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Abstract

Coffea arabica L. is an important crop in several developing countries. Despite its economic

importance, minimal transcriptome data are available for fruit tissues, especially during fruit

development where several compounds related to coffee quality are produced. To under-

stand the molecular aspects related to coffee fruit and grain development, we report a large-

scale transcriptome analysis of leaf, flower and perisperm fruit tissue development. Illumina

sequencing yielded 41,881,572 high-quality filtered reads. De novo assembly generated

65,364 unigenes with an average length of 1,264 bp. A total of 24,548 unigenes were anno-

tated as protein coding genes, including 12,560 full-length sequences. In the annotation pro-

cess, we identified nine candidate genes related to the biosynthesis of raffinose family

oligossacarides (RFOs). These sugars confer osmoprotection and are accumulated during

initial fruit development. Four genes from this pathway had their transcriptional pattern vali-

dated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Further-

more, we identified ~24,000 putative target sites for microRNAs (miRNAs) and 134 putative

transcriptionally active transposable elements (TE) sequences in our dataset. This C. arab-

ica transcriptomic atlas provides an important step for identifying candidate genes related to

several coffee metabolic pathways, especially those related to fruit chemical composition

and therefore beverage quality. Our results are the starting point for enhancing our knowl-

edge about the coffee genes that are transcribed during the flowering and initial fruit devel-

opment stages.
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Introduction

Coffee represents one of the most important crops in tropical developing countries. The genus

has 124 species [1], but only the allotetraploid Coffea arabica L. and the diploid Coffea cane-
phora Pierre ex A. Froehner have economic importance, accounting for approximately 70%

and 30% of world coffee production, respectively [2]. Despite its economic importance, the

C. arabica genome has not been published to date, and only the genome of one C. arabica dip-

loid ancestor, C. canephora, was recently published [3]. Coffee transcriptome studies have

been perfomed [4–8] but so far, very few data is available for C. arabica flower and fruit

development.

RNA-seq is considered a powerful molecular tool for investigating non-model species that

have little information available for genetic studies [9]. The identification of candidate genes

related to agronomic traits and their transcriptional profile might reveal new hypotheses about

genetic mechanisms that control proteins and metabolites biosynthesis. Currently, high-

throughput mRNA sequencing techniques (RNA-seq) have been widely used in studies of

plant transcriptomes.

The transcriptome can also contain non-coding RNAs and other genomic components. In

plants, microRNAs (miRNAs) play an important role in different biological and metabolic

process, including tissue differentiation and development, signal transduction, response to abi-

otic/biotic stresses conditions and fruit development [10–11]. In addition, transposable ele-

ments (TE), which are major components of plant genomes, might also shape the architecture,

function and expression of plant genes and genomes throughout evolution [12]. In coffee

plants, albeit previous studies have shown low TE expression, they can be detected in tran-

scriptome analyses [13–14].

Coffee beverage is obtained from ground seed endosperm; however, most RNA-seq pub-

lic data represents the leaf transcriptome. Among the 42 transcriptome analyses of C. arabica
deposited in the Short Read Archive (SRA) of NCBI by August 2016, no study has addressed

transcriptional profiles in flowers or fruit tissues. In coffee, most of the metabolites in the

fruits are synthetized during the development of perisperm. Perisperm is a highly active tis-

sue with an intense metabolism and is replaced by endosperm during fruit development

[15–16].

The accumulation of raffinose family oligosaccharides (RFOs), such as raffinose and sta-

chyose, was previously observed during coffee fruit development [17–18]. RFOs are compati-

ble solutes that are typically involved in stress tolerance defense mechanisms. RFOs act as

signal molecules in response to stress [19–20] and are related to seed desiccation tolerance and

germination [21–22]. In coffee plants, RFOs are involved in osmoprotection against abiotic

stresses in leaves [23–24], but they can also be possible donors of carbon skeletons during the

synthesis of cell wall storage polysaccharides (CWSPs). A microarray-based analysis in coffee

endosperm showed that the GolS transcript levels were significantly correlated with the

amount of CWSPs [17].

