
Um Framework Orientado a Objetos para
Controladores de Trens Tolerantes a Falhas

Luciane Lamour Ferreira

Dissertação de Mestrado

Instituto de Computação
Universidade Estadual de Campinas

Um Framework Orientado a Objetos para
Controladores de Trens Tolerantes a

Falhas

Luciane Lamour Ferreira 1

Agosto de 1999

Banca examinadora:

• Profa. Dra. Cecília Mary Fischer Rubira (Orientadora)
Instituto de Computação- UNICAMP

• Prof. Dr. Carlos José Pereira de Lucena
Departamento de Ciência da Computação - Puc Rio

• Profa. Dra. Eliane Martins
Instituto de Computação- UNICAMP

• Prof. Dr. Luiz Eduardo Buzato
Instituto de Computação- UNICAMP

i Auxílios concedidos pela FAPESP, processo no. 97/11060-0 e pelo CNpQ, processo no. 131962/97-3

CM-00133099-2

F4!3f

FICHA CATALOGRÁFICA ELABORADA PELA
BIBLIOTECA DO IMECC DA UNICAMP

Ferreira, Luciane Lamour

Um framework orientado a objetos para controladores de trens

tolerantes a falhas I Luciane Lamour Ferreira-- Campinas, [S.P. :s.n.],

1999.

Orientadora : Cecilia Mary Fischer Rubira

Dissertação (mestrado) - Universidade Estadual de Campinas,

Instituto de Computação.

l. Framework (Programa de computador). 2. Engenharia de

software. 3. Software - Desenvolvimento. I. Rubira, Cecília Mary

Fischer. IL Universidade Estadual de Campinas. Instituto de

Computação. III. Título.

Instituto de Computação
Universidade Estadual de Campinas

Um Framework Orientado a Objetos para
Controladores de Trens Tolerantes a

Falhas

Este exemplar corresponde à redação final da
dissertação de mestrado devidamente corrigida
e defendida por Luciane Lamour Ferreira, e
aprovada pela banca examinadora.

Campinas, 29 de setembro de 1999

Dissertação de mestrado apresentada ao
Instituto de Computação da Universidade
Estadual de Campinas - Unicamp, como
requisito parcial para a obtenção do título de
Mestre em Ciência da Computação.

TERMO DE APROVAÇÃO

Tese defendida e aprovada em 29 de setembro de 1999, pela

Banca Examinadora composta pelos Professores Doutores:

'

c;:?~~=s-er""e=-Jra-de-=:i?a
PUC- Rio

Profa. Dra. Eliane Martins
IC- UNICAMP

i . . ' ,., . .

Mary Fischer Rubira
~

© Luciane Lamour Ferreira, 1999
Todos os direitos reservados.

Agradecimentos

À toda a minha família, e em especial aos meus pais, Mário e Walkíria, pela

confiança, pelo apoio e pelo sacrifício que sempre fizeram para que eu pudesse me

dedicar aos estudos.

Ao roeu marido, Rodrigo, pelo amor, carinho e compreensão, e por estar sempre ao

meu lado nos momentos mais difíceis, me apoiando e incentivando

incondicionalmente.

Aos amigos do LSD, pelo companheirismo e amizade demonstrados em todos os

dias em que compartilhamos o mesmo espaço de trabalho.

À minha orientadora, Cecília Rubira, pela forma coerente com que conduziu este

trabalho.

Aos professores e funcionários do Instituto de Computação - Unicamp, pelos

serviços prestados ao programa de mestrado.

À Fundação de Amparo à Pesquisa do Estado de São Paulo - F APESP e ao

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNpQ, pelo

apoio financeiro.

Resumo

Este trabalho baseia-se nos conceitos de orientação a objetos,frameworks, estilos de arquitetura,

padrões de projeto e metapadrões, para o projeto e implementação de umframework orientado a

objetos para controladores de trens tolerantes a falhas e distribuídos. O principal objetivo é a

obtenção de reutilização de software em larga escala, com reutilização tanto de código quanto de

todo o projeto de software. No desenvolvimento do framework, nós utilizamos estilos de

arquitetura para o projeto da sua parte fixa, e padrões de projeto e metapadrões para a

documentação da sua parte adaptável. Nosso objetivo é avaliar as vantagens e desvantagens

obtidas na aplicação destas técnicas na construção de frameworks. Este trabalho apresenta

também propostas de novos padrões de projeto e estilos de arquitetura, que foram utilizados para

resolver problemas do domínio do framework. A principal contribuição dos padrões e estilos é a

utilização de reflexão computacional na implementação de tolerância a falhas, com o objetivo de

obter estruturas de projeto mais flexíveis, o que é uma característica essencial para obtenção de

frameworks realmente reutilizáveis.

Abstract

This work is based on the concepts of object-orientation, frameworks, architectural styles, design

pattems and metapattems to the design and implementation of an object-oriented frarnework for

fault-tolerant train controlers. The main goal is to obtain large-scale reuse, reusing not only the

code but also the whole software design. In the framework developrnent, we have applied

architectural styles in the design of its fixed parts, and design pattems and metapattems in the

design of its adaptable parts. Our goal is to evaluate the advantages and disadvantages of

applying these tecniques in the framework construction. This work also presents new design

pattems and architectural styles that have been used to solve problems in the framework domain.

The main contribution ofthe pattems and styles is the use o f computational reflection in the fault

tolerance implementation in order to achieve more adaptable design structure, which is an

essential feature of frameworks.

ii

Conteúdo

Capítulo 1 -Introdução ... 2

Capitulo 2- Padrões de Projeto ... 7

The Reflective State Pattern .. 9
1 Introduction .. 9
2 The Reflective State Partem ... 1 O
3 Acknowledgments .. 31
4 References .. 32

Reflective Design Patterns to lmplement Fault Tolerance. ... 34
1 Introduction .. 34
2 The Reflective State Partem ... 35
3 A System ofPatterns for the Fault Tolerance Domain .. 38
4 Acknow1edgments .. 41
5 References .. 41

Resumo do Capítulo 2 ... 43

Capítulo 3- Arquiteturas de Software e Estilos ... 44

Architectural Styles and Pattems for Developing Dependable Frameworks. 46
1 Introduction .. 47
2 Background .. Erro! Indicador não definido.

2.1 Software architecture and architectural styles .. 48
2.2 Design patterns ... 49

3 Architectural Styles for Dependable Systems .. 50
3.1 The Idealized Fault-Tolerant Component Architectural Style. ... 50

3.1.1 What is the design vocabulary? ... 50
3 .1.2 What are the allowable structural patterns, i. e. the design rules? 51
3.1.3 What is the underlying computational model? .. 52
3.1.4 What are the essential invariants ofthe style? ... 53
3.1.5 What are some common examples of its usage? ... 53
3.1.6 What are the advantages and disadvantages ofusing that style? 53
3.1.7 What are some ofthe common specializations? .. 54

3.2 The Meta-Levei architectural style ... 54
4 A Case Study: a Dependable Object-Oriented Framework for Traio Controllers 56

4.1 The Traio Set System .. 57
4.2 Architectural description using the ldealized Fault-Tolerant Component style 58
4.3 Architectural description using the Meta-Levei style ... 61
4.4 The class design using design patterns ... 63
4.5 Implementation issues .. 64

5 Conclusions .. 65
6 Bibliography .. 66

Resumo do Capítulo 3 ... 68

iii

Capítulo 4- Projeto e Implementação de um Framework para Controladores de Trens 70

The Design and Implementation of a Dependable and Distributed Framework for Traio
Controllers ... 71

1 Introduction .. 71
2 R e use Techniques .. 73

2.1 Frameworks .. 73
2.2 Architectural styles ... 74
2.3 Design patterns ... 75
2.4 Metapatterns ... 76
2.5 Framework development .. 78

3 Basic Model ofa Traio Controller Application ... 80
3.1 The Traio Set System .. 80
3.2 Basic class diagram ... 83
3.3 Fault tolerance .. 85

3.3.1 Errar detection and recovery ... 85
3.3.2 Fault treatrnent. .. 87

4 The Framework Design .. 88
4.1 The frozen spots and the framework architecture ... 88

4.1.1 Architecture description using the Idealized FaultwTolerant Component style 89
4.1.2 Architecture description using the Meta-Levei style. .. 91

4.2 The hot spots ... 93
4.2.1 Hot spot for the board's composition ... 94
4.2.2 Hot spot for the board's view ... 97
4.2.3 Hot spot for the creation o f the mobile objects ... 99
4.2.4 Hot spot for the fault tolerance .. 1 O 1
4.2.5 Hot spot for the communication protocol... ... 104

4.3 Implementation issues .. 107
5 Conclusions .. 107
Bibliography .. 109

Resumo do Capítulo 4 ... 112

Capítulo 5 - Conclusões e Trabalhos Futuros .. 114

Referências Bibliográficas ... 117

i v

Lista de figuras por artigo
The Ref/ective State Pattern 9

Figure I: State diagram ofthe class TCPConnection using the UML notation 11

Figure 2: Class diagram o f the Reflective State pattern using the UML notation 14

Figure 3: An object diagram for a TCPConnection instance, applying the Reflective State partem 14

Figure 4: lnteraction diagrarn for the Reflective State Pattern ... 18

Rejlective Design Patterns to Implement Fault Tolerance.. 34

Figure 1: Class diagram ofthe Reflective State pattem using the UML notation 37

Figure 2: The Software Redundancy pattern [5] ... 39

Figure 3: Patterns-relationship tree for the fault tolerance domain .. 40

Architectural Styles and Patternsjor Developing Dependable Frameworks .. 46

Figure 1: The framework development using architectural styles and design pattems 48

Figure 2: The Idealized Fault-Tolerant Component style ... 52

Figure 3: The Meta-Levei architectural style. ... 56

Figure 4: The Train Set system and the representation ofthe Marklin hardware. 57

Figure 5: The architecture ofthe dependable framework for train controllers using the Idealized Fault-
Tolerant Component style ... 59

Figure 6: The architecture description with more details: the component Board was decomposed into
two sub-components ... 60

Figure 7: The framework architecture using the Meta-Levei style ... 61

Figure 8: The class design ofthe idealized fault-tolerant component Switch using the Reflective State
partem ... 64

The Design and Implementation of a Dependable and Distributed Frameworkfor Train Controllers. 71

Figure 1: The framework development using architectural styles and design patterns 72

Figure 2: A template calling its hook methods ... 76

Figure 3: The seven Metapattems ... 78

Figure 4: Hot-spot-driven approach using metapatterns to describe the adaptable parts 79

Figure 5: The Train Set system and the representation ofthe Marklin hardware 81

Figure 6: Kinds ofconnectors ... 81

Figure 7: The railway layout composed by three separated boards .. 82

Figure 8: Basic class diagram o f the Train Set System ... 83

Figure 9: Class diagram ofthe Board component... .. 84

Figure 10: Example of a contrai zone of one and two leveis .. 86

v

Figure 11: The Traio class hierarchy to implement different errar detection and recovery 87

Figure 12: The design ofthe Switch component using the State design pattern 88

Figure 13: The Idealized Fault-Tolerant Component style ... 90

Figure 14: The architecture ofthe dependable framework for traio controllers using the Idealized Fault-
Tolerant Component style ... 91

Figure 15: The Meta-Levei architectural style. ... 92

Figure 16: The framework architecture using the Meta-Levei style ... 93

Figure 17: Flexible structure for the composition ofthe Board's components 96

Figure 18: Flexible structure for the creation and management ofthe board's components. 97

Figure 19: Flexible implementation ofthe board's view .. 99

Figure 20: Hot spot for the creation of mobile objects .. 101

Figure 21: Design o f the Switch component using the Reflective State Pattern I 03

Figure 22: The design ofthe communication protocol using the Forwarder-Receiver pattern I 06

vi

Capítulo 1

Introdução
A crescente complexidade de sistemas de software modernos tem levado pesquisadores na área

de engenharia de software a procurar soluções que visam manter a complexidade sob controle, e

ao mesmo tempo melhorar o processo de desenvolvimento de software. A reutilização de

software tem sido proposta como uma das abordagens mais promissoras para a solução de tais

problemas, devido aos benefícios que ela traz como, por exemplo, aumento da qualidade de

software e redução do custo de seu desenvolvimento. Um dos principais beneficios advindo da

adoção do paradigma de orientação a objetos refere-se à sua capacidade potencial de aumentar o

grau de reutilização de software [RBP+92]. No entanto, a reutilização efetiva de componentes de

software não é uma tarefa trivial, pois os componentes de software devem ser adequadamente

projetados para serem reutilizáveis [JF88]. Além disto, uma reutilização efetiva não se baseia

apenas na reutilização de código, mas também na reutilização de todo o projeto de software.

Vários conceitos têm sido propostos para a obtenção de um grau de reutilização razoável, como

por exemplo, frameworks [JF88, Joh97a], padrões de projeto [GHN95], padrões e estilos de

arquitetura [SG96] e metapadrões [Pre95],

Um framework proporciona uma arquitetura de software "pré-fabricada" para um

domínio de aplicações, proporcionando adaptabilidade apropriada para que várias aplicações

com características específicas possam ser criadas através da sua reutilização. Podemos

identificar duas fases principais no desenvolvimento de um framework: (i) o projeto de sua

arquitetura, que compreende as principais classes e o fluxo de controle do domínio e (ii) o

projeto dos pontos adaptáveis que serão instanciados para atender às características de aplicações

específicas. Para se obter um software genérico que seja ao mesmo tempo fácil de ser

2

compreendido, reutilizado e também mantido (com modificações em seu próprio projeto), é

necessário a utilização de técnicas de projeto adequadas durante o seu desenvolvimento.

O projeto da arquitetura de um framework é uma tarefa complexa, visto que um

framework deve incluir a funcionalidade de uma família de aplicações, incluindo requisitos

funcionais e não-funcionais. Os requisitos funcionais refereffi-se à funcionalidade básica de uma

aplicação, enquanto os requisitos não-funcionais referem-se às propriedades que descrevem

como uma aplicação deve satisfazer suas funcionalidades básicas, como por exemplo, tolerância

a falhas, distribuição, etc. Estilos de arquitetura têm sido utilizados para a definição da

arquitetura de software, oferecendo soluções para a estruturação geral de software e um conjunto

de restrições que guiam todo o processo de seu desenvolvimento. Em relação ao

desenvolvimento de frameworks, estilos de arquitetura podem ser utilizados na definição da sua

parte fixa, definindo os principais componentes que implementam os requisitos funcionais e não

funcionais do domínio, o relacionamento entre eles, as principais restrições e o fluxo de controle

geral.

A documentação dos pontos adaptáveis é uma etapa essencial para se obter uma efetiva

reutilização do framework, visto que o usuário do framework deverá compreender as estruturas

adaptáveis para que ele possa estendê-las e/ou configurá-las para a implementação de uma

aplicação específica. Padrões de projeto e metapadrões têm sido propostos como urna fonna de

documentar os pontos adaptáveis de um.framework. A reutilização das soluções propostas pelos

padrões proporciona uma redução nos esforços de projeto do framework, e ao mesmo tempo

melhora o entendimento do mesmo. Metapadrões constituem uma abordagem mais abstrata de

padrões cujo principal objetivo é a documentação das estruturas flexíveis de um framework,

identificando mais explicitamente quais são os pontos fixos e os pontos adaptáveis. Eles podem

ser utilizados para documentar outros padrões de projeto em um meta-nível, constituindo

portanto uma abordagem complementar à padrões de projeto na documentação dos pontos

adaptáveis de umframework.

O principal objetivo deste trabalho é a aplicação destas técnicas de reutilização de

software, através do desenvolvimento de umframework orientado a objetos para o domínio de

controladores de trens tolerantes a falhas e distribuídos, com o intuito de comprovar a efetividade

destas técnicas. No desenvolvimento do framework, nós utilizamos estilos de arquitetura para o

projeto da parte fixa do framework, e padrões de projeto e metapadrões para a documentação dos

3

seus principais pontos adaptáveis. Durante a experiência prática de utilização de padrões de

projeto e estilos de arquitetura no desenvolvimento deste software complexo, nós encontramos

problemas que não eram satisfatoriamente resolvidos por padrões de projeto e estilos de

arquitetura existentes. Neste contexto, nós apresentamos também propostas de refinamentos e

variações de padrões existentes, e documentamos um novo estilo de arquitetura para o domínio

de to I erância a falhas.

Em resumo, os principais objetivos deste trabalho são:

• Projeto e implementação de um framework orientado a objetos para o domínio de

controladores de trens tolerantes a falhas e distribuídos. O principal objetivo deste projeto é o

desenvolvimento de um estudo de caso que nos permita utilizar as principais técnicas

relacionadas à reutilização de software em larga escala.

• Utilização prática de padrões de projeto e metapadrões na documentação dos pontos

adaptáveis do framework, e a análise das vantagens e limitações destas abordagens quando

utilizadas em conjunto.

As principais contribuições do nosso trabalho são:

• Documentação do padrão Reflective State [FR98a, FR98c], que é um refinamento do padrão

de projeto State [GHJV95] utilizando o padrão de arquitetura Rejlection (também conhecido

como estilo Meta-Leve!) [BMRS+96]. O padrão proposto oferece uma estrutura mais flexível

do que a estrutura do padrão State original, sendo portanto mais adequado na documentação

de pontos adaptáveis deframeworks.

• Documentação de um sistema de padrões para o domínio de tolerância a falhas formado por

um conjunto de variações do padrão Reflective State. O uso de reflexão computacional

permite que os mecanismos de tolerância a falhas sejam executados de forma transparente

para os objetos que implementam a funcionalidade básica da aplicação.

• Documentação do estilo de arquitetura Idealized Fault-Tolerant Component baseado no

modelo de estruturação de sistemas tolerantes a falhas de mesmo nome, proposto por Lee e

Anderson ILA90]. A documentação deste modelo como um estilo de arquitetura contribui

para a reutilização desta solução no projeto de arquiteturas de software tolerantes a falhas.

Este estilo também foi utilizado no projeto da arquitetura do framework para controladores

de trens.

4

• Como produto final, nós implementamos um framework orientado a objetos para

controladores de trens que inclui mecanismos para tolerância a falhas e distribuição. Este

framework foi implementado na linguagem Java, utilizando o Guaraná para a implementação

dos componentes reflexivos. O Guaraná [Oli98] é uma arquitetura de software reflexiva que

permite um alto grau de reutilização de código de meta-nível, tendo sido implementado na

linguagem Java. A implementação do framework para controladores de trens foi uma

experiência prática importante que contribuiu para a avaliação da efetividade das técnicas de

reutilização de software em larga escala.

• A implementação do padrão Rejlective State na linguagem Java, utilizando a arquitetura do

Guaraná, também representa um framework para implementação de máquinas de estados no

meta-nível, o qual pode ser reutilizado independentemente do framework para controladores

de trens.

Organização da dissertação:

Os capítulos desta dissertação são compostos de artigos escritos em inglês que foram submetidos

e publicados em conferências e revistas internacionais de grande relevância na área de

engenharia de software. Os artigos descrevem o trabalho realizado durante o mestrado, e os

principais resultados obtidos. Cada capítulo é fonnado por uma introdução em português, pelo(s)

artigo(s) correspondente(s), e um resumo do capítulo também em português.

O capítulo 2 apresenta os padrões de projeto que foram documentados como propostas

novas de padrões e que foram utilizados no projeto dos pontos adaptáveis do framework. Os

padrões apresentam soluções para problemas encontrados durante o projeto do framework,

principalmente relacionados à tolerância a falhas, e que não eram satisfatoriamente resolvidos

por padrões existentes. Estes padrões são descritos em dois artigos. O artigo "The Rejlective

State Pattern" apresenta um refinamento do padrão State [GHN95] utilizando o estilo de

arquitetura Meta-Leve!. Este padrão apresenta urna solução para o problema relacionado à

implementação das transições de estados do padrão State, propondo a implementação de uma

máquina de estados no meta-nível, de forma que esta seja executada de uma forma transparente

para os objetos da aplicação. Esta solução gera uma estrutura de projeto mais flexível do que a

solução original do padrão State, sendo portanto mais adequada para a documentação dos pontos

adaptáveis de um framework. O artigo "Rejlective Design Patterns to Implement Fault

5

Tolerance" apresenta um sistema de padrões formado por um conjunto de variações do padrão

Reflective State para o domínio de tolerância a falhas. Este sistema de padrões discute como a

mesma estrutura do padrão Rejlective State pode ser utilizada com semânticas diferentes para a

implementação das técnicas de tolerância a falhas de software, de hardware e de ambiente.

O capítulo 3 contém o artigo "Architectural Styles and Patterns for Developing

Dependable Frameworks", que discute dois estilos de arquitetura que foram utilizados no projeto

da arquitetura do framework: (i) o estilo "ldealized Fault-Tolerant Component", que foi

documentado como wn novo estilo de arquitetura e (ii) o estilo "Meta-Leve!". Nós mostramos

como estes dois estilos auxiliam na definição da arquitetura de sistemas tolerantes a falhas, com

o principal objetivo de manter a complexidade sob controle. Nós também introduzimos o projeto

do framework para controladores de trens e definimos sua arquitetura utilizando estes estilos.

O capítulo 4 descreve o projeto detalhado do framework utilizando estilos de arquitetura

para a definição da sua parte fixa e padrões de projeto e metapadrões para a documentação da

sua parte adaptável. Para isto, utilizamos os estilos e padrões descritos nos capítulos anteriores, e

também outros padrões existentes na literatura. O projeto é descrito no artigo "The Design and

Implementation of a Dependable and Distributed Framework for Train Controllers", que

apresenta também as principais conclusões obtidas neste experimento prático.

O capítulo 5 apresenta as conclusões do nosso trabalho, apresentando as principais

contribillções e os possíveis trabalhos futuros.

6

Capítulo 2

Padrões de Projeto
Padrões de projeto constituem boas ·soluções de projeto para problemas recorrentes dentro de um

contexto particular. A documentação de padrões facilita o entendimento destas soluções e sua

efetiva reutilização em uma grande variedade de domínios de software. A documentação destes

padrões em catálogos [GHJV95, BMRS+96] e a crescente popularização de conferências

especializadas em padrões, como por exemplo PLoP e EuroPLoP, permitem que engenheiros de

software utilizem uma referência confiável no desenvolvimento de seus projetos, reutilizando a

experiência de outros desenvolvedores e soluções boas e previamente testadas. As conferências

especializadas em padrões promovem a documentação de novos padrões e o amadurecimento de

padrões existentes.

Durante o projeto do framework para controladores de trens, nós utilizamos vários

padrões de projeto existentes que oferecem soluções flexíveis, entre eles, o padrão State

[GHN95]. Este padrão oferece wna solução para a implementação de serviços que são

dependentes de estado, através da definição de uma hierarquia de classes de estado paralela à

hierarquia de classes do objeto da aplicação. O objeto da aplicação mantém a referência para o

objeto de estado corrente, e delega para ele a execução dos seus métodos. Para mudar o seu

estado, o objeto da aplicação muda a referência para o objeto de estado corrente. Entretanto, a

implementação do padrão State gera alguns problemas que não são bem discutidos na sua

documentação, como por exemplo, o problema de onde definir e executar as transições de

estados que representam a execução de uma máquina de estados. As possíveis soluções

discutidas na docwnentação do padrão State tomam as classes de estado e do objeto da aplicação

fortemente acopladas, o que dificulta suas futuras extensões. Para resolver este problema, nós

propomos o padrão Reflective State, que utiliza uma arquitetura reflexiva para a implementação

7

de uma máquina de estados no meta-nível, de fonna que esta seja implementada separadamente e

executada de forma transparente para os objetos da aplicação.

Este capítulo é composto de dois artigos que documentam esta nossa solução em duas

instâncias. O primeiro artigo, "The Rejlective State Pattern", apresenta o refmamento do padrão

State em uma arquitetura reflexiva, apresentando urna solução genérica que pode ser utilizada no

mesmo contexto em que o padrão State é utilizado. O artigo foi publicado na "51
h Pattern

Language of Programs Conference (PLoP'98)" realizada em Monticello, Illinois, EUA, em

agosto de 1998.

O segundo artigo denominado "Rejlective Design Patterns to Implement Fault

Tolerance" apresenta um sistema de padrões reflexivos para o domínio de tolerância a falhas.

Estes padrões são variações do padrão Rejlective State que apresentam soluções para a

implementação das técnicas de tolerância a falhas de hardware, de software e de ambiente. Na

implementação dos pontos adaptáveis para tolerância a falhas do framework, nós utilizamos a

variação do padrão Reflective State para tolerância a falhas de ambiente. Este artigo foi

publicado em "proceedings of the Workshop on Rejlective Programming in C++ and Java:

Workshop # 13 ofOOPSLA '98", realizado em Vancouver, Canadá, em outubro de 1998.

8

The Reflective State Patterfll

Luciane Lamour Ferreira Cecília M. F. Rubira
Institute of Computing- State University of Campinas

P.O. Box 6176, Campinas, SP 13083-970
e-mai1: {972311, cmrubira}@dcc.unicamp.br

Abstract

This paper presents the Reflective State pattern that is a refinement of the State design pattem

[GHN95] based on the Reflection architectura1 pattem [BMRS+96]. This pattem proposes a

solution for some design decisions that have to be taken in arder to implement the State pattem,

such as the creation and the control of State objects and the execution of state transitions. When

the object has a complex dynamic behavior, its implementation can also become very complex.

