)	0,214	(0,129; 0,298)
	<i>v</i> ₂	0,624	(0,546; 0,703)	0,471	(0,345; 0,597)
	v_3	0,407	(0,270; 0,544)	0,899	(0,563; 1,235)

Tabela 4.5 - Estimativas de MV e intervalos de confiança das funções marginais de confiabilidade e de risco, da parte comum de cada componente, avaliadas no tempo t=1, nas voltagens v₀=1,5, v₁=2, v₂=2,5 e v₃=3.

Componente	ei	$S_{Z_i \aleph_j}(t)$	IC 95%	$h_{Z_i v_j}(t)$	IC 95%
1	vo	0,952	(0,920; 0,983)	0,091	(0,035; 0,148)
	v_I	0,814	(0,756; 0,871)	0,345	(0,246; 0,444)
	<i>v</i> ₂	0,574	(0,509; 0,639)	0,827	(0,686; 0,967)
	<i>v</i> ₃	0,320	(0,233; 0,408)	1,507	(1,150; 1,864)
2	vo	0,952	(0,924; 0,979)	0,091	(0,040; 0,141)
	v_l	0,815	(0,765; 0,864)	0,344	(0,255; 0,433)
	v_2	0,575	(0,508; 0,641)	0,825	(0,672; 0,978)
	v_3	0,321	(0,224; 0,418)	1,506	(1,134; 1,878)

Calculamos também os percentis 25, 50 e 75 das distribuições EBVE para tempos acelerados, considerando as voltagens $v_0=1,5$, $v_1=2$, $v_2=2,5$ e $v_3=3$. Para isto, igualamos a p cada uma das funções de distribuição marginais e encontramos numericamente as soluções em t. Os valores são apresentados na Tabela 4.6, abaixo.

componente i	v	t _{0,25}	t _{0,50}	t _{0,75}
1	v ₀	1,808	3,463	5,924
	v_{I}	0,764	1,478	2,539
	v_2	0,390	0,761	1,312
	<i>v</i> ₃	0,225	0,442	0,763
2	v_0	1,846	3,523	6,016
	v_l	0,759	1,471	2,528
	v_2	0,378	0,742	1,281
	v_3	0,212	0,421	0,732

tempos acelerados nos níveis de voltagens $v_0=1,5, v_1=2,$

Tabela 4.6 Estimativas pontuais dos quartis da distribuição EBVE para

 $v_2=2.5 \text{ e } v_3=3$

4.2.2 Estudo de Simulação

Nesta seção fazemos algumas simulações para estudar as propriedades assintóticas dos estimadores de MV, dos parâmetros da distribuição EBVE para tempos acelerados, dada em 4.13. Foram utilizadas amostras com mesmo número de observações em cada nível j=1, 2 e 3 de voltagem, v_j e amostras com aproximadamente 50%, 30% e 20% dos dados para os níveis j=1, 2 e 3, respectivamente, visando verificar se existe uma melhora nas estimativas de MV quando as amostras apresentam mais elementos nas voltagens mais baixas.

Os tempos até as falhas aceleradas $(T_1|v_j, T_2|v_j)$, em cada um dos níveis de voltagem foram gerados pelo método da rejeição, considerando os mesmos valores das voltagens e dos parâmetros utilizados no exemplo de aplicação na seção 4.2.1. O estudo foi feito com 500 amostras de tamanhos *n*=60, 105, 300, 510 e foram desprezadas as amostras que não convergiram ou cujas estimativas não pertenceram aos intervalos: $\hat{\beta}_{01}^* < 0.6$, $\hat{\beta}_{02}^* < 0.6$, $\hat{\beta}_{03}^* < 1.2$, $\hat{\beta}_{04}^* < 3$, $\hat{\beta}_{05}^* < 3$, $\hat{\beta}_{11} > 0$, $\hat{\beta}_{12} > 0$ e $\hat{\beta}_{13} > 0$. Uma descrição das amostras nessas condições é feita na Tabela 4.7. No Apêndice F apresentamos o programa computacional implementado em Ox (Doornik, 1999), para o estudo de simulação. Para verificarmos a validade das amostras geradas comparamos a média das médias, das variâncias e da correlação entre os tempos (t_1, t_2) amostrais (Tabela 4.8) com os valores das distribuições, obtidos numericamente considerando os parâmetros utilizados na geração (Tabela 4.9). Com os resultados, observamos que os valores amostrais e os das distribuições parecem estar próximos e apresentam pequenos desvios padrões.

Para cada amostra gerada encontramos as estimativas de MV, utilizando o método de *quasi-Newton* BFGS. Nas Tabelas 4.10 e 4.12 apresentamos as médias das 500 estimativas de MV, dos desvios padrões e dos erros quadráticos médios dos estimadores dos parâmetros da EBVE para tempos acelerados e na voltagem usual, $v_0=1,5$, respectivamente. As Figuras 4.2 e 4.3 são correspondentes a estas tabelas. Com os resultados obtidos verificamos que os erros quadráticos médios dos estimadores dos parâmetros na voltagem usual e de β_{01}^* , β_{02}^* , β_{03}^* , β_{04}^* e β_{05}^* estão convergindo rapidamente para zero parecendo ser menores do que os de β_{11} , β_{12} e β_{13} . Observamos também que os estimadores obtidos nas amostras com maior número de elementos nas voltagens mais baixas parecem ser mais eficientes dos que os obtidos considerando amostras com tamanhos iguais.

Na Tabela 4.11 e Figura 4.4 estão as coberturas dos intervalos de 90% e 95% de confiança dos parâmetros da EBVE para tempos acelerados e na Tabela 4.13 e Figura 4.5 as dos parâmetros na voltagem usual. Vemos que a cobertura dos intervalos de confiança parece se aproximar da cobertura nominal para n>500.

condições		15	ta	manho d	as amost	ras		
	20+20 +20	30+20 +10	35+35 +35	55+30+ 20	100+100 +100	150+90 +60	170+170 +170	260+150 +100
$\beta_{01}^* > 0.6$	21*	67	15	24	1	1	0	0
$\beta_{02}^* > 0.6$	29	64	25	22	0	0	0	0
$\beta_{03}^* > 1.2$	1	6	0	1	0	0	0	0
$\beta_{04}^* > 3$	12	19	7	2	0	0	0	0
$\beta_{05}^* > 3$	14	19	1	3	0	0	0	0
β ₁₁ <0	84	91	36	45	3	4	0	0
$\beta_{12} < 0$	92	95	39	35	0	5	1	0
$\beta_{13} < 0$	6	10	0	0	0	0	0	0
$\beta_{01}^* > 0.6, \ \beta_{02}^* > 0.6, \ \beta_{03}^* > 1.2,$ $\beta_{04}^* > 3, \ \beta_{05}^* > 3, \ \beta_{11} < 0, \ \beta_{12} < 0, \ \beta_{13} < 0$	179	205	77	78	3	9	1	0
não convergiram	464	455	135	130	7	3	2	1
covariância negativa	6	4	3	0	0	1	0	0

Tabela 4.7 - Descrição das amostras simuladas com tempos acelerados

* Número de amostras

Tabela 4.8 - Média das médias, variâncias e correlações dos tempos (t_1, t_2) das 500 amostras geradas da EBVE para tempos acelerados com $\beta_{01}^* = \beta_{02}^* = 0,0296, \ \beta_{03}^* = 0,0593,$

n	v	médias t_1 média (dp)	médias t ₂ média (dp)	var t_1 média (dp)	var t_2 média (dp)	$corr(t_1, t_2)$ média (dp)
20+20+20	v_{I}	1,83 (0,31)	1,82 (0,31)	2,15 (1,05)	2,16 (1,02)	0,32 (0,25)
	v2	0,89 (0,16)	0,88 (0,17)	0,52 (0,27)	0,52 (0,27)	0,30 (0,25)
	V3	0,55 (0,09)	0,55 (0,09)	0,19 (0,09)	0,19 (0,09)	0,30 (0,25)
30+20+10	v_{I}	1,82 (0,26)	1,82 (0,25)	2,19 (0,85)	2,15 (0,81)	0,33 (0,21)
	v2	0,90 (0,17)	0,91 (0,17)	0,54 (0,28)	0,55 (0,28)	0,29 (0,26)
	V3	0,57 (0,14)	0,54 (0,13)	0,20 (0,14)	0,19 (0,13)	0,30 (0,36)
35+35+35	V1	1,82 (0,26)	1,81 (0,25)	2,16 (0,84)	2,12 (0,79)	0,30 (0,20)
	V2	0,91 (0,12)	0,91 (0,12)	0,54 (0,21)	0,56 (0,20)	0,32 (0,20)
	v_3	0,54 (0,07)	0,54 (0,07)	0,19 (0,07)	0,19 (0,07)	0,32 (0,20)
55+30+20	vi	1,81 (0,19)	1,82 (0,20)	2,16 (0,67)	2,20 (0,66)	0,34 (0,15)
	v ₂	0,91 (0,14)	0,91 (0,13)	0,53 (0,22)	0,55 (0,21)	0,30 (0,21)
	V3	0,54 (0,10)	0,54 (0,10)	0,19 (0,10)	0,18 (0,09)	0,30 (0,26)
100+100+100	v_I	1,81 (0,15)	1,81 (0,15)	2,15 (0,51)	2,14 (0,47)	0,32 (0,12)
	v2	0,92 (0,07)	0,92 (0,07)	0,56 (0,12)	0,55 (0,12)	0,32 (0,12)
	v 3	0,53 (0,04)	0,54 (0,04)	0,19 (0,04)	0,19 (0,04)	0,32 (0,12)
150+90+60	v_I	1,80 (0,12)	1,81 (0,12)	2,16 (0,40)	2,18 (0,38)	0,32 (0,10)
	v2	0,92 (0,08)	0,92 (0,08)	0,56 (0,13)	0,56 (0,12)	0,31 (0,13)
	V3	0,54 (0,06)	0,54 (0,06)	0,19 (0,05)	0,19 (0,05)	0,32 (0,16)
170+170+170	v_{I}	1,80 (0,11)	1,81 (0,11)	2,15 (0,36)	2,17 (0,36)	0,32 (0,10)
	v2	0,92 (0,06)	0,92 (0,05)	0,56 (0,10)	0,56 (0,09)	0,31 (0,10)
	<i>v</i> ₃	0,53 (0,03)	0,53 (0,03)	0,19 (0,03)	0,19 (0,03)	0,32 (0,10)
260+150+100	v_l	1,80 (0,09)	1,81 (0,09)	2,15 (0,31)	2,17 (0,30)	0,32 (0,08)
	v2	0,92 (0,06)	0,92 (0,06)	0,56 (0,10)	0,55 (0,10)	0,31 (0,10)
	v_3	0,54 (0,04)	0,54 (0,05)	0,19 (0,04)	0,19 (0,04)	0,31 (0,12)

$$\beta_{04}^* = \beta_{05}^* = 0,148 \text{ e } \beta_{11} = \beta_{12} = \beta_{13} = 3$$

Tabela 4.9 - Resumo dos valores teóricos da distribuição EBVE para tempos acelerados

14 1 20	$E(T_l)$	$E(T_2)$	$Var(T_i)$	$Var(T_2)$	$Corr(T_1, T_2)$
v_1	1,81	1,81	2,29	2,29	0,32
V2	0,93	0,93	0,59	0,59	0,32
V3	0,54	0,54	0,20	0,20	0,32

 $\operatorname{com} \beta_{01}^* = \beta_{02}^* = 0,029, \ \beta_{03}^* = 0,0593, \ \beta_{04}^* = \beta_{05}^* = 0,148 \ e \ \beta_{11} = \beta_{12} = \beta_{13} = 3.$

Tabela 4.10 - Média das 500 estimativas de MV, dos desvios padrões e dos erros quadráticos médios dos estimadores dos parâmetros da distribuição EBVE para tempos acelerados com $\beta_{01}^* = \beta_{02}^* = 0,0296$, $\beta_{03}^* = 0,0593$, $\beta_{04}^* = \beta_{05}^* = 0,148$ e $\beta_{11} = \beta_{12} = \beta_{13} = 3$

				Tamanho d	as amostras			
. média (dp)	20+20+20	30+20+10	35+35+35	55+30+20	100+100+100	150+90+60	170+170+170	260+150+100
β_{01}^*	0,06 (0,08)	0,06 (0,07)	0,05 (0,06)	0,05 (0,06)	0,04 (0,04)	0,04 (0,03)	0,03 (0,02)	0,03 (0,02)
β_{02}^*	0,06 (0,08)	0,05 (0,06)	0,05 (0,06)	0,05 (0,06)	0,04 (0,04)	0,04 (0,04)	0,03 (0,02)	0,03 (0,02)
β_{03}^*	0,09 (0,08)	0,10 (0,10)	0,08 (0,05)	0,08 (0,05)	0,07 (0,03)	0,07 (0,02)	0,06 (0,02)	0,07 (0,02)
β_{04}^*	0,36 (0,72)	0,31 (0,38)	0,20 (0,23)	0,22 (0,24)	0,16 (0,08)	0,16 (0,07)	0,15 (0,05)	0,16 (0,06)
β_{05}^*	0,41 (0,79)	0,31 (0,37)	0,21 (0,26)	0,21 (0,26)	0,16 (0,07)	0,16 (0,08)	0,15 (0,05)	0,15 (0,05)
β_{11}	3,12 (1,64)	3,11 (1,64)	3,15 (1,36)	3,12 (1,47)	3,02 (0,94)	2,94 (0,94)	2,99 (0,65)	2,96 (0,67)
β_{12}	3,19 (1,59)	3,27 (1,67)	3,05 (1,37)	3,10 (1,41)	2,99 (0,93)	2,95 (0,94)	3,03 (0,65)	3,02 (0,70)
β_{13}	2,95 (0,96)	2,87 (0,96)	3,00 (0,69)	2,96 (0,71)	3,00 (0,40)	3,01 (0,03)	3,01 (0,30)	2,97 (0,31)
$dp\beta_{01}^*$	0,10 (0,14)	0,10 (0,13)	0,06 (0,08)	0,07 (0,10)	0,03 (0,03)	0,03 (0,03)	0,02 (0,01)	0,02 (0,01)
$dp\beta_{02}^{*}$	0,10 (0,13)	0,10 (0,13)	0,07 (0,10)	0,07 (0,09)	0,03 (0,03)	0,03 (0,01)	0,02 (0,01)	0,02 (0,01)
$dp\beta_{03}^*$	0,08 (0,10)	0,10 (0,15)	0,05 (0,04)	0,05 (0,04)	0,03 (0,01)	0,02 (0,04)	0,02 (0,004)	0,02 (0,01)
$dp\beta_{04}^*$	0,47 (1,30)	0,35 (0,53)	0,17 (0,25)	0,19 (0,29)	0,07 (0,04)	0,07 (0,04)	0,05 (0,02)	0,05 (0,02)
$dp\beta_{05}^*$	0,52 (1,30)	0,36 (0,56)	0,18 (0,31)	0,18 (0,32)	0,07 (0,03)	0,07 (0,23)	0,05 (0,02)	0,05 (0,02)
$dp\beta_{11}$	2,16 (1,10)	2,27 (0,93)	1,63 (0,62)	1,74 (0,71)	0,91 (0,21)	0,94 (0,22)	0,67 (0,12)	0,69 (0,11)
$dp\beta_{12}$	2,12 (0,93)	2,45 (1,46)	1,67 (0,83)	1,73 (0,76)	0,90 (0,20)	0,93 (0,05)	0,66 (0,09)	0,68 (0,10)
$dp\beta_{13}$	0,95 (0,33)	1,00 (0,33)	0,68 (0,18)	0,71 (0,20)	0,38 (0,05)	0,39 (0,01)	0,29 (0,03)	0,30 (0,03)
$eqm\beta_{01}^*$	0,04 (0,09)	0,03 (0,09)	0,02 (0,05)	0,02 (0,06)	0,004 (0,01)	0,003 (0,01)	0,001 (0,003)	0,001 (0,002)
$eqm\beta_{02}^*$	0,03 (0,09)	0,03 (0,09)	0,02 (0,07)	0,02 (0,05)	0,003 (0,01)	0,003 (0,002)	0,001 (0,003)	0,001 (0,002)
$eqm\beta_{03}^*$	0,02 (0,08)	0,04 (0,26)	0,01 (0,02)	0,01 (0,02)	0,002 (0,002)	0,001 (0,02)	0,001 (0,001)	0,001 (0,001)
$eqm\beta_{04}^*$	2,47 (22,2)	0,57 (2,09)	0,14 (1,01)	0,18 (0,89)	0,01 (0,03)	0,01 (0,02)	0,01 (0,008)	0,01 (0,01)
$eqm\beta_{05}^*$	2,65 (18,5)	0,60 (2,31)	0,20 (1,27)	0,21 (1,29)	0,01 (0,01)	0,01 (0,02)	0,01 (0,008)	0,01 (0,01)
$eqm\beta_{11}$	8,55 (10,0)	8,71 (7,12)	4,93 (4,12)	5,68 (5,04)	1,75 (1,54)	1,81 (1,63)	0,88 (0,77)	0,94 (0,67)
$eqm\beta_{12}$	7,91 (6,92)	11,0 (15,9)	5,37 (8,37)	5,57 (5,57)	1,72 (1,53)	1,79 (1,61)	0,88 (0,66)	0,96 (0,79)
$eqm\beta_{13}$	1,92 (2,24)	2,05 (2,08)	0,97 (0,85)	1,05 (1,13)	0,31 (0,25)	0,32 (0,22)	0,17 (0,14)	0,19 (0,14)

n	β_{01}^*	β_{02}^*	β_{03}^*	β_{04}^*	β_{05}^*	β_{11}	β_{12}	β_{13}
20+20+20	79,8 ^a	78,6	87,2	86,8	87,4	93,6	95,0	92,8
	81,8 ^b	79,8	89,6	88,2	89,2	97,0	97,8	96,8
30+20+10	80,2	77,0	90,2	86,8	89,6	94,4	95,2	93,8
	82,8	80,2	92,0	90,0	90,6	97,0	97,0	97,2
35+35+35	78,6	82,4	88,6	85,6	84,2	93,4	95,4	91,0
	82,4	84,6	91,0	88,2	88,0	96,8	97,0	95,8
55+30+20	77,4	81,2	91,4	86,8	85,6	93,8	93,6	92,4
	80,0	83,6	94,4	88,2	89,4	96,8	96,6	97,2
100+100+100	84,0	86,0	89,6	87,8	85,4	91,4	90,6	88,6
	86,6	88,2	93,6	90,0	88,0	96,0	95,6	93,4
150+90+60	84,8	85,0	91,6	87,2	85,4	93,2	90,4	89,4
	87,2	88,2	95,4	90,4	89,4	96,4	94,6	95,0
170+170+170	89,2	86,6	90,4	88,2	87,0	91,0	90,4	89,6
	92,0	90,0	95,0	91,6	89,4	96,0	96,2	94,8
260+150+100	89,2	87,8	92,8	87,2	87,6	91,4	89,4	89,2
	91,8	89,4	95,8	91,2	91,4	97,2	94,6	95,0

Tabela 4.11 - Cobertura dos intervalos de confiança assintóticos dos parâmetros da distribuição EBVE para tempos acelerados

^{a,b} Coeficientes de confiança 90% e 95%, respectivamente

Tabela 4.12 - Média das 500 estimativas de MV, dos desvios padrões e dos erros quadráticos médios dos estimadores dos parâmetros na voltagem usual, $v_0=1,5$, dados por $\lambda_1 | v_0 = \lambda_2 | v_0 = 0.1$, $\lambda_{12} | v_0 = 0.2$ e $s_1 | v_0 = s_2 | v_0 = 0.5$.

Média (dp)	20+20+20	30+20+10	35+35+35	55+30+20	100+100+100	150+90+60	170+170+170	260+150+100
$\lambda_1 v_0$	0,12 (0,10)	0,12 (0,09)	0,11 (0,08)	0,11(0,07)	0,11 (0,05)	0,11 (0,04)	0,10 (0,04)	0,10 (0,03)
$\lambda_2 \mid v_o$	0,12 (0,10)	0,11 (0,08)	0,12 (0,08)	0,11 (0,07)	0,11 (0,05)	0,11 (0,05)	0,10 (0,04)	0,10 (0,03)
$\lambda_{12} v_o$	0,25 (0,14)	0,26 (0,17)	0,23 (0,10)	0,24 (0,10)	0,22 (0,05)	0,21 (0,05)	0,21 (0,04)	0,21 (0,03)
$s_i v_o$	0,97 (1,47)	0,84 (0,90)	0,63 (0,68)	0,67 (0,85)	0,51 (0,19)	0,50 (0,18)	0,50 (0,14)	0,50 (0,14)
$S_2 v_o$	1,17 (2,23)	0,89 (1,24)	0,64 (0,72)	0,63 (0,69)	0,51 (0,18)	0,51 (0,19)	0,50 (0,14)	0,50 (0,13)
$dp\lambda_{i} v_{o}$	0,12 (0,08)	0,11 (0,07)	0,09 (0,05)	0,08 (0,05)	0,05 (0,02)	0,05 (0,02)	0,04 (0,01)	0,03 (0,01)
$dp\lambda_z v_o$	0,11 (0,08)	0,11 (0,07)	0,09 (0,06)	0,08 (0,05)	0,05 (0,02)	0,04 (0,02)	0,04 (0,01)	0,03 (0,01)
$dp\lambda_{12} v_o$	0,14 (0,15)	0,15 (0,28)	0,09 (0,06)	0,09 (0,05)	0,05 (0,01)	0,05 (0,01)	0,04 (0,01)	0,04 (0,01)
$dps_1 v_0$	0,91 (2,00)	0,71 (1,12)	0,40 (0,69)	0,46 (1,35)	0,17 (0,08)	0,17 (0,07)	0,13 (0,04)	0,13 (0,04)
$dps_2 v_o$	1,21 (3,45)	0,79 (1,65)	0,42 (0,85)	0,40 (0,97)	0,17 (0,07)	0,17 (0,07)	0,13 (0,04)	0,13 (0,04)
$eqm\lambda_i v_o$	0,03 (0,05)	0,03 (0,04)	0,09 (0,03)	0,01 (0,02)	0,01 (0,01)	0,004 (0,01)	0,003 (0,003)	0,002 (0,002)
$eqm\lambda_2 v_o$	0,03 (0,04)	0,02 (0,03)	0,09 (0,03)	0,01 (0,02)	0,01 (0,01)	0,004 (0,01)	0,003 (0,003)	0,002 (0,002)
$eqm\lambda_{12} v_o$	0,06 (0,42)	0,14 (1,54)	0,09 (0,07)	0,02 (0,05)	0,01 (0,01)	0,01 (0,01)	0,003 (0,003)	0,003 (0,002)
$eqms_i v_o$	7,22 (45,6)	2,70 (13,0)	0,40 (11,3)	2,78 (39,4)	0,07 (0,12)	0,06 (0,11)	0,04 (0,04)	0,04 (0,06)
$eqms_2 v_o$	18,8 (141)	5,02 (35,5)	0,42 (14,3)	1,59 (21,6)	0,07 (0,08)	0,07 (0,09)	0,04 (0,04)	0,04 (0,04)
tempo	17:17	18:56'	15:56'	18:40'	24:24'	23:04'	37:01'	38:10'

п	$\lambda_{I} \mid v_{o}$	$\lambda_2 \mid v_0$	$\lambda_{12} \mid v_0$	$s_1 \mid v_0$	$S_2 \mid v_0$
20+20+20	86,0 ^a	84,2	90,2	89,0	89,2
	88,4 ^b	88,2	92,4	90,4	91,4
30+20+10	86,8	84,0	92,8	88,4	89,4
	89,2	87,2	94,2	91,6	91,2
35+35+35	85,4	87,8	90,8	87,8	85,6
	89,2	90,4	94,6	91,0	89,0
55+30+20	84,4	86,2	91,4	87,0	87,2
	89,2	89,4	96,4	90,6	90,4
100+100+100	87,6	87,8	89,2	86,0	86,2
	92,4	93,2	95,4	90,2	89,8
150+90+60	88,0	87,4	90,8	86,8	85,2
	92,6	92,4	96,0	91,8	90,8
170+170+170	89,8	88,4	89,6	88,4	86,8
	94,2	93,0	95,0	92,4	90,6
260+150+100	91,6	89,0	89,6	86,8	87,2
	94,8	92,8	95,8	92,0	92,2

Tabela 4.13 - Cobertura dos intervalos com 90% e 95% de confiança dos parâmetros da EBVE, na voltagem $v_0=1,5$

^{a,b} Cobertura dos intervalos de confiança 90% e 95% respectivamente

Figura 4.2-Gráficos das médias das estimativas de MV dos parâmetros do modelo para tempos acelerados com $\beta_{01}^* = \beta_{02}^* = 0,0296$, $\beta_{03}^* = 0,0593$, $\beta_{04}^* = \beta_{05}^* = 0,148$, $\beta_{11} = \beta_{12} = \beta_{13} = 3$ e na voltagem usual, $v_0 = 1,5$, onde $\lambda_1 | v_0 = \lambda_2 | v_0 = 0,1$, $\lambda_{12} | v_0 = 0,2$ e $s_1 | v_0 = s_2 | v_0 = 0,5$

Figura 4.3 - Gráficos das médias dos erros quadráticos médios dos estimadores dos parâmetros do modelo para tempos acelerados com $\beta_{oi}^* = \beta_{oi}^* = 0,0296$, $\beta_{oi}^* = 0,0593$, $\beta_{oi}^* = \beta_{oi}^* = 0,148$, $\beta_{ii} = \beta_{i2} = \beta_{i3} = 3$ e na voltagem usual, $v_0 = 1,5$, onde $\lambda_1 | v_0 = 0,1$, $\lambda_2 | v_0 = \lambda_{12} | v_0 = 0,2$ e $s_1 | v_0 = s_2 | v_0 = 0,5$

Figura 4.4 – Cobertura dos intervalos aproximados, com 90% e 95% de confiança, dos parâmetros da distribuição EBVE para tempos acelerados com $\beta_{01}^* = \beta_{02}^* = 0,0296, \ \beta_{03}^* = 0,0593, \ \beta_{04}^* = \beta_{05}^* = 0,148, \ \beta_{11} = \beta_{12} = \beta_{13} = 3.$

Figura 4.5 – Cobertura dos intervalos aproximados, com 90% e 95% de confiança, dos parâmetros na voltagem usual, $v_0=1,5$.

CONCLUSÕES

De acordo com os resultados obtidos com as simulações chegamos às seguintes conclusões:

 i) As amostras da distribuição EBVE, geradas pelo método da rejeição, pareceram confiáveis quando n>100.

ii) Considerando dados sem censura, as estimativas de MV de λ_1 e λ_2 apresentaram vícios e variabilidade pequenos, mesmo para amostras de tamanho n=30, enquanto que as estimativas de λ_{12} foram eficientes para amostras maiores do que 100 e as de s_1 e s_2 para amostras com n>300. A distribuição dos estimadores de MV parece não se aproximar da normal multivariada, mesmo para amostras de tamanho n=500.

iii) Nas amostras com censuras do tipo I as estimativas de MV apresentaram vícios grandes, mesmo considerando uma pequena probabilidade de censura. As coberturas dos intervalos de confiança assintóticos não foram próximas da cobertura nominal, possivelmente devido ao fato da variância dos estimadores estarem convergindo para zero mais rapidamente do que os seus vícios.

iv) Na análise Bayesiana, as densidades *a posteriori* foram influenciadas consideravelmente pelas densidades *a priori*. As médias e medianas das densidades *a posteriori* foram mais próximas dos valores dos parâmetros quando assumimos densidades *a priori* com melhor informação, como era esperado.

v) No modelo para tempos acelerados, os estimadores de MV apresentaram vícios e variabilidade pequenos para amostras com n>300.

Em relação a trabalhos futuros, na análise clássica seria interessante utilizar algumas reparametrizações para tentar melhorar a normalidade dos estimadores de MV e usar o método *Bootstrap* para estimar as variâncias dos estimadores. Na análise Bayesiana

poderíamos estudar a sensibilidade das densidades *a priori* no modelo, também assumindo densidades *a priori* não informativas.

92

APÊNDICE A FUNÇÕES DE SOBREVIVÊNCIA DA EBVE

A₁ - Obtenção da Função de Sobrevivência de Z_i , i=1, 2

Neste apêndice obteremos a função de sobrevivência de Z_i. Com esse objetivo precisaremos dos seguintes resultados:

Lema: τ_1 , τ_2 ,..., τ_k quando não ordenados, são distribuídos independentemente e uniformemente em (0, t], demonstração em Barlow e Proschan, 1981.

Corolário: $t-\tau_1$, $t-\tau_2$,..., $t-\tau_k$, quando não ordenados, são independentes e identicamente distribuídos U(0, t].

De (1.4) obtemos a função de risco de Z_i no tempo t, condicional a realização do processo $\{N_{12}(t), t \ge 0; \lambda_{12}\}$, dada por:

$$h_{Zi|N12}(t) = s_i N_{12}(t) \tag{a11}$$

$$S_{Z_{i}|N_{12}}(t) = P(Z_{i} > t \mid N_{12}) = exp\left(-s_{i} \int_{0}^{t} N_{12}(u) du\right).$$
(a₁2)

Podemos escrever a função de sobrevivência de Zi na forma

$$S_{Z_{i}}(t) = P(Z_{i} > t) = \sum_{k=0}^{\infty} P(Z_{i} > t | N_{12} = k) P(N_{12} = k), \qquad (a_{1}3)$$

sendo que em (a₁3) usamos o teorema da probabilidade total. Notemos que para t fixo, $P(Z_i > t | N_{12} = k)$ é uma função de k, digamos g(k) e portanto,

$$S_{Z_{i}}(t) = \sum_{k=0}^{\infty} g(k) P\left(N_{12} = k\right) = E\left(g(N_{12})\right) = E\left(P\left(Z_{i} > t \mid N_{12}\right)\right) = E\left(S_{Z_{i} \mid N_{12}}(t)\right).$$
(a₁4)

Agora, usando $(a_1 2)$ em $(a_1 4)$ temos que,

$$E\left(S_{Z_{i}|N_{12}}(t)\right) = E\left(exp\left(-s_{i}\int_{0}^{t}N_{12}(u)du\right)\right)$$
(a,5)

e pelas propriedades de esperança, veja James, 1981, temos que,

$$E\left(\exp\left(-s_{i}\int_{0}^{t}N_{12}(u)du\right)\right) = \sum_{k=0}^{\infty}P(N_{12}=k)E\left(\exp\left(-s_{i}\int_{0}^{t}N_{12}(u)du\right)|N_{12}=k\right).$$
 (a₁6)

Como $\{N_{12}(t), t \ge 0\}$ é uma função escada contínua a direita e com os limites a esquerda, veja Figura 1, no início deste apêndice, então

$$\int_{0}^{t} N_{12}(u) du = (t - \tau_1) + (t - \tau_2) + \dots + (t - \tau_k)$$
(a₁7)

e das equações anteriores temos que,

$$S_{Z_{i}}(t) = \sum_{k=0}^{\infty} P(N_{12} = k) E(exp(-s_{i}((t - \tau_{1}) + (t - \tau_{2}) + \dots + (t - \tau_{k})))))$$
(a₁8)

$$=\sum_{k=0}^{\infty} \frac{e^{-\lambda_{1} z} (\lambda_{12} t)^{k}}{k!} E(exp(-s_{i}(t-\tau_{1})k))$$
(a₁9)

$$=\sum_{k=0}^{\infty} \frac{e^{-\lambda_{12}t} (\lambda_{12}t)^{k}}{k!} E(exp(-s_{i}(t-\tau_{1})))^{k}$$

$$=\sum_{k=0}^{\infty} \frac{e^{-\lambda_{12}t} (\lambda_{12}t)^{k}}{k!} \frac{(1-e^{-s_{i}t})^{k}}{(s_{i}t)^{k}},$$
(a₁10)

sendo que em (a_19) e em (a_110) utilizamos a conclusão do corolário apresentado no início deste apêndice. Finalmente, temos que

$$S_{Z_{i}}(t) = e^{-\lambda_{12}t} \sum_{k=0}^{\infty} \frac{\left(\frac{\lambda_{12}}{s_{i}} \left(1 - e^{-s_{i}t}\right)\right)^{k}}{k!} = exp\left(-\lambda_{12}t + \frac{\lambda_{12}}{s_{i}} \left(1 - e^{-s_{i}t}\right)\right). \quad (a_{1}11)$$

A₂ - Obtenção da Função de Sobrevivência de (T_1, T_2)

Neste apêndice obteremos a função de sobrevivência conjunta de (T_1, T_2) . Iniciamos a partir da função de sobrevivência condicional de (T_1, T_2) dada a realização de $\{N_{12}(t), t \ge 0; \lambda_{12}\},$

$$S_{T_{1}T_{2}|N_{12}}(t_{1},t_{2}) = P(T_{1} > t_{1},T_{2} > t_{2} | N_{12})$$

$$= P(min(X_{1},Z_{1}) > t_{1},min(X_{2},Z_{2}) > t_{2} | N_{12})$$

$$= P(X_{1} > t_{1},Z_{1} > t_{1},X_{2} > t_{2},Z_{2} > t_{2} | N_{12})$$

$$= P(X_{1} > t_{1})P(X_{2} > t_{2})P(Z_{1} > t_{1},Z_{2} > t_{2} | N_{12})$$

$$= P(X_{1} > t_{1})P(X_{2} > t_{2})exp\left(-s_{1}\int_{0}^{t_{1}}N_{12}(u)du - s_{2}\int_{0}^{t_{2}}N_{12}(u)du\right) \quad (a_{2}1)$$

Podemos escrever a função de sobrevivência conjunta de (T_1, T_2) na forma,

$$S_{T_1,T_2}(t_1,t_2) = P(T_1 > t_1, T_2 > t_2) = \sum_{k=0}^{\infty} P(T_1 > t_1, T_2 > t_2 \mid N_{12} = k) P(N_{12} = k)$$
(a₂2)

pelo teorema da probabilidade total. Agora, utilizando a mesma propriedade em (a₁4) temos que,

$$S_{T_1,T_2}(t_1,t_2) = E(S_{T_1,T_2|N_{12}}(t_1,t_2)).$$
 (a₂3)

95

Fazendo uso de (a21) em (a23) temos que,

$$E(S_{T_{1},T_{2}|N_{12}}(t_{1},t_{2})) = E\left(P(X_{1} > t_{1})P(X_{2} > t_{2})exp\left(-s_{1}\int_{0}^{t_{1}}N_{12}(u)du - s_{2}\int_{0}^{t_{2}}N_{12}(u)du\right)\right)$$

$$= exp(-\lambda_{1}t_{1})exp(-\lambda_{2}t_{2})E\left(exp\left(-s_{1}\int_{0}^{t_{1}}N_{12}(u)du - s_{2}\int_{0}^{t_{2}}N_{12}(u)du\right)\right), \quad (a_{2}4)$$

pois X_i , i=1,2, têm distribuição exponencial e são independentes.

