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Abstract. Schwinger-Dyson equations provide an appropriate framework for tackling non-
perturbative QCD phenomena requiring a continuum treatment. However, an inadequate
truncation of this tower of integral equations can compromise the symmetries underlying the
theory in question. The synthesis of the Pinch Technique and the Background Field method
provides a framework where it is possible to devise a self-consistent truncation scheme, exploiting
the Ward identities satisfied by the effective Green’s functions that emerge. In this work we
review how this truncation scheme is implemented, and show that the new series of dressed
diagrams for the background gluon propagator organizes itself in characteristic subsets that
are individually transverse. In addition, we discuss how the Background Quantum identity
connects the background gluon propagator with the conventional one, computed in the lattice
simulations.

1. Introduction

A variety of interesting QCD phenomena, such as chiral symmetry breaking, formation of bound
states, and dynamical mass generation for quarks and gluons occur in the non-perturbative
regime of the theory [1, 2, 3]. In particular, it is well know that the symmetries of the QCD
Lagrangian prohibit a gluon mass term, and therefore its appearance can only happen through
purely dynamical effects of non-perturbative nature [4]. Those effects must be triggered by a
subtle mechanism which will guarantee that the local gauge invariance remains intact [3].

The most widely used continuum approach for the study of non-perturbative QCD is based
on the Schwinger-Dyson equations (SDEs). The SDEs consist in an infinite system of coupled
integral equations connecting all Green’s functions of the theory. A major difficulty in dealing
with this system is related to the fact that it is necessary to truncate the series at some level.
In general, a good truncation scheme is considered to be one where a tractable subset of these
equations is selected and, at the same time, the underlying symmetries of the theory are not
compromised. Most importantly, the gauge invariance must be kept intact at all stages of any
truncated treatment [5, 6, 7].

Here we are particularly interested in the non-perturbative behavior of the gluon self-energy.
The advent of a self-consistent truncation scheme that preserves the transversality of the gluon
self-energy is a highly non-trivial task, mainly because the fully dressed vertices appearing
in the standard gluon SDE satisfy complicated Slavnov-Taylor identities (STIs). As a result,
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the transversality of the gluon self-energy emerges only after the contributions of all diagrams
appearing in Fig. 1 have been included [3].
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+Πµν(q) =

++

Figure 1. The conventional gluon self-energy. Wavy lines with white blobs represent full gluon
propagators, while dashed lines with white blobs are full quantum ghost ones. The black blobs
represent full vertices.

The formulation of the SDE based on the synthesis of the Pinch Technique (PT) [4, 5, 8] and
the Background Field method (BFM) [9], denoted simply as PT-BFM scheme [3, 6, 7], provides
a suitable framework for eliminating this drawback. Essentially, this special framework allows
the construction of a new SDE series for the gluon self-energy, where the dressed diagrams
are organized in a natural way into independently transverse subgroups, thus leading to a
transversality preserving truncation scheme [5, 6, 7]. The reason why such a truncation becomes
possible may be traced back to the fact that the PT-BFM Green’s functions satisfy Abelian Ward
identities (WIs), in contradistinction to the ghost-infested STIs satisfied by the conventional
functions; for more details see Ref. [5].

In this work we will review the main results obtained in Ref. [6], where the PT-BFM
truncation scheme for the gluon SDE was first presented. To do that, in the Section 2 we
introduce all the WIs satisfied by the vertices appearing in the PT-BFM gluon SDE. Then, in
Section 3 we show how the transversality in blocks emerges within this formalism. In Section
4 we discuss how the background quantum identity (BQI) [10] connects the two distinct gluon
propagators: i.e. the conventional and the PT-BFM one, appearing in the resulting gluon
SDE [5, 6, 7]. Finally, in Section 5 we summarize our conclusions.

2. The PT-BFM formalism and the WIs

In the PT-BFM framework one distinguishes between three types of gluon propagators,
depending on the nature of the the external gluon legs [5]. The legs can be formed either
by a background (B) or by a quantum (Q) gluon. More specifically, the BB gluon propagator,

to be denoted ∆̂µν(q), is formed by two B gluons. On the other hand, the BQ propagator,

∆̃µν(q), is composed by one Q and other B gluon fields. Finally, the conventional propagator,
∆µν(q), is formed by QQ gluons.

