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We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a

constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled

from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances

as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two

dimensional atomic crystal.

Introduction

Low-dimensional systems have attracted attention over the past
fifty years since the development of semiconductor epitaxial
growth and deposition of metallic thin films [1]. The early
scenario, back in the 1960s, as promising as it appeared, has
evolved into a mainstream interest in condensed matter physics
due to landmark discoveries in the late 1970s and early 1980s,
such as the quantum Hall effect [2] and conductive polymers
[3], respectively, 2D and 1D systems. The subsequent discovery
of new carbon allotropes, showing stable structures either in 0D
(fullerenes), 1D (carbon nanotubes) and 2D (graphene) consoli-
dated this scenario in an exciting research field [4]. The isola-

tion of strictly one atom thick layers in the first years of

the present century opened a wider window for both basic
physics and device applications [5]. These new disruptive
research efforts, initially impulsed by graphene, are nowadays
detaching from carbon-based roadmaps, as also envisaged, at
the beginning of the graphene boost, by Novoselov, Geim and
co-workers [6].

A very recent 2D atomic crystal of black phosphorous [7-10],
namely phosphorene, is a promising system in which 2D prop-
erties together with strictly 1D chain behavior are present in dif-
ferent energy windows. This allows the same device to be tuned

from a 1D to a 2D system by simply tuning the Fermi energy. In

1983


http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:dario.bahamon@mackenzie.br
https://doi.org/10.3762%2Fbjnano.7.189

the present work we focus on the 1D energy window, created by
an effective doubly degenerate band (in the relevant energy
scale) associated to states strongly localized at the zigzag edges
[11,12] of phosphorene nanoribbons, whose properties
are explored using a new strictly one-dimensional resonant

tunnelling device.

The double-barrier resonant tunnelling device [1,13,14],
conceived here as an atomically precise segmentation at one of
the edges, shows unusual geometry, since the direction of the
barriers is perpendicular to the well and contact regions [15,16].
Among our findings we show that for a thin barrier case
(constriction with narrow step from the upper zigzag edge), the
resonant tunnelling permits a spectroscopy of the band struc-
ture of phosphorene nanoribbons in this energy window.
Furthermore, progressive widening of the barriers (enhancing
the step width of the constriction), thus nearing the constriction
to the other edge leads to edge-coupling effects featuring reso-
nances with Fano line shapes [17-19]. Also, a new discrete/con-
tinuum-states coupling system is revealed. For this latter
coupled-edge system, the transmission probability characteris-
tics turn out to present clear features of both (i) the actual finite
confining segment coupled to an infinite (not segmented) edge
and, (ii) the properties of an infinite narrow nanoribbon with
strongly coupled edges. These results are independent of the
area of the device region. They solely depend on the length of
the segmented region and distance between the edges, revealing
an effective chain-like behavior of the edges of the nanoribbons.

In what follows, we initially discuss the “bulk” electronic prop-
erties of a phosphorene nanoribbon. We present the model
calculation framework, as well as the effects of edge coupling
on the conductance of these infinite zigzag ribbons, which are
essential to understand the resonant tunnelling spectra. Next, the
geometry of the actual investigated segmented device is
presented, introducing the resonant tunnelling effects. Subse-
quently, the core of the results is devoted to explore the reso-
nant tunnelling behavior of the segmented-edge device,
showing how the defects on the edge may actually enrich the
scenario instead of solely washing out the announced effects.
This provides further evidence that the phenomenon is restricted
to the atoms at the very edge. Finally, the conclusion suggest a
bridge between the present 1D systems embedded in a 2D

crystal and ongoing research on isolated atomic chains.

Results and Discussion
Phosphorene zigzag nanoribbons and model

calculation: edge-coupling effects

The essential atomistic aspects of the structures investigated are
depicted in Figure 1. Figure 1a shows a segment of an infinite
zigzag edged phosphorene nanoribbon of width N = §, which
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is the number of zigzag chains along the ribbon. The tight-
binding hopping parameters considered, as discussed below, are

indicated in Figure 1b.
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Figure 1: (a) lllustration of a zigzag phosphorene nanoribbon of width
Nz, where Nz is the number zigzag chains. (b) Hopping parameters
used in the four-band model [20]. (c) Structure of the central band of
edge states of nanoribbons with different widths. The inset includes the
band structure of the bottom and top of the conduction and valence
bands for Nz = 60. (d) Transmission probabilities for the edge states
depicted in panel (c). (e) Probability amplitude of edge states for

Nz = 15 for different values of ka. The inset reveals the stronger non-
zero overlapping of states of the two edges at the bottom of the central
band, ka = 0.