In this study, we analyzed de novo assembled transcriptome data from leaves, flowers and

coffee fruit perisperm in five development stages and identified genes that are specifically

expressed in these organs. We also generated a catalog of putative transcriptionally active

transposable elements and miRNA targets, which are relevant transcriptome components that

are rarely studied using transcriptomic approaches. Genes related to RFOs biosynthesis had

their transcriptional pattern confirmed by qRT-PCR, which suggests that our large-scale tran-

scriptome resources will add valuable information for the discovery of key genes involved in

coffee fruit metabolism.
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Materials and Methods

Plant materials

Tissues were obtained from 20-year-old individual C. arabica cv. IAPAR59 plants grown at the

Agronomic Institute of Paraná (Londrina—Brazil) under full-sun field conditions with stan-

dard irrigation and fertilization practices. We collected leaves (3rd pair from plagiotropic

branches in the middle third of the tree), open flowers and fruits. The fruit samples were har-

vested monthly after flowering (30 to 150 DAF; from October 2011 to May 2012). Fruit tissues

were separated into pulp, perisperm and endosperm, and only perisperm was selected for

RNA sequencing. All samples were collected between 9 and 11 a.m., transferred immediately

to liquid nitrogen and stored at -80˚C until RNA extraction.

RNA extraction

Plant materials were pulverized in liquid nitrogen using a cooled mortar and pestle. Total

RNA was isolated based on the method of Chang et al. (1993) [25]. The integrity of the RNA

samples was examined by 1% agarose gel electrophoresis, and the samples were treated with

DNase (RNase-free) to remove genomic DNA contamination. The quality and concentration

of extracted RNAs were verified using a NanoDrop1 ND-1000 spectrophotometer (Thermo

Scientific, Wilmington, DE, USA) and confirmed using a Bioanalyzer Chip DNA 1000 series II

(Agilent, Santa Clara, CA, USA).

RNA sequencing

The mRNA sequencing was performed at the High-Throughput Sequencing Facility at the

Carolina Center for Genome Sciences (University of North Carolina, Chapel Hill, NC, USA).

For each sample, 10 μg of total RNA was used to prepare mRNA libraries for sequencing and

we followed Illumina standard protocol. Library quality control and quantification were per-

formed using a Bioanalyzer Chip DNA 1000 series II (Agilent, Santa Clara, CA, USA). All

libraries were tagged and multiplexed in Illumina HiSeq™ 2000, generating 100-base-pair (bp)

single-end sequences. RNA-seq data were submitted to NCBI under BioProject accession

number PRJNA339585. Transcriptome Sequencing Analysis (TSA) and Sequence Read Arqu-

ive (SRA) files are available under GEXP00000000 and SRP082511 accession numbers,

respectively.

RNA-seq data processing and de novo assembly

Raw reads from RNA-seq were filtered by discarding read adaptors contamination and low

sequencing quality regions using an in house PERL script that excluded sequences with Phred

quality below 20. Processed reads of all libraries were merged for assembly using Trinity

assembler, 6-8-2012 version [26], using an optimized k-mer length of 25 for de novo assembly.

Contigs with a minimal length of 200 bp were used for further analyses. Putative coding

sequences were predicted using Transdecoder (https://transdecoder.github.io/).

Transcriptome gene atlas annotation and classification

All unigenes were compared against NCBI non-redundant sequence (nr) and Swiss-Prot data-

base [27] using BlastX, with an e-value cutoff of 1e-5. Comparison analyses of transcriptome

unigenes were also performed against C. arabica public EST assemblies [6], C. canephora [3]

and C. eugenioides coding sequences [28] with an e-value cutoff of 1e-5. Functional annotation

describing biological processes, molecular function and cellular component were performed

using Blast2GO v.2.7.0 tools [29]. We also used InterProScan [30] to identify conserved
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protein domains and KEGG database [31] to identify metabolic pathways that were available

in the sequenced transcriptome, both annotation were done using Blast2GO tools using

default parameters or as previously described [28].

