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Abstract: Confidence sets are generally interpreted in terms of replications of an experiment.
However, this interpretation is only valid before observing the sample. After observing the sample,
any confidence sets have probability zero or one to contain the parameter value. In this paper,
we provide a confidence set analysis for an observed sample based on fuzzy set theory by using
the concept of membership functions. We show that the traditional ad hoc thresholds (the confidence
and significance levels) can be attained from a general membership function. The applicability of the
newly proposed theory is demonstrated by using well-known examples from the statistical literature
and an application in the context of contingency tables.
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1. Introduction

Quantities of interest are typically surrounded by a number of uncertain events. According
to statistical reasoning, probability measures are employed to model uncertain events and to make
inferences over the quantities of interest. The observed relevant information is contained in the
observed sample [1]. The statistical model is formally written by the triplet: (X ,F ,P), whereX ⊆ Rn

is the sample space, F is the associated σ-field and P = {Pθ : θ ∈ Θ} is a family of sampling
probabilities indexed by a parameter θ, where Θ ⊂ Rk, with k < ∞, is a non-empty set called the
parameter space. The quantities of interest are connected with the parameter θ, e.g., the expectation
of some random quantity defined in the statistical model.

The inferential process about θ involves a summary of the information provided by the observed
data using (minimal) sufficient statistics and their respective induced models that concentrate the
statistical relevant information. There are essentially two types of estimation theories, namely, point
and set estimation theories; this paper focuses on the latter. For the univariate case, Neyman [2]
provided a theory of confidence intervals, which is based on a random interval θ1(X) ≤ θ ≤ θ2(X)

such that its probability is greater than (or equal to) to a given predefined value γ = 1 − α < 1
(confidence level), where X is the random sample. The most frequent interpretation states that if the
experiment is repeated and a confidence interval is computed for each experiment, then the parameter
θ is expected to lie at least in 100γ% of those observed confidence intervals. However, in practice, the
experiment is repeated once and just one confidence set is observed. This observed confidence set

Entropy 2016, 18, 211; doi:10.3390/e18060211 www.mdpi.com/journal/entropy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296793169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 211 2 of 22

θ1(x) ≤ θ ≤ θ2(x) contains non-random values, since x is the observed value of X, so, the probability
that this observed confidence set contains any specific point or region will always be zero or one [3].
Therefore, after observing the sample the confidence sets cannot be interpreted in terms of frequencies
(as Neyman proposed in 1935 [2]).

Fuzzy set theory developed by Zadeh [4,5] allows generating possibility distributions by using
confidence sets (see for example [6–8]). Probability measures are dominated by possibility measures
in the following sense: Events with zero possibility must have zero probability, however not all
events with positive possibility have positive probability [9]. That is, in some cases, some events
with positive possibility do have zero probability. Therefore, possibility measures can provide an
information not featured by probability measures. We will show that, for a given observed sample,
the related possibility distribution provides information about the structure of confidence sets.

The main contribution of our paper is to show how to generate a fuzzy number from a
given confidence set and therefore infer about some parameter θ under the light of fuzzy set
theory. Although this approach has already been discussed in the literature (see [7,8,10]), our
approach is more general (e.g., the confidence region is formally defined, the parameter space is
multidimensional, etc.) and oriented to the statistical community. In this context, the proposal
presented in this paper is based on a general membership function proposed in Patriota [11]. As
a consequence of this characterization, properties and comparisons of confidence sets are discussed
under the scope of fuzzy set theory but from a statistical point of view.

The paper is organized as follows. In Section 2, a review of fuzzy set theory for statisticians
is provided. Section 3 focuses on the connection between confidence sets and fuzzy sets through
a membership function. Section 4 presents some examples of the results obtained and Section 5
provides an application to a real dataset. Finally, in Section 6, a discussion about different proposals
existing in the literature for relating confidence theory and fuzzy theory is presented. Section 7 ends
the paper with some remarks and conclusions.

2. Preliminaries

2.1. A Brief Review of Fuzzy Theory

Fuzzy set theory provides mathematical treatment of some vague linguistic terms such as
“about”, “around”, “close”, “short”, among others. From the fuzzy theory viewpoint, numbers
are idealizations of imprecise information expressed by means of numerical values. For example,
when the height of an individual is measured, a numerical value is registered including some
inaccuracies. Such inaccuracies may have been caused by the measurement instruments, human
limitations, rounding, or biased prior information among many other causes. If the “real" value of
the height is represented by the number h, maybe it would be more correct to say that the value
of the height is approximately and not exactly h [12], the word “approximately” is imprecise and
can be modeled by fuzzy theory. As was noted by Coppi et al. [13], fuzzy theory can provide an
additional value to statistical methods because of the uncertainty inherent to the observable world
and its associated information sources are combined beyond the traditional probability theory. For
example, Tanaka et al. [14] introduced the concept of fuzzy regression while Wünsche et al. [15]
characterized the least squares method for fuzzy random variables and Arabpour and Tata [16]
developed some theoretical elements regarding parameter estimation in fuzzy regression models.
The connection between the estimation of parameters and fuzzy theory has been studied by several
authors. Geyer and Meeden [17] established a relation between the concept of p-value and fuzzy
structures and Parchami et al. [18] introduced the concept of fuzzy confidence intervals. On
the other hand, Casals et al. [19] studied fuzzy decision problems by relating the concepts of
hypothesis testing and fuzzy information nature. Saade and Schwarzlander [20] and Saade [21]
proposed a characterization of fuzzy hypothesis testing while Watanabe and Imaizumi [22] related
the concepts of hypothesis test statistics and fuzzy hypotheses. Arnold [23,24] related the concept of
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fuzzy hypothesis testing with conventional methods of real data analysis. Taheri and Behboodian [25]
generalized the Neyman–Pearson approach for hypothesis testing under the fuzzy point of view and
Filzmoser and Viertl [26] introduced the concept of fuzzy p-value for statistical hypotheses using
fuzzy data. Recently, Patriota [11] provided an evidence measure for testing null hypotheses that is
intrinsically related to fuzzy theory.

2.2. Overview of Fuzzy Theory

In order to make our paper self-contained, we provide an overview of fuzzy theory in this
section. We only use some concepts and terminology of fuzzy set theory, mainly based on the
works of [5,27,28].

Definition 1. Let Ω ⊆ Rk be a non-empty subset of the k-dimensional Euclidean space. A fuzzy set Ã
is a set of ordered pairs Ã =

{(
ω, µÃ(ω)

)
: ω ∈ Ω

}
, where µÃ : Ω → [0, 1] is called the membership

function for the fuzzy set Ã. In addition, the empty fuzzy set ∅̃ is characterized by µ∅̃(ω) = 0 for
all ω ∈ Ω ⊆ Rk.