The quite complex electronic structure of phosphorene, already
at energy ranges rather close to the Fermi energy, hinders a
wider use of single-orbital tight-binding models in chasing the
alluded electronic and transport properties of systems based on
this new material. Nevertheless, the use of such model is well
validated, by means of comparisons with first-principle elec-
tronic structure calculations [20,21], for the very energy
window of interest around the gap, namely a double central
band. This central band for zigzag phosphorene nanoribbons
has been predicted for phosphorene [11,12] and is absent in
graphene. We use here the same tight-binding parametrization
for phosphorene proposed by Rudenko [20] considering a
Hamiltonian H = Z”t»-cTc i

jeitjo
hilation) electronic operator at site i and ;; is the hopping inte-

where ¢; (clT ) is the creation (anni-
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gral between sites i and j. In this model, five hopping integrals
are required to characterize the low-energy electronic proper-
ties [20]: #; = —1.220 eV, t, = 3.665 eV, 13 = —0.205 eV,
ty = —0.105 eV and t5 = —0.055 eV. The transmission
T = Tr[I';G'TrG%] is calculated using the recursive Green’s
function [22] G" =[E + in — H— 2; — £g] ! in the phosphorene
lattice representation. The broadening function of the left
and the right contact I'y gy =1[Z; ) _EE(R)] and the self-
energy of contact X; ) are calculated recursively for the
semi-infinite zigzag phosphorene nanoribbons [23]. Other elec-
tronic properties such as the local density of states (LDOS)
Pii = —Im[Gr(;,-,;i,E)]/Tc are also calculated.

The electronic and transport properties of a host zizgzag
nanoribbon, in which a finite segment will be latter tailored in,
are also summarized in Figure 1. The inset in Figure 1c depicts
the energy window of interest, showing the top (bottom) of the
valence (conduction) band and an effectively degenerate central
band [11]. These central bands present cosine-like dispersions
characteristic for 1D systems [11]. Indeed, the degeneracy
comes from the fact that the width of the ribbon here is N, = 60,
which guarantees that the two edges are effectively uncoupled
[24]. Hence, this width will be chosen for the host ribbon where
the constriction will be introduced.

The effect of edges coupling with the band structure can be fol-
lowed in the main part of Figure 1c, showing a zoom of the
central band energy range. Having in mind the uncoupled limit
of Nz = 60 (red curve), lifting of the central band effective
degeneracy starts (in the present relevant energy scale) for
Nz =15 (black curve) at the center of the Brillouin zone with an
approximately symmetric splitting of slightly deformed cosine-
like bands. Indeed an incipient overlap of wave functions in this
situation is illustrated in Figure le, with a noticeable amplitude
of the wave function in the atomic sites well inside the ribbon.
It should be note that N corresponds to the number of zigzag
chains, hence for Nz = 15, there will be 30 atomic sites in the
unit cell. For extremely thin ribbons, N = 7, the splitting attains
values of the order of the uncoupled band widths (blue curve).
More striking is the drastic change in the shape of one of the
bands, showing a local maximum at the center at ka = 0 and a
minimum at ka = 1.

The consequences of the edge coupling on the transmission
probabilities along the edges are qualitatively significant as can
be seen in Figure 1d. Degenerate bands sum up to a plateau of
T =2 (red curve). A slight lifting of the degeneracy breaks the
lower threshold of the plateau introducing a 7 = 1 step, an
energy range where there is only one conduction channel [11].
However, extreme coupling leads to a 7 = 3 plateau for

—1 < ka < 1, where the different states corresponding to the

Beilstein J. Nanotechnol. 2016, 7, 1983-1990.

same energy in this band are added to the channel associated to

the other cosine-like band.