Digital gene expression analysis

We used Bowtie [32] with the default parameters to map all of the reads against the de novo
assembled transcriptome, allowing a maximum of three mismatches. RPKM (reads per kilo-

base of transcript per million fragments sequenced) values were normalized for each unigene

based on the Robinson and Oshlack method [33]. Pairwise comparisons of expression data

analysis among leaves and flowers and during the initial perisperm development stages (30 to

150 DAF) were used to identify differentially gene expressed using EdgeR package [34] results.

Digital Gene Expression (DGE) analysis among libraries was performed with a cut-off of log2

fold change (Log2FC)� 1 for up-regulated or Log2FC� -1 for down-regulated genes and

p� 0.05. Venn diagrams were developed using Calculate and Draw custom Venn Diagrams

(http://bioinformatics.psb.ugent.be/webtools/Venn/). Unigenes were annotated using TrapID

(Rapid Analysis of Transcriptome Data) platform [35].

Transposable elements identification

Coffee unigenes were compared against transposable elements sequences available at Repbase

protein transposable elements database [36] using a strategy similar to that reported by Santos

et al. [37] and Marcon et al. [38]. Unigenes were considered related to TEs when there was a

minimum alignment of 200 bp, a score greater than 200 and a 1e-10 evalue in BlastN.

Prediction of potential conserved miRNAs targets

Coffea arabica assembled unigenes were submitted to psRNATarget [39] webserver for pre-

dicting miRNA targets. We used the default parameters to identify potential miRNA targets: i)

a maximum expectation of 3; ii) a length of 20 for complementarity scoring; iii) a target acces-

sibility, i.e., the allowed maximum energy to unpair the target site (UPE), of 25; iv) a flanking

length around target site for target accessibility analysis of 17 bp upstream and 13 bp down-

stream; and v) a range of central mismatch of 9 to 11 nucleotides leading to translational

inhibition.

Identification of RFO-related genes

Coding sequences of galactinol synthase, raffinose synthase and stachyose synthase genes were

obtained from The Arabidopsis Information Resource database (TAIR, www.arabidopsis.org)

and used as queries to search by tBlastX their respective orthologs in our coffee transcriptome

assembled sequences. Orthologs were assessed by reciprocal best hit (RBH). Enrichment GO

analyses using coffee candidate genes related to RFO metabolism were performed using Fish-

er’s exact test and FDR cutoff of 0.01 developed using the Blast2GO software [29].

qRT-PCR transcriptional validation

Primers were designed using the Primer 3 software [40] to amplify products ranging from 101

to 105 bp, with a melting temperature of 60˚C. Primer sequences are presented in S1 Table.

Primer efficiency was calculated using LinRegPCR software [41].

Complementary DNAs (cDNAs) of C. arabica leaves and perisperm (90, 120 and 150 DAF)

were synthesized using a SuperScript III Reverse Transcriptase kit (Invitrogen, Carlsbad, CA,

USA), following the manufacturer’s instructions, in a final volume of 20 μl using 5 μg of total

Transcriptome Analysis of Coffea arabica L.

PLOS ONE | DOI:10.1371/journal.pone.0169595 January 9, 2017 4 / 17

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.arabidopsis.org


RNA. qRT-PCR was performed in a 7500 Fast Real-Time PCR System (Applied Biosystems)

and following basic procedures reported a previous publication in coffee plants [42]. The reac-

tion mixture contained 7.5 μl of SYBR Green PCR Master Mix (Applied Biosystems, Foster

City, CA, USA), 0.3 μl of each primer (3 μM), 1 μl of cDNA (40 ng/μL) and 5.9 μl of Milli-Q

water. The qRT-PCR conditions were 95˚C for 5 min; 40 cycles of 94˚C for 30 s, 62˚C for 60 s,

72˚C for 30 s, and a final step of 72˚C for 10 min. Melting curves were analyzed to verify the

presence of a single product including a negative control. All reactions were performed with

three biological and technical replicates, and we followed the MIQE guidelines for qRT-PCR

experiments [43].

Relative expression determination and normalization process were developed using the

GenEX software (MultiD, Gothenburg, Sweden) with the default parameters. Transcriptional

levels were normalized using coffee glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

and elongation factor 1 (EF1) gene expression profiles as references following the previous rec-

ommendations for coffee plants [44–45]. Data were analyzed by two-way ANOVA and

Tukey’s test (p<0.05) using the Assistat software [46].