The fuzzy set theory extends the traditional set theory by relaxing the concept of membership
of elements in their respective sets. On the one hand, in the ordinary set theory it is considered that
ω ∈ A (membership one) or ω 6∈ A (membership zero), that is, it is a binary operation. On the other
hand, fuzzy set theory considers a degree of membership that ranges over the interval [0, 1], that is, ω

is a member of A with a certain degree and this same element ω is a member also of Ac with another
degree. Probability theory is built on the usual set theory and provides a number in [0, 1] to describe
the degree of uncertainty that ω ∈ A.

The main difference between probability theory and fuzzy theory lies in the definition of a set:
the former considers traditional sets and the latter considers fuzzy sets. As will be seen in this section,
the properties of fuzzy sets are very different from those of traditional sets. The applicability of fuzzy
sets is enormous in language modeling [29], image analysis [30] among many others. One simple
example is that an object with gray color has a degree of blackness and a degree of whiteness, so it
would be much more informative to model this phenomenon inside the fuzzy set framework setting
membership degrees than by setting a binary membership (traditional set theory).

From Definition 1, we can represent an ordinary set by using fuzzy notation. For instance, if
Ω = Rk, then any usual subset B ⊆ Rk is represented by setting µB̃(ω) = 1 for all ω ∈ B and
µB̃(ω) = 0 for all ω 6∈ B. As a special case, let Ω = R and B = (a, b) be an interval on the real line with
a < b. Then, B can be written in terms of a fuzzy set as B̃ = {(ω, 1) : ∀ ω ∈ B} ∪ {(ω, 0) : ∀ ω 6∈ B}.

It is important to stress that membership and probability density functions are intrinsically
different. For example, if π(ω) is a density function, i.e., π(ω) ≥ 0 for all ω ∈ Ω and

∫
Ω π(ω)dω = 1,

then we can obtain a membership function by defining µÃ(ω) = C−1π(ω), provided that
C = sup

ω∈Ω
π(ω) < ∞. However, the converse is not necessarily true, since a membership function

does not need to be integrable over Ω.
For probability density functions, it is common to define a support to characterize the set of all

points with positive density. For membership functions, we have the same definition to represent the
set of all points with positive membership in the fuzzy set. Definition 2 formalizes this concept.

Definition 2. The support of a fuzzy set Ã is defined as

supp(Ã) =
{

ω ∈ Ω : µÃ (ω) > 0
}

.

Notice that, an element ω has full membership in its respective fuzzy set when its membership
is one. In this context, the element ω fully contains all features required by the fuzzy set. Definition 3
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formalizes the set of all points with full membership, that is, all points where their membership
functions are equal to one.

Definition 3. The core of a fuzzy set Ã is defined as core(Ã) = {ω ∈ Ω : µÃ(ω) = 1}.

When the core has as least one element, we have a normal fuzzy set (see Definition 4).

Definition 4. A fuzzy set Ã is called normal if its core is nonempty. In other words, there is at least
one point ω ∈ Rk with µÃ (ω) = 1.

Let Ã be a normal fuzzy set. Then, the closer µÃ(ω0) is to one, the more we believe that ω0 lies
in core(Ã) and the closer µÃ(ω0) is to zero, the more we believe that ω0 is not in core(Ã). That is, the
degree of membership for an element can also be seen as a measure of uncertainty [29].

Let Ã and B̃ be two fuzzy sets with membership functions µÃ(ω) and µB̃(ω), respectively.
According to Zadeh [5], (see also [31]), if Ω ⊆ Rk the common operations are defined as follows:

1. Ã ⊆ B̃⇐⇒ µÃ (ω) ≤ µB̃ (ω) for all ω ∈ Ω.
2. Ã ≡ B̃⇐⇒ µÃ (ω) = µB̃ (ω) for all ω ∈ Ω.
3. Ãc is the complement of Ã⇐⇒ µÃc (ω) = 1− µÃ (ω) for all ω ∈ Ω.
4. C̃ = Ã ∪ B̃⇐⇒ µC̃ (ω) = max{µÃ (ω) , µB̃ (ω)} for all ω ∈ Ω.
5. D̃ = Ã ∩ B̃⇐⇒ µD̃ (ω) = min{µÃ (ω) , µB̃ (ω)} for all ω ∈ Ω.

From the above definitions, if we consider Ω̃ = {(ω, 1) ; ω ∈ Ω ⊆ Rk} as the universal fuzzy set,
then for any fuzzy set Ã we have Ã ⊆ Ω̃, provided that the membership function of Ã has domain Ω.
In addition, if there exists ω0 ∈ Ω such that max{µÃ (ω0) , µÃc (ω0)} < 1 we have that Ã ∪ Ãc 6= Ω̃.
Also, if there exists ω0 ∈ Ω such that min{µÃ (ω0) , µÃc (ω)} > 0, we have that Ã ∩ Ãc 6= ∅̃. As
the reader can see, these properties block the excluded middle and contradiction laws of classic set
theory (for further details see [31–33]).

The concept of a fuzzy set is very broad and difficult to handle without some additional
specifications. In this context, the next definition allows us to specify fuzzy numbers, which are
natural extensions of traditional numbers. However, this latter definition depends on fuzzy convexity,
which is defined next (see [5] for more details).

Definition 5. A set Ã is convex if and only if µÃ(λω1 + (1− λ)ω2) ≥ min{µÃ(ω1), µÃ(ω2)} for all
ω1, ω2 ∈ Ω and λ ∈ [0, 1].

Note that the concept of convexity under the fuzzy approach differs from the classic definition
of convexity under functional analysis. More discussion about this concept will be presented in
Section 3. A fuzzy interval Ã is a fuzzy set that satisfies the condition of convexity and normality, so
the core of a fuzzy interval is constituted by all elements with membership one. A fuzzy interval Ã is
a fuzzy number when the cardinality of core(Ã) equals 1 [28]. Fuzzy numbers and fuzzy intervals are
useful to represent imprecision for point and interval measures, respectively. As mentioned earlier,
these concepts have multiple applications, e.g., in artificial intelligence, image processing, speech
recognition, biological, and medical science, operations research, decision analysis, information
processing, economics, geography, psychology, linguistics, etc. More applications can be found
in [34,35]. Figure 1a–c illustrate a general fuzzy set, a fuzzy interval and a fuzzy number, respectively.

Dubois et al. [27] defined the class of LR (left and right) membership functions defined over
Ω = R, i.e., the class of membership functions that can be entirely characterized by three parameters,
namely, (m, α, β), and two functions L and R. The next definition is related to the concept of LR-type
fuzzy numbers.
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Figure 1. Representations of (a) a general fuzzy set, (b) a fuzzy interval and (c) a fuzzy number.

Definition 6. The fuzzy number Ã is said to be of LR-type if two decreasing functions exist L, R :
[0,+∞) → [0, 1] with L(0) = R(0) = 1, lim

ω→+∞
L(ω) = lim

ω→+∞
R(ω) = 0 and positive real numbers

m ≥ 0, α > 0, β > 0 such that

µÃ (ω) =


L
(

m−ω

α

)
, for ω ≤ m,

R
(

ω−m
β

)
, for ω ≥ m,

where m is called the center of Ã and α and β are called the left and right propagations, respectively.

