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Stochastic stability for a model representing the 
intake manifold pressure of an automotive engine
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Abstract: The paper presents conditions to assure stochastic stability for a nonlinear 
model. The proposed model is used to represent the input-output dynamics of the 
angle of aperture of the throttle valve (input) and the manifold absolute pressure 
(output) in an automotive spark-ignition engine. The automotive model is second 
moment stable, as stated by the theoretical result—data collected from real-time 
experiments supports this finding.
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1. Introduction
In combustion engines, the correct adjustment of the air-fuel (A/F) ratio of the gas mixture used into 
the combustion chamber is of foremost importance (Guzzella & Onder, 2010, Sec. 2.7; Stotsky, 2009, 
Sec. 2.3). The ratio chosen for the mixture must be set to the stoichiometric ratio of the correspond-
ing fuel as it influences, for instance, the efficiency of the engine’s catalytic converter and sets the 
level of emission pollutants, see the monograph (Heywood, 1988) for further details.

Adjustment of the A/F ratio is done in closed loop mode via an oxygen sensor installed at the  
exhaust duct. For a given air mass, the controller calculates the fuel amount based on stoichiometry 
(Guzzella & Onder, 2010, Sec. 4.3). Thus the A/F ratio depends primarily on the air mass flow in the 
intake manifold, see the diagram in Figure 1. The air entering into the intake manifold crosses the 

*Corresponding author: Alessandro 
N. Vargas, Universidade Tecnológica 
Federal do Paraná, UTFPR, Av. Alberto 
Carazzai 1640, 86300-000 Cornelio 
Procópio-PR, Brazil
E-mail: avargas@utfpr.edu.br

Reviewing editor:
James Lam, University of Hong Kong, 
Hong Kong

Additional information is available at 
the end of the article

ABOUT THE AUTHORS
Alessandro N. Vargas received the PhD degree 
in Electrical Engineering from the School of 
Electrical and Computer Engineering of the 
University of Campinas, Brazil, in 2009. Since 
2007, he has held a position of Control Systems 
professor at the Universidade Tecnologica Federal 
do Parana, Brazil. His research interests include 
stochastic systems and control with applications 
in electronics and electrical engineering. The 
research presented in this paper was developed 
in Lab Control [www.labcontrol.xyz], a research 
laboratory located at Universidade Tecnològica 
Federal do Paranà (UTFPR), Brazil. Lab Control is 
dedicated to develop research on Control Systems 
and Automation. The research received finantial 
support from the Brazilian agency CAPES under 
grant CAPES 88881.030423/2013-01, Sistemas 
estocàsticos com aplicaçöes em engenharia 
automotiva [Programa Pesquisador Visitante 
Especial - PVE].

PUBLIC INTEREST STATEMENT
The paper presents a nonlinear model for 
representing the relation between the angle of 
aperture of the throttle valve (input) and the 
manifold absolute pressure (output) in spark-
ignition engines. Besides, the paper shows that the 
model is stable provided that some mild conditions 
are satisfied. Experimental data support the main 
findings.

Received: 10 May 2016
Accepted: 29 August 2016
First Published: 20 September 2016

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution 
(CC-BY) 4.0 license.

Page 1 of 10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296796621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2016.1236654&domain=pdf&date_stamp=2016-09-20
mailto:avargas@utfpr.edu.br
http://www.labcontrol.xyz
http://creativecommons.org/licenses/by/4.0/


Page 2 of 10

Vargas et al., Cogent Engineering (2016), 3: 1236654
http://dx.doi.org/10.1080/23311916.2016.1236654

throttle, a device with a circular plate that is used to adjust the mass air flow. The air flows into the 
intake manifold and then through the cylinder intake runners where the fuel injectors are installed. 
The up and down movement of the pistons creates a vacuum in the intake manifold and the A/F 
mixture flows into the cylinders. This vacuum can be measured through a sensor called Manifold 
Absolute Pressure (MAP). The pressure value indicated by the MAP sensor is of key importance, since 
one can easily calculate the mass air flow through the well-known speed-density Equation (Guzzella 
& Onder, 2010, Ch. 2; Stotsky, 2009, Equation (2.1), p. 16). This paper contributes towards this prob-
lem by presenting a stochastic nonlinear model that aims to characterize the input-output relation 
between the angle of aperture of the throttle device and the MAP value, as detailed in the 
sequence.