Results

Transcriptome sequencing and de novo assembly

A total of 41,881,572 high-quality reads were obtained from mRNA sequencing. Because C.

arabica does not have a reference genome, we opted to make a de novo assembly where

127,600 contigs were generated. A total of 65,364 transcripts were considered unigenes

(unique splicing variants) with size > 200 base pairs (bp), and 24,548 unigenes were predicted

as putative proteins with open reading frames. The average length for these 65,364 contigs was

1,264 bp, with a range from 201 to 12,891 bp. We achieved a N50 of 2,118 bp, and the mean

GC content was 41.13% (Table 1). Approximately 60% of the contigs had 200 to 500 bp, 16%

had 501 to 1,000 bp, 12% had 1,001 to 2,000 bp and 4% were longer than 3,000 bp (S1 Fig).

Transcriptome gene annotation and data mining

Automatic annotation was performed to identify conserved domain sequences and to obtain

KEGG metabolic pathways maps to characterize our coffee transcriptome dataset. A total of

24,548 unigenes were successfully annotated as coding protein genes by BlastX, including

12,560 full-length sequences (Table 1).

Vitis vinifera (40.64%) was the species with the highest similarity with coffee sequences fol-

lowed by Populus trichocarpa (11.13%), Ricinus communis (10.89%) and Glycine max (4.24%).

Table 1. Summary of C. arabica de novo transcriptome assembly.

Assembly Information Values

High-quality Reads 41,881,572

Percentage of Mapped Reads 65%

GC Content 41,13%

N50 2,118 bp

Total of Contigs 127,600

Number of Unigenes (>200 bp) 65,364

Number of Coding Protein Unigenes 24,548

Number of Full-Length Coding Protein Unigenes 12,560

Unigenes Average Size 1,264 bp

doi:10.1371/journal.pone.0169595.t001

Transcriptome Analysis of Coffea arabica L.

PLOS ONE | DOI:10.1371/journal.pone.0169595 January 9, 2017 5 / 17



We also investigated the contribution of novel transcripts for coffee transcriptome studies.

We compared our assembly with the 35,153 Coffea arabica contigs available on CafESTs data-

base [5–6], 25,574 unigenes from the Coffea canephora genome [3] and Coffea eugenioides
transcriptome data (36,935 unigenes) [28]. A total of 26,176 unigenes matched CafEST contigs,

24,798 unigenes matched C. canephora CDS and 20,542 unigenes matched C. eugenioides uni-

genes (Table 2).

Gene ontology analysis

A total of 27,259 molecular functions, 19,373 cellular components and 27,255 biological pro-

cess terms were associated with our dataset based on the gene ontology (GO) database. The

GO classifications were distributed in 15 levels among these three categories. The most infor-

mative GO levels for coffee unigenes were five, six and eight, which include a high number of

annotated GO terms (S2 Fig). The GO annotation at those intermediary levels allowed infer-

ring putative functions for our unigenes dataset, as we described further down in the RFO

gene charatherization.

Conserved protein domain analysis and KEGG mapping

Using InterProScan, we identified 105,258 conserved domains (CD), representing a total of

5,246 non-redundant CD. The three most abundant terms found were kinases, cytochromes

P450 and binding site proteins (S3 Fig).

Subsequently, we mapped unigenes against the KEGG metabolic pathway maps. A total of

130 map pathways were found for the coffee proteins dataset, including 1,484 enzymes for the

5,259 mapped unigenes (24.34%).

Digital gene expression of C. arabica unigenes

Digital gene expression (DGEs) analysis using edgeR package was performed to obtain a

panel of down- and up-regulated unigenes among the C. arabica RNA-seq libraries. We per-

formed two DGEs analyses: i) DGEs that were up- and down-regulated among all libraries

(Table 3) ii) DGEs that were up- and down-regulated only in perisperm from 30 to 150 DAF

(Fig 1a and 1b).

