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Blocking iNOS and endoplasmic reticulum stress
synergistically improves insulin resistance in
mice
Tamires M. Zanotto 1,3, Paula G.F. Quaresma 1,3, Dioze Guadagnini 1, Lais Weissmann 1, Andressa C. Santos 1,
Juliana F. Vecina 1,3, Kelly Calisto 1,3, Andrey Santos 1, Patrícia O. Prada 1,2,3, Mario J.A. Saad 1,3,*
ABSTRACT

Objective: Recent data show that iNOS has an essential role in ER stress in obesity. However, whether iNOS is sufficient to account for obesity-
induced ER stress and Unfolded Protein Response (UPR) has not yet been investigated. In the present study, we used iNOS knockout mice to
investigate whether high-fat diet (HFD) can still induce residual ER stress-associated insulin resistance.
Methods: For this purpose, we used the intraperitoneal glucose tolerance test (GTT), euglycemic-hyperinsulinemic clamp, western blotting and
qPCR in liver, muscle, and adipose tissue of iNOS KO and control mice on HFD.
Results: The results of the present study demonstrated that, in HFD fed mice, iNOS-induced alteration in insulin signaling is an essential
mechanism of insulin resistance in muscle, suggesting that iNOS may represent an important target that could be blocked in order to improve
insulin sensitivity in this tissue. However, in liver and adipose tissue, the insulin resistance induced by HFD was only partially dependent on iNOS,
and, even in the presence of genetic or pharmacological blockade of iNOS, a clear ER stress associated with altered insulin signaling remained
evident in these tissues. When this ER stress was blocked pharmacologically, insulin signaling was improved, and a complete recovery of glucose
tolerance was achieved.
Conclusions: Taken together, these results reinforce the tissue-specific regulation of insulin signaling in obesity, with iNOS being sufficient to
account for insulin resistance in muscle, but in liver and adipose tissue ER stress and insulin resistance can be induced by both iNOS-dependent
and iNOS-independent mechanisms.

� 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

It is well established that chronic, low-grade inflammation is implicated
in the dysfunctional insulin signaling associated with major metabolic
diseases such as obesity. Several pathways and intracellular mecha-
nisms are involved in triggering these diseases, including the pro-
duction of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS)
[1,2]. Activation of iNOS, which can be induced by proinflammatory
cytokines [3,4], has also been described as a potential cause of insulin
resistance, a condition which often precedes these metabolic disorders
[5e7]. Although this enzyme performs an important function in the
innate immune system [8,9], higher concentrations of NO generated
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from overexpression of iNOS can negatively modulate insulin signaling
and action [10e15].
The endoplasmic reticulum (ER) is an organelle responsible for the
synthesis, folding, maturation, translocation, and processing of almost
all proteins that reside or pass through the endomembrane system of
eukaryotic cells [16,17]. However, in some pathological states, stress
disrupts ER homeostasis, leading to the accumulation of misfolded
proteins in its lumen. The ER, in turn, responds to this accumulation by
activating an intracellular signal transduction pathway termed the
unfolded protein response (UPR) [18,19]. Previous studies have shown
a significant association between the activation of inflammation and ER
stress in obesity, wherein obesity seems to be a chronic stimulus for
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the development of ER stress in peripheral tissues, and this is the likely
mechanism involved in the onset of insulin resistance and type 2
diabetes [20,21]. However, therapeutic proposals, such as treatment
with chemical chaperones that increase the ability of the ER folding
machinery, seem to improve insulin sensitivity and action in peripheral
tissues [22,23].
The interactions between iNOS and ER stress are complex and bidi-
rectional [24]; an increase in iNOS can induce ER stress and later
increase iNOS expression [25e28]. Very recently, Yang et al. [29]
showed that, in obesity, the increase in iNOS causes S-nitrosylation
of IRE1a, which is a key UPR regulator, leading to a reduction in IRE1a-
mediated XBP1 protein splicing activity. This study demonstrated a
mechanism by which inflammatory iNOS contributes to ER stress in
obesity. However, whether iNOS is sufficient to account for obesity-
induced ER stress and UPR has not yet been investigated. In the
present study, using iNOS knockout mice, we aimed to investigate
whether high-fat diet (HFD) can induce residual ER stress-associated
insulin resistance in these mice.