Estudamos agora o termo direito na última igualdade no caso em que $t_1 \le t_2$. Temos então que

sendo que em (a₂6) utilizamos a propriedade de incrementos independentes do processo de Poisson. Em relação a primeira esperança no lado esquerdo da última equação temos que,

$$E\left(\exp\left((s_{1}+s_{2})\int_{0}^{t_{1}}N_{12}(u)du+s_{2}(t_{2}-t_{1})N_{12}(t_{1})\right)\right)$$

= $\sum_{k=0}^{\infty}P(N_{12}=k)\exp\left(-s_{2}(t_{2}-t_{1})k\right)E\left(\left(\exp\left((s_{1}+s_{2})\int_{0}^{t_{1}}N_{12}(u)du\right)\right)|N_{12}=k\right)$ (a₂7)
onde utilizamos a propriedade de esperança, veja James, 1981 e o princípio da substituição de esperança condicional. Logo, usando (a_17) e o corolário no início do Apêndice A₁ em (a_27) temos que

$$\begin{split} E\Biggl(exp - \Biggl((s_{1} + s_{2})\int_{0}^{t_{1}} N_{12}(u) du + s_{2}(t_{2} - t_{1}) N_{12}(t_{1})\Biggr)\Biggr) \\ &= \sum_{k=0}^{\infty} \frac{e^{-\lambda_{1} \lambda_{1}} (\lambda_{12} t_{1})^{k}}{k!} e^{-s_{2}(t_{2} - t_{1})k} E(exp(-(s_{1} + s_{2})((t_{1} - \tau_{1}) + \dots + (t_{k} - \tau_{k}))))) \\ &= \sum_{k=0}^{\infty} \frac{e^{-\lambda_{1} \lambda_{1}} (\lambda_{12} t_{1})^{k}}{k!} e^{-s_{2}(t_{2} - t_{1})k} E(exp(-(s_{1} + s_{2})(t_{1} - \tau_{1}))k) \\ &= \sum_{k=0}^{\infty} \frac{e^{-\lambda_{1} \lambda_{1}} (\lambda_{12} t_{1})^{k}}{k!} e^{-s_{2}(t_{2} - t_{1})k} (E exp(-(s_{1} + s_{2})(t_{1} - \tau_{1})))^{k} \\ &= e^{-\lambda_{1} \lambda_{1}} \sum_{k=0}^{\infty} \frac{(\lambda_{12} t_{1})^{k}}{k!} e^{-s_{2}(t_{2} - t_{1})k} \left(\frac{1 - e^{-(s_{1} + s_{2})(t_{1} - \tau_{1})})^{k}}{(s_{1} + s_{2})t_{1}}\right)^{k} \\ &= e^{-\lambda_{1} \lambda_{1} t_{1}} \sum_{k=0}^{\infty} \frac{(\lambda_{12} t_{1})^{k}}{k!} e^{-s_{2}(t_{2} - t_{1})} - e^{-s_{1} t_{1} - s_{2} t_{2}})^{k}}{k!} \\ &= e^{-\lambda_{1} \lambda_{1} t_{1}} exp\left(\frac{\lambda_{12}}{s_{1} + s_{2}} \left(e^{-s_{2}(t_{2} - t_{1})} - e^{-s_{1} t_{1} - s_{2} t_{2}}\right)\right)^{k}} \\ &= exp\left(-\lambda_{12} t_{1} + \frac{\lambda_{12}}{s_{1} + s_{2}} \left(e^{-s_{2}(t_{2} - t_{1})} - e^{-s_{1} t_{1} - s_{2} t_{2}}\right)\right). \tag{a.28}$$

Ainda no caso $t_1 \le t_2$ temos que a segunda esperança no lado direito de (a_26) é obtida em forma similar a esperança em (a_15), assim temos,

$$E\left(exp\left(-s_{2}\int_{t_{1}}^{t_{2}}(N_{12}(u)-N_{12}(t_{1}))du\right)\right)$$

= $exp\left(-\lambda_{12}(t_{2}-t_{1})+\frac{\lambda_{12}}{s_{2}}(1-e^{-s_{2}(t_{2}-t_{1})})\right).$ (a₂9)

Finalmente usando (a28) e (a29) em (a24) obtemos que

$$S_{\tau_{l},\tau_{2}}(t_{1},t_{2}) = e^{-\lambda_{l}t_{l}} e^{-\lambda_{2}t_{2}} \exp\left(-\lambda_{12}t_{2} + \frac{\lambda_{12}}{s_{2}}\left(l - e^{-s_{2}(t_{2}-t_{l})}\right) + \frac{\lambda_{12}}{s_{1}+s_{2}}\left(e^{-s_{2}(t_{2}-t_{l})} - e^{-s_{l}t_{l}-s_{2}t_{2}}\right)\right)$$
$$= \exp\left(-\lambda_{1}t_{1} - \left(\lambda_{2} + \lambda_{12}\right)t_{2} + \frac{\lambda_{12}}{s_{2}}\left(l - e^{-s_{2}(t_{2}-t_{l})}\right) + \frac{\lambda_{12}}{s_{1}+s_{2}}\left(e^{-s_{2}(t_{2}-t_{l})} - e^{-s_{l}t_{l}-s_{2}t_{2}}\right)\right).$$
$$(a_{2}10)$$

O caso t1>t2 é análogo e por isso omitiremos maiores detalhes. Temos para t1>t2

$$S_{T_{1},T_{2}}(t_{1},t_{2}) = exp\left(-(\lambda_{1}+\lambda_{12})t_{1}-\lambda_{2}t_{2}+\frac{\lambda_{12}}{s_{1}}\left(I-e^{-s_{1}(t_{1}-t_{2})}\right)+\frac{\lambda_{12}}{s_{1}+s_{2}}\left(e^{-s_{1}(t_{1}-t_{2})}-e^{-s_{1}t_{1}-s_{2}t_{2}}\right)\right).$$
(a₂11)

A3 - Forma Geral da EBVE e Três Casos Especiais

Neste apêndice mostramos a forma mais geral da distribuição EBVE, derivada a partir da função de risco $h_i(t) = d_i N_i(t) + s_i N_{12}(t)$ juntamente com três casos especiais.

A função de sobrevivência conjunta de (T_i, T_2) condicional aos processos de Poisson é dada por:

$$S_{T_{1}T_{2}|N_{1}N_{2},N_{12}}(t_{1},t_{2}) = P(T_{1} > t_{1},T_{2} > t_{2} | N_{1},N_{2},N_{12})$$

$$= exp\left(-d_{1}\int_{0}^{t_{1}}N_{1}(u)du\right) exp\left(-d_{2}\int_{0}^{t_{2}}N_{12}(u)du\right) exp\left(-s_{1}\int_{0}^{t_{1}}N_{12}(u)du - s_{2}\int_{0}^{t_{2}}N_{12}(u)du\right), \quad (a_{3}1)$$

considerando a independência entre N1, N2 e N12.

A função de sobrevivência conjunta é obtida de forma similar ao caso em que $d_1=d_2=\infty$, veja Apêndice A₂, pois temos,

$$S_{T_{1},T_{2}|N_{1},N_{2},N_{12}}(t_{1},t_{2}) = E(S_{T_{1},T_{2}|N_{1},N_{2},N_{12}}(t_{1},t_{2}))$$

= $E \exp\left(-d_{1}\int_{0}^{t_{1}} N_{1}(u)du\right) E \exp\left(-d_{2}\int_{0}^{t_{2}} N_{12}(u)du\right) E \exp\left(-s_{1}\int_{0}^{t_{1}} N_{12}(u)du - s_{2}\int_{0}^{t_{2}} N_{12}(u)du\right),$
(a_{3}2)

portanto,

$$S_{T_{l},T_{2}}(t_{1},t_{2}) = \begin{cases} exp\left(-\left(\lambda_{1}+\lambda_{12}\right)t_{1}-\lambda_{2}t_{2}+\frac{\lambda_{1}}{d_{1}}\left(1-e^{-d_{l}t_{1}}\right)+\frac{\lambda_{2}}{d_{2}}\left(1-e^{-d_{2}t_{2}}\right)\right) \\ \times exp\left(\frac{\lambda_{12}}{s_{1}}\left(1-e^{-s_{l}(t_{l}-t_{2})}\right)+\frac{\lambda_{12}}{s_{1}+s_{2}}\left(e^{-s_{l}(t_{l}-t_{2})}-e^{-s_{l}t_{l}-s_{2}t_{2}}\right)\right) \\ = \begin{cases} exp\left(-\lambda_{1}t_{1}-\left(\lambda_{2}+\lambda_{12}\right)t_{2}+\frac{\lambda_{1}}{d_{1}}\left(1-e^{-d_{l}t_{1}}\right)+\frac{\lambda_{2}}{d_{2}}\left(1-e^{-d_{2}t_{2}}\right)\right) \\ \times exp\left(\frac{\lambda_{12}}{s_{2}}\left(1-e^{-s_{2}(t_{2}-t_{l})}\right)+\frac{\lambda_{12}}{s_{1}+s_{2}}\left(e^{-s_{2}(t_{2}-t_{l})}-e^{-s_{l}t_{l}-s_{2}t_{2}}\right)\right) \\ \end{cases} \quad se \ t_{1} \leq t_{2}. \end{cases}$$

$$(a_{3}3)$$

Os três casos especiais da EBVE são citados a seguir:

1° caso: d₁=d₂=∞ e corresponde a distribuição absolutamente contínua derivada no Capítulo I.
2° caso: s₁=s₂=∞ e portanto somente os choques que ocorrem nas partes específicas dos componentes são acumulativos. A distribuição resultante não é absolutamente contínua e é dada por:

$$S_{T_{l},T_{2}}(t_{1},t_{2}) = \begin{cases} exp\left(-\left(\lambda_{1}+\lambda_{12}\right)t_{1}-\lambda_{2}t_{2}+\frac{\lambda_{1}}{d_{1}}\left(1-e^{-d_{1}t_{1}}\right)+\frac{\lambda_{2}}{d_{2}}\left(1-e^{-d_{2}t_{2}}\right)\right) & se \ t_{1} > t_{2} \\ exp\left(-\lambda_{1}t_{1}-\left(\lambda_{2}+\lambda_{12}\right)t_{2}+\frac{\lambda_{1}}{d_{1}}\left(1-e^{-d_{1}t_{1}}\right)+\frac{\lambda_{2}}{d_{2}}\left(1-e^{-d_{2}t_{2}}\right)\right) & se \ t_{1} \le t_{2}. \end{cases}$$

$$(a_{3}4)$$

3° caso: $d_1 = d_2 = s_1 = s_2 = \infty$ e a distribuição reduz-se a BVE de Marshall e Olkin.

	/*densidade bivariada: t1>t2*/
	dbtlmat2(t1,t2,vP)
Apêndice B	decl d;
Programa Computacional Implementado para a Geração de Dados	$d = (\exp\{-(vP[0] \{0\} + vP[2] \{0\}) + t1 - vP[1] \{0\} + t2 + vP[2] \{0\} + vP[3] \{0\} + (1 - exp(-vP[3] \{0\} + (t1 - t2)) + vP[2] \{0\} + (vP[3] \{0\} + vP[4] \{0\}) + (exp(-vP[3] \{0\} + (t1 - t2)) - vP[3] + (t1 - t2) + (exp(-vP[3] \{0\} + (t1 - t2)) + (exp(-vP[3] + (t1 - t2)) + (exp(-vP[3] \{0\} + (t1 - t2)) + (exp(-vP[3] + $
da Distribuição EBVE pelo Método da Rejeição	exp(-vP[3][0]*t1-vP[4](0]*t2)))*(vP[1][0]+vP[2][0]*exp(-
/* Com este programa obtivemos os resultados da Tabela 2.2*/	<pre>vP[3][0]*(t1-t2))-vP[2][0]/(vP[3][0]+vP(4][0])*(vP[3][0]*exp(- vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1- vP[4][0]*t2)))*(vP[0][0]+vP[2][0]-vP[2][0]*exp(-vP[3][0]*(t1- t2))+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*(t1- t2))-exp(-vP[3][0]*t1-vP[4][0]*t2))))+ (exp(-</pre>
· ····································	(vP[0][0]+vP[2][0])*t1-vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-exp(-
<pre>#include <oxstd.h></oxstd.h></pre>	vP[3][0]*(t1-t2)])+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(- vP[3][0]*(t1-t2))-evp(evP[3][0]*t1-
#1 mport <oxprob></oxprob>	vP(4)[0]*(t1-t2)] * (vP(3)[0]*vP(2)[0]*exp(-vP(3)[0]*(t1-t2)) -
#import <maximize></maximize>	vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3][0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1-vP[4][0]*t2)));
decl n=100; // tamanho das amostras	return d;
<pre>decl i,j,k,tlg,t1,t2,tmin,b,h,tempo1,tempo2;</pre>	} /*fim densidade bivariada; tl>t2fim densidade bivariada;
/*densidade bivariada: t1<=t2densidade bivariada: t1<=t2	/*geração de (t1,t2)geração de (t1,t2)
l decl d:	$\left(\frac{1}{1 - 1} + \frac{1}{1 - 1} + \frac{1}{1 - 1} \right) = 0$ Fig. Fig. Fig. (/manametros utilizados
d = (exp(-vP[0][0]*t] -	deci $vP = \langle 0, 1 \rangle 0.1 \rangle 0.2 \rangle 0.5 \rangle 0.5 \rangle \gamma / parametros utilizadosdeci vi u2 u3 ber di tiaux) t2 auxi:$
<pre>(vP{1](0]+vP[2](0])*t2+vP[2][0]/vP[4][0]*(1-exp(-vP[4][0]*(t2-</pre>	decl tempol=zeros(n.1):
t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2-t1))-	decl tempo2=zeros(n,1);
exp(-vP[3][0]*t1-vP[4][0]*t2)))*(vP[0][0]+vP[2][0]*exp(-	<pre>decl tempominimo=zeros(n,1);</pre>
vP[4][0]*(t2-t1))-vP[2][0]/(vP[3)[0]+vP[4][0])*(vP[4][0])*exp(-	j=0;
vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3](0]*t1-	while(j <n)< td=""></n)<>
VP[4][0]*t2]) * (VP[1][0]+VP[2][0]-VP[2][0]*exp(-vP[4][0]*(t2-t)) + (t2-t)) + (t2-t) + (t2-	
$\frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}$	ul=ranu(1,1)*35; // uniforme (0, 35)
(vP[1][0]+vP[2][0])*t2+vP[2](0]/vP[4][0]*(1-exp(-vP[4][0])*(1-exp(-vP[4)])*(1-exp(-vP[4)[0])*(1-exp(-vP[4)])*(1-exp(-vP[4)[0])*(1-exp(-vP[4)])*(1-exp(-vP[4)[0])*(1-exp(-vP[4)])*(1-exp(-vP[4)])*(1-exp(-vP[4)])*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-exp(-vP[4)))*(1-ex	$u^2 = ranu(1, 1) * 35;$
$t_{1})+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0])*(t2-t1))-$	$u_{2}=ranu(1,1)^{\circ}0.040;$ ber=ranbinomial(1,1,1,0,5); // bernoulli (0,5)
exp(-vP[3][0]*t1-vP[4][0]*t2)))*(vP[4][0]*vP[2][0]*exp(-	DEF-THIDITIONICALITY IN IN IN DEFINITION OF A
vP(4)[0]*(t2-t1)) -	if(ber==0)
vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4][0]*exp(-	1
vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1-vP[4][0]*t2)));	tlauxl=min(ul,u2);
return a;	t2aux1=max(u1,u2);
/*fim densidade bivariada: t1<=t2fim densidade bivariada:	<pre>dl=dbt1met2(tlaux1,t2aux1,vP); d.f. (</pre>
, the delistoade bivariada, civetz	1r (us <d1) {</d1)
	tempol(j)(U)=tlaux1;

-

Apêndice B – Programa Computacional Implementado para a Geração de Dados da Distribuição EBVE pelo Método da Rejeição

```
tempo2[j][0]=t2aux1;
                                                                            t1=t1g*<1;0;0>;
        tempominimo(j)(0)=min(tlaux1,t2aux1);
                                                                            t2=t1g*<0;1;0>;
        i=i+1:
                                                                            tmin=tlg*<0;0;1>;
      1
                                                                        //médias, variâncias e correlação dos tempos em cada amostra
    else
                                                                            mediatl=meanc(tl);
                                                                            mediat2=meanc(t2);
      tlaux1=max(u1,u2);
                                                                            mediaminimo=meanc(tmin);
      t2aux1=min(u1,u2);
                                                                            vart1=varc(t1);
      d1=dbt1mat2(t1aux1,t2aux1,vP);
                                                                            vart2=varc(t2);
      if (u3<d1)
                                                                            correlacao=correlation(tlq);
        {
        tempo1[j][0]=t1aux1;
                                                                            vetormediast1[b][0]=mediat1;
        tempo2[j][0]=t2aux1;
                                                                            vetormediast2[b][0]=mediat2;
        tempominimo[1][0]=min(tlaux1,t2aux1);
                                                                            vetormediasminimo[b][0]=mediaminimo;
        1=1+1;
                                                                            vetorvart1[b][0]=vart1;
        ł
                                                                            vetorvart2[b][0]=vart2;
      1
                                                                            vetorcorrelacao(b)[0]=correlacao[1][0];
    ł
  return tempo1~tempo2~tempominimo;
                                                                        //médias das 500 amostras
                                                                            mediaderaltl=meanc(vetormediastl);
/*-----fim geração de (t1,t2)-----*/
                                                                            mediageralt2=meanc(vetormediast2);
                                                                            mediageralminimo=meanc(vetormediasminimo);
main()
                                                                            mediavart1=meanc(vetorvart1);
                                                                            mediavart2=meanc(vetorvart2);
  h=500; //número de amostras geradas
                                                                            mediacorr=meanc(vetorcorrelacao);
  /*----declaração das variáveis utilizadas-----//
                                                                        //desvios padrões das 500 amostras
  decl time:
                                                                            desvpmediast1=sqrt(varc(vetormediast1));
  time=timer();
                                                                            desvpmediast2=sqrt(varc(vetormediast2));
  decl vetorminimo=zeros(h,1);
                                                                            desvpmediasminimo=sqrt(varc(vetormediasminimo));
  decl vetormediast1=zeros(h,1);
                                                                            desvpvart1=sqrt(varc(vetorvart1));
  decl vetormediast2=zeros(h,1);
                                                                            desvpvart2=sqrt(varc(vetorvart2));
  decl vetormediasminimo=zeros(h,1);
                                                                            desvpcorr=sqrt(varc(vetorcorrelacao));
  decl vetorvart1=zeros(h,1);
                                                                            }
  decl vetorvart2=zeros(h,1);
  decl vetorcorrelacao=zeros(h,1);
                                                                        // SAÍDA
  decl mediat1, mediat2, mediaminimo, vart1, vart2;
                                                                          print(vetormediast1~vetormediast2~vetormediasminimo~
  decl correlacao=zeros(2,2);
                                                                                vetorvart1~vetorvart2~ vetorcorrelacao);
  decl mediageralt1, mediageralt2, mediageralminimo,
  mediavart1, mediavart2, mediacorr;
                                                                          print(mediageralt1~mediageralt2~mediageralminimo~
  decl desvpmediast1, desvpmediast2, desvpmediasminimo.
                                                                                mediavart1~mediavart2~ mediacorr );
  desvpvart1, desvpvart2, desvpcorr;
                                                                          print (desvpmediast1~ desvpmediast2~desvpmediasminimo~
// obtenção das amostras
                                                                                 desvpvart1~ desvpvart2~ desvpcorr);
  for (b=0; b < h; ++b)
                                                                          print ("\n tempo de execucao: ", timespan(time));
   tlg=gera();
```

102

Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura /* Com este programa obtivemos os resultados das Tabelas 2.6, 2.7, 2.8, 2,10 */ #include <oxstd.h> #import<maximize> #import<oxprob> decl n=200;// tamanho das amostras decl b,h,i,j,k,t1,t2; /*----densidade bivariada: t1<=t2 (veja Apêndice B) +----*/ /*-----densidade bivariada: t1>t2 (veja Apêndice B)-----*/ /*----log densidade bivariada: t1<t2-----*/ logdbt1met2(t1,t2,vP) decl d; decl logd; d=dbt1met2(t1,t2,vP); logd=log(d); return logd; /*----fim log densidade bivariada: t1<t2-----fim log densidade bivariada: t1<t2-----/*----log densidade bivariada: t1>t2-----log densidade bivariada: logdbtlmat2(t1,t2,vP) decl d; decl logd; d=dbt1mat2(t1,t2,vP); logd=log(d); return logd;

Apêndice C

/*-----derivada em relação a lambdal da densidade bivariada (t1<=t2)-----*/ derivfl1t1met2(t1,t2,vP) decl s1, s2, s3, s4, s5, t0; s2=-t1*exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1-exp(-vP[4)[0]*(t2t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1~ vP[4][0]*t2]))*(vP[0][0]+vP[2](0)*exp(-vP[4][0]*(t2-t1))vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4][0]*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(vP[3]{0]*t1vP[4](0]*t2)) * (vP[1][0]+vP[2][0]-vP[2][0]*exp(-vP[4][0]*(t2-vP[4][0])) * (vP[4][0]*(t2-vP[4][0])) * (vP[4][0]) * (vP[4)[0]) * (vP[4t1)}+ vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2t1)-exp(-vP[3][0]*t1-vP[4][0]*t2)); s4 = exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2))]*(vP(1][0]+vP[2][0]-vP[2][0]*exp(-vP[4][0]*(t2t1))+vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])* (exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1-vP[4][0]*t2))); s5 = -t1 * exp(-vP(0)(0) * t1 -(vP(1)[0]+vP[2][0])*t2+vP[2](0)/vP[4][0] *(1-exp(-vP[4][0]*(t2t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4)[0]*(t2-t1))-exp(-v2[3][0]*t1vP[4][0]*t2)))*(vP[4][0]*vP[2][0]* $\exp\{-vP[4](0]*(t2-t1))$ vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4 [0] * exp(-vP[4][0] * (t2-t1)) + vP[3][0] * exp(-vP[3][0] * t1vP[4][0]*t2])); s3=s4+s5; s1=s2+s3; s4=exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0

/*-----fim log densidade bivariada: t1>t2-----/

vP{4][0]*t2)) * (vP[0][0]+vP[2][0]*exp(-vP[4][0]*(t2-t1) =vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4][0]*exp(-vP[4] (0] * (t2-t1)) + vP[3] (0] * exp(-vP[3) (0] * t1vP[4][0]*t2)))*(vP[1][0)+ vP[2][0]-vP[2][0]*exp(-vP[4][0]*(t2t1))+vP(4)[0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2) 1); s5=exp(-vP[0][0]*t1-(vP[1][0]+vP[2](0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[4][0]*vP[2][0]*exp(-vP[4](0]*(t2-t1))vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4][0])*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1vP[4][0]*t2))); s3=s4+s5; s2=1/s3; t0=s1*s2; return(t0); /*----fim derivada em relação a lambdal da densidade bivariada (t1<=t2)-----*/ /*-----derivada em relação a lambdal da densidade bivariada (t1>t2)----*/ derivfl1t1mat2(t1,t2,vP) decl s1,s2,s3,s4,s5,t0; s2=-t1*exp(-(vP[0][0]+vP[2][0])*t1-vP[1][0] *t2+vP[2][0]/vP[3][0]*(1-exp(-vP[3][0]*(t1t2)))+vP[2][0]/{vP[3][0 }+vP[4][0])*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1vP[4][0]*t2)))*{vP[1][0]+vP[2][0]*exp(-vP[3][0]*(t1-t2))vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3][0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(vP[3][0]*t1vP[4][0]*t2)) * (vP[0][0]+vP[2][0]-vP[2][0]*exp(-vP[3][0]*(t1-vP[3][0])) = vP[2][0]*t2)) = vP[2][0]*t2)t2))+ vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*(±1t2))~exp(

]*(t2-t1))-exp(-vP[3][0]*t1-

~vP(3)(0)*t1-vP(4)(0)*t2))); s4=exp(-(vP[0][0)+vP[2][0))*t1vP[1] (0]*t2+vP[2] [0]/vP(3] (0]*(1- $\exp(-vP[3][0]*(t1-t2))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP$ vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1vP(4][0]*t2)))*(vP[1][0]+vP[2][0]*exp(-vP[3](0]*(t1-t2))vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3)[0]*exp(-vP[3](0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1-vP[4)[0]*t2))); s5=-t1*exp(-(vP[0][0]+vP[2][0])*t1vP[1][0]*t2+vP[2][0]/vP[3][0] *(1-exp(-vP[3][0]*(t1t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3) (0)*(t1-t2))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[3][0]*vP[2][0]* $\exp(-vP[3][0]*(t1-t2))$ vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3 }[0]*exp(-vP[3][0]*(t1-t2))+vP[4)[0)*exp(-vP[3][0]*t1vP[4][0]*t2))); s3=s4+s5; s1=s2+s3; s4=exp(-(vP[0][0]+vP[2][0])*t1vP[1][0]*t2+vP[2][0]/vP[3][0]*(1exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4](0])*(exp(vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[1][0]+vP[2][0]*exp(~vP[3][0]*(t1-t2))vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3][0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1vP{4][0]*t2)))*(vP[0][0]+ vP[2][0]-vP[2][0]*exp(-vP[3][0]*(t1t2))+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1vP[4][0]*t2))); s5=exp(-(vP[0][0]+vP[2][0])*t1vP[1][0]*t2+vP[2][0]/vP[3][0]*(1- $\exp(-vP[3][0]*(t1-t2))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3)))*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)))*(exp(-vP[3)[0])*(exp(-vP[3)))*(exp(-vP[3)))*(e$ vP[3][0]*(t1-t2)]-exp(-vP[3][0]*t1vP[4](0]*t2)))*(vP[3][0]*vP[2][0]*exp(-vP[3](0)*(t1-t2))vP(3)[0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3][0])*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1vP[4][0]*t2)));

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura

s3=s4+s5;	s3=s4+s5;
s2=1/s3;	sl=s2+s3;
t0=s1*s2;	$s4 = \exp(-vP[0][0] t1 -$
return(t0);	(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1-
1	exp(-vP[4][0]*(t2-t1))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-t2))
/*fim derivada em relação a lambdal da densidade	$\nabla P(4) = 0$
bivariada (t1>t2)*/	1*(1+2-11)=exp(-vP[3][0]*1-
	P(4)(0) + (2)(1) + (P(0))(0) + P(2)(0) + exp(-2)(2) + (2)(2)(2) + (2)(2)(2)(2) + (2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(
	$(L_{1})(0)(L_{1})(1)(1)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)$
/*derivada em relação a lambda? da densidade	$v_{1} = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right]$
, which is the set of	
$\frac{1}{2} \frac{1}{2} \frac{1}$	$4_{1}[0]^{-}(12-(12))^{+}(10)[0]^{-}(0)[0]^{-}(10)[0]$
{ { }	vp[4][0]=L2/)/ (ve[1][0]= vp[2][0]=vp[2][0]=vp[4][0]*(ve[4][0]*(+2=
$dec1 = 1 = 2 = 3 = 4 = 5 \pm 0$	$v_{E}[2][0] - v_{E}[2][0] - c_{E}[1] + (v_{E}[3][0] + (v_{E}[3][$
$a_{2} = +22a_{2}a_{3}a_{3}a_{3}a_{3}a_{3}a_{3}a_{3}a_{3$	(1) = (1) + (2)
$b^{2} = c^{2} e^{2} (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)$	olithe(4)[0], [evb(=vr[4][0], [rs-rithevb(=vr[3][0], [rs-
+1))++0[2][0]//+0](0]-(1=exp(-vp[4][0]-(12=	
$(1)_{1}_{1}_{1}_{1}_{2}_{2}_{1}_{2}_{1}_{1}_{2}_{1}_{1}_{2}_{1}_{1}_{2}_{1}_{2}_{2}_{1}_{2}_{2}_{1}_{2}_{2}_{1}_{2}_{2}_{1}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2$	
1 TVE [4][0] / [EXP[-VE[4][0] / [2-[1]] / EXP[-VE[3][0] / [1-	$s_{0} = e_{x_{0}} [-v_{1}(v_{1})] [0] = c_{1} = c_{1} = c_{1} [0] (v_{1}) [0] + c_{1} = c_{1} [0] (v_{1}) [v_{1}] (v_{1}) [v_{1}] = c_{1} [v_{1}] (v_{1}) (v$
$v_{\rm F}$ (4) (0) * (2) (1) (0) + (1) (1) (0) + (1) (0) + (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$(vP[1](0]+vP[2](0]) \sim (2+vP[2](0)/vP[4](0]) \sim (1-vP(4)(0))$
$\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[$	$exp(-vP[4][0]^(t2+c1))+vP[2][0]^(vP[3][0]+vP[4][0])^(exp(-$
4) [0] * (VP[4][0] * exp(-VP[4][0] * (t2-t1)) + VP[3][0] * exp(-VP[4][0]) + (t2-t1)) + (t2-t1)) + (t2-t1)) + (t2-t1) + (t2-t1) + (t2-t1)) + (t2-t1) + (t2-t1) + (t2-t1) + (t2-t1)) + (t2-t1) +	$[*(t2-t1)] - \exp[-vP[3][0] + t1 - $
	VP[4][0]*t2))*(VP[4][0]*VP[2][0]*exp(
VP[4](0]*C2)))*(VP[1][0]+VP[2][0]-VP[2][0]*exp(-VP[4)[0]*(t2-	$-\nabla P[4][0] * (t2-t1)] -$
	VP[4][0] * VP[2][0] / VP[3][0] + VP[4][0] * (VP[4][0]) + (VP[4]) + (VP[
vP[4][0] + vP[2][0] + (vP[3)[0] + vP[4][0]) + (exp(-vP[4)[0]) + (tz-	*exp(-vP[4][0]*(t2*t1))+vP[3][0]*exp(-vP[3][0]*t1-
	$\nabla P[4][0] * (2));$
-VP[3][0]*TI-VP[4][0]*t2)));	\$3=\$4+\$5;
$s_4 = e_X p_1 - V_F [0] [0] + c_1 - c_2 p_1 p_2 p_2 p_1 p_2 p_2 p_2 p_1 p_2 p_2 p_2 p_2 p_2 p_2 p_2 p_2 p_2 p_2$	8271/83;
$(VP[1] \{0\} + VP[2] \{0\}) + t2 + VP[2] \{0\} / VP[4] \{0\} + 12$	t0=s1*s2;
$\exp(-VP[4][0]*(t2-t1))+VP[2][0]/(VP[3][0]+VP[4][0])*(exp(-$	return(t0);
V2[4][0	}
$[*(t2-t1)) - \exp(-vP[3][0] + t1 -$	/*fim derivada em relação a lambda2 da densidade
vP[4](0]*t2))*(vP[0)[0]+vP[2][0]*exp(bivariada (tl<=t2)*/
-vP[4][0]*(t2-t1)] -	
vP[2][0] / (vP[3][0] + vP[4][0]) * (vP[4](0]) * exp(-vP[
4][0]*(t2-t1)+vP[3][0]*exp(-vP[3][0]*t1-vP[4][0]*t2));	/*derivada em relação a lambda2 da densidade
$s_{5}=-t_{2}\exp(-v_{P}[0][0]+t_{1}-$	bivariada (t1>t2)*/
(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]	derivfl2t1mat2(t1,t2,vP)
$(1-\exp(-vP[4])) + (t2-$	ł
t1)))+vP[2][0]/(vP[3](0]+vP[4][0])*(exp(-vP[decl s1,s2,s3,s4,s5,t0;
$4] [0] * (t2-t1)) - \exp(-vP[3][0] * t1 -$	s2=-t2*exp(-(vP[0][0]+vP[2][0])*t1-vP[1][0]
vP[4][0]*t2)))*(vP[4][0]*vP[2][0)*	*t2+vP[2][0]/vP[3][0]*(1-exp(-vP[3][0]*(t1-
exp(-vP[4][0]*(t2-t1)) -	t2)))+vP[2][0]/(vP[3][0
vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4)+vP[4](0))*(exp(-vP[3](0)*(t1-t2))-exp(-vP[3][0]*t1-
][0]*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1-	vP[4][0]*t2))
vP[4][0]*t2))*(vP[1][0)+vP[2][0]*exp(-vP[3][0]*(t1-t2))-
));	vP[2][0]/(vP[3][0]+vP[

105 Apêndice C - Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura

÷.

vP[3]{0

```
vP[3][0]*t1-
 vP[4](0]*t2))*(vP[0][0]+vP[2][0]-vP[2][0]*exp(-vP[3][0]*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*(t1-vP[3)[0])*
 t2))+
 vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3)[0]*(t1-
 t2))-exp(
 -vP[3][0]*t1-vP[4][0]*t2)));
 s4=exp(-(vP[0][0]+vP[2][0])*t1-
 vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
 exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-
 vP[3][0
 ]*(t1-t2))-exp(-vP[3][0]*t1-
 vP(4)(0]*t2)))*(vP[0](0]+vP[2](0]-vP[2]
][0] * exp(-vP[3][0] * (t1-
 t2))+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*
 (exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-vP(4)[0]*t2)));
 s5=-t2*exp(-(vP[0](0)+vP[2](0))*t1-
 vP[1][0]*t2+vP[2][0]/vP[3][0]
 *(1-exp(-vP[3][0]*(t1-
 t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[
 3][0]*(t1-t2))-exp(-vP[3][0]*t1-
 vP[4][0]*t2)))*(vP[3][0]*vP[2][0]*
 exp(-vP[3][0]*(t1-t2))-
 vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3])
[0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3)[0]*t1-
vP[4][0]*t2)
11:
 s3=s4+s5;
 s1=s2+s3;
 s4=exp(-(vP[0][0]+vP[2][0])*t1-
 vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-
vP[3](0
]*(t1-t2))-exp(-vP[3][0]*t1-
vP[4] [0]*t2)))*(vP[1] [0]+vP[2] [0]*exp(
-vP[3][0]*(t1-t2))-
vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3][0]*exp(-vP[
vP[4][0]*t2}))*(vP[0][0]+
vP[2][0]-vP[2][0]*exp(-vP[3][0]*(t1-
 t2))+vP[3][0]*vP[2][0]/(vP[3][
0\} + vP[4] (0)) * (exp(-vP[3] (0) * (t1-t2)) - exp(-vP[3] (0) * t1 - t2)) = exp(-vP[3] (0) * t1 - t2) = exp(-vP[3] (0) + t1 + t2) = exp(-vP[3] (0) + t1) = exp(-vP[3] (0) = exp(-vP[3] (0) + t1) = exp(-vP[3] (0) = exp(-vP[3] 
 vP[4][0]*t2)
));
 s5=exp(-(vP[0][0]+vP[2][0])*t1-
vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
 exp(-vP(3)[0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-
```