After a pairwise analysis among all of the libraries (Table 3), we observed the highest num-

ber of genes (3,878) were up-regulated in perisperm at 150 DAF compared with 60 DAF. Peri-

sperm at 30 DAF also exhibited a high number of differentially expressed genes, with 2,115

genes up-regulated compared with flowers and 2,009 genes up-regulated compared with

leaves. The library with the lowest amount of up-regulated unigenes (130) was perisperm at

60 DAF compared with leaves.

In contrast, the highest number of down-regulated genes (2,247) was detected in the peri-

sperm at 90 DAF compared with 30 DAF. Perisperm in all sampling dates presented a high

number of down-regulated genes compared with 30 DAF in a range of 1,241 to 2,247. The

Table 2. Similarity analysis of coffee and plant database sequences.

Reference Database Hits No Hits

C. arabica ESTs 26,176 39,188

C. canephora genome 24,798 40,566

C. eugenioides 20,542 44,822

doi:10.1371/journal.pone.0169595.t002
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lowest number of down-regulated genes was observed in the perisperm at 60 DAF in relation

to leaves (136), and this finding was similar to those obtained for up-regulated genes (Table 3).

The second DGE analysis was developed using only RNA-seq libraries from the perisperm

at the five developmental stages. A total of 3,130 unigenes were down-regulated (Fig 1a), and

3,412 were up-regulated (Fig 1b). Compared to perisperm tissue at 30 DAF, 309 were down-

regulated at 60 DAF, 557 at 90 DAF, 228 at 120 DAF, 88 at 150 DAF and some down-regulated

genes overlapped in two or even three stages (Fig 1a). In contrast, 377 were specifically up-reg-

ulated at 60 DAF, 344 at 90 DAF, 932 at 120 DAF and 847 at 150 DAF (Fig 1b).

In addition, we annotated the top 10 unigenes exclusively expressed in each library. For

this, we considered exclusively expressed unigenes that had an Interpro domain, RPKM >10

for one library and RPKM equal or less than two for all other libraries. Unigenes following

these rules are summarized in S2 Table.

Table 3. A summary of up- and down-regulated DGEs among coffee libraries*.

Coffee Libraries Flower Leaves Perisperm

30 DAF 60 DAF 90 DAF 120 DAF 150 DAF

Flower - 234 2115 288 428 1132 1394

Leaves 599 - 2009 130 363 895 1108

30 DAF 1311 680 - 1123 863 1425 1349

60 DAF 588 136 1981 - 614 1558 3878

90 DAF 919 356 2247 799 - 1569 1426

120 DAF 828 381 1539 1159 790 - 1433

150 DAF 822 219 1241 1111 568 1232 -

*Up-regulated unigenes are placed at the botton of the table (under—mark), and down-regulated unigenes are placed at the top of the table (above—mark).

Number in bold and italic are high and low values, respectively, as observed between their respective libraries. Numbers underlined are the lowest and

highest values among all libraries comparisons for up- and down-regulated genes.

doi:10.1371/journal.pone.0169595.t003

Fig 1. Venn diagrams showing unigenes up- (a) and down-regulated (b) among perisperm development stages (60, 90, 120 and 150 DAF)

compared with perisperm at 30 DAF. A total of 3,130 unigenes classified as down-regulated (a) and 3,412 unigenes classified as up-regulated (b)

were used in this analysis.

doi:10.1371/journal.pone.0169595.g001
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Identification of putative transposable elements

We performed a BLAST analysis against a reference database of transposable elements

(Repbase) [36] and identified 134 contigs with transposable elements (TE) fragments (S3 Table).

From these contigs, 70 were annotated as class I TEs (52.24%) and 64 as class II (47.76%). These

contigs were classified according to the following divisions: Gypsy (50), Copia (10), LINE (10),

MuDR (29), Helitron (19), hAT (13), En/Spm (2), and Harbinger (1) (Table 4).

Identification of putative miRNA targets

miRNA identification using RNA-seq requires the construction of a special library. Therefore,

the identification of mature miRNAs is beyond the scope of this study. However, transcripts

that are regulated by miRNAs should contain sequences with almost perfect complementarity

to known miRNAs. In plants, most miRNAs are encoded by gene families, and mature miR-

NAs typically have several target genes with similar complementary motifs in their mRNAs

among several species [47].