2. MATERIAL AND METHODS

2.1. Animal studies
Four week old C57BL6/J and iNOS KO mice, obtained from the
Multidisciplinary Center for Biological Research in Laboratory Animal
Science Area (CEMIB) of Unicamp, were subjected to standard rodent
chow or high-fat diet (HFD) with 55% calories resulting from fat [30],
for 12 weeks. The animals were housed under constant conditions of
temperature (23 � 2 �C) and light/dark cycle (12 h/12 h). Water and
food were provided ad libitum. All experiments were approved by the
Ethics Committee of the State University of Campinas (Unicamp).

2.2. PBA (4-phenyl butyric acid) treatment
C57BL6/J and iNOS KO mice fed a standard or HFD were treated for 7
days with the ER stress inhibitor PBA (1 g/kg of body weight; Sigmae
Aldrich) or saline. This treatment protocol was adapted from Won et al.
[31]. The inhibitor was diluted in sodium hydroxide, as previously
described by Luo et al. [32], and administered via gavage.

2.3. L-NIL (N6-(1-iminoethyl)-L-lysine, dihydrochloride) treatment
C57BL6/J mice fed a standard or HFD were treated with the selective
iNOS inhibitor L-NIL (80 mg/kg of body weight; Cayman Chemical) or
saline twice a day. This treatment protocol was adapted from Pauli
et al. [33]. The inhibitor was dissolved in injection water and admin-
istered via intraperitoneal injections for 7 days.

2.4. Glucose tolerance test
After 12 h of fasting and subsequent intraperitoneal anesthesia (ke-
tamine/xylazine), the animals received a 20% glucose solution (2.0 g/
kg of body weight) intraperitoneally. The plasma glucose concentration
was evaluated in blood samples collected from the tail at 0 (basal), 30,
60, 90, and 120 min after glucose injection.

2.5. Euglycemic hyperinsulinemic clamp
After 12 h of fasting, the animals were anesthetized, and catheters
were inserted into the left jugular vein (for infusion of marker) and the
carotid artery (for blood collection) according to the protocol described
by Prada et al. [34]. The animals received continuous infusion of insulin
(3 mU/kg/min) and blood samples were collected at intervals of 5 min
for a period of 2 h for the immediate evaluation of blood glucose; 10%
(vol./vol.) glucose was also infused at variable rates to maintain blood
glucose close to 100 mg/dl.
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2.6. Insulin measurement (ELISA)
Serum insulin levels of all groups after 12 h of fasting were measured
using the ELISA Rat/Mouse Insulin Kit obtained from Millipore
Corporation.

2.7. Extraction of tissues
The animals were intraperitoneally injected with insulin (1 U/kg) or
saline, and, after 5 min, liver, gastrocnemius muscle, and epididymal
adipose tissue were extracted and homogenized in buffer as described
in Saad et al. [35]. Samples of all tissue extracts were subjected to
electrophoresis and western blotting [35e37]. Bands were detected
using the chemiluminescence method (West Pico Chemiluminescent
Substrate Kit, Thermo Scientific, USA). The antibodies used were anti-
phospho-JNK, anti-phospho-IKKa/b, anti-phospho-PERK, anti-phos-
pho-IRE1a, and anti-ATF6a (all obtained from Santa Cruz Technology,
Santa Cruz CA, USA) and anti-phospho-Akt and anti-phospho-IRS-1
(Cell Signaling, Boston, MA, USA).

2.8. Immunoprecipitation
For immunoprecipitation, 600 mg of whole lysate from liver, epididymal
adipose tissue, and gastrocnemius muscle was incubated with insulin
receptor substrate 1 antibody (IRS-1, Cell Signaling, Boston, MA, USA)
and protein A-Sepharose 6 MB (Pharmacia, Uppsala, Sweden) for 2 h.
Samples were then boiled in Laemmli sample buffer for 5 min and
subjected to Western blotting analysis.

