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The simultaneous control of optical and mechanical waves has enabled a range of fundamental
and technological breakthroughs, from the demonstration of ultra-stable frequency reference devices
to the exploration of the quantum-classical boundaries in laser-cooling experiments. More recently,
such an opto-mechanical interaction has been observed in integrated nano-waveguides and micro-
cavities in the Brillouin regime, where short-wavelength mechanical modes scatters light at several
GHz. Here we engineer coupled optical microcavities spectra to enable a low threshold excitation
of mechanical travelling-wave modes through backward stimulated Brillouin scattering. Exploring
the backward scattering we propose microcavity designs supporting super high frequency modes
(∼ 25 GHz) an large optomechanical coupling rates (g0/2π ∼ 50 kHz).

INTRODUCTION

Brillouin scattering occurs due to the interaction of
optical and mechanical waves and it leads to the inelas-
tic scattering of pump photons to Doppler red-shifted
(Stokes) or blue-shifted (anti-Stokes) photons. In optical
waveguides and microcavities this interaction occurs due
to a combination of the photo-elastic effect [1], induced
by strain, and moving-boundary effect caused by the me-
chanical mode distortion of the optical boundaries [2].
These two scattering processes are strongly influenced by
optical and mechanical properties of the confining struc-
ture and can be tailored for various applications. For in-
stance, the generation of anti-Stokes photons, which is ac-
companied by destruction of phonon quanta, can be used
to cool down mechanical modes in optical cavities [3, 4];
whereas the generation of stokes photons, which create
phonons (heating), may foster the development of high-
coherence lasers, ultra-stable radio frequency (RF) syn-
thesizers [5–8], and broadband tuning of RF filters [9].
Such confinement-enhanced optomechanical interaction
has been observed as Stimulated Raman-like [10] and
Brillouin scattering in a range of photonic structures [11–
18] — where both energy and momentum conservation
are directly fulfilled. In microcavities, however, the short
roundtrip length and narrow linewidth further constrain
the conservation laws, requiring both pump and scattered
waves to be resonant with the optical cavity modes in
order to ensure efficient Brillouin scattering. These con-
straints have limited the current cavity demonstrations of
Brillouin scattering either to mm-scale cavities [5, 19–21],
whose optical free-spectral range matches the mechanical
resonant frequency; or heavily multimode micro-cavities,
whose distinct transverse optical modes [22–25] frequency
difference accidentally matches the mechanical frequency,
both at the cost of reduced optomechanical coupling.

Here we explore a compound microcavity system based
on silicon microdisk cavities and demonstrate its poten-
tial to drastically enhances backward Brillouin scatter-
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ing (BBS) at tens of GHz. The compound microcavity
scheme is illustrated in fig. 1a and can ensure a doubly-
resonant condition for the pump and stokes wave, yet pre-
serving the small footprint necessary to achieve large op-
tomechanical coupling and Brillouin gain. By engineer-
ing the mechanical modes of single-disk (sd, fig. 1b) and
double-disk (dd, fig. 1c) optical microcavities to avoid
cancellation between the photo-elastic (pe) and moving-
boundary (mb) effect [26], we demonstrate that both
cavity designs could be exploited in the compound cavity
scheme, offering a promising route towards the demon-
stration of low threshold backward stimulated Brillouin
lasing in a CMOS-compatible platform.
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FIG. 1. Backward Brillouin scattering in a compound micro-
cavity system. a) Schematic of the compound microcavity
system based on microdisk cavities. The colorscale represents
one optical coupled mode of the structure. Single-disk b) and
double-disk c) cavity designs; tSi = 250 nm, tSiO = 100 nm,
the Si and SiO radius corresponding to 5 and 3.8 µm, respec-
tively. d) Optical dispersion diagram schematic, the optical
resonances are represented by discrete (red and blue) points
lying along the bulk dispersion curves (solid lines). Each pair
of red and blue resonances are frequency split due to evanes-
cent interaction in the compound system; the superscript m
denotes the azimuthal order of each mode family. The arrows
indicate possible resonant optical transitions from the pump
(ωp) to the Stokes mode (ωs) due to BBS e) Photonic den-
sity of states (PDOS) at the pump and scattered waves when
the optical frequency splitting matches the mechanical mode
frequency Ω.

In backward Brillouin scattering the optical pump and
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the scattered Stokes waves propagate in opposite direc-
tions, resulting in a large wavevector mismatch that fa-
vors the interaction between light and short-wavelength
propagating mechanical modes [1]. In disk microcavi-
ties the optical and mechanical modes are azimuthally
traveling waves with azimuthal dependence exp(±imφ)
(here m is an integer and φ the azimuthal angle). There-
fore, a pump laser exciting an optical cavity mode with
frequency and azimuthal number (ωp,mp) may be scat-
tered into another optical mode (ωs,ms) through the in-
teraction with a mechanical mode (Ω,M), provided that
both energy and momentum (phase-matching) are con-
served, i.e ωs(ms) = ωp(mp)±Ω(M) and ms = mp±M .
While in forward Brillouin scattering the phase-matching
condition favors mechanical modes close to their cut-off
condition M = 0 (ms = mp), in backward Brillouin scat-
tering (BBS) the scattered light frequency shift is propor-
tional to the optical wavevector mismatch and can easily
reach tens of GHz in solids, Ω ≈ (M/r)Vm = (2mp/r)Vm,
where r is a typical cavity radius and Vm is the mechani-
cal mode phase velocity. In order to enhance BBS, such a
large frequency shift would require the pump wave to be
detuned from the optical resonance by tens or even hun-
dreds of linewidths — in a single-resonance cavity such
a large detuning would drop the benefits of the resonant
cavity build-up for the pump wave. In the proposed com-
pound cavity system, illustrated in fig. 1a, the interac-
tion between the optical modes (through their evanescent
fields) leads to a frequency splitting that can be precisely
controlled during microfabrication by adjusting the dis-
tance between the cavities. This scheme is illustrated in
fig. 1d with the pump wave tuned to the higher frequency
coupled mode at ωp, while the lower frequency coupled
mode is resonant with the scattered wave ωs, thus en-
suring a high photonic density of states (PDOS) at the
pump and scattered frequencies (see fig. 1e).

RESULTS

Brillouin interaction

The large azimuthal numbers involved in BBS imply
that the phase-matched mechanical modes are localized
near the cavity edge [27], compared to low azimuthal
number modes that are spread throughout the cavity,
such an edge localization effectively increases the over-
lap between the optical and mechanical modes [28, 29].
The mechanical mode induced strain and boundary de-
formation at the cavity edge Bragg scatter light and ef-
ficiently couple forward and backward propagating opti-
cal modes [30]. The resulting energy exchange between
the optical pump and Stokes wave can be modeled us-
ing coupled mode theory [31, 32], which leads to a set of
coupled equations for the amplitudes of the pump wave,
stokes wave, and mechanical wave (see Methods). We use
the coupled mode theory to derive the threshold power
necessary to achieve stimulated Brillouin lasing, which
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FIG. 2. Coupled cavity scheme. a) Optical frequency
splitting approximation to microdisk single cavity (fig. 1b).
Blue and red curves indicate the anti-symmetric and sym-
metric coupled modes, respectively. The insets show the cal-
culated optical mode profiles for a 140 nm air-gap between
the cavities (circle’s labels). b) Photonic density of states
obtained for the coupled cavity modes with a quality factor
of 105 and splitting rate J = 25 GHz. The dashed blue and
red lines indicate the optical mode resonant frequencies, ωp0