In this study, we identified a total of 23,939 transcript targets on C. arabica transcriptome

(S4 Table) regulated by 3,583 miRNA families. Among the miRNA families with putative tar-

gets in coffee transcriptome 3,068 (85.63%) have more than one target. These targets are

mostly associated with miRNAs mir5658, mir5021 and mir414, which are typically overrepre-

sented, given the massively amplified trinucleotide repeats (UGA, GAA, and UCA) in the

mature sequences [48].

Annotation of RFOs biosynthesis genes

We identified nine unigenes related to the biosynthesis of RFOs in our annotation (Table 5).

The galactinol synthase (GolS), raffinose synthase (RS) and stacchyose synthase (STS) genes

Table 4. Transcriptionally active transposable elements in C. arabica transcriptome.

Number of Contigs TE Name TE Class

50 Gypsy I

10 Copia I

10 LINE I

29 MuDR II

19 Helitron II

13 hAT II

2 EnSPM II

1 Harbinger II

doi:10.1371/journal.pone.0169595.t004

Table 5. Raffinose family oligosaccharide candidate genes.

Gene name Enzymatic activity TAIR database C. canephora genome CDD database Pfam Entry Protein length

CaGolS2 galactinol synthase At1G56600 Cc03_g00450 PLN00176 pfam01501 345 aa

CaGolS3 galactinol synthase At1G09350 Cc02_g35350 PLN00176 pfam01501 335 aa

CaGolS4 galactinol synthase At1G60470 Cc11_g15250 PLN00176 pfam01501 339 aa

CaGolS8 galactinol synthase At3G28340 Cc11_g14010 PLN00176 pfam01501 389 aa

CaGolS9 galactinol synthase At3G06260 Cc11_g10580 PLN00176 pfam01501 350 aa

CaRS1 raffinose synthase At1G55740 Cc05_g15530 PLN02355 pfam05695 678 aa

CaRS5 raffinose synthase At5G40390 Cc07_g01840 PLN02355 pfam05695 782 aa

CaRS6 raffinose synthase At5G20250 Cc06_g08070 PLN02355 pfam05695 870 aa

CaSTS stachyose synthase At4G01970 Cc01_g21600 PLN02355 pfam05695 879 aa

doi:10.1371/journal.pone.0169595.t005
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were selected for further analysis (Table 5). For each Arabica RFO-related unigene, we identi-

fied its ortholog in Arabidopsis thaliana and its respective first hit in C. arabica EST assemblies

[5–6] and the C. canephora genome [3]. The Blast2GO annotation process (Table 5) allowed us

to identify the conserved domains for RFO-related genes using Pfam database [49] (Table 5).

In addition, galactinol, raffinose and stacchyose synthase candidate genes were mapped on the

RFO metabolic pathway (galactose metabolism; MAP00052) available in the KEGG database

(S4 Fig).

GO categorization analysis was performed to identify functional categories related to RFO-

biosynthesis (Fig 2). Among these transcripts, the most informative categories annotated for

molecular function (S5 Fig) were galactosyltransferase activity (GO:008378), galactinol-raffi-

nose galactosyltransferase activity (GO:0047268), galactinol-sucrose galactosyltransferase

activity (GO:0047274), UDP-galactosyltransferase activity (GO:0035250) and inositol-3-alpha-

galactosyltransferase activity (GO:0047216). For biological process (S6 Fig) the most represen-

tative functions were carbohydrate biosynthetic and metabolic process (GO:0016051), response

to oxidative stress (GO:0006979), oligosaccharide biosynthetic process (GO:0009312), raffinose

family oligosaccharide biosynthetic process (GO:0010325), raffinose metabolic and catabolic

process (GO:0033530; GO:0034484), mannitol and sucrose biosynthetic process (GO:0019593;

GO:0005986), response to abiotic stimulus (GO:0009628), response to cold (GO:0009409),

response to oxidative stress (GO:006979) and response to water stress deprivation

(GO:0009414).

RFOs biosynthesis gene transcriptional profiles: Differential gene

expression profiles among coffee tissues

The DGE profiles of the RFO-related genes were based on the RPKM values. We compared

the expression data (RPKM values) available from the C. canephora genome hub [50] to our

transcriptome gene expression profile, focusing on leaves and perisperm (average RPKM

among all developmental stages).