2.9. RNA extraction and real time-PCR
The RNA was extracted from liver and epididymal adipose tissue from
mice using TRIzol reagent (Life Technologies, USA). To synthesize
cDNA, we used the Maxima First Strand cDNA Synthesis Kit with
dsDNase (Thermo Scientific, USA). PCR was performed using the PCR
Quant Studio 6 Flex System from Applied Biosystems (Life Technolo-
gies) and SYBR Green PCR Master Mix (SigmaeAldrich). The primers
used were:

Eif2ak3(PERK) F50-GGTATTTCAACGCCTGGCTG-30 and R50GGC
CAGTCTGTGCTTTCGTC-30;
IRE1_alpha F50GAGCAAGCTAACGCCTACTCTGT-30 and R50CACC
ATTGAGGGAGAGGCATA-30;
Actb F50GTCATCACTATTGGCAACGAGC-30 and R50GCACTGTGTTG
GCATAGAGGTCT-30;
Gapdh F50GTCGTGGAGTCTACTGGTGTCTTC-30 and R50AGTTGTCAT
ATTTCTCGTGGTTCA-3.

We used the Data Assist program to calculate relative amounts of
mRNA using the 2(�Delta Delta C(T)) method.

2.10. Statistical analysis
All results were expressed as mean � SEM, and the statistical sig-
nificance was set to 5% (p < 0.05). The statistical analysis was
performed using Graph Pad Prism software, and one or two-way
analysis of variance (ANOVA) followed by Bonferroni post-test, delta
percentage of baseline, and area under curve were used as
appropriate.

3. RESULTS

3.1. iNOS KO mice show partial protection from HFD-induced
insulin resistance and glucose intolerance
To assess whether the iNOS enzyme can modify the characteristics
and metabolic profile of mice fed a HFD, we used animals with
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selective deletion of the gene encoding this enzyme. When fed a HFD,
iNOS KO mice gained weight and increased adipose tissue mass in a
similar fashion to controls (Figure 1A, B). Fasting blood glucose levels
were decreased in iNOS KO mice fed a CHOW and HFD diet compared
with their respective controls (Figure 1C). Serum insulin levels
increased in control mice on HFD but not in iNOS KO mice on the same
diet (Figure 1D). HFD induced glucose intolerance in control mice, but
iNOS KO mice were partially protected from this diet-induced glucose
intolerance (Figure 1E, F). Insulin sensitivity, assessed through glucose
utilization in hyperinsulinemic-euglycemic clamp, was not significant
different between control mice and iNOS KO mice in CHOW diet, was
decreased in control mice fed a HFD but was partially preserved in
HFD-fed iNOS KO mice (Figure 1G). It is interesting that although
Figure 1: Metabolic parameters of iNOS KO and control mice fed a standard (chow
glucose, (D) insulin levels, and (E and F) glucose tolerance, measured by the 120 min gluco
measured by euglycemic-hyperinsulinemic clamp. *p < 0.05 vs. C57BL/6J HFD,^p < 0.05
to 8 mice.
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insulin sensitivity was similar between controls and iNOS KO mice
chow-fed, there was an approximately 30% reduction in fasting blood
glucose. However, it is important to mention that fasting blood glucose
has a more clear correlation with hepatic glucose output and hepatic
insulin resistance, than with peripheral insulin sensitivity [38].

