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Abstract. We apply the block-diagonal similarity renormalization group to a simple toy-
model for the nucleon-nucleon (NN) interaction in the 1S0 channel, aiming to analyze
the complementarity between the explicit and the implicit renormalization approaches in
nuclear physics. By explicit renormalization we mean the methods based on the wilsonian
renormalization group in which high-energy modes above a given cutoff scale are integrated out
while their effects are replaced by scale dependent effective interactions consistently generated
in the process. We call implicit renormalization the usual procedure of cutoff effective theories
in which the high-energy modes above the cutoff scale are simply removed and their effects
are included through parametrized cutoff dependent counterterms whose strengths are fixed by
fitting low-energy data. We compare the effective interactions obtained in both schemes and
find a wide range of cutoff scales where they overlap. We further analyze the role played by the
one-pion exchange (OPE) considering a δ-shell plus OPE representation for the NN interaction.

1. Introduction
The idea of effective interactions has been strongly pursued since the late 1950s after the
pioneering works by Goldstone [1], Moshinsky [2] and Skyrme [3], who suggested to use this
notion to overcome the complications which appear in the solution of the nuclear many-body
problem due to the large short-range repulsive core. This allowed to take advantage of the
much simpler mean field framework based on those effective interactions in the implementation
of nuclear structure calculations [4]. The main problem of the effective interaction approach is
both the proliferation of independent parameters as well as their huge numerical diversity [5].
This reflects both the lack of an unambiguous link to the fundamental nucleon-nucleon (NN)
interaction as well as the quite disparate finite nuclei and nuclear matter observables which have
been used to fix the effective theory parameters. In recent works [6, 7] an effort has been made
in order to understand the origin of the NN effective interactions from free space NN scattering
in a model independent way, without invoking finite nuclei nor nuclear matter properties. This
approach corresponds to what will be called here as implicit renormalization.
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An intense reformulation of the nuclear many-body problem has taken place in the last
ten years inspired by the wilsonian renormalization group ideas, providing an alternative
approach to the determination of effective interactions directly from the NN bare potentials
fitted to the scattering data (for reviews see e.g. [8, 9, 10] and references therein). The
basis of the whole approach is to take advantage of choosing the proper resolution scale in
the formulation of the problem, separating explicitly what degrees of freedom and interactions
behave dynamically below that scale. This approach corresponds to what will be called here
as explicit renormalization. Within this framework, the so called Vlow k approach [11] has been
used to consistently integrate out the high-momentum components of both high-precision [12, 13]
and chiral effective field theory (ChEFT) [14, 15] NN potentials in order to derive phase-shift
equivalent softer forms. A more recent approach that has been applied in this context is the
similarity renormalization group (SRG), which provides a great deal of simplification in the
derivation of effective interactions for many-body calculations in nuclear physics [16]. The
basic strategy underlying the application of the SRG methods to nuclear forces is to evolve
the initial bare potential via a continuous unitary transformation that runs a cutoff λ on energy
differences. Such a transformation generates a family of unitarily equivalent smooth interactions

Hλ = Uλ H U †λ with a band-diagonal structure of a prescribed width roughly given by the SRG
cutoff λ. One of the main advantages of the SRG method over the Vlow k is that it allows for a
straightforward and consistent treatment of the scale dependence of induced as well as initially
introduced many-body forces [17].

In this contribution we present a summary of previous works [18, 19, 20] where we have
applied the block-diagonal similarity renormalization group (BD-SRG) scheme [21] to the NN
system. We considered a simple toy-model for the NN interaction in the 1S0 and 3S1 partial-
wave channels, which is constructed such that the phase-shifts at low-momenta and the deuteron
binding-energy are reasonably described with a short-range interaction and makes the SRG
evolution towards small values of the SRG cutoff λ much more practical. As we have shown, the
BD-SRG allows to implement a block-diagonal separation of the Hilbert space in two orthogonal
(decoupled) subspaces, H = HP ⊕HQ, which are respectively below or above a cutoff scale Λ,
which will be referred as the block-diagonal (BD) cutoff. The unitary evolution runs the SRG
cutoff from λ→∞ (the ultraviolet limit) to λ→ 0 (the infrared limit) and interpolates between
the initial bare hamiltonian H ≡ Hλ→∞ and the block-diagonal one Hλ→0. This corresponds
to a unitary implementation to all energies of the Vlow k approach in which the higher energy
states are missing and in practice a free theory is assumed above the energy determined by
the BD cutoff Λ. We compared the effective interactions obtained in the explicit and implicit
renormalization approaches and analyzed to what extent in terms of the BD cutoff Λ the two
approaches overlap. Here we restrict the analysis to the case of the 1S0 channel NN interaction.
We also discuss the results of a preliminary study on the role played by the one-pion exchange
(OPE) interaction which is carried out by implementing the BD-SRG evolution of the δ-shell
plus OPE representation for the NN interaction described in Ref. [22].