4][0])*(vP[3][0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-

]*(t1-t2))-exp(-vP[3](0)*t1vP[4](0]*t2)))*(vP[3][0]*vP[2][0]*exp(-vP[3][0]*(t1-t2))vP(3)(0)*vP[2][0]/(vP[3][0]+vP[4]{0])*(vP{3}[0) *exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1vP[4][0]*t2))); s3=s4+s5; s2=1/s3; t0=s1*s2; return(t0); /*----fim derivada em relação a lambda2 da densidade blvariada (t1>t2)-----*/ /*-----derivada em relação a lambdal2 da densidade bivariada (t1<=t2)-----*/ derivfl12t1met2(t1,t2,vP) decl s1,s2,s3,s4,s5,s6,s7,t0; s4=(-t2+1/vP[4][0]*(1-exp(-vP[4][0]*(t2-vP[4][0])))t1)))+1/(vP[3][0]+vP[4][0])*(exp(-vP(4)[0]*(t2-t1))-exp(-vP(3)[0]*t1vP[4][0]*t2)) * exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1-exp(vP(4)[0]*(t2-t1)))+vP(2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2t1})exp(-vP[3][0]*tl-vP[4][0]*t2))); s5=(vP[0][0]+vP[2][0]*exp(-vP[4][0)*(t2-t1))vP[2](0)/(vP[3][0]+vP[4][0] * (vP[4][0] * exp(-vP[4][0] * (t2-t1) + vP[3][0] * exp(vP(3)[0]* t1-vP[4][0]*t2)))*(vP[1][0]+vP[2][0]-vP[2][0]*exp(vP[4][0]*(t2-t1)))+vP[4][0]*vP[2][0]/(vP(3][0]+vP[4][0])*(exp(-vP[4][0]*(t2t1))-exp(-vP[3][0]*t1-vP(4][0]*t2))); \$3=\$4*\$5; s4=exp(-vP[0][0]*t1-(vP[1)[0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0]*(t2-t1))-exp(-vP[3)[0]*t1-vP[4][0]*t2)))*(exp(vP[4][0]*(t2-t1))-1/(vP[3][0]+vP[4][0])*(vP[4][0]*exp(-vP[4][0]*(t2t1)+vP(3)[0]*exp(-vP[3][0]*t1-vP[4][0]*t2)))*(vP[1][0]+vP[2][0]vP[2](0) * exp(-vP)

106 Apêndice C - Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura

[4][0]*(t2-t1))+vP[4][0]*vP[2][0]/(vP[3)[0]+vP[4][0])*(exp(-4[0]*(t2-t1)+vP[3][0]*exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[1][0]+ vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1-vP[4][0]*t2)));vP[2][0]-vP[2][0]*exp(-vP[4][0]*(t2t1))+vP[4][0]*vP[2][0]/(vP[3][s2=s3+s4; s3=s2+exp(-vP(0)[0]*t1-(vP[1][0]+vP[2][0])* 0]+vP[4][0])*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1t2+vP[2][0]/vP[4][0]*(1-exp(-vP[4][0]*(t2vP[4][0]*t2) t1)) + vP[2][0] / (vP[3][0])1); +vP[4][0])*(exp(-vP[4][0]*(t2-t1))=exp(-vP[3][0]*t1s5 = exp(-vP[0][0]*t1-(vP[1](0]+vP[2](0])*t2+vP[2](0)/vP[4][0]*(1vP[4][0]*t2))) exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-*(vP[0][0]+vP[2][0]*exp(-vP[4][0]*(t2-t1))vP[2][0]/(vP[3][0]+vP[4])vP[4][0 [*(t2-t1))-exp(-vP[3](0]*t1-)[0])*(vP[4][0]*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(vP[3][0]*t1-vP(4][0]*t2)))*(1-exp(-vP[4][0]*(t2vP[4][0]*t2)))*(vP(4](0]*vP[2][0]*exp(t1))+vP[4][0]/(vP[3][0]+vP[4][0]-vP[4][0]*(t2-t1)) vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4][0])])*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1-vP[4][0]*t2)]); *exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1s4=s3; s6=(-t2+1/vP[4][0]*(1-exp(-vP[4][0)*(t2-vP[4])))vP[4][0]*t2)); t1)))+1/(vP[3][0]+vP[4][s3=s4+s5; 0])*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1s2=1/s3; vP[4][0]*t2)))*exp(-vPt0=s1*s2; (0)[0)*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0)*(1-exp(return(t0); vP[4][0 + (t2-t1)) + vP[2] [0] / (vP[3] [0] + vP[4] [0]) * (exp(-vP[4) [0] * (t2-/*----fim derivada em relação a lambdal2 da densidade bivariada (t1<=t2)-----*/ t1))exp(-vP[3][0]*t1-vP[4][0]*t2)))*(vP[4][0]*vP[2][0]*exp(vP[4][0]*($t^2-t_1) - vP[4][0] * vP[2][0] / (vP[3][0] + vP[4][0]) * (vP[4][0]) * exp(-$ /*-----derivada em relação a lambdal2 da densidade bivariada (t1>t2)-----*/ vP[4] [0]*(t2-t1))+vP[3](0)*exp(-vP[3][0]*t1-vP[4][0]*t2))); derivfl12t1mat2(t1,t2,vP) s7=exp(-vP[0][0]*t1ł (vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1decl s1,s2,s3,s4,s5,s6,s7,t0; s4 = (-t1+1/vP[3][0]*(1-exp(-vP[3](0)*(t1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4](0])*(exp(vP[4][0 t2)) + 1/(vP[3][0] + vP[4][]*(t2-t1))-exp(-vP[3](0]*t1-vP[4][0]*t2)))*(vP[4)(0]*exp(-0])*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1vP[4][0]*t2)) * exp(-(vP[4][0] vP[0][0]+vP[2][0])*t1-vP[1][0]*t2+vP(2][0]/vP[3][0]*(1-exp(-*(t2-t1))-vP[4][0]/(vP[3][0]+vP[4][0])*(vP[4][0]*exp(vP[4][0]*(t2 vP[3][-t1))+vP[3][0]*exp(-vP[3][0]*t1-vP[4][0]*t2))); 0)*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*(t1t2))s5=s6+s7; exp(-vP[3][0]*t1-vP[4][0]*t2))); s1=s4+s5; s4=exp(-vP[0][0]*t1~ s5=(vP[1][0]+vP(2][0]*exp(-vP[3][0]*(t1-t2))-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP(4][0]*(1vP(2)[0]/(vP(3)[0]+exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0] * (vP[3][0] * exp(-vP[3][0] * (t1-t2)) + vP[4][0] * exp(-vP[3][0] *vP[3][0]* vP[4][0 t1-vP[4][0]*t2)) * (vP[0][0]+vP[2][0]-vP[2][0]*exp(-]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[0][0]+vP[2][0]*exp(vP(3)[0]*(t1-t2)-vP[4][0]*(t2-t1))-)}+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3)[0]*(t1vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4)[0)*exp(-vP[t2))-

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 107

exp(-vP[3][0]*t1-vP[4](0]*t2))); s3=s4*s5; s4=exp(-(vP[0)[0]+vP[2][0])*t1vP[1] [0]*t2+vP[2] [0]/vP[3] [0]*(1exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-vP[4][0]*t2)))*(exp(vP[3][0]*(t1-t2))-1/(vP[3][0]+vP(4][0])*(vP[3][0]*exp(-vP[3][0]*(t1t2))+vP[4][0]* $\exp(-vP[3][0]*t1-vP[4][0]*t2)))*(vP[0][0]+vP[2][0]$ vP[2][0]*exp(-vP [3](0]*(t1-t2))+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-vP[4](0]*t2))); s2=s3+s4; s3=s2+exp(-(vP[0][0]+vP[2][0])*t1-vP[1](0]* t2+vP[2][0]/vP[3][0]*(1-exp(-vP[3][0]*(t1t2)))+vP[2][0]/(vP[3][0] +vP[4][0])*(exp(-vP[3][0]*(t1-t2])-exp(-vP[3][0]*t1vP[4][0]*t2))*(vP[1][0]+vP[2][0]*exp(-vP[3][0]*(t1-t2))vP[2](0]/(vP[3][0]+vP[4])][0])*(vP[3][0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(vP[3][0]*t1-vP[4][0]*t2)))*(1-exp(-vP[3][0]*(t1t2))+vP[3][0]/(vP[3][0]+vP[4][0))*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-vP[4][0]*t2))); s4=s3; s6=(-t1+1/vP[3][0]*(1-exp(-vP[3][0]*(t1t2)))+1/(vP[3][0]+vP[4][0])*(exp(-vP(3)(0)*(t1-t2))-exp(-vP[3](0)*t1vP[4][0]*t2)) * exp(-(vP[0][0]+vP[2][0])*t1-vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-exp(-))vP[3][0]*(t1-t2)))+vP[2][0]/(vP(3)[0]+vP[4][0])*(exp(-vP[3][0]*(t1t2)}exp(-vP[3][0]*t1-vP[4][0)*t2)))*(vP[3][0]*vP[2][0]*exp(vP[3][0]*(t1-t2) -vP(3] [0] *vP[2] [0] / (vP[3] [0] +vP[4] [0]) * (vP[3] [0] *exp(vP[3] [0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1-vP[4][0]*t2))); s7=exp(-{vP[0][0]+vP[2][0])*t1vP[1][0]*t2+vP[2][0]/vP[3][0]*(1exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-vP[4][0]*t2)))*(vP[3][0]*exp(vP[3][0]

vP[3][0]*(t1 -t2)]+vP[4][0]*exp(-vP(3)[0]*t1-vP[4][0]*t2))); s5=s6+s7; sl=s4+s5; s4=exp(-(vP[0][0]+vP[2][0])*t1vP[1][0]*t2+vP[2](0]/vP[3][0]*(1exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP(3)[0]*(t1-t2))-exp(-vP[3][0)*t1vP[4](0]*t2)))*(vP[1][0]+vP[2][0]*exp(-vP[3][0]*(t1-t2)) vP[2] [0] / (vP[3] (0) +vP[4] [0]) * (vP[3] [0] * exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[0][0]+ vP[2][0]-vP[2][0]*exp(-vP[3][0]*(t1t2))+vP[3](0)*vP[2)[0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1vP[4][0]*t2] 112 s5=exp(-(vP[0][0]+vP[2][0])*t1vP[1](0)*t2+vP[2][0]/vP[3][0]*(1exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[3][0]*vP[2][0]*exp(~vP[3][0]*(t1-t2))vP[3][0]*vP[2][0]/(vP[3](0]+vP[4)[0))*(vP[3)[0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1vP[4][0]*t2))); s3=s4+s5; s2=1/s3; t0=s1*s2; return(t0); /*----fim derivada em relação a lambda12 da densidade bivariada (t1>t2)------/*---derivada em relação a sl da densidade bivariada (t1<=t2)*/ derivfs1t1met2(t1,t2,vP) decl s1,s2,s3,s4,s5,s6,s7,t0; $s4=(-vP[2][0]/(vP[3][0]+vP[4][0])^{2}(exp(-vP[4][0]*(t2-t1))$ exp (-vP[3][0]*t1vP(4)[0]*t2))+vP(2][0]/(vP[3][0]+vP[4][0])*t1*exp(-

(t1-t2))-vP(3)[0]/(vP[3][0]+vP[4][0])(vP[3][0]*exp(-

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 108

vP(3)[0]*t1-vP[4][0]*t2))*exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP [2](0]/vP(4)(0]*(1-exp(-vP[4)[0]*(t2t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1exp vP[4](0]*t2)); s5=(vP[0][0]+vP[2][0]*exp(-vP[4][0]*(t2-t1))vP[2][0]/(vP[3][0]+ vP[4][0])*(vP[4][0]*exp(-vP[4)[0]*(t2-t1))+vP[3][0]*exp(vP[3][0]* t1-vP[4][0]*t2)))*{vP[1][0]+vP[2][0]-vP[2][0]*exp(vP[4][0]*(t2-t1))+vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2t1))exp(-vP[3][0]*t1-vP(4](0]*t2))); s3=s4*s5; s5=exp(-vP[0][0]*t1-(vP[1][0]+vP[2](0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0 }*(t2-t1))-exp(-vP[3][0]*t1-vP[4][0]*t2))); s6=(vP[2][0]/(vP[3][0]+vP[4][0])^2*(vP[4][0]*exp(vP[4][0]*(t2t1))+vP[3][0]*exp(-vP[3][0]*t1-vP[4][0]*t2))vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*t1-vP[4][0]*t2)-vP[3][0]*t1*exp(vP[3][0]*t1-vP[4][0]*t2)))*(vP[1][0]+vP[2][0]-vP[2][0]*exp(vP[4](0)*(t2-t1) +vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2t1))exp(-vP[3][0]*t1-vP[4][0]*t2))); s4=s5*s6; s2=s3+s4; s4=s2; s5=exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1- $\exp(-vP[4][0]*(t2-t1))+vP[2][0]/(vP[3][0]+vP[4][0))*(exp(-vP[4][0]))*(exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[4](exp(-vP[$ vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2}))*(vP[0][0]+vP[2][0]*exp(-vP[4][0]*(t2-t1))vP[2][0]/(vP[3](0]+vP[4][0])*(vP[4][0]*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1-vP(4][0]*t2)))*(vP[4][0] $*vP[2][0]/(vP[3][0]+vP[4][0])^{2}(exp(-vP[4][0])(t2-t1))-exp(-vP[4][0])^{2}(t2-t1))$ vP[3][0]*t1-)); vP[4][0]*t2))+vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*t1*exp

(-vP[3][0]*t1-vP[4][0]*t2)); s3=s4+s5; s4=s3; $s6=(-vP[2](0)/(vP[3][0]+vP(4)[0])^{2}(exp(-vP[4][0]*(t2-t1))-$ {-vP[3][0]*t1vP(4][0]*t2))+vP(2][0]/(vP[3)[0]+vP(4][0])*t1*exp(vP[3][0]*t1-vP[4][0]*t2))*exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP [2] [0] / vP[4] [0] * (1-exp(-vP[4] [0] * (t2t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP(4)[0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP [4][0]*vP[2][0]*exp(-vP[4][0]*(t2-t1))vP[4][0]*vP[2][0]/(vP[3][0] +vP[4][0])*(vP[4][0]*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(vP[3][0] *t1-vP[4](0]*t2))); s7 = exp(-vP[0][0]*t1-(vP[1][0]+vP[2](0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])^2*(vP[4][0]*exp(-vP[4][0]*(t2t1) + vP[3][0] + exp(vP[3][0]*t1-vP[4][0]*t2))vP[4][0]*vP[2)[0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*t1vP[4][0]*t2)-vP[3](0]*t1*exp(-vP[3][0]*t1-vP[4][0] *t2))); s5=s6+s7; s1=s4+s5; s4=exp(-vP[0][0]*t1-(vP{1}(0]+vP{2}(0])*t2+vP{2}(0]/vP{4}(0]*(1exp(-vP[4](0]*(t2-t1)))+vP(2)[0]/(vP[3][0]+vP(4][0])*(exp(vP[4][0)*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[0][0]+vP[2][0]*exp(-vP(4)[0]*(t2-t1)) vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4][0]*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3)[0)*t1vP[4][0]*t2)))*(vP[1][0]+ vP[2][0]-vP[2][0]*exp(-vP[4][0]*(t2t1))+vP[4](0]*vP[2](0]/(vP(3)[0]+vP[4][0])*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2)

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 109

s5=exp(-vP[0][0]*t1exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1vP[3][0 exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP(4)(0]*(t2-t1))-exp(-vP[3][0]*t1t2))+vP[2][0]/(vP[3][0]+ vP[4](0]*t2)))*(vP[4][0]*vP[2][0]*exp(-vP[4][0]*(t2-t1))vP[3][0 vP[4][0]*vP[2][0]/(vP[3)[0]+vP[4][0])*(vP[4][0])*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1vP[3][0]*(t1 vP[4] {0]*t2)); s3=s4+s5; vP[4][0]*t1*exp{-vP[s2=1/s3; t0=s1*s2; vP[3][0]* return(t0); vP[3][0]*(t1-/*----fim derivada em relação a s1 da densidade bivariada t2))-exp(-vP[3][0]*t1-vP(4][0]*t2))); (t1<=t2)-----*/ s4=s5*s6; s2=s3+s4; s4=s2; /*---derivada em relação a sl da densidade bivariada (tl>t2)-*/ s6=exp(-(vP[0][0]+vP[2][0])*t1derivfslt1mat2(t1,t2,vP) vP[1] [0]*t2+vP[2] [0]/vP[3] [0]*(1-{ decl s1,s2,s3,s4,s5,s6,s7,s8,s9,t0; vP[3][0 $s4 = (-vP[2][0]/vP[3][0]^{2} (1-exp(-vP[3][0]*(t1-t2)))$ vP[2][0]/vP (3)[0]*(t2-t1)*exp(-vP[3][0]*(t1-t2))vP[2][0]/(vP[3][0]+vP[2][0]/(vP[3][0]+vP[4][0])^2*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1vP[3][0]* vP[4][0]*t2))+vP[2][0]/(vP[3][0]+vP[4][0])*((t2-t1)*exp(-vP[3][0]*(t1t2})+vP[2][t_2)+ t_1 *exp(-vP[3]][0]*t1-vP[4][0]*t2)))*exp(-(vP[0][0]+vP[2][0])*t1vP[3][0]*t1-vP vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-exp(-vP[3][0]*(t1**vP[3][0** t2)))+vP[2][0]/(vP[3][0]+vP[4])*(t1-t2))-exp(-vP[3][0]*t1- $\{0\}$ (exp(-vP[3] (0]*(t1-t2))-exp(-vP[3] [0]*t1-vP[4] [0]*t2))); vP[4][0]*t2})+vP[3][0]*vP[2][0]/(vP[3] s5=(vP[1][0]+vP[2][0]*exp(-vP[3][0]*(t1-t2))vP[2][0]/(vP[3][0]+ vP[3][0]*t1vP[4][0] * (vP[3][0] * exp(-vP[3][0] * (t1-t2)) + vP[4][0] * exp(vP[4][0]*t2))); vP[3][0]* s5=s6*s7; t1-vP[4][0]*t2)))*(vP[0][0)+vP[2][0]-vP[2][0]*exp(s3=s4+s5; vP[3][0]*(t1-t2 s4=s3;))+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4](0])*(exp(-vP[3][0]*(t1t2))-exp(-vP(3][0]*t1-vP(4)(0]*t2))); vP[2][0]/vP(s3=s4*s5; 3) [0]*(t2-t1)*exp(-vP(3) [0]*(t1-t2))s5=exp{-(vP[0][0]+vP[2][0])*t1vP[1][0]*t2+vP[2][0]/vP[3][0]*(1vP[3][0]*t1-vP[4][0]*t2)+vP[2][0]

]*(t1-t2))-exp(-vP[3][0]*t1-vP[4][0]*t2))); s6=(vP[2][0]*(t2-t1)*exp(-vP[3][0]*(t1-VP[4][0])^2*(vP[3][0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-]*t1-vP[4][0]*t2))-vP[2][0]/(vP(3][0]+vP(4)[0])*(exp(- $-t_{2})+vP[3]{0}*(t_{2}-t_{1})*exp(-vP[3][0]*(t_{1}-t_{2}))=$ 3](0]*t1-vP[4][0]*t2)))*(vP[0][0)+vP[2][0]-vP[2][0]*exp(-(t1-t2))+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4)[0])*(exp(- $\exp(-vP[3][0]*(t1-t2))+vP[2][0]/(vP[3)[0]+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP$]*(t1-t2))-exp(-vP[3][0]*t1-vP[4][0]*t2))); s7=(vP[1][0]+vP[2][0]*exp(-vP[3][0]*(t1-t2))~ vP[4][0])*(vP[3][0]*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(t1-vP[4] {0]*t2)))* (-vP[2] [0]*(t2-t1)*exp(-vP[3] [0]*(t1-0] / (vP[3][0]+vP[4][0]) * (exp(-vP[3][0]*(t1-t2))-exp(-[4][0]*t2))-vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])^2*(exp(-[0]+vP[4][0])*((t2-t1)*exp(-vP[3][0]*(t1-t2))+t1*exp(s7=-vP[2][0]/vP[3][0]^2*(1-exp(-vP[3][0]*(t1-t2)))vP[2][0]/(vP[3][0]+vP[4][0])^2*(exp(-vP[3)[0]*(t1-t2))-exp(-

Apêndice C - Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 110

```
/(vP[3][0]+vP[4][0])*((t2-t1)*exp[-vP[3][0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0]*(t1-t2))+t1*exp(-vP[3)[0
                                                                                                                                                                                                                            ));
                                                                                                                                                                                                                             s5=exp(-(vP[0][0]+vP[2][0])*t1-
vP[3]
 (0]*t1-vP[4][0]*t2));
                                                                                                                                                                                                                             vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
s8=exp(-(vP[0][0]+vP[2][0])*t1-
                                                                                                                                                                                                                             \exp(-vP[3][0]*(t1-t2))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP[3)))*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)
vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
                                                                                                                                                                                                                             vP[3][0
\exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3)[0]))
                                                                                                                                                                                                                            ]*(t1-t2))-exp(-vP[3][0]*t1-
                                                                                                                                                                                                                            vP[4][0]*t2)))*(vP[3][0]*vP[2][0]*exp{
vP[3][0
]*(t1-t2))-exp(-vP[3][0]*t1-
                                                                                                                                                                                                                             -vP[3][0]*(t1-t2)) -
vP[4][0]*t2)))*(vP[3][0]*vP[2][0]*exp(
                                                                                                                                                                                                                            vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3][0]
-vP[3][0]*(t1-t2))-
                                                                                                                                                                                                                             *exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1-
vP[3][0]*vP[2][0]/(vP[3)[0]+vP[4][0])*(vP[3)[0]
                                                                                                                                                                                                                             vP[4][0]*t2)));
*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1-
                                                                                                                                                                                                                             s3=s4+s5;
vP[4][0]*t2)));
                                                                                                                                                                                                                             s2=1/s3;
s6=s7*s8;
                                                                                                                                                                                                                            t0=s1*s2;
s8 = exp(-(vP[0][0]+vP[2][0])*t1-
                                                                                                                                                                                                                             return(t0);
vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-
                                                                                                                                                                                                                    /*fim derivada em relação a si da densidade bivariada (t1>t2)*/
vP[3]{0
(t1-t2) -exp(-vP[3][0]*t1-vP(4][0]*t2));
s9=vP[2][0]*exp(-vP[3)[0]*(t1-t2))+vP[3][0]*vP[2][0]*(t2-
                                                                                                                                                                                                                    /*---derivada em relação a s2 da densidade bivariada (t1<=t2)*/
t1)*exp
                                                                                                                                                                                                                    derivfs2t1met2(t1,t2,vP)
(-vP[3][0]*(t1-t2))-
                                                                                                                                                                                                                          {
vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3](0)*exp(-vP
                                                                                                                                                                                                                            decl s1,s2,s3,s4,s5,s6,s7,s8,s9,t0;
[3] [0] * (t1-t2) + vP[4] [0] * exp(-vP[3] [0] * t1-
                                                                                                                                                                                                                            s4=(-vP[2][0]/vP[4][0]^{2}(1-exp(-vP[4][0](t2-t1))) -
vP[4](0]*t2)+vP[3](0]*vP[2][0]/(vP[3][0]+vP[4][0])^2*(vP[3][0])
                                                                                                                                                                                                                            vP[2][0]/vP
0] * exp(-vP[3] (0] * (t1-t2)) + vP
                                                                                                                                                                                                                             [4][0]*(t1-t2)*exp(-vP[4][0]*(t2-t1))-
(4] [0] * exp(-vP[3] [0] * t1 - vP[4] (0] * t2)) -
                                                                                                                                                                                                                            vP[2][0]/(vP[3][0]+vP[4][0])
vP[3][0]*vP[2][0]/(vP[3][0]+
                                                                                                                                                                                                                            ^2*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1-
vP[4][0])*(exp(-vP[3][0]*(t1-t2))+vP[3][0]*(t2-t1)*exp(-
                                                                                                                                                                                                                            vP[4](0]*t2)+vP[2](0
vP[3][0]*(
                                                                                                                                                                                                                            ]/(vP[3][0]+vP[4][0])*((t1-t2)*exp(-vP[4][0]*(t2-t2)))
t1-t2))-vP[4][0]*t1*exp(-vP[3][0]*t1-vP[4][0]*t2));
                                                                                                                                                                                                                            t1)+t2*exp(-vP[3]
                                                                                                                                                                                                                            (0]*t1-vP[4][0]*t2)))*exp(-vP[0][0]*t1-
s7=s8*s9;
s5=s6+s7;
                                                                                                                                                                                                                             (vP[1][0]+vP[2][0])*t2+vP[
s1=s4+s5;
                                                                                                                                                                                                                            2) (0)/vP(4) (0) * (1-exp(-vP[4) (0)) * (t2-
s4=exp(-(vP[0][0]+vP[2][0])*t1-
                                                                                                                                                                                                                            t1))+vP(2)[0]/(vP(3)[0]+vP(4)]
vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
                                                                                                                                                                                                                             [0] * (exp(-vP[4][0]*(t2-t1)) - exp(-vP[3][0]*t1-vP[4][0]*t2)));
\exp(-vP[3][0]*(t1-t2))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp(-vP[3)[0]))*(exp
                                                                                                                                                                                                                             s5=(vP[0][0]+vP[2][0]*exp(-vP[4][0]*(t2-t1))=
vP[3][0
                                                                                                                                                                                                                            vP[2][0]/(vP[3][0]+
]*(t1-t2))-exp(-vP[3][0]*t1-
                                                                                                                                                                                                                            vP[4][0] * (vP[4][0] * exp(-vP[4][0] * (t2-t1) + vP[3][0] * exp(-
vP[4][0]*t2)))*(vP[1][0]+vP[2][0]*exp(
                                                                                                                                                                                                                            vP[3][0]*
-vP[3][0]*(t1-t2)) -
                                                                                                                                                                                                                             t1-vP[4][0]*t2)))*(vP[1][0)+vP[2][0]-vP[2][0]*exp(-
vP[2][0]/(vP[3](0]+vP[4][0])*(vP[3][0]*exp(-vP[
                                                                                                                                                                                                                            vP[4][0]*(t2-t1
3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1-
                                                                                                                                                                                                                             ))+vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2-
vP[4][0]*t2)))*(vP[0][0]+
                                                                                                                                                                                                                            t1))-
vP[2][0]-vP[2][0]*exp(-vP[3][0]*(t1-
                                                                                                                                                                                                                             exp(-vP[3][0]*t1-vP[4][0]*t2)));
t2))+vP[3][0]*vP[2][0]/(vP[3][
                                                                                                                                                                                                                            s3=s4*s5;
0]+vP[4][0])*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-
                                                                                                                                                                                                                            s5=exp(-vP[0][0]*t1-
vP[4][0]*t2)
                                                                                                                                                                                                                             (vP[1][0]+vP[2](0])*t2+vP{2][0]/vP{4}[0]*(1-
```

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 111

 $\exp(-vP[4][0]*(t2-t1))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp($ vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1-vP[4][0]*t2))); s6=(vP[2][0]*(t1-t2)*exp(-vP[4][0]*(t2t1))+vP[2][0]/(vP[3][0]+ vP[4][0])^2*(vP[4][0]*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(vP[3][0]*t1-vP[4][0]*t2))-vP[2][0]/(vP[3](0)+vP[4][0])*(exp(vP[4][0]*(t2 -tl))+vP[4][0]*(t1-t2)*exp(-vP[4][0]*(t2-t1))vP[3][0]*t2*exp(-vP[3][0]*t1-vP[4][0]*t2)))*(vP[1][0]+vP[2][0]-vP[2][0]*exp(vP[4][0]* (t2-t1))+vP[4][0]*vP[2][0]/(vP[3)[0]+vP[4][0])*(exp(vP[4][0]*(t2t1))-exp(-vP[3][0]*t1-vP[4][0]*t2)}); s4=s5*s6; s2=s3+s4; s4=s2; s6=exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3)[0]+vP[4][0])*(exp(vP[4][0]*(t2-t1))~exp(~vP[3][0]*t1-vP[4](0]*t2))); s7 = (vP[0][0] + vP[2][0] + exp(-vP[4][0] + (t2-t1)) vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4][0]*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(vP[3][0]* tl-vP[4][0]*t2)))*(-vP[2][0]*(t1-t2)*exp(-vP[4][0]*(t2t1))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[4][0]*(t2-t1))-exp(vP[3][0]*t1-vP [4][0]*t2))-vP[4][0]*vP[2][0]/(vP[3)[0]+vP[4][0])^2*(exp(vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4](0]*t2))+vP(4](0]*vP[2](0)/(vP[3] [0]+vP[4][0])*((t1-t2)*exp(-vP[4)[0]*(t2-t1))+t2*exp(-vP[4)[0]*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])*(t2-t1))+t2*exp(-vP[4)[0])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2*exp(-vP[4)])+t2vP[3][0]*t1vP[4][0]*t2)); s5=s6*s7; s3=s4+s5; s4=s3; s7=-vP(2)[0]/vP[4][0]^2*(1-exp(-vP(4][0]*(t2-t1)))vP[2][0]/vP[4][0]*(t1-t2)*exp(-vP[4][0]*(t2-t1))vP[2][0]/(vP[3][0]+vP[4][0])^ $2*(\exp(-vP[4][0]*(t2-t1))-\exp(-vP[3][0]*t1$ vP[4][0]*t2))+vP[2][0]

/(vP[3](0]+vP[4](0])*((t1-t2)*exp(-vP[4][0]*(t2-t1))+t2*exp(vP[3] (0)*t1-vP[4](0]*t2)); s8=exp(-vP(0)][0]*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2](0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[4][0]*vP[2][0]*exp(-vP[4][0]*(t2-t1))vP[4][0]*vP[2][0]/(vP[3)[0]+vP[4][0])*(vP[4][0])*exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1vP[4][0]*t2))); s6=s7*s8; $s\theta = exp(-vP(0)[0]*t1-$ (vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1exp(-vP[4][0]*(t2-t1)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(vP[4][0]*(t2-t1))-exp(-vP[3)[0]*t1-vP[4][0]*t2))); s9=vP[2][0]*exp(-vP[4][0]*(t2-t1))+vP[4][0]*vP[2][0]*(t1t2)*exp (-vP(4)[0]*(t2-t1)) vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4)[0]*exp(-vP])(4) [0]*(t2-t1))+vP[3] [0]*exp(-vP[3] [0]*t1vP[4][0]*t2))+vP[4][0]*vP[2][0]/(vP[3][0]+vP[4][0])^2*(vP[4][0] * exp(-vP[4][0] * (t2-t1)) + vP[3][0]*exp(-vP[3][0]*t1-vP[4][0]*t2))vP[4][0]*vP[2][0]/(vP[3][0]+ vP[4][0])*(exp(-vP[4][0]*(t2-t1))+vP[4][0]*(t1-t2)*exp(vP[4][0]*(t2-t1))-vP[3][0]*t2*exp(-vP[3][0]*t1-vP[4][0]*t2)); s7=s8*s9; s5=s6+s7; s1=s4+s5; s4 = exp(-vP[0][0]*t1-(vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1- $\exp(-vP[4](0)*(t2-t1))+vP[2][0]/(vP[3](0)+vP[4)[0))*(exp(-t2-t1))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))*(exp(-t2-t1)))+vP[2][0]/(vP[3)(0)+vP[4)[0))+vP[2][0]/(vP[3)(0)+vP[4)[0))+vP[2][0]/(vP[3)(0)+vP[4)[0))+vP[2][0]/(vP[3)(0)+vP[4)[0))+vP[2][0]/(vP[3)(0)+vP[4)[0))+vP[4)[0))+vP[4)[0]/(vP[3)(0)+vP[4)[0))+vP[4)[0]/(vP[3)(0)+vP[4)[0))+vP[4)[0]/(vP[3)(0)+vP[4)[0))+vP[4)[0]/(vP[3)(0)+vP[4)[0))+vP[4)[0]/(vP[3)(0)+vP[4)[0))+vP[4)[0]/(vP[3)(0)+vP[4)[0))+vP[4)[0]/(vP[3)(0)+vP[4)[0))+vP[4)[0]/(vP[3)(0)+vP[4)[0))+vP[4)[0)/(vP[3)(0)+vP[4)[0))+vP[4)[0)/(vP[3)(0)+vP[4)[0))+vP[4)[0)/(vP[3)(0)+vP[4)[0))+vP[4)[0)/(vP[3)(0)+vP[4)[0))+vP[4)[0)/(vP[3)(vP[3)(0)+vP[4)])+vP[4)[0)/(vP[3)(0)+vP[4)])+vP[4)[0)/(vP[3)(0)+vP[4)[0)/(vP[3)(0)+vP[4)])+vP[4)[0)/(vP[3)(0)+vP[4)])+vP[4)[0)/(vP[3)(0)+vP[4)])+vP[4)[0)/(vP[3)(0)+vP[4)])+vP[4)[0)/(vP[3)(0)+vP[4)])+vP[4)[0)/(vP[3)(0)+vP[4)])+vP[4)[0)/(vP[3)(0)+vP[4)])$ vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[0][0]+vP[2][0]*exp(-vP[4][0]*(t2-t1))vP[2](0]/(vP[3][0]+vP[4][0])*(vP[4][0]*exp(-vP[4)[0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1vP[4][0]*t2)))*(vP[1][0]+ vP[2][0]+vP[2][0]*exp(-vP[4][0]*(t2t1) +vP[4] [0] *vP[2] [0] / (vP[3] [0]+vP[4][0])*(exp(-vP[4][0]*(t2-t1))-exp(-vP[3][0]*t1-