,
ωs0 , respectively.

occurs when the Stokes photons gain induced by the op-
tical pump suppresses the Stokes cavity mode loss. By
assuming an undepleted pump the following expression
can be derived for the threshold power [31] (see Supple-
mentary Information),

Pth =
~ωpκ

2
p

4 Cκe

[
1 +

(
∆p

κp/2

)2
][

1 +

(
∆s

κs/2

)2
]
, (1)

where C = 4(gc
0)2/(Γκs) is the so-called single-photon

cooperativity; gc
0 is the vacuum optomechanical coupling

rate for the compound cavity and ∆s = ωs − ωs0 and
∆p = ωp − ωp0

are the pump and stokes detuning (see
fig. 2); κs and κp are the corresponding total (intrinsic
and extrinsic) loss rates, κe is the extrinsic pump loss
rate due to coupling to the driving mode of the bus
waveguide. When both pump and Stokes waves are res-
onant with coupled-cavity modes (∆s,∆p)=0, the lowest
threshold power is reached. Note that the Stokes photons
are initially generated by spontaneous Brillouin scat-
tering (due to thermally driven phonons) and therefore
ωs = ωp −Ω. When the pump and Stokes optical modes
are separated by a frequency difference J , their detuning
is given by ∆s = ∆p + (J − Ω) (see fig. 2b). Therefore,
the threshold power scales as Pth ∝ (1 + 4(J − Ω)2/κ2

s )
for a resonant pump (∆p = 0), and the minimum
threshold occurs when the optical splitting precisely
matches the mechanical frequency, i.e. J = Ω. This
threshold power scaling reveals the importance of the
doubly-resonant condition ensured by the compound
cavity scheme. For instance, the minimum threshold
power achievable using a standard single-resonance
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cavity occurs in the so-called sideband resolved limit
(Ωm � κ) at an optimum pump detuning (∆p = Ω),
this limit can be obtained from eq. (1) assuming a large
cavity separation (J → 0, then κs → κp and gc

0 → g0).
Therefore a single-resonance cavity has a threshold
power (Ωm/κp)2 larger than the proposed compound
cavity doubly-resonant approach. For a typical 5 µm
radius microdisk (Ωm/κp)2 ≈ 100, a roughly two-orders
of magnitude higher threshold; where we assume an
intrinsic quality factor of 2 × 105 (κp,s/2π ≈ 960 MHz)
and Brillouin frequency Ω/2π = VlM/r ≈ 22 GHz
— where M/r ≈ 4π(neff/λ) and neff = 1.73 for the
transverse-magnetic (TM) optical mode phase index
(λ = 1.55 µm), Vl is the Si bulk dilational wave veloc-
ity. Such high mechanical frequencies at tens of GHz
can also be readily matched to the optical resonance
splittings accessible with either single or double-disk
silicon cavities, in contrast with larger lower refractive
index microcavities [33] whose frequency splitting lies in
the MHz-range range. For example, we show in fig. 2
the numerically calculated frequency splitting curves
for a single disk (solid lines) silicon cavity (fig. 1b, see
Methods) that demonstrate frequency splitting at tens
of GHz around 100 nm gap between the cavities.

Device design

We demonstrate the feasibility of our compound cav-
ity scheme by investigating two designs that can achieve
high optomechanical coupling rates and mechanical fre-
quencies at tens of GHz, the sd and dd cavities shown in
fig. 1b,c. The mechanical dispersion is the starting point
to infer general characteristics of the phase-matched me-
chanical modes that will lead to the Brillouin scattering
in microdisk cavities. Many aspects of the mechanical
modes dispersion of sd and dd cavities can be regarded
as mixtures among whispering gallery modes of an in-
finite cylinder and Lamb-wave modes of a free-standing
silicon slab [27, 34]. The mechanical mode dispersion of a
single disk for even and odd modes (with respect to z = 0
plane — see fig. 1b) are shown in fig. 3a and fig. 3c, re-
spectively. The dispersion curves are calculated using an
axisymmetric finite element method (see Methods). In
the dd-cavities, the mechanical modes are approximately
symmetric/anti-symmetric combinations of the even and
odd parity sd-cavity modes, therefore, the key character-
istics of both designs may be inferred by inspecting only
the sd mode structure.

The mechanical modes of sd cavities that may effi-
ciently interact with optical modes can be divided in
four groups: whispering gallery, Rayleigh, dilatational,
and flexural modes. Their dispersion curves are sig-
naled by markers in fig. 3b,c while corresponding dis-
placement profiles are shown in fig. 3d-g. The whispering
gallery group (w-modes) modes are remarkably similar to
modes of an infinite cylinder (not shown), as suggested by
the excellent agreement between their dispersion curves
(shown in fig. 3b) and displacement profiles, which are

essentially in the radial-azimuthal (rφ) directions — de-
spite the very small thickness/radius ratio of our disk
(t/r = 0.05). The large shifting of the displacement
peak radial position across the w-mode group, notice-
able in fig. 3d, already suggests a varying overlap with
the optical mode. The Rayleigh (r-modes), dilational (d-
modes), and flexural (f -modes) mode groups are signa-
tures of the thin disk; their dominant radial-vertical (rz)
displacement are noticeable in fig. 3e-g. The r-mode is a
singleton group and has the lowest frequency dispersion
branch and characterized by a phase velocity lower than
both the longitudinal (Vl) and transverse (Vt) bulk ve-
locities (fig. 3a) [27, 34], as shown from the displacement
profile in fig. 3e; such a surface wave localization com-
promises its overlap with the optical mode. The slab-like
nature of the d-modes is evidenced not only by their dis-
placement profiles in fig. 3g but also through their good
agreement with the slab dilatational modes dispersion
shown in fig. 3b (blue-dashed curve). The onset of the
distinct disk mechanical mode families in fig. 3a is also
well matched by slab-mode cutoff frequency. Based on
their displacement profile, the d-mode group is likely to
have modes with large overlap with optical modes. On
the other hand, the f -group resemble cantilever modes
and is the only group with an odd symmetry relative
to the z = 0 plane, resulting in a negligible interaction
with sd-cavity optical modes. In the dd-cavities however,
the symmetric combination of upper and lower-disk f -
modes strongly modulate the air-gap between the disks
and also has the potential to strongly interact with the
double-disk optical modes. These symmetric f -modes
are similar to those explored in previous double-disk de-
vices [35, 36], but due to their large azimuthal number
they can readily vibrate in the 10 GHz frequency range.

The spatial overlap between optical modes (fig. 4c)
and mechanical modes (fig. 3d-f) is necessary but not
sufficient for a large optomechanical coupling. The op-
tomechanical interaction in these high refractive index
structures occurs due to a combination of the photo-
elastic effect [1] and deformation of the cavity bound-
aries [2]. The calculated optomechanical coupling rate
must consider both effects, g0 = gpe + gmb, where gpe

stands for the volumetric photo-elastic contribution (pe-
effect), and gmb for the cavity moving-boundaries contri-
bution (mb-effect). We focus on the mechanical modes
that are phase-matched with fundamental TM (tranverse
magnetic) optical mode (fig. 4c) since the TM-modes ex-
hibits the largest coupling rate and potentially higher op-
tical quality factors [37]. In fig. 4a,b we show the photo-
elastic (gpe,red), the moving-boundary (gmb, green) and
total coupling rate g0 (bars) for the phase-matched me-
chanical modes in the single (fig. 4a) and double-disk
(fig. 4b) structures.