The Reflective State pattem implements the control aspects in the meta levei, separating them

frorn the functional aspects that are implemented by the Context object and the State objects

located at the base levei. This pattem provides a solution that is easier to understand, extend and

reuse than the State pattern.

1 Introduction
The State design pattem[GHN95] is a well known pattern that has been used in vanous

app1ications[JZ91] [Rub94]. lts purpose isto a11ow an object to change its behavior when its

internai state changes, implementing state-dependent services by rneans of State classes and

using the delegation mechanism. The implementation guidelines of this pattern discusses some

design decisions that should be taken in order to irnplement the states and to control the

transitions. Various patterns have discussed the implementation aspects ofthe State pattern, and

have proposed refinements [DA96], variations [OS96] and extensions [Pa197]. However, when a

class has a cornplex behavior, the irnplementation of the control aspects of the State pattern can

also become complex.

1 Copyright 1998, Luciane Lamour Ferreira.
Pennission is granted to copy for the PLoP-98 conference.

9

The Reflection architectural pattern [BMRS+96] providos a rnechanism for dynarnically

changing structure and behavior of software. lbis pattern separates an application in two leveis:

a base levei and a meta levei. The base levei defines the application's logic where objects

implement the functionalities as defined on its functional requirements. The meta levei consists

of meta-objects that encapsulate and represent information about the base-levei objects. The

meta-objects can perfonn management actions that dynamically interfere with the current

computations of the corresponding base-levei objects. The relationship among the base-levei

objects and the meta-levei objects is specified by means of a meta-object protocol (MOP).

Generally speaking, a meta-object protocol establishes the following interactions [Lis98]: (1)

attachment of base-levei and meta-levei objects, that can be static or dynamic, and on a one-to

one or many-to-one meta-objects to base-levei objects basis; (2) reification, which means

materialization of infonnation otherwise hidden from the program, such as incoming and

outcoming messages, arguments, data and other structural infonnation; (3) execution, which

consists of meta-level computation that interferes in the base-level behavior transparently

through the interception and reification mechanisms; (4) modification, which is the capability of

the meta-objects of changing behavior and structural base-level aspects. The Reflection

architectural pattem has been previously applied for achieving separation of concems in various

domains, such as fault tolerance [BRL97] [Lis98] and distribution [OB98][Buz94].

In this work we present the Reflective State pattem which uses the Reflection

architectural pattem to separate the State pattem in two leveis, the meta levei and the base level,

implementing the control of states and transitions by means of meta-objects. The Reflective State

is a generic pattern that intends to solve the same problems of the State pattem in the same

context. However, this pattem also implements complex dynamic behavior of an object

transparently, separating its control aspects from the functional aspects.

2 The Reflective State Pattern
Intent

To separate the control aspects related to states and their transitions from the functional aspects

of the State pattem. These control aspects are implemented in the meta levei by means of the

meta-objects which represent the state machine's elements (FSM elements).

10

Motivation

Consider the same motivation example of the State pattem[GHN95]: a class TCPConnection

that represents a network connection. F o r simplicity, we restrict the TCPConnection to having

two basic states: established and closed. Depending on its current state, it can respond differently

to the client's requests. For example, the implementation of an openO request depends on

whether a connection is in its closed state or established state. Moreover, the TCPCmmection

object can change its current state when an event occurs or when a condition is satisfied. In this

example, the same request openO also represents an event that causes a transition to the

established state. There is also a guard-condition associated with this transition, meaning that the

transition will only be triggered if the TCPConnection object bas received an acknowledge. A

transition can also have an action associated with it, that is perfonned in the moment the

transition is triggered. In our example, when a TCPConnection changes to the established or

closed state, it can display a message. Therefore, a request can represent a servíce that has a

state-specific implementation and an event that causes a transition to the next state. This dynamic

behavior is specified by the state diagram ofFigure 1.

! Close [ifreceived ACK
o f f!N]/display a message

Closed Establisbed

Open [if r.eceived SYN &

ACK]/ dtSplay a message

Figure 1: State diagram ofthe class TCPConnection using the UML notation.

Context

The behavior o f an object depends on its i~temal state, so the implementation of its services can

be different for each possible state. Furtherbore, an object can have a complex dynamic behavior
I

specified by a state diagram o r a statechaft[Har87]. The state diagram is composed by a triple

(states, events/guard-conditions, state transitions). The state transition function depends on the

current state and the input event and/or a guard-condition. The statechart extends the state

diagrarn with the notion o f hierarchy, concurrence and cornmunication.

There are several contexts where the pattern can be applied, for instance, in reactive

systems that receive events (outside stimuli) and respond to them by changing their state and,

11

consequently their behavior. Other examples ofuse can be in the context of distributed systems,

control systems, graphical user's interface systems, fault-tolerant systems, etc. These systems

can have classes with a complex dynamic behavior specified by a complex and large statechart.

Ideally, the design and implementation of the corresponding state machine using object-oriented

approach should be made in a structured manner, representing the states and their transitions as

explicitly as possible, to reduce the complexity o f the system.

Problem

We can use the State pattern to localize state-specific behavior in State subclasses, which

implement the state-dependent services. The Context object delegates the execution of its

services to the current State object. However, the implementation ofthe State pattem deals with

design decisions related to the control aspects of the state machine. These decisions are

summarized in the following questions:

(1) Where should the definition and initialization ofthe possible State objects be located?

(2) How and where should the input events and guard-conditions be verified?

(3) How and where should the execution of state transitions be implemented?

When the object has complex behavior, implementation resulting from these decisions

can become complex as well. According to the implementation guidelines of the State pattem,

the control aspects can be located either in the Context object or in the State objects. In the frrst

approach, the Context object is responsible for creating and initializing the State objects,

maintaining the reference to the current State object, and performing the transition to the next

state. Moreover, it is also responsible for delegating the state-dependent service execution to the

current State object. In the second approach, the State objects have the knowledge of their

possible next states, and have the responsibilities for handling the events or conditions that

causes transitions. Both approaches have some disadvantages:

• Centralizing the control aspects in the Context object can make its implementation very

complex since its functional aspects are implemented together with the control aspects.

Moreover, it makes the Context class highly coupled with the State classes, which makes it

difficult to reuse and extend them.

• Decentralizing the responsibilities of the transition logic, by allowing State subclasses

themselves specify their successor states, can rnake them highly coupled, introducing

12

implementation dependencies between State subclasses. It also prevents the State class

hierarchy from being extended easily.

The following forces are related with these implementation problems:

• Ideally, lhe implementation of lhe control aspects of lhe State pattem should be separated

from lhe functional aspects implemented by the Context object and lhe State objects. These

control aspects should be implemented transparently, ideally in a non-intrusive manner, so

that they do not complicate the design.

• The Context and State class hierarchies should be loosely coupled, to facilitate their

reutilization and extension.

• The State subclasses should also be independent, wilh no implementation dependencies

between them, so that the addition of a new subclass does not affect other subclasses.

Solution

To solve the problems related with the implementation aspects of the State pattem we propose

the use ofthe Reflection architectural pattern [BMRS+96]. The State pattem can be separated in

two leveis: the finite state machine (FSM) levei and the application levei, which correspond to

the meta and base levei of Reflective architectures, respectively. The FSM-level classes are

responsible for implementing the contrai aspects of the finite state machine, separating them

from the functional aspects that are im:plemented by the Context class and the State classes at the

application levei, such as in the State pattem. In the FSM levei, the elements ofthe state diagram

(states and transitions) are represented by the FSMState and the FSMTransition class hierarchies.

The state machine's controller is represented by the FSMController class. The interception and

materialization mechanisms provided by the meta-objects protocol make the execution of the

contrai aspects transparent, oblivious to the application-level objects. Figure 2 shows the class

diagram o f the Reflective State pattern, where the main contribution is above the line, at the FSM

leve!.

Structure

13

•

~ ; ;

'"' m" '
b;;;d!;<)- '' < Next Stare

I
<<Reflect>> Li' Li'

' :
«Reify>>

IT=AB '•=" '
FSM levei :

;· ' ;

....... , ---- -
" ' '

ontext

•='"" I Cliont
service()

"i' <f'Refleot»

'

'
I··'""" I'""'""

Figure 2: Class diagram ofthe Reflective State pattern using the UML notation.

To illustrate our solution, we can design the TCPConnection exarnple using the

Reflective State pattem structure. Figure 3 shows the object diagrarn for an instance of the

TCPConnection class, with its respective State objects and meta-objects which implernent the

TCPConnection's state machine ofFigure 1.

~:FSMControllerTCP
currentState

I I
I.FSMCioscd I :FSMEstablished

<<Reify>>
·rJ NextS~x State :a!~

NextT nsition NextTra sition

«R flect>> I :FSMTransCE :FSMTransEC

SM leve! <<Refle » «R jtleo F

A - ppllcatiOri"li!vel ------ ----· ·····---- -------- f- -----------. -------- ,.,.,_._ ... ·"-·-·"---·-- -

pclient :TCPConnectil.ln l 1 :TCPC!l.lsed I 1 :TCPEstablished 1

Figure 3: Ao object diagram for a TCPConnection instance, applying the Reflective State pattem.

The states of the TCPConnection are represented by the TCPEstablished object and the

TCPClosed object at the application levei, which implement the state-dependent services. The

FSMEstablished and FSMClosed meta-objects are responsible for initializing their

corresponding State objects, and controlling the execution of the state-dependent service. The

FSMTransition meta-objects represent the transitions of the statechart and they are:

FSMTransEC (established-to-closed transition) and FSMTransCE (closed-to-established

14

transition). Each FSMTransition has information about the transition function (the event, the

guard-conditions and the exit action) that should be verified before a transition is triggered. The

FSMControllerTCP meta-object maintains a reference to the current FSMState meta-object, and

changes it when a FSMTransition signals that a transition has occurred. The FSMControllerTCP

is responsible for intercepting and materializing all client's service requests targeted to the

TCPConnection object.

Participants

The responsibilities ofthe pattem classes are presented using the CRC Cards notation.

FSMController

t...Iass r :'!llVll....:ontrouer Louaoorators

• Configures the FSM levei, instantiating and n the FSM levei:
initializing the concrete FSMState and FSMState
FSMTransition subclasses, according to the state 1- FSMTransition
diagram specification.

• Intercepts ali messages sent to the Context object. n the application levei:

• Maintains the reference to the FSMState • Context
metaobject that represents the current state, and
delegates to it the handling ofthe intercepted
messages.
Performs the state transition, changing the
reference to a new current FSMState metaobject,
that is passed by a FSMTransition object.

FSMState

IClass J:'SMState t...ouaoorators

• Defines an interface for handling an event that n the FSM levei:
represents a state-dependent service. FSMTransition

1- Defines an interface for initializing the State
object at the app!ication levei. n the application levei:
Defines a method that initializes itself with a list • State
ofFSMTransition references that represent the
transitions that can exit from this state.

15

FSMConcreteState subclasses

Class FSMConcreteState l-Ottaoorators

• Handles ali events delegated to it by the n the FSM levei
FSMController. • FSMConcreteTrans subclasses
Creates and initializes the corresponding State
object at the application levei, and delegates to it In the application levei
the execution of the state-dependent services. ConcreteState subclasses

• Broadcasts each event to the FSMT ransition
metaobjects so that they can verify ifthe event
causes a transition.
Receives the result o f the service execution from
the state object at the application levei, and can
also handle the result, ifnecessary.

• Returns the result o f the service execution to the
FSMController.

FSMTransition

1uass r ,).JVll ransitton Couaoorators

• Defines an interface to handle transitions . ~ the FSM levei

• Defines a method that initializes itself with a • FSMState
reference to a FSMState metaobject that • FSMController
represents the next state to be activated when the
transition is triggered.

FSMConcreteTrans subclasses

1uass oncreteJ rans Lollaborators

Has ali infonnation that defines a transition n the FSM levei
function, i.e., the current state, the eventlguard- 1- FSMConcreteState subclasses
condition and the next state. 1- FSMController

1- Verifies if an event causes a transition andlor if a
guard-condition is satisfied.

• Ifthe transition is triggered, it requests the
FSMcontroller metaobject to change its current
state, passing to it the reference to the next
FSMState.

16

Context class

!Liass Lontext l:ollaborators

Defines the service interface of interest to clients, n the application levei:
as defined in its functional requirements. Others application classes

State class

uass ~:tate '-..Ouaoorators

Defines an interface for encapsulating the n the application levei
behavior associated with a particular state of • Context
Context (as defined in the State partem).

ConcreteState subclasses

1uass concrete::state '-..OIIaDorators

Each subclass implements a behavior associated n the application levei
with a state ofthe Context(as defined in the State • Context
partem).

Collaborations

The meta-objects representa direct mapping ofthe state diagram elements. lhe configuration of

the FSM levei consists of: instantiation of each concrete subclass of the FSMState class and

FSMTransition class; initialization of the FSMState meta~objects with their correspond.ing

FSMTransitions meta~objects; initialization of each FSMTransition meta~object with its

corresponding next FSMState meta-object. lhe FSMController meta~object is responsible for

implementing all these configurations according to the state diagram' s specification o f a Context

class.

The meta-objects are responsible for controlling the execution of state~dependent services

and the state transitions (Figure 4). The interactions between the FSM meta~objects and the

application-level objects are performed by means of a meta~object protocol (MOP). The MOP's

kernel should implement the interception and materialization mechanism so that the meta-objects

can perform the extra computation related to the execution of the state machine. There are

several different MOPs implementations, thus we do not show a specific MOP's interaction;

instead we make the assumption that a MOP's implementation performs all communications

17

between the base and meta levels transparently, and materializes the operation with its basic

information. The materialized operation can be represented as an object, which should be passed

as a parameter of the handleO method. In Figure 4, the dotted line represents a MOP's

implementation. After the operation is materialized, the MOP's kemel delivers it to the

FSMController meta-object which initializes the handling ofthe materialized operation.

MOP

j=~j :Context j j:ConcreteStateA I:FSMControllerll :FSMConcret: 1 l.FSMConcretc;: 1

J 1 StateA 1 TransAS 1

ervice(
...... , "····•

>---+-----+_-,C:_-?--"> , Handle(op)

rrhe··· -õr-:-s-kenier··"········-rr.~.-·: ~--/ !--~
hnterc pts and materializ ~ ... ::t~/~~ i
(the s ice request mess e i Serv~ce()
(creati g an Operation ob ect i

i

HandleEvt(op)

[state-dependent
service""TRUE]

Se~iceRe~liil-··· .. ····-···-·--··-·- ······• Handle T ransition(op

• i Result
................................ , ..• ····- ····-·········-·-················" ;-- ··--·------

Result pplicatloni FSM
eve\ i levei

ChangeStateO

.............................
Result

[event triggers
transition=TRUE]

'Th"ê"MõP"'""ST<.emeF: ····1
" ···--- ~delivers the serv1ce;. ·:,:

!result to the client.

Figure 4: Interaction diagram for the Reflective State Pattern

The FSMController meta-object intercepts the service request targeted to the Context

object and delegates its handling to the current FSMConcreteState meta-object. The current

FSMConcreteState meta-object verifies ifthe request corresponds to a state-dependent service. If

so, the current FSMConcreteState meta-object delegates the service execution to its

corresponding ConcreteState object at the application leve!. lt also delegates the event' s handling

to the FSMConcreteTrans meta-object so that it can decide whether the message corresponds to

an event that causes a transition ar not. A FSMConcreteState can have a list of FSMTransitions,

and it can delegate the handling of the transition sequentially ar concurrently. If a

FSMConcreteTrans meta-object verifies that its transition should be triggered, it requests the

18

FSMController meta-object to change its current State, passing to it the reference to the next

FSMConcreteState meta-object. After the service request has been handled, the service result is

first returned to the FSMController meta-object, and then to the MOP's Kemel which delivers

the result to the client.

Consequences

The Reflective State pattem localizes state-specific behaviors and partitions behavior for

different states, as in the case ofthe State pattem. The state objects make implementation ofthe

state-dependent services more explicit, and consequently, the design becomes more structured

and easier to understand, maintain and reuse.

The Reflective State provides a solution for implementing the control aspects of the State

pattem, separating them frorn the functional aspects implemented by the Context object and State

objects. This characteristic is provided by the Reflection architectural pattem. This solution

makes the implementation of the dynamic behavior of a class (that might be specified by a

complex state diagram) more explicit, also making the design more structured, keeping the

complexity ofthe system under control.

The State and Context class hierarchies are independent and they can be designed to be

highly coherent and loosely coupled, facilitating the adaptability of the system to the changes of

requirements, its reuse and extension.

The Reflective State pattern has some limitations related to the use of the reflective

architecture. In general, a reflective architecture increases the number of indirections in the

execution o f a method, causing an impact in the system' s performance.

Implementation

The Reflective State pattem proposes some criteria for the implementation decisions that have to

be taken in order to implement the State pattem. It also adds other implementation decisions,

mainly related to the use of reflective programming.

1. Where should the definition and initialization ofthe possible State objects be located? The

State objects can be defined and instantiated by their respective FSMState meta-objects. The

State objects' creation can be implemented using the Factory Method pattem. The FSMState

19

hierarchy at the FSM levei corresponds to the State hierarchy at the application levei. The

abstract FSMState class defines an interface for creating State objects, the abstract method

initStateO, that should be overridden in the FSMState subclasses, so that the concrete State

objects can be created. This solution makes the extension of the State hierarchy easier: if a

concrete State class is added, a FSMState class should also be added so that it can instantiate

this State object. The FSMController can be reconfigured dynarnically, adding a new

FSMState object at runtime. A new FSMTransition meta-object that refers to the new

FSMState meta-object can also be added in the same manner. If dynamic reconfiguration is

desired, the interface of the FSMController should define methods for adding FSMStates and

FSMTransitions. Some MOP can also implement the reconfiguration mechanism in a more

transparent manner.

Another possible solution is to implement only one generic concrete FSMState class when

the handleEvtO method does not need to be overridden to implement specific behavior

related to a concrete State class. Then, instead of using subclassing to create the possible

State objects by means ofthe Factory Method initStateO, one can parameterize the FSMState

instance with the concrete State object that the FSMState should refer to. In languages that

treat classes as first-class objects, like Srnalltalk and Java, the FSMState instances can be

initialized with the respective concrete State class object, that can be the creator of its

instances, and acts like prototypes. Using parameterized FSMState meta-objects instead of

FSMState subclasses reduces the nwnber o f classes o f the FSM levei, although the nwnber o f

instances is the same. It also makes recon:figuration process easier, since new states can be

added by instantiating new FSMState objects pararneterized with the new concrete State

class, instead ofusing subclassing to create the new State object.

As discussed in the State pattem implementation section, the State objects can be

implernented as the Singleton pattem, so that rnany FSMState meta-objects of different meta

state machines can share the same application-level State objects.

2. How and where should the input events and guard-conditions defined in the state machine be

verified? The Reflective State pattem establishes a well-defined criterion for this issue. The

events of the state machine correspond to the method calls or field accesses targeted to the

Context object, that are materialized and presented to the meta-objects, The FSMTransition

20

meta-object is responsible for verifying the input event (the name of the method, the

arguments, the result type) and the guard-conditions associated with the transition. The

guard-conditions are boolean expressions that assoe iate incom.ing arguments, attribute' s

values or methods of the Context object. lfthe transition is verified, the FSMTransition meta

object should request the FSMController meta-object to change its current state, passing a

reference to next FSMState as a parameter.

3. Where should the configuration of the FSM levei be performed? The FSMController class

interface defines some methods which perform the configuration o f the state machine at meta

levei. The CreateFSMStatesO and CreateFSMTransitionsO methods should instantiate each

meta-object according to the states and transitions of the Context class' statechart. The

ConfigFSMStatesO method should configure each FSMState meta-object with its

corresponding next FSMtransition meta-objects and the ConfigFSMFransitionsO method

should configure each FSMTransition meta-object with a reference to its next FSMState

meta-object. In order to obtain reusability, the FSMController class can be implemented as

an Abstract Factory pattem. The FSMController class can define abstract methods to create

and configure the meta-objects that implement a specific state machine. The concrete

subclasses of the FSMController should override these methods creating and configuring the

FSMState and the FSMTransition meta-objects according to a statechart specification for a

specific Context class. This solution also makes the extension o f the Context class easier: if a

Context subclass is defined and the statechart is extended, a new FSMController subclass

should also be defined, and it can redefine the configuration methods so that new FSMState

and FSMTransition subclasses can be instantiated according to the new statechart

specification.

These three implementation guidelines have assumed basic MOP's characteristics. Thus,

it is very important to choose a MOP that implements these basic characteristics and gives a full

support to the main reflection mechanisms. The MOP should implement the interception and

reification mechanisms, so that the meta-objects can inspect the service request targeted to the

Context object at the application levei, and also perform the extra computation related to the

execution ofthe state machine. Ideally, the MOP should also provide some base classes that can

21

be derived by the meta-objects, so that they can implement meta levei behavior. For instance, the

classes ofthe meta levei can be derived from a Meta-object base class, which defines the default

behavior of the meta-objects, such as the method handleO, called by the MOP's kemel. Other

use fui base classes may be a class to represent an operation (a service request materialized with

its essential information), or a class to represent the result of an operation that has been

performed. The result objects can also be presented to the meta-objects so that they can inspect,

modify or replace them.

The pattem can also be implemented using a more restrictive MOP, but it requires harder

programming work and it can also impose some restrictions. For instance, one can implement the

FSM levei classes and the application levei classes separately, and can make the connection

between the two leveis explicitly through delegation mechanisms, instead of using the

interception mechanism provided by the MOP. This solution makes the control aspects of the

FSM execution less transparent and more intrusive for the application classes, but it can be a

possible solution, maybe better than to implement the FSM control within the application

classes.

Known Uses

The implementation of state machines has been widely discussed in the development of reactive

systems. These systems tend to be very large and complex, and the implementation of a complex

state machine is nota trivial task. It has motivated the study ofthe state machine implementation

based on an object-oriented approach [SM92] implementing the states and transitions more

explicitly. This approach has also been discussed in many related design pattems [DA96, OS96,

Ran95, Pal97]. The use ofthe computational reflection to implement the state machine has been

discussed in [deC96]. This work also implements the control ofthe transitions at the meta levei,

and defines the State objects and the Context object at the base levei.

We are applying the Reflective State pattem in the development of a framework for the

environmental fault-tolerant train controller's domain. An environmental fault-tolerant train

controller system implements some components that represent environmental entities that may

be faulty, such as sensors and switches. These components, in the solution domain, should reflect

the normal and abnormal behavior phase of the environmental entities. The work of Rubira

22

[Rub94] proposes a solution for the design of environmental fault-tolerant components using the

State pattern, implementing the normal and abnonnal behavior phases by means of State objects.

In the framework's implementation, we should also consider some requirements such as

extensibility to specific application requirements. The extensibility requirement has been the

motivation for our study ofthe State pattern design decisions. Using the Reflective State pattern,

the fault-tolerant component hierarchy (related to the Context hierarchy in the general structure)

and the State hierarchy beco me more independent, and consequently, easier to extend and reuse.

Also, the execution ofthe transitions and state-dependent seiVices become more explicit, making

the design easier to Widerstand, which are essential features of a framework.

We are using the Reflective State pattem to implement the enviromnental fault-tolerant

components of the framework; in the future, we intend to implement other fault-tolerance

requirements, such as software and hardware fault tolerance. We have defined a System of

Pattems for the fault -tolerant domain [FR98] which has the Reflective State pattern as the most

generic pattern. Other pattems of the System derive from the Reflective State pattern structure,

adding fault-tolerance semantics.

To implement the framework, we are usmg the MOP of Guaraná [OGB98], which

emphasizes flexibility, reconfigurability, security and meta-levei code reuse. We are using a free

Java-based implementation of the Guaraná reflective architecture that is currently available, and

has been developed in the Institute ofComputing ofthe State University ofCampinas.

Related patterns

In the literature, there are some recent patterns that have discussed the implementation problems

related to the State pattern. The work of Dyson and Anderson [DA96] presents a state pattern

language that classifies the State pattern into seven related pattems that refme and extend this

pattern. The pattem language also discusses the implementation aspects of the state transition

control and the initialization of the State objects. However, these patterns do not separate the

implementation o f the transition contrai aspects from the functional aspects.

The work of Odrowski and Sogaard [OS96] defines some variations of the State pattern

that solve implementation problems related to objects' state and the dependency between states

of related objects. This work shows solutions for the problem of combining the State pattem with

other pattems, however it does not discuss the problem o f transition contrai.

23

Alexander Ran's work [Ran95] presents a family of design pattems lhat can be used to

cope with the implementation of complex, state-dependent representation and behavior. This

pattern family is presented in the form of a design decision tree (DDT), that separates state

behavior in State classes, and implements the control of transitions and guard-conditions

explicitly, using transition methods and predicative classes, respectively. The Reflective State

pattem proposes the separation of these control aspects by means of the FSMTransition meta

objects that encapsulate the information about the transition functions.