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 112

vP[4][0]*t2)

```
s6=(vP[2][0]/(vP[3][0]+vP[4][0)]^2*(vP[3][0]*exp(-
     ));
     s5=exp(-vP[0][0]*t1-
                                                                                                                              vP[3][0]*(t1-
     (vP[1][0]+vP[2][0])*t2+vP[2][0]/vP[4][0]*(1-
                                                                                                                              t2))+vP(4][0]*exp(-vP[3][0]*t1-vP[4][0]*t2))-
     \exp(-vP(4)(0)*(t2-t1))+vP[2](0)/(vP[3)(0)+vP[4)(0))*(exp(-vP(4)(0)))
                                                                                                                              vP[2][0]/(vP[3][0]+vP
     vP[4][0
                                                                                                                              [4][0] * (exp(-vP[3][0]*t1-vP[4][0]*t2)-vP[4][0]*t2*exp(-
     ]*(t2-t1))-exp(-vP[3][0]*t1-
                                                                                                                              vP[3][0]*t1-vP(4][0]*t2}))*(vP[0][0]+vP[2][0)-vP[2][0]*exp(-
     vP[4][0]*t2)))*(vP[4][0]*vP[2][0]*exp(
                                                                                                                              vP[3][0]*(t1-t2)
                                                                                                                              )+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*(t1-
     -vP[4][0]*{t2-t1} -
     vP(4](0)*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[4][0])
                                                                                                                              t2))-exp(-vP[3](0)*t1-vP(4][0)*t2)));
     *exp(-vP[4][0]*(t2-t1))+vP[3][0]*exp(-vP[3][0]*t1-
                                                                                                                              s4=s5*s6;
     vP[4][0]*t2));
                                                                                                                              s2=s3+s4;
     s3=s4+s5;
                                                                                                                              s4=s2;
     s2=1/s3;
                                                                                                                              s5=exp(-(vP[0](0)+vP[2][0])*t1-
     t0=s1*s2;
                                                                                                                              vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
     return(t0);
                                                                                                                              \exp(-vP[3][0]*(t1-t2))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0]))*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[3)[0])*(exp(-vP[
                                                                                                                              vP[3][0
/* -----fim derivada em relação a s2 da densidade
                                                                                                                              ]*(t1-t2))-exp(-vP[3](0)*t1-
bivariada (t1<=t2)-----*/
                                                                                                                              vP[4][0]*t2)))*(vP[1][0]+vP[2][0]*exp(
                                                                                                                              -vP[3][0]*(t1-t2))-
                                                                                                                              vP[2][0)/(vP[3][0)+vP[4][0])*(vP[3][0]*exp(-vP[
/*---derivada em relação a s2 da densidade bivariada (t1>t2)-*/
                                                                                                                              3][0]*(t1-t2))+vP[4][0]*exp(-vP[3)[0]*t1-vP[4][0]*t2)))*(-
derivfs2t1mat2(t1,t2,vP)
                                                                                                                              vP[3][0]
                                                                                                                              *vP[2][0]/(vP[3][0]+vP[4][0])^2*(exp(-vP[3][0]*(t1-t2))-exp(-
     decl s1,s2,s3,s4,s5,s6,s7,t0;
                                                                                                                              vP[3
     s4=(-vP(2)[0]/(vP(3)[0]+vP(4](0])^2*(exp(-vP(3)[0]*(t1-t2))-
                                                                                                                              ][0]*t1-
                                                                                                                              vP(4)[0]*t2))+vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*t2*exp
     exp
     (-vP[3][0]*t1-
                                                                                                                              (-vP[3][0]*t1-vP[4][0]*t2));
    vP[4][0]*t2))+vP[2][0]/(vP[3][0]+vP[4][0])*t2*exp(-
                                                                                                                              s3=s4+s5;
    vP(3)[0]*t1-vP[4][0]*t2))*exp(-(vP[0][0]+vP[2][0])*t1-
                                                                                                                              s4≍s3;
    vP(1)[0]*t2+
                                                                                                                              s6=(-vP[2][0]/(vP[3][0]+vP[4][0])^2*(exp(-vP[3][0]*(t1-t2))-
     vP[2][0]/vP[3][0]*(1-exp(-vP[3)[0]*(t1-
                                                                                                                              exp
     t2)))+vP[2][0]/(vP[3][0]+vP[
                                                                                                                              (-vP[3][0]*t1-
     4)[0])*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-
                                                                                                                              vP{4](0]*t2))+vP[2][0]/(vP[3][0]+vP[4][0])*t2*exp(-
     vP[4][0]*t2)});
                                                                                                                              vP[3](0)*t1-vP(4][0]*t2))*exp(-(vP[0][0]+vP[2][0])*t1-
     s5=(vP[1][0]+vP[2][0]*exp(-vP[3][0]*(t1-t2))-
                                                                                                                              vP[1][0]*t2+
    vP[2][0]/(vP[3][0]+
                                                                                                                              vP[2][0]/vP[3][0]*(1-exp(-vP[3)[0]*(t1-
    vP[4][0] + (vP[3][0] + exp(-vP[3](0) + (t1-t2) + vP[4][0] + exp(-
                                                                                                                              t_{2}))+vP[2][0]/(vP[3)(0)+vP[
    vP[3][0]*
                                                                                                                              4)[0])*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-
    t1-vP[4][0]*t2))*(vP[0][0]+vP[2][0]-vP[2][0]*exp(-
                                                                                                                              vP[4][0]*t2)))*(vP
    vP[3][0]*(t1-t2
                                                                                                                              [3](0]*vP[2][0]*exp(-vP[3][0]*(t1-t2))-
                                                                                                                              vP[3][0]*vP(2)[0]/(vP[3][0]
     ))+vP(3](0]*vP[2](0]/(vP(3][0]+vP(4][0])*(exp(-vP[3][0]*(t1-
     t2))-exp(-vP[3][0)*t1-vP(4][0]*t2)));
                                                                                                                              +vP[4][0])*(vP[3](0)*exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-
     s3=s4*s5;
                                                                                                                              vP[3][0]
     s5=exp(-{vP[0][0]+vP[2][0])*t1-
                                                                                                                              *t1-vP[4][0]*t2)));
     vP[1](0]*t2+vP[2][0]/vP[3][0]*(1-
                                                                                                                              s7=exp(-(vP[0][0]+vP[2][0])*t1-
     exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4)[0])*(exp(-
                                                                                                                              vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
                                                                                                                              exp(-vP[3][0]*(t1-t2)))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-
    vP[3]{0
    ]*(t1-t2))-exp(-vP[3][0]*t1-vP[4][0]*t2)));
                                                                                                                              vP[3][0
```

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 113

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 114

```
(t1-t2) - exp(-vP[3][0]*t1-
                                                                                                                               decl derivlogveros=zeros(n,1);
     vP[4][0]*t2)))*(vP[3][0]*vP[2][0]/(vP[
                                                                                                                               decl derivlogver;
     3][0]+vP[4][0])^2*(vP[3][0]*exp(-vP[3][0]*(t1-
                                                                                                                                for(i=0;i<n;++i)
     (12) + vP[4][0] + exp(-
    vP[3][0]*t1-vP[4][0]*t2)}-
                                                                                                                                  if (t1[i](0]<t2[i][0])
    vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-vP[3][0]*t1-
    vP[4][0]*t2)-vP[4][0]*t2*exp(-vP[3)[0]*t1-vP[4][0]
                                                                                                                                      derivlogveros[i][0]=derivfl1t1met2(t1(i)[0],t2[i][0],vP);
    *t2)));
     s5=s6+s7;
                                                                                                                                   else
     s1=s4+s5;
    s4 = \exp(-(vP[0][0] + vP[2][0]) * t1 -
                                                                                                                                      derivloqveros[i][0]=derivfl1t1mat2(t1[i][0],t2[i](0],vP);
    vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
    \exp(-vP[3][0]*(t1-t2))+vP[2][0]/(vP[3][0]+vP[4][0))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4][0]))*(exp(-vP[4](vP[4](vP[4])))*(exp(-vP[4](vP[4](vP[4])))*(exp(-vP[4]))*(exp(-vP[4](vP[4])))*(exp(-vP[4]))*(exp(-vP[4]))*(exp(-vP[4]))*(exp(-vP[4
                                                                                                                                   }
    vP[3][0
                                                                                                                               u1(0)=sumc(derivlogveros);
    ]*(t1-t2))-exp(-vP[3][0]*t1-
                                                                                                                               return 1;
    vP[4](0)*t2)))*(vP[1][0]+vP[2][0]*exp(
                                                                                                                               ł
                                                                                                                            /*----fim derivada em relação a lambdal do log da função de
     -vP[3][0]*(t1-t2))-
                                                                                                                            verossimilhanca-----*/
     vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3)[0]*exp(-vP[
    3] (0]*(t1-t2))+vP(4] [0]*exp(-vP[3][0]*t1-
    vP[4][0]*t2)))*(vP[0][0]+
    vP[2][0] - vP[2][0] * exp(-vP[3)[0] * (t1-
                                                                                                                            /*----derivada em relação a lambda2 do log da função de
                                                                                                                            verossimilhanca-----*/
    t2))+vP[3][0]*vP[2][0]/(vP[3][
    0+vP[4](0])*(exp(-vP[3][0]*(t1-t2))-exp(-vP[3][0]*t1-
                                                                                                                            derivloqverolambda2(const vP, const u2, const av5core, const
    vP[4][0]*t2)
                                                                                                                            amHess)
    ));
                                                                                                                               {
    s5=exp(-(vP[0][0]+vP[2][0])*t1-
                                                                                                                               decl derivlogveros=zeros(n,1);
    vP[1][0]*t2+vP[2][0]/vP[3][0]*(1-
                                                                                                                               decl derivlogver;
    \exp(-vP[3][0]*(t1-t2))+vP[2][0]/(vP[3][0]+vP[4][0])*(exp(-
                                                                                                                               for(i=0;i<n;++i)
    vP[3][0
     ]*(t1-t2))-exp(-vP[3][0]*t1-
                                                                                                                                  if (t1[i][0]<t2[i][0]}</pre>
    vP[4][0]*t2)))*(vP[3][0]*vP[2][0]*exp(
    -vP(3)[0]*(t1-t2))-
                                                                                                                                      derivloqveros[i](0]=derivfl2t1met2(t1[i)[0],t2[i][0],vP);
    vP[3][0]*vP[2][0]/(vP[3][0]+vP[4][0])*(vP[3][0])
     *exp(-vP[3][0]*(t1-t2))+vP[4][0]*exp(-vP[3][0]*t1-
                                                                                                                                   else
    vP[4][0]*t2)));
    s3=s4+s5;
                                                                                                                                      derivloqveros[i][0]=derivf12t1mat2(t1[i][0],t2[i][0],vP);
    $2=1/s3;
    t0=s1*s2;
    return(t0);
                                                                                                                               u2[0]=sumc(derivlogveros);
                                                                                                                               return 1;
/*fim derivada em relação a s2 da densidade bivariada (t_1>t_2)*/
                                                                                                                            /*----fim derivada em relação a lambda2 do log da função
                                                                                                                            de verossimilhanca-----*/
/*----derivada em relação a lambdal do log da função de
verossimilhança----*/
derivlogverolambdal(const vP, const ul, const avScore, const
                                                                                                                            /*-----derivada em relação a lambda12 do log da função de
                                                                                                                            verossimilhanca----*/
amHess)
  -{
```

derivlogverolambdal2(const vP, const u3, const avScore, const	/*derivada em relação a s2 do log da função de
amHess)	verossimilhança*/
[derivlogveros2(const vP, const uS, const avScore, const amHess)
<pre>decl derivlogveros=zeros(n,1);</pre>	
decl derivlogver;	decl derivloqueros=zeros(n,l);
for(i=0; i < n; i + i)	decl derivloquer;
	for(i=0; i<0; ++i)
$if (t_1) i_1 j_0 < t_2 (i_1) [0]$	
	if(t)[i][0] <t2[i][0])< td=""></t2[i][0])<>
derivlogveros(i][S]=derivf]]2t1mor2(i](i)[G].:2(i)[G).vP):	
1	derivlagveroe(ill0)=derivfe2t1met2(t1[ill0].42[ill0].vP);
deriviogVeros(1)[0]-deriviii2(imat2(ti(1)[0],t2(1)[0],VP);	
	deriviogveros[i][0]=derivisztimatz(ti[i][0],tz[i][0],vP);
u3[0]-sumc(deriviogveros);	
return 1;	u5[0]=sumc(derivlogveros);
1	return 1;
/*fim derivada em relação a lambdal2 do log da	3
função de verossimilhança/	/*fim derivada em relação a s2 do log da função de
	verossimilhança*/
/*derivada em relação a s1 do log da função de	
verossimilhanca*/	/*
derivlogveroslicons: vP, const u4, const avScore, const amHess)	gera()
1	
decl_derivloqueros=20ros(n.1);	decl vP≊<0 1⋅0 1⋅0 2⋅0 5⋅0 5>↓ //parâmetros utilizados
	deal ul u2 u3 ber d tlaugh t2augh.
$for(i=0,i(z_0,i(z_1)))$	deal tempol=zors/s));
	4-04
	wniie(] <n)< td=""></n)<>
deriviogveros[1](0]=derivisitimet2(t1[1][0],t2[1][0],VP);	
	ul=ranu(1,1)*35;
else	u2=ranu(1,1)*35;
	u3=ranu(1,1)*0.046;
<pre>derivlogveros[i][0]=derivfs1t1mat2(t1[i][0],t2]i][0],vP);</pre>	ber=ranbinomial(1,1,1,0.5);
}	
}	if(ber==0)
u4[6]=sume(derivloqveros);	
return 1;	<pre>tlaux1=min(u1,u2);</pre>
	t2aux1=max(u),u2);
/*fim derivada em relação a s1 do log da função de	<pre>d=dbt1met2(t1aux1,t2aux1,vP);</pre>
verossimilhanca*/	if (u3 <d)< td=""></d)<>
	tempo1[j][0]=tlaux1;
	tempo2[i][0]=t2aux];
	compoz (j] (o] (Zauxi,

-

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 115

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 116

```
j=j+1;
                                                                            h=500;//total de amostras
                                                                            decl e, e1, e2, e3, e4, e5, v, z;
                                                                           e=0; e1=0; e2=0; e3=0; e4=0;
                                                                           e5=0; v=0; z=0;
    else
      tlaux1=max(u1,u2);
                                                                            // declaração das variáveis
      t2aux1⇔min(u1,u2);
                                                                            decl lambdal=zeros(h,1);
      d=dbt1mat2(tlaux1,t2aux1,vP);
                                                                            decl lambda2=zeros(h,1);
      if {u3<d}
                                                                            decl lambda12=zeros(h,1);
        {
                                                                            decl s1=zeros(h,1);
        tempo1[j][0]-tlaux1;
                                                                            decl s2=zeros(h,1);
        tempo2(j)[0]=t2aux1;
        j∸j+ì;
                                                                            decl varlambdal=zeros(h,l);
        ł
                                                                            decl variambda2=zeros(h.1);
                                                                           deci varlambda12=zeros(h,1);
    1
                                                                            decl vars1=zeros(h,1);
  return tempol-tempo2;
                                                                            decl vars2=zeros(h,1);
/*----fim geração de (t1,t2)---------------//
                                                                            decl desvplambdal=zeros(h,1);
                                                                            deci desvplambda2=zeros(h,1);
                                                                           decl desvplambdal2=zeros(h,1);
/*----log da função de verossimilhança----log da função de verossimilhança-----log
                                                                           decl desvps1=zeros(h,l);
logfveros(const vP, const 1, const avScore, const amHess)
                                                                           decl desvps2=zeros(h,1);
  decl logf=zeros(n,1);
                                                                            decl eqmlambda1=zeros(h,1);
  for(i=0; i<n; ++i)</pre>
                                                                           decl eqmlambda2=zeros(h,1);
    {
                                                                            decl cqmlambda12=zeros(h,1);
    if(t1[i][0]<t2[i][0])
                                                                           decl eqms1=2eros(h,l);
                                                                            decl eqms2=zeros(h,1);
      logf(i)[0] = logdbt1met2(t1(i)[0],t2[i](0],vP);
      •
                                                                           decl liminf]ambda190=zeros(h,1);
    else
                                                                           decl limsuplambda190=zeros(h,1);
                                                                           decl liminflambda290-zeros(h,l);
      1
      logf[i][0] = logdbtlmat2(t1[i][0],t2[i]{0},vP);
                                                                            decl limsuplambda290=zeros(h,1);
      1
                                                                           decl liminf]ambda1290=zeros(h,1);
                                                                           decl limsuplambda1290=zeros(h,1);
  1(0]=sumc(logf); //log da função de verossimilhança
                                                                            decl liminfs190=zeros(h,1);
                                                                           decl limsups190=zeros(h,1);
  if ( vP[0][0]<0)) vP[1][0]<0); vP[2][0]<0|| vP[3][0]<0||
      vP[4](0]<0) //restrição para os estimadores</pre>
                                                                           decl liminfs290=zeros(h,1);
    ł
                                                                           decl limsups290=zeros(h,1);
    return 0;
                                                                           decl liminflambda195=zeros(h,1);
  return 1;
                                                                           decl limsuplambda195=zeros(h,1);
                                                                           dec] liminflambda295=zeros{h,1};
/* -----fim log função de veressimilhança ------*/
                                                                           decl limsuplambda295=zeros(h,1);
                                                                           decl liminflambdal295=zeros(h,1);
main()
                                                                           decl limsuplambda1295=zeros(h,1);
                                                                           decl liminfs195=zeros(h,1);
  (
```

<pre>decl limsups195=zeros(h,1);</pre>	
<pre>decl liminfs295=zeros(h,1);</pre>	/*maximiza o log da verossimilhanca*/
decl limsups295=zeros(h.1);	
	dec) $vP=<3+1+1+1+1>= 1/$ chutes iniciais
deal MalTefOhs=zeros(5,5):	loofveros(vD.), () () ()
docl invMatInfOhmemora(5.5):	
deal dipersona/E 1).	
deci ulag-zeros(5,1);	
deci desvpad=zeros(5,1);	1 F=MAXBEGS(logIveros, &vP, &I, &mness, IRUL);
dedi 1,1r,mness;	7=2+1;
dect tig=zeros(h,2);	
decl time;	if(ir==MAX_CONV)
time=timer();	v=v+1;
<pre>decl bb=zeros(5,5);</pre>	if (ir==MAX_CONV && vP(0)(0)<1)
decl dl=zeros(5,5);	ei=e1+1;
decl d2-zeros(5,5);	if $(i, r == MAX CONV \leq 6 VP(1)(0) < 1)$
deal d3=zeros(5,5);	e2=e2+1;
decl d4=zeros(5,5);	if $(i c == MAX CONV \& vP[2][0] < 2)$
dec1 d5=zeros(5,5);	e3-e3+1;
	if (ir™#MAX CONV && vP[3][0]<5)
decl produto=zeros(25.1);	e4=e4+1:
decl STD-zeros(h.1);	if $(ir = MAX CONV 56 vP(4)[0] < 5)$
decl mbess1, mbess2, mbess3, mbess4, mbess5;	
deal n.g.r.s.t.u:	
2001 MJ4/1/2/1/1/	$if(i_{2}) \rightarrow MNV$ conv is $vD(0)[0](1) \in VD(1)[0](2)$
decl muantlambyial00-0.	$\sum_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \sum_{i$
decl quantiambda190-0;	$a_{n} \wedge c_{n} [n] [n] < n \neq n \in \{n\} [n] < n \neq n \in \{n\} [n] < n$
decl quantlambdal200-0,	l.
deci quattinambdaizoo-o,	
deel quantes 200, 0,	
debi quantiszatór (
deci quantiampdaisoro;	lambda2(b)[U]=VP[l][U];
deci duantiambda295=0;	[ambda12[6][0]≃vP[2][0];
decl quantlambdal295=0;	s1[b][0]=vP[3][0];
decl quants195=0;	s2[b][0]=vP[4][0];
decl quants295=0;	
	/*medidas de dispersão*/
decl cobertura901ambda1,	
cobertura901ambda2, cobertura901ambda12,	Num2Derivative(logfveros,vP,&mhess);
cobertura90s1,cobertura90s2;	MatInfObs≃mhess*(-1);
decl cobertura951ambda1, cobertura951ambda2,	invMatInfObs≂invert(MatInfObs);
cobertura951ambda12,cobertura95s1,cobertura95s2;	bb≕invMatInfObs;
	<pre>diag=diagonal(invMatInfObs);</pre>
b=0;	e=e+1;
while(b <h) amostras<="" as="" gera="" td=""><td>if (invMatInfObs:0][0]>0 && invMatInfObs[1][1]>0 &&</td></h)>	if (invMatInfObs:0][0]>0 && invMatInfObs[1][1]>0 &&
	invMatInfObs[2][2]>044 InvMatInfObs[3][3]>0 44
tla=aera():	invMatInfObe(A)(A) > D
-1_t10*<1+0>+	(Triving of to Dop(al(a) > 0)
t2=t1ot20.1>,	l de superdure est (di ser) t
CDITULY (NO) IX)	desvpad=sqrt(diag);

-

```
desvplambda1[b][0]=sqrt(bb [0](0]);
desvplambda2[b][0] = sqrt(bb[1][1]);
                                                                             ÷1
desvplambda12[b][0]=sqrt(bb [2][2]);
                                                                           1
desvps1[b][0]=sqrt(bb [3](3]);
                                                                         produto[2][0]=0;
desvps2[b][0]-sqrt(bb (4][4]);
                                                                         p=0; s=2;
                                                                         for(q=0;q<5;++q)
//Cálculo de STD
Num2Derivative(derivlogverolambdal, vP, &mhessl);
                                                                           for(r=0; r<5; ++r)
Num2Derivative(derivlogverolambda2, vP, &mhess2);
Num2Derivative(derivlogverolambda12, vP, &mhess3);
                                                                             for(t=0;t<5;++t)
Num2Derivative(derivlogveros1, vP, %mhess4);
Num2Derivative(derivlogveros2, vP, &mbess5);
                                                                               for(u=0;u<5;++u)
                                                                                 produto[2](0]=produto[2][0]+bb[p][q]*bb[s][t]*b
dl=mhess1;
d2=mhess2;
                                                                                 b[r]{u]*d][q]{r]*d3[t]{u};
d3∞mhess3;
                                                                                 ł
d4=mhess4;
d5=mhess5;
                                                                           1
produto[0][0]-0;
                                                                         produto[3][0]=0;
o=0;s=0;
                                                                         p=0; s=3;
for(q≂0;q<5;++q)
                                                                         for(q=0;q<5;++q)
  ł
  for(r=0;r<5;++r)
                                                                           for(r=0; r<5; ++r)
    -F
    for(t=0;t<5;++t)
                                                                             for(t=0;t<5;++t)
      for(u=0;u<5;++u)
                                                                               for(u=0;u<5;++u)
        produte[0](0]=produte[0][0]+bb(p](q]*bb[s](t)*
                                                                                 produto[3][0]=produto[3][0]+bb[p][q]*bb(s)[t]*b
        bb[r]{u]*d1(q](r]*d)[r][u];
                                                                                 b[r][u]*d1(q)[r]*d4[t](u];
        ł
    ł
                                                                             -}
 1
                                                                         produto[4][0]=0;
produto[1][0]=0;
p=0; s=1;
                                                                         p=0; s=4;
for(q=0;q<5;++q)
                                                                         for (q=0;q<5;++q)
 for(r=0;r<5;+r)
                                                                           for(r=0;r<5;++r)
    for(t=0;t<5;++L)
                                                                             for(t=0;t<5;++t)
      for{u=0;u<5;++u}
                                                                               for(u=0;u<5;++u)
                                                                                 produto[4][0]=produto[4][0]+bb[p][q]*bb[s][t]*b
        produte(1)[0]=produte[1)[0]+bb[p][q]*bb[s](t)*b
        b[r][u]*d1[q][r]*d2[t][u];
                                                                                 b[r][u]*d1[q][r]*d5[t][u];
```

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 118

```
produto[7][0]=produto[7][0]+bb[p][q]*bb[s][t]*b
                                                                                    b[r][u]*d2[q][r]*d3[t][u];
    - 5
  ł
                                                                                    1
produto[5][0]=0;
p=1; s=C;
for(q=0;q<5;++q)
                                                                              ł
  ł
                                                                           produto[8][0]=0;
  for(r=0;r<5;++r)
                                                                            p=1; s=3;
    {
                                                                            for(g=0;q<5;++q)</pre>
    for (t=0;t<5;i+t)
                                                                              ſ
      ł
                                                                              for(r=0;r<5;++r)
      for(u=0;u<5;++u)
                                                                                for(t=0;t<5;++t)
        -f
        produto[5][0]=produto[5][0]+bb(p)[q]+bb[s][t]+b
                                                                                  f
        b[r][u]*d2[q;[r]*d1[t][u];
                                                                                  for(u=0;u<5;++u)
        ì
                                                                                    produto[8][0]=produto[8][0]+bb[p][q]*bb[s][t]*b
                                                                                    b[r][u]*d2[q][r]*d4{t][u];
  ł
produto[6]{0}=0;
p=1; s=1;
                                                                                ł
for(q=0;q<5;++q)
                                                                              }
                                                                           produto[9][0]=0;
  for{r+0;r<5;4)r}
                                                                            p=1; s=4;
                                                                            for(q=0;q<5;++q)
      for(t=0;t<5;++t)
                                                                              ł
                                                                              for(r=0;r<5;++r)
        for (u=0; u<5; ++u)
                                                                                for{t=0; t<5; ++t}
                                                                                  -{
                                                                                  for(u=0;u<5;++u)
        produto[6][0]=produto[6][0]+bb[p][q]+bb[s][t]+b
        b[r][u]*d2[q][r]*d2(t)[u];
                                                                                    produto(9)[0]=produto[9][0]+bb[p][d]+bb[s][t]+b
                                                                                    b(r){u]*d2[q][r]*d5[t][u];
        1
                                                                                    3
    ì
                                                                                  }
produte[7][0]=0;
                                                                              }
p=1; s=2;
                                                                            produto[10][0]=0;
for(q=0;q<5;++q)
                                                                            p=2; s=C;
                                                                            for(q=0;q<5;++q)
  for(r=0;r<5;++r)
                                                                              for(r=0;r<5;++r)
      for(t=0;t<5;++t)
                                                                                for(t=0;t<5;++t)
      for(u=0;u<5;++u)
        £
                                                                                  for(u=0;u<5;++u)
                                                                                    1
```

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 119

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 120

```
produto(10)[0]-preduto(10][0]+bb(p][q]*bb(s][t]
                                                                                    produto[13][0]=produto[13][0]+bb[p][q]+bb[s][t]
         *bb[r][u]*d3[g][r]*d1[t][u];
                                                                                    *bb[r][u]*d3[q][r]*d4[t][u];
         ł
produto[11][0]=0;
                                                                           produto[14][0]=0;
p=2; s=1;
                                                                           p=2; s=4;
for(q=0;q<5;++q)
                                                                            for(q=0;q<5;++q)
  for(r=0; r<5; ++r}
                                                                             for(r=0;r<5;++r)
    - {
    for(t=0; L<5; ++t)
                                                                                for(t=0;t<5;!!t)</pre>
      ł
                                                                                  ĺ
      for(u=0;u<5;++u)
                                                                                  for(u=0;u<5;++u)
         produto[11][0]=produto[11][0]+bb[p][q]*bb[s][t]
                                                                                    produte[14][0]=produte[14][0]+bb[p][q]*bb[s][t]
         *bb[r]{u}*d3[q][r]*d2[t][u];
                                                                                    *bb[r][u]*d3[q][r]*d5[t][u];
produto[12][0]=0;
                                                                           produto[15][0]=0;
p≃2; s=2;
                                                                           p=3; s=0;
for(q=0;q<5;++q)
                                                                           for(q=0;q<5;++q)
  for(r=0; r<5; ++r)
                                                                             for(r=0;r<5;++r)
    ł
    for(t=0;t<5;++t)
                                                                                for(t=0;t<5;+it)
      for(u=0;u<5;++u)
                                                                                  for (u=0; u<5; ++u)
        ł
        produto[12][0]=produto[12][0]+bb(p](q]+bb(s)(t)
                                                                                   produto[15][0]=produto[15][0]+bb(p][q]*bb(s][t]
         *bb[r][u]*d3[q][r]*d3[t][u];
                                                                                    *bb[r](u)*d4[q][r]*d1[t](u);
  - }
produto[13][0]=0;
                                                                           produtc[16][0]=0;
p=2; s-3;
                                                                           p=3; s=1;
for{q=0;q<5;++q}
                                                                           for(q=0;q<5;++q)
                                                                             {
  for(r=0;r<5;+*r)
                                                                             for(r≈0;r<5;++r)
    for(t=0;t<5;++t)</pre>
                                                                               for(t=0;t<5;++t)
      for(u=0;u<5;++u)
                                                                                  for(u=0;u<5;++u)
                                                                                   £
```

```
produto[16][0]=produto[16][0]+bb[p][d]*bb[s][t]
                                                                                   produto[19][0]=produto[19][0]+bb[p][q]*bb[s][t]
        *bb[r][u]*d4[q][r]*d2[r]|u];
                                                                                   *bb[r][u]*d4[g][r]*d5[t][u];
        }
                                                                                   1
produto[17][0]=0;
                                                                          produto[20][0]=0;
p=3; s=2;
                                                                          p=4; s=0;
for(q=0;q<5;++q)
                                                                          for(q=0;q<5;++q)
  for(r=0; r<5; +1r)
                                                                             for(r=0;r<5;++r)
                                                                               1
    for(t=0;t<5;++t)
                                                                               for(t=0;t<5;++t)
                                                                                 for(u=0;u<5;++u)
      for(u=0;u<5;+)u
        produto[17][0]-produto[17](0]+bb[p][d]+bb[s][t]
                                                                                   produto[20][0]=produto[20][0]+bb[p][q]*bb[s][1]
        *bb(r][u]*d4[q][r]*d3[t][u];
                                                                                   *bb[r][u]*d5[q][r]*d1[t][u];
produto[18][0]=0;
                                                                          produto[21][0]=0;
p=3; s=3;
                                                                          p=4; s=1;
for(q=0;q<5;++q)
                                                                           for(q=0;q<5;++q)
  for(r=0;r<5;+ir)
                                                                             for(r=0; r<5; ++r)
                                                                               f
    for(t=0;t<5;++t)
                                                                              for(t=0;t<5;++t)
      for (u=0; u<5; +u)
                                                                                 for(u=0;u<5;++u)
        produto[18][0]=produto[18][0]+bb[p][q]*bb[s][t]
                                                                                   produto[21][0]=produto[21](0]+bb[p](q)*bb(s)(t)
        *bb[r][u]*d4[q][r]*d4[t][u];
                                                                                   *bb[r][u]*d5[q][r]*d2[t][u];
  }
produto[19][0]=0;
                                                                          produto[22][0]=0;
p=3; s=4;
                                                                          p=4; s=2;
for(q=0;q<5;++q)
                                                                          for(q=0;q<5;++q)
                                                                            ſ
  for(r=0;r<5;++r)
                                                                             for(r=0; r<5; ++r)
                                                                               Ł
    for(t=0;t<5;++t)
                                                                               for(t=0;t<5;++t)
      for(u=C;u<5;++u)
                                                                                 for(u=0;u<5;++u)
        4
                                                                                  {
```

Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura 121

122 Apêndice C – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Dados sem Censura

```
produto[22][0]=produto[22][0]+bb[p][q]*bb[s][t]
                                                                            eqmlambdal[j]{0} = (desvplambdal[j](0))^2+
               *bb[r][u]*d5[q][r]*d3[t][u];
                                                                            (lambda1(j)[0)-0.1).^2;
              1
                                                                            egmlambda2[j][0]= (desvplambda2[j][0])^2+
            ł
                                                                            (lambda2[j][0]-0.1).^2;
                                                                            egmlambda12(j)[0] = (desvplambda12(j)[0])^{2+}
                                                                            (lambda12[j][0]-0.2).^2;
                                                                            eqms1(j)[0]= (desvps1[j)[0])^2+(s1(j)[0]-0.5).^2;
      produto[23][0]=0;
      p=4; s=3;
                                                                            eqms2[j][0]= (desvps2[j][0])^2+(s2[j][0]-0.5).^2;
      for(q=0;q<5;++q)
                                                                            /*intervalos de confiança 90%*/
                                                                            liminflambda190[j][0]≃lambda1[j][0]-
        for(r=0;r<5;++r)
                                                                            1.6449*desvplambda1[j][0];
          for(t=0;t<5;++t)
                                                                            limsuplambda190(j)[0]=lambda1[j)[0]+
                                                                            1.6449*desvplambda1[j][0];
            for (u=0; u<5; ++u)
                                                                            liminflambda290[j](0]=lambda2[j][0]=
                                                                            1.6449*desvplambda2[j](0);
              produto[23][0]=produto[23][0]+bb[p][q]*bb[s][t]
                                                                            limsup!ambda290[j][0]=lambda2[j][0]+
               *bb[r][u]*d5[q][m]*d4[t][u];
                                                                            1.6449*desvplambda2[j][0];
                                                                            liminflambda1290[j][0]=]ambda12[j][0]-
                                                                            1.6449*desvplambda12[j][0];
          ł
                                                                            limsuplambda1290[1][0]=lambda12[1][0]+
        ł
                                                                            1.6449*desvplambda12[j][0];
      produto[24][0]=0;
                                                                            liminfs190(j](0)=s1[j][0]-1.6449*desvps1(j][0];
      p=4; s=4;
                                                                            limsups190[j](0)=s1[j][0]+1.6449*desvps1[j][0];
      for(q=0;q<5;++q)
                                                                            liminfs290[1][0]=s2[j][0]-1.6449*desvps2[j][0];
                                                                            limsups290[j][0]=s2[j][0]+1.6449*desvps2(j)[0];
        for(r=0;r<5;++r)
                                                                            /*intervalos de confiança 95%*/
          for{t=0;t<5;++t}
                                                                            liminflambdal95[j][0]=lambdal[j][0]-
                                                                            1.96*desvplambda1[]][0];
            for(u=0;u<5;++u)
                                                                           limsuplambda195[j][0]=lambda1[j][0]+
                                                                            1.96*desvplambda1(j)[0];
              produto[24][0]=produto[24][0]+bb[p][q]*bb[s][t]
                                                                           liminflambda295[j][0]=lambda2[j][0]=
              *bb[r][u]*d5[q][r]*d5[t][u];
                                                                           1.96*desvplambda2(j){0];
                                                                           limsuplambda295[j][0]=lambda2(j][0]+
                                                                           1.96*desvplambda?[j][0];
          ì
                                                                           liminflambda1295[j][0]=lambda12[j][0]=
        ł
                                                                           1.96*desvplambda12[j][0];
      STO[b](0)=(sumc(produto));
                                                                            limsuplambda1295[j][0]=lambda12[j][0]+
      print("\n STD:",(b+1),STD[b][0]);
                                                                           1.96*desvplambda12[j][0];
      b=b11;
                                                                            liminfs195(j)[0]=s1[j][0]-1.96*desvps1[j][0];
      1
                                                                           limsups195(j)(0)=s1(j)(0)+1.96*desvps1(j)(0);
                                                                            liminfs295(j)[0]=s2[j][0]-1.96*desvps2(j](0];
                                                                            limsups295[j][0]=s2(j][0]+1.96*desvps2(j][0];
                                                                            ł
// erros quadráticos médios dos estimadores
for (j=0;j<h;++j)
                                                                         /*Médias EMV*/
                                                                         decl medialambda1, medialambda2, medialambda12, medias1, medias2;
```