3.2. HFD induces tissue-specific modulation of insulin signaling in
iNOS KO mice
Insulin-induced Akt phosphorylation was markedly reduced in the liver,
muscle, and adipose tissue of HFD controls, but in iNOS KO mice fed
a HFD, we observed a moderate reduction in insulin-induced Akt
phosphorylation in liver and a marked reduction in adipose tissue; this
effect of insulin was preserved in gastrocnemius muscle (Figure 2AeD).
) or high-fat diet (HFD). (A) Body weight, (B) epididymal fat mass, (C) fasting blood
se tolerance test in (E) C57BL/6J mice and (F) iNOS KO mice. (G) Glucose utilization, as
vs. iNOS KO HFD, #p < 0.05 vs. C57BL/6J CHOW. Bars represent mean � SEM from 4

his is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Figure 2: Evaluation of insulin signaling in iNOS KO and control mice in response to intraperitoneal insulin. (A) Insulin-induced Protein kinase B (Akt) phosphorylation in
liver, epididymal adipose tissue, and gastrocnemius muscle. (BeD) Akt phosphorylation densitometry in (B) liver, (C) epididymal adipose tissue, and (D) gastrocnemius muscle.
*p < 0.05 vs. C57BL/6J HFD,^p < 0.05 vs. iNOS KO HFD. Bars represent mean � SEM from 4 to 8 mice. Similar results were observed when using delta percentage of baseline.
3.3. HFD affects IRS-1 serine phosphorylation and JNK
phosphorylation in liver, muscle, and adipose tissue of iNOS KO
mice
HFD induced a marked increase in IRS-1 serine phosphorylation in liver
(Figure 3B), adipose tissue (Figure 3C), and gastrocnemius muscle
(Figure 3D) of controls and iNOS KO mice. Since JNK protein is a serine
kinase that may phosphorylate IRS-1, impairing the insulin signaling,
we investigated the effect of HFD on JNK phosphorylation in the liver,
adipose tissue, and muscle of iNOS KO mice and controls. As ex-
pected, HFD increased JNK phosphorylation in the liver, muscle and
adipose tissue of controls and iNOS KO mice (Figure 3EeH).

3.4. iNOS KO mice fed a HFD still have ER stress
Previous data showed that HFD induces ER stress in liver and adipose
tissue and that iNOS might play an important role in this process. Given
this, we investigated the main proteins of UPR through the
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phosphorylation of the protein kinase RNA-like ER kinase (PERK) and
inositol requiring enzyme 1 (IRE1a) and the expression of activating
transcription factor 6 (ATF6a) in these tissues. There was an increase
in PERK phosphorylation in liver and adipose tissue (Figure 4AeC) in
the control fed a HFD but not in the iNOS KO mice on the same diet.
However, ATF6a expression was higher in liver (Figure 4D) of control
and iNOS KO mice, but, in adipose tissue (Figure 4D), this difference
was only observed in control mice. HFD induced an increase in IRE1a
phosphorylation in both tissues of control and iNOS KO mice
(Figure 4FeG).
In HFD fed mice, we did not find activation of pPERK, pIRE1a, and
expression of ATF6 in muscle (data not show) indicating that this diet is
not able to induce ER stress in muscle. The basal phosphorylation of
PERK in liver and adipose tissue and of IRE1a in liver was lower in
iNOS KO mice. Previous data showed that, in some tissues, basal ER
stress may be a physiological phenomenon [39]. In this regard, we can
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Figure 3: Phosphorylation of IRS-1 and inflammatory markers. (A) Insulin receptor substrate 1 (IRS-1) serine 307 phosphorylation in liver and epididymal adipose tissue. (Be
D) IRS-1 serine 307 phosphorylation densitometry in (B) liver, (C) adipose tissue, and (D) gastrocnemius muscle. (E) c-JunN-terminal kinase (JNK) phosphorylation in liver,
epididymal adipose tissue, and gastrocnemius muscle. (FeH) JNK phosphorylation densitometry in (F) liver, (G) adipose, and (H) gastrocnemius muscle. *p < 0,05 vs. C57BL/6J
HFD,^p < 0,05 vs. iNOS KO HFD. Bars represent mean þ/� SEM from 4 to 8 mice. Similar results were observed when using delta percentage of baseline.

Original Article
suggest that in iNOS KO mice on CHOW diet there is a reduction in
basal ER stress in liver and adipose tissue.