The paper by Günlher Palfinger [Pal97] presents an extension of lhe State pattem,

defming a State Mapper object that maps events to actions, using a list of event/action pairs. The

list can be added/modified/deleted at runtime, providing easy adaptation to new requirements

dynamically. In a similar manner, the Reflective State pattem can also be adapted dynamically

using the meta-object protocol to implement changes of the state machine, such as addition of

new states and transitions.

Sample Code

We exemplify the implementation ofthe TCPConnection class using Guaraná's MOP

[OGB98]. It defines a base class, called Meta-object, lhat encapsulates lhe meta-levei behavior,

providing all interface and essential implementation for a meta-object so that it can handle

operations, results, etc. The meta-object protocol of Guaraná establishes that an object can be

directly associated with either zero or one meta-object, and this association is dynamic. The

kemel of Guaraná implements a method reconfigureO that associates an object with a meta

object, and can also replace an old meta-object with a new one, allowing dynamic meta

reconfiguration. The MOP of Guaraná also defines a more specialized kind of meta-object, the

Composer, which groups meta-objects that are commonly used together and delegates the

operation's handling to them. The Composers allow many meta-objects to be indirectly

associated with an object. The meta-objects that are directly and indirectly associated \Vith an

object form its meta configuration. A more specialized kind of Composer is the

Sequentia!Composer that delegates lhe operation's handling sequentially.

The follo\Ving example presents a partial Java code for the TCPConnection example,

using the Guaraná's MOP [OGB98]. The meta-object classes that implement the state machine

24

are derived. from the following base classes of Guaraná: Meta-object, Composer and

SequentialComposer.

FSM levei classes

FSMController class: The FSMController class is derived from the Composer class of Guaraná,

since the FSMController groups the meta-objects that implement the meta state machine, and

delegates the operation's handling to them. In fact, the FSMController meta-object delegates

only to the FSMState objects which are also Composers (SequentialComposers) that delegate to

the FSMTransitions meta-objects.

import BR.unicamp.Guarana.*;

public abstract class FSMController extends Composer{

protected Meta-objectO fsmStatesArray;

}

protected FSMState currentFSMState;

protected abstract void createFSMStatesQ;

protected abstract void createFSMTransitions();

protected abstract void configFSMStates();

protected abstract void configFSMTransitions();

public final void config(){

createFSMTransitions();

createFSM States{);

configFSMTransitions();

configFSMStatesQ;

}

public void changeState(FSMState nextState){

currentFSMState = nextState;

}

public Result handle(Operation operation, Object object){

if (operation.isConstructorlnvocationQ)

}

11 retuming "null" means that the meta-objects do not handle constructor invocation

return null;

return currentFSMState.handle(operation,object);

25

FSMControllerTCP class:

import BR.unicamp. Guarana. *;

public class FSMControllerTCP extends FSMController{

protected FSMEstablished fsmEstablished;

}

protected FSMCiosed fsmCiosed;

protected FSMTransEC fsmTransEC;

protected FSMTransCE fsmTransCE;

protected void createFSMStatesQ{

fsmEstablished = new FSMEstablishedO;

fsmCiosed "'new FSMCiosedQ;

currentFSMState = fsmC!osed; 1/initializes with a default state.

}

protected void createFSMTransitionsQ{

fsmTransCE = new FSMTransCE(this);

fsmTransEC = new FSMTransEC(this);

}

protected void configFSMTransitionsO{

}

!/Configures the FSMTransitions with its next FSMStates

fsmTransCE.initProxState(fsmEstablished);

fsmTransEC.initProxState(fsmCiosed);

protected void configFSMStatesQ{

}

//Configures the FSMState meta-objects with the array of next FSMTransitions meta-object

fsmEstablished.initTransitions(new FSMTransitionO{fsmTransEC});

fsmCiosed.initTransitions(new FSMTransitionO{fsmTransCE});

ffinitiliazing the array of FSMStates that the FSMController delegates to.

fsmStatesArray = new FSMStateO{fsmCiosed,fsmEstablished};

FSMState abstract class:

import BR.unicamp.Guarana.*;

26

import java.lang.reflect. *;

public abstract class FSMState extends SequentiaiComposer{

protected State stateObject;

}

protected abstract void initState(Object object);

public void initTransitions(FSMTransition[] arrayNextTransitions){

//calls the method in the SequentiaiComposer base class.

super.setMeta-objectsArray(arrayNextTransitions);

}

FSMEstablished concrete class

import BR.unicamp.Guarana.*;

public class FSMEstablished extends FSMState{

public void initState(){

stateObject = new TCPEstablished();

}

public Result handle(Operation operation,Objed objed){

/Nerifies if an operation is a state dependent service.

String name = operatlon.getMethod().getName();

Class[] parameters = operation.getMethod().getParameterTypes();

llit can modify the parameter array if the state method defines another para meter, as a

/fTCPConnedion reference.

//
Result res = nul!;

if (stateObject ""'' null) initState(); //it's initialized only if it's necessary.

if (operation .isMethod I nvocation()){

Object resultObj;

try {

//retums a public method of the class.

Method methodEx = stateObject.getC!ass().getMethod(name,parameters);

Object[]arguments = operation.getArguments();

resultObj = methodEx.invoke(stateObject,arguments);

if (resultObj == null){

res = Result.retumVoid(operation);

}

else {

27

}

}

}

res = Result.retumObject(resultObj,operation);

}

}

catch (lllegalAccessException e1){

/Ido some exception handling

}

catch (NoSuchMethodException e2)0

catch (lnvocationTargetException e3)0

/JDelegates the operation's handling to the FSMTransition meta-objects sequentially,

/I calling the handleO method of the SequentiaiComposer

super.handle(operation,object);

/Jean do some handling with the result, unless it is returned

//
return res;

FSMClosed concrete class

import BR.unicamp.Guarana.*:

public class FSMCiosed extends FSMState{

public void initState(Object object){

stateObject = new TCPCiosedQ;

}

}

public Result handle(Operation operation,Object object){

}

INerity if an operation is a state dependent service, like the FSMEstablished dass does.

11 lt can inspect the result and does some handling.

FSMTransition abstract class

import BR.unicamp.Guarana.*;

import java.lang. reflect.Method;

public abstract class FSMTransition extends Meta-object{

protected FSMController fsmController;

protected FSMState nextState;

28

)

public FSMTransition(FSMController fsmController){

this.fsmController = fsmController;

)

public void initProxState(FSMState nextState){

this.nextState = nextState;

)

FSMTransEC concrete class

import BR.unicamp.Guarana.*;

import java.lang.refiect.Method;

public class FSMTransEC extends FSMTransition{

public FSMTransEC(FSMController fsmController){

super(fsmController);

)

public Result handle(Operation operation,Object object){

//define the transition function.

String eventName = "close";

protected int paramNum = O;

if (operation.isMethodlnvocation{)){

Method opMethod = operation.getMethod();

if ((eventName.equals(opMethod.getName())) &&

(opMethod.getParameterTypes{).length == paramNum)){

//the event is correct. lt can also test some guard-conditions using the "object" //parameter

lt

fsmController.changeState(nextState);

/lif the event and guard-conditions are verified

)

)

return null;

)

)

FSMTransCE concrete class

import BR.unicamp.Guarana.*;

29

import java.lang.reflect.Method;

public class FSMTransCE extends FSMTransition{

public FSMTransCE{FSMController fsmController){

super{fsmController);

}

}

public Result handle{Operation operation,Object object){

!!defines the transition function

/lverifies the transition testing the event na me and arguments o f the operation, and the

1/guard-conditions.

// ...
}

Application-level classes

The TCPConnection class and its respective State classes implement only their ftmctional

requirements, without any information about the execution contrai ofthe state machine.

TCPConnection class: The state-dependent methods do not have any irnplementation.

Optionally, they can present some default behavior that can be executed if a TCPConnection

object has not been associated with a FSMControllerTCP meta-object.

public class TCPConnection{

public TCPConnectionQ{}

public void openQ{

l/some default behavior;

}

public void close()O

1/other methods and attributes

}

TCPState class

public abstract class TCPState{

I/I f there are some state attributes, defines them here

public abstract close(TCPConnection);

30

public abstract open(TCPConnection);

}

TCPEstablished class

public class TCPEstablished extends TCPState{

public close(TCPConnection tcpCon){

1/it closes the connection

public open(TCPConnection tcpCon){

Jlit does nothing, because the Connection is already open.

}

}

TCPClosed class: The implementation is similar to the Established class.

TCPApplication class: This class represents the application class which implements the mainO

method. First, the mainO method creates a FSMControllerTCP meta-object and calls the method

configO that configures the FSMControllerTCP. Then, it creates a TCPConnection object and

calls the Guaraná reconjigureO method (which implements the Guaraná's Kemel). The

reconfigure O method receives three parameters: (1) a reference to the object to be recon:figured,

in this case, the TCPConnection object; (2) a reference to an oldMeta-object, if the object has

been already configured with another one, and in this case it is null; (3) a reference to a

newMeta-object, which the object is being reconfigured with, m this case, the

FSMControllerTPC meta-object.

public class TCPApplication{

}

public static void main(StringO argv){

}

FSMControllerTCP fsmControllerTCP- new FSMControllerTCPQ;

fsmControllerTCP .configQ;

TCPConnection aTCPConnection = new TCPConneclion();

Guarana.reconfigure(aTCPConnection, nu!!, fsmControllerTCP);

3 Acknowledgments
We would like to thank our shepherd Dr. Michel de Champlain for va!uable comments and

suggestions for improvement o f the pattem.

31

Tbis work is partia11y supported by F APESP (Fundação de Amparo à Pesquisa do

Estado de São Paulo), grant 97/11060-0 for Luciane Lamour Ferreira, grant 96/1532-9 for LSD

IC-UNICAMP (Laboratório de Sistemas Distribuídos, Instituto de Computação, Universidade

Estadual de Campinas); and by CNPq (Conselho Nacional de Desenvolvimento Científico e

Tecnológico), grant 131962/97-3.

4 References
[BMRS+96] F. Buschmann, R. Meunier, H Rohnert, P. Sommerlad, M. Stal. A System

[BRL97]

[Buz94]

[deC96]

[DA96]

[FR98]

[GHN95]

[Har87]

[JZ91]

of Patterns: pattern-oriented software architecture. Jolm Wiley & Sons, 1996.

L.E.Buzato, C.M.F.Rubira and M.L.Lisboa. A Reflective Object-Oriented

Architecture for Developing Fault-Tolerant Software. Journal ofthe

Brazilian Computer Society, 4(2):39-48, November, 1997.

L.E.Buzato. Management of Object-Oriented Action-Based Distributed

Programs. Ph.D. Thesis, University ofNewcast1e upon Tyne, Department of

Computer Science, December 1994.

M. de Champlain. A Design Pattem for the Meta Finite-State Machines.

Proceedings ofthe Circuits, Systems and Computers Conference (CSC'96),

Hellenic Naval Academy, Piraeus, Greece, June 1996.

P .Dyson and B. Anderson. State Pattems. Pattern Languages o f Program

Design 3, Addison-Wes1ey, 1997. Eds. R.Martin, D.Riehle, F.Buschmann.

L.L.Ferreira and C.M.F .Rubira. Integration ofFault Tolerance Techniques:

a System ofPattem to Cope with Hardware, Software and Environmental Fault

Tolerance. Digest o f FastAbstracts: FTCS'28 (the 28th Annual International

Symposium on Fault-Tolerant Computing), June 23-25, 1998, Munich, Germany,

pp. 25-26.

E. Gama, R. Helm, R Johnson e J. Vlissides. Design Patterns: Elements of

Reusable Object Oriented Software. Addison-Wes1ey Pub1ishing, 1995.

D.Harel. Statecharts: A Visual Formalism for Complex Systems. Science

ofComputer Programming, 8: 231-274, North-Holland, 1987.

R.E.Jolmson and J. Zweig. Delegation in C++. Journal ojObject-Oriented

Programming, 4(11):22-35, November 1991.

32

[Lis98]

[0898]

[OGB98]

[0896]

[Pal97]

[Ran95]

[Rub94]

[SM92]

M.L.B.Lisboa. A New Trend on the Development ofFault-Tolerant

Applications: Software Meta-Levei Architectures. Proceedings of the 1998

IFIP - !nternational Workshop on Dependable Computing and íts

Applications, Johannesburg, South Africa, January, 1998.

A.01iva, L.E.Buzato. An Overview ofMOLDS: A Meta-Object Library

for Distributed Systems. Technical Report IC-98-I 5, Institute of

Computing, State University o/Campinas, Aprill998.

A Oliva, L C. Garcia. and L.E.Buzato. The reflexive architecture of Guaraná.

Technical Report IC-98-14, Institute ofComputing, State University of

Campinas, April 1998.

J. Odrowski and P. Sogaard. Pattern lntegration- Variations ofState.

PLoP'96 Writer's Workshop. (http://www.cs.wustl.edu/-schmidt/PLoP-

96/Worshops.htm1).

G.Palfmger. State Action Mapper. PLoP'97 Writer's Workshop (http://st

www.cs.uiuc.edu/banmer/PLoP-97/Workshops.html).

A. Ran. MOODS: Mode1s for Object-Oriented Design ofState. Pattern

Languages ofProgram Design 2, Addison-Wesley, 1996. Eds.

J.M.Vlissides,J.O.Couplien e N.L. Kerth.

C.M.F. Rubira. Structuring Fault-Tolerant Object-Oriented Systems Using

lnheritance and Delegation. Ph.D. Thesis, Dept. of Computing Science,

University ofNewcastle upon Tyne, October 1994.

S.Shlaer and S.J.Mellor. Object Lifecycles: Modeling the World in States.

Prentice-Hall, New Jersey, 1992.

33

Reflective Design Patterns to lmplement Fault
Tolerance

Luciane Lamour Ferreira Cecília Mary Fischer Rubira

Abstract

Institute ofComputing- IC
State University of Campinas- UNICAMP

P.O. Box 6176, Campinas, SP 13083-970 Brazil
+55 019 788 5847

{9723ll,cmrubira}@dcc.unicamp.br

This paper discusses an object-oriented approach based on design patterns and computational

reflection concepts to implement non-functional requirements of complex systems. First, we

present the Reflective State pattem that is a refinement of the State design pattem based on the

Reflection architectural pattem The maio goal is to separate the control aspects of the state

machine implementation from the application's logic. Then, we present some variations of this

pattern for the fault-tolerance domain. The set of these variations originates a system of

reflective design pattems that helps the development ofwell-structured fault-tolerant systems.

Key words: Computational Reflection, Reflective Architecture, Design Pattems, Fault

Tolerance.

1 Introduction
Modem object-oriented systems nonnally include various non-functional requirements that can

increase the system' s complexity. The development o f sue h systems requires the use o f

appropriate techniques in order to contrai this additional complexity and to make the software

more structured and easier to understand, maintain and reuse. In this paper we present an object

oriented approach based on design patterns and computational reflection concepts to implement

non-functional requirements of complex systems. More specifically, we are considering contrai

aspects of system whose objects present complex dynamic behavior, as reactive systems, fault

tolerant systems, distributed systems, etc. Two design pattems are discussed: the State design

pattem [7] and the Reflection architectural pattem [1]. The State design pattem presents a

34

solution to implement state-dependent behavior of a Context object by means of state objects. It

allows the Context object to change its behavior dynamically using the delegation mechanism.

The Reflection architectural partem defines a software architecture that separates an application

into two parts: the base levei, which implements the functional requirements, i.e., the

application's logic, and the meta-levei, which implements the control aspects.

We present the Reflective State partem[6] that is a refinement o f the State design partem

based on the Reflection architectural pattem. The Reflective State pattem applies the Reflection

architectural pattem to implement a finite state machine in the meta-levei, by means of

metaobjects that represent state and transitions, and use the interception and materialization

mechanisrns for implementing the control aspects in a transparent manner. The Reflective State

pattem is a generic and domain-independent partem that can have variations to specific domains.

We show the variation of this partem to the fault tolerance domain, and present a system of

patterns that helps the development of fault-tolerant systems, considering hardware, software and

environmental fault tolerance. This system of partems is being used in the development of a

framework for the environmental fault-tolerant train controller's domain[ll], and has been

implemented using the Java programming language and the metaobject protocol (MOP) Guaraná

[10]. The Guaraná's MOP has many features that allow a system to achieve high degree of

flexibility, reconfigurability, security and meta-level code reuse, which are essential features for

frameworks.

This work is organized as follows. The Section 2 gives an overview of the Reflective

State pattem, discussing its four main elements: intents, context, problem and the proposed

solution. The Section 3 presents the system of pattem for the fault tolerance domain, introducing

the Software Redundancy partem, which is the most general partem for this domain, and its

variations for the hardware, software and envirorunental fault tolerance.

2 The Reflective State Pattern
Intents

To separate the control aspects related to states and their transitions from the functional aspects

of the State pattern. These control aspects are implemented in the meta-levei by means of the

metaobjects which represent the state machine's elements.

35

Context

The behavior of an object depends on its internai state, so the implementation of its services can

be different for each possible state. Furtherrnore, an object can have a complex dynamic behavior

specified by a state diagram or a statechart [8], which is composed by a triple (states,

events/guard-conditions, state transitions).

There are severa! contexts where the pattem can be applied, for instance, in reactive

systems[4] that receive events (outside stimuli) and respond to them by changing their state and,

consequently their behavior. Other examples of use can be in the context of distributed

systems[2], control systems[ll], fault-tolerant systems[3] [11], etc. These systems can have

classes with a complex dynamic behavior specified by a complex and large statechart.

Problem

The state machine's implementation for complex systems is not a trivial task. The contrai is

normally implemented together with the functional aspects of the application, which complicate

the design and make it difficult to understand, rnaintain and reuse. There are three main

questions that should be considered in the state machine implementations: (1) Where should the

defmition and initialization of the possible State objects be located?; (2) How and where should

the input events and guard-conditions be verified?; (3) How and where should the execution of

state transitions be implemented?

When the object has a complex behavior, the implementation of these issues can also

become very complex. Ideally, the implementation ofthe contrai aspects of state machine should

be separated from the functional aspects implemented by the Context object and the State

objects. Furthermore, these classes should be loosely coupled to facilitate their reutilization and

extension.

Solution

We propose the use of the Refl.ection architectural pattem [1] to separate the State pattem

structure in two leveis, the meta-levei and the base levei. The meta-levei classes are responsible

for implementing, the control aspects of the state machine, separating them from the functional

aspects that are implemented by the Context class and the State classes at the base levei. In the

meta-levei, the elements of the state diagram (states and transitions) are represented by the

36

MetaState and the MetaTransition class hierarchies. The state machine's controller is represented

by the MetaController class. The interception and materialization mechanisms provided by the

metaobjects protocol make the execution ofthe control aspects transparent, oblivious to the base

levei objects. Figure 1 shows the class diagrarn of the Reflective State pattem. The classes'

responsibilities are showed below.

MetaController

cre;:MetaStatesO

I I
createMetaTransitions() • •
configMetaTransitions() MetaState Next Transitions MetaTransition
configMetaStates()

~:~;~~;;;~~a·lUH>\} I • • mt ex e~!.
changeState() < Next State handleTram;itionO
bandle() handleEvt(} I •

'

K<Redect»
)__ A

MetaConcreteStateA MetaConcreteStateB MetaConcrete M<:taConcrete
' TransAS TransBA <<Rei'fY>=> ' '

Mot
' handleEvt() handieEvt()

a-leve! handleTransition() handleTransition()

·-·······-·······•·······-i---·················-~·-· - - ---------------------- -- ----- ------··--------·----------
State i

'
service() service()

Base levei ~~±::=·=~ Fontext

'-------'« Reflecti>>

.A
<~Refle

•
Concrete:StateA Concrete::;tateB

service() service()

Figure 1: Class diagram o f the Reflective State pattem using the UML notation.

MetaState: this class is responsible for creating and initializing the State objects at the

base levei. The MetaState metaobject receives a materialized service request and inspect it,

verifying whether it is a state-dependent service. lf so, it delegates the state-dependent service

execution to its respective State object at base level. Also, the MetaState class has reference for a

list of MetaTransitions that represent the transitions that exit from that state. The MetaState

metaobject broadcasts the handling of the incoming event to its MetaTransition metaobjects so

that they can verify if a transition should be triggered.

MetaTransition: this class represents the transitions o f the state machine specified for the

Context class. Each MetaTransition subclass has information about a transition function and is

37

responsible for verifying the incoming events and guard-conditions, and can also perform actions

associated with the transition. The MetaTransition class keeps a reference to the next MetaState

that can be reached by the transition. This reference is passed to the MetaController metaobject

so that it can change the current state o f the state machine.

MetaController: this class is responsible for handling the intercepted service requests

targeted to the Context object at the base levei. The MetaController metaobject is the primary

metaobject associated to a Context object and is responsible for delegating the handling of the

materialized operation to the current MetaState metaobject. In fact, the MetaController class

represents the execution controller of the meta state-machine, and the materialized operations

represent the incoming events for it. This class is also responsible for creating and confi.guring all

metaobjects (metaconfiguration) that implements a specific statechart specification for a Context

object.

3 A System of Patterns for the Fault Tolerance Domain
Techniques for achieving fault tolerance depend upon the effective deployment and utilization of

redundancy[9]. The incorporation of redWJ.dancy in a software system requires a structured and

disciplined approach, otherwise it may increase the complexity of the systern and consequently it

may decrease, rather than increase, the system's robustness. Ideally, one should consider the

integration of hardware, software and environmental fault tolerance to cope with the various

kinds of faults that can appear in a software system. Hardware fault tolerance[9] applies object

replication to enhance the system availability/reliability in the presence of hardware faults;

software fault tolerance[9] applies software redundancy by means of diversity of design to

tolerate software faults that can occur at the design, programming or maintaining phases of the

software development cycle, and environmental fault tolerance[ll] copes with faults that can

occur in real world entities in the problem domain and applies redundancy to represent the

different abnormal behavior phases that the correspondent objects in the solution domain can

present.

We propose a general pattern for the fault tolerance domain, which provides a unifonn

solution to the incorporation of redWidancy in an object-oriented fault-tolerant system. This

pattem, called the Software Redundancy pattem [5], defmes a common structure that can be

applied to the three kinds of fault tolerance to implement software redundancy. The Software

38

Redundancy pattem (Figure 2) presents the same structure of the State pattem, but 'With a

different semantic. The base-levei classes represent the fault-tolerant component and the

redundant components. The forrner defines the fault -tolerant services and the la ter defines the

mechanism to implement the redundancy. For instance, to cope with software faults (bugs) the

RedundantComp subclasses implement different versions of the services provided by the

FTComponent class. The meta-levei classes implement the mechanisms correspondent to each

fault tolerance teclmique. For instance, in the software fault tolerance, the MetaTransitions

subclasses are responsible for implementing either the Acceptance Test of the Recovery-Block

technique or the Voter ofthe N-Version technique. They should analyze the results and decide

whether a service has been executed successfully or not.

MetaController
• •

«Rii~» MetaTransition MetaState
Next Transitions, •

LLP MetaStateA MetaStateN MetaTransitionA MetaTransitionN

.2<1Reflect>> Mctalevel

-----.i---i·----------·-··------------~-------------------~--·

IFfComponent

\ ... ,.

RedundantComp

RedundantCompA • RedundantCompN

Figure 2: The Software Redundancy pattem [5]

Base levei

This pattem is an abstract pattern that should be customized to implement environmental,

software and hardware fault tolerance techniques, generating a system of pattems for the fault

tolerance domain. These pattems are closely related to each other, as shown by the Patterns

Relationship Tree (Figure 3). Each tree's level represents a pattem's abstraction levei, and the

patterns are connected by relationship of refinement, variation or combination.

39

Reflection
architectural pattem I State pattern I

Refinement \. /
Reflective State

pattem

Particularize to a specific domain 1
Software Redundancy

pattem

Particularize to specific problems 1
Software Fault combination Hardware Fault combination Environmental F ault

Tolerance pattem Tolerance pattern Tolerance pattern

Particularize t~fic tec~es / ~ 1
[N-Version l [Recovery-B!ock l Passive Replication Active Rep!ication Delegation to Exceptional

Objects

Figure 3: Pattems-relationship tree for the fault tolerance domain.

In the Environmental Fault Tolerance pattem, redundant components correspond to

exceptional objects that encapsulate different service implementations, which represent the

normal and abnormal behavior phases o f these components [11]. A state transition occurs when

an exception signals that the component has changed from the normal to the abnormal behavior

phase. To handle a state dependent service, the current MetaState metaobject should delegate its

execution to the state object at the base levei. The current MetaState metaobject should also

broadcast the event handling to the MetaTransitions metaobjects, so that they can verify if the

event causes a state transition.

In the Software Fault Tolerance pattem, redundant components correspond to the

different versions of the fault-tolerant component services. These versions are encapsulated by

objects at the base levei. A MetaState metaobject has a reference to a version object at base levei

and delegates to it the execution o f the services. The result o f the service execution is returned to

the MetaState metaobject. Then the MetaState metaobject delegates this result for the

MetaTransitions which handle them. For example, a MetaTransition metaobject can implement

either the Acceptance Test of the Recovery-Block technique or the Voter of the N-Version

technique.

