
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Dynamical chiral symmetry with an infrared finite
gluon propagator
To cite this article: J. C. Cardona and A. C. Aguilar 2016 J. Phys.: Conf. Ser. 706 052018

 

View the article online for updates and enhancements.

Related content
Fermion Determinant with Dynamical
Chiral Symmetry Breaking*

Lu Qin, Yang Hua and Wang Qing

-

The gluon masses
S.A. Larin

-

Critical Behavior of Dynamical Chiral
Symmetry Breaking with Gauge Boson
Mass in QED3
Wang Xiu-Zhen, Li Jian-Feng, Yu Xin-Hua
et al.

-

This content was downloaded from IP address 143.106.108.133 on 06/10/2017 at 14:43

https://doi.org/10.1088/1742-6596/706/5/052018
http://iopscience.iop.org/article/10.1088/0253-6102/38/2/185
http://iopscience.iop.org/article/10.1088/0253-6102/38/2/185
http://iopscience.iop.org/article/10.1088/1742-6596/678/1/012025
http://iopscience.iop.org/article/10.1088/0256-307X/32/11/111102
http://iopscience.iop.org/article/10.1088/0256-307X/32/11/111102
http://iopscience.iop.org/article/10.1088/0256-307X/32/11/111102


Dynamical chiral symmetry with an infrared finite

gluon propagator

J. C. Cardona and A. C. Aguilar

University of Campinas - UNICAMP, Institute of Physics “Gleb Wataghin”,
13083-859 Campinas, SP, Brazil

E-mail: jeinerc@ifi.unicamp.br

Abstract.

In this work we study dynamical quark mass generation using an infrared finite gluon
propagator obtained from quenched lattice simulations. The quark gap equation is solved using
a purely non-Abelian Ansatz for the quark-gluon vertex, which displays a dependence on the
ghost dressing function and the scalar component of quark-ghost scattering kernel. For the
former quantity we use quenched lattice results, while for the latter we derive its own integral
equation at the one-loop-dressed approximation. This latter quantity is then coupled to the
system of equations governing the two Dirac structures of the quark propagator. It turns out
that when a current quark mass of 5 MeV is introduced, the constituent quark mass generated
from the gap equation is of the order of 310 MeV. In addition, the pion decay constant computed
from the resulting quark propagator is in good agreement with the physical value.

1. Introduction

One of the major challenges of the strong interactions is to understand the underlying mechanism
that generates masses for the quarks and triggers the subsequent breaking of the chiral symmetry
(CS) [1, 2]. It is well known that QCD must be endowed with a very efficient mass generation
mechanism, given that the Higgs mechanism accounts for the generation of only 2% of the total
mass of the light quarks; thus, the remaining 98% must be accounted for by the internal QCD
dynamics [2, 3, 4].

The CS breaking is an inherently nonperturbative phenomenon, whose study in the continuum
leads almost invariably to a treatment based on the Schwinger-Dyson equation (SDE) for the
quark propagator (gap equation) [1, 5, 6, 7].

Besides the quark propagator, the kernel of this nonlinear integral equation is expressed in
terms of three others Green’s functions, namely (i) the full gluon propagator, (ii) the full ghost
propagator and, (iii) the complete quark-gluon vertex; evidently, each one of these Green’s
functions satisfies its own SDE. One of the characteristic features of the gap equation is that, in
order to give rise to nontrivial solutions, the support of its kernel in the region of few hundred
MeV must overcome a critical amount. Within this context, the nonperturbative quark-gluon
vertex plays a crucial role in providing the required enhancement at the correct momentum
scale [6].

Despite its physical importance, the nonperturbative behavior of this special vertex is still
only partially known, mainly due to a variety of serious technical difficulties. In particular,
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its rich tensorial structure (composed by 4 longitudinal and 8 transverse structures) leads
to the determination of twelve independent form factors, which depend on three kinematic
variables [8, 9]. In addition, this vertex controls the way that the ghost sector enters into the
gap equation, and introduces a pivotal dependence on the ghost dressing function and the quark-
ghost scattering amplitude. This important quantity satisfies its own dynamical equation, which
was studied in Ref. [6] under certain simplifying approximations.

In Ref. [6] an approximate version of the gap equation was studied in the chiral limit, using
the gluon and the ghost propagators obtained from the quenched lattice simulations [10, 11, 12].
Here we will follow the same steps presented in the Ref. [6] to study the case where the CS
is already explicitly broken by the presence of a current quark mass. In addition, we present
an integral equation that furnishes an improved one-loop dressed approximation for the scalar
component of the quark-ghost scattering kernel.