2. Toy-model separable gaussian potential
In the applications of the SRG method to nuclear physics, realistic potentials which fit NN
scattering data up to the pion-production threshold (

√
mπMN ∼ 400 MeV) are usually taken as

the initial NN bare interaction. Due to the short-range repulsive core, such potentials exhibit
a long high-momentum tail which complicates the numerical convergence when solving the
SRG flow-equations. Therefore, for illustration purposes, we will consider here as the NN
bare interaction a simple separable gaussian potential in the 1S0 channel, given by

V (p, p′) = C gL(p)gL(p′) = C exp
[
−
(
p2 + p′2

)
/L2

]
. (1)
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Figure 1. Phase-shifts for the toy-model potential in the 1S0 channel compared to the results
obtained from the Nijmegen PWA [13].

The parameters C and L are determined from the solution of the Lippmann-Schwinger (LS)
equation for the on-shell reactance matrix K by fitting the experimental values of the Effective
Range Expansion (ERE) parameters. Namely, we solve the partial-wave LS equation for the
K-matrix,

K(p, p′;E) = V (p, p′) +
2

π
P
∫ ∞

0
dq q2 V (p, q)

E − q2
K(q, p′;E) , (2)

where E is the scattering energy, and match the resulting on-shell K-matrix to the ERE
expansion,

K−1(k, k; k2) = −
[
− 1

a0
+

1

2
re k

2 +O(k4)

]
= −k cot δ(k) , (3)

where k =
√
E is the on-shell momentum and δ(k) stands for the phase-shifts. Adjusting the

parameters of the toy model potential in the 1S0 channels to fit the ERE parameters to second
order in the on-shell momentum k, i.e. the scattering length a0 = −23.74 fm and the effective
range re = 2.77 fm we obtain C = −1.915884 fm and (1/L2) = 0.691269 fm2.

In the case of the toy-model separable potential, given by Eq. (1), it is straightforward to
evaluate the phase-shifts δ(k) from the solution of the partial-wave LS equation for the K-matrix
using the ansatz

K(p, p′; k2) = gL(p) K̃(k) gL(p′) , (4)

where K̃(k) is called the reduced on-shell K-matrix. This leads to the relation

k cot δ(k) = − 1

V (k, k)

[
1− 2

π
P
∫ ∞

0
dq q2 1

k2 − q2
V (q, q)

]
. (5)

The phase-shifts for the toy-model potential in the 1S0 channel evaluated from this equation
are shown in Fig. 1, compared to the results obtained from the Nijmegen partial-wave analysis
(PWA) [13]. As one can see, despite its simplicity, our toy model for the NN interaction provides
a reasonable qualitative description of the 1S0 phase-shifts.
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3. Explicit renormalization: BD-SRG evolution
The similarity renormalization group (SRG) approach, developed by Glazek and Wilson [23]
and independently by Wegner [24], is a renormalization method based on a series of continuous
unitary transformations that evolve hamiltonians with a cutoff on energy differences, driving
the original hamiltonian towards a band-diagonal form. Here we employ the formulation for the
SRG developed by Wegner, which is based on a non-perturbative flow-equation that governs the
unitary evolution of a hamiltonian H = Trel + V with a flow parameter s that ranges from zero
to infinity. Namely, assuming that Trel is independent of s, we have

dHs

ds
=
dVs
ds

= [ηs, Hs] , (6)

where ηs is an anti-hermitian operator. The flow parameter s has dimensions of [energy]−2 and
in terms of the SRG cutoff λ with dimension of momentum is given by the relation s = λ−4. The
flow equation is to be solved with the boundary condition Hs|s→0 ≡ H0, where H0 (≡ Hλ→∞)
is the hamiltonian corresponding to the initial bare interaction.

The anti-hermitian operator ηs is usually chosen as ηs = [Gs, Hs], where Gs is a hermitian
operator which we call the SRG generator since it defines ηs and so the flow of the hamiltonian.
Here, we take the block-diagonal (BD) SRG generator [21], given by

Gs = HBD
s ≡

PHsP 0

0 QHsQ

 , (7)

where P and Q = 1−P are projection operators. In a partial-wave momentum-space basis, the
projection operators are determined in terms of the BD cutoff Λ that divides the momentum
space into a low-momentum P -space (p < Λ) and a high-momentum Q-space (p > Λ). Here we
define the projection operators just as step functions, P ≡ θ(Λ− p); Q ≡ θ(p− Λ).