40

In the Hardware Fault Tolerance pattem, the redundancy is provided by object

replication. F o r instance, if a primary copy fails, a secondary copy can be executed to provi de the

same service. The redundant copies can be located in different computers in a distributed system,

and the MetaState metaobjects are responsible for implementing the transparency of locality. The

MetaState has a reference to the remete object, and should initia!ize it with the current state of

the system and control the execution of the services through the network. The MetaTransitions

are responsible for handling the run-time exceptions generated by a faulty copy, and activating a

secondary copy.

These concrete design patterns can be combined to deal with hardware, software and

environmental faults at the same time. A possible sequence for applying the pattems is the

following. First, one can apply the environmental fault tolerance pattern to cope with

environmental faults. Then, the software fault tolerance pattern can be applied to implement the

n-versions of the state objects. Finally, the hardware fault tolerance pattem can be applied to

implement the replication of the redundant components. Other combinations of these pattems are

also possible to enhance the system reliability/availability, and they will depend on the system's

requirements.

4 Acknowledgments
This work is partially supported by FAPESP (grant 97111060-0) and CNPq (grant 131962/97-3)

for Luciane Lamour Ferreira; and by FAPESP (grant 96/1532-9) for LSD-IC-UNICAMP

(Laboratório de Sistemas Distribuídos, Instituto de Computação, UNICAMP).

5 References
[1] Buschmann, F., Meunier, R., Robnert, H., Sommerlad, P., Stal, M. A System of Patterns:

Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

[2] Buzato, L.E. Management of Object-Oriented Action-Based Distributed Programs. Ph.D.

Thesis, University of Newcastle upon Tyne, Department of Computer Science, December

1994.

41

[3] Buzato, L.E., Rubira, C.M.F., and Lisboa, M.L. A Reflective Object-Oriented Architecture

for Developing Fault-Tolerant Software. Journal of the Brazilian Computer Society, 4(2):39-

48, November 1997

[4] De Champlain, M. A Design Pattem for the Meta Finite-State Machines. Proceedings ofthe

Circuits, Systems and Computers Conference (CSC'96), Hellenic Naval Academy, Piraeus,

Greece, June 1996.

[5] Ferreira, L.L., and Rubira, C.M.F. lntegration of Fault Tolerance Techniques: a System of

Pattern to Cope with Hardware, Software and Environrnental Fault Tolerance. Digest of

FastAbstracts: FTCS'28 (the 28th Annual International Symposium on Fault-Tolerant

Computing), June 23-25, 1998, Munich, Germany, pp. 25-26.

[6] Ferreira, L.L., and Rubira, C.M.F. The Reflective State Pattem. Proceedings of the 5th

Pattern Languages of Programs Coriference (PLoP '98), August 1998, Monticello, Illinois,

USA.

[7] Ganuna, E., Helm, R., Jolmson, R. and Vlissides, J. Design Patterns: Elements of Reusable

Object Oriented Software. Addison-Wesley, 1995.

[8] Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer

Programming, 8: 231-274, North-Holland, 1987.

[9] Lee, A., and Anderson, T. Fault Tolerance: Principies and Practice, Springer Verlag, 1990.

[lO] Oliva, A., and Buzato, L.E. Composition ofMeta-Objects in Guaraná, Proceedings ofthe

OOPSLA '98 Workshop: Rejlective Programming in C++ and Java, Vancouver, Canada,

October 1998.

[11] Rubira, C.M.F. Structuring Fault-Tolerant Object-Oriented Systems Using Inheritance

and Delegation. PhD thesis, Dept. of Computing Science, University of Newcastle upon

Tyne, October 1994.

42

Resumo do Capítulo 2

Este capítulo apresentou dois artigos que documentam novos padrões de projeto. O primeiro

artigo documentou um refmamento do padrão de projeto State utilizando uma arquitetura

reflexiva. O principal objetivo é obter a separação dos aspectos de controle de urna máquina de

estados dos aspectos funcionais da aplicação. O segundo artigo descreveu um sistema de padrões

que propõem soluções para a implementação de técnicas de tolerância a falhas, definindo

variações para o padrão Rejlective State.

O padrão Rejlective State é um padrão genérico que pode ser utilizado em contextos

semelhantes ao do padrão State original. O sistema de padrões para o domínio de tolerância a

falhas oferece mais detalhes de como a mesma estrutura do padrão Rejlective State pode ser

utilizada com diferentes semânticas para a implementação de diferentes técnicas de tolerância a

falhas. Nós utilizamos a variação do padrão Reflective State para tolerância a falhas de ambiente

no projeto e implementação dos componentes tolerantes a falhas do framework para

controladores de trens. No capítulo 4 nós apresentamos com mais detalhes como este padrão foi

aplicado no projeto detalhado do framework.

A implementação do padrão Reflective State genérico representa também umframework

para a implementação de máquinas de estados. Este framework pode ser estendido através de

configuração e/ou derivação, de acordo com as discussões sobre a implementação do padrão

Reflective State apresentadas no primeiro artigo. A utilização da arquitetura reflexiva do Guaraná

[Oli98] proporcionou uma estrutura de meta-nível facilmente reconfigurável, podendo-se

inclusive obter a reconfiguração da máquina de estados em tempo de execução.

O próximo capítulo apresenta os estilos de arquiteturas que foram utilizados no projeto da

arquitetura do framework.

43

Capítulo 3

Arquiteturas de Software e Estilos
A arquitetura de um sistema de software compreende os componentes computacionais e as

interações entre estes componentes, definindo também a relação entre os requisitos e os

elementos de software [SG96]. Um estilo de arquitetura define um padrão para a estruturação e

organização geral de urna classe de sistemas. Um estilo define um vocabulário de componentes e

conectores e um conjtmto de restrições de como estes elementos de arquitetura podem ser

combinados para definir a arquitetura de um sistema.

Na construção de sistemas de software complexos, que incluem vários requisitos não~

funcionais tais como tolerância a falhas e distribuição, é essencial a escolha adequada de estilos

de arquitetura que ofereçam soluções para manter a complexidade adicional sob controle. Em

particular, no desenvolvimento do jramework para controladores de trens, nós estávamos

interessados em estilos de arquitetura que ajudassem na definição da estrutura geral do

framewark, considerando a implementação dos requisitos não-funcionais de tolerância a falhas.

Dos estilos existentes, nós escolhemos o estilo Meta-Levei para a implementação dos aspectos de

gerência relacionados às técnicas de tolerância a falhas de uma forma separada e transparente

para a aplicação. Para implementação da estruturação geral e o inter-relacionamento entre os

componentes tolerantes a falhas, nós utilizamos o modelo de componente tolerante a falhas ideal

proposto por Lee e Anderson, e o descrevemos como um estilo de arquitetura, contribuindo

assim para sua reutilização.

Este capítulo é composto pelo artigo "Architectural Styles and Patterns for Developing

Dependable Frameworks", que foi submetido para "3rfh International Conference on

Dependabie Systems and Networks (FTCS-30)", a ser realizado de 25 a 28 de junho de 2000, em

Nova York, NY, Estados Unidos. Este artigo apresenta dois estilos de arquitetura que podem ser

44

utilizados no desenvolvimento de sistemas tolerantes falhas, com o principal objetivo de reduzir

sua complexidade: (1) o estilo Jdealized Fault-Tolerant Component, que é apresentado como

uma proposta nova de estilo de arquitetura e (2) o estilo Meta-Leve!. Para demonstrar as

vantagens da utilização destes estilos na descrição da arquitetura de sistemas tolerantes a falhas,

nós os aplicamos na definição da arquitetura do framework para controladores de trens tolerantes

a falhas. Nós mostramos também como esta descrição pode ser refmada no nível de projeto de

classes, utilizando o padrão de projeto Rejlective State apresentado no capítulo 2.

45

Architectural Styles and Patterns for Developing
Dependable Frameworks

Luciane Lamour Ferreira
Institute o f Computing, State University o f

Campinas
e-mail: 972311 @dcc.unicamp.br

Abstract

Cecília M. F. Rubira
Institute of Computing, State University of

Campinas
e-mail: cmrubira@dcc.unicamp.br

Dependable systems tend to be complex due to the incorporation of component redundancy to

implement fault tolerance. As the size and complexity of these software systems increase,

software developers have recognized the importance of exploiting design knowledge in the

definition of their overall system structure, i.e. its software architecture, by means of reusing

common pattems of system's organization. This kind of reuse can be achieved by using

architectural styles and pattems, which provide well-proved solutions for conunon design

problems. The aim of this paper is twofold. First, we identify two architectural sty!es that are

important for the architectural descriptions of object-oriented dependable systems: (i) the new

architectural style "ldealized Fault-Tolerant Component", which is based on exception handling

mechanisms to separate the normal from the abnormal activities of interacting fault-tolerant

components; and (ii) the Meta-Leve! architectural style, which divides an application into two

leveis, the meta and the base levei, and applies the computational reflection concept to allow

meta-levei objects to change structure and behavior of base-levei objects. These architectural

styles aim to reduce the complexity of dependable systems and to improve our understanding of

their software architecture. Second, we show how both architectural styles and existing design

patterns can be used in the development of an object-oriented dependable framework for train

controllers.

Keywords: fault tolerance, exception handling, architectural styles, computational reflection,

framework.

46

1 Introduction
Modem software systems have the important requirement for dependability. In arder to achieve

dependability despite the presence of faults, measures for fault tolerance should be adopted

[LA90]. In general, techniques for achieving fault tolerance depend upon the effective

deployment and use o f component redundancy, what could lead to an increase in the system size

and complexity. As the size and complexity o f these software systems increase, software

developers have recognized the importance of exploiting design knowledge and expertise in the

engineering of new dependable systems. The reuse of design solutions for common problems can

be achieved by reusing both architectural styles for the overall system organization, i.e. the

system architecture, and design patterns for the detailed design of the system's components. In

this context, we are interested in architectural styles and pattems that provide solutions for

mastering the complexity of dependable systems.

The aim of this paper is twofold. First, we identify two arcbitectural styles that are

important for the architectural descriptions of dependable systems on the object-oriented

paradigm, providing appropriate pattems o f system' s organization for the provision o f fault

tolerance. These architectural styles are: (i) the new architectural style "'Idealized Fault-Tolerant

Componenf', which is based on exception handling mechanisms to separate the normal and

abnormal activities of the interacting fault-tolerant components; and (ii) the Meta-Leve!

architectural style, which divides an application in two leveis, the meta and the base levei, and

applies the computational reflection concept to allow meta-levei objects to change structure and

behavior of base-levei objects. These architectural styles aim to reduce the complexity of

dependable systems and to improve our understanding o f their software arcbitecture.

Second, we show how these architectural styles can be used to define the architecture of an

object-oriented dependable framework for train controllers, which uses exception handling and

cornponent redundancy to implernent fault tolerance in its architecture. These styles provide a

solution for reducing the complexity ofthe framework's architecture, allowing a clear separation

ofthe fault tolerance implementation from the implementation ofits basic functionality. In this

paper, we present the basic model of a specific application from the domain, and describe its

architecture using the architectural styles. We also show an example ofhow these styles can be

refined in the detailed class design using design pattems.

47

This paper is organized as follows. Section 2 introduces some concepts on software

architecture, architectural styles and design pattems. Section 3 defines two architectural styles

for developing dependable systems: the ldealized Fault-Tolerant Component style and the Meta

Leve! style. Section 4 presents a case study of developing a dependable framework for train

controller applications, using these styles to define the architecture of the framework. We also

show how they can be combined and refined in the class design levei of the framework, using

design patterns. Section 5 presents the conclusions o f this paper.

2 Reuse Techniques
In this section, we present the concepts of software architecture, architectural styles and design

patterns, which have been used to promote the reuse of good architectural and detailed design

solutions. These concepts have been applied in the development process of a dependable

framework for train controllers, which follows the steps presented in the Figure 1.

Class model ofa
specifíc application

Domain•s
commonality and

variabilíty

.j.
Arohitectural >--- Frnmcwork

styles architecurrc

J.

~ Framework class

1-- Framework

H
Framework

' desígn implementation validation

Figure 1: The framework development using architectural styles and design pattems

2.1 Software architecture and architectura/ sty/es

According to Shaw and Garlan [SG96], the "software architecture" of a software system can be

described as the description of elements from which systems are built, interactions among those

elements, patterns that guide their composition, and constraints on these pattems. In addition to

specifying the structure and topology of the system, the architecture shows the correspondence

between the system requirements and elements of the constructed system, thereby providing

some rationale for the design decisions.

48

An important question on software architecture definition is how to leverage past

experience on software architecture to produce better designs. Architectural structures are often

described in terms ofidiomatic patterns that are used informally by the system's architects, such

as "client-server systern", a "blackboard system", a "layered system", etc. These idiomatic

pattems of system organization are defined as architectural sty/es [SG96]. They capture specific

organization principies and structures for certain classes of software, and allow a shared

understanding of the common forros that can be used by the architects. An architectural style

defines a vocabulary of components and cmmectors, a set of constraints on how they can be

combined and semantic models that specify how to determine a system's overall properties from

the properties of its parts.

The use of architectural styles has a number of significant benefits [MKMG97]: (1) it

prometes design reuse at the architectural levei, where well-understood properties can be

reapplied to new problems with confidence; (2) it can also lead to code reuse: often the invariant

aspects of an architectural style lend themselves to shared implementation, for instance, in the

client-server styles, one can take advantage of the RPC (remete procedure call) mechanism to

implement the remo te servi c e invocations in a server; (3) it is easier for others to understand a

system's organization if conventionalized structures are used; (4) by constraining the design

space, an architectural style often permits specialized, style-specific analyses.

A style can be defined answering the following questions [8096]:

1. What is the design vocabulary: types ofcomponents and coilllectors?

2. What are the allowable structural pattems, i. e. the design rules?

3. What is the underlying computational model?

4. What are the essential invariants ofthe style?

5. What are some common examples ofits usage?

6. What are the advantages and disadvantages ofusing that style?

7. What are some o f the common specializations?

2.2 Design patterns

A design pattem names, abstracts and identifies the key aspects of a common design structure

that make it useful for creating a reusable object-oriented design [GHJV95]. A design pattem

identifies the participating classes and instances, their roles and collaborations, and the

49

distribution of responsibilities. Compared to architectural patters, design pattems refine the

general components of an architectural style, providing the detailed design solutions. Usually,

the selection of a design pattem at the detailed design phase is influenced by the architectural

styles that were previously chosen at the high-level design phase.

3 Architectural Styles for Dependable Systems

3.1 The /dealízed Fault· To/erant Component Architectural Style

According to Lee and Anderson [LA90], a system can be viewed as a set of components

interacting under the contrai of a design (that is itself a component of the system). The system

model is recursive in the sense that each component can itself be considered as a system on its

right, and thus can have a recursive structure composition which identifies further sub

components. Moreover, these components receive requests for service and produce responses. If

a component carmot satisfy a request for service, then it will return an exception. At each levei of

the system, an idealized fault-tolerant component will either deal with exceptional responses

raised by components at a lower levei or else propagate the exception to a higher levei of the

system (Figure 2).

In order to obtain dependability, each interacting component of the system should be

dependable, i.e., each component should perform its job according to the specification and

should be capable to handle abnormal situations (caused either by its own computation or by

computations of the components with which it interacts). The Jdealized Fault-Tolerant

Component style is defined below according to the questions presented in the section 2.1.

3.1.1 What is lhe design vocabulary?

The vocabulary o f the design elernents consists of (i) components and (ii) connectors types that

can be used by the systern architects to draw the architectural diagrarn. The possible components

of our style are the idealized components that can play two different roles (usually a component

plays both roles at the sarne time):

• ldealized-supplier component: it receives requests for services and produces responses. I f the

service is performed according to the specification, the component retums a normal response,

otherwise it returns an abnormal or exceptional response. The normal and abnormal

50

responses are both part of the component's interface so that a client can provide means to

handle the component's responses.

• Idealized-client component: it requests services to the supplier components. The client should

be responsible for providing means to handle the nonnal and especially the abnonnal

responses from idealized-supplier components.

The connectors of a style define the way that the components communicate with each other.

In the Idealized Fault-Tolerant Component style, there are only two forms of communication

between components: (1) service requests and (2) service responses. A request can be

represented as a procedure call, a message, an event sent to a component, and so on. The

components interact with each others by means of their public interface. The public interface is

"any place" of interaction between two components, which has been previously set by the

interacting components. For instance, using this style combined with the object-oriented model, a

service request can be a method invocation sent to an object. Moreover, normal and abnonnal

responses are part ofthe method declaration defined in the public interface ofthe objeâs class.

3.1.2 What are the allowable structural patterns, i. e. lhe design rules?

Figure 2 shows the structural organization ofthe Jdealized Fault-Tolerant Component style. An

idealized component is divided in two parts, the normal part that implements its normal

activities, and the abnormal part that implements the measures for tolerating faults that cause

exceptional responses. In an ideal situation, both client and supplier components interact with

each other producing only nonnal responses. However, considering that a system is not free from

faults, exceptions may be produced as responses of client-component requests that cannot be

satisfied dueto supplier-component faults. More specifically, a component fault is an error in the

internai state o f a component whereas a design fault is an erro r in the state o f the design.

51

Servíce Normal
request relum

I
client-componorn

No~mal Activity

Servic, Nmmal
request raum

Fai!ure
exception

t ''':'\t'íw:OI:iiai Acti\it'
'', ,,(fad;MllcJ)Jl~ \ly «<epliOI\

';"''<'' <'"'1urulling) ,1,,
' ,_,',,

Figure 2: The Idealized Fault-Tolerant Component style

The abnormal responses (exceptions) that can be retnrned as response o f a service request

that cannot be satisfied are:

• Interface exceptions: are signaled in response to a request which did not conform to lhe

component's specified interface. For instance, a pararneter value is not in a specific range.

This means that the preconditions of a service were not satisfied by a client-component

• Local or internai exceptions: are exceptions generated by the component in order to invoke

its own internai exception handlers.

• Failure exceptions: are signaled if a component detennines that for some reason it cannot

provides its speci:fied service.

In the Jdealized Fault-Tolerant Component style, interface exceptions are signaled in the

nonnal part of the component, while failure and interface exceptions from supplier components

invoke the exception handling part of the client component lf these exceptions are handled

successfully (that is, the component was able to mask the exception), the component can retum

to providing nonnal services. However, if the component does not succeed in dealing with such

exceptions, it should signal a failure exception to a higher level ofthe system.

3.1.3 What is the underlying computational model?

The style does not restrict the underlying computational roodel, smce it is based on the

composition of a system by generic components that can be of many types. A component can

represent, for instance, a module in procedurallanguages, a class or package in object-oriented

systems, a data repository, a hardware device, an environmental entity, and so on.

52

that a component can get information about the intemal properties of another component and

based on that information it can dynamically interfere on its current computations.

For the meta-leve! to be able to reflect on base-leve! objects, it must be given information

regarding the interna! structure of base-leve! objects (structural meta-information). The

representation of abstract language concepts such as classes and methods, in form of objects, is

called reification. Moreover, interaction between objects may also be materialized as objects, so

that meta-level objects can inspect and possibly alter them. This is achieved by intercepting

base-level operations such as method invocations, creating objects that represent them, and

transferring control to the meta-level. After transferring the control to the meta-levei, the meta

objects can inspect the reified information and can also modify structural and/or behavioral

aspects of the base-levei object. This process is also called rejlecting the changes back into the

base-leve! object [Mae87, Fer89].

The connector of this style IS the meta-object protocol (MOP) [KRB91], which

establishes the relationship among the base-levei and meta-levei objects. The MOP provides an

interface to the programming language implementation in order to reveal to the program

information normally hidden by the compiler and/or run-time environment [Mae87]. The various

existent MOPs differ mainly in the fo11owing features: (1) binding between base-levei objects

and meta-leve] objects, which can occur staticaly (at compile-time)[GR89] or dynarnically (at

runtime) [Oli98]; (2) class-wide reflection (each class is associated with a single rneta-class)

[GR89, Fer89] and object-wide reflection, where objects are attached to meta-objects [YTT89,

GC96, Oli98]; (3) cardinality of the relationship between base-leve] objects and meta-leve]

objects.

Figure 3 shows the structural organization of a system that uses the Meta-Levei

architectural style. The interactions between base-levei and meta-levei objects are realized

through a meta-object protocol which establishes the allowable design rules that guide the

construction of a system organized with this style. Each specific MOP gives a different structural

organization for a system that is implemented using it.

55

Meta-levei

Base levei

<<intercept and
reify serviee
request>>

MetaObj~t

< eify

r~·"' ••--czz __ L~M~o~'_j
in nnation>>

<<Refleot>>

-,------'------'"--,
·~-----, request of a

Client

Objeot 1--___:_--1
.... -·0> Service{)

Figure 3: The Meta-Levei architectural style

Meta-levei architectures address separation of concems, providing means to implement non

functional properties o f an application transparently separated from its functional properties. The

functional requirements are primarily concemed with the purpose of an application, while the

non-functional requirernents are more concemed with its fitness for purpose. The meta-objects

usually are responsible for implementing non-functional requirernents such as fault tolerance

(BRL97, Lis98, FPB95], persistence [SW94], distribution [Str92, YTT89, Oli98], etc.

The object-oriented meta-levei style has already been detailed documented as an

architectural palrem narned Rej/ection pattem by Buscbmann et.al. [BMRS+96]. We have

described only the rnain features of this style that are necessary to understand its applicability to

define the architecture o f dependable systems. F o r more details about this style, the reader should

refer to [BMRS+96].

4 A Case Study: a Dependable Object-Oriented
Framework for Train Controllers

In order to illustrate the use ofthe ldealized Fault-Tolerant Component style and the Meta-Leve!

style, we describe a case study of an object-oriented dependable framework for train controllers.

The framework for train controllers is a generic software system that should encompass the

common functionality of a related family of train controller applications, aiming to provide

reusability in large scale. The framework implements the common requirements (both functional

and non-functional) of train controllers in its architecture, and provides adaptable parts that

should be extended or configured to accomplish application-specific requirements. Our goal isto

demon.strate how these two architectural styles can be applied to describe the ftarnework's

architecture so that its dependability property is achieved. We also show how the framework

56

architecture can be refined until the detailed design leve!, using design pattems to refme the

general architectural components.

As illustrated in Figure 1 (Section 1), the first step of the frarnework development is the

analysis o f a specific application from the domain. In our case study, we limit our domain to a

subdomain of a railway model: a simplified model of controlling and monitoring system for a

train set. Our start point is a specific software that was developed earlier to control this

simplified railway model, called the Train Set System [Rubira94, Quadros97]. The next section

describes the main requirements o f this application.

4.1 The Train Set System

The Train Set System is a digitally controlled model railway, which is divided into three parts:

electronic digital units, railway layout and trains (Figure 4). The railway layout is mounted on

separated boards that can be independently controlled by separated controllers. Each board can

be viewed as being composed of a set of switches, sensors and railway tracks, which link

connectors and sensors (which we call stations, since they are the only source of information

about the state of the system). Sections are directed links of railway track.s between adjacent

stations, and can contain a sequence of zero or more connectors. The sections are abstractions

used by the trains to move around the boards.

Figure 4: The Train Set system and the representation ofthe Marklin hardware

The trains aim to move randomly between stations. The switches and sensors are llll!eliable

devices, and can suffer environmental faults. Despi te the presence o f faulty switches and sensors,

the trains should move around the railway without crashing, but if necessary stopping and

reversing. The railway layout is divided up in three boards, and the design solution should take

57

into account the layout distribution and the train crossings between neighbor boards. The

relevant restrictions of such application can be summarized as following:

• The main goal isto guarantee no traín collision, i.e., safety;

• Switches and sensors are unreliable devices and can suffer environmental faults. However,

considering two consecutive sensors it is assumed that only one sensor can fail.

• Derailrnent o f train is not considered.

• Routing ofthe train is ignored, i. e., the trains move randomly between stations.

• Traio can stop within one section that means that it travels slowly enough to stop

immediately when requested.

• We assume that the train size is srnaller than the srnallest section and can be cornpletely

contained within a section.

4.2 Architecturat description using the tdea/ized Fau/t-Toterant Component
style

Following the Idealized Fault-Tolerant Component style. we identify lhe maio dependable

components of the train controller system and their most important interactions at the

architectural levei (Figure 5). Some irnportant aspects that should be highlighted are: what are

the most essential interactions between the main dependable components; what are the possible

exceptions that can be returned; how the exceptions are propagated and handled; what

components are responsible for the errar recovery.

At a higher levei of abstraction, we identif)r three main dependable components that

interact with each other to provide the maín functionalities of the system: Train, Controller and

Board. These components can be represented as packages in an object-oriented system which

encapsulate details of their classes. The packages provide public services that are in tum

provided by their constituent classes.

The T rain component is responsible for the movement o f trains, implementing services

such as move(), stop(), revert(), etc. The Controller component is lhe central part of the system, and

it is the intermediate component between the Train and the Board. The Controller provides

important services to the trains so that they move around the boards without crashing, such as

lock_section(), release_section(), etc. The Board component defines lhe detailed representation of

58

the board's layout, and is composed by a set of cormectors, sensors and sections. It is responsible

for creating, initializing and managing these components.