1

{

```
medialambdal⇔meanc(lambdal);
medialambda2=meanc()ambda2);
medialambda12=meanc(lambda12);
medias1=meanc(s1);
medias2=meanc(s2);
// Médias dos desvios padrões das estimativas
decl mediadplambdal, mediadplambda2, mediadplambda12,
mediadpsl, mediadps2;
mediadplambdal=meanc(desvplambdal);
mediadplambda2=meanc(desvplambda2);
mediadplambda12=meane(desvplambda12);
mediadps1=meanc(desvps1);
mediadps2=meane(desvps2);
77 médias dos erros quadráticos médios das estimativas
decl mediaegmlambdal, mediaegmlambda2, mediaegmlambdal2,
mediaeqms1, mediaeqms2;
mediaeqmlambda1=meanc(comlambda1);
mediaegmlambda2=meanc(eqmlambda2);
mediaegmlambdal2=meane(egmlambdal2);
mediaeqmsl=meanc(eqmsl);
mediaeqms2=meanc(eqms2);
// média das medidas STD
decl mediaSTD:
mediaSTD=meenc(STD);
// desvios padrões das estimativas de MV
decl desvpalambda1,desvpalambda2,desvpalambda12,
dcsvpas1,desvpas2;
desvpalambdal=sqrt(varc(lambda1));
desvpalambda2+ sqrt(varc(lambda2));
desvpalambda12~sqrt(varc(lambda12));
desvpasl= sqrt(varc(s1));
desvpas2= sqrt(varc(s2));
// desvio padrão dos desvios padrões das estimativas de MV
decl dpdplambda1, dpdplambda2, dpdplambda12, dpdps1, dpdps2;
dodplambda1=sqrt(varc(desvplambda1));
dpdplambda2=sqrt(varc(desvplambda2));
dpdplambdal2=sqrt(varc(desvplambdal2));
dpdps1=sqrt(varc(desvps1));
dpdps2=sqrt(varc(desvps2));
// desvios padrões dos erros quadráticos médios
decl dpegmlambda1, dpegmlambda2, dpegmlambda12,
dpeqms], dpeqms2;
```

```
dpeqmlambdal=sqrt(varc(eqmlambdal));
dpeqmlambda2=sqrt(varc(eqmlambda2));
dpeqmlambda12#sqrt(varc(eqmlambda12));
dpegmsl=sgrt(varc(eqmsl));
dpeqms2=sqrt(varc(eqms2));
// desvio padrão dos STD
dec1 dpSTD;
dpSTD-sqrt(varc(STD));
/* quantidade intervalos 90% que não contém o verdadeiro
 valor dos parâmetros*/
for (k=0;k<h;++k)
  if ((liminflambda190(k)[0]>0.114
       \limsup_{k \in [0, 1]} \frac{1}{2} 
    guantlambda190=quantlambda190+1;
  if ((liminflambda290[k][0]>0.1]]
       \limsup {0,1)}
    guantlambda290=guantlambda290+1;
  if ((liminflambda1290[k][0]>0.21]
       .imsuplambda1290[k][0]<0.2))</pre>
    quantlambda1290=quantlambda1290+1;
  if (([iminfs190[k][0]>0.5]] limsups190[k][0]<0.5))
    quants190=quants190+1;
  if ((liminfs290[k][0]>0.5]| limsups290[k][0]<0.5))
    guants290=guants290+1;
// coberture dos intervalos com 90% de confiança
cobertura901ambda1=((h-guantlambda190)/h)*100;
cobertura901ambda2=((h-quantlambda290)/h)*100;
cobertura90lambda12=((h-guantlambda1290)/h)*100;
cobertura90s1=((h-quants190)/h)*100;
cobertura90s2=((h-quants290)/h)*100;
/*----quantidade intervalos 95% que não contiveram o
verdadeiro valor dos parâmetros*/
for (k=0;k<h;++k)</pre>
  if ((liminflambda195[k][0]>0.1|)
       limsuplambda195[k](0]<0.1)
    quantlambda195=quantlambda195+1;
  if ({liminflambda295[k][0]>0.1||
       limsuplambda295[k][0]<0.1)
    quantlambda295=quantlambda295+1;
```

if ((liminflambda1295[k)[0]>0.2[1

limsuplambda1295[k][0]<0.2))

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 132

decl l,ir,mhass;	decl vetorlambdal2-zeros(2500,1);
<pre>decl t1g=zeros(50,2);</pre>	<pre>decl vetors1-zeros(2500,1);</pre>
u~500; // total de amostras	decl vetors2=zeros(2500,1);
decl lambl=zeros(u,l);	<pre>decl vetorlambdalok=zeros(1200,1);</pre>
decl lamb2=zeros(u,i);	decl vetorlambda2ok=zeros(1200,1);
<pre>decl lamb12=zeros((i,));</pre>	decl vetorlambdal2ok=zeros(1200,1);
decl sll=zeros(u,l);	<pre>decl vetorslok=zeros(1200,1);</pre>
decl s12=zeros(u,1);	<pre>decl vetors2ok=zeros(1200,1);</pre>
decl lambla=zeros(it,));	<pre>dec1 R1=zeros(u,1);</pre>
<pre>decl lamb2a=zeros(it,1);</pre>	decl R2=zeros(u,1);
<pre>decl lambl2a=zeros(it,1);</pre>	decl R3=zeros(u,1);
<pre>decl s11a=zeros(it,1);</pre>	<pre>decl R4=zeros(u,1);</pre>
decl sl2a=zeros(it,1);	<pre>decl R5=zeros(u,1);</pre>
decl varlambdal=zeros(u,1);	dec1 mediavecorlambdalok=zeros(u,1);
decl varlambda2=zeros(u,1);	<pre>deci mediavetorlambda2ok=zeros(u,1);</pre>
<pre>decl varlambdal2=zeros(u,1);</pre>	<pre>decl mediavetorlambda12ok=zeros(u,)};</pre>
decl_varsl+zeros(u,l);	decl mediavetorslok=zeros(u,1);
decl vars2=zeros(u,1);	<pre>dect mediavetors2ok=zeros(u,1);</pre>
<pre>decl dplambdal=zeros(u,l);</pre>	<pre>decl varvetorlambdalok=zeros(u,1);</pre>
<pre>decl dplambda2=zeros(u,i);</pre>	<pre>dec1 varvetorlambda2ok=zeros(u,1);</pre>
decl dplambdal2=zeros(u,1);	decl varvetorlambda12ok⇔zeros(u,l);
<pre>decl dps]=zeros(u,1);</pre>	<pre>decl varvetorslok=zeros(u,1);</pre>
<pre>decl dps2=zeros(u,1);</pre>	<pre>decl varvetors2ok=zeros(u,1);</pre>
decl matrixlambdal-zeros(it m);	deal douaterlambdalek-zereciu it.
deal matrizlambda1-zeros(it,m);	decl dpyctorlambdalok=zeros(u,1),
deel matriziambdal2-zeros(it.m);	decl dpyctorlambdal2ck=zeros(h,1),
dec) man, [///ambda12-Zeros(it,m);	deci dpyetorrambdarzok-zeros(u,r);
deel matrizsi zeros((t,m);	deci opvetorsiok=zeros(u,1);
Geol matrizsz=zeros(11,m);	dec) apvetorszok=zeros(u,1);
<pre>decl matrizlambdalok=zeros(itfin,m);</pre>	<pre>decl vetorlambdalokord=zeros(1200,1);</pre>
<pre>decl matrizlambda2ok=zeros(itfim,m);</pre>	<pre>decl vetorlambda2okord=zeros(1200,);</pre>
<pre>dec1 matriziambdal2ok=zeros(itfim,m);</pre>	<pre>decl vetorlambdal2okord=zeros(1200,1);</pre>
<pre>decl matrizslok=zeros(itfim,m);</pre>	decl vetorslokord≔zeros(1200,1);
<pre>decl matrize2ok-zeros(itfim,m);</pre>	<pre>dec1 vetors2okord=zeros(1200,1);</pre>
dogl lambdalauv-zaros(6060 l):	doal modiawawatorlambdalok-zawag(u l):
decl lambdafada zeros(6000,1);	dec1 medianavetoriambdalok=zeres(u, 1);
docl lambdallaux-zeros(6000 l):	deal mediacavatorlambdal2ekruerea/u.lt.
doel = claux= arcatSO(0, 1),	decl medianavetorslok-zeros/u 1)+
doc) staux zeros(6000,1); doc) s2suveveroe(6000,1);	decl medianevelor $20k - 20105(0, 1);$
door szadx-zeros(0000,1);	deci medianavetorszok=zeros(u,r);
<pre>decl vetorlambda1-zeros(2500,1);</pre>	<pre>decl medobscadllambl,medobscad2lambl,medobscad3lambl;</pre>
<pre>decl vetorLambda2=zeros(2500,1);</pre>	<pre>decl medobscad4lamb1,medobscad5lamb1;</pre>

```
dec) medobscadllamb2,medobscad2lamb2,medobscad3lamb2;
decl medobscad4lamb2,medobscad5lamb2;
                                                                            dec1 guadifobsemedcad]]amb2=zeros(it,]);
decl medobscadllamb12,medobscad21amb12,medobscad31amb12;
                                                                            decl quadifobsemedcad2lamb2=zeros(it,1);
decl medobscad4lamb12, medobscad5lamb12;
                                                                            decl quadifobsemedcad31amb2=zeros(it,1);
decl medobscad1s1,medobscad2s1,medobscad3s1;
                                                                            decl quadifobsemedcad41amb2=zeros(it,1);
dec1 medobscad4s1,medobscad5s1;
                                                                            decl guadifobsemedcad51amb2=zeros(it,1);
dec1 medobscad1s2,medobscad2s2,medobscad3s2;
dec1 medobscad4s2, medobscad5s2;
                                                                            decl quadifobsemedicadllamb12=zeros(it,1);
                                                                            decl guadifobsemedcad21amb12=zeros(it,1);
dec] quadmedobscadllambl, guadmedobscad2lambl;
                                                                            decl guadifobsemedcad31amb12=zeros(it,1);
dec] quadmedobscaddiamb);
                                                                            dec1 guadifobsemedcad41amb12=zeros(it,1);
dec] guadmedobscad4lamb1,guadmedobscad5]amb1;
                                                                            decl quadifobsemedcad5lamb12=zeros(it,1);
dec1 quadmedobscadllamb2, quadmedobscad21amb2;
dec1 guadmedobscad3lamb2;
                                                                            dec! guadifobsemedcad1s1=zeros(it,);
dec1 guadmedobscad4lamb2, guadmedobscad5lamb2;
                                                                            decl guadifobsemedcad2s1=zeros(it,1);
dec1 guadmedobscad11amb12, guadmedobscad21amb12;
                                                                            decl quadifobsemedcad3s1=zeros(it.1);
decl quadmedobscad31amb12;
                                                                             decl guadifobsemedcad4s1=zeros(it,1);
dec1 guadmedobscad4!amb12,guadmedobscad5lamb12;
                                                                             decl guadifobsemedcad5s1=zeros(it,1);
dec] quadmedobscadis1,quadmedobscad2s1,quadmedobscad3s1;
decl quadmedobscad4sl,quadmedobscad5sl;
                                                                            decl quadifobsemedcad1s2=zeros(it,1);
dect quadmedobscadls2, quadmedobscad2s2, guadmedobscad3s2;
                                                                             decl guadifobsemedcad2s2=zeros(it,1);
dec1 quadmedobscad4s2, quadmedobscad5s2;
                                                                             decl quadifobsemedcad3s2≃zeros(it.1);
                                                                             decl guadifobsemedcad4s2=zeros(it,1);
                                                                             decl guadifobsemedcad5s2=zeros(it,1);
decl vetoruns=ones(it,1);decl vetorzeros=zeros(it,1);
decl vetor10000=zeros(2500,1);
                                                                             deci medtorlamb1, medtotlamb2, medtotlamb12;
dec1 vetor01000=zeros(2500,1);
                                                                             decl medtots1, medtots2;
dec] vetor00100=zeros(2500,1);
dec1 vetor00010=zeros(2500,1);
                                                                             decl siguad1=zeros(m,1);
decl vetor00001=zeros(2500,1);
                                                                             decl siguad2=zeros(m,1);
                                                                             decl siguad3=zeros(m,1);
decl lambdalc,logfilc,logfil,razaol,minimol,un1,unil;
                                                                             decl siguad4=zeros(m,1);
decl lambda2c.logfi2c,logfi2,razao2,minimo2,un2,uni2;
                                                                             decl siguad5=zeros(m,1);
decl lambdal2c,logfi3c,logfi3,razao3,minimo3,un3,uni3;
decl s1c, logfi4c, logfi4, razao4, minimo4, un4, unis1;
                                                                             decl varsiguad1.varsiguad2. varsiguad3;
decl s2c, logfi5c, logfi5, razao5, minimo5, un5, unis2;
                                                                             decl varsiguad4, varsiguad5;
decl gamal1=zeros(3,1);
                                                                             decl_matrizla=zeros(m,2);
dec1 gamal2=zeros(3,1);
                                                                             decl matriz2a=zeros(m,2);
decl gamal[2+zeros(3,1);
                                                                             decl matriz3a=zeros(m,2);
dec1 gamas1=2eros(3,1);
                                                                             decl matriz4a=zeros{m,2};
decl gamas2=zeros(3,1);
                                                                             decl matriz5a=zeros(m,2);
                                                                             decl matriz1b=zeros(m,2);
decl quadifobsemedcadllambl=zeros(it,1);
decl quadifobsemedcad2lambl=zeros(it.1);
                                                                             dec1 matriz2b=zeros(m,2);
decl quadifobsemedcad3lambl=zeros(it.1);
                                                                             decl matriz3b=zeros(m,2);
decl_quadifobsemedcad4lamb1=zeros(it,1);
                                                                             dec1 matri24b=zeros(m,2);
decl quadifobsemedcad51amb1=zeros(it,1);
                                                                             decl matrizbb=zeros(m,2);
```

decl coverla=zeros(2,2); decl covar2a=zeros(2,2); decl covar3a=zeros(2,2); decl covar4a=zeros(2,2); decl covar5amzeros(2,2); decl covar1b=zeros(2,2); dec1 covar2b=zeros(2,2); decl dovar3b=zeros(2,2); decl covar4b=zeros(2,2); dec1 covar5b=zeros(2,2); decl covia, covib,V1,sigma21,varV1,df1; decl cov2a, cov2b,V2,sigma22,varV2,d12; decl cov3a, cov3b,V3,sigma23,varV3,df3; decl cov4a, cov4b,V4,sigma24,varV4,df4; decl cov5a, cov5b,V5,sigma25,varV5,df5; decl Dlamb1,Elamb1,Riamb1; decl Dlamb2,Elamb2,Rlamb2; dec1 Dlamb12,Elamb12,Rlamb12; decl Ds1,Es1,Rs1,Ds2,Es2,Rs2; decl guadifmedlambl=zeros(m,1); decl guadifmedlamb2=zeros(m.1); decl guadifmedlamb12=zeros(m,1); decl quadifmeds1=zeros(m,1); dec1 quadifmeds2=zeros(m,1); dec] medobscadlamb1=zeros(m,1); decl medobscadlamb2=20ros(m,1); decl medobscadlamb12=zeros(m,1); decl medobscads1=zeros(m,1); decl medobscads2=zeros(m,1); decl quadmedobscadlambl=zeros(m,1); decl guadmodobscadlamb2=zeros(m,1); decl guadmedobscadlamb12=zeros(m,1); decl quadmedobscads1=zeros(m,1); dec1 guadmedobscads2=zeros(m,1); decl mediaemvlambdal, mediaemvlambda2, mediaemvlambda12, modiaemvsl, mediaemvs2; decl mediavaremvlambdal, mediavaremvlambda2, mediavaremvlambdal2, mediavaremvs1, mediavaremvs2; decl mediadpenvlambdal, mediadpenvlambda2, mediadpenvlambda12, mediadpenvs1, mediadpenvs2;

decl mediamediaslambl, mediamediaslamb2, mediamediaslamb12, mediamediass1, mediamediass2; decl mediavarslamb1, mediavarslamb2, mediavarslamb12, medjavarssl, mediavarss2; decl mediadplambl, mediadplamb2, mediadplamb12, mediadps1, modiadps2; decl maxmaxlambl, maxmaxlamb2, maxmaxlamb12, maxmaxsl, maxmaxs2; deci minminlamb1, minminlamb2, minminlamb12, minmins1, minmins2; decl mediamedianalamb1, mediamedianalamb2, mediamedianalambl2, mediamedianasl, mediamedianas2; decl liminflambda190=2eros(u,l); decl liminflambda195=zeros(u,]); decl limsuplambda190=zeros(u,1); decl limsuplambda195=zeros(u,1); decl liminflambda290=zeros(u,1); decl liminflambda295=zeros(u,1); decl limsuplambda290=zeros(u,1); decl limsuplambda295=zeros(u,1); dect liminflambda1290=zeros(u,1); decl liminflambda1295=zeros(u,1); dec] limsuplambda1290=zeros(u,1); decl limsuplambda1295=zeros(u,1); decl limits190=zeros(u,1); decl liminfs195=zeros(u,l); decl limsups190=zeros(u,1); decl limsups195=zeros(u,1); decl liminfs290-zeros(u,1); decl liminfs295=zeros(u,1); decl limsups290=zeros(u,l); decl limsups295=zeros(u,1); decl ic90supll=zeros(u,1); decl ic90supl2=zeros(u,1); decl ic90supl12=zeros(u,1); decl ic90supsl=zeros(u,1); decl ic90sups2=zeros(u,1); decl ic90infll=zeros(u,1); decl ic90infl2=zeros(u,1); decl ic90inf112=zeros(u,1); dec1 ic90infs1=zeros(u,1); decl ic90infs2=zeros(u,1); decl ic95supl1=zeros(u,1); decl ic95supl2=zeros(u,)); decl ic95sup112=zeros(u,l);

<pre>decl ic95supsl=zeros(u,l);</pre>	if(ir==MAX_CONV_&& vP[0][0]<1 && vP[1][0]<1
<pre>decl ic95sups2=zeros(u,1);</pre>	&& vP[2][0]<2 && vP[3](0]<5 && vP[4)[0]<5)
<pre>decl ic95inf11=zeros(u,1);</pre>	1
<pre>decl ic95infl2=zeros(u,l);</pre>	/*EMV*/
<pre>decl ic95inf112=zeros(u,1);</pre>	lamb1(b)[0]=vl?[0][0];
<pre>docl ic95infs1=zeros(n,1);</pre>	lamb2[b][0]=vP[1][0];
<pre>decl ic95infs2-zeros(u, 1);</pre>	lamb12[b] 01=vP[2][0];
	s11[b][0]=vP[3][0];
decl egulambdal=zercs(u,1);	s12/b1(0) = vP[4](0);
dec] egmlamoda2=2eros(u.1);	
decl equilambda12-zeros(u,l);	
decl equal=zeros(u,l);	/*variância EMV*/
decl equips2=zeros(u,1):	Num2Derivative(logfveros.VP.&mbess):
	MatInfObs=mhess*(-1):
decl egymmedialambdal=zeros(u.ll:	invMatInfObs=invert(MatInfObs):
decl egnmedialambda2=zeros(u,l):	varlambdal(b)(0)=invMatInfObs 0:
decl = gmmedialambda12=zgros(u,1);	varlambda2(b)(0)=ipyMatInfObs [1)[1]:
decl = gammediasl=zeros(n,i);	variambdal2(b)[0]=invMatInfObs (2)[2]:
	vars1[b](0)=invMatInfObs [3][3]
	vare2[b][0]=invMatInfObs [0][0];
decl ecomonianalambdal-zeroziu ().	Vd132[0][0]-11(Midelin(003 [1](4])
deck equinedianalanbda = 2003 (u, 1)	dn = rbd = 1 (b) $(0) = cart (war) = rbd = 1$ (b) (0) .
decl opumodianalambdal/azero(s/j))	dplambda1[b](0]=sqrt(varlambda1[b][0]);
deci equineciale a construction (u),	dpianodaz(b)(0)-sqrt(varianodaz(b)(0)), delembda12(b)(0)-comt(ver)embda12(b)(0)),
	dpramodarz[b][0]-sgrt(variamodarz[b][0]);
dect equinequalitations (1, 1);	dpsi(b)[0] = sqrt(varsi(b)[0]);
deal modiouerlambdal - modioeurlambda? - modioegralambdal?	dpsz[b][0]=sdrt(varsz[b][0));
wedi seemal medi seema's	(/hiwayaariimattaa daa wartaa
mediaequoi, mediaequoz,	//niperparametros das gamas
deci mediaedamedialamedal, mediaedamedialameda2,	al=([amb1[b][0]) ² 2/Variampda1[b](0];
mediaequmediarandoarz, mediaequmedias;, mediaequmedias;;	DI=Jampi(b)[0]/variampdal[b][0];
deci mediaegmmedianajamodal, mediaegmmedianajamodaz,	a2=(lamb2[b][0]) ² 2/variambda2[b][0];
Mediaedimmedianatamodal/, mediaedimmedianasi, mediaedimmedianas2;	pz=1ampz[p][u]/varlampdaz(p][u];
b _0,	a3=(fambi2(b)[0])~2/Variambdal2[b][0];
	D3=1amD12[D][U]/VariamDda12[D][U];
W1116(D<500)	$a4 = (s11[b][0])^2/vars1[b][0];$
	b4=sl3[b][0]/vars1[b][0];
tig=gera();	a5=(s12[b][0])^2/vars2[b][0];
	b5=s12[b][0]/vars2[b][0];
t2=t1g*<0;1>;	
	h=0;//h∸cadeia
/*maximização de log da verossimithança*/	for(h=0;h<5;++h)
decl VP=<1;1;1;1;1;); // chutes iniciais	1f(h==0)
logiveros(vr,&t,0,0);	{//chutes iniciais l°Cadeia
MaxControl(1000,1000);	lambdal=vP[0][0];
mness=0.30001*unit(5);	<pre>iambdaZ=vP[1][0];</pre>
ir=MaxBrGS(logiveros,&vP,&l,&mhess,TRUE);	lambdal2=vP[2][0];
	s1=vP(3][0];

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 135

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica	136

s2=vP[4][0];	<pre>razaol=exp(logfi1c=logfi1);</pre>
}	<pre>minimol=min(razaol,1);</pre>
if(h==1)	unil=ranu(3,1);
{//chutes iniciais 2ª cadeia	un1=uni1(2);
lambdal=0.01;	if(unl<=minimol)
lambda2=0.01;	
lambdal2=0.01;	iambdal=lambdalc;
s1=0.01;	}
s2=0.01;	else
}	{
if(h==2)	lambda1 = vPb[0][0];
{//chutes iniciais 3ª cadeia	
lambdal=0.5;	lambdalaux(j (0)=lambdal;
lambda2=0.5;	
lambda12=0.5;	gamal2=rangamma(3,1,a2,b2);
s1=0.5;	lambda2c=gama12[2][0]; //candidato a lambda2
s2=0.5;	vPb[0][0]=iambdal;
	vPb[1][0]=lambda2c;
if (h==3)	logfi2c=logfi(t1,t2,vPb);
{//chutes iniciais 4ª cadela	vPb[1][0]=1ambda2;
]ambda1=1;	<pre>logfi2=logfi(t1,t2,vPb);</pre>
lambda2=1;	<pre>razao2=exp(logfi2c=logfi2);</pre>
lambdal2+2;	<pre>minimo2=min(razao2,1);</pre>
s1=5;	uni2=ranu(3,1);
s2=5;	un2=uni2(2);
}	if(un2<=minimo2)
if(h=-4)	{
{//chutes inicials 5ª cadeia	lambda2-lambda2c;
lambda1=0;	}
lambda2=0;	else
lambdal2=0;	{
s1=0;	lambda 2 = vPb[1][0];
s2=0;	}
3	lambda2aux{j][0]=lambda2;
	<pre>gamal12=rangamma(3,1,a3,b3);</pre>
j=0;//j−interaçāo	lambda12c=gama]12[2][0]; // candidato a lambda12
while (j<6000)	vPb[0][0]=lambda1;
{	vPb[1][0]=lambda2;
gamall=rangamma(3,1,ai,b1);	vPb[2][0]=lambda12c;
lambdalc=gamal1[2][0];//candidato_a_lambdal	<pre>logfi3c=logfi(t1,t2,vPb);</pre>
vPb[0][0]=lambdalc;	vPb[2][0]=lambda12;
vPb[1][0]=lambda2;	<pre>logfi3=logfi(t1,t2,vPb);</pre>
vPb[2][0]=lambdal2;	razao3≂exp(logfi3c~logfi3);
v P b [3] [0] = s 1;	<pre>minimo3=min(razao3,1);</pre>
vPb[4][0]=s2;	uni3=ranu(3,1);
logfilc=logfi(tl,t2,vPb);	un3-uni3[2];
vPb[0][0]=lambda1;	if(un3<=minimo3)
<pre>logfil=logfi(t1,t2,vPb);</pre>	{

•

lambdal2=lambdal2c;	}
}	else
else	
f	s2=vPb[4][0];
lambda12=vPb[2][0];	}
}	s2aux[j][0]=s2;
lambdal2aux{j}[0]=lambdal2;	1+j;
	}
gamas1=rangamma(3,1,a4,b4);	
sle=gamas1(2)[0]; // candidate a sl	//desprezando as 1000as observações e selecionando as
vPb(0; [0] = lambda1;	demais de 10 em 10
vPb[1][0]≃lambda2;	decl l;
vPb[2][0]=lambda12;	a=0;
vPb[3][0]=s1c;	$f_{\text{or}}[1=1000;1<6000;1=10]$
logfi4c=logfi(ti.t2.vPb);	
vPb(3)[0]=s1:	iambla[d](0]=lambdalaux()][0];
logfi4=logfi(t1.t2.vPb):	amb2a[q][0]=lamoda2aux[1][0];
razao4≂exp(logfi4c=logfi4):	<pre>samb12a[d][0]=lambda12aux[1][0]:</pre>
minimo4=min(razand.l):	sllpfpl(0)=slpx(1)[0]:
unicl-room(3.1)	
und-unicl[2];	
if(und<-minimed)	1
	1
	//construindo matrizes com os vetores columes
e) en	for (x=0, y<500; t+y)
1	
ι σ]—νΡμ[3][Λ]•	t matrizlambdal(v)(b)=lambla(v)(0):
f	mactizianouaziajij-tanuzaiajiyi
siaux[]][0;-si;	
$a_{2} = a_{2} = a_{2$	
gamasz-fangamma(s,f,as,bs);	
vPb[0](0]=lowbdel:	l/(forthe looping h
v PD $\left(1\right) \left(0\right) = 1$ ambdal i	// Techa (Obbing n
vPb[2][0]=Iquoda2;	doct by
$v_{PD}[2][0] = rangearz,$	$f_{a,c}(h=0,h,c_{a,c}+h)$
VED[0][0]-51, VED[4][0]-626.	
Vro(4)[0]-520, loof:Serloof:(t1_t2_vDb).	
10g1.50=10g11(t1,c2,vmp); vDb[4)(0)==2:	
VPD[4][0]=SZ;	101(5-260;8<500;++5)
logil5≕logil(ll,t2,VMb);	
razaob=exp(logribc=logrib);	$\max_{i=1}^{n} \sum_{j=1}^{n} \max_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$
minimos=min(razado,i);	$\operatorname{ind} ([12] \operatorname{annOd} 2 \langle O_{k}(v) [u] = \operatorname{ind} ([12] \operatorname{annOd} 2 [o] [u]);$
unis/=[anu(3,1);	matriziamboal2ok[v][n]=matriziamboal2(s][n];
unb=unis2[2];	matrizslok[V][h]=matrizsl[s][h];
lf(un5<-mlnimo5)	matrizs2ok[v][h]=matrizs2[s][h];
	++v;
s2=s2c;	}

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 137

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 138

}

//amostras das distribuições a posteriori
votorlambdal=vec(matrizlambdal);
vetorlambda2=vec(matrizlambda2);
vetorlambda12=vec(matrizlambda12);
vetors1=vec(matrizsl);
vetors2=vec(matrizs2);

vetorlambdalok=vec(matrizlambdalok); vetorlambda2ok=vec(matrizlambda2ok); vetorlambda12ok=vec(matrizlambda12ok); vetorslok=vec(matrizslok); vetors2ok=vec(matrizs2ok);

//sumário das amostras das distribuições a posteriori mediavetor]ambdalok[b][0]=meanc(vetorlambdalok); mediavetorlambdalok[b][0]=meanc(vetorlambdalok); mediavetorlambdallok[b][0]=meanc(vetorlambdallok); mediavetorslok(b][0]=meanc(vetorslok); mediavetorslok(b][0]=meanc(vetorslok);

varvetorlambdalok[b][6]=varc(vetorlambdalok); varvetorlambda2ok[b][0]=varc(vetorlambda2ok); varvetorlambda12ok[b][0]=varc(vetorlambda12ok); varvetorslok[b][0]=varc(vetorslok); varvetors2ok[b][0]=varc(vetors2ok);

dpvetorlambdalok(b)[0]=sqrt(varvetorlambdalok(b)[0]); dpvetorlambda2ok(b)[0]=sqrt(varvetorlambda2ok(b)[0]); dpvetorlambda12ok(b)[0]=sqrt(varvetorlambda12ok(b)[0]); dpvetorslok(b)[0]=sqrt(varvetorslok(b)[0)); dpvetors2ok(b)[0]=sqrt(varvetors2ok(b)[0]);

vetorlambdalokord=sortc(vetorlambdalok); vetorlambda2okord=sortc(vetorlambda2ok); vetorlambdal2okord=sortc(vetorlambdal2ok); vetorslokord=sortc(vetorslok); vetors2okord=sortc(vetors2ok);

medianavetorlambdalok[b][0]=(vetorlambdalokord[599][0]+
vetorlambdalokord[600][0])/2;
medianavetorlambda2ok[b][0]=(vetorlambda2okord[599][0]+
vetorlambda2okord[600][0])/2;
medianavetorlambda12ok(b][0]=(vetorlambda12okord[599][0]+
vetorlambda12okord[600][0])/2;
medianavetorslok[b][0]=(vetorslokord[599][0]+
vetorslokord[600][0])/2;

medianavetors2ok[b][0] = (vetors2okord[599][0] + vetors2okord[600][0])/2;

ic95infl1(b)[0]=vetorlambdalokord[29][0]; ic95infl2(b)[0]=vetorlambdalokord[29][0]; ic95infl12[b][0]=vetorlambdallokord[29][0]; ic95infs1(b)[0]=vetorslokord[29][0]; ic95infs2[b][0]=vetorslokord[29][0];

ic95sup11[b][0]=vetorlambdalokord[1170][0]; ic95sup12[b][0]=vetorlambda2okord[1170][0]; ic95sup112[b][0]=vetorlambda12okord[1170][0]; ic95sups1[b][0]=vetorslokord[1170][0]; ic95sups2[b][0]=vetors2okord[1170][0];

ic90inf11(b)[0]=vetorlambdalokord[59][0]; ic90inf12(b)[0]=vetorlambdalokord[59][0]; ic90inf112(b)[0]=vetorlambdal2okord[59][0]; ic90infs1[b][0]=vetorslokord[59][0]; ic90infs2[b][0]=vetors2okord[59][0];

ic90sup11(b)(0)=vetorlambdalokord[1140][0]; ic90sup12(b)(0)=vetorlambda2okord[1140][0]; ic90sup112(b)(0)=vetorlambda12okord[1140][0]; ic90sups1(b)[0]=vetorslokord[1140][0]; ic90sups2[b][0]=vetors2okord[1140][0];

/*Verificação de convergencia*/ vetor10000=(vetoruns)vetorzeros(vetorzeros)vetorzeros) vetorzerosi: vetor01000=(vetorzeros)vetoruns)vetorzeros)vetorzeros) vetorzeros): vetor00100=(vetorzeros)vetorzeros)vetoruns|vetorzeros) vetorzeros); vetor00010=(vetorzeros)vetorzeros)vetorzeros)vetoruns) vetorzeros); vetor00001=(vetor2eros)vetor2eros)vetor2eros [vetoruns); /*lambda1*/ medtotlamb1=meanc(vetorlambdal); medobscadllambl=((vetor10000')* vetorlambda1)/it; medobscad2lamb1=((vetor01000')* vetorlambdal)/it; medobscad31amb1=((vetor00100')* vetor1ambda1)/it;

medobscad41amb1={(vetor00010')* vetor1ambda1)/it;

medobscad5lamb1=((vetor00001')* vetorlambdal)/it;

quadmedobscadllamb1=medobscadllamb1^2;

```
siguad1(4)(0)=(1/(it-1))*sumc(quadifobsemedcad51amb1);
guadmedobscad2lamblemedobscad2lamble2;
quadmedobscad31amb1-medobscad31amb1^2;
quadmedobscad4lamb1=medobscad4lamb1=2;
                                                                            varsiguadl=varc(siguadl)*5/4;
quadmedobscad5iamb1=medobscad5lamb1^2;
                                                                            Dlamb1+(1/m)*sumc(siquad1);
                                                                            medobscadlamb1=medobscad11amb1[medobscad21amb1]
0=0;i-0;
                                                                            medobscad31amb1(medobscad41amb1(medobscad51amb1;
for(o=0;o<500;++o)
                                                                            quadifmedlambl=(medobscadlamb1-medtotlamb1).^2;
                                                                            Elambl=(it/(m-1))*(sumc(quadifmedlambl));
  guadifobsemedcad11amb1(i)[0]=(vetorlambda1(o)[0]-
  medobscad1lamb1}^2;
                                                                            quadmedobscadlamb1=quadmedobscadllamb1{
                                                                            guadmedobscad2lamb1|
  ÷÷i:
                                                                            guadmedobscad31amb1 [guadmedobscad41amb1)
siguad1[0][0]=(1/(it-1))*sume(quadifobsemedcad1]amb1);
                                                                            guadmedobscad5lamb1;
                                                                            matrizla=siguad1~medobscadlambl;
i=0:
                                                                            matriz1b=siguad1~guadmedobscadlambl;
for(o=500;o<1000;++o)
                                                                            covarla=variance(matriz1a);
                                                                            covarlb=variance(matriz1b);
  quadifobsemedcad2lamb1[i][0]=(vetorlambda1[0][0]=
                                                                            covla=covarla[1][0]*5/4;
  medobscad21amb1) ^2;
                                                                            cov1b=covar1b[1][0]*5/4;
  ++i:
                                                                            varV1=((it-1)/it)^2*(1/m)*varsiquad1+((m+1)/(m*it))^2*
                                                                                 (2/(m-1))*Elamb1^2+2*(((m+1)*(it-1))/(m*it^2))*
siguad1[)][0]=(1/(it-1))*sume(quadif(obsemedcad2lamb1);
                                                                                 (it/m)*(cov1b-2*medtotlamb1*cov1a);
                                                                            sigma21=((it-1)/it)*Dlamb1+Elamb1/it;
i =0;
                                                                            V1=sigma21(Elamb1/(m*it);
for(o=1000;o<1500;++o)
                                                                            df1=(2*V1^2)/varV1;
                                                                            Rlambl=sqrt((V1/Dlamb1)*(dfi/(df1-2)));
                                                                            R1[b] (0) = R1 amb1;
  quadifobsemedcad3)ambl(i][0]=(vetorlambdal[0][0]+
  medobscad3lamb1)^2;
                                                                            /*lambda2*/
  ++i;
                                                                            medtotlamb2=meanc(vetorlambda2);
siguad1[2][0]=(1/(it-1))*sume(quadifobsemedcad3lamb1);
                                                                            medobscad11amb2=((vetor10000')* vetor1ambda2)/it;
i = 0:
                                                                            medobscad2lamb2=((vetor0)000')* vetorlambda2)/it;
for(n=1500;n<2000;++o)
                                                                            medobscad3lamb2=((vetor00100')* vetorlambda2)/it;
                                                                            medobscad4lamb2=((vetor00010')* vetorlambda2)/it;
  quadifobsemedcad4lamb1[i][0]=(vecotlambda1[0]{0]-
                                                                            medobscad51amb2=((vetor00001')* vetor1ambda2)/it;
  medobscad4lambl)^2;
  H+1;
                                                                            guadmedobscad1lamb2=medobscad1lamb2^2;
  }
                                                                            quadmedobscad2lamb2=medobscad2lamb2^2;
siquad1[3][0]=(1/(ir=1))*sumc(quad)fobsemedcad4lamb1);
                                                                            quadmedobscad3lamb2=medobscad3lamb2^2;
                                                                            guadmedobscad4lamb2=medobscad4lamb2^2;
i=0:
                                                                            quadmedobscad51amb2=medobscad51amb2^2;
for(o=2000;o<2500;++o)
                                                                            0=0:i=0:
  quadifobsemedcad5lamb1[i][0]=(vetorlambda1[0][0]-
                                                                             for(o=0;o<500;++o)
  medobscad5lamb1)^2;
                                                                              quadifobsemedcad11amb2[i][0]=(vetor1ambda2[c][0]=
  +÷i;
                                                                              medobscad11amb2)^2;
  1
```