Optomechanical coupling

For both sd and dd-structures, the whispering,
Rayleigh, and dilatational and mode groups can be iden-
tified in fig. 4a,b. The relative contributions from the pe
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FIG. 3. Mechanical dispersion in the sd-cavity. a) Dispersion diagram for even modes (grey curves). The dashed and
dash-dotted black solid lines represent the longitudinal (Vl = 9660 m/s) and transverse (Vt = 5340 m/s) bulk Si acoustic
velocities. The dashed blue lines represent the dispersion of the first two dilatational modes (d1 and d2) of a 250 nm thick
silicon slab (inset shows to d1 mode at M = 70). The vertical dashed line (M = 70) indicates the phase-matching azimuthal
number for the TM optical mode in 1550 nm, mp = M/2 = 35. b) Zoom for the dispersion of the even modes around of
M = 70. The red dashed lines represent the dispersion of the whispering gallery modes for an infinite cylinder with radius like
the sd-cavity. The blue dashed line is the dispersion of the d1 mode. The geometrical markers along to the vertical dashed
line make reference to different families of the modes in the sd-cavity. c) Dispersion diagram for the odd modes (grey curves).
The dashed blue lines represent the dispersion of the first two flexural modes (f1 and f2) of a 250 nm thick silicon slab, inset
shows to f1 mode at M = 70 (The vertical dashed line). d) First modes of the whispering gallery family (square’s markers in
b)). e) Rayleigh mode (circle’s marker in b)). f) First modes of the flexural family (star’s markers in c)). g) First modes of
the dilatational family (triangle’s markers in b)).

and mb-effects however varies significantly for each struc-
ture and mode group. To understand this in detail, we
analyze the weighting function role played by the opti-
cal field in the mb and pe-effects (see Methods). For the
mb-effect, the optical weighting of the normal mechani-
cal displacement (u⊥) along the radially parallel cavity
boundaries is given by (see Supplementary Information),

ρmb = δεmbE
2
r − δεmbE

2
φ − δε−1

mbD
2
z , (2)

where Er, Eφ and Ez are the energy-normalized electric

field components, δεmb = ε1−ε2 and δε−1
mb = (1/ε1−1/ε2)

with ε1 = ε0n
2
1 and ε2 = ε0n

2
2 being the permittivities of

the silicon and air, respectively. The spatial dependence
of the three terms in eq. 2 are shown in fig. 4d,e for
both sd and dd-cavities. It is evident that the mb-effect
is dominated by the azimuthal component −δεmb|Eφ|2
in both structures. The opposite sign of the azimuthal
term relative to the radial contribution — due to the
π phase difference between forward and backward az-
imuthal field components — drastically distinguishes the
backward from the forward Brillouin optomechanical in-
teraction. The peaking around r = 4.6 µm of the weight-
ing terms also hints which mechanical modes should ben-
efit from the mb-effect. As for the pe-effect contribution
(gpe) is mostly due to the anisotropic permitivitty compo-

nents δεzzpe and δεφφpe for TM optical mode; the anisotropic
components are calculated from the permitivitty pertur-
bation tensor, defined as δεpe = −ε0 n4

1 p:S, in which p
is the photoelastic tensor of the isotropic silicon and S is
the strain tensor induced by the mechanical waves (see
Methods). In silicon, the dominant photo-elastic coef-
ficient (p11 = −0.09, p12 = 0.017) is p11 and therefore
an insight about which modes will lead to a strong pe-
effect can be obtained using (δεφφpe ≈ −ε0 n4

1 p11 Sφφ) and

vertical (δεzzpe ≈ −ε0 n4
1 p11 Szz).

The w-mode group has the largest optomechanical cou-
pling rate and give rise to several peaks in the high fre-
quency range (20 ∼ 27 GHz), which are unique to BBS
due to the large mechanical azimuthal numbers imposed
by the phase-matching condition. Due to their dom-
inant displacement components (ur, uφ), their largest
strain component is along the azimuthal direction Sφφ ≈
Muφ/r. Such a large azimuthal strain lead to a pe-effect
dominated optomechanical coupling, reaching the high-
est coupling rate for the single-disk, g0/2π ≈ 61 kHz
at 24.34 GHz for the 16th radial order w-mode (w16),
whose profile is show in (fig. 4f). In this mode group δεφφpe

accounts for about 70% of the total coupling coefficient
(table S2b, see Supplementary Information). The tiny in-
plane displacement ensures small contribution from the
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FIG. 4. a), b) Optomechanical coupling rate (black bars) between the optical mode and the mechanical even modes (respect
to z=0 plane in fig. 1b-c) generated by the photoelastic gpe/2π (red) and moving boundary gmb/2π (green) contributions in the
sd and dd cavities, respectively. c) Electric field norm of the optical mode at 1550 nm for the sd-cavity (TM) and the dd-cavity
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d) and along the outer upper (solid lines) and slot-interior (dashed-lines) dd-cavity boundaries e). The red, black and blue
lines represent the contributions related essentially to the field components Er, Eφ and Dz, respectively. f)-h) Dominant
strain component (colorscale) and deformation (amplified) for the mechanical modes labeled in part a) and b). The strain
component Sφφ is shown for the w-modes and r-modes (r1), Sφz for f -modes (fdd1 ) and Szz for the d-modes. i) Optomechanical
coupling rate for fdd1 as a function of the double-disk gap. The blue, green and red markers represent the total, mb and pe
optomechanical coupling rates, respectively. The blue, green and red solid lines only should be considered as a guide.

mb-effect. The peaked g0 distribution, which could be
anticipated by the fine frequency spacing for this mode
family can be understood by inspecting the overlap be-
tween the dominant azimuthal strain component Sφφ
and the optical mode profile. Despite the strain oscil-
lations along the radial direction, there is a net tensile
strain (Sφφ > 0) region indicated by the dashed arrow
in (fig. 4f). As the frequency increases, the net strain
region shifts inwards along the disk and sweeps the spa-
tial matching between the strain and optical fields. Un-
derlying the existence of this net positive strain region is
the hybrid longitudinal-transverse nature of the w-group,
which can be precisely traced using the analytic solution
of an infinite cylinder: the fast radial oscillation periods
seen in (fig. 4f) arise from the transverse-wave contribu-
tion to this mode, whereas the slower net positive strain
is caused by longitudinal-wave contribution (see Supple-
mentary Information).

The Rayleigh mode (r1), which has the lowest reso-
nant frequency (at 11.12 GHz, fig. 4a,g), has a domi-
nant radial displacement (ur) in the single-disk structure,
whereas the vertical (uz) component is dominant for its
odd flexural-like counterpart in the double-disk structure.
The strain Sφz — shown in fig. 4g — is the dominant
strain for fdd1 mode. In the sd -cavity, the minor role of
the mb-effect is expected as the boundary deformation is

concentrated at the disk edge, while the optical field com-
ponents are localized at the disk’s top and bottom sur-
face (see fig. 4c). Indeed, the fundamental fdd

1 mode at
11.15 GHz has the second largest coupling rate among all
the dd-cavity modes, reaching g0/2π = 31 kHz. The dd-
cavity further allows tailoring of the mb-effect strength
by adjusting the slot height between the two disks, in
fig. 4i we show that the total coupling rate (g0) of the
fdd

1 mode can be improved by 300% by reducing the slot
height from 150 nm to 50 nm.