As stated in the section 4.1, the goal of the system isto contrai the movement of trains so

that no train collision occurs. For that, a Train requests services to the Controller, such as

lock_section(), release_section() and occupy_section(), If the service is executed nonnally, the Train

receives a normal response and continues moving toward the next section. If some fault occurs in

a supplier-component, the service request cannot be performed normally and an exception is

signaled and propagated to the Train. For instance, the Board can retum an exception as a

response of the operation lock_section() due to some faulty sub-component (e.g. a switch that

belongs to the required section is faulty and the section cannot be used by a Train), The exception

is propagated through the components that are between the lower-level component, i. e. the

switch device, and the higher-level component, i.e. the Train. The Train is the component

responsible for handling the exception, using a forward error recovery mechanism: if a requested

section is abnonnal, the train attempts to lock another one in arder to recovery from the errar.

'~'l
Scrvice n:quests;
rdco:;c Olld occupy
sections

Train
'·~~'1m"
.~HII!'.k
:·~·?.

~mal_,..,um 1' ;"' failu
k/Release secrion
re_eo«option

CannoUlllndle · ·
Control\er lhl:e:<t:qJiiOit·

f'!uplll:illiC il

Service roquosts·
releaso and occup
=:tions

~001

Board

1'""'-'--
Aboonnal
beba>i<Wt

.

r, fail
k/Reloo:;o «orion

ure_exception

J
Figure 5: The architecture ofthe dependable frarnework for train controllers using the Idealized

Fault-Tolerant Component style

This architecture description can also be refined hierarchically by decomposing the

components into sub-components. The Board component is composed by the Section sub

component, which in turn is composed by the Switch sub-component. Figure 6 shows how the

components and sub-components collaborate to execute the requested services. The exceptions

are propagated from the lower-level component Switch Witil the higher-level component Traín.

The type o f the propagated exception is different for each levei o f abstraction. F o r instance, a

faulty Switch can signal the exception 11 SWitch_abnormal_failure_exception11
, and this exception is

propagated as a "lock_failure_exception" by the Section, and as a "lock_section_failure_exception" by

59

the Board. For the Train is interesting to know only that the Section cannot be locked. This

description can be incrementally refined until the design levei. At the detailed design levei, the

components should be decomposed in smaller design elements and the possible interactions

between them should be identified and described using a detailed event sequence diagram.

Train

~Jl~enor

~:'loek

,~!'}l!!ll>;_<~·

Servke_requesu: lock< l l'n<>nnal_return 1' Locldrelease section
reloaso and occupy failure _ <xteption
seotions

Controller
Cannrn h&MI<:
1hc; c>«<:ption. ~

Profl4yate it

Figure 6: The architecture description with more details: the component Board was decomposed

into two sub-components.

From this architecture description, we can identify some important aspects of the train

controller domain:

• The dependencies between the components: the architecture description shows how the

components depend on the dependable services o f each other. The T rain depends on the

dependable services of the Controller that depends on the dependable services of the Board,

and so on. It means that the T rain component should know only the public interface o f the

Controller component, and should provide handling for the exceptions signaled by it, no

matter if the exception was signaled frrst in a lower-level component. The capacity of

propagating and resignalling different exceptions allows the definition of exceptions at

different levei of abstractions.

• It is possible to identicy the source of faults (in this case, the Switch component) and which

component is responsible for performing the error recovering. The exception generated by a

60

faulty component (an abnormal switch) is propagated until the T rain component that

implements the handler for this kind of exception.

4.3 Architectural description using the Meta-Leve/ sty/e

In this section, we describe the architecture of the dependable framework for train controllers

using the Meta-Levei architectural style, emphasising the aspects related to the fault tolerance

implernentation. The main aspects to be considered are: (i) the identification of the components

that belong to the base levei and meta-levei; (ii) the responsibilities of each component and (iii)

how they interact using a specific meta-object protocol (MOP). Furtherrnore, we can also

identify the impact of using this style on the main "quality" features of the system, such as the

degree of adaptability that can be obtained by means of the reflection mechanisms and the

impact ofusing the reflection mechanisms on the system's performance. Figure 7 shows the main

components and their relationships.

Meta~level

component:l

MOP

Base-levei
components

lmplementalion of
eovironmental

I
Guarana's classes

I faulr-tolernnce
mechanisms (non- y functional aspects)

l Meta State Machine I

' ' '
' ' ' '

Reification i ' • ' ' ·- ·-·- -· ~IICi;!iõii

Fixed ports of tho framowo<l ' ' ' ' ' '
Other common Fault-tolerant
classes oftrain components

controllers (FTComponents)

'

I
Specialized classes Speciali;red fault-

o f a specific tolerant classes
application ofaspecitic

Appl ica1ion 's spocifio classes
application

u I I
Guarana';

7 kemel

Framework reus
by subdas.sing
and conf<guratio "

t
'

Figure 7. The framework archltecture usmg the Meta-Levei style.

The meta-levei encampasses the components responsible for implementing the non

functional requirements of the application. In the frarnework for train controllers, one important

non-:functional requirement is the control o f the redundant components used to implernent

environmental fault-tolerance. The entities of the environment may exhibit different behavior

phases during their lifetime. For instance, if a switch of the environment is faulty, the switch

61

object (in the solution domain) should present a different behavior for the execution of its

methods. The approach used to implement environmental fault tolerance consists on defining

state classes that encapsulate the different implementation for the component's services [Rub94].

The component changes its behavior by changing its current state object.

The aspects related to the contrai ofthe state objects and the state transition execution are

implemented by the MetaStateMachine at the meta-leve!. The MetaStateMachine is responsible for

maintaining the information about the possible states and the current state o f the cornponent, for

changing its current state, and for delegating the state-dependent services to the correspondent

state object. The MetaStateMachine is configured at runtime accordingly to the state diagram

defmition of a FTComponent. The association ofthe MetaStateMachine and the FTComponent at the

base level is dynamic.

We have used the Guarana's MOP [Oli98] to implement the coupling between the meta

and base-levei components. The Guarana's reflective architecture also defines a framework that

provides the base classes for implementing the basic meta-level behavior. The MetaStateMachine

reuses this framework by inheriting basic classes such as MetaObject and Composer. It overrides

some methods of these classes to implement the specific meta-levei behavior of the

MetaStateMachine.

The interactions between the MetaStateMachine and the FTComponents are performed

transparently by means ofthe interception and reification mechanisms provided by the Guarana's

kernel, enforcing the separation of concems. The MetaStateMachine inspects the eiltire operations

target to its associated FTCom(Xlnent, performing the contrai aspects of the state machine

execution.

An important advantage of using the Meta-Leve! style is the capacity of constructing

systems that are easily adaptable to new requirements. In the framework for train controllers, the

FTComponents can be extended to accomplish application's specific requirements, and their state

diagram can also be extended or modified. Using this style, the state machine implementation

can be easily extended by modifying the configuration o f the MetaStateMachine, without affecting

the service's implementation of the FTComponent and its correspondent state classes. This

solution separates the changes in the specific state machine configuration from the changes in the

functional services o f the application.

62

As we have stated before, the Meta-Leve! architectural style also has some disadvantages.

In arder to implement the state machine control in the meta-levei, many extra method

invocations are necessary dueto the interception and reification mechanisms. It causes an impact

on the system performance. Furthermore, the Guarana's kemel intercepts the operations target to

a base-levei object, and many operations are intercepted unnecessarily, since it is not possible to

select only those we are interested.

4.4 The c/ass design of the framework using design patterns

The previous sections have described the architecture of the framework for train controllers

using both the Jdealized Fault-Tolerant Component style and the Meta-Levei style. In this

section, we describe how these two styles influence the class design of the dependable

components. At the class design levei, the components are refined using design pattems that

follow the general structures ofthe architectural styles that were chosen before.

To illustrate the class design phase, we refine the idealized component Switch defmed in

the section 4.2, figure 6. This is a lower-level idealized fault-tolerant component that represents a

real switch of the environment. The normal and abnormal part of the Switch component

represents the normal and abnonnal behavior of a real switch of the environment, since a switch

is a possible source of environmental faults. The normal part executes the services returning

normal responses, while the abnormal_part returns failure exceptions as responses for its services,

since a faulty switch cannot provi de its services normally.

The design of the Switch component follows the Rejlective State partem [FR98a]

[FR98b], which is based on the Meta-Levei style. This pattem encapsulates the normal and

abnormal behavior of a component in separated state classes defined at the base-levei, and

defines a MetaStateMachine at the meta-levei, which is responsible for implementing the contrai

aspects related to the state transition execution, as we have discussed in the previous section.

Figure 8 shows the design of the Switch component following this pattem. The Switch and

SwitchNormaiState classes implement the normal part of the Switch component, and the

SwitchAbnormaiState class implements the abnormal part. The MetaStateMachine contrais the

transition from the normal to the abnormal states of the Switch component, and holds the

reference for the current state object. The transition to the abnormal state is triggered when the

correspondent switch o f the environment is faulty. Afie r changing to the abnormal state, any

63

serv1ce request sent to this Switch component will be handled by its abnormal par!. The

MetaStateMachine also performs the delegation of the state-dependent service to the current state

object. The methods of the SwitchAbnormaiState class retum failure exceptions indicating that the

component cannot provi de its services nonnally. The exception is propagated until it reaches the

higher-level component, as we have showed before in the section 4.2.

Service Normal terfooe Failure

request rcturn r exception e><ception MO'

L I
Switl:h

I I Switcl!
State

\
. . : . . . i MetaSt:ateMachine j

..
I SwiO<h I 'zl Swit<h •ti• Norma!Stllte \-'l\:bn·Qr~tt'·] "':::"~. . .

• i
B...,..Le...el , Mota-Uvcl

Figure 8: The class design ofthe idealized fault-tolerant component Switch using the Reflective

State pattem.

We have implemented the exception handling and exception propagation usmg the

exception handling mechanism provided by the Java programming language. In fact, the normal

and abnormal part (responsible for the exception handling) of the higher-level components are

not clearly separated. The exception handling is implemented using the "try" and "catch"

commands of Java, which are implemented within the method's body. Another possible solution

is to implement the exception handling mechanism using the Meta-Leve! style, as proposed in

[GBR99]. This work defines the exception handlers in a separated class at the base levei and

implements the control of the exception handling mechanism at the meta-levei. The meta-levei

objects are responsible for the following activities: (i) search for a suitable handler associated to

the raised exception; (ii) invocation of the handler; (iii) return to the normal operation of the

application.

4.5 lmplementation issues

The dependable framework for train controllers has been implemented usmg the Java

programming language and a meta-object protocol called Guaraná [Oli98] to implement the

MetaStateMachine at the meta-leveL The whole framework's implementation has approximately

11 O classes and 7000 lines o f codes. The development o f the framework is limited to the

software controller itself, since we do not have access to the original Marklin hardware (the

64

digital units, the railway layout and the train engine) which was used to develop the Train Set

System. In order to validate the framework, we have implemented and tested a specific

application that reuses the framework and implements a simple simulator for the hardware sinais

and for the faulty environmental components (switches and sensors).

5 Conclusions
We have discussed the benefits gained by reusmg design knowledge and expertise in the

definition of the software architecture for developing dependable systems by means of

architectural styles. We have presented two architectural styles that provide appropriate patterns

of system's organization for the design and provision of fault tolerance: (i) the "Idealized Fault

Tolerant Component" style and (ii) the Meta-Leve! style. The first one is based on exception

handling mechanisms to separate the normal and abnormal activities of the interacting fault

tolerant components. The second one applies meta-levei progranuning to separate the system

into two different leveis and a meta-object protocol to implement the interactions between the

two leveis, This style can be applied to define the software architecture of dependable systems to

provide the separation of non-fimctional properties related to the provision of fault-tolerance

from the fimctional properties in a transparent way.

We have also demonstrated the applicability of these two architectural styles in the

development of dependable systems through a case study: the developrnent of a dependable

framework for train controller applications. We have shown how the styles can be applied to

define the architecture of the dependable frarnework for traiu controllers, and how they can be

refined at the class design level using design pattems.

The use of the Idealized Fault-Tolerant Component and the Meta-Leve! styles improves

the understanding of the software architecture and guides the subsequent phases of the software

development, that is, the detailed design, implementation, test and maintenance phases.

Regarding our specific case study of the dependable framework for train controllers, these two

architectural style have also improved the reusability ofthe framework, since they lead to a more

understandable and well structured architecture design.

The use of the Rejlective State pattem is one of the possible refinements of these two

styles at the detailed design levei. We can also use other design solutions that combine the

ldealized Fault-Tolerant Component and the Meta-Levei styles in different ways. As a fature

65

work, we plan to implement the exception handling of fault-tolerant components using the

reflective exception handling model proposed in [GBR99]. The idea is to implement the

management activities related to the fault tolerance provision completely at the meta-level,

transparently separated from the functional activities ofthe system's components.

6 Bibliography
[BMRS+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System of

patterns: Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

[BRL97]

[Fer89]

[FPB95]

[FR98]

[GBR99]

[GC96]

[GR89]

[GHN95]

[KRB91]

L. E.Buzato, C. M. F.Rubira and M. L. Lisboa. A Reflective Object-Oriented

Architectnre for Developing Fault-Tolerant Software. Journal of the Brazilian

Computer Society, 4(2):39-48, November 1997.

J. Ferber. Computational Reflection in Class-Based Object-Oriented Languages.

OOPSLA '89. V oi. 24 no. 10, October 1989.

J.-C. F abre, T. Pérennou, and L. Blain. Meta-object Protocols for Implementing

Reliable and Secure Distributed Applications. Technica/ Report LASS-95037,

Centre National de la Recherche Scientifique, February 1995.

L. L. Ferreira and C. M. F. Rubira, The Reflective State Pattem. Proceedings of

the 5th Pattern Languages of Programs Conference (PLoP '98), August 1998,

Monticello, Illinois, USA. Technical repor!# WUCS-98-25.

A.F. Garcia, D.M.Beder, C.M.F.Rubira. Ao Exception Handling Mechanism for

Developing Dependable Object-Oriented Software Based on a Meta-Levei

Approach. To appear in IEEE 1 rfh International Symposium on Software

Reliability Engineering, Boca Raton, Florida, November, 1999.

B. Gowing and V. Cahill. Meta-object protocols for C++: The Iguana Approach.

In Proceedings ofRej/ection '96, pages 137-152. San Francisco, USA. Aprili996.

A. Goldberg and D. Robson. Sma/ta/k-80: The Language. Addison-Wesley, 1989.

E.Gamma, R. Helm, R Johnson and I. Vlissides. Design Patterns: Elements o f
Reusable Object Oriented Software. Addison-Wesley, 1995.

G. Kiczales, J. des Rivieres and D. Bobrow. The art of Meta-object Protocol. MIT

Press, 1991.

66

[LA90]

[Lis98]

A. Lee and T. Anderson. Fault Tolerance: Principies and Practice, Springer

Verlag, 1990.

M.L.Lisboa. A New Trend on the Development ofFault-Tolerant Applications:

Software Meta-Levei Architectures. Proceedings o f the 1998 IFIP -lnternational

Workshop on Dependable Computing and its Applications. Johannesburg, South

Africa. January 1998.

[Mae87] P. Maes. Concepts and Experiments in Computational Reflection. ACM SIGPLAN

Notices, OOPSLA'87, 22(12):147-155, December 1987.

[MKMG97] R. Monroe, A. Kompanek, R. Melton, D. Garlan. Architectural Styles, Design

Pattems and Objects.JEEE Software, 14 (I): 43-52. January 1997.

[Oli98]

[Rub94]

[RX93]

[SG96]

[Str92]

[SW94]

[YTT89]

A. Oliva. Guaraná: Uma Arquitetura de Software para Reflexão Computacional

Implementada em Java. Master Thesis. Institute o f Computing, State University

ofCampinas, September 1998. http://www.dcc.unicamp.br/--oliva!guarana/

C.M.F. Rubira. Structuring Fault-Tolerant Object-Oriented Systems Using

Inheritance and Delegation. PhD thesis, Dept. of Computing Science, University

ofNewcastle upon Tyne, October 1994.

B. Randell and J.Xu. Object-Oriented Software Fault Tolerance: Framework,

Reuse and Design Diversity. PDCS2 First Year Report, Predictably Dependable

Computing Systems, 1: 165-184, Toulose, France. September 1993.

M. Shaw and D. Garlan. Software Architecture, Perspectives on an Emerging

Discipline. Prent:ice-Hall, Englewood Cliffs, NJ, 1996.

R. Stroud. T ransparency and Reflection in Distributed Systems. In 5th European

SIGOPS Workshop on Models and Paradigms for Distributed Systems

Structuring, Mont Saint-Michel, France, September 1992. ACM SIGOPS, IRISA,

INRlA-Rennes.

R. J. Stroud and z. Wu. Using Meta-Objects to Adapta Persistent Object System

to Meet Applications needs. In 6th SIGOPS European Workshop on Matching

Operating Systems to Applications Needs. 1994.

Y. Yokote, F. Teraoka and M. Tokoro. A Reflective Architecture for an Object

Oriented Distributed System. In Proceedings ofECOOP'89, 1989.

67

Resumo do Capítulo 3

Este capítulo apresentou dois estilos de arquitetura que podem ser usados na definição da

arquitetura de software de sistemas tolerantes a falhas: o estilo ldealized Fault-Tolerant

Component e o estilo Meta-Leve!. Estes estilos foram utilizados na definição da arquitetura do

framework para controladores de trens tolerantes a falhas. Nós mostramos também como estes

estilos influenciam nas demais fases do seu desenvolvimento. O refinamento da arquitetura do

framework através do projeto de classes mostrou como os estilos podem ser combinados no

projeto detalhado, utilizando-se padrões de projeto.

Através deste projeto prático, podemos concluir que os estilos apresentados oferecem um

padrão de estruturação adequado para a descrição da arquitetura de sistemas tolerantes a falhas,

contribuindo para redução da complexidade de tais sistemas. Podemos concluir também que a

escolha adequada dos estilos de arquitetura é muito importante para a obtenção de um projeto de

boa qualidade.

Trabalhos relacionados:

Embora a documentação do estilo "Idealized Fault-Tolerant Component" no formato em que

apresentamos seja nova, o modelo originalmente proposto por Lee e Anderson vem sendo

utilizado há bastante tempo na estruturação de sistemas tolerantes a falhas. Como exemplo de

utilização deste modelo, podemos citar o trabalho de Randell e Xu [RX93] que implementa

tolerância a falhas de software baseando-se neste modelo. Este trabalho implementa redundância

de software através de diversidade de projeto, definindo um componente tolerante a falhas ideal

formado por um conjunto de variantes (que são também subcomponentes tolerantes a falhas

ideais) e um árbitro. O componente retoma um resultado normal se o conjunto de variantes

executar o serviço de forma correta de acordo com as condições de verificação definidas no

árbitro. Caso contrário, o componente retoma uma exceção de falha. A abordagem deste trabalho

é semelhante à nossa abordagem para implementação de tolerância a falhas de ambiente que

utiliza o padrão Reflective State para refinar o projeto do componente tolerante a falhas ideal. A

68

principal diferença refere-se à forma como wna resposta normal ou anormal é produzida: nós

utilizamos objetos de estado para implementar a parte normal e a parte anormal (que irá retornar

exceções de falha), enquanto que o trabalho deles utiliza variantes de projeto e um árbrito para

definir quando retomar um resultado normal e um resultado anormal que indica que o

componente falhou na execução de um serviço.

Em relação ao estilo de arquitetura Meta-Leve!, existem vários trabalhos na literatura que

propõem soluções reflexivas para implementação de requisitos não-funcionais, tais como

distribuição [Str92, YTT89], persistência[SW94], etc. Em relação à toleràocia a falhas, podemos

citar os trabalhos [BRL97, Lis98, FPB95]. Todos estes trabalhos propõem soluções que visam

separar os aspectos de gerência da implementação dos mecanismos de toleràocia a falhas dos

aspectos funcionais da aplicação.

No próximo capítulo nós apresentamos o projeto completo do framework, utilizando

padrões de projeto e metapadrões para a descrição detalhada dos seus principais componentes,

enfatizando-se a descrição dos pontos adaptáveis.

69

Capítulo 4

Projeto e Implementação de um
Framework para Controladores de
Trens
Nos capítulos anteriores, nós discutimos as técnicas de padrões de projeto e estilos de

arquitetura, as quais são utilizadas principalmente para a obtenção de reutilização de soluções de

projeto. Além disto, estas técnicas também auxiliam na documentação do projeto de frameworks,

tanto no projeto da sua parte fixa como no projeto das partes adaptáveis.

A melhor forma de entender e analisar a efetividade destas técnicas é utilizá-las em uma

aplicação prática. Neste capítulo nós apresentamos o projeto completo do framework para

controladores de trens tolerantes a falhas e distribuídos. Na construção do framework, nós

utilizamos os estilos de arquitetura e padrões de projeto que foram propostos nos capítulos

anteriores, assim como outros padrões de projeto existentes na literatura. O projeto do framework

é descrito no artigo "The Design and lmplementation of a Dependable and Distributed

Framework for Train Controllers", que foi submetido para a revista "Software Practice &

Experience".

70

The Design and Implementation of a Dependable
and Distributed Framework for Train Controllers

Luciane Lamour Ferreira
Institute of Computing, State University of

Campinas
e-mail: 97231l@dcc.unicamp.br

Abstract

Cecília M. F. Rubira
Institute ofComputing, State University o f

Campinas
e-mail: cmrubira@dcc.unicamp.br

Object-oriented frameworks have emerged as a promising technique that allows large-scale

reuse, providing reusability at the design and code leveis. However, the development of

frameworks is a complex and costly task since they should implement the application domain's

commonalities and provide the appropriated adaptability for the specific features of each

application. Therefore, it is necessary to apply effective design teclmiques to support its

development. This paper presents the design and implementation of a dependable and distributed

framework for train controller applications, and discusses the main design techniques used to

support its development. Our main goal is to demonstrate the usefulness and limitations of

applying techniques such as architectural styles, design pattems and metapatterns in the

documentation of a complex framework, which includes various features such as fault tolerance

and distribution.

Keywords: frameworks, architectural styles, design patterns and metapattems.

1 Introduction
Recently, object-oriented frarneworks have emerged as a promising technology for providing

large-scale reuse, reducing the cost of software development and improving the quality of

software. An object-oriented framework is a reusable, semi-complete application that can be

specialized to produce customized applications. It provides a skeleton of an application,

including the application's logic and flow of control, and allows the application developers to

reuse not only the code but also the high-level design. Frameworks provide an easy way of

developing new applications, however the development of such generic software is a complex

and costly task. Therefore, it is necessary to apply effective design tecbniques to support its

71

development. Architectmal styles [SG96], design pattems [GHN95] and metapattems [Pre95]

have been proposed as a means o f capturing and describing the design o f frameworks.

In this paper, we describe the development of a dependable and distributed framework for

the train controllers domain. The main goal is to provide a highly adaptable and understandable

architecture that encampasses the main features of the domain of train controller applications,

including features such as fault tolerance and distribution. The framework provides large-scale

reuse, and it can be used in many different contexts, for instance, it can be extended to

implement (i) the control of different rai!way models that control different kinds of trains; (ii)

automatic fault diagnosis for the environmental faults (faults that occur in the components with

which the controller interacts, such as switches and sensors), etc.

Our approach for the framework development follows the steps (Figure !): (!) analysis

and class design of a specific application from the framework's domain; (2) analysis and

specification of the domain variability and adaptability; (3) high-level design of the fixed part of

the framework, using architectural styles to define its architectme; (4) detailed design of the

adaptable parts, which is defmed by means of a sequence of generalizing transformation on the

basic model of the step 1 applying design patterns and metapatterns for achieving the desired

variability; (5) implementation of the framework using a specific programming language; (6)

validation ofthe framework by reusing it to implement specific applications.

Classmodel ofa
spedfic application

Domain's
cornmonality and

variability

+
Architecturnl >-1 Fram=rk

""" architecture

~
~

Framework class Framework Framework '
f-> M design implementation validation

Metapattems

Figure 1: The framework development using architectural styles and design pattems

We apply the hot-spot-dtiven approach to define the adaptable parts of the framework

[Pre95, Sch97]. Hot spots are the aspects of the application domain that should be kept flexible

72

while frozen spots represent the common aspects of the domain that cannot be changed. Design

pattems and metapattems are applied to describe the framework's hot spots. Architectural styles

are applied to describe the framework's architecture, defining the framework's fixed structure

and flow of contrai. Our rnain goal is to dernonstrate the usefulness of applying these techniques

in the development of this complex framework. We show how these techniques have improved

the framework understanding, providing documentation for both the framework reuse (in the

development o f new applications) and the framework' s maintenance and evolution. We also

discuss the main lessons learned in the development o f this complex application, and present our

conclusions about the advantages and the limitations ofusing architectural styles, design pattems

and metapattems for docurnenting the framework.