3.5. Pharmacological inhibition of ER stress in iNOS KO mice
further improves the metabolic profile and insulin sensitivity of these
animals
Since iNOS KO mice fed a HFD were not completely protected from ER
stress, we investigated whether the pharmacological inhibition of ER
stress would have a synergistic effect on the improvement of insulin
sensitivity in these mice. Treatment with the ER stress blocker PBA had
no effect on body weight and adipose tissue mass between groups on
the same diet (Figure 5A, B, Supplemental 1A, B). Fasting blood
glucose levels (Figure 5C) and serum insulin levels (Figure 5D) in iNOS
KO mice fed a HFD did not change after treatment with PBA compared
to iNOS KO mice on HFD without treatment. Glucose tolerance was
similar between the iNOS KO groups fed the chow diet (Figure 5E) and
although HFD induced mild glucose intolerance in iNOS KO mice, the
treatment with PBA reversed this intolerance (Figure 5F). As previously
shown, iNOS KO mice fed a HFD showed a moderate improvement in
insulin sensitivity, as evaluated by euglycemic-hyperinsulinemic
clamp, but after treatment with PBA there was a complete normali-
zation of insulin sensitivity in these mice (Figure 5G).

3.6. Pharmacological inhibition of ER stress normalizes insulin
signaling through Akt phosphorylation and decreases JNK
phosphorylation and ER stress in iNOS KO mice
After treatment with PBA in iNOS KO mice on HFD, there was a
complete normalization of insulin-induced Akt phosphorylation in liver
and adipose tissue (Figure 6AeC). In addition, PBA treatment of iNOS
KO mice fed a HFD markedly reduced JNK phosphorylation in liver and
adipose tissue (Figure 6DeF) compared to a HFD iNOS KO mice
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without treatment. Similarly, iNOS KO mice fed a HFD showed a
decreased expression of IRE-1a mRNA in liver (Figure 6G) and adipose
tissue (Figure 6H) after PBA treatment; however, PERK expression was
not affected by PBA treatment in these mice (Figure 6I and J).

3.7. Pharmacological blockade of ER stress combined with
inhibition of iNOS synergistically improves insulin resistance in
C57BL/6J mice
In order to assess whether the results obtained with iNOS KOmice could
also be reproduced with pharmacological blockage of the iNOS enzyme,
we treated control and HFD mice with the iNOS inhibitor L-NIL and
investigated glucose tolerance, insulin sensitivity and signaling, and ER
stress. In addition, we also investigated the effect of double blockage
with L-NIL and PBA in these animals. L-NIL and L-NIL/PBA treatments
had no effect on body weight (Figure 7A) and epididymal fat mass
(Figure 7B) of mice whether on chow or HFD. On the other hand, these
pharmacological treatments reduced fasting plasma glucose (Figure 7C)
and serum insulin levels (Figure 7D) in HFD fed animals. Glucose
intolerance in HFD mice was partially improved with L-NIL treatment
alone but was only completely normalized when mice were treated with
L-NIL plus PBA (Figure 7F). Similarly, insulin sensitivity, as assessed
through glucose utilization in hyperinsulinemic-euglycemic clamp, was
partially improved in HFD mice treated with L-NIL and was completely
normalized with double pharmacological blockade (Figure 7G).