If α = β, Ã is called a symmetric fuzzy number. For a symmetric membership function, the
equality L

(m−ω
α

)
= R

(
ω−m

β

)
holds for all ω ∈ R.

In this paper, we use all definitions presented in this section to connect the classic statistical
quantities with fuzzy theory.

3. Confidence Sets and Membership Functions

As mentioned in the Introduction, the main goal of this paper is to infer about some parameter
θ using the confidence sets under the fuzzy set theory. For that reason, we start this section by
presenting the definition of a general confidence set.

Under a parametric statistical model (X ,F ,P) with P = {Pθ, θ ∈ Θ}, where Θ ⊂ Rk and
k < ∞, a (1− α) confidence set is a function Cα : X → 2Θ, where 2Θ is the family of all subsets of Θ
(the power set) satisfying

Pθ(Cα(X) = ∅) = 0, Pθ(Cα(X) 3 θ) ≥ 1− α and inf
θ∈Θ

Pθ(Cα(X) 3 θ) = 1− α (1)
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for every θ ∈ Θ, where X ∈ X is a random vector defined in the statistical model (see [36], p. 315).
When Pθ(Cα(X) 3 θ) = 1 − α for all θ ∈ Θ, then the confidence set Cα is exact. Procedures
to build confidence sets can be found in [37–41] among others. These procedures are in general
based on pivotal quantities and likelihood-ratio statistics. Here, 1 − α is called the confidence
level and α is called the significance level [42]. Intuitively, the interval width depends on the
confidence level, for instance, the greater the confidence level the greater the interval width built
under normal distributions (see [43]).

After observing the sample, the confidence set Cα(x) is a fixed set and Pθ(Cα(x) 3 θ) is zero
or one, where x is the observed sample, so the probability statements in Equation (1) are used just to
construct a proper confidence set. Once the sample is observed, this confidence set is fixed. Therefore,
the observed confidence sets cannot be interpreted in terms of probabilities (see [44] Section 3.1.2,
p. 41, for further details). In this section we show that, although it is not possible to make probabilistic
statements about observed confidence sets, we can interpret the observed confidence sets in terms of
fuzzy sets. We present a general membership function that provides all information contained in an
observed confidence set Cα(x), for all levels α ∈ [0, 1] (alpha-cuts).

Lemma 1. Let Cα be a confidence set of α ∈ [0, 1] level for some subset of Θ, where x ∈ X . Let
C = {Cα(x)}α∈I where I ⊆ [0, 1] is non-empty. For each θ ∈ Θ, we define

µΘ̃,C(θ) = max{0, sup{α ∈ I : Cα(x) ∩ {θ} 6= ∅}}, (2)

where sup{∅} = −∞. We use the short notation µΘ̃ when the family C is not the focus. Then, µΘ̃ is a
membership function, that is, µΘ̃ : Θ→ [0, 1].

Proof. As µΘ̃,C is a function and I ⊆ [0, 1] is non-empty. The proof is straightforward.

For each proposed confidence region, we can represent the parameter space by the fuzzy set

Θ̃ = {(θ, µΘ̃(θ)); θ ∈ Θ},

where µΘ̃(θ) is given in Equation (2). Note that for different confidence sets C1,α and C2,α we have
different memberships, namely µΘ̃,C1

≡ µΘ̃1
and µΘ̃,C2

≡ µΘ̃2
, respectively, where C1 = {C1,α(x)}α∈I1

and C2 = {C2,α(x)}α∈I2 with I1 ∪ I2 ⊂ [0, 1]. As a consequence, the resulting fuzzy sets will have
different representations, namely

Θ̃1 = {(θ, µΘ̃1
(θ)); θ ∈ Θ} and Θ̃2 = {(θ, µΘ̃2

(θ)); θ ∈ Θ},

respectively. Additional information with respect to Equation (2) can be found in Mauris et al. [45]
and more recently in [11]. Patriota [11] studied some relationships with p-values when the confidence
region Cα is built under the likelihood-ratio statistic.

The next result characterizes the core of Θ̃.

Theorem 1. Let µΘ̃(θ) and I = [0, 1] be the quantities defined in Equation (2), then core(Θ̃) = {θ ∈ Θ :
θ ∈ Cα(x) ∀α ∈ I}.

Proof. From Definition 3, we have that core(Θ̃) = {θ ∈ Θ : µΘ̃(θ) = 1}. Now, we have that
µΘ̃(θ) = 1 if, and only if, sup{α ∈ I : Cα(x) ∩ {θ} 6= ∅} = 1. This last fact occurs when θ ∈ Cα(x) for
all α ∈ I concluding the proof.

Theorem 1 characterizes the functional form of the core for the membership function defined in
Equation (2), that is, those values in Θ that produce full membership.
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Remark 1. If the confidence set Cα(x) is centered in the maximum likelihood (ML) estimate θ̂, then
we have that µΘ̃(θ̂) = 1. This means that the ML estimate is part of the core of the fuzzy set Θ̃. We
can interpret core(Θ̃) as the set of all parameter values for which the related probability distribution
explains the observed data according to C.

Next we define non-increasing confidence sets in terms of the significance level α.

Definition 7. Let C = {Cα(x)}α∈I be a family of confidence sets. We say that C is a non-increasing
family of confidence sets if Cα1(x) ⊆ Cα2(x) for all 0 ≤ α2 < α1 ≤ 1.

The next result relates the monotonicity property of confidence sets with the
membership functions.

Theorem 2. Let C = {Cα(x)}α∈I be a family of non-increasing confidence sets. If core(Θ̃) = {θ∗}, then
µΘ̃(θ) ≥ µΘ̃(θ

+), for all θ ∈ θε and θ+ ∈ (θγ ∩ θc
ε), where θν = {θ ∈ Θ; ‖θ − θ∗‖ ≤ ν} and

with 0 < ε ≤ γ.

Proof. As θε ⊆ θγ and Cα(x) is non-increasing, we have for each θ ∈ θε and θ+ ∈ (θγ ∩ θc
ε) that

{α ∈ I : Cα(x) ∩ {θ+} 6= ∅} ⊆ {α ∈ I : Cα(x) ∩ {θ} 6= ∅}.

Applying the supremum, we obtain µΘ̃(θ) ≥ µΘ̃(θ
+), concluding the proof.

Another important result for non-increasing confidence sets is the relationship between the
convexity concept in Definition 5, defined by Zadeh [5], and the monotonicity property. This
relationship is based on Theorem 2, concluding that µΘ̃(λθ+ + (1 − λ)θ) ≥ min{µΘ̃(θ

+), µΘ̃(θ)},
for all θ+, θ ∈ Θ and λ ∈ [0, 1] and therefore Θ̃ is convex in the fuzzy context. Theorem 2 can be
used to compare the membership functions. Next definition introduces the concept of supremacy for
comparing confident sets.