Thus, the flow-equation with the BD-SRG generator can be written in matrix-form as d
ds [PVsP ] d

ds [PVsQ]

d
ds [QVsP ] d

ds [QVsQ]

 =

PηsQHsP − PHsQηsP PηsQHsQ− PHsPηsQ

QηsPHsP −QHsQηsP QηsPHsQ−QHsPηsQ

 . (8)

This equation has to be solved numerically on a finite momentum grid with N points pn and
weights wn (n = 1, . . . N) by implementing a high-momentum ultraviolet cutoff Pmax and an
infrared momentum cutoff Pmin. The discretization of the momentum space on a grid with N
points leads to a system of 4N2 non-linear first-order coupled differential equations. By choosing
the BD-SRG generator Gs = HBD

s , the matrix-elements inside the off-diagonal blocks PVsQ and
QVsP are suppressed as the flow parameter s increases (or as the similarity cutoff λ decreases),
such that the hamiltonian is driven to a block-diagonal form. In the infrared limit s → ∞
(λ→ 0) the P -space and the Q-space become completely decoupled, i.e.

lim
s→0

PVsP PVsQ

QVsP QVsQ

 =

PVlow kP 0

0 QVhigh kQ

 . (9)

Thus, while unitarity implies that the phase-shifts evaluated from the solution of the LS equation
remain invariant along the SRG evolution, i.e. δλ(p) = δ(p) for any λ, one has

lim
λ→0

δλ(p) = δlow k(p) + δhigh k(p) , (10)

where δlow k(p) = δ(p)θ(Λ−p) and δhigh k(p) = δ(p)θ(p−Λ) are the phase-shifts of the Vlow k and
Vhigh k potentials respectively.
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4. Implicit renormalization
Implicit renormalization can be defined in simple way by looking for an effective NN interaction
regulated by a sharp or smooth momentum cutoff Λ which reproduces NN scattering data up
to a given center-of-mass (CM) momentum k ≤ Λ. The requirement that observables should be
cutoff independent determines the implicit Λ-dependence of the effective interaction.

At low cutoffs Λ, we may approximate the toy-model potential by an effective field theory
(EFT) with only contact interactions regulated by a smooth exponential momentum cutoff,

VΛ(p, p′) = exp[−(p/Λ)2n)]
[
C0 + C2(p2 + p′2) + . . .

]
exp[−(p′/Λ)2n] , (11)

where C0, C2, . . . are Λ-dependent coefficients to be determined through a renormalization
procedure and n = 1, 2, . . . defines the sharpness of the cutoff regulating function.

The running of the coefficients Ci with the cutoff Λ is determined from the solution of the LS
equation for the on-shell K-matrix by fitting the experimental values of the ERE parameters.

For the contact theory potential at next-to-leading order (NLO) the coefficients C
(2)
0 and C

(2)
2

are fixed at a given cutoff Λ by fitting the scattering length a0 and the effective range re. One
should note that, as a consequence of the Wigner causality bound, there is a maximum value
ΛWB for the cutoff Λ above which we cannot fix the NLO potential coefficients by fitting the
experimental values of both a0 and re while keeping the renormalized potential hermitian [25].

5. Comparison between the explicit and the implicit renormalization approaches
We solve the BD-SRG flow equation for the toy-model potential in the 1S0 channel on a gaussian
grid with N = 50 points and Pmax = 5 fm−1, using an adaptative variable-step fifth-order

Runge-Kutta algorithm. Then, we compare the running of the coefficients C
(2)
0 and C

(2)
2 with

the cutoff Λ in the effective NLO contact theory potential on the same grid to the running of the

corresponding coefficients C̃
(2)
0 and C̃

(2)
2 with the BD cutoff (≡ Λ) extracted from a polynomial

fit of the BD-SRG evolved toy-model potential,

Vλ,Λ(p, p′) = C̃
(2)
0 + C̃

(2)
2 (p2 + p′

2
) + · · · . (12)

The parameters C and L in the initial toy-model potential and the coefficients C
(2)
0 and C

(2)
2

in the NLO contact theory potential are determined from the numerical solution of the LS
equation for the K-matrix by fitting the experimental values of a0 and re. The coefficients

C̃
(2)
0 and C̃

(2)
2 are determined by fitting the diagonal matrix-elements of the BD-SRG evolved

toy-model potential for the lowest grid momenta with the polynomial form.
In Fig. 2 we show the density plots for the BD-SRG evolution of the toy-model potential in

the 1S0 channel for a BD cutoff Λ = 0.5 fm−1 [18]. As expected, the P -space and the Q-space
become decoupled as the SRG cutoff λ decreases towards the infrared limit λ→ 0. In Fig. 3 we

show the results for the coefficients C̃
(2)
0 and Λ2C̃

(2)
2 extracted from the BD-SRG evolved toy-

model potential in the 1S0 channel compared to the corresponding coefficients C
(2)
0 and Λ2C