3.8. Pharmacological inhibition of ER stress and iNOS improves
insulin signaling through Akt phosphorylation, decreased JNK
phosphorylation and ER stress in C57BL/6J mice
As expected, insulin-induced Akt phosphorylation was blunted in liver
and adipose tissue of HFD-fed mice (Figure 8AeD), and L-NIL treat-
ment did not normalize Akt phosphorylation in these tissues. However,
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Figure 4: Expression and phosphorylation of proteins involved in the unfolded proteins response (UPR). (A) Protein kinase RNA-like ER kinase (PERK) phosphorylation in
liver and epididymal adipose tissue; activating transcription factor 6 (ATF6a) expression in liver and epididymal adipose tissue; inositol requiring enzyme 1 (IRE1a) phosphorylation
in liver and adipose tissue. (B and C) PERK phosphorylation densitometry in (B) liver and (C) adipose tissue. (D and E) ATF6a expression densitometry in (D) liver and (E) adipose
tissue. (F and G) IRE1a phosphorylation densitometry in (F) liver and (G) adipose tissue. *p < 0.05 vs. C57BL/6J HFD,^p < 0.05 vs. iNOS KO HFD. Bars represent mean � SEM
from 4 to 8 mice. Similar results were observed when using delta percentage of baseline.
Akt phosphorylation was preserved in the muscle of these animals
(Supplemental 2). On the other hand, PBA plus L-NIL treatment
reversed insulin-induced Akt phosphorylation in liver and adipose
tissue of HFD-fed C57BL/6J mice (Figure 8AeD).
This combined treatment in HFD-fed mice also decreased JNK phos-
phorylation in liver and adipose tissue compared to HFD-fed mice
without treatment (Figure 8EeG). Lastly, we demonstrated a decreased
expression of IRE-1a mRNA in liver (Figure 8H) and adipose tissue
(Figure 8I), and of PERK mRNA in liver (Figure 8J) and adipose tissue
(Figure 8K) of PBA/LNIL HFD-fed mice. These results suggest that
pharmacological inhibition of iNOS and ER stress acts synergistically.

4. DISCUSSION

The insulin resistance of obesity and DM2 is linked to a subclinical
inflammation, and, at molecular level, this inflammatory state has
multiple facets [2,4,40], but ER stress seems to be an important
mechanism. Although the connection between ER stress and insulin
resistance in obesity is well established, a clear molecular mechanism
was only recently demonstrated for this interaction. In seminal work,
Yang et al. [29] demonstrated that, in obesity, there is evident
MOLECULAR METABOLISM 6 (2017) 206e218 � 2016 The Author(s). Published by Elsevier GmbH. This is an op
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integration of inflammatory pathways and ER stress showing that UPR
function is compromised due to an iNOS-mediated S-nitrosylation of
IRE1a, which induces chronic ER stress. Similarly, Nakato et al. [41]
recently showed that NO can S-nitrosylate the ER stress sensors
IRE1a and PERK by inducing different modulations in these proteins. S-
nitrosylation of IRE1a inhibits its ribonuclease activity, while S-nitro-
sylation of PERK activates its kinase activity, indicating that nitrosative
stress leads to dysfunctional ER stress signaling. Taken together, these
results suggest that iNOS-induced ER stress is an important molecular
modulator of ER stress-induced insulin resistance in obesity. Moreover,
iNOS can also induce insulin resistance through nitrosylation of insulin
signaling pathway proteins and/or through oxidative stress [42e44].
In accordance with previous data [15], our data showed that iNOS KO
mice are partially protected from diet-induced insulin resistance but
still have altered insulin signaling at least in liver and adipose tissue.
However, in these mice, there were molecular signals of mild ER stress
in liver and adipose tissue, characterized by UPR activation, suggesting
that, in obesity, there is also an iNOS-independent ER stress. This
residual ER stress in iNOS KO mice on HFD, with increased protein
expression of ATF6 in liver and of IRE1a in liver and adipose tissue,
was accompanied by an increase in JNK activation, which may account
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 211
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Figure 5: Metabolic profile of iNOS KO mice fed a standard (chow) or high-fat diet (HFD) and treated with the ER stress blocker 4-phenyl butyric acid (PBA). (A) Body
weight, (B) epididymal fat mass, (C) fasting blood glucose, (D) insulin levels, and (E and F) glucose tolerance, measured by the 120 min glucose tolerance test in the (E) chow
groups and (F) high fat diet groups, and (G) glucose utilization, as measured by euglycemic-hyperinsulinemic clamp.^p < 0.05 vs. iNOS KO HFD and #p < 0.05 vs. iNOS KO PBA
HFD. Bars represent mean � SEM from 4 to 8 mice.