Definition 8. Let µΘ̃1
, µΘ̃2

: Θ → [0, 1] be two membership functions with the same core. We say
that µΘ̃1

has total supremacy over µΘ̃2
if µΘ̃1

(θ) ≤ µΘ̃2
(θ) for all θ ∈ Θ. They are totally equivalent

if µΘ̃1
(θ) = µΘ̃2

(θ) for all θ ∈ Θ. We denote total supremacy by µΘ̃1
�T µΘ̃2

and total equivalence
by µΘ̃1

∼T µΘ̃2
.

Definition 8 allows us to compare two different confidence sets, e.g., we can determine if a
confidence set is more conservative than another for all confidence levels. Definition 8 is similar
to the definition of superiority given by Xie and Singh [46]. Note also that if U is the family of
all membership functions then�T establishes an order relation in U and this relation is the order
relation of the inclusion for fuzzy sets, (see for instance [47]). Notice that Definition 8 is strong and
is not applicable in many situations, notably if two membership functions have different core sets.
In order to make the supremacy concept less restrictive, allowing us to include more situations, we
define the following operators.

Definition 9. Let µΘ̃1
and µΘ̃2

two continuous membership functions. We say that

1. µΘ̃1
has r-up-supremacy over µΘ̃2

if Er(µΘ̃1
) ≤ Er(µΘ̃2

), and is denoted by µΘ̃1
�Er µΘ̃2

.
Moreover, they are r-up-equivalent when Er(µΘ̃1

) = Er(µΘ̃2
), and are denoted by µΘ̃1

∼Er µΘ̃2
,

where
Er(µΘ̃) =

∫
Θr

µΘ̃(θ) dθ

with
Θr = {θ ∈ Θ : µΘ̃(θ) ≥ r}
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and r ∈ [0, 1] is such that the resulting integral is well defined.
2. If µΘ̃ is integrable with respect to the Lebesgue measure in dimension k = dim(Θ), µΘ̃1

has
r-down-supremacy over µΘ̃2

if Er(µΘ̃1
) ≤ Er(µΘ̃2

), denoted by µΘ̃1
�Er µΘ̃2

. Moreover, they are
r-down-equivalent when Er(µΘ̃1

) = Er(µΘ̃2
), and it is denoted by µΘ̃1

∼Er µΘ̃2
, where

Er(µΘ̃) =
∫

Θc
r

µΘ̃(θ) dθ,

with
Θc

r = {θ ∈ Θ : µΘ̃(θ) < r}.

We call Er the r-up integral operator and Er the r-down integral operator.

Notice that, if µΘ̃ is integrable, then by Definition 9, it is straightforward that

E0(µΘ̃) = Er(µΘ̃) + Er(µΘ̃) = E1(µΘ̃) (3)

for all r ∈ [0, 1]. In addition, if dim({θ ∈ Θ : µΘ̃(θ) = 1}) < k, we also have that
E1(µΘ̃) = E0(µΘ̃) = 0. Example 1 describes how to analytically compute the quantities Er and Er.
However, for more complex models, analytical solutions are virtually impossible, so these integrals
have to be computed numerically by using any software (for instance, MAPLE, MATLAB, Ox, R, SAS).

Example 1. Let X = (X1, X2, . . . , Xn)> be a random sample (the random variables are independent
and identically distributed) from a normal population with mean θ and known variance σ2 and let x
be the observed sample. Here, Θ = R and a (1− α) confidence set for θ, using the pivotal quantity
method, is given by

Cα(x) =
[
x̄− zα/2σ/

√
n, x̄ + zα/2σ/

√
n
]

,

for α ∈ I = [0, 1], where x̄ is the sample mean and zq is the qth-quantile of a standard normal
distribution. The membership function is given by

µΘ̃(θ) = 2
(

1−Φ
(√

n|x̄− θ|
σ

))
.

Then, solving the equations µΘ̃(c1r) = µΘ̃(c2r) = r with respect to c1r and c2r, where
c1r ≤ x̄ ≤ c2r, we obtain

c1r = x̄ +
σ√
n

Φ−1
(

r
2

)
, c2r = x̄− σ√

n
Φ−1

(
r
2

)
and

Er(µΘ̃) =
∫

Θc
r

µΘ̃(θ) dθ = 4
∫ c1r

−∞
Φ
(√

n(θ − x̄)
σ

)
dθ,

where Θr = µ−1
Θ̃

([r, 1]) = [c1r, c2r]. Letting u =
√

n(θ − x̄)/σ, we have that

∫ c1r

−∞
Φ
(√

n(θ − x̄)
σ

)
dθ =

σ√
n

∫ √n(c1r−x̄)/σ

−∞
Φ(u) du.

Now, by using the identity [48]
∫ a
−∞ Φ(x) dx = aΦ(a) + φ(a), where φ(·) stands for the standard

normal density function, we have that

Er(µΘ̃) =
4σ√

n

{√
n(c1r − x̄)

σ
Φ
(√

n(c1r − x̄)
σ

)
+ φ

(√
n(c1r − x̄)

σ

)}
.
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Similarly for the r-up integral operator,

Er(µΘ̃) = 4
∫ x̄

−∞
Φ
(√

n(θ − x̄)
σ

)
dθ − 4

∫ c1r

−∞
Φ
(√

n(θ − x̄)
σ

)
dθ,

then

Er(µΘ̃) =
4σ√

n

{
φ(0)−

√
n(c1r − x̄)

σ
Φ
(√

n(c1r − x̄)
σ

)
− φ

(√
n(c1r − x̄)

σ

)}
.

Definition 9 will be used to identify more conservative confidence sets. It is possible to show
that�Er , �Er and�T satisfy the requirements to be order relations (reflexivity, antisymmetry and
transitivity) and ∼Er , ∼Er and ∼T satisfy the requirements to be equivalence relations (reflexivity,
symmetry and transitivity).

Theorem 3 establishes some relations among the three types of supremacies.

Theorem 3. Let µΘ̃1
, µΘ̃2

: Θ→ [0, 1] be two continuous and integrable membership functions. Then,

[∀r ∈ [0, 1], µΘ̃1
�Er µΘ̃2

] if and only if [∀r ∈ [0, 1], µΘ̃1
�Er µΘ̃2

]. (4)

Moreover, if core(Θ̃1) = core(Θ̃2),

[∀r ∈ [0, 1], µΘ̃1
�Er µΘ̃2

] if and only if [µΘ̃1
�T µΘ̃2

], (5)

where Θ̃i = {(θ, µΘ̃i
) : θ ∈ Θ}.

Proof. Let θ∗ ∈ Θ and k ∈ R and define µΘ̃1,k,∗
(θ) = µΘ̃1

(θ + kθ∗). Notice that Er(µΘ̃1
) ≤ Er(µΘ̃2

),

for all r ∈ [0, 1], if and only if there exist θ∗ ∈ Θ and k ∈ R such that Θ̃1,k,∗ ⊆ Θ̃2, where the latter is
the inclusion of fuzzy sets and Θ̃1,k,∗ depends on the membership function µΘ̃1,k,∗

. This implies that

Er(µΘ̃1
) ≤ Er(µΘ̃2

) for all r ∈ [0, 1]. The proof of the converse is similar. If k = 0, by the equality of

the cores, we have Θ̃1 ⊆ Θ̃2 if and only if µΘ̃1
�T µΘ̃2

.