In general covariant Rξ gauges, the BB gluon propagator is defined as

∆̂µν(q) = −i

[
Pµν(q)∆̂(q2) + ξ

qµqν
q4

]
, (1)
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Figure 2. The PT-BFM gluon self-energy. Wavy lines with white blobs represent full quantum
gluon propagators, while dashed lines with white blobs are full quantum ghost ones. External
lines ending with a small gray circle are background gluons. The black blobs represent full
vertices.

where the transverse projector reads

Pµν(q) = gµν −
qµqν
q2

. (2)

The scalar co-factor ∆̂(q2) is related to the all-order BB self-energy Π̂µν(q) by

Π̂µν(q) = Pµν(q)Π̂(q2); ∆̂−1(q2) = q2 + iΠ̂(q2), (3)

where the diagrammatic representation of Π̂µν(q) is given in Fig. 2.
On the other hand, the definition for the conventional propagator ∆µν(q) can be obtained

by just omitting the hats in the above equations. However, in this case the diagrammatic
representation of the self-energy Πµν(q) is given in Fig. 1.

Let us now concentrate on the structure of the PT-BFM self-energy given in Fig. 2. We notice
that Π̂µν(q) is built out of ten dressed diagrams, to be grouped into the following four categories:
(a) one-loop dressed gluonic diagrams containing gluons only [diagrams (a1) and (a2)], (b) one-
loop dressed diagrams with internal ghost lines [(b1) and (b2)], (c) two-loop dressed gluonic
diagrams [(c1) and (c2)], and finally, (d) the two-loop dressed ghost contribution [(d1), (d2),
(d3), (d4)].

Here we will show that the aforementioned groups of diagrams are separately transverse [6].
In other words, we will demonstrate that for each subgroup

qµ Π̂ab
µν

∣∣∣
(i)

= 0, (4)

where qµ is the gluon momentum, and i = a, b, c or d refers to each group of diagrams appearing
in Fig. 2.

Notice that Π̂µν(q) of Fig. 2 contains vertices of the type BQQ, Bc̄c, BQQQ, and BQc̄c, to

be denoted Γ̃µαβ , Γ̃µ, Γ̃µναβ and Γναβ , respectively. The trilinear vertices satisfy the following
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WIs [3, 5, 6]

qµ1 Γ̃
abc

µαβ(q1, q2, q3) = gfabc
[
∆−1

αβ(q2)−∆−1
αβ(q3)

]
,

qµ1 Γ̃
acb

µ (q1, q2, q3) = gfabc
[
D−1(q2)−D−1(q3)

]
, (5)

where in the RHS of these expressions appear the inverse of the all-order QQ gluon, ∆αβ(q),
and ghost, D(q), propagators.

Similarly, the four-point Green’s functions, Γ̃µναβ and Γ̃µν , satisfy the WIs [3, 5, 6]

qµ1 Γ̃
abcd

µναβ(q1, q2, q3, q4) = igfabxΓcdx
αβν(q3, q4, q1 + q2)

+igfacxΓdbx
βνα(q4, q2, q1 + q3)

+igfadxΓbcx
ναβ(q2, q3, q1 + q4), (6)

and

qµ1 Γ̃
cdba

µν (q1, q2, q3, q4) = −igf cdxΓaxb
ν (q4, q2 + q1, q3)

−igf cbxΓadx
ν (q4, q2, q3 + q1)

−igf caxΓxdb
ν (q4 + q1, q2, q3), (7)

where on the RHS we have the all-order conventional QQQ (Γναβ) and Qc̄c (Γν) vertices.

3. Transversality Property of the gluon SDE

Now we are in position to show how the separation of the diagrams into independently transverse
groups emerges. To that end, we will exploit the rearrangements that the above WIs enforce,
when the vertices in the diagrams are contracted by the external gluon momentum [6].