This paper is organized as follows. Section 2 introduces some reuse teclmiques that have

been used recently to achieve large-scale reuse, such as frarneworks, architectural styles, design

patterns and metapattems. Section 3 describes the basic model of a specific train controller

application, which has been used as the start point to develop the framework. Section 4 describes

the framework design, identifying the frozen and the hot spots and documenting them using

architectural styles, design pattem and metapattems. Section 5 presents the conclusions of the

paper, discussing the main advantages and limitations of using pattems to document the

framework design.

2 Reuse Techniques

2. 1 Object-Oriented Frameworks

Framework is an emerging object-oriented reuse technique that has been used by software

developers to increase the productivity of software development by using effective large·scale

reuse. As stated by Ralph Johnson [Joh97a, Joh97b], a framework is a reusable design of all part

of a system that is represented by a set of abstract classes and the way their instances interact. Its

purpose is to provide the skeleton of an application that can be customized by an application

developer. Frameworks are in the middle of the reuse techniques, providing both code and high

level design reuse. It also allows the communication and sharing of designer's experience and

domain expertise.

73

One of the characteristics of frameworks is inversion of control, which makes them

different from traditional reuse techniques such as class library. A developer reuses components

from a class library by writing its program that calls the library's components whenever

necessary. The developer is responsible for implementing the overall structure and the flow of

control of the application. Reusing a framework is different: the framework provides the overall

structure and the flow of control, and the application developer implements only the parts that

should be plugged into the framework. The framework code calls the developer's code [Joh97a].

This framework's feature lets developers reuse the application logic, reducing the cost and

improving the quality of software.

A common approach used to the framework development is based on the so-called hot

spots and frozen spots [Pre95, Sch97]. Framework's designers specify variations within the

design by means of hot spots, which are those aspects of an application domain that have to be

kept flexible; application's developers refine the framework design for the needs of their

application by filling in those hot spots. A hot spot lets the developers "plug-in" an application

specific class or subsystem, either by selection from a set of those supplied with a black-box

framework, or by programming a class or subsystem, usually by inheritance and dynamic

binding, in a white-box framework [Sch97]. Usually, frameworks provide both black-box and

white-box kind o f adaptability. The frozen spots are the fixed part that provides the overall

structure and application's logic. They define the framework's architecture in tenns of its

components and their relationships, the components' responsibilities and collaborations to

perform the main functionalities o f the application's family.

Frameworks evolve through its various uses by different applications. This evolution

means that in its early stages, the framework is mainly conceived as a white-box framework.

However, the frarnework matures through being adopted in an increasing number of applications.

More concrete cornponents providing black-box solution for problems found in the dornain

become available within the framework [BMA97].

2.2 Architectural styles

As stated in [SG96], architectural styles are idiomatic pattems of system organization.

They capture specific organization principies and structures for certain classes of software, and

allow a shared understanding of the conunon forms that can be used by the architects. An

74

architectural style defines a vocabulary of components and connectors, a set of constraints on

how they can be combined and semantic models that specify how to determine a system' s overall

properties from the properties of its parts.

Regarding the frarnework development, architectnral styles can be applied to defme the

framework's architecture, promoting design reuse at the architectural levei. The use of

architectural styles makes easier for others to understand the framework's organization, since

they provide conventionalized and well-known structures. When the framework includes various

features such as fault-tolerance and distribution, it is also important to make the appropriated

choice of the architectural styles that provide good solutions for reducing the frarnework

complexity and improving the frarnework's understanding.

2.3 Design patterns

Pattems have been used to support the reuse of software design. Their primary goal is to

communicate good, well-proved and recurring design solutions for common software problems.

As stated by Gamma et al. [GHJV95] a design partem names, abstracts and identifies the key

aspects of a common design structure that make it useful for creating a reusable object-oriented

design. A design partem identifies the participating classes and instances, their roles and

collaborations, and the distribution of responsibilities. Pattems are useful not only for describing

successful solutions, but also for improving the vocabulary among software developers,

communicating information between designers, programmers and maintenance programrner at a

higher level than individual classes or functions [Cli96].

In general, a partem has four essential elements [GHN95]: (1) The pattern name

describes succinctly the design problem, its solutions and consequences using a word or two; (2)

the problem describes when to apply the pattem, explaining the problem and its context, and

presenting a list of conditions that must be met before it makes sense to apply the pattem (the

pattem's forces); (3) the solution describes the elements that mak:e up the design, their

relationships, responsibilities and collaborations; (4) the consequences are the results and

tradeoffs of applying the pattem.

Most of the design pattems from existent pattem catalogs [GH.N95, BMRS+96] provide

solutions for variability and adaptability problems, defining a conunon vocabulary to docwnent

the framework's hot spots. However, these design pattems do not communicate precisely which

75

are the adaptable and fixed parts, and how to provide specific implementations for each hot spot.

To solve this problem, Pree has proposed the use ofmetapatterns [Pre95] (which is also referred

as a design pattern) as a means for documenting more precisely the framework's hot spots. We

present the concepts of metapatterns in the next section.

2.4 Metapatterns

According to Pree [Pre95] metapattems are defmed as a set of design patterns that describe how

to construct frameworks independent o f a specific domain. These metapattems can be applied to

categorize and describe any framework exarnplé design partem on a meta-levei and therefore,

they are considered more abstract than state-of-the-art design pattems. Metapattems do not

replace these design patterns, but complement them. They are primarily used for documenting

the framework's hot spots during the design process, improving the framework understanding.

Metapattems are based on template and hook methods. Template methods implement the

frozen spots and the hook methods implement the hot spots of a framework. The template

methods are a means of defining abstract behavior or generic flow of control or the relationship

between objects. A template method can be considered as a complex method that is implemented

based on the elementary hook methods. The hook methods can be either: (i) abstract methods; (ii)

regular methods or (iii) template methods. Figure 2 illustrates the concepts of template and hook

methods. Method M1 () is a template method that calls its hook methods M2() and M3(). Method

M2() is an abstract method of B, and the subclass 61 provides an implementation for it. Method

M3() is a concrete method o f B, and it can also be replaced by a subclass.

I ~hilo(} 'I
B _....----1 M2(); I

Ml() ____. i iÍ(. __ J i
~;g ! M3();

T '--.c;:: :::Oo,:=_:=:=":='".,:=,=::::"_

~ /--+-"""'''''"'"' ·-
~~

B::Ml()

~
ô

Figure 2: A template calling its hook methods.

2 Acconting to Pree, the tennframework example is used to refer to those design pattems that describe reusable
design structures, such as most ofthe design patterns from the pattem catalog o f Gama et ai [GHJV95] and some o f
the Coad's pattems [Coa92].

76

Pree defines seven metapattems which describe the way the template method are

implemented based on the hook methods and how the classes that implement them are related

with each other. The class that contains the hook method(s) is considered as the hook class ofthe

class that contains the corresponding template method(s), which is considered as the template

class. The metapattems describe how to com pose template and hook classes and their

corresponding objects. The seven metapattems define the different combinations for these kinds

of relationships, answering the following questions:

• Can an object of a template class refer to exactly one object of the corresponding

hook class or to any number of objects ofits hook class?

• Is the template class a descendant ofthe hook class? Are both classes unified?

The seven metapattems are summarized bellow. For a detailed explanation of these

metapattems, we refer to [Pre95].

1. Unification metapattern: the template and hook methods are defined in the same classes,

originating the unified template-hook class, which is represented as TH class in the Figure 3

(a).

2. 1:1 Connection metapattern: the template and hook methods are defined in different class,

and there is no inheritance relationship between these classes. An object of the template class

refers exactly to one object of the hook class (this reference is represented as hRef in the

Figure 3 (b)).

3. l:N Connection metapattern: this is similar to the 1:1 Connection. In this case, an object of

the template class refers to any number of objects of the hook class (the reference is

represented as hList in Figure 3 (c)).

4. 1:1 Recursive Connection metapattern: the template and hook methods are defined in

different classes, and an object of the template class refers to exactly one object of its hook

class. The template class is a descendant o f its hook class (Figure 3 (d)).

5. 1:N Recursive Connection metapattern: this is similar to the 1:1 Recursive Connection. In

this case, an object of the template class refers to any number o f objects o f the hook class

(Figure 3 (e)).

6. 1:1 Recursive Unification metapattern: the template and the hook methods are defined in

the same class. An object of the unified class TH has a reference to one object of the same

class TH (the reference is represented as thRef in Figure 3 (í)).

77

7. l:N Recursive Unification metapattern: this is similar to the 1:1 Recursive Unification. In

this case, one object of TH refers to any nwnber of objects of the same class TH (the

reference is represented as thList in Figure 3 (g)).

'"" hUst

~ ~~~ c::::J~
(a) (b) (o)

!O .-E .:ó /\ thUst

[,u,~
•R.r

,-<Oj 'H I ':1 'H I
. ' I

-----. '

(d) (e) ID (g)

Figure 3: The seven Metapattems

2.5 Framework development

The development of a framework is not a trivial task, since it should be designed to accomplish

the requirernent of a farnily of related applications. A well-designed framework should

irnplernent the cornmon features of the framework's dornain and provide adequate hot spots that

satisfy its required variability [Pre95]. Prirnarily, domain-specific know1edge is required to

identify the hot and frozen spots. A:fter they have been identified, architectural styles can be

applied to describe the frarnework's architecture at the high-level design, and design pattems and

metapattems can be applied to describe the class design ofthe hot spots.

We describe two approaches for the framework's development that is based on hot spots

and patterns: the Pree's approach and the Schrnid's approach.

Pree's approach

Wolfgang Pree proposes a hot-spot-driven approach to the framework development which is

sumrnarized in Figure 4. Once the desired hot spots are identified, the metapattems are used to

describe them identitying the template and hook methods, the classes that implement them and

their relationships. The metapatterns describe the framework's adaptability independent of a

specific domain.

78

Identify object/classes
Domain expon, software engíneer

Domoin e:<port, softwate engineer

Framewurk adaptatiun
Software engineer, domain expen,

N Hotsputs
L-----<; ~atisfying?

y

Figure 4: Hot-spot-driven approach using metapattems to describe the adaptable parts

Schmid's approach

The Sclunid's approach is also based on hot spots and frozen spots and is very similar to the

Pree's approach. In addition, Schmid also proposes a method to identify the hot spots of a

framework by applying a sequence of generalizing transfonnations in a specific model of an

application from the domain [Sch97]. According to Schmid, the complexity of framework's

design is reduced by separating clearly different issues: (1) the design of a class model for an

application from the framework's domain; (2) the analysis and specification of the domain

variability and adaptability; (3) the stepwise implementation o f these variability by a sequence o f

generalizing transformations performed on the basic model. The generalizing transformations

generate the hot spots, which are described using design pattems.

These rnro approaches are very similar, except by using different partem approaches to

describe the adaptable parts: Schmid applies the design patterns ftom the pattem's catalog

[GHN95] and Pree applies the metapattems ftom [Pre95]. We have decided to use a

cornbination of these two approaches, applying both design pattems and metapattems for

describing the framework's variability and adaptability. The design pattems capture the detailed

structure and semantic of the adaptable design, the classes' collaborations and responsibilities.

The metapattems are more abstract and can be used to describe the points of adaptability of a

speci:fic design pattem in a meta-levei. They describe with more precision how a hot spot can be

79

adapted by identifying the template and hook methods and the relationship between the template

and hook classes of a design partem.

Regarding the identification ofthe hot spots, our approach is more similar to the Schmid's

approach. As a start point, we have the model of a specific application from the domain of train

controllers, called Train Set System [Rub94, Qua97]. We have applied a sequence of

generalizing transformations in this specific model based on the analysis of the domain,

generating the hot spots that satisfy the adaptability ofthe train controller domain.

Our approach for the whole development o f the framework also includes the design o f the

framework's architecture as the first step toward the framework design.

3 Basic Model of a Train Controller Application
This section describes the main features of the basic model of a specific train controller, called

Train Set System [Rub94, Qua97], which has been used to generate the framework. This basic

model presents the same restrictions that are also considered in the framework's design.

3.1 The Train Set System

The Train Set System is a digitally controlled model railway (Figure 5), which is divided into

three parts: electronic digital units, railway layout and trains. The railway layout is mounted on

three separated boards that can be independently controlled by separated controllers. Each board

can be viewed as being composed of a set of switches, sensors and railway tracks, which link

connectors and sensors (which we call stations, since they are the only source of information

about the state of the system). Our case study is based on this railway model, but the

development of the framework is limited to the software controller itself, since we do not have

the original Marklin hardware (the digital units, the railway layout and the train engine) which

was used to develop the Train Set System.

80

Figure 5: The Traio Set system and the representation ofthe Marklin hardware

Sections are directed links of railway tracks between adjacent stations, and can contain a

sequence of zero or more connectors. There are three different kinds of connectors: (i) a crossing

is a static kind of connector which cannot be controlled; (ii) end point is a tenninal connector;

(iii) switch is a coiUlector that has two controllable directions, straight and curved, and it can be

oftwo kinds: point and crossover. Figure 6 shows the main kinds of connectors. There are also

three different kinds of sections: (i) a solid section is a section that has next sections; (ii) a

partitioned section does not have next sections and (iii) an interconnected section is located at

the boundary o f two boards, thus its next sections belong to another board. Figure 7 shows the

layout of the three separated board controlled by three distributed computers, with examples of

sections, stations, connectors and edges.

><
(a) crossing (b) end point

stmight

< >
~

curved

(a)pointswitch (a) crossover switch

Figure 6: Kinds of connectors

81

/
/

COMPUTEI<

• o

' ' '

• o

' ' '
•

,~
0

":',,,"·- <--------~-:~-:w~~~~;~~2~~~w
" o

' ' o

'

RAYWAY
~c~

Figure 7: The railway layout composed by three separated boards

The trains aim to move randomly between stations. A train starts its movement in an

initial section of the board and continues its trip accordingly to the availability of the next

sections. If a next section is either reserved for another train or faulty and consequently cannot be

used, the train tries to localize another one. Despite the presence of faulty switches and sensors,

the trains should move around the railway without crashing, but if necessary stopping and

reversing. Since the railway layout is divided up in three boards, the design should tak.e into

account both the layout distribution and the train crossings between neighbor boards.

The relevant restrictions of the train controller application can be surnmarized as

following:

• The main goal isto guarantee no train collision, i.e., safety;

• Switches and sensors are unreliable devices and can suffer environmental faults. However,

considering two consecutive sensors it is asswned that only one sensor can fail.

• Derailment o f train is not considered.

• Routing ofthe train is ignored, i. e., the trains move randomly between stations.

82

• Train can stop within one section that means that it travels slowly enough to stop

immediately when requested.

• We assume that the train size is smaller than the smallest section and can be completely

contained within a section.

The most important non-functional requirement of train controller applications is

dependability, since it is a criticai system: a failure in the controller system can lead to the

collision of trains. Fault tolerance teclmiques can be used to achieve the dependability

requirement, avoiding faults from causing failures in the system. We have concentrated our

attention on environmental faults that entities with which the system interacts can suffer. The

main sources of environmental faults in the train controller system are switches and sensors. We

assume that ali the other elements or devices of the train set are reliable. Another non-functional

requirement is distribution: the three boards can be controlled by three independent computers,

which are connected by a network.

3.2 Basic class diagram

The previous works about the Train Set System [Rub94, Qua97] have an extended explanation of

the process of defining the basic object model of the application based on the requirements. In

this paper, we present only the most important class diagrarns of the Train Set Systern that are

important for understanding the framework's design. Figure 8 shows the most general class

diagram ofthe system (using the UML notation).

, Opcrator I Comroller
I

;

I"'"-· I J..• ,,_ I I Communioat1on I
lnterl'aoe Con1rollcr Prolocol

<>
I I li

I """ I I '""' I View

I I
I •

~ &ro-re ' ·~· ~ I

Figure 8: Basic class diagram ofthe Train Set System

lhe system is composed by two main packages: lhe Operator package and lhe Controller

package. lhe Operator package defmes lhe Operatorlntertace class which implements lhe interface

83

with the operator of the system who is responsible for creating trains, specifying how trains

should be first located, where they should go, what precautions should be taken against

collisions, and when to start and stop the system. The Controller package implements the main

functionality of the system. lt defines the CentraiController class, which is the core of the

application. The CentraiController is broken down into many control objects, such as train

controllers (one for each train) and board controller. More specifically, the CentraiController is an

aggregation of one instance of the Board class, many instances of the Train class, one instance of

the Hardware class and one instance ofthe BoardView class. The CentraiController is also associated

vvith one instance of the CommunicationProtocol class, which implements the communication

protocol between two distributed controllers. The CentraiController and the Operatorlntertace are

associated with each other, and lhe Operatorlntertace should pass messages to the CentraiController

initializing the system, and the CentraiController should pass messages to the Operatorlntertace

about relevant system information such as the position o f the trains and about faulty states o f the

system. The other classes o f the Controller package are:

• The Train class, which is an important control object of the system, representing trains

moving around the board. A train requests services such as lockSection() and releaseSection{) to

the Controller, updateTrainPosition() to the BoardView, and setSpeed() to the Marklinlntertace. It

implements methods such as start(), move(), reverse() and stop().

• The Board class, which represents the board components. The Board class is a composition of

many instances of Sections. The Section class is a composition of two instances of Stations

(head and tail) and zero or more instances ofConnectors. The Connector and Station classes are

associated with the Edge class (Figure 9).

oposit~Section

'

Figure 9: Class diagram ofthe Board component

84

• The BoardView class, which represents the railway's layout and reflects the state of the

system, such as the position of trains, ftee and locked sections, and also, exceptional states

about faulty components. The view can be updated by the Train instances and by the

Controller.

• The Marklinlnterface class, which implements methods of interaction with the railway

hardware, including the board devices (switches and sensors) and the train engine.

• The CommunicationProtocol class, which implements the details of basic functionality for the

communication between two distributed controllers. It encapsulates details about inter

process communications between process that are in different address space.

3.3 Fault tolerance

As stated before, the Train Set System should tolerate environmental faults of switches and

sensors. The implementation of fault tolerance mechanisms in the Train Set system involves two

issues: (i) error detection and recovery and (ii) fault treatment.

3.3.1 Errar detection and recovery

The train should be capable o f detecting an erro r in its current position (caused either by a faulty

switch o r a senso r that was triggered erroneously) and o f recovering its position avoiding train

collisions. The concept of control zone is very important for avoiding t:rain collisions. The

control zone is the front region acquired by a train, i. e., all sections locked ahead of the current

position of the train (the next sections). Each train has a control zone and is responsible for

setting its route within its control one. The control zone is constructed with one or more leveis of

next sections. The frrst levei holds information of the next sections of the current section of the

train. The second levei holds information of the next sections of each section of the frrst levei,

and so on. Figure lO shows an example ofa two-level control zone.

85

first levei Second levd

station D
slation B

•tation E

starion F

stationC station G

station H

Figure 10: Example of a control zone of one and two leveis.

If we assume that ali devices are reliable, it is enough to lock only one next section o f the

current section in arder to avoid train collision. However, if we assume that switches are

unreliable devices (and sensors are reliable) the train needs to acquire a control zone with one

levei (all the next sections o f the current section), while if we assume that both switches and

sensors are unreliable, the train needs to acquire a two-level control zone.

The train is capable of detecting an error in its position based on an exception handling

mechanism. The train knows what is the next sensor to be triggered. When an unexpected sensor

is triggered outside its control zone, the train signals an exception to the controller. After

detecting the error, it is necessary to remove the errors from the system state, by means of errar

recovery techniques. The Train Set System implements forward error recovery: when a train

detects an error in its position, it tries to set a new route within its control zone in arder to

recover from the error, or if it is not possible, the train should stop and wait or reverse.

The design solution defines a hierarchy of Train classes to implement the tolerance of

each k.ind ofpossible fault (Figure 11). The Train class is the base ofthe hierarchy and does not

tolerate any kind of fault, i. e., it assumes that the switches and sensors are reliable, and the

control zone is only the next section of the current section. The FTConTrain class impiements

tolerance of switches, defining a controi zone of two leveis. The RobustTrain class impiements

tolerance of both switches and sensors, defining a control zone of three leveis. The move()

method is overridden to implement the different control zones.

86

Train

5!art()
move()
stop()
revertO

y
FTCanTrain

move()

L['
RobustTrain

move()

Figure 11: The Train class hierarchy to implement different error detection and recovery

3.3.2 Fault treatment

After perfonning the error treatment, is still necessary to treat the fault to prevent it from

continuing to damage the system state. F o r that, the system should be reconfigured properly. The

reconfiguration consists in changing the behavior of the faulty components, so that their service

implementations reflect the faulty (abnormal) state of the component. Tbis reconfiguration

should be performed dynamically, since the system cannot stop. The reconfiguration strategy

consists in encapsulating the abnormal behavior phases of faulty entities as objects, and

developing stand-by variants of this abnormal behavior phases to replace the behavior

implementation offaulty components.

This solution is implemented as the State design pattem [GHN95]. We define a state

class hierarchy parallel to the component class. The normal and abnormal behaviors of the

component are encapsulated by the state concrete classes. The component delegates the

execution of its services to its current object. The component changes its behavior by changing

its current state object. Figure 12 shows the design of the Switch class and its correspondent

SwitchState hierarchy. The section class is designed sirnilarly.

87

Swítch

lock()
release()
putDirection()
isfree{)

• SwitchState

lock()
relea•·•O
putDirectian()
isFree()

,,,,, I I ""'''= I r;:=-!;:::-:;--SwitchNmmal

I
SwitchNonnal

Jock()
release()
putDin:ction()
isFree()

lock()
release()
putDín:crion()
isFree()

I I SwitchAbnmm•IUnf li SwitchAbnoJIDa!Str li SwitchAbnorma!Cur I
Figure 12: The design ofthe Switch component using the State design pattem

4 The Framework Design
As stated before, a framework for an application's family defmes the fixed parts ofthe domain, i.

e. the frozen spots, and the parts that should be kept flexible to fill the specific applications'

features, i.e. the hot spots. Based on the specific model of the Train Set System and on the

domain analysis, we have identified the frozen and hot spots, looking for the commonalities and

variabilities ofthis domain.

4.1 The frozen spots and the framework architecture

Some ofthe frozen spots ofthe train controller domain are:

• The central controller

• The control ofthe set oftrains or other mobile objects: the framework implements the control

of the trains or other mobile~object's movement around the board, although the kinds of

mobile objects can be different for each application.

• The control o f sensors that detect the position o f trains in the board.

• The control of actuators, i. e., the switches or other kind of actuators that perform alterations

in the environment.

• The state machine implementation. The framework implements the control aspects related to

the state machine that is executed in the State design pattem. (execution of the state

88

transitions and creation of state objects), although the specific configuration of this state

machine can be different for each application.

The framework architecture descriptions define the main components of the framework,

their collaborations and restrictions. The frarnework should implement the fault tolerance

techniques in its fixed parts, what increases its complexity dueto the introduction of component

redundancy and exception handling mechanism, as discussed in the section 3.3. We have

identified lhe architectural styles that provide better solutions for the design of redundancy and

exception handling in lhe fixed part of lhe frarnework, keeping the design complexity under

controL The next sections briefly describe the architectural styles and the resulting architecture

descriptions o f lhe frarnework.

4.1.1 Architecture description using lhe ldealized Fault-Tolerant Component style

The Idealized Fault-Tolerant Component style is based on a well-known model for constructing

fault-tolerant systems: the idealized fault-tolerant component model proposed by Lee and

Anderson [LA90]. According to the model, a system can be viewed as a set of components

interacting under the control of a design (that is itself a component of the system). The system

model is recursive in the sense that each component can itself be considered as a system on its

right, and thus can have a recursive structure composition which identifies further sub

components. Moreover, these components receive requests for service and produce responses. If

a component cannot satisfy a request for service, then it will return an exception At each levei of

the system, an idealized fault-tolerant component will either deal with exceptional responses

raised by components ata lower levei (a supplier component) or else propagate the exception to

a higher levei o f the system (a client component).

Figure 13 illustrates the components, connectors and the design rules of this style. The

components of the style are the supplier and client components, which are divided in two parts:

(1) the normal part that implements the normal servíce and returns normal responses and (2) the

abnormal part that implements the measures for handling exceptions returned by a supplier

component. The connectors o f the style are the service requests and service responses, which are

used by the components to communicate with each other. In the ldealized Fault-Tolerant

Component style, interface exceptions are signaled in the normal part of the component, while

89

failure and interface exceptions from supplier components invoke the exception handling part of

the client component. lf these exceptions are handled successfully (that is, the component was

able to mask the exception), the component can return to providing normal services. However, if

the component does not succeed in dealing with such exceptions, it should signal a failure

exception to a higher levei o f the system.

Service Nonnal
reques! rotum

cliont-oomponent Normal Activity

SeM<:O Normal
request rewm

supplíer~ponont
Normal Activity

t
Failu"'
c~oeption

Interface
txcepnon

Failure
OJ<<eption

Figure 13: The Idealized Fault~ Tolerant Component style

In order to describe the framework's architecture using this style, we identify the fault

tolerant components that interact to perfonn the main functionality of the application. At a higher

levei of abstraction, we identify three main fault-tolerant components: Train, Controller and Board

(Figure 14). These components represent packages of an object-oriented system, which

encapsulate the details of their classes. The packages provide the public services that are in turn

provided by their constituent classes.