The literature is rich for models that aim to characterize the dynamics of spark-ignition combus-
tion engines. Nowadays the most accepted model comes from the seminal work (Hendricks & 
Sorenson, 1990), which was the first to coin the term mean value engine model (MVEM). Although 
suffering from a certain level of empiricism (Hendricks, 1997, p. 389), the MVEM model is quite com-
plete and general for modeling the three main spark-ignition engine subsystems, i.e. intake mani-
fold, crank shaft, and fuel supply subsystems (Balluchi, Benvenuti, Di Benedetto, Pinello, & 
Sangiovanni-Vincentelli, 2000; Casavola, Famularo, & Gagliardi, 2013; Guzzella & Onder, 2010, Ch. 2; 
Hendricks, 1997; Hendricks & Sorenson, 1990; Tang, Weng, Dong, & Yan, 2009). But this general 
model imposes a drawback for the analysis of any subsystem in particular because it requires all 
subsystems working together in a strongly nonlinear, coupled fashion. Consequently determining 
the specific throttle-MAP relation through the MVEM model requires the knowledge of all subsys-
tems, which is a difficult task–identifying the MVEM model requires simultaneous measurements of 
many sensors (Fleming, 2001) and can be time-consuming (Hendricks, 1997, p. 391). An advantage 
of our approach is that it aims to simplify this task, i.e. the throttle-MAP relation is studied here in the 
viewpoint of a unique single-input single-output relation, and for this reason our approach is com-
pletely detached from the ones in the literature. Finding a model for the throttle-MAP relation repre-
sents the main practical contribution of this paper.

Indeed, our main practical contribution is to propose a stochastic nonlinear model for the throttle-
MAP relation. To account this relation, we adopt a structure borrowed from the nonlinear ARX model 
(Ljung, 1999, Ch. 5; Pearson, 2003; Sjöberg et al., 1995), as follows. Let yk be a real-valued variable 
representing the output, measured by an appropriate device attached to the system, corresponding 
to the input values (u0,u1,… ,uk) applied in the system until the k-th stage. If we let

for some integer d ≥ 0, then the identification problem consists of finding a function f (⋅) such that

(1)Yk = (yk,… , yk−d,uk,… ,uk−d), ∀k ≥ d,

Figure 1. Diagram of the 
cylinder block and air flow 
connections in a typical 
combustion engine.
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where {Wk} represents some finite-dimensional stochastic process.

The exact format of the function f (⋅) is usually unknown. As a first attempt, one may resort to 
linear maps (Ortner & del Re, 2007). Nonlinear maps, though, expand the throttle-MAP representa-
tion—one may check whether the real-time measured data resembles the simulated one produced 
by some benchmark some nonlinear functions (Ljung, 1999, Ch. 5; Sjöberg et al., 1995). This strategy 
is accounted in our study, as detailed next.

From the theoretical point of view, the main contribution of this paper is to present a sufficient 
condition to the second moment stability of the stochastic nonlinear system in (2), under some as-
sumptions on f (⋅).

For sake of completeness, let us recall the definition of such stability concept (see also Li, Sui, 
Tong, 2016; Wu, Cui, Shi, & Karimi, 2013; Yin, Khoo, Man, & Yu, 2011; Zhao, Feng, Kang, 2012 for 
 further details).

Definition 1.1 Arnold (1974, p. 188), Vargas and do Val (2010)     We say the nonlinear stochastic 
system in (2) is second moment stable if there exists a constant c > 0 (which may depend on the 
initial values (y

0
,… , yd)) such that

where E[⋅] represents the expected value operator.

A conclusion drawn from our findings is that the identified throttle-MAP stochastic model, ob-
tained from real-time experiments and written as in (2), is second moment stable. This fact sets the 
practical benefit of this paper.

The paper is organized as follows. Section 2 quotes the notation, definitions, and presents the 
stability result. Section 3 presents the experiments that were carried out to obtain a stochastic mod-
el for the throttle-MAP nonlinear relation. Finally, Section 4 presents some concluding remarks.

2. Basic definitions and main result
Let us denote the n-dimensional Euclidean space by ℝn and the corresponding norm by ‖ ⋅ ‖; the set 
made up by matrices of dimension n ×m is denoted by ℝn×m. An element x from ℝn is denoted by 
x =

[
x
[1] … x

[n]

]�
. Given a matrix V = [v1|⋯ |vm] ∈ ℝ

n×m, the notation vec(V) denotes the vectori-
zation of the matrix V, i.e.

Denoting the symbol ⊗ by the Kronecker product, we recall that (N�
⊗M) vec(V) = vec(MVN), 

where M, N, and V are matrices of compatible dimensions (Brewer, 1978).

Hereafter, we assume that the system in (2) is governed by (Ω, , {k}, P), a fixed filtered proba-
bility space, and that the input sequence {uk} takes values in ℝ. In addition, we assume that {Wk} 
on ℝ� represents an independent and identically distributed (i.i.d.) stochastic process with null mean 
and covariance matrix identical to the identify.