Segmented nanoribbons: resonant tunnelling

in 1D effective-chain structures

In the energy energy range of the edge-states band, the “bulk”
of the nanoribbon acts mainly as “in plane” substrate for the
two-dimensional channels at the edges. This condition, evi-
denced by the electronic band structure discussed in the
previous section raises the question of a means to observe ex-
perimentally those effective one-dimensional chains embedded
in the rather complex phosphorene crystalline structure. In order
to test our hypothesis we propose the segmented nanoribbon
structure (constriction) illustrated in Figure 2a. The segment of
a thinner region of the nanoribbon of width my, the number of
zigzag chains, is defined by a length L in units of atoms re-
moved along one zigzag direction. One essential parameter is
the step width between the semi-infinite upper edges and the
central segment, which is simply defined as N; — m and, as
will be seen below, defines the barrier thickness in the resonant

tunnelling.
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Figure 2: (a) Schematic picture of a constriction characterized by the
parameters L = 10, actually used throughout the work, and m, = 4,
here only for the sake of illustration. (b) Transmission probabilities, as
a function of the Fermi energy, at the energy range corresponding to
the central band, including the bottom and top of the conduction and
valence bands. Three different situations are depicted: two constric-
tion defined at nanoribbons of width N, = 60, both with L = 10, and
m, =57 (red) and m, = 15 (green) and a zigzag nanoribbon without
any constriction, N; = m, = 57 (black line).

Figure 2b shows the transmission probabilities through
two constrictions of length L = 10 with Ny — mz = 3 and
Nz — myz = 45 step widths, compared to a bare N, = 57
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nanoribbon, as a function of the energy. In order to avoid any
coupling between the edge states the width of the nanoribbon in
the contacts is also N = 60. Transmission plateaus above and
below the edge states band are shown, for the sake of complete-
ness, since these structures are of entirely different character
than the resonances in the central band we will be focusing on.
These transmission plateaus are due to the lateral confinement
in a nanoribbon. This is confirmed by the green curve for
myz =15, a deep step leading to a large shifting of the valence
and conduction bands transmission plateaus, evidencing also the
well-known Fabry—Perot oscillations [25] due to the geomet-
rical modulation. These effects are already well known for
graphene and square lattice nanoribbons with constrictions [25-
29].

The edge states, observed here in the energy range from 0.3 to
0 eV, drop to T(E) =1 with resonant peaks on top for wide
constrictions and anti-resonances for narrow constrictions.
Figure 3a presents a closer look at this energy range. For thin
armchair steps (N; — myz = 3) the red curve shows a group of
10 peaks, these resonances get thinner as the step increases
(NZ —mz= 5)
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Figure 3: (a) Transmission probabilities, as a function of the Fermi
energy, in the energy range of the central band corresponding to
nanoribbons with constrictions. Red and green correspond to the
cases in Figure 2b, Nz = 60, all with L = 10 and mz = 57 (shallow
constriction) and mz = 15 (deep constriction), respectively. The black
curve corresponds to a constriction with mz = 55 (intermediate depth).
(b) Transmission probabilities for very deep constrictions, mz = 8 and
different lengths: L = 10 (upper panel) and L = 30 (lower panel).
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When my is further diminished, the barriers to the upper-edge
contacts become too large, but now the coupling to the lower
edge becomes relevant. For mz < 15 transmission shows asym-
metric Fano-like resonances at the low-energy side and sharp
anti-resonances at higher energies within the central band,
which will be discussed below. It should be recalled here that
only for extremely thin nanoribbons the strong coupling be-
tween the edges widens the central band. However, a plateau
enlargement for my = 8 is not observed in Figure 3b, because
the edges of the left and right contact are not coupled (keeping
the central band of the contacts unaltered).