These proceedings are organized as follows. In Section 2 we introduce the main ingredients
and the crucial relations necessary for the study of the CS breaking. In Section 3, we present the
structure of the quark-gluon vertex entering into the definition of the gap equation, and derive
the dynamical equation for the scalar component of the quark-ghost scattering kernel. In Section
4 the numerical results for the quark dynamical mass are presented and the corresponding value
for the pion decay constant is computed from them. Finally, in Section 5 we summarize our
conclusions.

2. Basics equations and conventions

In this section we introduce the basic definitions and ingredients used throughout this work. Let
us start with the definition of the full gluon propagator, that in Landau gauge, takes the form

i∆µν(q) = −i

[

gµν −
qµqν
q2

]

∆(q2) . (1)

In addition, it is usual to decompose the quark propagator, S(p), in terms of a Dirac vector
component A(p2), and a scalar component B(p2) in the following way [1, 6]

S−1(p) = A(p2) /p−B(p2)−m0 = A(p2)[/p−M(p2)]−m0 . (2)

where we have defined the dynamical quark mass function as M(p2) = B(p2)/A(p2). Notice
that when m0 6= 0 the chiral symmetry is explicitly broken by the presence of a current quark
mass. Moreover, the dynamical breaking only occurs when the scalar function B(p2) acquires a
nonvanishing value.

In Fig. 1 we show the diagrammatic representation of the quark SDE. The gray circles
represent the complete quark and gluon propagators and the full quark-gluon vertex.

=
−1

~p

( )
−1

~p

( ) +

~k

~p~p

µ ν

q = p− k

Figure 1. The quark SDE, given by Eq. (3). The grey blobs represent the full gluon and quark
propagators and the complete quark-gluon vertex.

Following the momentum convention and the Lorentz indices indicated in Fig. 1, the
renormalized SDE for the quark propagator is written as

S−1(p) = ZF (/p−m0)− Z1CFg
2

∫

k

γµS(k)Γν(−p, k, q)∆µν(q) , (3)
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where Γν is the full quark-gluon vertex, Z1(µ) and ZF (µ) are the vertex and the quark wave-
function renormalization constants, respectively. Here m0 is the current bare mass and CF is
the Casimir eigenvalue for the fundamental representation. In addition, we have introduced the
shorthand notation

∫

k
≡ (2π)−4

∫

d4k.

p3

a, µ

p1 p2

Figure 2. The full quark-gluon vertex.

An essential ingredient in the above equation is the full quark-gluon vertex, illustrated in
Fig. 2, and written as

Γa
µ(p1, p2, p3) = gtaΓµ(p1, p2, p3) ,

where all momenta pi are entering as showed in Fig. 2, and ta = λa/2, where λa are the Gell-
Mann matrices.

The vertex Γµ satisfies the fundamental Slavnov-Taylor identity (STI) [13]

qµΓµ(p1, p2, q) = F (q)[S−1(−p1)H(p1, p2, q)−H(p2, p1, q)S
−1(p2)] , (4)

where H(p1, p2, q) is the quark-ghost scattering amplitude represented in Fig. 3, and F (q2) is
the dressing of the full ghost propagator, defined as

D(q2) =
F (q2)

q2
. (5)

The quark-ghost scattering amplitude H(p1, p2, q) and its “conjugate” H(p1, p2, q) has the
following Lorentz decomposition [6, 14]

H(p1, p2, q) = X0 I+X1 /p1 +X2 /p2 +X3 σ̃µνp
µ
1p

ν
2 ,

H(p2, p1, q) = X0 I−X2 /p1 −X1 /p2 +X3 σ̃µνp
µ
1p

ν
2 , (6)

where the form factors Xi are functions of the momenta, Xi = Xi(p1, p2, q), Xi = Xi(p2, p1, q),
and σ̃µν ≡ 1

2 [γµ, γν ].

H(p1, p2, p3) =

p2

p3

p1
1 +

Figure 3. The quark-ghost scattering kernel H(p1, p2, p3).

Thus, we clearly see from Eqs (3) and (4) that most of the dynamics of the ghost sector will
be introduced into the kernel of the gap equation by means of the full quark-gluon vertex.
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It is interesting to notice that the STI, given by Eq. (4), enforces the all-older constraint [6]

Z1 = Z−1
c ZFZ

−1
H , (7)

where Zc and ZH are the renormalization constants of the ghost propagator and the quark-
ghost scattering kernel, respectively. In the next section, these constants we will be fixed
using the momentum subtraction scheme (MOM). Specifically, in this scheme the renormalized
propagators and vertices should satisfy

F (q2)|q2=µ2 = 1 , S−1(p)|p2=µ2 = /µ−m(µ) ,

∆−1(q2)|q2=µ2 = µ2 , Γµ(p1, p2, q)|p2
1
=p2

2
=q2=µ2 = γµ ,

H(p1, p2, q)|p2
1
=p2

2
=q2=µ2 = 1 , (8)

where µ is renormalization (subtraction) point.