Let us start with the contraction of diagram (a1) by qν ; with the help of the first line of
Eq. (5) we can write

qν Π̂ab
µν

∣∣∣
(a1)

=
1

2

∫

k

Γ̃aex
µαβ∆

αρ
ee′(k)

[
qνΓ̃

be′x′

νρσ

]
∆βσ

xx′(k + q)

=
1

2

∫

k

Γ̃aex
µαβ∆

αρ
ee′(k)gf

be′x′ [
∆−1

ρσ (k + q)−∆−1
ρσ (k)

]
∆βσ

xx′(k + q), (8)

where the brackets have been employed to emphasize where the use of the WI takes place. In
addition, we have introduced the compact notation

∫
k
≡

∫
ddk/(2π)d, where d = 4 − ǫ is the

dimension of space-time, appearing in the dimensional regularization.
To proceed further, we use into Eq. (8) the Feynman rule for the bare PT-BFM three gluon

vertex, and recalling that faexf bex = CAδ
ab we obtain

qν Π̂ab
µν

∣∣∣
(a1)

=
1

2
g2CAδ

ab

∫

k

{[
k − q −

1

ξQ
(k + q)

]

γ

gαµ +

[
q + (k + q)−

k

ξQ

]

α

gγµ

+ [−(k + q)− k]µ gγα

}
× [∆γα(k)−∆γα(k + q)] . (9)

Performing the shift k → k+ q, it is straightforward to show that
∫
k+q

∆γα(k + q) =
∫
k
∆γα(k),

which leads to

qν Π̂ab
µν

∣∣∣
(a1)

= CAg
2δabqµ

∫

k

∆ρ
ρ(k). (10)
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Then, a direct calculation of the contraction of diagram (a2) by qν yields

qν Π̂ab
µν

∣∣∣
(a2)

=
1

2
qν

∫

k

Γ̃abex
µναβ∆

αβ
ex (k)

= −CAg
2δabqµ

∫

k

∆ρ
ρ(k). (11)

Thus, from Eqs. (10) and (11) follows that the subgroup (a) obeys

qν Π̂ab
µν(q)

∣∣∣
(a)

= qν
(
Π̂ab

µν

∣∣∣
(a1)

+ Π̂ab
µν

∣∣∣
(a2)

)
= 0, (12)

which implies that the sum of the diagrams (a1) and (a2) is independently transverse.
Now let us turn our attention to the diagrams of the group (b). In this case the proof of

the transversality uses the second line of Eq. (5). Following the same steps performed in the
previous case, one finds that

qν Π̂ab
µν

∣∣∣
(b1)

= −

∫

k

Γ̃aex
µ Dee′(k)

[
qνΓ̃

be′x′

ν

]
Dxx′(k + q)

= 2CAg
2δabqµ

∫

k

D(k), (13)

and

qν Π̂ab
µν

∣∣∣
(b2)

= −qν
∫

k

Γ̃abex
µν Dex = −2CAg

2δabqµ

∫

k

D(k). (14)

Then, we find that the combination of diagrams (b) vanishes, i.e

qν Π̂ab
µν(q)

∣∣∣
(b)

= qν
(
Π̂ab

µν

∣∣∣
(b1)

+ Π̂ab
µν

∣∣∣
(b2)

)
= 0, (15)

which proves the transversality of the subgroup (b).
The analysis of the two-loop dressed diagrams is slightly more difficult. We begin with group

(c). The contraction of the diagram (c1) by qν triggers the WIs of the Eq. (6), where q1 = −q,
q2 = l + q, q3 = −k − l and q4 = k, yieldings the result

qν Π̂ab
µν

∣∣∣
(c1)

=
1

6

∫

k

∫

l

Γ̃acex
µαβγ∆

αα′

cc′ (k)∆
ββ′

ee′ (k + l)∆γγ′

xx′(l + q)

[
qνΓ̃

bx′e′c′

νγ′β′α′

]

=
ig

6

∫

k

∫

l

Γ̃acex
µαβγ∆

αα′

(k)∆ββ′

(k + l)∆γγ′

(l + q)
[
f bxiΓeci

β′α′γ′(−k − l, k, l)

+ f beiΓcxi
α′γ′β′(k, l + q,−q − k − l) + f bciΓxei

γ′β′α′(l + q,−k − l, k − q)
]
. (16)