The Train component is responsible for the movement of trains, implementing services

such as move(), stop(), revert(), etc. The Controller component is the central part of the system, and

it is the intennediate component between the Train and the Board. The Controller provides

important services to the trains so that they move around the boards without crashing, such as

lock_section(), release_section(), etc. The Board component defmes the detailed representation of

the board1s layout, and is composed by a set of connectors, sensors and sections. It is responsible

for creating, initializing and managing these components.

As stated before, the goal of the system is to contrai the movement of trains so that no

train collision occurs. For that, a Train requests services to the Controller, such as lock~section(),

release~section() and occupy_section(). If the service is executed nonnally, the Train receives a

90

normal response and continues movmg toward the next section. If some fault occurs in a

supplier~component, the service request cannot be performed normally and an exception is

signaled and propagated to the Train. For instance, the Board can return an exception as a

response of the operation lock_section() due to some faulty sub-component (e.g. a switch that

belongs to the required section is faulty and the section cannot be used by a Train). The exception

is propagated through the components that are between the lower~level component, i. e. the

switch device, and the higher-level component, i.e. the Train. The Train is the component

responsible for handling the exception, using a forward error recovery mechanism: if a requested

section is abnormal, the train attempts to lock another one in order to recovery from the error.

Train
~Q!Yo114..m:;I'L.,,p."
J«Cv~·.,
·-hcr~

>;G<sJ.

Service ""!uesll!: loc=,-,---,<:::;:;-;:;;;;~""'
"'lo .. e OtiÓ oocupy
socti<ms r-''--.C,

Servi"" ""~""'"' loc~
"'lease ond oooupy
.oocion< r-''---_L_-rc==s-....J.__,

Figure 14: The architecture ofthe dependable frarnework for train controllers using the Idealized

Fault-Tolerant Component style

4.1.2 Architecture description using lhe Meta-Levei style

Meta-levei architectures are based on the computational reflection concepts. Computational

reflection is a technique that allows a system to maintain information about itself (meta

information) and use this information to change its behavior (adapt) [Mae87]. This means that a

component can get information about the internai properties of another component and based on

that information it can dynamically interfere on its current computations.

The main benefit of object-oriented meta-levei architectures is the modularization of the

system in at Ieast two leveis (or Iayers): the meta-levei and the base levei. The meta-levei

encompasses the objects that deal with the processing of self-representation and management of

an application, and the base levei encampasses the objects responsible for implementing the

functionality ofthe application. Figure 15 illustrates this style.

91

For the meta-levei to be able to reflect on base-levei objects, it must be given

information regarding the intemal structure of base-levei objects (structural meta-information).

The representation, in form of objects, of abstract language concepts, such as classes and

methods, is called reification. Moreover, interaction between objects may also be materialized as

objects, so that meta-levei objects can inspect and possibly alter them. This is achieved by

intercepting base-levei operations such as method invocations, creating objects that represent

them, and transferring control to the meta-levei. After transferring the control to the meta-levei,

the meta-objects can inspect the reified inforrnation and can also modify structural and/or

behavioral aspects of the base-levei object. This process is also called rejlecting the changes

back into the base-leve! object [Mae87, Fer89].

The connector of this style is the meta-object protocol (MOP), which establishes the

relationship among the base-leve! and meta-leve! objects. The MOP provides an interface to the

programming language implementation in order to reveal to the program information normally

hidden by the compiler and/or run-time environrnent [Mae87]. The MOP's kemel is responsible

for implementing the interception, reification and reflection mechanisms described above.

MetaObje<:t

<<intercept an>,-.,.----;-
reify service < Rdfy

Meta-levei request>> :n ~~~~ , .. <---zz __ L~M~O~P-
1n l"~"~anon:>>

------------------------------- -- --------- - ---
Base leve!

r~--- request of a
Client

<<Reflect>> r ,--1___1_
Object

.1------=---- -3> ServiceQ

Figure 15: The Meta-Levei architectural style

Regarding the development offault-tolerant systems, the Meta-Leve/ style can be used to

separate the management activities related to the control of component redundancy that is used to

implement fault tolerance. In the previous section 3.3.2, we have presented the design for

implementing environrnental fault tolerance by means of state classes that implement the normal

and abnormal behavior of a faulty component. These classes represent the redundant components

since they are not necessary if we consider that the system is free frorn faults. In fact, there is a

state machine execution behind this design that controls the execution ofthe state transitions.

92

Following the Meta-Leve/ style, we can define the control aspects related to the state

rnachine execution at the rneta-level, separating them from the functional aspects implernented

by lhe component's classes. Figure 16 shows lhe structural organization oflhe framework using

the Meta-Leve/ style. The fault-tolerant components (FTComponents) define redundant

components needed to implement environmental fault-tolerance, and the MetaStateMachine

component implements the control aspects related to the execution o f the state machine.

We have used lhe Guarana's MOP [Oli98] to implement lhe MetaStateMachine. The

Guarana's kemel implements the interception, reification and reflection mechanisms. The

Guarana reflective architecture also defmes some basic classes that can be derived to implement

lhe meta-objects behavior.

"l Meta-l e
compon ""

MOP

Base-te "l
compon ents

lmplernentation of
~nvironmental I Guarana's classes
faul!-rolerance
mecbanisms (non-

'i functional aspects)

I
Meta Stata Machine

' ' ' ' ' : '
Reification i : • z

.• ··]Retre'ê!ii5ii'""'

v.~p~~m.~re ' ' ' ' ' '
Other common Fault-tolerant
classes oftrain componen!s

controllers {FTComponents)

" ____ ,_,

Specialized classes Specialized fault-
ofaspecific tolerant classes
application ofa specific

Application '• Speeif<c classes
application

I
Guarana's -·
Framew"'k
by subclassi =· "' ration ond configu ..

' ' ,

Ftgure 16. The framework architecture usmg the Meta-Levei style.

4.2 The hot spots

The main adaptable parts o f lhe frarnework are:

• The composition of the board: different applications have different compositions of the

board, depending on lhe railway layout. The framework should support the definition of any

board's format.

• The board view 1s also an adaptable part since it reflects the board composition. The

framework does not defme any implementation for the board view; it implements only an

93

abstract class lhat defines lhe interface (abstract public melhods) that lhe board view module

o f a specific application should implement.

• Different kinds of mobile objects: the specific application can extend the Train class to

implement different errar treatment for the different kind of faults, and can also define

different kinds ofmobile objects with similar functionality, such as wagonettes.

• Fault tolerance: each specific application can redefine the possible states o f the components,

changing the state machine configuration and the State class hierarchies of the fault-tolerant

components.

• The communication protocol: each specific application can redefme or replace the

cornmunication protocol between lhe distributed controllers.

In the next sections, we describe the hot spots o f the framework identifying the following

aspects:

(i) lhe adaptability;

(ii) the problems related to the required adaptability in the basic model;

(iii) the requirements that the solution should implement;

(iv) the design pattern/metapattem that describes lhe adaptability. Wherever is

identified a design pattern and metapattern, we use a combination of both.

Otherwise, if no semantic-specific design pattern is identified, we use only

metapatterns that are more abstract.

4.2.1 Hot spot for lhe board's composition

Adaptabilty

The composition of the board should be kept flexible, since it depends on the railway layout.

Different applications can have different board compositions.

Problem

The basic model of the Train Set System defines a specific board composition that implements

its railway layout. The railway is composed by three separated boards, each board is composed

by sections and each section is composed by specific kinds of sensors and connectors. We can

classify the board's components as primitive and composed. A section is a kind of composed

component, and connectors and sensors are primitive components. The layout of these

94

components and the composition of the sections are specific for the Train Set system, and the

creation ofthese objects depends on the specific railway layout.

Requirement

The solution should allow the composition of any kind of board, with different layout for its

components. The composition of the composed objects should be kept flexible so that a different

composed object can be created by a different combination ofprimitive objects. Furthermore, the

solution should allow the creation of specialized types of primitive objects (for instance, specific

kind of connectors, stations, and edges) and composed objects (for instance, specific kind of

sections or other kind of composed object).

Solution

We apply the Composite design pattem [GHN95] to implement flex.ible composition of

objects (Figure 17). Following the Composite pattern, we define an abstract base class called

Boardltem, which is the base o f the hierarchy, and a recursive hierarchy o f primitive and

composed classes. The Block class implements the recursive composed class, implementing

operations to add and get objects of Boardltem class, and other operations that are executed

uniformly in all its objects, such as lock(), release(), etc. The Section class is a specific kind of

Block composed by two stations (head and tail stations) and any number o f connectors. A specific

application can define new types of board items by inheriting the primítive classes. New kind of

blocks can be created using different composition ofthese specialized objects.

We apply the l:N Recursive Connection metapattem to describe the adaptability for the

composition of the board components. The Block class is a template class and implements the

template methods lock(), release(), isFree(), which call the hook methods (with the same name) of

its Boardltem objects.

95

y
----,-----~-----,1 t

Other kinds of
prirniLive items

items

lookQ
rel.,..eQ
isfree()

!-;,=-,'::-'~_' _ ___,'-/
I<>OI<();

~elease() _J--................ J ": ;::===::'_b.
1sFreeQ ,.,"'''"'"-"'"'"_.J~ ''"'"-
addllem(Boardltem) foreach i ofilems{
getltem(type, id) i.isfree():
searehl!em(type,id))

Stalion ;:::;,o;,.±.::.:c, --, l __ __j

look()
release()
isF-Q '("""""" _j__,

I Other kinds of
blocks Section

lock()

"'isFree()

Figure 17: Flexible structure for the composition ofthe Board's components.

The Board class encapsulates the information about ali board's components, maintaining

the Iist o f all COIUlectors, stations, blocks, etc. It is responsible for creating and initializing these

objects accordingly to a specific layout configuration, and also for providing the access of them

for other objects, such as the Controller and the Train. The Board class is implemented as the

Manager pattem [SB98], which treats the collection of objects as a whole, and allows the access

for each object independently of its specific type (Figure 18)" For instance, the Controller object

(which implements the role of a client) retrieves Section objects from the Board and call services

in these objects. The Board class also implements an Abstract Factory pattem [GHN95],

allowing the flexible creation of the collections of objects that compose the board, so that the

specific application can redefine the types ofthe primitive and composed components.

96

retrieves Controller

calls servi

Boord * Boarditem *
________ J_,_ __ f{-:"";:.;;,,;;,:;.,;;0~-i::>-----L::.:;::__f-------~

creareEdgesQ;
· crcareStations();

I
crcareConnecrors();
createB!ocks();

;

c"'aleCannec/orsO
cremeSialions()
crea1eEdges()
crealeSec/ions(!
addElement(Board!tem)
retrieve(Type)
search(Type,id)

items

I Station I I CoM~« I

Figure 18: Flexible structure for the creation and management ofthe board's components

The Unification Metapattem is applied to describe the Abstract Factory pattem. The

Board class implements the template method createBoard() that calls the abstract hook methods

createConnectors(), createStations(), createEdges() and createB/ocks(). A specific application should

provide an implementation for these methods to create the specific kincl of board's objects

accordingly to the specific board's layout.

4.2.2 Hot spot for lhe board's view

Adaptability

The board's view should be flexible to represent any railway's layout and composition of board's

cornponents. The view update by the controller and trains should be independent of the specific

irnplernentation o f the view.

Problem

The board's view represents the railway's layout and it reflects relevant state information about

sensors, switches settings, positions of the trains in the board and reserved/free sections. The

board view implementation ofthe Train Set Systern reflects the specific composition ofthe board

accordingly to the specific railway layout. The trains and controller depend on this specific

implementation to update the view.

Requirement

97

The controller and trains should be capable ofupdating the view about relevant state infonnation

o f the system independently o f a specific implementation o f the view.

Solution

The framework does not define a specific implementation for the board view since it should

reflect a specific railway layout. The framework defines only lhe interface for lhe view update,

so that the controller and trains can be unaware about the specific implementation of the board's

view and how the separated views are updated consistently. The controller and train update the

view tbrough predefined messages that represent the possible changes in the system's state.

We use lhe Observer design pattem [GHN95] to implement lhe update of lhe board's

view independently of a specific view implementation (Figure 19). The BoardView class is an

abstract class that defines the abstract method update(), which receives a message that carries the

infonnation about the changed state. Each concrete implementation of the BoardView class

overrides this method, providing the specific actions to update the interface reflecting the change

of lhe system's state. Tbe Observable class implements lhe methods attach() and detach(), which

are responsible for initializing the Observable object with one or more instances of a concrete

implementation o f lhe BoardView class. !t also implements lhe notify() melhod, which calls lhe

melhod update() on lhe BoardView object. The Train and Controller classes inherit from lhe

Observable class, so that they can attach/detach BoardView objects, and notifY them about relevant

state changes. For instance, the Train object updates the view with information about free/locked

sections and its position, and the ControUer updates the view about faulty system's states.

98

'"'"'''''"'"''"

' ' ' Observable i BoordView vrews •
attaoh() '----~ update(Mess)

""'"O notiW y ~ " for all v in views{ / y -v.upda!e{mess);
ConcrereBoardView I

update{Mess)

I Controller li Trnin I
if (Mess ~ pccificMess) {

//update thc i1tl«face

I

Figure 19: Flexible implementation ofthe board's view.

A concrete BoardView class can implement either the representation of the entire board or

the representation of each part of the board. In the last case, each nade has its correspondent

board view and the Controller and Train instances are initialized with one instance of the concrete

view, and update only this view (the attribute views in the Observable class is a list with only one

object). If the concrete BoardView class implements the entire board, each nade has a BoardView

object that shows the state of the entire board. In arder to guarantee the consistence arnong the

views, the Controller and the Train instances should update not only their own view, but also the

other available views. In this case, the Train and Controller instances are initialized with a list of

the available views and call the update() method in these BoardView objects. The pattern treats

these two cases unifonnly: the update() method is implemented by the Observable class in the

same way in the two cases, and the Controller and the T rain instance do not c are about the kind o f

the BoardView object and how it is updated.

4.2.3 Hot spot for lhe crealion of lhe mobile objects

Adaptability

99

Each specific application can control different kinds of mobile objects. For instance, different

applications contain specialized types of trains or different mobile objects with similar

functionality, such as wagonettes.

Problem

The Train Set System considers one type of mobile objects, that is train. It defines a hierarchy of

Train classes that implements the different kind of error treatment (errar detection and error

recovery). The basic class is Train, which does not tolerate any kind of fault. There are two

specialized kind oftrains: (1) the FTConTrain, which implements the error treatment for connector

faults and (2) the RobustTrain, which redefines the FTConTrain to implement the errar treatrnent

from connector and sensor faults. These types oftrains are specific for the Train Set System, and

the creation ofthe objects is not transparent for the application.

Requirement

Each specific application should be able to rede:fine new kinds of trains, which implement

different kind of errar treatrnent, and also treatrnent for other kinds of faults. The framework

should be independent from the creation of the specific type of train or other types of mobile

objects with similar functionality.

Solution

We use the Prototype design partem [GHN95] to implement the flexible creation of different

types of mobile objects (Figure 20). The framework defines the base class MobileObject, which

defmes the abstract method clone(). The concrete subclasses of MobileObject should provide the

implementation for this method, returning a copy of itself. Then, an instance of MobileObject is a

prototypical instance that is used by the application to clone specific types ofmobile objects.

The framework also defines a MobileObjectManager class, which is responsible for creating

new instances of a specific MobileObject using the prototype object. The MobileObjectManager

maintains an abstract reference for a MobileObject (moPrototype), and it is parameterized by an

instance of a concrete subclass of MobileObject. The createMobileObject() method retums a new

instance o f lhe concrete MobileObject by calling lhe clone() method o f moPrototype.

The Controller object is responsible for creating and inserting trains, and it should be

independent o f the type o f train that should be instantiated. F o r that, the Controller is initialized

with an appropriated MobileObjectManager object, which creates the specific kind of MobileObject.

100

The Controller inserts MobileObject by calling the rnethod CreateMobileObject() of its

MobileObjectManager.

insertTrainQ

!/ ...
Train 1 ~manoger.oreat.MobileObjectO;
t.moveQ:

"

J·J Connection metapattem

"

Ntorn rnoProtoype.clonc{)

"'t"'n new Traón()

retum now FTConTrain()

L-------' "l-clone()
move()

'-é~

clone()
move{)

Figure 20: Hot spot for the creation of mobile objects

4.2A Hot spot for lhe fault tolerance

Adaptability

In order to implement environmental fault tolerance, we consider two basic states for the fault

tolerant components: normal and abnormal. The behavior in each state is implemented by a State

class. Each specific application can redefine the behavior of each state andlor define different

normal and abnonnal states, extending the State class hierarchy and changing the state machine

execution accordingly with a specific state diagram defined for the fault tolerant component.

Problem

The Train Set System design uses the State design pattem to implement a hierarchy of State

classes, which implement the normal and abnormal behavior of the fault-tolerant components

(switches and sections). The component holds the reference for its current State object and uses

the delegation mechanism to delegate the state-dependent service to its current State object. The

101

component changes their states by changing the reference for the current State object. The

control aspects related to creation of the State objects and the execution of the state transitions

are implemented by either the fault-tolerant component or the State classes. In this solution, the

control aspects related to the state machine execution and the functional aspects of the

component (implementation ofits services) are implemented together, what mak.es it difficult to

extend the State class hierarchy and the fault tolerant component hierarchy independently.

Requirement

A specific application should be able to redefine the state diagram of the fault tolerant

component, adding or removing states and transitions, and consequently, extending o r redefming

the State class hierarchy. These extensions should be independent o f the extensions o f the

component's functionalities. Then, the solution should separate the contrai aspects related to the

state machine execution from the functional aspects o f the component.

Solution

We use the Reflective State pattem [FR98a, FR98c] that is a refinement o f lhe State design

partem based on the Meta-Levei architectural style (also documented as an arquitectural pattem

named "Ref!ection" [BMRS+96]). It applies the Meta-Levei architectural style to separate the

application in two leveis: (i) the base-levei, where resides the objects responsible for

implementing the functional activities ofthe application and (ü) the meta-levei, where resides the

meta-objects responsible for implementing the management and contrai activities. The

Reflective State pattern implements the contrai of the state machine execution in the meta-levei,

separating it from the functional services implemented by the fault-tolerant component and the

State classes.

Figure 21 shows the design ofthe switch component using the Reflective State pattern.

At the base-levei, we define the Switch class hierarchy and its correspondent SwitchState class

hierarchy. These classes implement the normal services and the state-dependent services o f the

switch respectively, without implementing the contrai aspects related to the creation ofthe state

objects and execution of the state transition. At the meta-levei, we define the meta-objects that

correspond to the state machine elements: the FSMState class, the FSMTransition class and

FSMController. The FSMController instance represents the state machine controller, and the

instances of the FSMState and FSMTransition represent the states and the state transitions of the

state machine, respectively. U sing the interception and reification mechanisms provided by the

102

reflective architecture, the FSMController meta-object intercepts and handles the operations sent to

the Switch object. The FSMController delegates the handling of the operation to the current

FSMState meta-object and to the FSMTransition meta-objects. These meta-objects perform the

extra-computation related to the state machine execution. The Switch and SwitchState classes are

completely independent, and each hierarchy can be extended without affecting the other.

Unification metapattem

lock()
rclease()
purDirection()
isFree()

lock()
n:lease()
putDirection()
isFree()

look()
n:lease()
pu!Direction()
isFree(}

•
•

irútNextStates()
handle()

mela·level

base·level

Figure 21: Design of the Switch component using the Reflective State Partem

This solution represents two hot spots: (i) the adaptabilty for the rede:finition of the state

machine at the meta-levei (creating new states and/or state transitions) and (ii) the redefinition of

the state-dependent methods in each concrete State class at the base-levei. Two metapattems are

103

applied to describe these hot spots. The Unification metapattem describes how the FSMController

can be rede:fined to implement a specific state machine. The template method config() calls the

hook abstract methods createStates(). createTransitions(). configStates(), configTransitions() that

should be redefined in a concrete subclass of FSMController to configure a specific state machine,

creating and configuring the various FSMStates and FSMTransitions that represent the state

machine's elements. The 1:1 Connection metapattem docurnents the adaptability to redefine the

state-dependent methods implemented by the State subclasses. The FSMState class is a template

class that implements the template method handle{). This method uses some retlection

mechanisms to execute an indirect delegation of the state-dependent service to a SwitchState

object (more details of this mechanism can be obtalned in [FR98a]). The SwitchState class is a

hook class that implements the hook abstract methods lock(), release(), etc. A specific application

can extend the SwitchState hierarchy by redefming new SwitchState subclasses, overriding the

hook roethods.

4.2.5 Hot spot for lhe communication protocol

Adaptability

Each specific application can redefme or change the communication protocol used by the

distributed controllers to corrununicate with each other.

Problem

The Train Set System is a distributed application and thus, it implements a specific distribution

mechanism to perform the communication between the distributed controllers over the network,

using a specific commwllcation protocol. Furthermore, the controllers of the application play the

role of a client and a server at the same time. It complicates the design, since each object should

implement the two sides ofthe cornmunication protocol: the client and the server side.

Requirement

The solution should implement a transparent interface for the cornmunication between the

distributed objects, so that they are unaware about the specific protocol used to implement the

communication over the network. The application's objects should be unaware about the location

ofthe objects with each they interact, i. e., ifthe objects are local or remate objects (this property

is referred as ''transparency of locality"). Furthermore, the design of the distributed controllers

104

should separate clearly the design of the client and server role, in order to make it easier to

redefine or completely change the communication protocol.

Solution

We use the Forwarder-Receiver design pattem [B:tvlRS+95] to implement the transparent inter

process communication between the controllers. The client-side ofthe Controller is implemented

by the forwarder component, and the server-side is implemented by the receiver component. This

solution allows the controllers to be independent ofthe inter-process communication mechanism

used, and guards them from details of the location of the other controllers. Figure 22 shows the

design o f the communication between the controllers using this pattem.

The forwarder is implemented by the abstract class ContCiienttntertace, which defines the

methods of the client-side of the controller (i. e., the services that request services in other

controllers). A concrete subclass of ContCiientlnterface defmes an implementation for these

methods, calling the services in the receiver object using a specific communication protocol.

Depending on the protocol used, it perforrns previous routines needed to obtain a reference to the

server and to call remate services (for instance, to marshal and to deliver the message to a remote

server), and might also perfonn some treatment for communication faults.

The receiver is implemented by the abstract class ContServerlnterface, which defines the

methods that are provided remotely. A concrete subclass of ContServerlnterface provides the

implementation of the remate services, calling the respective methods implemented by the

Controller. Depending on the protocol used, it perfonns some routines for receiving the remote

request (for instance, to unmarshal messages received from remote forwarders, etc).

The topology of the separated boards detennines the topology o f the computer network,

as can be observed in Figure 7 of section 3.1. A controller of one board can communicate with

either one or two remate controllers that control the other boards. Then, the ContCiientlnterface

has references for two possible remate receivers of the ContRemotelnterface class, and decides at

runtime which one it should use. The Controller class is independent o f these details.