3. The quark-gluon vertex and the gap equation

Let us now turn our attention to the quark-gluon vertex. This vertex can be separated into
longitudinal and transverse parts in the following way [8, 9]

Γµ(p1, p2, q) = ΓL
µ(p1, p2, q) + ΓT

µ (p1, p2, p3) , (9)

where the transversal part ΓT
µ (p1, p2, q) satisfies automatically the STI of Eq. (4), since

qµΓT
µ (p1, p2, q) = 0.

The most general Lorentz decomposition for the longitudinal part of the vertex ΓL
µ(p1, p2, q)

can be written as [14]

ΓL
µ = L1γµ + L2(/p1 − /p2)(p1 − p2)µ + L3(p1 − p2)µ + L4σ̃µν(p1 − p2)

ν , (10)

where Li = Li(p1, p2, q) are the form factors, whose dependence on the momenta has been
suppressed to keep a compact notation. Notice that the tree level expression is recovered by

setting L1 = 1 and L2 = L3 = L4 = 0; then, Γ
[0]
µ = γµ.

Due to the fact that the behavior of the vertex ΓL
µ is constrained by the STI of Eq. (4),

the form factors Li’s appearing in the Eq. (10) are given in terms of the form factors Xis of
Eq. (6). The full expressions for Li’s in terms of the form factors Xis can be found in Ref. [6].
Here, for the sake of simplicity, we will consider the case where only the scalar component of
the quark-ghost scattering kernel is non-vanishing i.e. X0 6= 0 while Xi = Xi = 0 for i ≥ 1. In
this limit, we obtain that

L1 = F (q)X0(q)

[

A(p1) +A(p2)

2

]

L2 = F (q)X0(q)

[

A(p1)−A(p2)

2(p21 − p22)

]

L3 = F (q)X0(q)

[

B(p1)−B(p2)

(p21 − p22)

]

L4 = 0 (11)

According the above expression, the form factors Li display an explicit dependence on the
product F (q)X0(q), thus carrying valuable information about the ghost infrared sector of the

XIII International Workshop on Hadron Physics IOP Publishing
Journal of Physics: Conference Series 706 (2016) 052018 doi:10.1088/1742-6596/706/5/052018

4



p1

q

p2

H [1](q, p2,−p1) = 1 − k

k + p2

k − q

Figure 4. The quark-ghost scattering kernel at “one-loop dressed” approximation.

theory. It is interesting to notice that in the limit of F (q)X0(q) = 1, the form factors of Eq. (11)
reduce to the so-called Ball-Chiu (BC) vertex, ΓBC

µ [15]. Therefore, our final Ansatz for the
longitudinal part of the vertex is given by

ΓL
µ(p1, p2, q) = F (q)X0(q)Γ

BC
µ (p1, p2, q) , (12)

Substituting the vertex ΓL
µ defined in the Eqs. (10) and (11) into the gap equation (3), we

arrive at the following coupled system for A(p) and B(p)

A(p) = ZF + Z−1
c g2CF

∫

k

∆(q)F (q)X0(q)

A2(k)k2 +B2(k)
KA(p, k) ,

B(p) = Z4m+ Z−1
c g2CF

∫

k

∆(q)F (q)X0(q)

A2(k)k2 +B2(k)
KB(p, k) , (13)

where q = p− k, KA(p, k) and KB(p, k) are kernels defined in Ref. [6].
In order to proceed further, now we derive the dynamical equation governing the behavior of

the scalar form factor, X0(q). Our starting point is the Fig. 4, where we have the diagrammatic
representation of the quark-ghost scattering kernel, H [1], at the “one-loop dressed” level. In this
approximation H [1] is given by

H [1] = ZH − i
g2CA

2

∫

k

D(q − k)Gv∆
µν(k)S(k + p2)Γµ(p2,−p2 − k, k) . (14)

To evaluate Eq. (14) further, we will use the tree-level expression for the gluon-ghost vertex
Gν = (q − k)ν , whereas for the vertex Γµ we employ the following simpler Ansatz

Γµ(p2,−k − p2, k) = F (k)X0(k)Γ
′

µ(p2,−k − p2, k) , (15)

with

Γ′

µ(p2,−k − p2, k) =
1

2
[A(p2 + k) +A(p2)] γµ

+
1

2

kµ

k2

[

[A(p2 + k)−A(p2)] (2 /p2 + /k)− 2 [B(p2 + k)−B(p2)]
]

. (16)