In our constriction the role of both channels (discrete states and
continuum at the upper and lower edges) can be made explicit
by picturing the local density of states (LDOS) in Figure 4, at
the energy values indicated by arrows 1, 2, 3 and 4 in Figure 3.
In Figure 4a, looking at the LDOS corresponding to a transmis-
sion peak pointed out by the arrow 1, it is clear that the higher
values of LDOS appear on the edges. The confined state at the
constriction in the upper edge clearly stands out. It should be
noted that this LDOS is slightly asymmetric, since the structure
with L equal to an even number of atoms is asymmetric (see
Figure 2a). This asymmetry leads to a resonance peak 7' < 1
[30] superposed on the background plateau. L equal to an odd
number of atoms restores complete symmetry, leading to higher
resonances, 7'~ 1 (not shown here). A less intense LDOS along
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Figure 4: LDOS at the energies pointed out by the arrows, labeled 1,
2,3 and 4, in Figure 3 for L = 10. The upper panel is for shallow
constrictions, Nz = 60 and mz = 57: (a) at resonant energy, corre-
sponding to arrow (b); at off-resonant energy, corresponding to arrow
2. The lower panels are for deep constrictions: (c) at the anti-reso-
nance indicated by arrow 3 (mz = 15); (d) at the anti-resonance high-
lighted by arrow 4 (mz = 8).
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the lower edge corresponding to the 7'= 1 plateau can also be
observed. The LDOS along the upper edge outside the constric-
tion region is less intense in the figure scale, due to the promi-
nence of the confined state. Far from a resonance, actually be-
tween two resonances, is the situation pointed out by arrow 2 in
Figure 3a. The LDOS in the confined part of the upper edge is
strongly suppressed, enhancing the contribution along the en-
tire lower edge and the upper-edge contact sections (i.e., outside
the confining region, Figure 4b). A quite different situation is
depicted in Figure 4c,d, where the confined state in the constric-
tion is decoupled from the upper edge with a variable coupling
to the lower edge. In Figure 4c, corresponding to the anti-reso-
nance labeled 3 in Figure 3, we observe a faint coupling to the

lower edge.

The LDOS plots reveal the unique character of the resonances
observed in Figure 3, namely resonant tunnelling through
confined edge states in the constriction defined by an armchair-
like step double barrier structure. It should be noted that the
number of resonances is identical to the number of atoms re-
moved along the segment that define the length of the constric-
tion, L = 10. This indicates that the transmission shows a spec-
troscopy of the 1D states at the edge of the constriction. Indeed,
increasing the length of the constriction will increase at the
same proportion the number of the resonances (not shown here).
The fact that the resonances are insensible to the constriction
width (hence the area for a fixed length) is a further indication
that we are dealing with a strictly 1D effect at the edges. Albeit
there is the underlying 2D crystal, the behavior revealed here is
the one of an effective atomic chain. Here we should note that
the only signature of the underlying 2D crystal is given by the
resonances widths. Recalling Figure 1e, the resonances near the
bottom of the central band, ka = 0, correspond to states that
penetrate deeper into the bulk, hence the barriers defined by the
device steps are less effective than for resonances at higher
energies. Two-dimensionally structured systems, such as
nanoribbons, present transmission probabilities with multi-
channel contributions that are mixed by the geometrical changes
along the structure [31,32]. On the other hand, one-dimensional
systems present single-channel transmission probabilities, that
are described by s-like orbital chain models. The positions of
the transmission resonances are shown in Figure 5 to be well
reproduced by a simple one-dimensional double-barrier quan-
tum well modeled by a chain of s-like orbitals [32,33]. The
nearest neighbor hopping (#;p) of the one-dimensional chain,
shown in Figure 5a, is calculated by |¢;p| = AE/4 = 0.0775 eV,
where AFE is the edge-states band width obtained from the red
curve in Figure lc. The transmission peaks of the one-dimen-
sional quantum well with L = 10 and L = 15 atomic sites clearly
reproduce the position of the resonances observed for phospho-

rene constrictions of the same length (Figure 5b,c). The reso-
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Figure 5: Comparison between the transmission probabilities at the
central band-energy ranges for shallow constrictions, mz = 57, and
equivalent s-like orbitals chain toy model. (a) Representation of the
one 1D double-barrier quantum well structure at the upper edge. The
central blue sites represent the quantum well at the constriction, while
the red ones are for the barriers (armchair steps). The left and right
contacts at the upper edges are also represented by blue sites.

(b) Transmission probabilities for the constriction L = 10: 4-band tight
binding model (red) and the toy model (blue). (c) The same as (b) but
for a longer constriction, L = 15.

nant peaks appear at the energies of the infinite square-well
energies £, = 2t;p + 2t1p cos(nn/(L + 1)) forn =1, 2,..., L.