Original Article
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Figure 6: Evaluation of insulin signaling and mediators of the inflammatory and unfolded protein response (UPR) pathways in iNOS KO mice treated with PBA. (A)
Insulin-induced Protein kinase B (Akt) phosphorylation in liver and epididymal adipose tissue. (B and C) Akt phosphorylation densitometry in (B) liver and (C) adipose tissue. (D) c-
JunN-terminal kinase (JNK) phosphorylation in liver and epididymal adipose tissue. (E and F) JNK phosphorylation densitometry in (E) liver and (F) adipose tissue. (G and H) IRE-1a
mRNA expression in (G) liver and (H) adipose tissue. (I and J) PERK mRNA expression in (I) liver and (J) adipose tissue.^p < 0.05 vs. iNOS KO HFD, #p < 0.05 vs. iNOS KO PBA
HFD. Bars represent mean � SEM from 4 to 8 mice. Similar results were observed when using delta percentage of baseline.

MOLECULAR METABOLISM 6 (2017) 206e218 � 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

213

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Figure 7: Metabolic profile of C57BL/6J mice fed standard chow or a high-fat diet and treated with the ER stress blocker 4-phenyl butyric acid (PBA) and the iNOS
inhibitor L-NIL. (A) Body weight, (B) epididymal fat mass, (C) fasting blood glucose, (D) insulin levels, and (EeF) glucose tolerance, measured by the 120 min glucose tolerance
test in (E) the chow groups and (F) high fat diet groups, (G) Glucose utilization, as measured by euglycemic-hyperinsulinemic clamp. *p < 0.05 vs. C57BL/6J HFD, #p < 0.05 vs.
C57BL/6J CHOW and^p < 0.05 C57BL/6J PBA/L-NIL HFD. Bars represent mean � SEM from 4 to 8 mice.