Finally, a very high optomechanical coupling rate could
be expected for the d-mode group (16 < Ω/2π <
18 GHz). These modes display not only a large ver-
tical strain but also a large deformation of the cavity
boundaries, as shown in fig. 4h. Indeed these two effects
are very strong individually but their opposite sign lead
to a cancellation effect, a clear competition between the
mb (gmb) and pe-effects (gmb) [26]. For the double-disk
structure, whose optical weighting function is shown in
fig. 4e, the slot effect enhancement does not readily im-
prove the optomechanical coupling with the dilatational
modes, this is due to a balanced contribution from the
azimuthal (dashed black line) and vertical field (dashed
blue line) components, which oppositely contribute to the
mb-effect and almost cancel it.
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Discussion

Using the calculated mechanical frequencies and BBS
coupling rates for the sd and dd-cavity designs we can es-
timate the power threshold for the stimulated Brillouin
lasing. Assuming an 1550 nm optical mode and conser-
vative optical and mechanical mode parameters, intrinsic
optical quality factor of 2 × 105 (κp/2π = κs/2π ≈ 1.2
GHz), mechanical quality factor of 103, and simulta-
neous resonance condition for both pump and stokes
wave (∆s = ∆p = 0), eq. (1) predicts a threshold of
only Pth ≈ (8; 31) mW for the (w16,wdd16) modes. For
cantilever-like flexural mode of the double-disk (fdd1 ),
the threshold power is Pth ≈ 17 mW (assuming the
same mechanical quality factor). The threshold power
for thefdd1 -mode can be reduced even further for smaller
gaps. For instance, if tSiO = 50 nm is possible to achieve
g0/2π ≈ 75 kHz (fig. 4i), leading to a threshold power of
only Pth ≈ 3 mW (considering the same optical and me-
chanical losses). Experimentally, in order to ensure the
simultaneous resonant condition, a set of coupled optical
cavities with varying coupling gaps could be fabricated.
The importance of the compound cavity scheme becomes
clear if we compare the single-resonance threshold, which
is predicted by eq. (1) assuming a resonant stokes signal
∆s = 0 and the optimal pump-detuning (∆p = Ωm). Us-
ing the same optical and mechanical linewidth above and
a single-photon optomechanical coupling rate (g0 = 2gc0),
the threshold for Brillouin lasing in a single-resonance
scheme would be as high as Pth ≈ 3.2 W for the w16

mode, which is impractical due to strong detrimental ef-
fects, such as nonlinear light absorption in silicon.

CONCLUSIONS

Our results provides a clear guideline towards the ob-
servation of stimulated backward Brillouin scattering in
an integrated CMOS-compatible silicon device. The re-
sults are promising even for compound cavities based
on standard single-disk silicon devices. The double-disk
device, although exhibiting a lower optomechanical cou-
pling, may benefit from the potentially higher mechan-
ical quality factor of the lower-frequency cantilever-like
mechanical modes. Our findings indicate that coupled
silicon single and double-disk resonators offer large op-
tomechanical coupling rates an the necessary degrees of
freedom to engineer and manipulate the Brillouin scat-
tering in compact structures. Although we concentrated
our discussion on silicon-based devices, our results could
be adapted to similar structures fabricated from other
high index materials, such as III-V, Si3N4 and SiO2.

METHODS

Frequency splitting The frequency splitting simu-
lation was performed using a two-dimensional approxi-

mation to the actual sd -cavity. In this approximation,
the modes of the coupled infinite cylinders are calculated
while constraining the out-of-plane wave number,

kz =

√
(k0n)2 −

(m
r

)2

−
(zm,1

r

)2

, (3)

where m/r and zm,1/r are the azimuthal and radial com-
ponents of the wave vector with norm k0 n, k0 is the
free-space wave number for λ = 1.55 µm, n = 3.5 is the
silicon refractive index, r = 5 µm, m = 35 is the optical
azimuthal number for the TM-mode of the sd -cavity and
zm,1 is the first zero of the Bessel function Jm(z). This is
equivalent to the Marcatilli effective index method and
we verified that it leads to a electric field envelope that
agrees well with the numerical mode obtained from the
axisymmetric calculation.

Mechanical mode dispersion We obtain the disper-
sion relation Ω(M) by solving the eigenfrequency prob-
lem derived from the full-vectorial elastic wave equation
through the finite-element method (see Supplementary
Information), due to the highly multimode character of
the mechanical dispersion, we show in fig. 3a-c a grey
color shading proportional to the mechanical density of
modes instead of the calculated pairs (ΩM ,M). The me-
chanical density of modes is calculated as ρ(M,Ω) =∑
i,j f(M,M

(i)
0 , σM) g(Ω,Ω

(ij)
0 , σΩ), where f and g are

Gaussian weighting functions with a normalized product,
full-width-half-maximum (FWHM) wavenumber σM =
0.1, FWHM-frequency σΩ/2π = 117.5 MHz and given

one azimuthal acoustic number M
(i)
0 are calculated each

of the frequencies Ω
(ij)
0 from the elastic wave equation.

Coupled mode equations The resulting energy ex-
change between the optical pump and Stokes wave can
be modeled using coupled mode theory [31, 32] (see Sup-
plementary Information), which leads to a set of cou-
pled equations for the amplitudes of the pump wave (ap),
stokes wave (as) and mechanical wave (b),

ȧp = (i∆p − κp/2)ap − i gc
0 b as +

√
κesp,

ȧs = (i∆s − κs/2)as − i gc
0 b
∗ ap, (4)

ḃ = (−iΩm − Γm/2)b− i gc
0 ap a

∗
s + Fth,

where ai’s are normalized such that |ai|2 is the intra-
cavity photon number and b is normalized such that |b|2
is the phonon number. ∆i = ωi − ωi0 is the frequency
detuning between the pump (i=p) or stokes wave (i=s)
relative to the optical cavity mode frequencies ωp0,s0 . κp,s

represents the optical loss rate for each mode, (Ωm,Γm)
are the mechanical mode frequency and damping rate,
respectively; the optomechanical coupling rate is gc

0 and
represents the photon coupling rate between the stokes
and the pump wave induced by the zero-point fluctuation
of the mechanical mode, which will be calculated shortly
using electromagnetic perturbation theory [2, 38]. Note
that gc

0 is related to the more usual single-cavity coupling
rate as gc

0 = g0/2. The factor 1/2 arises because the cou-
pled optical mode is distributed within two optical cav-
ities whereas the mechanical mode is localized within a
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single cavity due to the air gap between the cavities. κe is
extrinsic coupling rate to the feeding waveguide carrying
a photon-flux |sp|2. Fth is a white-noise random thermal
force responsible for driving the mechanical motion.

g0 calculation The mb-effect contribution is given
by [2](see Supplementary Information),

gmb = −ωp

2

∮
S

u⊥(δεmbE
∗
p,‖ ·Es,‖ − δε−1

mbD
∗
p,⊥ ·Ds,⊥)dA,

(5)
where the permittivity differences are given by δεmb =
ε1 − ε2 and δε−1

mb = (1/ε1 − 1/ε2), in which ε1 = ε0n
2
1

and ε2 = ε0n
2
2 are the permittivities of the silicon and

air, respectively. u⊥ = xzpf u · n̂ is the surface-normal
component of the displacement vector u (normalized to

unit); xzpf =
√

(~/2meffΩ) is zero-point fluctuation of
the mechanical mode with effective mass meff; the fields
Ej,‖ and Dj,⊥ are boundary-tangential electric field and
boundary-normal electric displacement field to the cavity
surface S of the pump (j = p) or scattered (j = s) optical
mode (energy-normalized). The pe-effect contribution is
given by [38](see Supplementary Information),

gpe = −ωp

2

∫
V

E∗p ·δεpe ·Es dV, (6)

where δεpe = −ε0 n4
1 p:S is the photo-elastic perturba-

tion in the permittivity inside the cavity volume V , p is
the photoelastic tensor of silicon, and S = xzpf∇su is the
strain tensor induced by the mechanical waves. The op-

tical and elastic mode profiles are numerically calculated
using the finite-element method (see Supplementary In-
formation).