At this point, since Γ̃acex
µαβγ , does not depend on the momenta, we can shift the integration

momenta for the different terms as in the derivations above. Then, with an appropriate relabeling
of the dummy indices, it is possible to show that all three terms contribute equally [6], leading
to

qν Π̂ab
µν

∣∣∣
(c1)

=
1

2
igf bxi

∫

k

∫

l

Γ̃acex
µαβγ∆

αα′

(k)∆ββ′

(k + l)∆γγ′

(l + q)Γeci
β′α′γ′(−k − l, k, l). (17)
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On the other hand, for the diagram (c2) we invoke again the first WI of Eq. (5), which lead
us to

qν Π̂ab
µν

∣∣∣
(c2)

=
1

2

∫

k

∫

l

Γ̃acex
µαβγ∆

αα′

cc′ (k)∆
ββ′

ee′ (k + l)Γne′c′

σβ′α′∆σσ′

nn′(l)

[
qνΓ̃

bx′n′

νγ′σ′

]
∆γγ′

xx′(l + q)

= −

1

2
igf bxi

∫

k

∫

l

Γ̃acex
µαβγ∆

αα′

(k)∆ββ′

(k + l)Γiec
γ′β′α′(l,−k − l, k)∆γγ′

(l + q)

+
1

2
igf bxi

∫

k

∫

l

Γ̃acex
µαβγ∆

αα′

(k)∆ββ′

(k + l)Γiec
γ′β′α′(l,−k − l, k)∆γγ′

(l). (18)

The last term is independent of q and must vanish identically, since the free Lorentz index
µ cannot be saturated. Then, observing that the conventional three-gluon vertex inside the
integral is Bose symmetric, Γeci

β′α′γ′(−k − l, k, l) = Γiec
γ′β′α′(l,−k − l, k), we conclude that

qν Π̂ab
µν(q)

∣∣∣
(c)

= qν
(
Π̂ab

µν

∣∣∣
(c1)

+ Π̂ab
µν

∣∣∣
(c2)

)
= 0. (19)

Finally, let us analyze the transversality of group (d). For the calculation of the divergence
of the graph (d1) we use the WI of Eq. (7), obtaining

qν Π̂ab
µν

∣∣∣
(d1)

= −

∫

k

∫

l

Γ̃acex
µα Dcc′(k + l)∆αβ

ee′(k)Dxx′(l − q)

×

[
qνΓ̃

bx′e′c′

νβ (−q, q − l,−k, l + k)

]

= ig

∫

k

∫

l

Γ̃acex
µα D(k + l)∆αβ(k)D(l − q)

[
f ebiΓbxi

β (l + k,−l,−k)

+f beiΓcxi
β (l + k, q − l,−k − q) + f bciΓixe

β (k + l − q, q − l,−k)
]
. (20)

Each of these three terms cancels one of the remaining three diagrams. Here, we will show
only the cancellation of diagram (d2). Using once again the first WI of Eq. (5), one obtains

qν Π̂ab
µν

∣∣∣
(d2)

= −

∫

k

∫

l

Γ̃acex
µα Dcc′(k + l)Dee′(l − q)Γe′nc′

β (q − l,−k − q, k + l)

×∆ββ′

nn′(k + q)

[
qνΓ̃

bx′n′

να′β′(−q,−k, k + q)

]
∆αα′

xx′ (k)

= −igf bxi

∫

k

∫

l

Γ̃acex
µα D(k + l)D(l − q)Γeic

β (q − l,−k − q, k + l)

×

[
∆αβ(k)−∆αβ(k + q)

]
. (21)

Now, shifting the second integral by k → k+q and l−q → l, we again obtain a q-independent
integral with a free Lorentz index, which cannot be saturated. Then, the remaining integral
cancel against the second term of the Eq. (20).

Similarly, one can show the cancellation of graphs (d3) and (d4) against the remaining terms
of Eq. (20) [6]. Finally, this cancellation lead us to the conclusion that

qν Π̂ab
µν(q)

∣∣∣
(d)

= qν
(
Π̂ab

µν

∣∣∣
(d1)

+ Π̂ab
µν

∣∣∣
(d2)

+ Π̂ab
µν

∣∣∣
(d3)

+ Π̂ab
µν

∣∣∣
(d4)

)
= 0, (22)

i.e. the subgroup (d) is also transverse.
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+Λµν(q) = νµ µ ν

Hνµ(q, p, r) = gµν +

µ

q
ν H̃νµ(q, p, r) = gµν +

µ

q
ν

r

p p

r

Figure 3. Diagrammatic representation of the auxiliary functions Λµν and Hµν .