Original Article
for the mild reduction in insulin sensitivity and glucose intolerance still
present in iNOS KO mice on HFD. In agreement, we found in these
mice an increase in IRS-1 serine 307 phosphorylation in these tissues.
Serine phosphorylation is generally linked to IR, leading to decreased
activation of PI-3 kinase [45e47], which is upstream of Akt. In
accordance, we also observed a decrease in insulin-induced Akt
activation in these tissues. We also showed that when this residual ER
214 MOLECULAR METABOLISM 6 (2017) 206e218 � 2016 The Author(s). Published by Elsevier GmbH. T
stress was blocked in the liver and adipose tissue of iNOS KO mice fed
a HFD, complete recovery of insulin signaling was achieved in these
mice. Taken together, these results suggest that in obesity, ER stress
can be induced by both iNOS-dependent and iNOS-independent
mechanisms.
Our results showed that insulin signaling was completely protected in
the muscle of iNOS KO mice fed a HFD, suggesting that obesity-induced
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www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Figure 8: Evaluation of insulin signaling and the unfolded protein response (UPR) pathway in C57BL/6J mice treated with PBA and PBA/L-NIL. (A) Insulin-induced
Protein kinase B (Akt) phosphorylation in liver. (B) Akt phosphorylation densitometry in liver. (C) Insulin-induced Akt phosphorylation in epididymal adipose tissue. (D) Akt
phosphorylation densitometry in epididymal adipose tissue. (E) c-JunN-terminal kinase (JNK) phosphorylation in liver and epididymal adipose tissue. (F and G) JNK phosphorylation
densitometry in (F) liver and (G) adipose. (H and I) IRE-1a mRNA expression in (H) liver and (I) adipose tissue. (J and K) PERK mRNA expression in (J) liver and (K) adipose tissue.
*p < 0.05 vs. C57BL/6J L-NIL CHOW, #p < 0.05 vs. C57BL/6J CHOW, þp < 0.05 vs. C57BL/6J PBA/L-NIL CHOW and p̂ < 0.05 C57BL/6J PBA/L-NIL HFD. Bars represent
mean � SEM from 4 to 8 mice. Similar results were observed when we used delta percentage of baseline.
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alterations in insulin signaling in muscle represent a mechanism of
insulin resistance mediated by iNOS. This tissue-specific regulation of
insulin signaling observed in the genetic absence of iNOS was also
demonstrated by pharmacological blockade of iNOS. These results led
us to propose that iNOS-mediated alterations in insulin signaling may
represent an important target for treating diet-induced insulin resistance
in muscle. It is important to mention that this preserved insulin signaling
in muscle of iNOS KO mice on HFD occurred in spite of an increase in
JNK activation and IRS-1 serine phosphorylation, which is in accordance
with recent data that showed that activation of JNK in muscle fails to
induce insulin resistance [48]. Moreover, it was also demonstrated that
the increased IRS-1 ser307 phosphorylation in muscle of animal models
of insulin resistance seems to have a more adaptive rather than
pathogenic function [49]. On the other hand, the iNOS-dependent
mechanisms only partially protect insulin signaling in liver and adi-
pose tissue, and the residual ER stress observed in these tissues may
also play an important role in the mild insulin resistance and glucose
intolerance in these animals. It is tempting to speculate that iNOS may
have an important role in the tissue-specific modulation of insulin
signaling/resistance in obesity. Previous data showed that in humans
and animal models, high-fat diet/obesity is able to induce ER stress in
liver and adipose tissue but not in muscle [21,50,51]. In accordance
with these previous studies, our data showed that control mice on HFD
presented ER stress in liver and adipose tissue, and in iNOS KO mice on
HFD, the ER stress in these tissues was only partial. It is important to
mention that HFD was unable to induce ER stress in muscle of control
and iNOS KO mice. In this regard, the absence of ER stress in muscle
after HFD may partially explain the tissue specific regulation of insulin
signaling in iNOS KO mice on HFD. In addition, one of the most inter-
esting results from our study is that the insulin resistance observed in
muscle of HFD animals can be completely prevented by genetic or
pharmacological blockage of iNOS.
At the molecular level, the mechanisms involved in the induction of
insulin resistance are complex and certainly involve multiple pathways.
Although inflammation and ER stress seem to be the unifying mecha-
nisms that can contribute to explaining the increased activity of different
serine kinases and of some PTPases [16,52], other mechanisms and
connections have also been involved in the insulin resistance of obesity,
including increased lipid storage in tissues and mitochondrial
dysfunction [53]. Recently, a clear connection between mitochondrial
dysfunction associated oxidative stress with ER stress became more
evident and suggests that these alterations may have many mecha-
nisms in common [54,55]. In this regard, iNOS was recently suggested
to play an important role not only in the induction of ER stress but also in
the cellular consequences of ER stress, including oxidative stress [56].
Hsieh et al. [24] showed that oxidative stress induced by ER stress
signaling is mediated through both iNOS-dependent and independent
pathways. Taken together with our results, we suggest that iNOS might
have a partial role in both the induction and the consequences of ER
stress. In this sense, our results are of crucial importance for the better
understanding and treatment of insulin resistance, because in obesity
and metabolic disorders that lead to insulin resistance, the expression
and activity of iNOS is increased not only in macrophages [57] but also
in many other tissues [15,58,59].
In conclusion, the results of the present study demonstrated that, in
HFD fed mice, iNOS-induced alteration in insulin signaling is an
essential mechanism of insulin resistance in muscle, suggesting that
iNOS may represent an important target that could be blocked in order
to improve insulin sensitivity in this tissue. However, in liver and adi-
pose tissue, the insulin resistance induced by HFD was only partially
dependent on iNOS, and even in the presence of genetic or
216 MOLECULAR METABOLISM 6 (2017) 206e218 � 2016 The Author(s). Published by Elsevier GmbH. T
pharmacological blockade of iNOS, a clear ER stress, associated with
increased JNK activity and altered insulin signaling, remained evident
in these tissues. When this ER stress was blocked pharmacologically,
insulin signaling was improved and a complete recovery of glucose
tolerance was achieved. Taken together, these results reinforce the
tissue-specific regulation of insulin signaling in obesity, with iNOS
been sufficient to account for insulin resistance in muscle, but, in liver
and adipose tissue, ER stress and insulin resistance can be induced by
both iNOS-dependent and iNOS-independent mechanisms.
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