(2)
yk+1 = f (Yk,Wk), ∀k ≥ d,

E
[
y2k

]
≤ c, ∀k > d,

vec(V) =
⎡⎢⎢⎣

v1
⋮

vm

⎤⎥⎥⎦
∈ ℝ

nm.
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The authors of (Sjöberg et al. 1995, Sec. 4.1) suggest the use of both sigmoid and Gaussian bell 
functions as candidates for representing the nonlinear term in (2). This idea motivated us to sum 
these two functions in order to obtain the function g:ℝs

↦ ℝ as

where �i and �i are s-dimensional constant row vectors; ai, bi, ci, di, ei are real-valued constants; and 
n is some finite integer.

Remark 1 It follows from the definition of g in (3) that

Thus the function g in (3) is bounded.

Setting some row vectors Hi ∈ ℝ
1×s, i = 1,… ,�, and A ∈ ℝ

1×s, we can define the function 
f :ℝs ×ℝ

�
↦ ℝ as in (2) as follows:

With f as in (4), the nonlinear stochastic system (2) now reads at the k-th stage as

Before presenting the main theoretical contribution of this paper, let us introduce some additional 
notation. Consider the matrices

Theorem 2.1 Assume that the input sequence {uk} on ℝ is bounded. Then the stochastic nonlinear 
system (5) is second moment stable if all the eigenvalues of the matrix

lie inside the unit circle.

Remark 2 The result of Theorem 2.1 allows us to check whether a nonlinear stochastic system as in 
(5) is second moment stable through a simple numerical evaluation. The result can then be used to 
check whether an identification procedure is successful on generating a stable model. This property 
is illustrated in this paper for a real-time automotive engine, as described in Section 3.

2.1. Proof of Theorem 2.1

Proof Before presenting the main argument for the proof of Theorem 2.1, we need some prelimi-
nary results. Consider the identify

(3)
g(x) = � +

n∑
i=1

(
ai
(
exp

(
�ix − ci

)
+ 1

)−1
+ bi exp

(
−
(
�ix − di

)2
∕
(
2e2i

)))
, � ≠ 0, ∀x ∈ ℝ

s,

|g(x)| ≤ |�| +
n∑
i=1

|ai| + |bi|, ∀x ∈ ℝ
s.

(4)f (x,w) =

(
A +

�∑
i=1

Hiw[i]

)
x + g(x), ∀x ∈ ℝ

s, w ∈ ℝ
� .

(5)yk+1 = f (Yk,Wk) subject to (1).

(6)
 =

⎡⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0

0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1

A
[d+1] A

[d] A
[d−1] ⋯ A

[1]

,

⎤⎥⎥⎥⎥⎥⎦

i =

⎡⎢⎢⎢⎢⎣

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

H
[d+1],i H

[d],i ⋯ H
[1],i

⎤⎥⎥⎥⎥⎦
, i = 1,… ,𝓁.

⊗ +

�∑
i=1

i ⊗i

(7)

[
A
[1]
,… ,A

[2(d+1)+1]

]
Yk =

d∑
n=0

A
[n+1]yk−n +

{
d∑
n=0

A
[n+d+2]uk−n

}
.
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Similarly, for each i = 1,… ,�, we can write

Summing up for i the elements inside the rightmost curly brackets of (8), and adding in this evalua-
tion the term the rightmost curly brackets of (7), we obtain a random value, say �(Yk,Wk). We have 
immediately from (5) that

Applying in (9) the matrices , i, i = 1,… ,�, as defined in (6), we obtain the next identity:

Notice that (5) and (10) are equivalent. Now, for sake of notational simplicity, let us fix

With this notation, (10) is identical to zk+1 = kzk + k, which in turn is identical to

Let us now introduce a result, necessary here to continue with the argument.

Lemma 2.1 The eigenvalues of the matrix ⊗ +
�∑
i=1

i ⊗i lie inside the unit circle if and only if 

there exists two constants � ≥ 1 and 0 < 𝛼 < 1 such that

The proof of Lemma 2.1 is available in Appendix 1. The proof of the next result follows from the fact 
that supx∈ℝs g(x) is a finite value (see Remark 1).

Lemma 2.2 There exists a constant c > 0 such that E
�
‖k‖2

�
≤ c for all k > d.

Now we present the last argument to prove Theorem 2.1. For this purpose, we show that the se-
quence {E[‖zk‖2]} is uniformly bounded–with zk as in (11); this assures that the stochastic nonlinear 
system (5) is second moment stable according to Definition 1.1.