We observed higher RPKM values in leaves than in the perisperm tissues for GolS2,GolS3,

RS5 and STS genes in both Coffea species. In contrast, we observed a high expression of RS1 in

Fig 2. GO term categorization analysis performed by Blast2GO tools for RFO biosynthetic genes. GO categories annotated for

RFOs candidate genes are indicated in blue; the global dataset, used as a reference, is indicated in red. GO categorization analyses

were performed using the Blast2GO software with the default parameters.

doi:10.1371/journal.pone.0169595.g002
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the perisperm compared with leaves for both species. CaGolS4were highly expressed in leaves

compared to perisperm in C. arabica, in opposition to what was observed in C. canephora
(CcGolS4). Similar expression profiles were obtained for GolS8 in perisperm for both species;

however, in leaves, a higher expression was detected in C. canephora (CcGolS8) compared with

C. arabica (CaGolS8).GolS9 and RS6 exhibited similar expression profiles in both coffee spe-

cies, with little differences between leaves and perisperm (Fig 3).

RFOs biosynthesis genes transcriptional validation

To validate the DGE profile of the RNA-seq data, we chose four genes: CaGolS2, CaGolS3,

CaGolS4 and CaRS1. The qRT-PCR results were similar to those predicted by in silico
expression for all RFO genes (Fig 4). GolS genes were more expressed in leaves than in the

perisperm in all evaluated stages. The opposite pattern was observed for CaRS1 gene, where

the expression was up-regulated in the perisperm at any development stage compared with

leaves.

Discussion

Assembly and functional annotation of C. arabica transcriptome

This report represents the first overview of C. arabica transcriptome gene atlas for flowers and

perisperm during the initial development of fruits using RNA-seq. Most transcriptome studies

on coffee have focused on the mature fruit at the last maturation stage, when they are ready to

be collected and processed [4–6], or on leaves [8]. However, most chemical compounds of cof-

fee grain are produced at the beginning of fruit development, when the perisperm is the pre-

dominant tissue. Its development can influence the grain size and chemical content of the final

product [15–16] that consequently can influence coffee quality.

Fig 3. DGE comparison of raffinose biosynthesis-related genes in leaves and perisperm between C. arabica and C. canephora. RPKM

values are represented in Log10 scale. Leaves noted in green, and perisperm in red. Ca = C. arabica. Cc = C. canephora. C. canephora RPKM

values were obtained from the Coffee Genome Hub database [50].

doi:10.1371/journal.pone.0169595.g003
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By comparing Arabica EST unigene sequences (35,153) with our transcript dataset

(65,364), we identified 39,304 Arabica no hit sequences. This finding opens the possibility of

identifying uncataloged new transcripts and rare or specific genes in the coffee transcriptome.

Three possible explanations may account for this high number of no hits: i) Illumina technol-

ogy improves the chance to identify rare transcripts and new gene isoforms [51]; ii) we used,

for the first time, Arabica flowers and fruits during their initial development, which are not

well represented in CafEST assembly; and iii) de novo transcriptome assembly using RNA-seq

single-end technique typically generates a high number of unigenes [52].

Despite those differences, other studies in coffee obtained similar results in the annota-

tion process, where V. vinifera sequences were the most similar organism to coffee protein

sequences [3, 6, 28]. Also, the conserved domains and gene ontology results were similar to

those found in other large-scale trancriptome analyses, where catalytic protein, kinases,

cytochrome P450 and binding sites domains were the most frequently identified categories

[28, 53].

Transposable elements and miRNA targets in coffee transcriptome

Most of the TE-containing unigenes found in this transcriptome analysis (52.24%) were classi-

fied as LTR-retrotransposons, thus reinforcing the prevalence of this group of TE in the coffee

transcriptome, as observed by Lopes et al. (2008) [13]. In our de novo trancriptome, the Gypsy
superfamily of retrotransposons was the most abundant TE group.

miRNAs are small regulatory RNAs that play crucial roles in diverse aspects of plant

development [54]. Identifying miRNA target genes is a fundamental step in determining the

biological function for miRNAs. Families with a large number of targets may represent

major hubs in gene regulatory networks, whereas those with fewer targets may act on spe-

cialized pathways. After excluding overrepresented families, the three A. thaliana miRNA

families with the most putative targets are ath-miR854a, ath-miR834 and ath-miR838.