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica	140
---	-----

```
++i;
                                                                            guadmedobscad31amb2[guadmedobscad41amb2]
                                                                            guadmedobscad51amb2;
siguad2[0][0]=(1/(it-1))*sumc(quadifobsemedcad1lamb2);
                                                                            matriz2a=siguad2~medobscadlamb2;
                                                                            matri22b=siguad2~guadmedobscad1amb2;
i=0:
                                                                            covar2a=variance(matriz2a);
                                                                            covar2b=variance(matriz2b);
for(o=500;o<1000;++o)
                                                                            cov2a=covar2a[1][0]*5/4;
 guadifobsemedcad2lamb2[i](0)=(vetorlambda2[o][0]=
                                                                            cov2b=covar2b[1][0]*5/4;
                                                                            varV2=((it-1)/it)^2*(1/m)*varsiquad2+((m+1)/(m*it))^2*
 medobscad2lamb2}^2;
                                                                            (2/(m-1))*Elamb2^2+2*(((m+1)*(it-1))/(m*it^2))*(it/m)*
 fri;
                                                                            (cov2b-2*medtotlamb2*cov2a);
                                                                            sigma22=((it-1)/it)*Dlamb2+Elamb2/it;
siguad2[1][0]=(1/(it-1))*same(quadifobsemedcad21amb2);
                                                                            V2=sigma22+Elamb2/(m*it);
i = 0;
                                                                            df2=(2*V2^2)/varV2;
for(0=1000;o<1500;++o)
                                                                            Rlamb2=sqrt((V2/Dlamb2)*(df2/(df2-2)));
                                                                            R2[b][0]=R1amb2;
 guadifobsemedcad31amb2[j][0]=(vetorlambda2[b][0]-
                                                                            /*lambdal2*/
 medobscad31amb2)^2;
 +∸i;
                                                                            medtotlambi2=meanc(vetorlambda12);
  -1
                                                                            medobscadllamb12=((vetor10000')* vetorlambda12)/it;
signad2[2][0]=(1/(it-1))*sime(q)(adjfobsemedcad3lamb2);
                                                                            medobscad2lamb12=((vetor01000')* vetorlambda12)/it;
i-0:
                                                                            medobscad3lamb12=((vetor00100')* vetorlambda12)/it;
for(0=1500;0<2000;++6)
                                                                            medobscad4lamb12=((vetor00010')* vetorlambda12)/it;
                                                                            medobscad5lambl2=((vetor00001')* vetorlambda12)/it;
 quadifobsemedcad4lamb2(i)[0]=(vetorlambda2[0][0]~
 medobscad4lamb2)12;
                                                                            quadmedobscad1lamb12=medobscad1lamb12^2;
 ++i:
                                                                            guadmedobscad2lamb12=medobscad2lamb12^2;
                                                                            quadmedobscad31amb12=medobscad31amb12^2;
siguad2[3][0]=(1/(it=1))*sumc(quadifobsemedcad4lamb2);
                                                                            guadmedobscad4lamb12=medobscad4lamb12^2;
                                                                            quadmedobscad51amb12=medobscad51amb12^2;
i=0:
for(0=2000;0<2500;++0)
                                                                            o=0;i=0;
                                                                            for(0=0;0<500;++0)
  quadifobsemedcad5lamb2[i][0]={vetorlambda2[o][0]-
 medobscad51amb2)^2;
                                                                             quadifobsemedcadllamb12[i][0]=(vetorlambda12(o)[0]-
 ++i;
                                                                             medobscadllamb12)^2;
                                                                             ++i;
  1
siguad2(4)[0]=(1/(it-1))*sumc(quadifobsemedcad51amb2);
                                                                            siguad3[0][0]=(1/(it-1))*sumc(quadifobsemedcadllamb12);
varsiguad2=vare(siguad2)*5/4;
Dlamb2=(1/m)*sumc(siguad2);
                                                                            i=0;
                                                                            for(o-500;o<1000;++o)
medobscadlamb2=medobscad11amb2(medobscad21amb2)
medobscad3lamb2[medobscad4lamb2[medobscad5]amb2;
                                                                             guadifobsemedcad2lamb12(i)(0)=(vetorlambda12(o)(0)-
quadifmed1amb2+(medobscad]amb2-medtct1amb2).^2;
                                                                             medobscad2lamb12)^2;
Elamb2=(it/(m-1))*(sumc(quadifmed)amb2));
                                                                             ++i;
guadmedobscadlamb2=guadmedobscadl)amb2[guadmedobscad21amb2]
```

```
sigma23=((it-1)/it)*Dlamb12+Elamb12/it;
siquad3[1][0]=(1/(it-1))*sume(quadifobsemedcad2lamb12);
                                                                            V3=sigma23+Elamb12/(m*it);
                                                                            df_{3}=(2*V_{3}^{2})/varV_{3};
i=0;
                                                                            Rlamb12=sqrt((V3/Dlamb12)*(df3/(df3-2)));
for(o=1000;o<1500;++o)</pre>
                                                                            R3(b)[0]=R1amb12;
  quadifobsemedcad3lamb12[i] [0] = (vetorlambda12[0][0] -
                                                                            /*s]*/
  medobscad31amb12)^2;
  ++i;
                                                                            medtots1=meanc(vetors1);
siguad3[2](0]=(1/(it-1))*sume(quadifobsemedcad3lamb12);
                                                                            medobscad1s1=((vetor10000')* vetors1)/it;
                                                                            medobscad2sl=((vetor01000')* vetorsl)/it;
                                                                            medobscad3sl=((vetor00100')* vetors1)/it;
i=0;
                                                                            medobscad4si=((vetor00010')* vetors1)/it;
for(0=1500;0<2000;0+0)
                                                                            medobscad5s1=((vetor00001')* vetors1)/it;
  guadifobsemedcad4lamb12[j][0]=(vetor)ambda12[o][0]-
  medobscad4lamb12)^2;
                                                                            guadmedobscadls1=medobscadls1^2;
  ++i;
                                                                            cpuadmedobscad2s1=medobscad2s1^2;
                                                                             guadmedobscad3s1=medobscad3s1^2;
siguad3[3][0]=(1/(it-1))*sume(quadifobsemedead41amb12);
                                                                            quadmedobscad4s1=medobscad4s1^2;
                                                                            guadmedobscad5s1=medobscad5s1^2;
i=0;
for(0=2000;0<2500;++0)
                                                                            o=0;i=0;
                                                                             for(a=0;o<500;++o)
  guadifobsemedcad5lamb12[i][C]=(vetorlambda12(o)[0]-
  medobscad5lamb12)^2;
                                                                              guadifobsemedcad1s1[i][0]=(vetors1(o)[0]-
  ++i;
                                                                              medobscad1s1)^2;
  ł
                                                                              ++i;
siguad3[4][0]=(1/(it-1))*sumc(quadifobsemedcad5lamb12);
                                                                            siquad4(0)(0)=(1/(it-1))*sumc(quadifobsemedcadls1);
varsiguad3=varc(siguad3)*5/4;
Dlamb12=(1/m)*sumc(siquad3);
                                                                             i=0;
                                                                             for(o=500;o<1000;++o)
medobscadlamb12=medobscad11amb12[medobscad21amb12]
medobscad3lamb12|medobscad4lamb12|medobscad5lamb12;
                                                                              guadifobsemedcad2s1(i][0]=(vetors1[0][0]-
quadiimedlamb12=(medobscadlamb12-medtotlamb12).^2;
                                                                              medobscad2s1)^2:
Elambl2=(it/(m-1))*(sumc(quadifmedlamb12));
                                                                              ++i;
quadmedobscadlamb12=quadmedobscadllamb12|quadmedobscad21amb12
                                                                            siguad4[1](0]=(1/(it-1))*sumc(quadifobsemedCad2s1);
[guadmedobscad3]amb12[guadmedobscad41amb12]
quadmedobscad51amb12;
matriz3a=siguad3~medobscad1amb12;
                                                                             i-0:
matriz3b=siguad3~guadmedobscad1amb12;
                                                                             for(o=1000;o<1500;++o)
covar3a=variance(matriz3a);
covar3b=variance(matriz3b);
                                                                              guadifobsemedcad3s1[j][0]=(vetors1[o](0)-
cov3a=covar3a[1][0]*5/4;
                                                                              medobscad3s1)^2;
cov3b=covar3b[1][0]*5/4;
                                                                              ++i;
varV3=((it-1)/it)^2*(1/m)*varsiguad3+((m+1)/(m*it))^2*
                                                                            siquad4[2][0]=(1/(it-1))*sumc(quadifobsemedcad3s1);
(2/(m+1))*Elamb12^2+2*(((m+1)*(it-1))/(m*it^2))
*(it/m)*(cov3b-2*medtotlamb12*cov3a);
```

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 141
Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 142

```
i=0;
for(o=1500;o<2000;++o)
  quadifobsemedcad4s1[i][0]=(vetors1[o][0]-
  medobscad4s1}^2;
  ++i:
siquad4[3][0]=(1/(it-l))*sime(quadifobsemedcad4s1);
i=0;
for(0=2000;0<2500;++0)
  guadifobsemedcad5s1[i][0]=(vetors1[o][0]=
  medobscad5s1)^2;
  ++i:
siguad4[4]{0}=(1/(it=1))*sumc(quadifebsemedcad5s1);
varsiguad4=varc(siguad4)*5/4;
Ds1=(1/m)*sumc(siguad4);
medobscads1-medobscad1s1[medobscad2s1[medobscad3s1]
medobscad4sl[medobscad5s1;
quadifmedsl=(medobscads1-medtots1).^2;
Es]=(it/(m-1))*(sume(quadifmeds1));
guadmedobscads1+quadmedobscad1s1)guadmedobscad2s1[
quadmedobscad3s1|quadmedobscad4s1|quadmedobscad5s1;
matriz4a=siguad4~medobscads1;
matriz4b-siguad4~guadmedobscads1;
covar4a+variance(matriz4a);
covar4b=variance(matriz4b);
eov4a=covar4a[1][0]*5/4;
cov4b=covar4b[1][0]*5/4;
varV4=((it-1)/it)^2*(1/m)*vassiguad4+((m+1)/(m*it))^2*
(2/(m-1))*Es1^2+2*((((m+1))*(it-1))/(m*it^2))*(it/m)*
(cov4b-2*medtots]*cov4a);
sigma24=((it-1)/it)*Ds)+Es1/it;
V4=sigma24+Esl/(m*it);
df4=(2*V4^2)/varV4;
Rs1 + sqrt((V4/Ds1)*(dt4/(dt4-2)));
R4[D][0]=Rs1;
/*s2*/
medtots2=meanc(vetors2);
medobscad1s2=((vetor10000')* vetors2)/it;
medobscad2s2=((vetor0]000')* vetors2)/it;
medobscad3s2=((vetor00100')* vetors2)/it;
medobscad4s2=((vetor00010')* vetors2)/it;
```

guadmedobscad1s2=medobscad1s2^2; guadmedobscad2s2=medobscad2s2^2; guadmedobscad3s2=medobscad3s2^2; guadmedobscad4s2=medobscad4s2^2; quadmedobscad5s2=medobscad5s2^2; o=0;i=0; for(0=0;0<500;++0)t quadifobsemedcad1s2[i][0]=(vetors2[o][0]medobscad1s2)^2; ++i; siguad5[0][0]=(1/(it-1))*sumc(quadifobsemedcad1s2); i=0: for(o=500;o<1000;++o)</pre> guadifobsemedcad2s2[i][0]=(vetors2[0][0]medobscad2s2)^2; ++1; siguad5[1][0]=(1/(it-1))*sumc(quadifobsemedcad2s2); i=0; for(o=1000;o<1500;++o)</pre> quadifobsemedcad3s2[i][0]=(vetors2[o][0]medobscad3s2)^2; ++i; siguad5[2][0]=(1/(it+1))*sumc(quadifobsemedcad3s2); i÷0: for(o=1500;o<2000;++o) { guadifobsemedcad4s2[i][0]=(vetors2[o][0]medobscad4s2)^2; Hi; siguad5[3][0]=(1/(it-1))*sumc(quadifobsemedcad4s2);i=0; for(o=2000;o<2500;++o) 1 guadifobsemedcad5s2[i][0]=(vetors2[0][0]-

medobscad5s2=((vetor00001')* vetors2)/it;

medobscad5s2)^2;	······································
++1;	1
siquadb[4)[0]~()/(it-1))~sumd(quadifobsemedcad5s2);)//fecha b
varsiquad5=varc(siquad5)+5/4;	for (i=0;i <u;++i)< td=""></u;++i)<>
<pre>Ds2=(1/m)*sume(siguad5);</pre>	{
	eqmlambdal(i][0]=varlambdal[i][0]+(lamb1[i](0]-0.1)^2;
medobscads2=medobscad1s2[medobscad2s2[medobscad3s2]	eqmlambda2(i)(0)-varlambda2(i)(0)+(lamb2(i)(0)-0.1)^2;
medobscad4s2[medobscad5s2;	eqmlambda12[i][0]=varlambda12[i][0]+(lamb12[i][0]-0.2)^2;
<pre>quadifmeds2=(medobscgds2-medtoLs2). 2;</pre>	eqms1[i][0]=vars1[i][0]+(s11[i][0]=0.5)^2;
Es2={it/(n=1)}*(sumc(quadifmeds2));	eqms2[i][0]=vars2[i][0]+(s12[i][0]-0.5)^2;
quadmedobscads2=quadmedobscadls2(quadmedobscad2s2)	egmmedialambda1[i][0]=varvetorlambdalok[i][0]+
quadmedobscad3s2 quadmedobscad4s2 quadmedobscad5s2;	<pre>(mediavetorlambdalok[i][0]-0.1)^2;</pre>
matriz5a=siquad5~medobscads2;	cqmmedialambda2(i][0]=varvetorlambda2ok[i][0]+
matri25b=siguad5~quadmedobscads2;	(mediavetorlambda2ok[i][0]=0.1}^2;
covar5a≕variance(matrizöa);	eqnmedialambdal2[i][0]=varvetorlambdal2ok(i}[0]+
covar5b=variance(matriz5b);	<pre>(mediavetorlambdal2ok[i][0]=0.2)^2;</pre>
cov5a=covar5a[1][0]*5/4;	eqmmedias1[i](0]=varvetorslok[i][0]+
cov5b=covar5b[1][0]*5/4;	<pre>(mediavetorslok(i)[0]~0.5)^2;</pre>
varV5=((it-1)/it)^2*(1/m)*varsiguad5+((m+1)/(m*it))*2*	eqmmedias2[i][0]=varvetors2ok[i][0]+
(2/(m−1))*Es2^2+2*(((m+1)*(it−1))/(m*(t^2))*(it/m)*	<pre>(mediavetors2ok[i][0]-0.5)^2;</pre>
(covbb-2*mediots2*cov5a);	eqmmedianalambdal[i][0]≃varvetorlambdalok[i][0}+
sigma25=((it-1)/it)*Ds2+Es2/it;	<pre>(medianavetoriambdalok[i][0]-0.1)^2;</pre>
V5=sigma25+Es2/(m*it);	eqmmedianalambda2[i][0]=varvetorlambda2ok[i][0]+
df5=(2*V5^2)/varV5;	(medianavetorlambda2ok[i][0]=0.1)^2;
Rs2=sqrt((V5/Ds2)*(df5/(df5-2)));	eqmmedianalambda12[i][0]=varvetorlambda120k[i][0]+
R5[b][0]=Rs2;	<pre>(medianavetorlambdal2ok[i][0]-0.2)^2;</pre>
	eqmmedianas1[i][0]=varvetors1ck(i][0]+
	(medianavetors1ok[i]{0]-0.5}^2;
if((R1[b](0]<=1.004) && (R1[b](0]>=0.990) &&	eqmmedianas2[i][0]-varvetors2ok[i][0]+
(R2[b][0]<−1.004) && (R2[b][0]>≂0.990) &&	<pre>(medianavetors2ok[i][0]=0.5)^2;</pre>
(КЗ[Б][0]<=1.004) && (КЗ[Б][0]>=0.990) &&	}
(R4[b](0]<=1.004) && (R4[b][0]>=0.990) &&	
(R5[b][0]<=1.004) && (R5[b][0]>=0.990) &&	/*intervalos de confianca 90%*/
(mediavetorlambdalok(b)[0)<1)&&	for (i=0;i <u;++i)< td=""></u;++i)<>
(mediavetorlambda2ok[b][0]<1)&&	l
(mediavetorlambdal2ok[b][0]<2)%&	liminflambda190[i](0]=lamb1[i)[0]-1.6449*dplambda1[i][0];
(mediavetorslok[b][0]<5)&&	limsuplambda190[i](0]=lambi[i]{0]+1.6449*dplambda1{i}{0];
(mediavetors2ok(b)[0)<5)&&	
(medianavetorlambdalok[b][0]<1)&&	liminflambda290[i][0]=1amb2[i][0]-1.6449*dplambda2[i][0];
(medianavetorlambda2ck(b)[0]<1)&&	limsuplambda290[i][0]=lamb2[i][0]+1.6449*dplambda2[i][0];
(medianavetorlambdal2ok[b][0]<2)&&	
(medianavetorslok[b](0]<5)&&	liminflambda1290[i][0]=lamb12[i][0]=
<pre>(medianavetors2ok[b][0]<5))</pre>	1.6449*dplambda12[i][0];
	limsup]ambda1290(i][0]=1amb12(i][0]+
	1.6449*dplambdal2[i](0];
b=b+1;	

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 143

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 144

```
liminfs190[i][0]=s11[i][0]-1,6449*dps1[i][0];
  limsups190[i][0]=s11[i][0]+i.6449*dps1[i][0];
 liminfs290(i)(0)-s12[i](0]-1.6449*dps2(i)(0);
  limsups290(i)[0)=s12[i][0]-1.6449*dps2(i)[0];
  ł
                                                                             1
/*intervalos de confiança 95%*/
for (i=0; i<u; i+i)
 liminflambda195[i][0]=lamb1[i][0]-1.96*dplambda1[i][0];
  limsuplambda195[i](0]=lamb1[i](0]+1.96*dplambda1[i](0);
                                                                           /* cobertura 95%*/
  liminflambda295[i][0]=lamb2[i][0]-1.96*dplambda2[i][0];
  limsuplambda295[i][0]=lamb2[i][0]+1.96*dplambda2[i][0];
  liminflambda1295[i][0]=lamb12[i][0]-
                                                                           decl quants195=0;
  1.96*dplambda22[i][0];
                                                                           decl quants295=0;
  iimsuplambda1295[i][0]=1amb12[i][0]+1.96*dplambda12[i][0];
  liminfs195[i][0]=s11[i][0]=1.96*dps1[i][0];
                                                                           decl cobertura95s2;
  limsups195(i)[0]=s11[i][0]+1.96*dps1[i][0];
                                                                            for (k=0; k < u; ++k)
 liminfs295(i)[0]=s12(i)[0]-1.96*dps2(i][0];
 limsups295[i][0]=s12[1][0]+1.96*dps2[i][0];
  ł
/* cobertura 90%*/
decl quantiambdal90=0;
decl quantlambda290-0;
decl quantlambda1290=0;
decl quants190=0;
decl quants290=0;
decl cobertura901ambdal, cobertura901ambda2,
cobertura901ambda12, cobertura90s1;
decl cobertura90s2;
decl k:
for (k=0:k<u:++k)
  if ((\liminf flambda190[k][0]>0.1)) limsuplambda190[k][0]<0.1))
       guantlambda190=quantlambda190+1;
                                                                             ł
 if ((\liminf 290[k][0]>0.1)) limsuplambda290[k][0]<0.1))
       quantlambda290=quantlambda290+1;
 it ((liminflambda1290(k)[0]>0.2]) limsuplambda1290(k)[0]<0.2))
       guantlambda1290-guantlambda1290(1;
```

```
if ((liminfs190(k)[0]>0.5)| limsups190(k)[0]<0.5))
       quants190=guants190+1;
  if ((liminfs290[k][0]>0.5]) limsups290[k][0]<0.5))
       quants290=quants290+1;
cobertura90lambda1=(500-quantlambda190)/500;
cobertura901ambda2=(500-quant1ambda290)/500;
cobertura901ambda12=(500-quantlambda1290)/500;
cobertura90s1=(500-quants190)/500;
cobertura90s2=(500-quants290)/500;
decl quantiambda195=0;
decl quantlambda295=0;
decl quantlambda1295=0;
decl cobertura951ambdal, cobertura951ambda2,
cobertura951ambda12, cobertura95s1;
 if {(liminflambda195[k)[0]>0.1]]
       limsuplambda195(k)[0]<0.1))
    quantlambda195=quantlambda195+1;
  if ((liminflambda295[k]|0)>0.1||
       \limsup_{k \in [0, 1]} 
    duantlambda295=duantlambda295+1;
  if ((liminflambda1295[k][0]>0.2])
       limsuplambda1295[k][0]<0.2))
    guantlambda1295=guantlambda1295+1;
 if ((liminfs195[k][0]>0.5]] limsups195[k](0]<0.5))
    quants195=quants195+1;
 if ((liminfs295(k)[0]>0.5]| limsups295(k][0]<0.5))
    quants295≠quants295+1;
cobertura95]ambda]=(500-quantlambda195)/500;
cobertura951ambda2=(500-quant1ambda295)/500;
cobertura951ambda12=(500-quant1ambda1295)/500;
cobertura95s1=(500-quants195)/500;
cobertura95s2=(500-quants295)/500;
```

	<pre>quant1190b=guant1190b+1;</pre>
/* cobertura 95%b*/	
decl guant1195b=0;	if ((ic90infl2[k)[0]>0.1)(ic90supl2(k)[0]<0.1))
decl guant1295b=0;	<pre>guantl290b=guart1290b+1;</pre>
decl quantl1295b=0;	
decl quants195b=0;	if ((ic90infl]2[k][0]>0.2[ic90sup112[k](0]<6.2))
decl quants295b=0;	quant11290b≃quant11290b+1;
decl cobertura95blambda1, cobertura95blambda2,	•
cobertura95blambda12, cobertura95bsi;	if ((ic90infs1[k](0]>0.5)) ic90sups1(k](0]<0.5))
decl cobertura95bs2;	quants190b=quants190b+1;
for (k=0;k <u;++k)< td=""><td>if ((ic90infs2(k)(0)>0.5)(ic90sups2(k)[0)<0.5))</td></u;++k)<>	if ((ic90infs2(k)(0)>0.5)(ic90sups2(k)[0)<0.5))
(quants290b=quants290b+1;
if ((ic95infl1[k][0]>0.1] ic95supl([k][0]<0.1))	}
quantl195b=quant1195b+1;	
	cobertura90blambda1=(500-quant1190b)/500;
if ((ic95infl2[k][0]>0.1) ic95sup12[k][0]<0.1))	cobertura90blambda2=(500-quant1290b)/500;
guant1295b=quant1295b/1;	cobertura90blambda12=(500-quant11290b)/500;
	cobertura90bs1=(500-quants190b)/500;
if ((ic95inf112[k][0]>0.2]) ic95sup]12[k][0]<0.2))	cobertura90bs2 = (500-quants290b) / 500;
quantl1295b=quantl1295b(1;	·
	<pre>mediaemvlambda1=meanc(lamb1);</pre>
if ((ic95infs1(k][0]>0.5)) ic95sups1(k)[0]<0.5))	<pre>mediaemvlambda2=meanc(lamb2);</pre>
quants195b=quants195b+1;	mediaemvlambdal2=meanc(lamb12);
	<pre>mediaemvs1=meanc(sl1);</pre>
if ([ic95infs2[k][0]>0.5] [c95sups2[k][0]<0.5))	mediaemvs2=meanc(s12);
quants295b=quants295b+1;	
}	<pre>mediavaremvlambdal=meanc(varlambdal);</pre>
	mediavarenvlambda2=meanc(varlambda2);
<pre>cobertura95blambda1=(500-quantl195b)/500;</pre>	<pre>mediavaremvlambdal2=meanc(varlambdal2);</pre>
cobertura95blambda2=(500-quant1295b)/500;	<pre>mediavaremvsl=meanc(vars1);</pre>
cobertura95b1ambda12=(500-guant11295b)/500;	mediavaremvs2=meanc(vars2);
cobertura95bs1=(500-quants195b)/500;	
cobertura95bs2=(500-quants295b)/500;	<pre>mediadpenvlambdal=meanc(dplambdal);</pre>
	mediadpemvlambda2≃meanc(dplambda2);
/* cobertura 90%b*/	<pre>mediadpemvlambdal2=meanc(dplambdal2);</pre>
decl quantll90b=0;	mediadpenvsl=meanc(dpsl);
decl quant1290b=0;	mediadpemvs2=meanc(dps2);
decl guant11290b=0;	
decl quants190b=0;	<pre>mediamediaslambl=meanc(mediavetorlambdalok);</pre>
decl quants290b=0;	mediamediaslamb2=meanc(mediavetorlambda2ok);
decl cobertura90blambdal, cobertura90blambda2,	mediamediaslamb12≃meanc(mediavetorlambdal2ok);
cobertura90blambdal2, cobertura90bsl;	mediamediassl=meanc(mediavetorslok);
decl cobertura98bs2;	<pre>mediamediass2=meanc(mediavetors2ok);</pre>
for $(k=0; k\le 0; i \le k)$	modiavarelambi=meanc(varvetor)ambdalok):
	mediavars)amb2=meanc(varvetorlambda2ok);
18 ((le90inf)l(k)(0)>0.1)) ic90sup11(k)(0)<0.1))	<pre>mediavarslamb12-meanc(varvetor)ambda12ok);</pre>

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 146

mediavarss1-meanc(varvetorslok); mediavarss2=meane(varvezous2ok); mediadplambl=meanc(dpvetorlambdalok); mediadplamb2=meanc(dpvetorlambda2ok); mediadplamb12=meanc(dpvotorlambdal2ok); mediadps)=meanc(dpvetorslok); mediadps2=meanc(dpvetors2ok); mediamedianalambl=meand(medianaverorlambdalok): mediamedianalamb2=meanc(medianavetorlambda2ok); mediamedianalamb12=mear.c(medianavetorlambda12ok); mediamedianas!=meanc(medianavetorslok); mediamediamas2=meanc(mediamavetors2ok); mediaedmlambdal=meanc(eqmlambdal); mediaecmlambda2=meanc(eqmlambda2); mediaegmlambdal2=meanc(egmlambdal2); mediaeqms1=meanc(eqms1); mediaeqms2=meanc(eqms2); mediaequmedialambdal=meanc(equmedialambdal); mediaegmmedialambda2=meane(egmmedialambda2); mediaegnmedialambdal2=meanc(egnmedialambdal2); mediacqmmediasl=meanc(eqmmedias1); mediaeqmmedias2=meanc(eqmmedias2): mediacqmmedianalambdal=meanc(equmedianalambdal); mediacommedianalambda2=meanc(commedianalambda2); mediaegmmedianalambda12=meanc(egmmedianalambda12); mediaeqmmedianas1=meanc(eqmmedianas1); mediaequmedianas2=meanc(ecumedianas2); //SAIDA print ("\n\n cobertura 90% lambda1: ",cobertura90lambda1); print ("\n\n cobertura 90% lambda2: " ,cobertura90lambda2); print ("\n\n cobertura 90% lambdal2: ",cobertura90lambdal2); print ("\n\n cobertura 90% sl: " ,cobertura90si); print ("\n\n cobertura 90% s2: " ,cobertura90s2); print ("\n\n cobertura 95% lambdal: " ,cobertura95Lambdal); print ("\n\n cobertura 95% lambda2: " ,cobertura95lambda2); print ("\n\n cobertura 95% lambdal2: " ,cobertura951ambdal2); print ("\n\n cobertura 96% s1: ",cobertura95s1); print ("\n\n cobertura 95% s2: ",cobertura95s2); print ("\n\n cobertura 90%b lambdal: ", cobertura90blambda1); print ("\n\n cobertura 90%b lambda2: ",cobertura90blambda2);

print ("\n\n cobertura 90%b lambdal2: " ,cobertura90blambda12); print ("\n\n cobertura 90%b sl: ",cobertura90bs1); print ("\n\n cobertura 90%b s2: " ,cobertura90bs2); print ("\n\n cobertura 95%b lambdal: " .cobertura95blambdai); print ("\n\n cobertura 95%b lambda2: " ,cobertura95blambda2); print ("\n\n cobertura 95%b lambda]2: " ,cobertura95blambda12); print ("\n\n cobertura 95%b s1: ",cobertura95bs1); print {"\n\n cobertura 95%b s2: " ,cobertura95bs2); print("\n\n estimativas de máxima verossimilhança lambdal:", Lambl); print("\n estimativas de máxima verossimilhança lambda2:", lamb2); print("\n estimativas de máxima verossimilbança lambdal2:", Lamb12): print("\n estimativas de máxima verossimilhança s1:", s11); print("\n estimativas de máxima verossimilhança s2:", s12); print("\n\n var estimativas de máxima verossimilhanca lambdal:", varlambdal); print("\n var estimativas de máxima vérossimilhança lambda2:", varlambda2); print("\n var estimativas de máxima verossimilhança lambdal2:", varlambdal2); print("\n var estimativas de máxima verossimilhança s1:", vars1); print("\n var estimativas de máxima verossimilbança s2:", vars2); print("\n\n dp estimativas de máxima verossimilhança lambda1:", dplambdal); print("\n dp estimativas de máxima verossimilhança lambda2:", dplambda2); print("\n dp estimativas de máxima verossimilhanca lambda12:", dplambda12); print("\n dp estimativas de máxima verossimilhança s1:", dps1); print("\n dp estimativas de máxima verossimilhanca s2:", dps2); print ("\n\n IC 95% para

lambdal:",liminflambda195,limsuplambda195);

print ("\n IC 95% para	print("\n\n media das cmv lambdal:", mediaemvlambdal);
lambda2:", liminfiambda295, limsuplambda295);	print("\n\n media das emv lambda2:", mediaemvlambda2);
print ("An IC 95% para	print("\n\n media das emv lambdal2;", mediaemvlambdal2);
lambda12:".liminflambda1295.limsurlambda1295):	$print("\p)p$ media das emy sl:", modiaemysi);
print ("No IC 95% para sl:", liminfal95, limsups195):	print("\n\n media das emy s2:", mediaemys2):
print (") o TC 95% para e2." Liminfe205 limeupe205)	
prine ((h ie so: para sz. , (hn)hszss, (tusapszss))	wist/Wisks words and your owy lambdaly!
	prince ("Anth negra das varis env fanodar: ",
print ("AAAA IC 90% para	medlavaremvlampdal);
lambdal:",liminflambdal90,limsuplambdal90);	print("\n\n media das vars emv lambda2:",
print ("\n IC 90% para	mediavaremvlambda2);
<pre>lambda2:",liminflambda290,limsuplambda290);</pre>	print("\n\n media das vars emv lambdal2:",
prine ("\n IC 90% para	<pre>mediavaremvlambda12);</pre>
lambdal2:",liminflambdal290,limsuplambdal290);	print("\n\n media das vars emv s1:", mediavarenvs1);
print ("Nn IC 90% para sl:", jimin(s190, jimsups190);	print("\n\n media das vars emv s2:", mediavaremys2);
print ("Nr IC 90% nara v2." limipfe290 limeure290).	
prine (() re sol para 52. (rinkiniszso, rinsapszyc),	print/White modia do any lambdal." mediadoemylambdali.
which (H) which indicate the convergence is lowed $(1, H)$ $((1))$	print()) (I) media dp env lambdal, , mediadpenvianda);
principal and the convergence a random solution	print () n'tri media op env tendoaz, , media envident (and a d
print("Vn indices de convergencia lambdaz;", RZ);	print ("ININ media op emv lambdal2:", mediadpemvlambdal2)
print("\n indices de convergencia lambda:2:", R3);	print ("\n\n media dp emv s1:", mediadpenvs1);
print("\n indices de convergencia sl:", R4);	print("\n\n media dp emv s2:", mediadpemvs2);
print("\n indices de convergencia s2:", R5);	
	print{"\n\n media das medias lambdal:", mediamediaslambl
print("\n\n media lambdal:",medjavetorlambdalok);	print("\n media das modias lambda2:", mediamediaslamb2);
print("\n media)ambda2:".mediavetorlambda2ok);	print("\n media das medias lambdal2:", mediamediaslambl?
print(")p_modia_lambdal2:".mediavetorlambdal2okl:	print (")n media das medias si:", mediamediassi):
print (") h media sl." mediavatorsloki.	print/")n media das medias s2:" mediamediass2);
print/1/h modia al. , madiavatora/ak/,	prince (in madri das medias 52, 7 mediamoniose),
princ((n media sz; , mediavecorszok);	
	print("(n\n media das vars lambdai:", mediavarsiamoi);
	print("(n media das vars lambda2:", mediavarslamb2);
print("\n\n var lambdal:",varvetoriambdalck);	print("\n media das vars lambdal2:", mediavarslambl2);
print("\n var lambda2:",varvetorlambda2ok);	print("\n media das vars s1:", mediavarss1);
print("\n var lambdal2:",varvetorlambdal2ck);	print("\n media das vars s2:", mediavarss2);
<pre>print("\n var sl:",varvetors1ok);</pre>	
<pre>print("\n var s2:",varvetors2ok);</pre>	print("\n\n media dp lambdal:", mediadplambl);
•	print("\n media dp lambda2;", mediadplamb2);
print("\n\n dp lambda]:",dpvetorlambdalok):	print("An media dp lambdat2:", mediadplamb12);
print (")n dn lambda?", dpystorlambda?ok),	civit(")n media do el:" mediados)):
print (%) dp lambdal 2.4% dpyototolambdal 20k/,	print((h modia dp 21, / modiadpri))
print (() dp famodalz, , dp/dcorfamodalzok/,	print ((ii media up sz. , mediadpsz),
print("\n ap si:", apvetorsiok);	
print("\n dp s2:",dpvetors2ok);	print("\n\n media das medianas lambdal:",
	mediamedianalamb1);
print("\n\n mediana lambdal:",medianavetorlambdalok);	print("\n media das medianas lambda2:", mediamedianalamb
print("\n mediana lambda2:",medianavetorlambda2ck);	print("\n media das medianas lambda12:",
print("\n mediana lambda12:",medianavetorlambda12ok);	<pre>mediamedianalamb12);</pre>
print("\n mediana s1:", medianavetorslok);	print("\n media das medianas sl:", mediamedianasl);
print("\n mediana s2:", medianavetors2ok):	print("\n media das medianas s2:", mediamedianas2):
	prince, in model and modeling bet , modeling berr