Simulation parameters Si refractive index nSi =
3.5, silica refractive index nSiO2

= 1.45, air refractive
index nair = 1.0, wavelength of interest λ = 1550 nm, Si
Young’s modulus ESi = 170 GPa, silica Young’s modu-
lus ESiO2 = 72 GPa, Si Poisson’s ratio νSi = 0.28, sil-
ica Poisson’s ratio νSiO2 = 0.17, Si density mass ρSi =
2329 kg/m3, silica density mass ρSiO2 = 2203 kg/m3 and
Si photo-elastic coefficients p11 = −0.09, p12 = 0.017 and
p44 = −0.0535. Here we neglect silicon anisotropy and
assume the values of ESi and νSi along to principal crys-
tal axes [39]. The silicon photoelastic coefficients used in
the simulations are taken from ref. [40].
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S1. COUPLED MODE EQUATIONS

We derive the coupled mode equations for the optical and mechanical modes following an approach similar to [32].
The electric field is obtained from Maxwell’s wave equation in the presence of a time-dependent polarization term,

∇×∇× E = −µ0ε∂
2
t E − µ0∂

2
t (δP ), (S1)

where E is total electric field vector, µ0 is the vacuum permeability, ε is the isotropic unperturbed spatial permittivity.
The additional polarization, δP , arises from the mechanical mode perturbation to the optical field. The mechanical
modes are described by the equation of motion,

∇· (c:S)− ρ ∂2
t U = −F , (S2)

where U is the mechanical displacement, c is the stiffness tensor, S = ∇s U is the strain tensor, ρ is the material
density, and F is the force density vector with contributions from the electric part of the Maxwell stress tensor and
electrostriction tensor [1].

To obtain the coupled mode equations for the optical fields we expand E in terms of slowly-varying amplitudes for
the pump (p) and stokes (s) fields, we consider the modal expansion,

E(r, t) =
∑
j=p,s

aj(t)e
−i ωj tEj(r) + c.c. (S3)

The optical mode spatial distribution Ej(r) is normalized such that
∑
j |aj |2 represents the total optical energy. Each

modal fields satisfy the Helmholtz equation,

∇×∇×Ej = ω2
0,j µ0 εEj , (S4)

where ω0,j is the resonant frequency of each optical mode. These modes are orthonormalized,∫
E∗m ·εEn dV = δm,n. (S5)

Substituting eq. (S3) in eq. (S1), exploring the slowly-varying envelope approximation (SVEA) (d/dt� ωj) and the
small detuning approximation, ω2

j −ω2
0,j ≈ 2ωj∆j (with ∆j = ωj −ω0,j) we arrive at the following coupled equations

for the field amplitudes aj , ∑
j

[2ωj (iȧj + ∆jaj)] e
−iωjtεEj + c.c. = ∂2

t (δP ). (S6)

We can decouple eq. (S6) by multiplying by E∗l in both sides of eq. (S6), integrating over the whole space, and using
eq. (S5),

(iȧl + ∆lal) e
−iωlt + c.c. =

∫
[E∗l ·∂2

t (δP )]dV

2ωl
. (S7)
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The spatial and time-dependence of the polarizability is given by,

δP (r, t) = δε(r, t)·E(r, t), (S8)

where the time-dependence of the permittivity perturbation δε(r, t) will be given by time-dependence of the mechanical
mode,

U(r, t) = b(t)e−iΩtu(r) + c.c., (S9)

where we choose to normalize the mechanical spatial distribution such that max(|u(r)|) = 1, therefore b(t) has units
of length.

The mechanical mode will perturb the optical mode both through the photo-elastic (pe) effect and through of the
moving boundary (mb) effect. Either contributions will be proportional to the displacement amplitude b(t). Therefore
the permittivity perturbation time-dependence can be factored out as δε(r, t) = (b(t)/b0) exp(−iΩt)δε(r)+c.c., where
δε(r) is the spatial permittivity perturbation and b0 is a free-parameter of amplitude normalization with units of
length. Substituting this expression together with eq. (S3) into eq. (S8) we obtain,

δP (r, t) =

(
1

b0

)(
b(t)e−iΩtδε(r) + c.c

)
·

(∑
m

am(t)e−iωmtEm(r) + c.c.

)
. (S10)

There will be four distinct terms for each term m in the summation eq. (S10),

b(t)am(t)δε(r)·Em(r)ei(−ωm−Ω)t + b∗(t)a∗m(t)δε∗(r)·E∗m(r)ei(ωm+Ω)t

+b(t)a∗m(t)δε(r)·E∗m(r)ei(ωm−Ω)t + b∗(t)am(t)δε∗(r)·Em(r)ei(−ωm+Ω)t.

In a rotating-wave approximation (RWA) these distinct terms will be relevant drives to the eq. (S7) provided they
satisfy the energy conservation. This will depend whether we are treating the pump (ap) or Stokes (as) amplitudes.
For example, for the Stokes wave ωs = ωp − Ω only the last term is relevant. The time-derivative of the polarization
in eq. (S7) will have terms involving the first and second derivatives of the slowly varying amplitudes am(t), b(t) and
terms of the order of ω2

m. Employing the SVEA and choosing the relevant driving terms from eq. (S10), we can finally
write the amplitude equations for positive frequency amplitudes of the optical fields; dropping out the fast oscillating
terms in both sides of eq. (S7) lead to,

ȧp = i∆p ap −
i g0 b as

b0
, (S11)

ȧs = i∆s as −
i g∗0 b

∗ ap

b0
, (S12)

where,

g0 = −ωp

2

∫
V

E∗p ·δε·Es dV, (S13)

represents the optomechanical coupling rate and describes the frequency shift of the pump wave generated by the
scattering from an acoustic wave, with an amplitude equivalent to the zero-point fluctuation (xzpf), that perturb the
dielectric constant by δε.

To find the equation of motion for the mechanical mode we proceed in a similar fashion. Each mechanical mode
satisfies the modal equation,

∇· (c:S) = −ρΩ2
0 u, (S14)

where S = ∇s u is the spatial distribution of the strain tensor per unit length and Ω0 is the mechanical mode resonant
frequency. Substituting the mechanical mode expansion eq. (S9) in eq. (S2) and, in the resulting equation, substituting
eq. (S14) and exploring the small-detuning approximation Ω2 − Ω2

0 ≈ 2 Ω ∆m (with ∆m = Ω− Ω0), we arrive at,

2 Ω(iḃ+ ∆mb)e
−iΩ t + c.c. =

〈u|F〉
meff

, (S15)
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where 〈u|F〉 =
∫
u∗ ·F dV , meff =

∫
ρ|u|2dV is the effective motional mass, F = FMT +FES, in which FMT = ∇·T

is the force density from the Maxwell stress tensor and FES = −∇·ς is the force density from the electrostriction
tensor,

Tij = ε

(
Ei Ej −

1

2
δij |E|2

)
, (S16)

ςij = γijkl Ek El, (S17)

are the time-dependent electric Maxwell and electrostriction stress tensors, respectively, γijkl = −(1/2)ε0n
4pijkl, where

n being the optical refractive index and pijkl being the photoelastic tensor. The minus sign used in the definition
of the electrostrictive force follows the conservative force convention [1, 41]. Using our field expansion eq. (S3), the
general form of the field products in eq. (S16) and eq. (S17),

EiEj =

(∑
l

al(t)e
−iωltE

(i)
l + c.c.