Applying the Euclidean norm on both sides of (11), and passing the expected value operator, we 
have

(8)W
[i],k

[
H

[1],i ,… ,H
[2(d+1)+1],i

]
Yk =W[i],k

d∑
n=0

H
[n+1],iyk−n +

{
W

[i],k

(
d∑
n=0

H
[n+d+2],iuk−n

)}
.

(9)yk+1 =

d∑
n=0

(
A
[n+1] +

�∑
i=1

W
[i],kH[n+1],i

)
yk−n + �(Yk,Wk) + g(Yk), ∀k ≥ s.

(10)

⎡⎢⎢⎢⎣

yk−d+1

⋮

yk+1

⎤⎥⎥⎥⎦
=

�
 +

𝓁�
i=1

W
[i],ki

�⎡⎢⎢⎢⎣

yk−d

⋮

yk

⎤⎥⎥⎥⎦
+
�
�(Yk,Wk) + g(Yk)

�
⎡
⎢⎢⎢⎢⎢⎣

0

⋮

0

1

⎤
⎥⎥⎥⎥⎥⎦

.

zk ≡ [yk−d,… , yk], k ≡  +

𝓁�
i=1

W
[i],ki , k ≡

�
�(Yk,Wk) + g(Yk)

�
⎡
⎢⎢⎢⎢⎢⎣

0

⋮

0

1

⎤
⎥⎥⎥⎥⎥⎦

.

(11)zk+1 = k⋯szs +

k∑
j=s

k⋯j+1j , ∀k ≥ s, ∀s > d.

E
[‖‖k⋯s

‖‖2
]
≤ ��

k−s, ∀k ≥ s.

(12)E
�
‖zk+1‖2

�
≤ E

�
‖k⋯szs‖2

�
+

k�
j=s

E
�
‖k⋯j+1j‖2

�
, ∀k ≥ s.
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Finally, Lemmas 2.1 and 2.2 used in (12) assure that E
�
‖zk+1‖2

�
 is bounded above by 

��
k−s E[‖zs‖2] + �

−sc∕(1 − �) for all k ≥ s. Since s was taken arbitrarily in (11), one can set s = 0 
and the result follows.  ✷

3. Model for the intake manifold pressure: experimental approach
The laboratory testbed used in the experiments was equipped with an automotive engine mock-up, 
Model Volkswagen AT EA-111 RSH 1.0 Total Flex, with four cylinders and eight valves, used in the 
cars manufactured by Volkswagen models VW Gol and VW Fox (see Figure 2). This engine can be 
fueled with gasoline or ethanol, or if needed with any mixture of them, but the experiments were 
carried out with ethanol only.

In our experiments, we were interested in finding a single-input single-output model to character-
ize the relation between the throttle valve (input) and pressure MAP sensor (output). To obtain meas-
urements for both input and output, we used a data acquisition card model NI-USB 6008 to measure 
the voltages informed by the two corresponding sensors. The engine has built-in sensors for both 
variables, that is, the pressure is measured by the MAP sensor (Figure 1) and the angle of aperture of 
the throttle is measured by its corresponding sensor assembled in the valve plate. The sampling time 
of the data acquisition card was kept fixed at 5 milliseconds. For this investigation, the engine was 
operated at no load condition.

By pressing manually the gas pedal, we generated a movement in the angle of the throttle valve 
and this induced a dynamics for the intake manifold pressure, see Figure 3 for a pictorial representa-
tion. Part of this experimental data was selected to identify the model as in (5) whereas the remain-
ing data was used for model validation. In this study, we used a least square routine with no noise 
input in the model in (5) (i.e. Wk ≡ 0).

The values of the identified parameters of (5) are omitted here for sake of brevity, but for an ac-
count we mention that d = 5 in (1) (quantity of regressors) and n = 8 in (3).

The identified model as in (5) with no noise input presented a fit value of 67% when compared 
with real data. However, although the combustion engine is a highly complex system, the fit of 67% 
is a positive indication that confirms the difficulty on characterizing precisely the throttle-MAP rela-
tion; such lack of precision is recurrent in the literature (Alberer, Hirsch, & del Re, 2010; Ortner & del 
Re, 2007; Wahlström & Eriksson, 2011).

Figure 2. Picture of the 
engine mock-up used in the 
experiments.
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Figure 3. Experimental data: 
sample rate at 5 ms. Notes: 
Upper: angle of the throttle 
valve (input). Lower: intake 
manifold pressure (output)–the 
real-time measured data is in 
the black curve; and simulated 
data via the model in (5) with 
no noise input (i.e., Wk ≡ 0) is 
in the red curve. The simulated 
and experimental curves 
presented a fit of 67%.