Apêndice E - Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 147

```
1:", mediavarslamb1);
', mediavarslamb2);
", mediavarslamb12);
diavarssl);
diavarss2);
```

mbdal:", da2:", mediamedianalamb2}; da12:", mediamedianas1); mediamedianas2);

Apêndice E – Programa Computacional Implementado para Estudar os Parâmetros da Distribuição EBVE sob a Abordagem Bayes-Empírica 148

```
print ("\n\n intervalo de credibilidade 90% lambdal :",
       ic90infl1, ic90sup11);
print ("\n\n intervalo de credibilidade 90% lambda2:",
       ic90inf12, ic90sup12);
print ("\n\n intervalo de credibilidade 90% lambda12:",
       ic90inf112, ic90sup112);
print ("\n\n intervalo de credibilidade 90% s1:", ic90infs1,
       ic90sups1);
print ("\n\n intervalo de credibilidade 90% s2:", ic90infs2,
       ic90sups2);
print ("\n\n intervalo de credibilidade 95% lambdal :",
       ic95infil, ic95supl1);
print ("\n\n intervalo de credibilidade 95% lambda2:",
       ic95infl2, ic95supl2);
print ("\n\n intervalo de credibilidade 95% lambdal2:",
       ic95infl12, ic95supl12);
print ("\n\n intervalo de credibilidade 95% sl:", ic95infsl,
       ic95sups1);
print ("\n\n intervalo de credibilidade 95% s2:", ic95infs2,
       ic95sups2);
print("\n\n media cqm das emv lambdal:", mediaeqmlambdal);
print("\n\n media eqm das emv lambda2:", mediaeqmlambda2);
print("\n\n media eqm das env lambdal2:", mediaegmlambdal2);
print("\n\n media equ das env s1:", mediaeqms1);
print("\n\n media equ das emv s2:", mediaeqms2);
print("\n\n media eqm das medias lambdal:",
       mediaeqmmedialambdal);
print("\n media equ das medias lambda2:", mediaegmmedialambda2);
print("\n media com das medias lambda12:",
       mediaequmedialambda12);
print("\n media eqm das medias s1:", mediaeqmmedias1);
print("\n media eqm das medias s2:", mediaequimedias2);
print("\n\n media eqm das medianas lambdal:",
       mediaegmmedianalambda1);
print("\n media ogm das medianas lambda2:",
       mediaegmmedianalambda2);
print("\n media equ das medianas lambdal2:",
      mediaegmmedianalambdal2);
print("\n media cqm das medianas sl:", mediacqmmedianas);
print("\n media eqm das medianas s2:", mediaegmmedianas2);
print("\n tempo de execucao:",timespan(time});
1//fecha main
```

```
slusual(const vP, const f4, const avScore, const amHess)
                           Apêndice F
                                                                          V=1.5;
                                                                          L4[0]=vP[3][0]*(V^vP[7][0]);
                                                                           return 1;
Programa Computacional Implementado para Estimação dos Parâmetros da
        da Distribuição EBVE considerando Tempos Acelerados
                                                                        s2usual(const vP, const f5, const avScore, const amHess)
                                                                          V-1.5;
                                                                          f5[0]=vP(4)[0)*(V^vP[7][0]);
                                                                          return 1;
/* Com este programa obtiventos os resultados das labelas 4./,
4.8, 4.10, 4.11, 412, 4.13*/
                                                                        /*-----fim parâmetros na voltagem usual------//
#include <cxstd.h>
                                                                        /*-----geração de (t1,t2) polo método da rejeição -----*/
#import<maximize>
                                                                        qera()
#import<oxprob>
                                                                          ſ
                                                                          dec1 vP=<0.0296296296296;
deci n1=260; // no. de elementos na voltagem vi
                                                                                   0.0296296296296;
decl n2=150; // no. de clementos na voltagem v2
                                                                                   0.0592592592593;
decl n3=100; // no. de elementos na voltagem v3
                                                                                   0.148148148148;
decl n=510; // tamanbo das amostras
                                                                                   0.148148148148;
                                                                                   3:
decl i, j, k, tig, tl, t2, b, h, tempo1, tempo2, V;
                                                                                   3;
                                                                                   3>;
/*----parâmetros na voltagem usual------*/
                                                                          deci u1v1,u2v1,u3v1,berv1,d1v1,t1aux1v1,t2aux1v1;
lambdalusual(const vP, const f1, const avScore, const amHess)
                                                                          decl ulv2,u2v2,u3v2,berv2,dlv2,tlaux1v2,t2aux1v2;
  {
                                                                          decl ulv3,u2v3,u3v3,berv3,d1v3,t1aux1v3,t2aux1v3;
 V=1.5;
                                                                          decl tempolvl=zeros(n1,1);
  f1{0}=vP{0}[0]*(V^vP{5}[0]);
                                                                          ducl tempo2vl=zeros(n1,1);
  return 1;
                                                                          decl tempolv2=zeros(n2,1);
  ł
                                                                          dec1 tempo2v2=zeros(n2,1);
                                                                          decl_tempolv3=zeros(n3,1);
lambda2usual(const vP, const f2, const avScore, const amHess)
                                                                          decl tempo2v3=zeros(n3,1);
  (
                                                                          i=0;
 V=1.5;
                                                                          while(j<nl) // gera tempos na voltagem vl
  f2[0]~vP[1](0]*(V^vP[6][0]);
                                                                            ł
 return 1:
                                                                            V=2;
  1
                                                                            ulv1=ranu(1,1)*10;
                                                                            u2v1=ranu(1,1)*10;
lambdal2usual(const vP, const f3, const avScore, const amHess)
                                                                            u3v1=ranu(1,1)*0.26;
 ł
                                                                            bervl=ranbinomial(1,1,1,0.5);
 V≔1.5;
                                                                            if(berv1==0)
 f3[0] = vP[2][0] * (V^{*}vP(7)[0]);
 return 1;
                                                                              tlaux1v1=min(u1v1,u2v1);
  }
```

t2aux)vl=max(u)vl,u2vl);	{
<pre>d1v1=dbtimet2(t1aux1v1,t2aux1v1,vP);</pre>	tempolv2[j][0]=tlaux1v2;
if(u3vi <d1v1)< td=""><td>tempo2v2[j][0]=t2auxlv2;</td></d1v1)<>	tempo2v2[j][0]=t2auxlv2;
{	j≕j+1;
<pre>Cempolv1[j][0]=tlauxlv1;</pre>	
tempo2v1[i][0]=t2aux1v1;	1
i⇒5+1;	
	$\dot{\gamma} = 0$:
}	while(i <n3) gera="" na="" td="" tempos="" v3<="" voltagem=""></n3)>
, else	
1	v = 3 ·
t tlauvivi maviutui u2viit	· /
$t^{2} = u^{1} dx (u^{1} v^{1}, u^{2} v^{1}),$	
divi detectO(linuslui tOcurisi sob)	
GIVL≖dDt:matz(LIAUXIVI,CZAUXIVI,VP);	GJV3=Eanu(1,1)*2.9;
15 (U3V1 <d1v1)< td=""><td>berv3=ranbinomiai(1,1,1,0,5);</td></d1v1)<>	berv3=ranbinomiai(1,1,1,0,5);
{	if (berv3==0)
tempolv][j][0}=tlauxlvl;	i
tempo2v1[j][0]=t2aux1v};	tlauxlv3=min(ulv3,u2v3);
j=j+l;	t.2aux1v3=max(u1v3,u2v3);
}	d1v3=dbtlmet2(tlaux1v3,t2aux1v3,vP);
}	if(u3v3 <d1v3)< td=""></d1v3)<>
}	{
j-0;	tempolv3(j)(0)=tlauxlv3;
while(j <n2) gera-tempos="" na="" td="" v2<="" voltagem=""><td>tempo2v3[j][0]=t2aux1v3;</td></n2)>	tempo2v3[j][0]=t2aux1v3;
	j=j+1;
V=2,5;	
ulv2-ranu(1.1)*5:	1
$u^2v^2 = raru(1, 1) * 5$	else
$u3y_2 = ranu(1, 1) * 0, 88$:	
bery2=rephinomial(1,1,1,0,5);	(12)(12) = -2(11)(12) = (12)(12)
if/bory2m_D3	
11 (DE1 020)	$\frac{1}{2} \frac{1}{2} \frac{1}$
\ #1=uv1v2===={={u2v2}+	(1/3-G00,000,000,000,000,000,000,000,000,000
t 2 m/m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	
L2auxiv2≃max((1v2,u2v2); alw2, dbalmat2(t1v2,u2v2);	
divz=dptimet/(tiauxiv2,t2auxiv2,vP);	
1.T (U3V2 <g1v2)< td=""><td>tempo2v3(j)[0]=tzaux1v3;</td></g1v2)<>	tempo2v3(j)[0]=tzaux1v3;
]≃]+⊥;
tempolv2[j][0]=tlaux1v2;	
tempo2v2[j][0]=t2auxlv2;	}
j≕j4l;	
)	return
}	<pre>(tempolv1 tempolv2 tempolv3)~(tempo2v1 tempo2v2 tempo2v3); //</pre>
else	amostra dos tempos
{	}
claux1v2≂max(ulv2,u2v2);	/*fim geração de (t1,t2) pelo método da rejeição*/
t2aux1v2∞min(ulv2,u2v2);	
<pre>dlv2=dbt1mat2(t1aux1v2,t2aux1v2,vP);</pre>	
if (u3v2 <d1v2)< td=""><td>/*log da funcão de verossimilhança*/</td></d1v2)<>	/*log da funcão de verossimilhança*/
•	

```
logfveros(const vP, const 1, const avScore, const amHess)
                                                                            h=500;//total de amostras
  decl logf=zeros(n,l);
  for(i=0;i<n1;++i)</pre>
                                                                            // declaração das variáveis
    {V-2;
                                                                            decl e, el, e2, e3, e4, e5, e6, e7, e8, r, q;
    if(t1[i][0]<t2[i](0])
                                                                            e=0; c1=0; c2=0; c3=0; c4=0; c5=0; c6=0; c7=0; c8=0; r=0;
                                                                            q≂0;
      logi[i][0]=logdbtlmet2(t1[i][0],t2[1][0],vP);
                                                                            dec1 vbeta01=0.0296296296296;
                                                                            decl vbeta02=0.0296296296296;
      ł
    else
                                                                            decl vbeta03=0.0592592592593;
                                                                            decl vbeta04=0.148148148148;
      logf[i][0]=logdbt1mat2(t1[i][0],t2[i][0],vP);
                                                                            dec1 vbeta05=0.148148148148;
      ł
                                                                            dec] vbeta1=3;
    ł
                                                                            dec] vbeta2=3;
  for(i=n1;i<n1+n2;++i)</pre>
                                                                            deci vbeta3=3;
    {V=2.5:
                                                                            decl vlambda10=0.1;
    if(t1[i][0]<t2[i][0])
                                                                            decl vlambda20=0.1;
                                                                            dec1 vlambda120=0.2;
      logf[i][0]=logdbtlmet2{tl[i][0],t2[i][0],vP);
                                                                            dec] vs10=0.5;
      ì
                                                                            dec1 vs20=0.5;
    else
      {
                                                                            decl t1q=zeros(n,2);
      logf[i][0]=logdbtlmat2(t1(i][0],t2[i][0],v2);
      •
                                                                            dec1 tlv1=zeros(n1,1);
                                                                            decl t2v1=zeros(n1,1);
  for(i=n1+n2;i<n1+n2+n3;++i)</pre>
                                                                            decl tlv2-zeros(n2,1);
    {V=3;
                                                                            decl t2v2=zeros(n2.1);
    if(t1[i][0]<t2[i][0])
                                                                            decl t1v3=zeros(n3,1);
                                                                            dec1 t2v3=zeros(n3,1);
      logf(i][0]=logdbt1met2(t1[i][0],t2[i][0],vP);
                                                                            decl t1qv1=zeros(n1,2);
                                                                            decl t1gv2=zeros(n2,2);
    else
                                                                            decl tlqv3=zeros(n3,2);
      ł
      logf[i][0]=logdbtlmat2(t1[i][0],t2(i][0],vP);
                                                                            decl beta01=zeros(h,1);
      ł
                                                                            dec1 beta02=zeros(h,1);
                                                                            decl beta03=zeros(h,1);
    1
  1[0]=sumc(logf);
                                                                            decl beta04=zeros(h,1);
  if(vP[0][0]<0[+ vP[1][0]<0[+ vP[2][0]<0[+ vP[3][0]<0[]
                                                                            dec1 beta05=zeros(h,1);
    vP[4][0]<0)
                                                                            decl betal=zeros(h,1);
    ſ
                                                                            decl beta2=zeros(h,l);
    return 0;
                                                                            dec1 beta3=zeros(h,1);
    1
                                                                            decl lambdal0=zeros(h,l);
  return 1;
                                                                            dec1 lambda20=zeros(h,1);
                                                                            decl lambdal20=zeros(h,1);
/*----fim log da função de verossimilhanca-----*/
                                                                            decl s10=zeros(h,1);
                                                                            decl s20=zeros(h,1);
main()
                                                                            dec1 beta0lord=zeros(h,1);
  {
```

Apêndice F – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Tempos Acelerados 151

Apêndice F – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Tempos Acelerados 152

decl	<pre>beta02ord=zercs(h,1);</pre>	decl	eqmbeta02=zeros(h,l);
decl	<pre>beta03ord=zeros(h, l);</pre>	decl	eqmbeta03=zeros(h,1);
de⊂l	<pre>beta04ord=zeros(h,1);</pre>	decl	eqmbeta04=zeros(h,1);
decl	<pre>bota05ord=zeros(h,1);</pre>	decl	eqmbeta05=zeros(h,l);
decl	<pre>betalord-zeros(h,1);</pre>	decl	eqmbeta1=zeros(h,1);
decl	<pre>beta2ord=zeros(h,1);</pre>	decl	eqmbeta2≃zeros(h,l);
decl	<pre>betaBord=zeros(h,1);</pre>	decl	eqmbeta3=zeros(h,1);
decl	lambdal0ord=zeros(h,});	decl	eqmlambdal0=zeros(h,1);
decl	lambda20ord=zeros(h,l);	decl	eqmlambda20=zeros(h,2);
decl	lambda120ord-zeros(h,l);	decl	eqmlambda120-zeros(h,1);
decl	sl0ord=2eros(h,1);	decl	eqms10=zeros(h,1);
decl	s20ord=zeros(h,1);	decl	eqms20=zeros(h,1);
decl	avscore)1=zeros(8,1);	decl	vetormediastlvl=zeros(n,1);
decl	avscorel2=zeros(8,1);	decl	vetormediast2v1=zeros(h,1);
deci	avscorel12=zeros(8,1);	decl	<pre>vetorvart1v1=zeros(h,1);</pre>
decl	avscores1=zeros(8,1);	decl	vetorvart2v1=zeros(h,1);
decl	avscores2-zeros(8,1);	decl	vetorcorre)acaoV1=zeros(h,1);
		decl	<pre>mediatlv1,mediat2v1,vart1v1,vart2v1;</pre>
dec]	<pre>varbeta01=zeros(h,1);</pre>	decl	correlacaov1-zeros(2,2);
decl	<pre>varbeta02=zeros(h, 1);</pre>	decl	<pre>mediageralt1v1, mediageralt2v1, mediavart1v1,</pre>
decl	varbeta03≖zeros(h,l);	med	iavart2v1, mediacorrv1;
decl	varbeta04=zeros(h,1);	decl	desvpmediastlv1, desvpmediast2v1, desvpvart1v1,
decl	<pre>varbeta05=zeros(h,1);</pre>	des	vpvart2v1, desvpcorrv1;
decl	<pre>varbetal=zeros(h,l);</pre>		·
decl	<pre>varbeta2=zeros(h,1);</pre>	decl	<pre>vetormediast1v2=zeros(h,1);</pre>
decl	<pre>varbeta3=zeros(h,1);</pre>	decl	vetormediast2v2=zeros(h,1);
decl	<pre>varlambda10=zeros(h,1);</pre>	decl	vetorvartlv2=zeros(h,l);
decl	<pre>varlambda20=zeros(h,1);</pre>	decl	vetorvart2v2=zeros(h,1);
dec]	varlambda120=zeros(h,1);	decl	vetorcorrelacaov2=zeros(h,1);
decl	<pre>vars10=zeros(h,]);</pre>	decl	<pre>mediat1v2,mediat2v2,vart1v2,vart2v2;</pre>
decl	vars20-zeros(h,1);	decl	correlacaov2=zeros(2,2);
		decl	<pre>mediageralt1v2, mediageralt2v2, mediavart1v2,</pre>
decl	<pre>desvpbeta01=zeros(h,1);</pre>	med	iavart2v2, mediacorrv2;
decl	<pre>deavpbeta02=zeros(h,1);</pre>	decl	desvpmediastlv2, desvpmediast2v2, desvpvartlv2,
decl	desvpbeta03-zeros(h,1);	des	vpvart2v2, desvpcorrv2;
decl	desvpbeta04=zeros(h,1);		
decl	<pre>desvpbeta05=zeros(h,i);</pre>	decl	vetormediastlv3=zeros(h,l);
decl	<pre>desvpbetal=zeros(h,));</pre>	decl	<pre>vetormediast2v3=zeros(h,1);</pre>
decl	desvpbeta2=zeros(h,1);	decl	<pre>vetorvart1v3=zeros(h,1);</pre>
decl	<pre>desvpbeta3=zeros(h, l);</pre>	decl	<pre>vetorvart2v3=zeros(h,l);</pre>
decl	desvplambdal0=zeros(h,l);	decl	vetorcorrelacaov3=zeros(h,1);
dec.l.	desvplambda20=zeros(h,1);	decl	<pre>mediat1v3,mediat2v3,vart1v3,vart2v3;</pre>
decl	<pre>desvplambda)20=zeros(h,1);</pre>	decl	correlacaov3=zeros(2,2);
decl	<pre>desvps10=zeros(h,1);</pre>	decl	mediageralt1v3, mediageralt2v3, mediavart1v3,
decl	<pre>desvps26=zeros(h,1);</pre>	med	iavart2v3, mediacorrv3;
		decl	desvpmediastlv3, desvpmediast2v3, desvpvartlv3,
decl	eqmbeta01=zeros(h,1);	des	vpvart2v3, desvpcorrv3;

		de	<pre>el limin(s2095=zeros(h,1);</pre>
decl	MatInfObs=zeros(8,8);		
decl	invMatInfObs-zeros(8,8);	de	:1 limsupbeta0195=zeros(h,1);
deci	diag=zeros(8,1);	de	1 limsupbeta0295=zeros(h,l);
deci	desvpad=zeros(8,1);	de	:1 limsupbeta0395=zeros(h,1);
decl	l,ir,mhess;	de	cl limsupbeta0495=zeros(h,l);
decl	bb-zeros(8,8);	de	<pre>cl limsuppeta0595=zeros(h,1);</pre>
		de	<pre>:1 limsupbetal95=zeros(h,1);</pre>
decl	liminfbeta0190=zeros(h,i);	de	cl iimsupbeta295-zeros(h,1);
decl	liminfbeta0290=zeros(h,l);	de	:l limsupbeta395=zeros(h,l);
decl	liminfbeta0390-zeros(h,l);	de	<pre>cl limsuplambdal095=zeros(h, 1);</pre>
decl	liminfbeta0490=zeros(h,l);	de	<pre>:1 limsuplambda2095=zeros(h,1);</pre>
decl	liminfbeta0590=zeros(h,1);	de	:l limsuplambda12095=zeros(h,1);
decl	liminfbota190=zeros(h,l);	de	:1 limsups1095-zeros(h,l);
decl	liminfbeta290-zeros(h,1);	de	1 limsups2095-zeros(h,l);
decl	liminfbeta390=zeros(h,1);		
dec⊥	liminflambda109C=zeros(h,1);	de	:l quantbeta0190≂0;
decl	liminflambda2090=zeros(h,l);	de	1 quantbeta0290=0;
decl	liminflambda12090=zeros(h,l);	de	:l quantbeta0390=0;
decl	liminfs1090=zeros(h,1);	de	cl guantbeta0490=0;
deci	liminfs2090-zeros(h,l);	de	1 quantbeta0590=0;
		de	el quantbetal90=0;
decl	limsupbeta0190=2eros(h,1);	de	:1 quantbeta290=0;
decl	limsupbeta0290=zeros(h,1);	de	:1 quantbeta390=0;
decl	limsupbeta0390=zeros(h,1);	de	cl quantlambda1090=0;
decl	limsupbeta0490=zeros(h,1);	de	1 quantlambda2090=0;
decl	limsupbeta0590=zeros(h,1);	de	l quantlambda12090=0;
decl	<pre>limsupbeta190-zeros(h,1);</pre>	de	cl quants1090=0;
decl	limsupbeta290=zeros(h,l);	de	1 guants2090=0;
decl	limsupbera390=zeros(h,1);		
decl	limsuplambda1090=zeros(h,1);	de	cl guantbeta0195=0;
decl	limsuplambda2090=zeros(h,1);	de	al quantbeta0295=0;
decl	limsuplambda12090=zeros(h,1);	de	cl guantbeta0395=0;
dec.	limsups1090-zeros(h,1);	de	cl quantbeta0495=0;
decl	limsups2090=zeros(h,l);	de	cl guantbeta0595∞0;
	-	de	l guantbeta195≃0;
decl	liminfbeta0195=zeros(h,l);	de	:1 guantbeta295=0;
decl	liminfbeta0295=zeros(h,1);	de	cl quanibeta395=0;
decl	liminfbeta0395-zeros(h,1);	de	cl quantlambda1095=0;
decl	liminfbeta0495=20ros(h,1);	de	nl quantlambda2095=0;
decl	liminfbeta0595=zeros(h,1);	de	cl guantlambda12095=0;
decl	liminfbeta195=zeros(h,1);	de	cl quants1095=0;
deçl	liminfbeta295=zeros(h,1);	de	1 guants2095=0;
decl	liminfbeta395=zeros(h,l);		•
decl	liminflambda1095=zeros(h.1):	de	cl_coberturabeta0190=0;
decl	liminflambda2095=zeros(h.1):	de	cl coberturabeta0290=0;
decl	limitiflambda12095-zeros(h.1);	de	cl coberturabeta0390=0;
deci	liminfs1095=zeros(h,l);	de	cl coberturabeta0490-0;

Apêndice F – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Tempos Acelerados 154

decl_coberturabeta0590=0;	decl
<pre>decl coberturabeta190=0;</pre>	desvpabeta01,desvpabeta02,desvpabeta03,desvpabeta04,desvpabet
decl coberturabeta290=0;	a05;
<pre>dec1 coberturabeta390=0;</pre>	decl desvpabetal, desvpabeta2,desvpabeta3;
decl coberturalambda1090=0;	decl
deci coberturalambda2090=0;	desvpalambdal0,desvpalambda20,desvpalambda120,desvpas10,desvp
dec1 coberturalambda12090-0;	as20;
decl coberturas1090=0;	<pre>decl dpdpbeta01, dpdpbeta02,dpdpbeta03,dpdpbeta04,dpdpbeta05;</pre>
decl coberturas2090=0;	decl dpdplambdal0,
	dpdplambda20,dpdplambda120,dpdps10,dpdps20;
decl coberturabeta0195=0;	decl dpdpbeta1,dpdpbeta2,dpdpbeta3;
decl coberturabeta0295-0;	decl dpeqmbeta01, dpeqmbeta02, dpeqmbeta03, dpeqmbeta04,
dec1 coberturabeta0395=0;	dpegmbeta05;
decl coberturabeta0495±0;	<pre>decl dpeqmbeta1, dpeqmbeta2,dpeqmbeta3;</pre>
decl coberturabeta0595=0;	decl dpegmlambdal0, dpegmlambda20, dpegmlambdal20, dpegmsi0,
decl coberturabeta195=0;	dpeqms20;
decl coberturabeta295-0;	
decl coberturabeta395=0;	decl time;
deel coberturalambda1095=0;	time=timer();
decl coberturalambda2095=0;	
decl coberturalambda12095+0;	D=0;
decl coperturas.095=0;	While(DKh) Oblençao das amostras
deci coperturas2095=0;	
	tig⊷gera(); ti_tiat <l.05.< td=""></l.05.<>
ueeu madishata01 madishata02 madishata03 madishata04 madishata05:	11=01g*<1;0>; 12=01g*<10:1>;
<pre>mediabeta01,mediabeta02,mediabeta00,mediabeta04,mediabeta00, dagl_mediabeta1_mediabeta2_mediabeta3;</pre>	$for (i=0:i< n] \mapsto i \in I$
deci mediabetai, mediabetaz, mediabetab,	1 = 1
medialambdal0.medialambda20.medialambdal20.medias10.medias20;	ι r1v1[j][0]=t1[j][0];
decl	$t^2 v_1[i][0] = t^2 [i][0];$
medianabeta01.medianabeta02.medianabeta03.medianabeta04.media	
nabeta05:	tlgvl=tlvl~t2vl; // tempos na voltagem v)
decl medianabetal,medianabeta2.medianabeta3:	for (1=0:i <n2:++i)< td=""></n2:++i)<>
decl	{
medianalambdal0.medianalambda20.medianalambda120.medianas10.m	$t_1v_2[i][0]=t_1[n_1+i][0];$
edianas20;	$t_2v_2[i][0] = t_2[n] + i_1[0];$
decl mediadpbeta01, mediadpbeta02, mediadpbeta03,	tlgv2=tlv2~t2v2; // tempos na voltagem v2
mediadpbeta04, mediadpbeta05;	<pre>for (i=0;i<n3;++i)< pre=""></n3;++i)<></pre>
decl mediadpbetal, mediadpbeta2,mediadpbeta3;	[
decl mediadplambdal0, mediadplambda20, mediadplambda120,	t] v 3[i] [0] = L [n1+n2+i] [0];
mediadps10, mediadps20;	t2v3[i][0]=t2[n1+n2+i][0];
decl mediaeqmbeta01, mediaeqmbeta02, mediaeqmbeta03,	2
mediaegmbeta04, mediaegmbeta05;	tlgv3=tlv3~t2v3; // tempos na voltagem v3
<pre>decl mediaeqmbetal, mediaeqmbeta2,mediaeqmbeta3;</pre>	
decl mediaeqmlambda10, mediaeqmlambda20, mediaeqmlambda120, mediaeqms10, mediaeqms20;	// calcula a média, a variância e a correlação dos tempos para cada amostra
	<pre>mediatlvl=meanc(t1v1);</pre>