Notice that the quark-gluon vertex given in Eq. (15) satisfies the STI of Eq. (4).
In this work we restrict ourself to the study of X0 in the so-called quark symmetric limit,

where the quark momenta have the same magnitude and opposite signs, i.e. p1 = −p/2, p2 = p/2
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Figure 5. Lattice data (black dots) for the gluon propagator, ∆(q), (left panel) and the ghost
dressing function, F (q) (right panel) renormalized at µ = 4.3 GeV [12]. The red continuous
curve are the fits for the lattice data.

and q = −p [6]. Taking the appropriate traces in Eq. (6), it is straightforward to derive from

Eq. (14) the following linear integral equation for the form factor X
[1]
0 (in the Euclidean space)

X
[1]
0 (p) = ZH +

g2CA

8

∫

k

D(p+ k)F (k)∆(k)A2[A2 +A1]

A2
2(p/2 + k)2 +B2

2

[

p2 −
(p · k)2

k2

]

X
[1]
0 (k) . (17)

where we have introduced the shorthand notation A1 = A(p/2), A2 = A(p/2+k), B1 = B(p/2),
and B2 = B(p/2 + k).

4. Numerical analysis

We clearly see that the coupled system for A(p) and B(p) given by Eq. (13) depends on the

nonperturbative form of the three basic Greens functions, namely ∆(q), F (q) and X
[1]
0 (p). For

∆(q) and F (q) we use the lattice data obtained in Ref. [12], and shown in the Fig. 5. We clearly
see that both lattice results for ∆(q), F (q) are infrared finite. Such a feature can be associated
to a purely non-perturbative effect that gives rise to a dynamical gluon mass [16, 17], which
saturates the gluon propagator in the infrared.

Now, we are in position to solve the system formed by Eqs. (13) and (17). Substituting into
Eqs. (13) the lattice data for ∆(q) and F (q), with the modification Z−1

c KA,B → KA,B F (q), to
enforce the correct renormalization group behavior of the dynamical mass (see discussion in [6].),

we determine numerically the unknown functions A(p), B(p) and X
[1]
0 (p) when α(µ) = 0.29 for

µ = 4.3 GeV.

The result for X
[1]
0 (p) is shown in Fig. 6. Notice that we have fixed the value of ZH , appearing

in Eq. (17), by enforcing that the renormalization condition, X
[1]
0 (µ) = 1.

On the left panel of Fig. 6, we present the case where m0 = 5 MeV. As happened in the

analysis presented in Ref. [6], X
[1]
0 (p) displays a maximum located 1 GeV, while in the ultraviolet

and infrared regions X
[1]
0 (p) → 1 (black curve). Notice that the resulting peak is slightly higher

than the one obtained by simply substituting X
[1]
0 (k) = 1 on the rhs of (17) (green dashed

curve) [6]. On the right panel, we show the behavior of X
[1]
0 (p) for the following current masses:
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Figure 6. The numerical result for the form factor X
[1]
0 (q) given by Eq. (17).

m0 = 5 MeV (black continuous), m0 = 95 MeV (red dotted) and m0 = 1.3 GeV (blue dashed).
We clearly see a suppression as the current mass increases. Although this peak is not very
pronounced, it turns out to be essential for providing to the kernel of the gap equation the
enhancement required for the generation of phenomenologically compatible constituent quark
masses.
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Figure 7. The numerical solution for the quark wave function A−1(p) (left panel). Dynamical
quark mass M(p) (right panel).

Finally, in Fig. 7 we show the corresponding results for the quark wave function A−1(p) (left
panel) and for the dynamical quark mass M(p) (right panel). From this plot one observes
the effects due to the inclusion of a current mass term, which explicitly breaks the chiral
symmetry. We present the results for three different current quark masses m0 = 5 MeV (black
continuous), m0 = 95 MeV (red dotted) and m0 = 1.3 GeV (blue dashed), corresponding to the
up/down, strange and charm quarks. It is clear that the amount of dynamical mass generated
in the case of light quarks is much more considerable than for the heavier ones. For example,
for m0 = 5 MeV, the dynamical mass produced is M(0) = 310 MeV, for m0 = 95 MeV we
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obtain M(0) = 503 MeV, whereas for m0 = 1.3 MeV we obtain M(0) = 1.72 GeV. In addition,
using the Pagels-Stokar formula [18], we have computed the pion decay constant for the case of
m0 = 5 MeV. The result obtained is 98.4 MeV, which is in good agreement with the experiment
value of 93 MeV [19].

5. Conclusions

It has been shown that the quark gap equation gives rise to phenomenologically compatible
results for the dynamical quark mass using an infrared finite gluon propagator. The crucial
ingredient in this analysis is the structure of the non-abelian quark-gluon vertex and the quark-
ghost scattering kernel. Both quantities are responsible for furnishing the additional strength in
the intermediate region around 1 GeV, necessary for the breaking of the CS. In addition, light
quarks are significantly more affected by the dynamical mass generation than the heavier ones.
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