(2)
2

obtained for the NLO contact theory potential regulated by a smooth exponential momentum
cutoff with a sharpness parameter n = 16. As one can see, there is a remarkably good agreement
between the coefficients extracted from the BD-SRG evolved potential and those obtained for
the NLO contact theory potential as the SRG cutoff λ decreases, which can be traced to the
decoupling between the P -space and the Q-space. Thus, in the infrared limit λ→ 0 we expect
to achieve a high degree of agreement between the effective interactions obtained in the explicit
and the implicit renormalization approaches for BD cutoffs Λ up to ΛWB determined by the
Wigner causality bound for the NLO contact theory potential. Indeed, for the lowest SRG
cutoff considered in the calculations, λ = 0.1 fm−1, the overlap between the two approaches is
verified within a range of BD cutoffs Λ from 0.5 fm−1 to 1.5 fm−1.
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Figure 2. Density plots for the BD-SRG evolution of the toy-model potential in the 1S0 channel
for a BD cutoff Λ = 0.5 fm−1 (N = 50 points and Pmax = 5 fm−1) [18].
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Figure 3. Coefficients C̃
(2)
0 and Λ2C̃

(2)
2 extracted from the BD-SRG evolved toy-model potential

in the 1S0 channel compared to the corresponding coefficients C
(2)
0 and Λ2C

(2)
2 for the NLO

contact theory potential regulated by a smooth exponential momentum cutoff with n = 16.
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6. Role of the one-pion exchange
As we have pointed out, the agreement between the effective interactions obtained in the explicit
and implicit renormalization approaches over a wide range of relatively low cutoff scales Λ is
due to the decoupling between the low-momentum P -space and the high-momentum Q-space.
This motivates an analysis of the role played by the OPE interaction in the implicit approach.

We consider the δ-shell (DS) plus OPE representation for the NN interaction described in
Ref. [22], built with basis on a PWA of about 8000 pp and np data. According to this analysis,
OPE is the only needed contribution for r > 3 fm such that the NN interaction can be split as

V = V (r ≤ 3 fm) + V (1π, r ≥ 3 fm) , (13)

where V (r ≤ 3 fm) corresponds to the short- and intermediate-range interactions parametrized
through the δ-shells and V (1π, r ≥ 3 fm) corresponds to the long-range OPE interaction. In
the top-panels of Fig. 4 we show the diagonal and fully off-diagonal matrix-elements of the
DS + OPE potential in the 1S0 channel, together with the corresponding contributions from
V (r ≤ 3 fm) and V (1π, r ≥ 3 fm). As one can see, V (1π, r ≥ 3 fm) � V (r ≤ 3 fm) and hence
it might be possible to implement a perturbative expansion of the BD-SRG evolved DS + OPE
potential in which only the V (r ≤ 3 fm) piece is evolved and the corrections from the evolved
OPE are included order by order, i.e.

Vλ,Λ ≡ Vλ,Λ(r ≤ 3 fm) + V (1π, r ≥ 3 fm) +O
[
V 2
λ,Λ(1π, r ≥ 3 fm)

]
. (14)

In the bottom panels of Fig. 4 we show the diagonal and fully off-diagonal matrix-elements of
the difference between the full DS + OPE potential in the 1S0 channel evolved with the BD-SRG
up to λ = 1 fm−1 and the zeroth-order perturbative approximation for several values of the BD
cutoff Λ. We get that the corrections from the BD-SRG evolved OPE piece are indeed small,
namely O[V 2

λ,Λ(1π, r ≥ 3 fm)] ≤ 10−2 fm for 0.5 fm−1 ≤ Λ ≤ 3.0 fm−1. This result suggests that
the contribution from the BD-SRG evolved OPE interaction may be treated perturbatively.

7. Summary and Outlook
We have presented a summary of our previous works on the application of the block-diagonal
similarity renormalization group (BD-SRG) to the NN interaction, whose main purpose was
to investigate the complementarity between the implicit and the explicit renormalization
approaches in nuclear physics. In order to simplify the analysis and reduce the computational
effort, we have considered a separable gaussian potential toy-model for the NN interaction in
S-wave channels. Here we have focused on the analysis of the NN system in the 1S0 channel.

By comparing the NN effective interactions obtained both in the explicit and the implicit
renormalization schemes, we verify that the complementarity between these two approaches
holds for a wide range of cutoff scales Λ. This suggests that the bulk of the effective NN
interaction and its scale dependence can be extracted directly from low-energy NN data. We
have also presented a preliminary analysis of the role played by the OPE interaction, based on a
perturbative expansion of the BD-SRG evolved 1S0 channel NN potential in a δ-shell plus OPE
representation. As we have shown, the contribution from the OPE interaction remains small
after the BD-SRG evolution, suggesting that it may be treated perturbatively in calculations
of light nuclei structure. In a forthcoming publication we will present a detailed study on this
issue, including also an analysis of the relevance of the two-pion exchange (TPE) interaction.
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