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Abstract: In this work we extend the so called frozen wave method in order to obtain new
diffraction resistant light structures that can be shaped on demand, with possible applications
in atom guidance. The resulting beams and the corresponding optical dipole potentials exhibit
a strong resistance to diffraction effects and their longitudinal and transverse intensity patterns
can be chosen a priori. Besides the theoretical development, we also present the experimental
confirmation of our approach; specifically, by generating three different beam profiles using a
spatial light modulator that is addressed by a computer-generated hologram. In addition to its
many potential applications in atom guiding, the method developed here can also lead to many
new developments in optics and photonics in general.
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1. Introduction

The most common interactions between laser light and atoms, molecules, or dielectric particles
are represented by the scattering and dipole forces [1–3]. More specifically, the dipole force
on an atomic system is given by the interaction between the induced atomic dipole moment
and the intensity gradient of the optical field [4]. This conservative force (i.e., obtained from an
optical potential) can be used to guide atoms along hollow optical beams, which has significant
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advantages over atom guiding through a hollow optical fiber due to the absence of Van der Waals
forces and the QED cavities effects [5].

Initially, hollow Gaussian beams, such as the Laguerre-Gauss ones, were considered and
used for atom guiding [6, 7]. However, such beams posses limitations due to the diffraction
effects, which corrupt their transverse intensity profiles with propagation. Later, an important
improvement was achieved by using Bessel beams with order higher than zero [7]; the later
belong to the class of nondiffracting waves and can thus overcome the limitations presented by
the ordinary Gaussian-type beams.

In spite of their outstanding characteristics, the ideal nondiffrating beams, due to their math-
ematical structure of the type ψ = A(x , y) exp(ikz z) exp(−iωt), do not allow any kind of
modelling over their longitudinal intensity pattern (i.e. along the z axis). Such longitudinal
spatial modelling can be very interesting for atom guiding and may provide many new degrees of
freedom to be exploited. It turns out that, during the development of the Localized Wave theory,
new kind of diffraction-resistant beams were introduced, which allow the modelling of their
longitudinal intensity profiles on demand [8,9]. Such beams, named frozen waves (FWs), consist
of suitable superposition of co-propagating equal order Bessel beams and their experimental
confirmation can be found in [10, 11].

This paper is intended to give two contributions: First, taking into account that, despite allowing
a strong longitudinal intensity modelling, the FW method is rather restrictive with respect to the
transverse intensity shaping (only allowing us to choose the transverse dimensions of the desired
beam), we have extended this method proposing, as new beam solutions, superpositions of FWs
of different orders, so that the resulting beams can also be transversally modelled in a more
efficient way. Second, we propose the use of these new optical beams for atom guiding, giving
some theoretical examples, obtaining the corresponding optical dipole potentials and creating
the beams through computer generated holograms reproduced by a spatial light modulator.

The next section is devoted to a very brief overview of the optical dipole potential and also of
the traditional frozen wave method. In section 3 we present the extension of the FW method,
applying it to atom guiding purposes and generating experimentally some of the new optical
beams. Section 4 is devoted to the conclusions.

2. Brief overview on the optical potential and on the frozen wave method

Considering an atomic system with two levels, the optical dipole potential created by an optical
field Ψ(ρ, φ, z) is given by [7]

U (ρ, φ, z) =
~∆

2
ln

[
1 +

I (ρ, φ, z)/I0

1 + 4(∆/Γ)2

]
, (1)

where I (ρ, φ, z) = |Ψ(ρ, φ, z) |2 is the field intensity, Γ is the natural linewidth, ∆ is the laser
frequency detuning from the doppler-shifted atomic resonance and I0 is the saturation intensity.
Here, we are going to consider the 85Rb, line D2, where Γ= 2π × 6.1MHz, ∆ = 30Γ, I0=16W/m2

and the laser angular frequency (ω = 2.42 × 1015rad/s, i.e., λ =780.2nm) has been located above
the atomic transition frequency considering the blue-detuned guiding.

When dealing with atom guidance, an important quantity is the transverse penetration depth
into the potential barriers as a function of the propagation distance. The maximum penetration [6]
is given by rApd (z) = mρcv2

atom/U (ρc , z), where m = 85ma is the atomic mass (ma is the
atomic mass unit), vatom is the average atomic velocity (vatom < 0.07m/s, T = 100µK) and ρc
is the transverse distance, for each value of z, where U is maximum.

Concerning the frozen waves [8, 9], they are very special exact solutions to the wave equation
consisting in diffraction-resistant beams whose longitudinal intensity pattern can be chosen on
demand within a prefixed range 0 ≤ z ≤ L of the propagation axis. This longitudinal intensity
pattern can occur over a cylindrical surface of radius ρl ≥ 0. Mathematically, we can construct a
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beam ψ such that |ψ(ρ = ρl , φ, z, t) |2 ≈ |F (z) |2, within 0 ≤ z ≤ L and with F (z) and ρl of our
choice.