To recap, the edge states at opposite edges provide one-dimen-
sional electronic transport channels embedded in a two-dimen-
sional material and the conductance observed can be under-
stood from a simple model. The resonant peaks on top of the T’
= 1 plateau resemble the conductance of two parallel and inde-
pendent channels, as shown in Figure 6a. The lower edge
provides a continuous channel of 7= 1 while the upper edge
presents a quantum well with tunnelling coefficients vz )
across the left (right) barrier defined by the vertical edges in the
figure. Hence, resonant tunnelling becomes only possible when
the energy matches the energy of the bound states in the well.
When this situation is not fulfilled the upper channel is closed
and the transmission of the whole system is 7' = 1, see
Figure 6b. A deeper step on the constriction, on the other hand,
would lead to quasi-bound states, i.e., wider barriers, connected
to the upper edge contacts, but with a significant coupling, v,
to the bottom edge, Figure 6(c), leading to Fano-like reso-
nances and anti-resonances in the transmission [34,35]. This
situation corresponds to quasi-bound states coupled to a contin-
uum, leading to Fano-like asymmetric resonances and anti-reso-

nances in the transmission.
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Figure 6: Schematic representation of the main transmission-probabili-
ty conditions. The grey areas represent the nanoribbons with constric-
tions, with different edge-state behaviors highlighted by red and green
lines. (a) Resonant transmission at the upper edge summed up to the
continuous transmission at the lower edge, hence T = 2. The resonant
coupling of the confined state at the constriction with the left(right) con-
tact is represented by y; (YR). (b) Off-resonance negligible transmis-
sion at the upper edge with the continuous transmission at the lower
edge, T = 1. (c) Anti-resonance in the transmission due to the strong
coupling, represented by I'g, between the confined state at the deep
constriction and the lower edge, now depicted as a dashed line indicat-
ing the absence of transmission, T = 0.

The three different line shapes can be described by a single
expression [18]:

2
2 |q+8|

i M

T(8)=|td| 1+e€

where #; is the direct transmission without the presence of a
scattering region, € = (E — Eg)/T, (ER is the energy of the reso-
nant discrete state and I the corresponding line width) and ¢ is
the Fano asymmetry factor, which represents the ratio of the
resonant tunnelling channel to the channel due to the continu-
um (here represented by the lower-edge channel). When g—o
and 7;—0 (no continuum channel available) a resonance peak
develops. For ¢ = £1 (both channels are relevant), an asym-
metric line shape is revealed, while for ¢ = 0 an anti-resonance
appears.

Recalling the framework of the present work, edge-confined
states are supported only by zigzag edges and are absent in arm-
chair or bearded edges [11,12]. Therefore, introducing perturba-
tions to a zigzag edge, such as edge vacancies, would locally
destroy these 1D states. The consequences of these perturba-
tions are very relevant in the present early stage of the experi-

mental development of phosphorene, in which only preliminary

Beilstein J. Nanotechnol. 2016, 7, 1983—1990.

steps toward design and realization of effective devices from
the bulk onto the nanoscale have been reported so far [36].

Hence, effects of disorder at the edges have to be considered.

In Figure 7 we present the transmission probability as a func-
tion of the energy as well as the LDOS associated to selected
resonances in the presence of vacancies. Defects are normally
seen as mechanisms that hinder the observation of transport
properties associated to shape modulation of nanoscopic low-
dimensional systems. Indeed, the resonance spectra are also
dramatically modified in the present case. However, the issue
can be seen from an entirely different point of view. The vacan-
cies change locally the character of the edge. Thus, they actu-
ally introduce small barriers and further divide the system into
smaller segments. The system chosen here is a device with a
vacancy located at the upper edge of the left contact near the
central segment (quantum well), the exact position is marked by
the arrow in Figure 7d.

T LB e e ™

— — -
a 2 — Vacancy
i I l m,=55
adl L L1
I 1 L L I 1
b 2" ‘ [ I _ Vaclmcy ;
m,=57

~ - No Vacancy
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Figure 7: Edge states transmission probabilities for a nanoribbon

Nz =60 wide, with a constriction L = 10 long, adding an edge vacancy
at the left contact: (a) mz = 55 and (b) mz = 57. (c) The system without
vacancies for the sake of comparison, highlighting the splitting of the
resonances due to the presence of a vacancy. (d) LDOS at the energy
indicated by arrow 1 in panel (b). (e) LDOS at the energy indicated by
the arrow 2 in panel (b).