A confidence interval is said to be more conservative than another if the former interval’s
amplitude is greater than the latter’s for a specific significance level. A procedure to generate a
confidence interval is considered more conservative than another if the interval’s amplitude is greater
than the latter’s for all significance levels. Below, we define the conservative concept for general
confidence sets.

Definition 10. Let C1 = {C1,α(x)}α∈I1 and C2 = {C2,α(x)}α∈I2 be two families of confidence sets. We
say that C2 is more conservative than C1 if their respective memberships µΘ̃,C2

≡ µΘ̃2
and µΘ̃,C1

≡ µΘ̃1
satisfy µΘ̃1

�Er µΘ̃2
for all r ∈ [0, 1]. We say that the region C2,α(x) is up-more conservative than

C1,α(x) if µΘ̃1
�Eα µΘ̃2

and down-more conservative if µΘ̃1
�Eα µΘ̃2

.

The next proposition establishes some properties of Θ̃. The proof is straightforward from
Lemma 1, Definition 3 and Definition 8 and therefore is omitted.

Proposition 1. Let Θ̃ = {(θ, µΘ̃(θ)); θ ∈ Θ} with µΘ̃(θ) as in Equation (2). Then, the following statements
are valid.

1. core(Θ̃) = µ−1
Θ̃

({1}), where µ−1
Θ̃

({1}) = {θ ∈ Θ : µΘ̃(θ) = 1}. Also, if core(Θ̃) is a singleton then Θ̃
is a fuzzy number.

2. If the cardinality of µ−1
Θ̃

({1}) is greater than 1, then Θ̃ is a normal fuzzy set.
3. If µ−1

Θ̃
({1}) = Θ, then Θ̃ = {(θ, 1); θ ∈ Θ}.
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4. Let Θ̃1 and Θ̃2 be two fuzzy set representations over the parametric space Θ associated with C1,α(x) and
C2,α(x) respectively. If C1,α(x) ⊆ C2,α(x) for all α ∈ [0, 1], then µΘ̃2

� µΘ̃1
and C2,α(x) is more

conservative than C1,α(x) for all α ∈ [0, 1].

Definitions 8–10 are tools for comparing confidence sets through their respective membership
functions. The membership functions used are defined in the same parameter space. However,
there are situations in which we are interested in comparing confidence sets from a partial vector
parameter with confidence sets from a full parameter vector. Therefore, a membership function for
partial parameter vectors is defined next.

Let θ = (λ>, ψ>)>, where λ and ψ are vectors with dimensions k1 and k2 with k = k1 + k2.
Without loss of generality, let C∗α(x) be a confidence set for λ and let Λ be the set in which λ varies.
Then, a membership function for λ can be defined simply by µΛ̃ : Λ→ [0, 1] such that

µΛ̃(λ) = max{0, sup{α ∈ [0, 1] : C∗α(x) ∩ {λ} 6= ∅}}. (6)

The same properties of the membership (2) and the above definitions are valid for this partial
membership function.

4. Examples

In this section we present some examples of confidence sets in order to illustrate the relation
between the confidence set and associated membership function. Moreover, we compute the r-up
and down integral operators.

4.1. Exponential Distribution

Let X = (X1, . . . , Xn)> be a random sample from an exponential distribution with rate θ, let x be
the observed sample and x̄ the sample mean. Then, a 1− α level confidence interval for θ

(a1) by using the pivotal quantity (see [49], p. 267) is

C1,α(x) =

[
χ2

2n;α/2

2nx̄
;

χ2
2n;1−α/2

2nx̄

]

(a2) by using the asymptotic approximation [50] is

C2,α(x) =
[

1
x̄
− z1−α/2

x̄
√

n
;

1
x̄
+

z1−α/2

x̄
√

n

]
,

where χ2
ν;q is the q-th quantile of a chi square distribution with ν degrees of freedom.

Thus, from Lemma 1 we have the following:

(a1) The membership function for C1 = {C1,α}0≤α≤1 is µΘ̃1
: R→ [0, 1] such that

µΘ̃1
(θ) =


2 χ2(2nθx̄; 2n

)
, for θ < 1/x̄,

2
(

1− χ2(2nθx̄; 2n
))

, for θ ≥ 1/x̄

(a2) The membership function for C2 = {C2,α}0≤α≤1 is µΘ̃2
: R→ [0, 1] such that

µΘ̃2
(θ) = 2 (1−Φ(

√
n|1− x̄θ|)),

where χ2(·; ν) is the cumulative distribution function of a chi square distribution with ν degrees
of freedom.
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Figure 2 presents the membership functions (panel a) and functions (r, Er) for r ∈ [0, 1] and
(r, Er) for r ∈ [0, 1] for both confidence intervals (panels b and c), considering n = 5 and x̄ = 1. In all
plots, the solid and dotted lines represent cases (a1) and (a2), respectively.

In particular, Figure 2a shows that for some θ ∈ Θ∗ ⊂ Θ we have µΘ̃1
(θ) ≤ µΘ̃2

(θ) and for some

θ ∈ Θ
′ ⊂ Θ we have µΘ̃2

(θ) ≤ µΘ̃1
(θ). That is, the order relation is not the same for all θ ∈ Θ.

However, Definition 8 states that the order relation must be fulfilled for all θ ∈ Θ. In Figure 2b, it can
be observed that the inequality Er(µΘ̃1

) ≤ Er(µΘ̃2
) holds for r ∈ [0.81; 1.00]. Consequently, µΘ̃1

has
r-down-supremacy over µΘ̃2

for all r ∈ [0.81; 1] (see Definition 9). For r = 0.81, we have Er(µΘ̃1
) =

Er(µΘ̃2
) = 0.55, while for values of r ≤ 0.81 we observe that Er(µΘ̃1

) and Er(µΘ̃2
) have interlacings.

Finally, Figure 2c shows that the relationship Er(µΘ̃2
) ≤ Er(µΘ̃1

) is true for r ∈ [0.40; 0.84], then we
observe that µΘ̃2

has r-up-supremacy over µΘ̃1
for all r ∈ [0.4; 0.84]. For r = 0.4 and r = 0.84, we have

Er(µΘ̃1
) = Er(µΘ̃2

) = 0.41 and Er(µΘ̃1
) = Er(µΘ̃2

) = 0.14, respectively. For r ≥ 0.84 we observe that
µΘ̃1

has r-up-supremacy over µΘ̃2
.
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Figure 2. (a) membership functions for the exponential rate based on the pivotal quantity (solid
line) and based on the normal approximation (dotted line); (b) the r-down integral operator for the
respective memberships; (c) the r-up integral operator for the respective memberships. n = 5 and
x̄ = 1 are considered.