To obtain these results, a FW beam is composed of a superposition of equal frequency
co-propagating Bessel beams of order l:

ψ(ρ, φ, z, t) =Ml e−iωt
N∑

n=−N

An Jl (hn ρ)eilφeβn z , (2)

whereMl = 1/[Jl (.)]max and [Jl (.)]max is the maximum value of the lth-order Bessel function
of the first kind, An are constant coefficients, hn and βn are the transverse and longitudinal wave
numbers of the n-th Bessel beam in the superposition, satisfying the relation h2

n = k2 − β2
n , with

k = ω/c. The FW method requires the longitudinal wavenumbers to be βn = Q + 2πn/L, Q
being a constant to be selected according to the desired transverse dimensions of the beam, and
the coefficients An = (1/L)

∫ L

0 F (z)e−i
2π
L
nzdz.

This is sufficient to obtain Diffraction-Resistant beams with the required longitudinal inten-
sity pattern, concentrated: (i) either along the propagation axis (ρ = 0), when zero-order
(l = 0) Bessel beams are chosen in solution (2); it is then possible to determine the spot ra-
dius, r0, of the resulting beam from the parameter Q via the relation Q = (k2 − 2.42/r2

0 )1/2;
(ii) or over a cylindrical surface, if a non-null integer is adopted for l in (2); in which case,
the cylinder radius can be approximately evaluated as the first non-null root of the equation
[(d/dρ)Jl (ρ

√
k2 − Q2)]

∣∣∣∣
ρ=ρl

= 0. More details about the FW method can be found in [8, 9].

3. Extending the frozen wave method: new structures of diffraction resistant
beams and their use for atom guiding

As we have seen, the FW method is very effective for the longitudinal modeling of the beam
intensity, but it is somewhat limited in modeling the transverse pattern, allowing to choose
only the radius of the spot or of the cylinder where there will be the field concentration; more
specifically, in regions where the beam has no neglegible intensity, the beam cross-section
is uniform along z. It would be interesting to have more possibilities on the choice of the
transverse intensity pattern, considering that such nondiffracting light structures could open new
and interesting application possibilities involving optical guiding of atoms (not only for atom
guidance, but also for optical tweezers and optical beam manipulation in general). To achieve
this, we now propose an extension of the FW method, where the resulting beam is given by a
superposition of FWs of different orders. That is, we consider beams of the type:

Ψ(ρ, φ, z, t) = e−iωt
∞∑

l=−∞

Ml

Nl∑
n=−Nl

Anl Jl (hnl ρ)eilφeβnl z (3)

with βnl , hnl and An l given by

βnl = Ql +
2π
L

n , hnl =

√
k2 − β2

nl
and Anl =

1
L

∫ L

0
Fl (z)e−i

2π
L
nzdz (4)

The solution given by Eq. (3) is a summation of FW beams of order l, with −∞ < l < ∞, each
one having its own predefined longitudinal intensity pattern |Fl (z) |2, modelled within 0 ≤ z ≤ L,
where the transverse structure of each FW in superposition (3) is obtained in the usual way,
detailed in items (i) and (ii) of the preceding section. A judicious superposition of these beams
can be employed to create diffraction resistant light structures with very interesting and unusual
geometries as discussed in the following subsection.
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3.1. Applying the extended method: theoretical examples and their experimental
implementations

Here we will apply the extended method to design some interesting diffraction resistant light
beams with quite unusual spatial forms. Once the beam is theoretically derived, the corresponding
optical dipole potential can be calculated by using Eq. (1). To confirm the validity of our approach,
the new beams are experimentally generated through computer generated holograms reproduced
optically by a spatial light modulator at a wavelength λ = 532nm, which is different from that
considered here for the atom guiding (λ = 780.2nm), the latter due to the availability of the laser
sources in our laboratory. The experimental setup is shown in Fig.1 and consists of a 532 nm
laser expanded and collimated on a (amplitude) spatial light modulator (Holoeye LC2012 SLM),
where it gets the information from a computer generated hologram [10, 11] constructed from
the theoretical solution given by Eq. (3). The emanated optical beam goes through a 4 f optical
system where a iris filters out the desired FW beam, which is then captured with a CCD camera
with 1 cm resolution steps along the longitudinal direction of the beam. It is worth noting that
in the following examples the theoretical beam figures appear normalized with respect to the
intensity I = 0.2 µW/µm2.

Fig. 1. Experimental setup for the generation of the new optical beams.