105

ComC/iemlmeif<>ce
' ' '

~~~~=~>t;"~;~~":":~~o~; ~ requestlockSection0 j frequestRelwsesectionO requestReteasesectionO 
N!questLockSeclion() 1 ~ sendmsg l JnsertTminQ 

LlnsertTrainO ockSectionQ 

1._2 
releaseSeotionQ 

' ' 

imer-process communication 
using a communication protocol 

RMIContClientProtO<;Ol 

clientProtocol. 
requestLOI:kS«tionQ; 

~ delegates msg 
ConrRemolelnleifacc 

/ockSection() 
releouuclion() 
inret"/Train() 

1..2 

releaseSectionQ 
oommw.ication using RMt tockSccrionQ 1------====::::::::::::_ ____ 1 insertTrainOI 

//d<J some previou• routinco to 'C::o.. 
1/caU scrvices in a oerver using RM] 
// .... 
"'{ 

server.lockSectiooO; 
}can:h(remoteExceprions){} 

ccntroller.lockSeotion(); 

Figure 22: The design ofthe communication protocol using the Forwarder-Receiver pattern 

The controller is configured with a concrete subclass of ContCiientlnterface and uses this 

specific forwarder to request services in other controllers. The concrete subclass of 

ContCiientlnterface and ContRemotelnterface implements the sarne specific protocol The concrete 

subclass of ContRemotelnterface has a reference for the correspondent Controller object, and 

delegates to it the execution ofthe services that was requested remotely. 

We have impleroented the concrete classes RMIContCiientProtocol and 

RMIContServerProtocol to implement the forwarder and receiver using the RMI (Remote Method 

Invocation) protocol provided by the Java progranuning language. Using this specific protocol, 

the receiver is also implemented as the Proxy design pattem. The RMIContCiientProtocol has a 

reference for the skeleton of a RMIContServerProtoco! that is the remote proxy of the actual 

RMIContServerProtocol object in another address space. The RMI protocol implements ali the 

routines to marshal and unmarshal messages, so the cornmunication between the forwarder and 

the receiver is very simple. The RMIContCiientProtocol has to implement only some initializations 

of the proxy, and the RMIContServerProtocol has to be derived from a Remotelntertace interface 

{provided by the Java API) to provide the services remotely. 

106 



The 1: I Connection metapattem is used to document this hot spot. The Controller is the 

template class that defines the template methods requestLockSection() requestReleaseSection() and 

insertTrain(). These methods cal! the hook methods defined by the hook class ContCiientlntertace, 

which should be redefined to implement a specific communication protocol. 

4.3 lmplementation issues 

The dependable framework for train controllers has been implemented in the Java programming 

language. We have used a meta-object protocol called Guaraná [Oli98] to implement the 

MetaStateMachine at the meta-levei. The complete framework implementation has approximately 

110 classes and 7000 lines of codes. 

We have also implemented an example-application using the specific con:figuration o f the 

Train Set System in arder to verify the levei of adaptability achieved by the framework. The 

framework design was easily customized to accomplish the specific requirements, providing the 

desired levei of reuse. 

5 Conclusions 
We have described the design of a framework for fault-tolerant train controller using 

architectural styles for the framework's architecture definition and the combination of design 

pattems and metapattems for the hot spots descriptions. The rnain lessons leamed about using 

architectural styles, pattems and metapattems for the documentation of frarnework design are 

sununarized below: 

• The styles that we have applied in the framework architecture descriptions aim to provide 

fault tolerance mechanisms in a transparent way. The use of these architectural styles 

prometes a well-structured, less complex and more understandable architecture design. 

• The use of architectural styles also provides a high-level design reuse, since they provide 

good solutions for the general system organization. Regarding the framework development, 

reusing these solutions has reduced the cost ofthe framework design. 

• Most of the design patterns from pattem catalogs and pattem books document the detailed 

structure and semantic o f the hot spots, helping :framework' s users to understand the hot spot 

design by describing the classes' responsibilities and the way the objects interact with each 

other to perform a required task. However, the design patterns do not communicate precisely 

107 



which part is fixed and which part should be redefined by a specific application. The 

metapatterns has been proposed as a means to document the flexible structures of other 

design pattems, identifying more precisely the fixed and adaptable parts of these design 

patterns. In this way, metapatterns and design pattems are complementary, and the use o f 

both has improved the quality o f the framework documentation. 

• The design pattems have provided us with good solutions for complex hot spots problems, 

such as the hot spots for environmental fault tolerance and the hot spots for the 

corrununication protocol used to implement the distributed controllers. The reuse of these 

good solutions has reduced our development effort, allowing us to reuse the expertise of 

other developers in solving similar problems. Moreover, using well-lmow design pattems 

makes it easier to communicate the hot spot design to the framework' s users and maintainers. 

• Metapatterns are more abstract than design pattems, describing the variabilities without 

defining the detailed semantic o f the hot spot design. They describe the relationships between 

fixed and variable parts, identifying the template and hook classes and their respective 

template and hook methods. Thus, the metapattems document the parts that should ( or have 

to) be changed when a framework user creates a specific application. However, the 

metapatterns cannot be considered as a "cookbook" that describes the steps to obtain a 

specific application, since they describe only what a framework' s user is allowed to do (i. e. 

which class can be redefined, which method can be overridden) but they do not describe how 

it can be dane (i. e. how to redefine a class and overridden its method to implement a specific 

feature). 

• We have also realized some lirnitations of applying design pattems and metapatterns to 

describe the framework's hot spots. The number of design patterns has increased 

exponentially with the popularity of pattern's conferences, and the application developers 

cannot know the various existent pattems. Thus, the advantage of having "a common 

vocabulary to describe the solution for complex problems" cannot be guaranteed if the 

framework's users and maintainers do not know the patterns used in the design. Moreover, 

the use of an unknown pattern can even mak:e it harder to understand the hot spot design, 

since we usually do not describe the pattern solution in details. 

• Another limitation of design patterns and metapatterns is that they are described using 

existent object-oriented modeling languages, which do not provide appropriated. notations for 

108 



the documentation of the variable and fixed parts. In this paper, we have used an "informal" 

notation for the representation of metapattems (as suggested in the Pree's book [Pre95]). 

Using this informal representation of metapatterns, we cannot ensure that the ftamework's 

users will understand unarnbiguously the meaning of the metapattems and what they are 

describing. 

From the various advantages and some limitations of using design pattems and 

metapattems we can draw the following conclusions: (i) design pattems and metapattems are 

complementary, and they are a good solution for the hard problem of documenting a framework 

design; (ii) the lack of appropriated object-oriented design notations for describing flexible 

design makes the understanding o f the metapattems and design pattems more difficult, and some 

times ambiguous; (iii) the provision of appropriated notations and tools for representing the 

design pattems and metapattems used to document the framework' s hot spots is a step toward 

the construction of more understandable and reusable frameworks. 

Bibliography 
[BMA97] D. Brugali, G. Menga, A. Aarsten. The Frarnework Life Span. 

Communications oftheACMvol. 40, no. 10, pp. 65-68. October 1997. 

[BMRS+96] F. Buscbmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System of 

Patterns: Pattern-Oriented Software Architecture. John Wiley & Sons, 1996. 

[CI93] R. H. Carnpbell and N. A. Islarn. A technique for documenting the 

framework o f an object-oriented system. Computing Systems vol. 6, 

no. 4, 1993. 

[Cli96] 

[Coa92] 

[FR98a] 

[FR98b] 

M. P. Cline. The Pros and Ccns of Adopting and Applying Design Pattems 

in the Real World. Communications ofthe ACM, vol. 39, no. lO, pp. 47-49. 

October 1996. 

P. Coad. Object-Oriented Pattems. Communications ofthe ACM. vol. 33, 

no. 9. 1992. 

L. L. Ferreira and C. M. F. Rubira, The Reflective State Partem. 

Proceedings ofthe 5th Pattern Languages ofPrograms Conference 

(PLoP'98), August 1998, Monticello, lllinois, USA. 

L.L. Ferreira and C.M.F Rubira. Integration ofFault Tolerance 

109 



[FR98c] 

[FS97] 

[GHN95] 

[Joh97a] 

[Joh97b] 

[LA90] 

[Mae87] 

[Oli98] 

Techniques: a System ofPattem to Cope with Hardware, Software and 

Enviromuental Fault Tolerance. Digest of FastAbstracts: FTCS'28 (the 

28th Annual International Symposium on Fault-Tolerant Computing), 

June 23-25, 1998, Munich, Gerrnany, pp. 25-26 

L L. Ferreira and C. M. F.Rubira. Reflective Design Pattems to 

Implement Fault Tolerance. Proceedings ofthe Workshop on Reflective 

Programming in C++ and Java: Workshop #13 ofOOPSLA '98. Vancouver, 

Carrada, October, 1998. pp. 81-85. 

M. E. Fayad and D. C. Schmidt. Object-Oriented Application 

Frarneworks. Communications of the ACM vol. 40, no. I O, pp. 39-42. 

October 1997. 

E.Gamma, R. Helm, R Johnson e J. Vlissides. Design Patterns: 

Elements ofReusable Object Oriented Software. Addison-Wesley, 

1995. 

R. E. Johnson. Components, Frameworks, Patterns. Proceedings ofthe 

1997 Symposium on Software Reusability (SSR'97). Software 

Engineering Notes. vol. 22, no. 3, pp. 10-15. May 1997. 

R. E. Johnson. Frameworks = Components + Patterns. 

Communications of the ACM- Object-Oriented Application 

Frameworks. vol. 40, no. I O, pp. 39-42. October 1997. 

A. Lee and T. Anderson. Fault Tolerance: Principies and Practice, 

Springer Verlag, 1990. 

P. Maes. Concepts and Experiments in Computational Reflection. ACM SIGPLAN 

Notices, OOPSLA'87, 22(12):147-155, December 1987. 

A Oliva. Guaraná: Uma Arquitetura de Software para Reflexão 

Computacional implementada em Java. Master Thesis. Institute of Computing, 

State University of Campinas, September 1998. 

http://www.dcc.unicarnp.br/-oliva/guarana/ 

110 



[Pre95] 

[Qua97] 

[Roh95] 

[Rub94] 

[SB98] 

[Sch96] 

[Sch97] 

[Scht97] 

[SG96] 

[WG94] 

W. Pree. Design Patterns for Object-Oriented Software Development. 

Addison-Wesley. 1995. 

E. M. Quadros. Uma abordagem Orientada a Objetos para 

Programação Distribuída Confiável. Tese de Mestrado. Instituto de 

Computação~ UNICAMP, maio de 1997. 

H. Rohnert. The Proxy Design Partem Revisited. Pattern Languages of 

Program Design 2, chapter 7, pp. I 05 - 118. Addison-Wesley, 1996. 

Eds.J.M.VIissides, J.O.Couplien e N.L. Kerth. 

C.M.F. Rubira. Structuring Fault-Tolerant Object-Oriented Systems 

Using Inheritance and Delegation. PhD thesis, Dept. ofComputing 

Science, University ofNewcastle upon Tyne, October 1994. 

P. Sommerlad and F. Buschmann. Manager. Pattern Languages o f Program 

Design 3. Editors: R. Martin, D. Riehle and F. Buschamann. Addison

Wesley, 1998. 

H. A. Schmid. Creating Applications from Components: A 

Manufacturing Framework Design. IEEE Software, vol. 13, no. 6, pp. 

67-75. November 1996. 

H. A. Schmid. Systematic Framework Design by Generalization. 

Communications ofthe ACM- Object-Oriented Application 

Frameworks. vol. 40, no. 10, pp. 48-51. October 1997. 

D. C. Scbmidt Applying design pattems and frameworks tD develop 

object-oriented communication software. Handbook ofProgramming 

Languages, vol. I, MacMil!an Computer Publishing, 1997. 

M. Shaw and D. Garlan. Software Architecture, Perspectives on an 

Emerging Discipline. Prentice-Hall, Englewood Cliffs, NJ, 1996. 

A. Weinand andE. Gamma. ET ++- a Portable, Homogenous Class 

Library and Application Framework. In Proceedings ofUBILAB 

Conference'94. Universitatsverlag Konstanz, 1994. 

111 



Resumo do Capítulo 4 

Neste capítulo, nós apresentamos o projeto detalhado do framework, utilizando estilos de 

arquitetura para o projeto de sua arquitetura, e padrões de projeto e metapadrões para a descrição 

dos seus pontos adaptáveis. As principais conclusões obtidas com o uso prático destas técnicas 

foram discutidas nas conclusões do artigo. 

Nossa abordagem para o desenvolvimento do framework seguiu os seguintes passos: (1) a 

partir de um modelo de uma aplicação específica de controlador de trens, nós identificamos os 

pontos fixos e os pontos adaptáveis de acordo com a análise do domínio do problema; (2) 

aplicamos estilos de arquitetura para o projeto da arquitetura do framework, que define a 

funcionalidade comwn do donúnio, incluindo o requisito nãoRfuncional de tolerância a falhas; 

(3) aplicamos uma seqüência de transformações no modelo de classes inicial utilizando padrões 

de projeto e metapadrões para a obtenção da adaptabilidade requerida; (4) implementamos o 

framework na linguagem de programação Java; (5) utilizamos o framework no desenvolvimento 

de uma aplicação específica do domínio, preenchendo os pontos adaptáveis de acordo com às 

características específicas da aplicação. 

Um jramework bem projetado e maduro implementa todas as funcionalidades do domínio 

e oferece a adaptabilidade requerida, de preferência na forma de componentes adaptáveis caixa

preta. Para a obtenção de um framework com estas características, são necessárias várias 

iterações da seqüência de passos acima. Nós executamos apenas a primeira iteração desta 

seqüência de passos e obtivemos um framework cuja adaptabilidade é obtida principalmente 

através de componentes caixa-branca, ou seja, através de derivação das classes de um ponto 

adaptável e redefmição de seus métodos. Seria necessária a implementação de outras aplicações 

específicas a partir do framework para verificar se os pontos adaptáveis satisfazem à 

variabilidade requerida por estas aplicações. No caso negativo, uma próxima iteração seria 

realizada, efetuando-se possíveis reestruturações no projeto e implementação do framework. 

Com um conhecimento mais profundo do domínio de controladores de trens, é possível obter 

também wn projeto mais maduro do framework, implementando-se mais componentes caixa

preta, o que facilitaria sua reutilização. 

112 



Trabalhos relacionados: 

Existem vários trabalhos relacionados ao desenvolvimento de frameworks que propõem 

metodologias, linguagens, técnicas e ferramentas que podem auxiliar no processo seu 

desenvolvimento. O principal objetivo destes estudos é a redução do custo de desenvolvimento, e 

ao mesmo tempo, o aumento da qualidade do projeto e consequentemente, do grau de 

reutilização obtido com o framework. Para a descrição dos pontos adaptáveis de frameworks, 

existem vários trabalhos que utilizam padrões de projeto no projeto de frameworks, entre eles, 

um framework para sistemas de manufatura [Sch96] e um framework para sistemas de 

comunicação [Sdt95]. Outros trabalhos utilizam a abordagem de metapadrões para descrever a 

adaptabilidade de outros padrões, como por exemplo, a documentação do framework ET ++ em 

[Pre95] e um recente trabalho de mestrado que documenta um framework reflexivo para 

interface gráficas também utilizando padrões e metapadrões [Coe98]. Outra linha de pesquisa é a 

utilização de recursos de linguagens de modelagem para a documentação de frameworks. 

Catalysis [SW97] utiliza o recurso de stereotype da linguagem UML, e propõe um método de 

projeto para a construção de frameworks. M. Fontoura [Fon99] estende a notação Uill para a 

descrição dos pontos adaptáveis do framework e propõe o uso de ferramentas que auxiliam no 

processo de seu desenvolvimento. 

113 



Capítulo 5 

Conclusões e Trabalhos Futuros 
Esta dissertação concentrou-se na utilização de técnicas de reutilização de software tais como 

estilos de arquitetura, padrões de projeto e metapadrões para o desenvolvimento de um 

framework orientado a objetos para o domínio de controladores de trens tolerantes a falhas e 

distribuídos. Durante o desenvolvimento do framework, chegamos a vários resultados diretos e 

indiretos, que formam as principais contribuições deste trabalho. As principais contribuições são: 

• Projeto de um framework orientado a objetos para o domínio de controladores de trens 

tolerantes a falhas e distribuídos. Utilizamos estilos de arquitetura para a documentação da 

arquitetura do .framework, e padrões de projeto e metapadrões para a documentação dos seus 

pontos adaptáveis. Com a utilização destas técnicas, obtivemos um projeto mais estruturado e 

fácil de ser entendido, mantendo-se a complexidade sob controle. 

• Implementação do framework na linguagem Java, utilizando a arquitetura reflexiva do 

Guaraná para a implementação dos componentes reflexivos. Nós também implementamos 

mna aplicação com configurações específicas reutilizando o framework, com o objetivo de 

analisar o grau de reutilização obtido. Como conclusão, podemos dizer que a arquitetura do 

framework implementa a funcionalidade comum do domínio da aplicação, e oferece os 

pontos adaptáveis adequados para a implementação das características de aplicações 

específicas. 

• Documentação do padrão "Rejlective State" e um sistema de padrões formado pelas 

variações deste padrão para o domínio de tolerância a falhas. Estes padrões utilizam reflexão 

computacional para implementar os aspectos de controle relacionados à implementação de 

requisitos não-funcionais, de forma separada e transparente para os objetos da aplicação. A 

utilização de uma variação do padrão Reflective State no projeto dos componentes tolerantes 

a falhas do framework ofereceu uma solução mais flexível e fácil de ser estendida do que a 

solução do padrão original. 

114 



• Implementação do padrão Rejlective State utilizando a arquitetura do Guaraná. Esta 

implementação representa também um framework para implementação de máquinas de 

estados. Este framework implementa as classes abstratas e concretas que representam a 

máquina de estados no meta-nível, as quais podem ser configuradas e/ou estendidas para a 

implementação de uma máquina de estados específica. 

• Documentação do novo estilo de arquitetura denominado Idealized Fault-Tolerant 

Component que oferece uma solução para a estruturação de sistemas tolerantes a falhas 

baseado no modelo de mesmo nome proposto inicialmente por Lee e Anderson [LA90]. A 

documentação deste modelo como um estilo de arquitetura permite a reutilização da solução 

por outros arquitetos de software na definição de arquiteturas de sistemas tolerantes a falhas. 

Trabalhos Futuros 
As principais linhas de pesquisa que podem ser seguidas a partir do nosso trabalho são: 

• Implementação de uma ferramenta para a geração do código de mna máquina de estados 

específica que reutiliza a máquina de estados genérica definida pelo padrão Reflective State 

(jramework para máquina de estados). Este código seria gerado automaticamente a partir de 

wn diagrama de estados definido para urna classe da aplicação. Como os aspectos de controle 

da máquina de estados são implementados separadamente das classes da aplicação, a 

ferramenta poderia implementar também as futuras extensões e modificações realizadas na 

máquina de estados, sem alterar o código das classes da aplicação. Isto facilitaria as 

extensões do framework no que diz respeito aos componentes tolerantes a falhas. 

• Implementação do mecanismo de tratamento de exceções dos componentes tolerantes a 

falhas do framework utilizando uma arquitetura reflexiva, como foi proposta em [GBR99]. 

Corno foi discutido no capítulo 3, esta solução define os tratadores de exceções (parte 

anormal do componente) em uma classe separada, e utiliza um mecanismo de tratamento de 

exceções reflexivo para a localização e execução destes tratadores. 

• A análise das medidas dos overheads causados pelo uso de reflexão computacional na 

implementação dos componentes tolerantes a falhas que utilizam o padrão Rejlective State. 

Para uma análise comparativa, seria necessário também a implementação de uma versão não 

reflexiva dos componentes tolerantes a falhas utilizando o padrão State original. 

115 



• Desenvolvimento de um cookbook para guiar a reutilização do framework no 

desenvolvimento de aplicações específicas. Urna alternativa seria também o desenvolvimento 

de um diagrama de instanciação, que é um cookbook formal, podendo-se assim construir 

uma ferramenta para a instanciação do framework. 

• Amadurecimento do framework através da execução de mais algumas iterações da seqüência 

de passos apresentadas no capítulo 4. Seria necessária a implementação de outras aplicações 

específicas a partir do framework, para verificar se os pontos adaptáveis satisfazem à 

variabilidade requerida por estas aplicações. No caso negativo, uma próxima iteração seria 

necessária, realizando-se possíveis reestruturações no projeto e implementação do 

framework. Com um conhecimento mais profundo do donúnio de controladores de trens, é 

possível obter também um projeto mais maduro do framework, implementando-se mais 

componentes caixa-preta, o que facilitaria sua reutilização. 

116 



Referências Bibliográficas 
[BMRS96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System of 

Patterns: Pattern-Oriented Software Architecture. John Wiley & Sons, 1996. 

[BRL97] L.E. Buzato, C.M.F. Rubira, e M.L. Lisboa. A Reflective Object-Oriented 

Architecture for Developing Fault-T olerant Software. Journal o f the Brazilian 

Computer Society, 4(2):39-48, novembro de 1997. 

[Coe98] 

[Fon99] 

[FPB95] 

[FR98a] 

[FR98b] 

[FR98c] 

[FR98d] 

M.G. Coelho. Uma abordagem Reflexiva para a Construção de Frameworks para 

Interfaces Homem Computador. Tese de mestrado do Instituto de CompUl!J\'ãO da 

Unicamp, Campinas, novembro de 1998. 

M.F.M.C. Fontoura. A Systematic Approach to Framework Developrnent. Tese de 

doutorado. Departamento de Ciência da Computação- Universidade Católica do 

Rio de Janeiro, julho de 1999. 

J.-C. F abre, T. PéreiUlou, e L. Blain. Meta~object Protocols for Implementing 

Reliable and Secure Distributed Applications. Technical Report LASS-95037, 

Centre National de la Recherche Scientifique, fevereiro de 1995. 

L. L. F erre ira e C.M.F. Rubira, The Reflective State Pattem. Proceedings o f the 

5th Pattern Languages ofPrograms Conference (PLoP'98), agosto de1998, 

Monticello, Illinois, USA. Technica] repor!# WUCS-98-25. 

L. L. Ferreira e C. M. F .Rubira. Reflective Design Pattems to Implement Fault 

Tolerance. Proceedings ofthe Workshop on Rejlective Programming in C++ and 

Java: Workshop #13 ofOOPSLA'98. Vancouver, Carrada, Outubro de 1998. pp. 

81-85. 

L.L. Ferreira e C.M.F. Rubira. Padrão State Reflexivo: Refinamento do Padrão de 

Projeto State para uma Arquitetura Reflexiva. Anais do XII Simpósio Brasileiro 

de Engenharia de Software (SBES'98}, Matingá, Paraná, outubro de 1998. 

L.L. Ferreira e C.M.F. Rubira. Integration ofFault Tolerance Techniques: a 

System ofPattem to Cope with Hardware, Software and Environmental Fault 

Tolerance. Digest ofFastAbstracts: FTCS'28 (the 28thAnnuallnternational 

Symposium on Fault-Tolerant Computing), Monique, Alemanha, pp. 25-26,junho 

117 



[GBR99] 

[GHN95] 

[JF88] 

[Joh97a] 

[LA90] 

[Lis98] 

[Oli98] 

[Pre95] 

[RBP+92] 

[RX93] 

[Sch96] 

del998 

A.F. Garcia, D.M.Beder e C.M.F.Rubira. An Exception Handling Mechanism for 

Developing Dependable Object-Oriented Software Based on a Meta-Leve! 

Approach. Submetido para IEEE 1 01
h Jnternational Symposium on Software 

Reliability Engineering, Boca Raton, Florida, novembro de 1999. 

E.Gamma, R. Helm, R Johnson e J. Vlissides. Design Patterns: Elements of 

Reusable Object Oriented Software. Addison-Wesley, 1995. 

R.E. Johnson e B. Foote. Designing Reusable Classes. Journal of Object Oriented 

Programming-JOOP. vol1, no. 22, pp. 22-35,jwlho de 1988. 

R. E. Johnson. Components, Frarneworks, Pattems. Proceedings ofthe 1997 

Symposium on Software Reusability (SSR'97). Software Engineering Notes. 

vol. 22, no. 3, pp. 10-15, maio de 1997. 

A. Lee e T. Anderson. Fault Tolerance: Principies and Practice, Springer 

Verlag, 1990. 

M.L.Lisboa. A New Trend on the Deve1opment ofFault-Tolerant Applications: 

Software Meta-Levei Architectures. Proceedings ofthe 1998JFIP- International 

Workshop on Dependable Computing and its Applications. Johannesburg, África 

do Sul, janeiro de1998. 

A. Oliva. Guaraná: Uma Arquitetura de Software para Reflexão Computacional 

Implementada em Java. Tese de Mestrado. Instituto de Computação, Unicamp. 

Campinas, SP, setembro de 1998. http://VIWW.dcc.unicamp.br/~oliva/guaranal 

W. Pree. Design Patternsfor Object-Oriented Software Development. Addison

Wesley. 1995. 

J. Rurnbaugh, M. Blaha, W. Premerlani,F. Eddy e W. Lorense. The Object

Oriented Modeling and Design. Prentice-Hall lntemational, Inc., Englewood, 

Cliffs, NJ, EUA. 1992. 

B. Randell e J.Xu. Object-Oriented Software Fault Tolerance: Framework, 

Reuse and Design Diversity. PDCS2 First Year Report, Predictably Dependable 

Computing Systems, 1: 165-184, Toulose, França, setembro de 1993. 

H. A. Schmid.Design Pattems for Constructing the Hot Spots of a Manufactoring 

Framework. Journal ofObject-Oriented Programming- JOOP, jwlho de 1996. 

118 



[Sdt95] 

[SG96] 

[Str92] 

[SW94] 

[SW97] 

[YTT89] 

D.C. Schmidt. Experience Usign Design Patterns to Deve1op Reusab1e Object

Oriented CommWlication Software. Communication ofthe ACM, vol. 38, no. 10, 

outubro 1995. 

M. Shaw e D. Garlan. Software Architecture, Perspectives on an Emerging 

Discip1iue. Prentice-Hal1, Eng1ewood C1iffs, NJ, 1996. 

R. Stroud. Transparency and Reflection in Distributed Systems. In 5th European 

SIGOPS Workshop on Models and Paradigmsfor Distributed Systems 

Structuring, Mont Salnt-Miche1, França, setembro de 1992. ACM SIGOPS, 

IRISA, INRIA-Rennes. 

R. J. Stroud e z. Wu. Usiug Meta-Objects to Adapta Persisteut Object System 

to Meet App1ications needs. In 6" SIGOPS European Workshop on Matching 

Operating Systems to Applications Needs. 1994. 

D. D'Souza andA Wills. Objects, Components and Frameworks with UML: The 

Catalysis Approach. Addison Wesley, 1997. 

Y. Yokote, F. Teraoka eM. Tokoro. A Reflective Architecture for an Object

Oriented Distributed System. In Proceedings of ECOOP'89, 1989. 

119 