4.2. Poisson Distribution

Now, let X = (X1, . . . , Xn)> a random sample from a Poisson distribution with rate θ, and let x
be the observed sample and x̄ the sample mean. A 1− α level confidence interval for θ

(a1) by using the pivotal quantity [51] is

C1,α(x) =

[
χ2

2nx̄;α/2

2n
;

χ2
2nx̄+2;1−α/2

2n

]

(a2) by using the asymptotic approximation [52] is

C2,α(x) =

[
x̄− z1−α/2

√
x̄√

n
; x̄ +

z1−α/2
√

x̄√
n

]
.
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Thus, from Lemma 1 we have the following.

(a1) The membership function for C1 = {C1,α}0≤α≤1 is µΘ̃1
: R→ [0, 1] such that

µΘ̃1
(θ) =


min

{
1, 2

(
1− χ2(2nθ; 2nx̄

))}
, for θ ≤ x̄,

min
{

1, 2 χ2(2nθ; 2nx̄ + 2)
}

, for θ ≥ x̄

(a2) The membership function for C2 = {C2,α}0≤α≤1 is µΘ̃2
: R→ [0, 1] such that

µΘ̃2
(θ) = 2

(
1−Φ

(√
n |x̄− θ|√

x̄

))

Figure 3a presents the membership functions. Note that in this case, the total supremacy does
not occur (see Definition 8). Moreover, Figure 3b,c present the functions (r, Er) and (r, Er) for
r ∈ [0, 1] for both confidence intervals respectively. From these figures, it can be concluded that
µΘ̃1

has r-up-supremacy over µΘ̃2
for all r ∈ [0, 1]. We considered n = 5 and x̄ = 4, and as in the

previous example, the solid and dotted lines represent cases (a1) and (a2), respectively.
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Figure 3. (a) membership functions for the Poisson rate based on the pivotal quantity (solid line) and
based on the normal approximation (dotted line); (b) the r-down integral operator for the respective
memberships; (c) the r-up integral operator for the respective memberships. n = 5 and x̄ = 4
are considered.

4.3. Normal Distribution

Now we discuss the situation where the parameter of interest is a vector. For this, consider,
X1, . . . , Xn to be a random sample from a normal distribution with mean θ1 and variance θ2. One
approximate confidence set of significance level α for θ = (θ1, θ2)

> can be defined by (see [53]):

Cα(x) =
{

θ ∈ Θ; U(θ; x) < χ2
2,1−α

}
where U(θ; x) =

n
θ2
(x̄− θ1)

2 +
n

2θ2
2
(s2 − θ2)

2,
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where s2 is the sample variance with denominator n. From Lemma 1, the associated membership
function is given by

µΘ̃(θ) = 1− χ2(U(θ; x); 2).

Here,

Θr = µ−1
Θ̃

([r, 1]) = {θ ∈ Θ; µΘ̃(θ) ≥ r} = {θ ∈ Θ; χ2(U(θ; x); 2) ≤ 1− r}

and
Θc

r = {θ ∈ Θ; χ2(U(θ; x); 2) > 1− r}.

Then, the r-down and r-up integral operators are given by

Er(µΘ̃) =
∫

Θc
r

µΘ̃(θ) dθ =
∫ ∞

−∞

∫ ∞

0
(1− χ2(U(θ; x); 2))IΘc

r (θ) dθ

and
Er(µΘ̃) =

∫
Θr

µΘ̃(θ) dθ =
∫ ∞

−∞

∫ ∞

0
(1− χ2(U(θ; x); 2))IΘr (θ) dθ,

where IA(θ) is the indicator function.
These integrals can be computed numerically by using any software (for instance, MAPLE, MATLAB,

Ox, R, SAS). Figure 4 presents the above membership function with n = 5, x̄ = 5, s2 = 5 and the r-down
and the r-up integral operators for the respective membership function.

In Figure 4a two planes are plotted, of height 0.3 and 0.8, to show the changes in confidence
regions. In Figure 4b the graphs of (r, Er) and (r, Er) are plotted. It can be observed that Er = Er

when r = 0.236, as indicated by the dash-dotted vertical line.

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

r

o
p
e
ra

to
rs

E
r(µΘ)

Er(µΘ)

(b)

Figure 4. (a) membership function surface for mean and variance in a normal population; (b) the
r-down and the r-up integral operators for the memberships. We consider n = 5, x̄ = 5 and s2 = 5.

Basically, when the practitioner wants to compare general confidence sets, it is sufficient to plot
the graphs of (r, Er(µΘ̃)) and (r, Er(µΘ̃)) in order to analyze the behaviors. Moreover, for univariate
or bivariate confidence sets, the graph of (θ, µΘ̃(θ)) can be used in place of the usual confidence sets
with a pre-fixed confidence level, since it brings much more information.

5. Applications

5.1. Confidence Set for Proportions in Bernoulli Trials

Following [54], we consider an experiment where N pairs of Bernoulli events denoted as A and
B are observed. In this case, the outcomes are recorded as 1 (success) and 2 (failure), and the ith
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observed pair is denoted by (Yi1, Yi2). The results of the experiment can be summarized in a 2× 2
contingency table. Each nkl corresponds to the number of pairs (Yi1, Yi2) with outcomes Yi1 = k and
Yi2 = l. Particularly, we consider a data set from [55] related to the study of the effect of the airway
hyper-reactivity (AHR) before and after stem cell transplantation (SCT) in 21 children. The data are
provided in Table 1.

Table 1. Airway hyper-responsiveness (AHR) status before and after stem cell transplantation (SCT)
in 21 children.

(Event A) Before SCT/ (Event B) After SCT AHR (Success) No AHR (Failure) Total

AHR (success) n11 = 1 n12 = 1 2
No AHR (failure) n21 = 7 n22 = 12 19

Total 8 13 N = 21

In this case, we are interested in a (1− α) confidence interval for the difference of proportions
θ = p12 − p21, where p12 is the proportion related to having AHR before SCT and not having
it after SCT and p21 is the proportion related to the opposite event, namely, to not having
AHR before SCT and having it after SCT. For constructing the confidence interval, we consider
the following methods, namely, Wald, Wald with continuity correction, Wald with Agresti-Min
pseudo-frequency adjustment and Wald with Bonett-Price Laplace adjustment (for further details
about these methods, see [54,56,57]).

Denoting by θ̂ = p̂12 − p̂21, where p̂12 = n12/N and p̂21 = n21/N are the ML estimates of p12

and p21 respectively and using the same notation as in Fagerland et al. [54], the confidence intervals
for θ are as follows:

1. Wald’s method
C1,α(x) = θ̂ ± z1−α/2

N

√
n12 + n21 − (n12 − n21)2/N.

2. Wald’s method with continuity correction

C2,α(x) = θ̂ ± z1−α/2

N

√
n12 + n21 − (|n12 − n21| − 1)2/N.