)(∑
m

am(t)e−iωmtE(j)
m + c.c.

)
, (S18)

where the parenthesis superscript (i, j) indicate the spatial component of the modal field. According to RWA, among
all terms in eq. (S18) the only relevant ones are those oscillating at the mechanical frequency, i.e., terms with
frequencies ωp − ωs. Therefore, substituting eq. (S18) in eq. (S16) and eq. (S17), considering the relevant terms,

Tij = ap a
∗
s Tij e

−i(ωp−ωs)t + c.c., (S19)

ςij = ap a
∗
s σij e

−i(ωp−ωs)t + c.c., (S20)

where

Tij = ε[E(i)
p E(j)∗

s + E(j)
p E(i)∗

s − δijEp ·E∗s ], (S21)

σij = γijkl[E
(k)
p E(l)∗

s + E(l)
p E(k)∗

s ], (S22)

are the spatial distributions of the electric Maxwell and electrostriction stress tensors, respectively. Therefore, sub-
stituting eq. (S19) and eq. (S20) in the driving term,

〈u|F〉 =

∫
u∗ ·∇·T dV −

∫
u∗ ·∇·ς dV, (S23)

and substituting the resulting equation in eq. (S15) and then time-averaging,

ḃ = i∆m b+
i ap a

∗
s

2 Ω

〈u|f〉
meff

, (S24)

where

〈u|f〉 =

∫
u∗ ·f dV =

∫
u∗ ·(∇·T−∇·σ) dV. (S25)

It is known that the electric Maxwell stress tensor lead only to a boundary force in a transparent material, whereas
the electrostriction tensor leads to a volume force [15, 18]. These two contributions can be obtained by integrating
by parts eq. (S25) and disregarding the electrostriction surface pressure term [18, 41],

〈u|f〉 =

∮
S

u∗ ·f rp dA+

∫
V

σ :S∗ dV, (S26)

where the double inner product is defined as σ :S∗ = σijS
∗
ij , and,

f rp = (T2 −T1)·n̂, (S27)

represent the spatial distribution of the radiation pressure making on the surface S of the cavity with volume V . T1

and T2 are the Maxwell stress tensors calculated inside and outside of the cavity, respectively, and n̂ is the unitary
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normal vector to S that points from inside to outside of the cavity.

A more convenient form of the radiation pressure is obtained when eq. (S21) is substituting in eq. (S27) considering
two different materials and continuous fields on S,

f rp = [δεmb(E∗s,‖ ·Ep,‖)− δε−1
mb(D∗s,⊥ ·Dp,⊥)]n̂, (S28)

in which Ep,‖ and Es,‖ are the parallel electric fields from pump and the Stokes waves, respectively, Dp,⊥ and Ds,⊥
are the perpendicular electric displacements from pump and Stokes waves, respectively, δεmb = ε0(n2

1 − n2
2) and

δε−1
mb = ε−1

0 (n−2
1 − n−2

2 ). As parallel electric fields and perpendicular electric displacements are normalized then the
radiation pressure is also normalized such that it has units of L−3, as can be evaluated from eq. (S28).

Like radiation pressure, second term in the right-hand of eq. (S26) can be also written in a more convenient form,

∫
V

σ :S∗ dV =

∫
V

(E∗p ·δεpe ·Es)
∗ dV, (S29)

where δεpe = −ε0 n4 p:S is the anisotropic perturbation in the permittivity per unit length from the photoelastic
effect. Now substituting eqs. (S28) and (S29) in eq. (S26) results,

〈u|f〉 =

∮
S

(u∗ ·n̂)[δεmb(E∗s,‖ ·Ep,‖)− δε−1
mb(D∗s,⊥ ·Dp,⊥)]dA+

∫
V

(E∗p ·δεpe ·Es)
∗dV, (S30)

where both integrals has units of L−1.

Finally, considering the transformations: ap →
√
~ωp ap, as →

√
~ωs as, b → b0 b in eqs. (S11), (S12) and (S24),

assuming ωs ≈ ωp and imposing the Manley-Rowe conditions, we obtain the coupled mode equations in terms of the
normalized amplitudes (ap, as, b),

ȧp = i∆p ap − i g0 b as, (S31)

ȧs = i∆s as − i g∗0 b
∗ ap, (S32)

ḃ = i∆m b− i g∗0 ap a
∗
s , (S33)

where,

g0 = −ωp

2
〈u|f〉∗ xzpf = gom xzpf, (S34)

if we consider b0 = 2xzpf [42]. According to eqs. (S30) and (S34), gom (and g0) can be decomposed as a sum of two
contributions,

gpe
om = −ωp

2

∫
V

E∗p ·δεpe ·Es dV, (S35)

gmb
om = −ωp

2

∮
S

[u·n̂][δεmb[E∗p,‖ ·Es,‖]− δε−1
mb[D∗p,⊥ ·Ds,⊥]] dA, (S36)

and represent the frequency shift contributions generated by the strain per unit length, S, and the moving boundary
u·n̂ of the acoustic wave [2], respectively. The moving boundary induces permittivity fluctuations that are perceive by
the optical fields. The tangential electric field is perturbed by δεmb whereas the perpendicular electric displacement
field is perturbed by δε−1

mb.
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S2. FINITE ELEMENTS METHOD

The eigenvalues and eigenvectors for the optical and mechanical fields are solved by using finite elements method
(FEM) applied to the Helmholtz equation (eq. (S4)) and the equation of motion (eq. (S14)), respectively, both
implemented in a commercial software (COMSOL 4.4). The optical modes are simulated by using the Electromagnetic
Frequency Domain Interface (emw) with a modified weak form to ensure convenient field solutions whereas the
mechanical modes are simulated by using the Weak Form PDE Interface (w). As the symmetry of the cavities
suggest, we use cylindrical coordinates (2D-axisymmetric component in COMSOL) to simulate the structures.

We also assume a negligible effect of the pedestal on the optical and mechanical whispering gallery modes, which
are mainly confined close to the circumference of the disk. This further simplify the problem with a r − φ symmetry
plane, which reduces the computational domain to a half-system (half disk in the case of a simple disk and a full-disk
plus half silica layer for the double-disk structure). fig. S1 shows the computational domains for both structures.

In order to calculate the optomechanical coupling rate the same mesh to resolve for both optical and mechanical wave
equations is used. For the double disk structure the photoelastic contribution from silica to g0 is not considered, since
the slot-mode optical field is mainly confined in the air region between the silicon disks and close to the circumference.
In fig. S1a-b we can see the kind of mesh used in the structures. In order to to improve convergence, we employ cubic
interpolation functions for optical and mechanical modes. We also use rounded disk’s corners (insets in fig. S1a-b),
avoiding unrealistic optical fields that could impact the moving boundary overlap integrals.