Figure 4. Comparison of 
the data obtained from a 
Monte-Carlo simulation 
with the one taken from 
an experiment made in the 
mock-up. The central curve in 
black represents the mean of 
the Monte-Carlo simulation 
whereas the red shading 
around it delimits the standard 
deviation. The experimental 
data in dotted blue lies within 
the region of feasibility of the 
stochastic model.

Figure 5. Localization of 
eigenvalues in the complex 
plane. The data corresponds 
to the model of an automotive 
throttle-MAP relation. All of 
the eigenvalues are inside the 
unit disc, which shows that the 
automotive model is second 
moment stable.
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As an attempt to improve the throttle-MAP relation, we assumed that {Wk} in (5) is a standard 
Gaussian white noise processes. And to illustrate the influence of such noise in the proposed throt-
tle-MAP model, we generated a Monte-Carlo simulation with eight hundred realizations. Interestingly, 
the real data lies within the feasible region covered by the simulated data, as can be seen in Figure 4. 
This evidence suggests that (5) can be a candidate for representing the throttle-MAP dynamics.

Finally, a question of practical interest is to determine whether the identified throttle-MAP model 
as in (5) is second moment stable. The identified parameters to be checked are (recall that d = 5)

and each value in H
[j],i, j = 1,… , 13, i = 1,… , 6, assumes 0.05 when i = j and zero elsewhere. 

Using these values to generate the matrix ⊗ +
∑�

i=1i ⊗i (e.g. (6)), we can conclude that its 
eigenvalues are located inside the unit disc (Figure 5). Hence, Theorem 2.1 guarantees that the iden-
tified throttle-MAP model is second moment stable. This illustrates the practical usefulness of 
Theorem 2.1.

4. Concluding remarks
We have presented a simple numerical condition to check the second moment stability of single-
input single-output stochastic nonlinear systems. Such a stochastic system can be accounted to 
represent the throttle-MAP dynamics of a spark-ignition engine fueled with ethanol.

Data taken from real-time experiments suggest that throttle-MAP process is second moment sta-
ble, an evidence that corroborates the theoretical result.

As further investigation goes on, control of the MAP can be a useful for vehicle platooning (Liang, 
Måartensson, Johansson, 2016).

⎡
⎢⎢⎢⎢⎣

A
[d+1]

A
[d]

⋮

A
[1]

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.3625

−0.2305

−0.3124

0.2265

0.1362

0.4872

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Appendix 1

Appendix–Proof of Lemma 2.1

Proof The proof of Lemma 2.1 is inspired in the arguments used in Kubrusly and Costa (1985, Propo-
sition 6). To begin with, we have from the i.i.d. assumption on {Wk} that

which allow us to write

On the other hand, by defining the autonomous linear stochastic recurrence

one can evaluate the second moment matrix Qk ≡ E[qkq
�

k] as follows:

E
[
W

[i],ki ⊗W
[j],kj

]
= 0, i ≠ j, and E

[
W

[i],ki ⊗W
[i],ki

]
= i ⊗i ,

(13)
⊗ +

�∑
i=1

i ⊗i = E

[(
 +

�∑
i=1

W
[i],ki

)
⊗

(
 +

�∑
i=1

W
[i],ki

)]
, ∀k ≥ s.

qk+1 =

(
 +

�∑
i=1

W
[i],ki

)
qk, ∀k ≥ s, qs ∈ ℝ

n,

(14)
Qk+1 = E

[(
 +

�∑
i=1

W
[i],ki

)
qkq

�

k

(
 +

�∑
i=1

W
[i],ki

)�]
.
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Applying the stacking operator vec(⋅) on both sides of (14), and considering the identity in (13), we 
have

Since (15) is a linear deterministic autonomous system, we can conclude that vec(Qk) → 0 as k→ ∞ 
if and only if the eigenvalues of ⊗ +

∑�

i=1i ⊗i lie within the unit circle. This is equivalent to 
observe the exponential decay of Qk when k increases, or equivalently, to the existence of two con-
stants � ≥ 1 and 0 < 𝛼 < 1 such that

This argument completes the proof of Lemma 2.1.  ✷

(15)

vec(Qk+1) = E

[(
 +

�∑
i=1

W
[i],ki

)
⊗

(
 +

�∑
i=1

W
[i],ki

)]
vec(Qk)

=

(
⊗ +

�∑
i=1

i ⊗i

)
vec(Qk).

E
�
‖qk‖2

�
= E[ tr{qkq

�

k}] = tr{ E[qkq
�

k]} = tr{Qk} ≤ ��
k−s.
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