3. Wald’s method with Agresti-Min pseudo-frequency adjustment

C3,α(x) =
ñ12 − ñ21

Ñ
± z1−α/2

Ñ

√
ñ12 + ñ21 − (ñ12 − ñ21)2/Ñ,

where ñ12 = n12 + 1/2, ñ21 = n21 + 1/2 and Ñ = N + 2.
4. Wald’s method with Bonett-Price Laplace adjustment

C4,α(x) = p̃12 − p̃21 ± z1−α/2

√
( p̃12 + p̃21 − ( p̃12 − p̃21)2)/(Ñ + 2),

where p̃12 = (n12 + 1)/(N + 2) and p̃21 = (n21 + 1)/(N + 2).

For each method α ∈ I = [0, 1] and zq is the qth-quantile of a standard normal distribution.
Therefore, the membership functions for each method are given by:

1. Wald’s method:

µΘ̃1
(θ) = 2

(
1−Φ

(
|θ − θ̂|N√

n12 + n21 − (n12 − n21)2/N

))
2. Wald’s method with continuity correction:

µΘ̃2
(θ) = 2

(
1−Φ

(
|θ − θ̂|N√

n12 + n21 − (|n12 − n21| − 1)2/N

))
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3. Wald’s method with Agresti-Min pseudo-frequency adjustment:

µΘ̃3
(θ) = 2

1−Φ

 |θ − (ñ12 − ñ21)/Ñ|Ñ√
ñ12 + ñ21 − (ñ12 − ñ21)2/Ñ


4. Wald’s method with Bonett-Price Laplace adjustment:

µΘ̃4
(θ) = 2

1−Φ

 |θ − ( p̃12 − p̃21)|√
( p̃12 + p̃21 − ( p̃12 − p̃21)2)/(Ñ + 2)


Figure 5 shows the membership functions for each method presented before. In this case,

we have that µΘ̃1
�T µΘ̃2

. Therefore, by Theorem 3, we conclude that C2 = {C2,α(x)}0≤α≤1

is more conservative than C1 = {C1,α(x)}0≤α≤1. Consequently, Wald’s method with continuity
correction generates more conservative confidence intervals than Wald’s method for all confidence
levels. Similarly, µΘ̃4

�T µΘ̃3
, that is, Wald’s method with Agresti-Min pseudo-frequency adjustment

generates more conservative confidence intervals than Wald’s method with Bonett-Price Laplace
adjustment for all confidence levels. Moreover, core(Θ̃1) = core(Θ̃2) and core(Θ̃3) = core(Θ̃4);
however, core(Θ̃1) 6= core(Θ̃3). This means that Wald’s method with and without a continuity
correction provides higher credibility to θ = −0.2857 for the difference of proportions. However,
Wald’s method with Agresti-Min pseudo-frequency adjustment and with Bonett-Price Laplace
adjustment gives a result greater than θ = −0.2608.
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Figure 5. Membership functions for different confidence intervals.

The intersection of the continuous horizontal line with the membership functions shown in
Figure 5 characterizes both, the lower and upper limits of a 95% confidence level according to each
method described previously. Note that the largest differences are given in the lower limits.

Note also that, in this situation, the concept of total supremacy cannot be used to compare
the membership functions of Θ̃1 and Θ̃3, since they have different cores. For this reason, we use
Definition 9. The expressions for the Er(µΘ̃) and Er(µΘ̃) operators are similar to those given in
Example 1, since their membership function shape is the same. Then,

Er(µΘ̃) = 4σ∗

{
(c1r − θ̂∗)

σ∗
Φ
(
(c1r − θ̂∗)

σ∗

)
+ φ

(
(c1r − θ̂∗)

σ∗

)}
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and

Er(µΘ̃) = 4σ∗

{
φ(0)− (c1r − θ̂∗)

σ∗
Φ
(
(c1r − θ̂∗)

σ∗

)
− φ

(
(c1r − θ̂∗)

σ∗

)}
,

where θ̂∗ and σ∗ are as follows:

1. Wald’s method
θ̂∗ = θ̂ and σ∗ =

1
N

√
(n12 + n21)− (n12 − n21)2/N.

2. Wald’s method with continuity correction

θ̂∗ = θ̂ and σ∗ =
1
N

√
(n12 + n21)− (|n12 − n21| − 1)2/N.

3. Wald’s method with Agresti-Min pseudo-frequency adjustment

θ̂∗ =
ñ12 − ñ21

Ñ
and σ∗ =

1
Ñ

√
(ñ12 + ñ21)− (ñ12 − ñ21)2/Ñ.

4. Wald’s method with Bonett-Price Laplace adjustment

θ̂∗ = p̃12 − p̃21 and σ∗ =
1√

Ñ + 2

√
p̃12 + p̃21 − ( p̃12 − p̃21)2.

Figure 6 shows the Er(µΘ̃) and Er(µΘ̃) operators for Wald’s method with and without
Bonett-Price Laplace adjustment. Note that µΘ̃4

has r-down and r-up supremacy over µΘ̃1
. Then,

the interval C1,α(x) is up/down-more conservative than C4,α(x) for all confidence levels. Finally,
Figure 7 depicts these operators for Wald’s method with and without Agresti-Min pseudo-frequency
adjustment. In this case, we have that µΘ̃3

has r-up and down-supremacy over µΘ̃1
. Consequently,

the interval C1,α(x) is up/down-more conservative than C3,α(x) for all confidence levels.
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Figure 6. (a) Membership functions based on Wald’s method, with and without Bonett-Price Laplace
adjustment. (b) r-down integral operator for these memberships. (c) r-up integral operator for
these memberships.



Entropy 2016, 18, 211 17 of 22

−0.6 −0.4 −0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

θ

M
e

m
b

e
rs

h
ip

 f
u

n
c
ti
o

n
s
  

  

E
r(µΘ1

)

E
r(µΘ3

)

0.0 0.4 0.8

0
.0

0
.1

0
.2

0
.3

0
.4

(b)

r

E
r 
 O

p
e

ra
to

r

Er(µΘ1
)

Er(µΘ3
)

0.0 0.4 0.8

0
.0

0
.1

0
.2

0
.3

(c)

r

E
r   

O
p

e
ra

to
r

E
r(µΘ1

)

E
r(µΘ3

)

Figure 7. (a) Membership functions based on Wald’s method with and without Agresti-Min
pseudo-frequency adjustment. (b) r-down integral operator for these membership. (c) r-up integral
operator for these membership.

5.2. Confidence Region for Regression Coefficients in a Normal Linear Model

In this section, we consider a dataset from [58] on features of Australian athletes available
from the Australian Institute of Sport (AIS). This dataset has been analyzed previously by
Arellano-Valle et al. [59], considering a linear regression model to study the relationship between lean
body mass, height and weight of the Australian athletes. The model is given by

Lbmi = β1Hti + β2Wti + εi, i = 1, . . . , 102,

where Lbmi is the lean body mass, Hti is the height and Wti is the weight associated with
i = 1, . . . , 102 Australian male athletes. Table 2 presents a summary of the basic descriptive statistics
for these variables.