FIG. S1. Cross section of the computational domains (internal regions defined by the red dashed lines) in the single and double
disks. a)-b) Modeling of the single and double disk to calculate the coupling between the optical and mechanical modes.
White, blue and green regions represent the air, silicon and silica materials, respectively. In the inset figures show the kind of
mesh and the element size. In the air domain, the element size enhances radialy with a maximum growth rate of 1.1. The top
(and bottom in the double disk) right-corner is rounded, r = 10nm. c) Modeling of the single and double disk to calculate
the mechanical dispersion (Ω/2π vs Azimuthal wavenumber - M). The cartesian black grid represent the kind of mesh that is
used.

In order to calculate the modal mechanical dispersion of the structures the equation of motion (eq. (S14)) is solved
by using rectangular finite elements (cartesian black grid inside of the red dashed line in fig. S1c). In both structures
quadratic interpolation functions are used. Matlab Livelink was used to sweep azimuthal wavenumber - M parameter.

On the other hand, a perfect electric conductor boundary condition is assumed on the boundary of the computa-
tional domain to calculate the TM lowest-order mode. From mechanical point of view, both structures are simulated
like a cantilever, i. e., the left-side boundary is fixed (part of the red dashed line along to the z-axis fig. S1a-b).
In order to simulate dilatational and flexural modes in the single disk cavity the boundary conditions are ur 6= 0,
uz = 0, uφ 6= 0, and ur = 0, uz 6= 0, uφ = 0 in the bottom boundary (red dashed lines along to the r-axis fig. S1c),
respectively. In the double disk cavity only are applied the conditions: ur 6= 0, uz = 0, uφ 6= 0.

S3. CALCULATION OF THE OPTOMECHANICAL COUPLING RATE: g0

In order to calculate g0 the ansatz that is used to the eqs. (S4) and (S14) is given by,

Ej(r) = (E
(r)
j , E

(φ)
j i, E

(z)
j ) e−imjφ, (S37)

u(r) = (u(r), u(φ)i, u(z)) e−iMφ, (S38)
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respectively, with j = p, s. We also assume that the phase-matching condition is satisfied (M = mp −ms) and the
backscattered Stokes mode as a complementary mode [43], i.e.,

E(r)
s = E(r)

p = E(r), (S39)

E(φ)
s = −E(φ)

p = −E(φ), (S40)

E(z)
s = E(z)

p = E(z), (S41)

The optomechanical coupling rate can be decomposed in two contributions, gmb and gpe, below we detail our calcu-
lations for both contributions.

Moving-boundary contribution

For the moving boundary contribution, using eqs. (S37) to (S41) and eq. (S36) with the relation gmb = gmb
omxzpf, we

can break up the moving boundary contribution in three terms related to each optical field component,

gmb =

3∑
k=1

g
(k)
mb, (S42)

where,

g
(k)
mb = −ωp xzpf

2

∮
S

u⊥ρ
(k)
mb dA, (S43)

with the contributions to the optical weighting function ρmb =
∑3
k=1 ρ

(k)
mb given by,

ρ
(1)
mb = δεmbE

2
‖ , (S44)

ρ
(2)
mb = −δεmb[E(φ)]2, (S45)

ρ
(3)
mb = −δε−1

mbD
2
⊥, (S46)

the normal and tangential field and displacement components are u⊥ = u(r)nr + u(z)nz, E‖ = E(r)tr + E(z)tz,

D⊥ = D(r)nr + D(z)nz, n̂ = (nr, 0, nz) and t̂ = (tr, 0, tz). n̂ and t̂ are the normal and tangential unitary vectors in

the transverse rz-plane, respectively. The minus signal in ρ
(2)
mb arise from of the Stokes φ-component in eq. (S40).

Figure S3 shows all the tangential and perpendicular electric field components and the contributions to the weighting
function (eqs. (S44) to (S46)) for the lowest order TM mode in a single disk cavity. Interestingly, although E 2

⊥ is

the largest optical field component, the dominant contribution to the optical weighting function is ρ
(2)
mb, which is

proportional to the azimuthal field component. The reason why the azimuthal field dominates over the vertical field
is obvious if we rewrite,

ρ
(3)
mb = δεmbE

2
⊥

[
n2

n1

]2

, (S47)

where n1 = 3.5 and n2 = 1 are the refractive indexes of the single disk cavity and the region outside of cavity,
respectively. Due to the factor (n2/n1)2 ≈ 0.1 in eq. (S47), the vertical component contribution is reduced by roughly
one order of magnitude due to the high refractive index constrast.

In table S1a and table S1b we show each component of the moving-boundary contribution for two mechanical
modes, the dilational mode d2 (shown in fig. 4h ) and the whispering gallery mode w16 (show in fig. 4f).

Photo-elastic contribution

In order to grasp the nature of photoelastic component we substitute eqs. (S37) to (S41) in eq. (S35) and use the
relation gpe = gpe

omxzpf,

gpe =

6∑
k=1

g(k)
pe , (S48)
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a)

b)

FIG. S2. Spatial distribution of the overlapping between the TM and surface (d2, Ω/2π = 16.87GHz) modes in the single
disk. The mode, d2, induces a a) strain (S), b) permitivitty fluctuation (δεpe) and a c) overlapping with the TM mode (Ikpe,
k = 1, .., 6). As the strain is calculated from the unitary displacement u, then units of the inverse to the length should be used.

g
(1)
mb g

(2)
mb g

(3)
mb gmb gmb

om

+2.5 −134 +15.3 −116.4 −323

(a) Ω/2π = 16.87 GHz,
xzpf = 0.36 fm, meff = 3.8 pg

g
(1)
mb g

(2)
mb g

(3)
mb gmb gmb

om

−0.15 +6.45 −0.81 +5.5 +24

(b) Ω/2π = 24.34 GHz,
xzpf = 0.23 fm, meff = 6.3 pg.

TABLE S1. Moving-boundary optomechanical coupling components (×1/2π) for the d2 (a) and w16 (b) mechanical modes.
Azimuthal number M = 70, gmb

om (in GHz/nm) and gmb (in kHz).

where,

g(k)
pe = −ωpxzpf

2

∫
V

I(k)
pe dV, (S49)

and,

I(1)
pe = δεrrpe[E(r)]2, I(4)

pe = −2iE(φ)δεφzpeE
(z),

I(2)
pe = −δεφφpe [E(φ)]2, I(5)

pe = 2E(r)δεrzpeE
(z), (S50)

I(3)
pe = δεzzpe[E(z)]2, I(6)

pe = −2iE(r)δεrφpeE
(φ),

are the contributions to spatial overlap Ipe =
∑6
k=1 I

(k)
pe and the dielectric perturbations due to photoelastic effect are

given by,

δεrrpe = −ε0n4
1(p11Srr + p12 [Sφφ + Szz]), δεφzpe = −ε0n4

1(p44Sφz),

δεφφpe = −ε0n4
1(p11Sφφ + p12 [Srr + Szz]), δεrzpe = −ε0n4

1(p44Srz), (S51)

δεzzpe = −ε0n4
1(p11Szz + p12 [Srr + Sφφ]), δεrφpe = −ε0n4

1(p44Srφ),

where each strain tensor component is calculated as,

Srr = ∂ru
(r), Sφz =

i

2

[
∂zu

(φ) − Mu(z)

r

]
,

Sφφ =
u(r) +Mu(φ)

r
, Srz =

1

2

[
∂zu

(r) + ∂ru
(z)
]
, (S52)

Szz = ∂zu
(z), Srφ =

i

2

[
−Mu(r)

r
+

[
∂r −

1

r

]
u(φ)

]
.