What can be observed from the transmission probabilities in
Figure 7a—c is that the resonances of the well at the contact
defined to the left by a barrier due to the vacancy, couple to
some of the states of the original well given by the central
segment. Those couplings are identified by the split peaks
clearly seen in Figure 7b. If the barriers defining the central seg-
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ment (well) are widened, Figure 7a, the splitting diminishes.
Figure 7c depicts the same device without the vacancy as a
guide for identifying the couplings. The character of the one-
dimensionally confined states in the presence of a vacancy is
illustrated in the LDOS in Figure 7d and Figure 7e for the reso-
nances corresponding to arrows 1 and 2 in Figure 7b, respec-
tively. State 1 corresponds to a double-well (vacancy-upper
edge contact-left step-central segment-right step) along the
upper edge, exhibiting LDOS at both wells, while state 2 is
confined mainly to the central quantum well.

Taking into account the previous discussion, resonant tunnelling
spectroscopy would become rather involved with the presence
of defect-induced barriers. However, scanning probe microsco-

py remains a way to reveal the edge quantum confinement.

Conclusion

So far, we have ignored the effect of Coulomb interactions. It is
well known that the interplay of Coulomb blockade and quan-
tum confinement in quantum dots leads to rich physical phe-
nomena [37]. The correlation among the energy scales involved
such as energy-level spacing of the constriction, charging
energy and couplings allows us to estimate when charging
effects would be important [38]. In the strong-coupling regime
the wave functions of electrons in the shallow/deep constriction
and the wave function of electrons in the upper/lower edge
greatly overlap washing out the Coulomb blockade. Tunnelling
cannot be sequential and transmission is dominated by eigen-
states of the constriction [39]. On the other hand, when the
constriction is weakly coupled to the upper and lower edges
(weak-coupling regime) charging effects can be significant
depending on the length of the constriction. In addition, metallic
leads, gate electrodes and the dielectric function of the sub-
strate modify the capacitance of the constriction and therefore a
detailed study of the charging effects is left for future work.

It is inevitable to compare our results with those obtained for
graphene constrictions. Both zigzag graphene and phosphorene
nanoribbons support edge states. However, their signatures on
the electronic transport properties are completely different.
First, edge states in zigzag graphene nanoribbons are sublattice
polarized, so one single edge do not contribute to the electron
transport properties. The graphene edge states channel origi-
nates from the overlapping of edge states on opposite edges
[40], contrary to what we observe here where a single phospho-
rene edge provides an independent transport channel. Second,
localized states in graphene junctions manifest as anti-reso-
nances of zero conductance, these states are localized over the
junction [26-28]. The localized states of phosphorene are
constricted to the grooved zigzag edge and appear as peaks,

asymmetric Fano line shapes or dips in the conductance. In
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summary, we propose phosphorene zigzag nanoribbons as a
platform for constriction (segment) engineering. In the pres-
ence of an engraved segment at the upper edge, quantum
confinement of edge-protected states reveals resonant tunnelling
transmission peaks if the upper edge of the host nanoribbon is
uncoupled to the lower edge. Coupling between edges in thin
constrictions gives rise to Fano-like resonances and anti-reso-
nances in the transmission spectrum of the system. One could
envisage to observe these effects by means of transport mea-
surements as well as scanning probe microscopy [41]. The
energy scale given by the resonance spacing is of the order of
10 meV for constriction lengths of L = 30 (not shown here),
corresponding to about 5.05 nm and contacts about 13.3 nm
wide. This figures can count as a benchmark for experimental
efforts, recalling that defects may lead to more complex spectra
without washing out the main features. Other resonant
tunnelling mechanisms have been observed in phosphorene
nanoribbons with vacancies [42], defects [43] and transverse
electric fields [44]. It is important to reinforce that these mecha-
nisms involve states at the interior of the nanoribbon, whereas
the effect shown here requires one-dimensional states localized
at the edges.

Concomitant to the development of the fascinating physics of
2D materials, new extreme 1D systems, namely isolated atomic
chains, either based on carbon [45] or metallic elements [46],
have been obtained and characterized, with their properties and
possible applications theoretically investigated. The present
results suggest a way to obtain effective atomic chains from the
edges of a 2D crystal.
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