Apêndice F – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Tempos Acelerados 155		
<pre>mediat2v1=meanc(t2v]);</pre>	e3≃e3+1;	
<pre>vartlvl=varc(tlv1);</pre>	if (ir==MAX_CONV && vP[3][0]<3}	
<pre>vart2vl=varc(t2v1);</pre>	e4=e4+1;	
correlacaovi=correlation(Llqv1);	if (ir==MAX_CONV && vP[4][0]<3)	
<pre>vetormediast(v)(b)(0)=mediat(v);</pre>	e5⊤e5+1;	
<pre>vetormediast2v1(b)[0]=mediat2v1;</pre>	if (ir==MAX_CONV && vP[5][0]>0}	
vetorvartlvl[b](0]=vartlvl;	e6≖e6+l;	
vetorvart2v1(b)(0)=vart2v1;	if (ir==MAX_CONV && vP[6][0]>0)	
vetorcorreladaov1[b;[0]=correladaov1[1;[0];	$c^{j} = c^{j} \cdot 1;$	
	if (ir≂=MAX_CONV && vP[7][0]>0}	
mediat(v2=meanc(t1v2);	e8=e8+1;	
mediat2v2+meanc(t2v2);		
vartivz=varc(livz);	11(ir==MAX_CONV && VP(0)[0]<0.6 && VP[1][0]<0.6	
vartzvz=varc(tzvz);	\$6 VP[2][0]<1.2 && VP[3][0]<3 && VP[4][0]<3 && VP[5][0]>0	
correlacaovz=correlation(tigvz);		
vetormediast2v2[b][0]=mediat1v2;	{v=1.5;	
vetorwart1v2[b][0]=vert1v2;	(testinctives do máxima veressimilacest/	
vetorvart $2v2[b][0]=vart2v2;$	γ^{*} escinativas de maxima verossiminança"	
Vetorrorrelacaov2[b](0]=correlacaov2(1)(1));		
()))))))))))))))))))))))))))))))))))))	beta a 3 (b) [0] = v P[2] (0] ;	
mediatly3=meanc(t1y3):	beta 04[b][0] = vP[3][0];	
mediat2v3=meanc(t2v3);	beta05[b][0]=vP[4][0];	
vart1v3=varc(t1v3);	beta1[b][0]=vP[5][0];	
<pre>vart2v3=varc(t2v3);</pre>	beta2(b [0]=vP[6][0];	
correlacaov3-correlation(t1gv3);	beta3(b)[0] = vP[7][0];	
<pre>vetormediastlv3(b)(0)=mediat1v3;</pre>	$Lambda10(b)[0] = vP(0)[0] * V^{v}P[5][0];$	
<pre>vetormediast2v3[b]{0]-mediat2v3;</pre>	$lambda20(b)(0)=vP(1)(0)*V^vP(6)(0);$	
<pre>vetorvart1v3[b][0]=vart1v3;</pre>	lambdal20(b)(0)=vP(2)(0)*V^vP(7)(0);	
<pre>vetorvart2v3[b][0]=vart2v3;</pre>	s10(b)(0)=vP[3)(0)*V^vP[7](0);	
<pre>vetorcorrelacaov3(b)[0]=correlacaov3(1)[0);</pre>	s20{b][0]=vP[4][0]*V^vP[7][0];	
//maximização do log da verossimilhança	Num1Derivative(lambdalusual, vP, &avscorel1);	
decl vP=<1;1;1;1;1;2;2;2>; // chutes iniciais	NumlDerivative(lambda2usual, vP, &avscorel2);	
logfveros(vP,&l,0,0);	Num1Derivative{lambdal2usual, vP, &avscorell2);	
MaxControl(1000,1000);	NumlDerivative(slusual, vP, &avscores1);	
mhess=0.00001*unit(8);	NumlDerivative(s2usual, vP, &avscores2);	
ir=MaxBFGS(logfveros,&vP,&1,&mhess,TRUE);		
q=q+1;	/*variâncias dos estimadores*/	
	Num2Derivative(logiveros, VP, &mness);	
TI (TI==MAX_GONV)	Mat InfObs=mness;	
1-171;	how attribute invert (Mattribus) * (-1);	
if (ir≖=MAX CONV && vP(0)[0]<0 6)	eset1:	
P] + p] + 1 :	∇···∇··	
i = MAX CONV & VP[1][0] < 0.61	if $(invMatinfObe[0][0]) \cap is invMatinfObe[1][1]) \cap is$	
$e^{2\pi e^{2}+1}$:	$\frac{1}{100} (minimum of of (of (of (of (of (of (of (of (of ($	
if $(iv == MAX CONV 66 vP[2][0]<1.2)$	THANGETHIOPS[2][2]/2/2 20	
The second s		

```
invMatInfObs(3)(3)>0 && invMatInfObs(4)[4]>0 &&
       invMatInfObs(5)[5]>0 &&
       invMatInfObs[6][6]>0 && invMatInfObs[7][7]>0)
      varbeta01(b)(0)=bb (0)(0);
      varbeta02[b][0]=bb [1][1];
      varbeta03[b][0]=bb [2][2];
      varbeta04[b][0]=bb [3][3];
      varbeta05(b](0]=bb (4)(4);
      varbeta][b][0]=bb[b][5];
      varbeta2[b][0]=bb[5][6];
      varbeta3(b)[0]=bb[7][7];
      varlambda10[b][0]=(avscorell'*bb*avscorel1);
      varlambda20[b][0]=(avscore12'*bb*avscore12);
      varlambda120fb1[0]=(avscore]12'*bb*avscore]12;;
      vars10(b)(0)=(avscores1'*bb*avscores1);
      vars20[b][0]=(avscores2'*bb*avscores2);
      b-b+1:
      }
  1
//média das médias, variâncias e correlações dos tempos
  nas voltagens v1, v2 e v3
mediageralt1v1=meanc(vetormediast1v1);
mediageralt2v1=meanc(vetormediast2v1);
mediavartlv1=meanc(vetorvartlv1);
mediavart2v1=meanc(vetorvart2v1);
mediacorryl=meanc(vetorcorrelacacvl);
mediageralt1v2=meanc(vetormediast1v2);
mediageralt2v2=meanc(vetormediast2v2);
mediavart1v2=meanc(vetorvart1v2);
mediavart2v2=meanc(vetorvart2v2);
mediacorrv2-meanc(vetorcorrelacaov2);
mediageralt1v3=meanc(vetormediast1v3);
mediageralt2v3=meane(vetormediast2v3);
mediavart1v3=meanc(vetorvart1v3);
mediavart2v3=meand(vetorvart2v3);
mediacorrv3=meane(vetorcorrelacaov3);
// desvios padrões das médias, das variâncias e das
    correlações dos tempos nas voltagens vi, v2 e v3
desvpmediast1v1=sqrt(varc(vetormediast1v1));
desvpmediast2vl=sqrt(varc(vetormediast2vl));
desvpvart1v1=sqrt(varc(vetcrvart1v1));
desvpvart2v1=sqrt(varc(vetorvart2v1));
```

```
desvpcorrvl=sqrt(varc(vetorcorrelacaov1));
desvpmediast1v2=sqrt(varc(vetormediast1v2));
desvpmediast2v2=sgrt(varc(vetormediast2v2));
desvpvart1v2=sqrt(varc(vetorvart1v2));
desvpvart2v2=sqrt(varc(vetorvart2v2));
desvpcorry2=sqrt(varc(vetorcorrelacaov2));
desvpmediastlv3=sqrt(varc(vetormediastlv3));
desvpmediast2v3=sqrt(varc(vetormediast2v3));
desvpvartly3=sqrt(varc(vetorvartlv3));
desvpvart2v3=sqrt(varc(vetorvart2v3));
desvpcorrv3=sgrt(varc(vetorcorrelacaov3));
// desvios padrões dos estimadores
desvpbeta01=sqrt(varbeta01);
desvpbeta02=sqrt(varbeta02);
desvpbeta03=sqrt(varbeta03);
desvpbeta04=sqrt(varbeta04);
desvpbeta05=sqnt(varbeta05);
desvpbetal=sqrt(varbetal);
desvpbeta2=sqrt(varbeta2);
desvpbeta3=sqrt(varbeta3);
desvplambdal0=sqrt(varlambda10);
desvplambda20=sqrt(varlambda20);
desvplambda120=sqrt(varlambda120);
desvps10=sqrt(vars10);
desvps20=sqrt(vars20);
// erros guadráticos médios das estimativas
(or(k=0;k<h;++k))
 eqmbeta01[k][0] = varbeta01[k][0] + (beta01[k][0] - vbeta01).^2;
 eqmbeta02[k][0] = varbeta02[k][0]+(beta02[k][0]-vbeta02).^2;
 eqmbeta03[k][0] = varbeta03[k][0] + (beta03[k][0] + vbeta03).^2;
 eqmbeta04[k][0]= varbeta04[k][0]+(beta04[k][0]-vbeta04).^2;
 eqmbeta05[k][0] = varbeta05[k][0] + (beta05[k][0] - vbeta05).^2;
 eqmbetal[k][0]=varbetal[k][0]+(betal[k][0)-vbetal).^2;
 eqmbeta2[k][0] = varbeta2[k][0] + (beta2[k][0] - vbeta2) \cdot ^2;
 equbeta3[k][0]=varbeta3[k][0]+(beta3[k][0]-vbeta3).^2;
 egmlambda10[k][0] = varlambda10[k][0]+(lambda10[k][0]-
  vlambda10).^2;
 eqmlambda20[k][0] = varlambda20[k][0] + (lambda20[k][0] - 
  vlambda201.^2;
 eqmlambda120[k][0] = var]ambda120[k][0]+(lambda120[k][0]-
  vlambda120).^2;
  egmsl0[k][0]= varsl0[k][0]+(s10(k](0)-vs10).^2;
 egms20[k][0]= vars20[k][0]+(s20[k][0]-vs20).^2;
```

```
// intervalos de confianca 90% e 95% dos parâmetros
liminfbeta0190[k][0]=beta01[k][0]-1.6449*desvpbeta01[k][0];
liminfbeta0290[k][0]=beta02[k][0]-1.6449*desvpbeta02[k][0];
liminfbeta0390[k][0]=beta03[k][0]-1.6449*desvpbeta03[k][0];
liminfbeta0490[k][0]=beta04[k][0]+1.6449*desvpbeta04[k][0];
Liminfbeta0590(k)[0]=beta05[k][0]-1.6449*desvpbeta05[k][0];
liminfbeta190(k)[0]=beta1[k][0]-1.6449*desvpbeta1[k][0];
liminfbeta290[k][0]=beta2[k][0]=1.6449*desvpbeta2[k][0];
liminfbeta390[k][0]=beta3[k][0]-1.6449*desvbbeta3[k][0];
liminflambda1090[k]{0]=lambda10[k][0]-
1.6449*desvplambda)0(k)(0);
\liminf ambda2090[k][0]=lambda20[k][0]=
1.6449*desvplambda20[k][0];
liminflambda12096[k][0]=lambda120[k][0]-
1.6449*desvplambda120[k][0];
liminfs1090[k](0]=s10[k][0]=1.6449*desvps10[k][0];
liminfs2090[k][0]=s20[k][0]-1.6449*desvps20[k][0];
liminfbeta0195[k][0]=beta01[k][0]-1.96*desvpbeta01[k][0];
liminfbeta0295[k][0]=beta02[k][0]-1.96*desvpbeta02[k][0];
liminfbeta0395(k][0]=beta03(k][0]-1.96*desvpbeta03[k][0];
liminfbeta0495(k)[0]=beta04[k][0]-1.96*desvpbeta04[k][0];
liminfbeta0595[k][0]=beta05[k][0]=1.96*desvpbeta05[k][0];
liminfbeta195[k][0]=beta1[k][0]-1.96*desvpbeta1[k][0];
liminfbeta295[k][0]=beta2(k][0]=1.96*desvpbeta2[k][0];
liminfbeta395[k][0]=beta3[k][0]-1.96*desvpbeta3[k][0];
1.96*desvplambdal0[k][0];
liminflambda2095[k][0]=]ambda20[k][0]-
1.96*desvplamoda20[k][0];
liminflambda12095[k][0]=lambda120[k][0]-
1.96*desvplambda120[k][0];
liminfs1095[k](0]=s10[k][0]-1.96*desvps10(k][0);
liminfs2095[k](0)=s20[k](0)-],96*desvps20[k][0];
limsupbeta0190[k][0]=bcta01[k][0]+1.6449*desvobeta01[k][0];
iimsupbeta0290[k][0]=beta02[k][0]+).6449*desvpbeta02[k][0];
limsupbeta0390[k][0]=beta03[k][0]+1.6449*desvpbeta03[k][0];
limsupbeta0490[k][0]=beta04[k][0]+1.6449*desvpbeta04[k][0];
\lim (0) = beta 05[k] (0] = beta 05[k] (0] + 1.6449 desvpbeta 05[k] (0];
]imsupbeta190[k][0]=beta1[k][0]+1.6449*desvpbeta1[k][0];
limsupbeta290[k][0]=beta2[k][0]+1.6449*desvpbeta2[k][0];
limsupbeta390(k]{0]=beta3(k][0]+1.6449*desvpbeta3(k][0];
limsup)ambda1090[k][0]=lambda10[k][0]+1.6449*desvp]ambda10[
k][0];
limsuplambda2090[k][0]=lambda20[k][0]+1.6449*desvplambda20[
k)[0];
```

```
\lim_{n\to\infty} ambda12090[k][0]=1ambda120[k][0]+1.6449*desvplambda1
      20[k][0]:
     limsups1090[k][0]=s10[k][0]+1.6449*desvps10[k][0];
    limsups2090[k][0]=s20[k][0]+1.6449*desvps20[k][0];
    limsupbeta0195[k][0]=beta01(k)[0]+1.96*desvpbeta01[k][0];
    limsupbeta0295[k][0]=beta02[k][0]+1.96*desvpbeta02[k][0];
     limsuppeta0395(k)[0]=beta03[k][0]+1.96*desvpbeta03[k][0];
    limsuppeta0495[k][0]=beta04[k][0]+1.96*desvpbeta04[k][0];
    limsupbeta0595[k][0]=beta05[k][0]+1.96*desvpbeta05[k][0];
    limsupbeta195[k]{0}=beta1[k][0]+1.96*desvpbeta1[k][0];
     limsupbeta295[k][0]=beta2[k][0]+1.96*desvpbeta2[k][0];
     limsupbeta395[k][0]=beta3[k][0]+1.96*desvpbeta3[k][0];
     limsuplambda1095[k][0]=lambda10[k][0]+1.96*desvp]ambda10[k]
      [0];
     \lim u_1 = \lim u_2 = \lim u_
      i01;
      limsuplambda12095[k](0]=lambda120[k](0]+l.96*desvplambda120
      [k]/0];
    limsups1095[k][0]=s10[k][0]+1.96*desvps10[k][0];
    limsups2095[k][0]=s20[k][0]+1.96*desvps20[k][0];
    ł
/* quantidade intervalos 90% que não contiveram o verdadeiro
         valor dos parâmetros*/
for (k=0;k<h;++k)
    if ((liminfbeta0190[k](0)>vbeta01||
             limsupbeta0190(k][0]<vbeta01))</pre>
          guantbeta0190=guantbeta0190+1;
     if ((liminfbeta0290[k][0]>vbeta02[]
            limsupbeta0290[k][0]<vbeta02))
         guantbeta0290=quantbeta0290+1;
    if ((liminfbeta0390(k)[0]>vbeta03||
             limsupbeta0390[k]{0}<vbeta03))</pre>
          guantbeta0390=guantbeta0390+1;
    if ((\liminf beta 0490[k](0)) > vbeta 04])
             limsupbeta0490[k](0]<vbeta04))</pre>
          quantbeta0490=quantbeta0490+1;
     if ((liminfbeta0590[k][0]>vbeta05||
             limsupbeta0590[k][0] < vbeta05))
          guantbeta0590=guantbeta0590+1;
     if ((liminfbeta190(k)(0]>3)| ]imsupbeta190(k)(0]<3))
          quantbeta190⇒quantbeta190+1;
     if ((liminfbeta290[k][0]>3|| limsupbeta290[k][0]<3))
          guantbeta290=guantbeta290+1;
    if ((liminfbeta390[k][0]>3]| limsupbeta390[k][0]<3))
          quantbeta390-quantbeta390+1;
```

Apêndice F – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Tempos Acelerados 158

```
if ((liminflambda1090{k}[0]>0.1()
     limsuplambda1090[k][0]<0.1)
    guantlambda1090=guantlambda1090+1;
  if ((liminflambda2090[k][0]>0.1))
     limsuplambda2090[k][0]<0.1);
    quantlambda2090-quantlambda2090+1;
 if ([liminflambda12090[k][0]>0.2)]
     \lim \left\{ \lim \left( \log \left( k \right) \right) \right\} \right\}
    guantlambda12090=guan:lambda12096+1;
  if ((liminfs1090[k][0]>0.5]) limsups1090[k][0]<0.5))
    guants1090=guants1090+1;
  if ({liminfs2090[k][0]>0.5]] ]imsups2090[k](0]<0.5))
    guants2090=guants2090+1;
3
// cobertura dos intervalos de confiança 90%
coberturabeta0190=((h-guantbeta0190)/h)*100;
coberturabeta0290=((h-quantbeta0290)/h)*100;
coberturabeta0390=((h-quantbeta0390)/h)*100;
coberturabeta0490=((h-quantbeta0490)/h)*100;
coberturabeta0590=((h-quantbeta0590)/h)*100;
coberturabeta190={(h-quantbeta190)/h)*100;
coberturabeta290={(h-quantbeta290}/h)*100;
coberturabeta390={(h-quantbeta390)/h)*100;
coberturalambda1090-((h-quantiambda1090)/h)*100;
coberturalambda2090=((h-guantlambda2090)/h)*100;
coberturalambda12090=((h-quantlambda12090)/h)*100;
coberturas1090=((h-guants1090)/h)*100;
coberturas2090=((h-quants2090)/h1*100;
/* quantidade intervalos 95% que não contiveram o verdadeiro
    valor dos parâmetros*/
for (k=0;k<h;++k)
 if ((liminfbeta0195[k](0)>vbeta01))
     limsupbeta0195[k][0]<vbeta0]))</pre>
    guantbeta0195=guantbeta0195+1;
 if {(liminfbeta0295[k][0]>vbeta02[]
     limsupbeta0295[k][0]<vbeta02))
    quantbeta0295=quantbeta0295+1;
 if ((liminfbeta0395[k][0]>vbeta034]
     limsupbeta0395[k][0]<vbeta03))
   quantbeta0395-quantbeta0395+1;
 if ((liminfbeta0495[k][0]>vbeta04[]
     limsupbeta0495[k][0]<vbeta04))</pre>
   guantbeta0495=guantbeta0495+1;
 if ((liminfbeta0595[k)[0]>vbeta05[1
     limsupbeta0595[k][0]<vbeta05))
```

```
quantbeta0595-quantbeta0595+1;
if ((liminfbeta195[k]|0]>3|| limsupbeta195[k][0]<3))
  quantbetal95=quantbeta195+1;
if ((liminfbeta295[k][0]>3]] limsupbeta295[k][0]<3))
  guantbeta295=guantbeta295+1;
if ((liminfbeta395[k)[0]>3]| limsupbeta395[k][0]<3))
  quantbeta395-quantbeta395+1;
if ((liminflambda1095]k][0]>0.1()
   \lim \left( \lim \left( \frac{1}{2} \right) - \frac{1}{2} \right) = 0.1
  cuantlambda1095=quantlambda1095+1;
if ((liminflambda2095[k][0]>0.1))
   limsuplambda2095[k][0]<0.1\})
  guantlambda2095=guantlambda2095+1;
if ((liminflambda12095[k)(0)>0.2]]
   limsuplambda12095[k][0]<0.2))
  guantlambda12095=guantlambda12095+1;
if ((liminfs1095[k][0]>0.5]] limsups1095[k][0]<0.5))
  quants1095-quants1095+1;
if ((liminfs2095[k][0]>0.5]] limsups2095[k][0]<0.5))
  guants2095=guants2095+1;
ş.
```

```
// cobertura dos intervalos de confiança 95%
coberturabeta0195=((h-quantbeta0195)/h)*100;
coberturabeta0295={(h-quantbeta0295)/h)*100;
coberturabeta0395=((h-quantbeta0395)/h)*100;
coberturabeta0495=((h-quantbeta0495)/h)*100;
coberturabeta195=((h-quantbeta195)/h)*100;
coberturabeta295=((h-quantbeta295)/h)*100;
coberturabeta395=((h-quantbeta395)/h)*100;
coberturaleta395=((h-quantbeta395)/h)*100;
coberturalambda1095=((h-quantbeta395)/h)*100;
coberturalambda1095=((h-quantbeta395)/h)*100;
coberturalambda1095=((h-quantbeta395)/h)*100;
coberturalambda1095=((h-quantlambda1095)/h)*100;
coberturalambda12095=((h-quantlambda12095)/h)*100;
coberturas1095-((h-quants1095)/h)*100;
```

```
/*Médias das estimativas, dos desvios padrões e dos EQM dos
    estimadores */
mediabeta01=meanc(beta01);
mediabeta02=meanc(beta02);
mediabeta03=meanc(beta03);
mediabeta04=meanc(beta04);
mediabeta05=meanc(beta05);
mediabeta1=meanc(beta1);
mediabeta2=meanc(beta2);
mediabeta3=meanc(beta3);
medialambda10=meanc(lambda10);
```

Apêndice F – Programa Computacional Implementado para Estimação dos Parâmetros da Distribuição EBVE considerando Tempos Acelerados 159		
medialambda20=meanc(lambda20);	<pre>mediaeqmbeta02=meanc(eqmbeta02);</pre>	
<pre>medialambda120=meane(lambda)20);</pre>	mediaeqmbeta03=meanc(eqmbeta03);	
<pre>medias10=meanc(s10);</pre>	mediaegmbeta04=meanc(eqmbeta04);	
<pre>medias20=meanc(s20);</pre>	<pre>mediaeqmbeta05=meanc(eqmbeta05);</pre>	
	<pre>mediaeqmbetal=meanc(eqmbeta);</pre>	
<pre>beta0lord=sortc(beta01);</pre>	mediaeqmbeta2=meanc(cqmbeta2);	
<pre>beta02ord=sortc(beta02);</pre>	mediaeqmbeta3=meanc(eqmbeta3);	
<pre>beta03ord=sortc(beta03);</pre>	mediaegmlambdal0=meanc(eqmlambdal0);	
beta04ord-sortc(beta04);	mediaeqmlambda20=meanc(eqmlambda20);	
<pre>beta05ord=sortc(beta05);</pre>	<pre>mediaeqmlambda120=meanc(eqmlambda120);</pre>	
betalord≕sortc(beta));	mediaegms10=meanc(equs10);	
<pre>beta2ord=sortc(beta2);</pre>	<pre>mediaeqms20=meanc(eqms20);</pre>	
<pre>beta3ord=sortc(beta3);</pre>		
lambda10ord=sortc(lambda;0);		
lambda20ord-sorte(lambda20);	/*desvios padrões das estimativas, dos desvios padrões e dos	
<pre>iambdal20ord-sortc(lambda)20);</pre>	EQM dos estimadores*/	
<pre>s10ord-sortc(s10);</pre>	<pre>desvpabeta01=sqrt(varc(beta01));</pre>	
s20ord=sortc(s20);	<pre>desvpabeta02= sqrt(varc(beta02));</pre>	
	<pre>desvpabeta03-sqrt(varc(beta03));</pre>	
<pre>medianabeta01=beta01ord[(h/2)-1][0];</pre>	<pre>desvpabeta04= sqrt(varc(beta04));</pre>	
<pre>medianabeta02=beta02ord[(h/2)-)][0];</pre>	<pre>desvpabeta05= sqrt(varc(beta05));</pre>	
<pre>medianabeta03=beta03ord[(h/2)-)][0];</pre>	<pre>desvpabeta1= sqrt(varc(beta1));</pre>	
<pre>medianabeta04=beta04ord[(h/2)-1][0);</pre>	<pre>desvpabeta2= sqrt(varc(beta2));</pre>	
<pre>medianabeta05=beta05ord[(h/2)-1][0];</pre>	desvpabeta3= sqrt(varc(beta3));	
<pre>medianabetal=betalord{(h/2)-1)[0];</pre>	<pre>desvpalambda10=sqrt(varc(lambda10));</pre>	
<pre>medianabeta2=beta2ord{(h/2)-1][0];</pre>	desvpalambda20= sqrt(varc(lambda20));	
medianabeta3=beta3ord((h/2)-1)[0];	desvpalanbda120=sqrt(varc(lambda120));	
<pre>medianalambda10=lambda10ord[(h/2)=l][0];</pre>	desvpas10- sqrt(varc(s10));	
<pre>medianalambda20=lambda20ord[(h/2)=1][0];</pre>	desvpas20= sqrt(varc(s20));	
<pre>medianalambdal20=lambdal20ord{(h/2)-l][0];</pre>		
<pre>medianas10=s10ord[(h/2)-1][0];</pre>	dpdpbeta01=sqrt(varc(desvpbeta01));	
medianas20=s20ord((h/2)-1][0];	dpdpbeta02=sqrt(varc(desvpbeta02));	
	dpdpbeta03=sqrt{varc(desvpbeta03));	
<pre>mediadpbeta01=meanc(desvpbcta01);</pre>	dpdpbeta04=sqrt(varc(desvpbeta04));	
<pre>mediadpbeta62=meanc(desvpbeta62);</pre>	dpdpbeta05=sgrt(varc(desvpbeta05));	
mediadpbeta03=meanc(desvpbeta03);	dpdpbetal=sqrt(varc(desvpbetal));	
<pre>mediadpheta04=meanc(desvpbeta04);</pre>	dpdpbeta2=sqrt(varc(desvpbeta2));	
<pre>mediadpbeta05=meanc(desvpbeta05);</pre>	dpdpbeta3-sqrt(varc(desvpbeta3));	
<pre>mediadpbetal=meanc(desvpbetal);</pre>	dpdplambda10=sqrt(varc(desvplambda10));	
<pre>mediadpbeta2=meanc(desvpbeta2);</pre>	dpdplambda20=sqrt(varc(desvplambda20));	
<pre>mediadpbeta3=meanc(desvpbeta3);</pre>	dpdplambdal20=sqrt(varc(desvplambdal20));	
mediadplambdal0-meane(desvplambdal0);	dpdps10=sgrt(varc(desvps10));	
<pre>mediadplambda20=meanc(desvplambda20);</pre>	dpdps20=sqrt(varc(desvps20));	
<pre>mediadplambda120=meanc(desvplambda120);</pre>		
<pre>mediadps10=meanc(desvps10);</pre>	dpeqmbeta01=sqrt(varc(eqmbeta01));	
<pre>mediadps20=meanc(desvps20);</pre>	dpeqmbeta02-sqrt(varc(eqmbeta02));	
	dpeqmbeta03=sgrt(varc(eqmbeta03));	
<pre>mediaeqmbeta01=meanc(eqmbeta01);</pre>	dpeqmbetaO4=sgrt(varc(eqmbetaO4));	

-

dpo	<pre>eqmbeta05=sqrt(varc(eqmbeta05));</pre>		desvplambda10~desvplambda20~desvplambda120~	
dpr	<pre>eqmbetal=sqrt(varc(eqmbetal));</pre>		desvps10~desvps20);	
dp	eginbeta2=sgrt(varc(egnbeta2));			
dpe	egmbeta3=sqrt(vacc(egmbeta3));	print	("\n IC 90% das emv:" ,	
dp	eomiambda10=surt(varc(eqmlambda10));	1	(liminfbeta0190~limsupbeta0190).	
dbe	comlambda20+surt(varc(soulambda20)):		(liminfbeta0290~limsupbeta0290).	
dhe	amlambdal20=sart(varc(eou)ambdal20)):		(liminfbeta0390~limsupbeta0390).	
dor	$S_{\text{res}} = 0 = S_{\text{res}} + (v_{\text{res}} + v_{\text{res}}) $		(liminfbeta0490~limsupbeta0490).	
do.	some20=zort(var(som:20)).		(liminfbeta0590~limeunbeta0590).	
сц <i>л</i> ,	Sumro of Clarciogumeo)//		(liminfbatal90~limeurbetal90)	
110	28 T 15 A		() (minflote200~limsuphote200)	
//:	onium Statuti sundiise aanali dha baayaa dha tabilaasi sa a		(ling (Decaz 90 - 11MSupperaz 90),	
pr:	int("An medias gerais des tempes, des variancies e		(liminibeta390~limsupbeta390),	
	correlação na voltagem vi",		(liminflambdal090~limsuplambdal090),	
	mediageral(IVI~med)ageral(ZVI~med)aVar(IVI~med)avar(ZVI		(limin.lampda2090~limsuplampda2090),	
	~mediacoscvi);		(liminflambda)2090~limsuplambda12090),	
			(liminfs1090~limsups1090),	
pr:	int("\n medias gerais dos tempos, das variâncias e		(liminfs2090~limsups2090));	
	correlação na voltagem v2",			
	mediageraltlv2~mediageralt2v2~mediavart1v2~mediavart2v2	print.	("\n IC 95% das emv:" ,	
	~mediacorrv2);		(liminfbeta0195~limsupbeta0195),	
			(liminfbeta0295~limsupbeta0295),	
pri	int("\n medias gerais dos tempos, das variâncias e		(liminfbeta0395~limsupbeta0395),	
	correlação na voltagem v3",		(liminfbeta0495~limsupbeta0495),	
	mediageraltlv3~mediageralt2v3~mediavart2v3~mediavart2v3		(liminfbeta0595~limsupbeta0595),	
	<pre>~mediacorrv3);</pre>		(liminfbeta195~limsupbeta195),	
			(liminfbeta295~limsupbeta295).	
pri	int("\n do das medias, variancias e correlações na voltadem		(liminfbeta395~limsupbeta395).	
1	v1",		(liminflambda1095~limsuplambda1095).	
	desvowediastlyl~desvomediast2vl~desvovartlyl~		(liminflambda2095~limsup)ambda2095).	
	desvnvart2vl~desvpcorrv1):		(liminflambdal2095-limsuplambdal2095).	
			(liminfs1095~limsups1095).	
nri	int/"\n do das modias - variancias e correlações na voltarem		(1) initial () (1) (1) (1) (1) (1) (1) (1) (1) (1)	
p,	vo"		(11.01.01.01.000) 11.000(02.000///	
	vz , desummodiaetly2~desumudiaet2v2~desupust1v2~	nrint	(") a coherence IC 902."	
	desvevent2v2-deevecorry2);	PLINC	((h cobernalas is post ;	
			coberturabeta0290	
	at/N/n dn dag moding. Varianging a gastolagged an voltagow		coberturabeta0200-	
pri	with the state of			
			CODELCUTADELA0490~	
	desvpmediastivs~desvpmediast2vs~desvpvartivs~		CODEFLURADETAUD90~	
	desvpvart2v3~desvpcorrv3);		coberturabeta190~	
			coberturabet a290~	
pr.	int("\n\n EMV ", bela01~Seta02~beta03~beta04~beta05~		coberturabeta390~	
	betal~beta2~beta3~		coberturalambda1090~	
	lambdal0~lambda20~lambda120~s10~s20);		coberturalambda2090~	
			coberturalambda12090~	
pri	int ("\n\n desvios padroes emv",		coberturas1090~	
	desvpbeta01~desvpbeta02~desvpbeta03~desvpbeta04~		coberturas2090);	
	desvpbeta05~desvpbeta1~desvpbeta2~desvpbeta3~			

print {"\n coberturas IC 95%:",	dpdpbeta04~dpdpbeta05~dpdpbeta1~dpdpbeta2~dpdpbeta3~
coperturabeta0195~	dpdplambdal0~dpdplambda20~dpdplambda120~
coperturabeta0295~	dpdps10~dpdps20);
coberturabeta0395~	
coberturabeta0495~	print ("\n\n desvios padroes eqm ",
coberturabet.a0595~	dpogmbeta01~dpogmbeta02~dpogmbeta03~
coberturabeta195~	dpeqmbeta04~dpeqmbeta05~dpeqmbeta1~
coberturabeta295~	<pre>dpeqmbeta2~dpeqmbeta3~</pre>
coberturabeta395~	dpeqmlambdal0~dpeqmlambda20~
coberturalambda1095~	dpeqmlambdal20~dpeqms10~dpeqms20);
coberturalambda2895~	
coberturalambda12095~	print ("\n\n amostras que não convergiram: ", $q-r$);
coberturas1095~	
coberturas2095);	print ("\n\n amostras que convergiram e não satisfizeram a
	condicao imposta nas estimativas: ",r-e);
print ("\n\n medias EMV ".	
mediabeta01~mediabeta02~mediabeta03~	print ("\n\n a condicao de beta0) nao foi satisfeita: ".
mediabeta04~mediabeta05~mediabetai~mediabeta2~	r-el):
mediabeta3~medialambdel0~medialambde20~medialambde120~	print ("\n) a condicao de beta 02 não foi satisfeita: ".
modiael0~mediae20) *	$ = e^{2} \cdot $
mediaolo mediaozo//	L = 0.2, which a condicate de beta03 neo foi setisfaite. "
print ("\n\r modiance FWV "	grint (and a condication de betato hao tor secisiteres)
princ ((n(n medianab Env) medianabeta01amedianabeta02amedianabeta03a	L^{-} correctly, print (1) or a condition do bot 204 pro foi ratisfairs: "
modianabeta04.medianabeta02.medianabeta05.medianabeta0.	print (with a condicat de betade had for satisficitat ,
medianapetava~medianapetavo~medianapeta/~medianapeta/~	$E \rightarrow E + E = E + E + E + E + E + E + E + E +$
medianabeta5~medianalampdal0~medianalampda20~	print ("ANA a condicao de betavo não foi satisfeita: ",
medianalambdalzo~medianas/o~medianaszo);	
	print ("INN a condicao de betal não foi satisfeita: ",
print ("\n\n medias desvios padroes",	r-cb);
mediadpoetaul~mediadpoeta02~mediadpoeta03~	print ("\n\n a condicao de beta2 nao foi satisfeita: ",
mediadpbeta04~mediadpbeta05~mediadpbeta1~mediadpbeta2~	r-e/);
mediadpbeta3~mediadplambda10~mediadplambda20~	prin% ("\n\n a condicao de beta3 nao foi satisfeita: ",
mediadplambdal20~mediadpsl0~mediadps20);	r~€9);
print ("\n\n medias EQM das emv",	print ("\n\n amostras com problemas nas matrizes de
mediaeqmbeta 01 ~mediaeqmbeta 02 ~mediaeqmbeta 03 ~	covariancias: ", e-h);
${\tt mediaeqmbeta04}$ ~ mediaeqmbeta05 ~ mediaeqmbeta1 ~	
mediaegmbeta2~mediaegmbeta3~mediaeqmlambda10~	<pre>print("\n\n tempo de execucao:",timespan(time));</pre>
mediaeqmlambda20~mediaeqmlambda120~	
<pre>mediaeqms10~mediaeqms20);</pre>	
print {"\n\n desvios padroes das emv",	
desvpabeta01~desvpabeta02~desvpabeta03~	
desvpabeta04~desvpabeta05~desvpabeta1~desvpabeta2~	
desvpabela3~desvpalambda10~desvpalambda20~	
<pre>desvpalambdal20~desvpas10~desvpas20);</pre>	
print ("\n\n desvios padroes do das emv".	
dpdpbeta01~dpdpbeta02~dpdpbeta03~	

REFERÊNCIAS BIBLIOGRÁFICAS

- BARLOW, R. & PROSCHAN, F. Statistical Theory of Reliability and Life Testing. New York: Holt, Rinehart and Winston, 1981. 290p.
- BEST, N., COWLES, M. K., VINES, K. CODA: Convergence Diagnosis and Output Analysis Software for Gibbs Sampling Output Version 0.30. Cambridge: University of Nebraska, 1996. 41p.
- BLOCK, H. W. & BASU, A. P. A Continuous Bivariate Exponential Extension. Journal of the American Statistical Association, 69(348): 1031-37, dec, 1974.
- BOX, G.E.P. & TIAO, G.C. Bayesian Inference in Statistical Analysis. Philippines: Addison-Wesley, 1973. 588p.
- CASELLA, G. & GEORGE, E. I. Explaining the Gibbs Sampler. The American Statistician, 46(3): 167-74, aug, 1992.
- CHIB, S. & GREENBERG, E. Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4), 327-335, nov, 1995.
- DOORNIK, J. A. Ox Version 2.10. London, 1999.
- DOWNTON, F. Bivariate Exponential Distributions in Reliability Theory. Journal of the Royal Statistical Society, series B, 32(3): 408-17, 1970.

- FLETCHER, R. Practical Methods of Optimization. 2nd ed. New York: John Wiley & Sons, 1987. 436p.
- FREUND, J. E. A Bivariate Extension of the Exponential Distribution. Journal of the American Statistical Association, 56: 971-77, 1961.
- GAMERMAN, D. Simulação Estocástica Via Cadeias de Markov. São Paulo: ABE-Associação Brasileira de Estatística, 1996. 196p.
- GELMAN, A. & RUBIN, D.B. Inference from Iterative Simulation Using Multiple Sequences. *Statistical Science*, 7(4): 457-72, nov, 1992.
- GEMAN, S. & GEMAN, D. Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6, 721-741, 1984.
- GEWEKE, J. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments. In *Bayesian Statistics 4*. (J.M. Bernardo, J.O. Berger, A. P. Dawid e A. F. M. Smith, eds), Oxford Univ. Press. 169-193, 1992.
- GUMBEL, E. J. Bivariate Exponential Distributions. Journal of the American Statistical Association, 55: 698-707, 1960.
- HASTINGS, W. K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. *Biometrika*, 57: 97-109, 1970.
- HAWKES, A. G. A Bivariate Exponential Distribution with Applications to Reliability. Journal of the Royal Statistical Society, series B, 34(1): 129-31, 1972.
- HEIDELBERGER, P. & WELCH, P.H. Simulation Run Length Control in the Presence of an Initial Transient. *Operations Research*, 31:1109-1144,1983.

- JAMES, B. R. Probabilidade: Um Curso em Nível Intermediário. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 1981. 304p.
- KASS, R. E. & SLATE, E. H. Some Diagnostics of Maximum Likelihood and Posterior Nonnormality. *The Annals of Statistics*, 22: 668-695, 1994.
- KENNEDY, W. E., Jr. & GENTLE, J. E. Statistical Computing. New York: Marcel Dekker, 1980. 591p.
- LAWLESS, J. F. Statistical Models and Methods for Lifetime Data. New York: John Wiley & Sons, 1982. 580p.
- LEITE, J. G. & SINGER, J. M. Métodos Assintóticos em Estatística: Fundamentos e Aplicações. São Paulo: IME USP, 1990. 130p.
- MANN, N. R., SCHAFER, R. E., SINGPURWALLA, N. D. Methods for Statistical Analysis of Reliability and Life Data. New York: John Wiley & Sons, 1974. 564p.
- MARSHALL, A. W. & OLKIN, I. A Multivariate Exponential Distribution. Journal of the American Statistical Association, 62: 30-44, mar, 1967.
- METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H. e TELLER, E. Equations of State Calculations by Fast Computing Machines. *Journal of Chemical Physics*, 21: 1087-1092, 1953.
- MOOD, A. M., GRAYBILL, F. A., BOES, D. C. Introduction to the Theory of Statistics. 3rd ed. New York: McGraw-Hill, 1974. 564p.
- NELSON, W. Accelerated Testing: Statistical Models, Test Plans, and Data Analyses. New York: John Wiley & Sons, 1990. 601p.

ł

- PAULSON, A. S. A Characterization of the Exponential Distribution and a Bivariate Exponencial Distribution. Sankhyã, series A, 35(1): 69-78, mar, 1973.
- RAFTERY, A. E. e Lewis, S. How Many Iterations in the Gibbs Sampler? In *Bayesian Statistics 4*. (J.M. Bernardo, J.O. Berger, A. P. Dawid e A. F. M. Smith, eds), Oxford Univ. Press. 763-773, 1992.
- ROHATGI, V. K. An Introduction to Probability Theory and Mathematical Statistics. New York: John Wiley & Sons, 1976. 684p.
- RYU, K. An Extention of Marshall and Olkin's Bivariate Exponential Distribution. Journal of the American Statistical Association, 88(424): 1458-65, dec, 1993.
- SARKAR, S.K. A Continuous Bivariate Exponential Distribution. Journal of the American Statistical Association, 82(398): 667-76, jun, 1987.
- VON NEUMANN, J. Various Techniques Used in Connection with Random Digits. Washington: National Bureau of Standards, 1951.