Similarly to gmb, gpe is also real.

We also take the dilational mode d2 (shown in fig. 4h ) and the whispering gallery mode w16 (show in fig. 4f) to
understand the spatial overlap behavior of eq. (S50). In Figure S3 we show each contributions in eq. (S50), the strain

components (eq. (S52)), and the dielectric perturbations (eq. (S51)). The spatial overlap I
(3)
pe is dominant for the d2

modes (fig. S3), whereas the I
(2)
pe is dominant for the w16 mode (fig. S4c). A similar correspondence can be observed

both in the strain and dielectric perturbations.
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FIG. S3. Spatial distribution of the overlapping between the TM and surface (d2, Ω/2π = 16.87GHz) modes in the single
disk. The mode, d2, induces a a) strain (S), b) permitivitty fluctuation (δεpe) and a c) overlap integrand (Ikpe). As the strain
is calculated from the unitary displacement it has units L−1.

The peaked g0 contribution of the whispering mode group in the main text fig. 4a is caused by the presence of
a net positive azimuthal strain region close to the circumference of the single disk cavity. In fig. S4d we show this
behavior in detail for the w16 mode. The physical origin of this positive net strain region can be traced by exploring
the analytical expression for Sφφ obtained for an infinite elastic cylinder.

Sφφ =
u

(r)
l +Mu

(φ)
l

r︸ ︷︷ ︸
Sl
φφ

+
u

(r)
t +Mu

(φ)
t

r︸ ︷︷ ︸
St
φφ

, (S53)

where,

u
(r)
l = − Ω̃

η
J ′M

(
r̃Ω̃

η

)
, u

(r)
t =

Mf(Ω̃)JM (r̃Ω̃)

r̃
, (S54)

u
(φ)
l =

M

r̃
JM

(
r̃Ω̃

η

)
, u

(φ)
t = −Ω̃f(Ω̃)J ′M (r̃Ω̃), (S55)

are the contributions from the longitudinal (l) and transverse (t) waves to each displacement component [34],

f(Ω̃) =
1

η2

JM−2

(
Ω̃
η

)
− JM+2

(
Ω̃
η

)
JM−2(Ω̃) + JM+2(Ω̃)

, (S56)

where JM is the Bessel function of the first kind of order M , Ω̃ =
Ωc

0a
Vt

is the normalized angular frequency; Ωc
0 is the

angular frequency, a is the cylinder radius and the transverse bulk velocity is Vt, η = Vl

Vt
; Vl is the longitudinal bulk

velocity and r̃ = r/a is the normalized radius.
There is a surprisingly good agreement between the analytic (blue solid line) mode profile and the actual numerical

mode for the microdisk (blue hollow circles) in the fig. S4d. The analytical solution has an explicit contribution from
the longitudinal and tranverse propagation velocities. The slowly varying contribution, is due to the slower radial
wavevector associated with the longitudinal wave. Indeed with we plot just this contribution in the analytical solution
we can precisely reproduce the bump observed in the numerical solution(fig. S4e). Therefore we attribute the slowly
varying positive net strain to the contrasting velocities of transverse and longitudinal acoustic waves in Si.

In table S2b and table S2a we also show each component of the photo-elastic contribution for the two me-
chanical modes discussed in fig. S3 and fig. S4, the dilational mode d2 and the whispering gallery mode w16.
In both tables the dominant contributions (values in blue color) reflect the overlaps functions, as expected. We

see that gpe(d2) is 67% greater than gpe(w16), which it is not true for the dominant contributions g
(3)
pe (d2) and g

(2)
pe (w16).
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FIG. S4. Spatial distribution of the overlap integrals between the TM and w16 (Ω/2π = 24.34GHz) modes in the single
disk. a) Mechanical strain (S), b) Permitivitty perturbation (δεpe) and a c) overlap integrands (Ikpe). d) Radial behavior of
Sφφ. Analytic (blue solid line) and simulation (blue hollow circles) data are shown to the infinite cylinder and the single disk,
respectively. The single disk linecut is taken along the top plane. e) Analytic curves of the radial behavior of the transverse
(green solid line) and longitudinal (red solid line) contributions to Sφφ (blue solid line) to the infinite cylinder.

g
(1)
pe g

(2)
pe g

(3)
pe g

(4)
pe g

(5)
pe g

(6)
pe gpe gpe

om

+0.02 +22.2 +78.8 −14.7 −0.3 +1.0 +87.2 +242

(a) Ω/2π = 16.87 GHz, xzpf = 0.36 fm, meff = 3.8 pg

g
(1)
pe g

(2)
pe g

(3)
pe g

(4)
pe g

(5)
pe g

(6)
pe gpe gpe

om

+0.2 +79.3 −7.9 −16.6 −0.4 +6.6 +61.2 +266

(b) Ω/2π = 24.34 GHz, xzpf = 0.23 fm, meff = 6.3 pg

TABLE S2. Photo-elastic optomechanical coupling components (×1/2π) for the d2 (a) and w16 (b) mechanical modes. Az-
imuthal number M = 70, gpe

om (in GHz/nm) and gpe (in kHz).

S4. BRILLOUIN LASING THRESHOLD

In order to calculate the power threshold we take the eqs. (S31) to (S33) and add the losses (κe, κp, κs, Γ),
the normalized power amplitude (sp → sp√

~ωp

) and considering that g0 → gc
0 = (gc

0)∗, where gc
0 is the vacuum

optomechanical coupling rate for the compound cavity,

ȧp = χ−1
p ap − i gc

0 b as +
√
κesp, (S57)

ȧs = χ−1
s as − i gc

0 b
∗ap, (S58)

ḃ = χ−1
m b− i gc

0 apa
∗
s , (S59)

in which χ−1
p = i∆p +

κp

2 , χ−1
s = i∆s + κs

2 and χ−1
m = i∆m + Γ

2 . Now following [31], the steady-state in the eqs. (S57)
and (S59) leads to,

ȧs =

[
χ−1

s −
κe|sp|2(gc

0)2

[χ−1
m ]∗|χ−1

p |2

∣∣∣∣1 +
|as|2(gc

0)2

χ−1
m χ−1

p

∣∣∣∣−2
]
as, (S60)

in which to reach non-trivial steady-state the term between parentheses should be zero and as a consequence results
the threshold condition,

|sp|2 >
[χ−1

m ]∗χ−1
s |χ−1

p |2

κe(gc
0)2

. (S61)

From the eq. (S61) we have a product between two complex variables: [χ−1
m ]∗χ−1

s . In order to understand the
nature of this product we come back to the expression between parentheses in the eq. (S60) in the steady-state and
rewrite,
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χ−1
s =

κe|sp|2(gc
0)2

|χ−1
m |2|χ−1

p |2

∣∣∣∣1 +
|as|2(gc

0)2

χ−1
m χ−1

p

∣∣∣∣−2

χ−1
m , (S62)

in which substituting the expressions to χ−1
s and χ−1

m and simplifying, results,

∆s

κs
=

∆m

Γ
. (S63)

Now by using the eq. (S63) and the expression to χ−1
p in the threshold condition (eq. (S61)) we obtain |sp|2 > Pth,

Pth =
~ωpκ

2
p

4 Cκe

[
1 +

(
∆s

κs/2

)2
][

1 +

(
∆p

κp/2

)2
]
, (S64)

in which C =
4(gc0)2

Γκs
is the so-called single-photon cooperativity.
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