mir854 is a highly conserved miRNA family, and its expression is predominant in flowers

[55], which suggests that regulation of its targets may occur in coffee flowers. In contrast,

mir834 is considered a “young” miRNA family [56, 57] that is involved in translation

Fig 4. qRT-PCR analysis of selected RFO-related genes. Leaves are represented in green and perisperm

in yellow (90 DAF), red (120 DAF) and blue (120 DAF). Relative expression values are represented in Log10

scale. Calibrator tissue is always the minimal gene expression value. Lower-case letters, from a to d,

represent statistically significant differences for each RFO gene among coffee tissues (leaves and perisperm

from 90 to 150 DAF).

doi:10.1371/journal.pone.0169595.g004
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repression with low expression [58]. Mir838 regulates Dicer proteins as a intronic miRNA

[59]. In summary, all 3 miRNAs that have several targets in coffee plants represent well-con-

served families.

Raffinose biosynthesis-related genes: Annotation and transcriptional

analyses

In our transcriptome data, we identified five full-length genes CaGolS, three CaRFS and one

CaSTS (Table 5). In addition, all RFOs genes were identified at least in one locus of the C. cane-
phora genome [3], a C. arabica ancestor.

GO terms identification and conserved domain characterization were performed using all

nine RFO genes to determine their putative molecular function and biological process (Fig 2;

S5 and S6 Figs). The results corroborate the previously described functions for RFO genes

because these genes were previously characterized as osmoprotectants and were up-regulated

under water deficit, high-salinity soils, cold and heat stress conditions [17, 18, 19, 20, 60, 61].

Moreover, we compared the DGEs patterns of RFOs between our data (C. arabica) with

those of C. canephora [3] (Fig 3). Most RFO biosynthesis genes (CaGolS2,CaGolS3,CaRS1,

CaRS5 and CaSTS) followed the same pattern in both Coffea species. CaGolS2,CaGolS3,CaRS5
and CaSTSwere higher expressed in leaves than in fruits, and only CaRS1was more expressed

in fruits than in leaves.

However, the opposite result was obtained for the following four RFO genes: CaGolS4,

CaGolS8,CaGolS9 and CaRS6. One possible explanation for this result is the fact that C. arab-
ica is the result of a recent natural hybridization between C. canephora and C. eugenioides [62].

Therefore, C. arabica could be preferentially expressing these four RFO genes from C. euge-
nioides subgenome (CaCe) instead of those from C. canephora (CaCc), as previously described

for the citric acid cycle [63] and mannitol biosynthesis [64].

Our results for CaGolS2,CaGolS3 and CaGolS4were similar to those of previous studies

that described an up-regulation of these genes in leaves [13]. These genes were also up-regu-

lated in the intermediary stages of fruit development and down-regulated at the initial stages

of fruit development (perisperm) [17, 18]. Raffinose and stachyose oligosaccharides accumu-

lated only transiently during coffee endosperm development [18]. In this context, we observed,

as expected, low levels of transcriptional activity from these genes in the initial stages of the

fruit maturation process (perisperm) since they are accumulated in the next stages during

endosperm formation.

Genes related to RFO biosynthesis had their transcriptional levels validated using qRT-PCR

analysis (Fig 4), thus reinforcing that our in silico analysis based on the RPKM values is reliable

for transcriptional inferences.

Conclusions

To our knowledge, this is the first large-scale trancriptome analysis of leaves, flowers and fruits

during initial developmental stages in C. arabica using RNA-seq methodology. Our data have

revealed TEs, miRNAs, new putative genes, larger number of full-length gene sequences and

specific genes for the different tissues and fruit development stages. We provide a robust data-

set for future transcriptome studies focused on the genetic mechanisms that can regulate fruit

development and biosynthesis of coffee chemical compounds. This novel transcriptome survey

provides a platform for future in-depth studies on numerous important metabolic pathways

and will allow us to identify transcriptionally active genes in coffee tissues that are important

for both coffee production and beverage quality.
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