Then, it follows directly from Eqs. (12), (15), (19), and (22) that the full PT-BFM self-energy
can be written as

Π̂(q2)Pµν(q) =

[
Π̂(q2)

∣∣∣
(a)

+ Π̂(q2)
∣∣∣
(b)

+ Π̂(q2)
∣∣∣
(c)

+ Π̂(q2)
∣∣∣
(d)

]
Pµν(q) , (23)

where we have omitted the color indices.
As announced, the four groups of diagrams defining the PT-BFM gluon self-energy are

independently transverse. In addition, we showed that the gluonic and ghost contributions are
independently transverse. Moreover, we also demonstrated that the transversality properties of
the one-loop and two-loop dressed diagrams do not mix.

4. A dynamical equation for the PT-BFM gluon propagator

As mentioned previously the PT-BFM SDE given in the Fig. 2, mixes the BB gluon propagator,
∆̂µν(q), with the conventional gluon propagator, ∆µν(q), appearing in the internal lines of the
diagrams. In order to convert, this equation into a dynamical integral equation, it is necessary
to translate ∆µν into ∆̂µν or vice-versa. As has been explained in the literature [3, 5, 6], we can
accomplish this task by employing the so-called Background Quantum Identities (BQIs), which
relate the PT-BFM Green’s function with the conventional ones [10].

In the case of the gluon propagators, the corresponding BQI states that

∆̂(q) =
[
1 +G(q2)

]2
∆(q). (24)

The function G(q2) that appears in the above equation is defined as the scalar co-factor of gµν
in the Lorentz decomposition of a special two-point function Λµν(q), defined diagrammatically
in the Fig. 4 [5, 6, 7]. More specifically, we can write

Λµν(q) =

∫

k

H(0)
µαD(k)∆αβ(k + q)Hνβ(k + q,−k,−q)

= gµνG(q2) + qµqνL(q
2), (25)

where H
(0)
µν = −iggµν . Its fully-dressed Hαβ is related to the conventional gluon-ghost vertex

Γβ by the following STI [11]
qαHαβ(p, r, q) = Γβ(p, r, q). (26)
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Using Eqs. (3), (23) and (24), we can rewrite the SDE exclusively in terms of the conventional
propagator in the following way [6]

∆−1(q2) =
q2 + iΠ̂(q2)

[1 +G]2
, (27)

since the diagrams that define Π̂(q2) involve only conventional propagators, ∆(q2).
Notice that the PT-BFM formalism provides a systematic way of truncating the gluon SDE

without compromising the gauge invariance of the equation [3, 6, 7]. For example, the simplest
truncation scheme would be one where we retain only the one-loop gluonic contribution, i.e.
the diagrams of the group (a). A improved version of this truncation is the case where the
ghost effects at one-loop dressed are also included, i.e. retain diagrams of the group (a) and (b).
Then, we can improve further by including the two purely gluonic two-loop dressed diagrams of
the group (c). Finally, the gluon SDE will be treated thoroughly when the group (d), is finally
entirely included into the game.

5. Conclusion

In this presentation we have reviewed how the transversality properties of the gluon SDE
emerge in blocks within the PT-BFM truncation scheme. In particular, we have shown that
the formulation of this SDE in the context of this formalism furnishes considerable advantages,
because it allows for a systematic truncation that respects manifestly, and at every step the
gauge-invariance, expressed by the transversality of the gluon self-energy. We also reviewed
that one may use the SDE for ∆̂(q), take advantage of its improved truncation properties, and
then convert it to an equivalent equation for ∆(q) (the conventional gluon propagator simulated
on the lattice) by means of the BQIs. It is important to mention that different versions of
truncations, within this scheme, have been studied in the last few years [3, 6, 7, 12], and all
results found so far corroborate the notion of an IR finite, massive gluon propagator.
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