Table 2. Descriptive statistics of the Australian athletes dataset: sample mean x, sample standard
deviation s, and sample skewness and kurtosis coefficients

√
b1 and b2, respectively.

Variable x s
√

b1 b2

Lbm 74.66 9.89 0.28 0.71
Ht 185.50 7.90 0.07 0.06
Wt 82.52 12.40 0.40 0.49

By assuming that the model error terms εi, i = 1, . . . , n, are independent and normally
distributed with constant variance σ2 for each term, the following confidence region for β1 and β2

(see [60] for more details) is given by

(θ̂− θ)T(XTX)(θ̂− θ)

2σ̂2 ≤ F(1− α, 2, 100),
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where θ = (β1, β2)
T , θ̂ = (β̂1, β̂2)

T is the maximum likelihood estimator for θ, σ̂2 is the
maximum likelihood estimator for σ2, X is the design matrix associated to the proposed regression
model (assumed to be full column rank) and F(q, p, s) is the qth-quantile corresponding to
the Fisher-Snedecor’s probability distribution with p and s degrees of freedom. The resulting
membership function, based on the above confidence region, is

µΘ̃(θ) = 1− F
(
(θ̂− θ)T(XTX)(θ̂− θ)

2σ̂2 , 2, 100
)

.

Figure 8 shows the membership function surface for the confidence ellipsoid for β1 and β2. This
is the full information the confidence region can provide after observing this dataset.
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Figure 8. Membership function surface for β1 and β2 considering a linear regression model.
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Figure 9. Confidence ellipsoid for β1 and β2 when µΘ̃(θ) = 0.05 (solid line) and µΘ̃(θ) = 0.1
(dashed line).

Notice that, by definition of the membership function above, µΘ̃

(
θ̂
)
= 1 and, by properties of

the function F(q, p, s), θ̂ is the unique element of core(Θ̃). That is, θ̂ is the unique value with full
membership to the set Θ̃ = {(θ, µΘ̃(θ)); θ ∈ Θ)}. Each θ such that µΘ̃(θ) = k has membership
of k × 100%. Figure 9 depicts the graphics (θ, µΘ̃(θ)), where µΘ̃(θ) = 0.05 (solid line) and
µΘ̃(θ) = 0.1 (dashed line), respectively; they are the contour curves of µΘ̃(θ) at 0.05 and 0.1,
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respectively. The values of θ in solid line have membership of 5%, while the values of θ in dashed
line have membership 10%.

6. Discussion

The connection between confidence sets and fuzzy theory has already been investigated in the
fuzzy literature. As mentioned, some works about this topic have been published in recent years (see
for example among others [6–8,10]). All of them are related to the idea of generating a possibility
distribution from the information provided by confidence sets. The main goal of this proposal is
to find, in the context of fuzzy theory, more information in terms of degrees of possibility about
the parameter of interest. More information can be extracted from confidence sets (or confidence
intervals) after the sample is observed than just one fixed set (or interval). Indeed, a large family of
sets is available.

There are also other proposals with the purpose of inferring about a parameter using confidence
sets. These proposals are the fiducial inference [61], Dempster–Shaffer (DS) calculus [62], confidence
distribution [46] and posterior Bayes. Some of them are carefully discussed by [63–65]. The main
idea of fiducial inference is to consider a distribution for a parameter of interest using the sample
information. The idea is to provide some probability statements about a parameter from the observed
information, particularly, the information provided by a sufficient statistic. Fiducial distributions are
often criticized because in some cases they do not integrate to one, i.e., they are not proper probability
distributions [66,67]. Moreover, some pivotal quantities used to build a fiducial distribution generate
inconsistent results [68–70]. Therefore, some alternatives have been proposed such as confidence
distributions and DS calculus.

The idea of confidence distributions is closely related with the fiducial distribution. As Schweder
and Hjort [71] established, “confidence distributions are the Neymanian interpretation of Fisher’s
fiducial distributions” and they can be defined as a sample-dependent distribution able to represent
confidence of all levels for a parameter of interest [46]. One of the most famous representatives of
this class of distributions is the bootstrap distribution. It is important to remark that, the confidence
distribution is considered a distribution estimator and its interpretation has to be done in a frequentist
framework, considering a fixed and non-random parameter. Moreover, it is possible to obtain
confidence intervals, point estimates and hypothesis test results about the parameter of interest using
this distribution.

The DS calculus is based on the idea of convert observed data and pivotal relationships to upper
and lower probability statements [72]. These statements are related to the probability of support
by some subset of the parameter space, the contradiction of this event and the probability of “do
not know" about both of them. According to Hanning and Xie [72], a confidence distribution can
be formally put into a DS framework. The main difference between DS calculus and fiducial and
confidence distributions is the concept of degree of belief. While the latter are focused on providing
an estimator of a parameter of interest in terms of a quantity or/and interval/subset, DS calculus is
concentrated on obtaining different degrees of belief or confidence for a simple question (related to a
parameter). For this purpose, a belief function is used rather than probabilities.

In Bayesian inference we use the concept of prior distribution over the parametric space in
order to infer about the parameter of interest. Although in this case, a distribution is also obtained,
the notion of unknown parameter considered in the approaches described above is replaced by the
notion of random parameter. Moreover, in this setup, the prior distribution summarizes the available
information about this parameter. Some other authors have comprehensively discussed the methods
discussed in this section. For a detailed discussion, we refer to [73–75].

Finally, our proposal intends to use the fuzzy set theory to represent a confidence set and, in this
context, to provide more information to the statistical community about a specific confidence set. We
believe, this approach represents both the uncertainty and imprecision existent about the parameter
of interest by using the possibility theory obtained from a simple confidence set.
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7. Conclusion and Final Remarks

In this paper, we revisited the connection between confidence sets and fuzzy sets through
a membership function and therefore possibility distributions. Some elementary definitions and
properties of fuzzy theory were revisited in order to assist readers not familiar with these
non-standard tools. The connection indicates that fuzzy theory formalism can be utilized to interpret
and give basis for confidence sets after observing the sample. Zadeh [76] argued that probability
theory and fuzzy theory are complementary rather than competitive. As stressed in the paper, after
observing the sample, any confidence sets have probability zero or one to contain the parameter
value, so probabilistic post-data interpretations are not useful. We incorporated a new form of
interpretation in which the core(Θ̃) is the set of all parameter values for which the related probability
distributions best explain the observed data according to C. In terms of a belief statement: the closer
θ is to core(Θ̃), the more we believe that Pθ that best model, according to C (the observed data).
Moreover, the proposed membership function delivers much more information than a confidence set
with a pre-fixed confidence level. Concepts of supremacy to compare different confidence sets and
confidence procedures through membership functions were introduced and studied. Applications to
usual examples were offered. This paper is part of large project on the foundation of classic statistics.
Other works are being developed on hypothesis testing, evidence measures, coherence and so forth.
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