3.1.1. Light beam and optical potential shaped as a cylinder with a stopper

Here we will construct a diffraction resistant beam and the corresponding optical dipole potential
shaped as a cylinder with a stopper. For this purpose, we use the solution given by Eq. (3) with
just two FW beams in the superposition, one of order zero (l = 0) and the other of order two
(l = 2), where the former will be responsible for the “optical stopper” and the latter for the
“optical cylinder”. The desired spatial structure for the intensities of the beams can be achieved
through the functions Fl (z) and the parameters L and Ql , the latter obtained from the radii
r0 and ρ2 intended to the stopper and to the cylinder, respectively. From Fl (z), L and Ql , the
coefficients Anl and the longitudinal wavenumbers βnl can be calculated via Eqs.(4), so that the
solution (3) is finally fixed. In this example, for 0 ≤ z ≤ L, we make the following choices:

Fl (z) =

{
δl0 + δl2 for zil ≤ z ≤ z fl
0 elsewhere, (5)

where δpq is the Kronecker delta, L = 1m, zi0 = 6 cm and z f 0 = 25 cm for the initial and final
longitudinal coordinates of the “optical stopper”, zi2 = 21 cm and z f 2 = 42 cm for the initial
and final longitudinal coordinates of the “optical cylinder”. We also choose the radii r0 ≈ 54µm
and ρ2 ≈ 69µm, which implies that Q0 = Q2 = 0.999985ω/c when λ = 780.2 nm. In this case
we use N0 = N2 = 12.

Figures 2(a), 2(b) and 2(c) show, respectively, the theoretically obtained intensity of the beam,
the corresponding optical dipole potential (for atom guiding purposes) and the experimentally
generated beam. As mentioned before, the experimental generation was performed at λ = 532
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nm and due to this, for obtaining the same values for the radii r0 and ρ2, we have used there
Q0 = Q2 = 0.999993ω/c. In the figures, the portion above ρ = 0 corresponds to φ = 0 and that
below corresponds to φ = π. Figure 2(j) shows the transverse penetration depth into the barriers
as a function of the propagation distance.

Fig. 2. The first three rows show the three examples considered. In each of these rows
the three columns show, respectively, the theoretical beam (normalized with respect to the
intensity I = 0.2 µW/µm2), the corresponding optical potential and the beam experimentally
generated. The fourth row shows the transverse penetration depth for each optical dipole
potential.

3.1.2. Light beams and optical potentials shaped as diffraction resistant cylindrical structures
with nonuniform cross sections

Let us construct two diffraction resistant light beams, with their respective optical dipole poten-
tials, consisting of cylindrical structures of nonuniform cross sections. More specifically, the two
new beams will consist of a sequence of three connected cylinders: in the first case, the first and
third cylinders have the same length and radius and are connected by a second cylinder with
the same length but with a smaller radius; in the seconde case, the three cylinders connected in
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sequence have the same length and radii possessing ascending values.
Again, we consider the proposed solution (3), using just two FW beams (of orders l = 4 and

l = 6) for the first case and three FW beams (of orders l = 4, l = 6 and l = 8) for the second
one. The desired spatial structure for the beams intensities can be achieved through the functions
Fl (z) and the parameters L and Ql (obtained from the desired radii of the cylinders) of each
case, as we detail below.

First case:
In this example, for 0 ≤ z ≤ L, we make the following choices:

Fl (z) =


δl6 + δl4 for zil ≤ z ≤ z fl
δl6 for z′

il
≤ z ≤ z′

fl

0 elsewhere,
(6)

with L = 1 m, zi6 = 4 cm, z f 6 = 20 cm, zi4 = 19.5 cm, z f 4 = 32.5 cm, z′
i6 = 32 cm and z′

f 6 = 48
cm, for the initial and final longitudinal coordinates of the three light cylinders connected in
sequence. We also choose the radii of the first and third cylinder as ρ6 ≈ 170 µm, which implies
that Q6 = 0.999985ω/c and the radius of the second cylinder as ρ4 ≈ 100 µm, which results in
Q4 = 0.999978ω/c when λ = 780.2 nm. Here, we use N4 = N6 = 12.

Second case:
Here, for 0 ≤ z ≤ L, we choose:

Fl (z) =

{
δl4 + δl6 + δl8 for zil ≤ z ≤ z fl
0 elsewhere, (7)

with L = 1 m, zi4 = 10 cm, z f 4 = 25 cm, zi6 = 25 cm, z f 6 = 40 cm, zi8 = 40 cm and z f 8 = 55
cm, for the initial and final longitudinal coordinates of the three light cylinders connected in
sequence. We also choose the radii for the three cylinders as ρ4 ≈ 120 µm, ρ6 ≈ 170 µm and
ρ8 ≈ 218 µm, which imply Q4 = Q6 = Q8 = 0.999985ω/c when λ = 780.2 nm. Here, we set
N4 = N6 = N8 = 12.

The intensities of the theoretical beams of the first and second cases are shown in Figures
2(d) and 2(g), respectively, and their corresponding optical potentials are shown in Figures
2(e) and 2(h). The experimental generation results for the two beams are shown in Figures
2(f) and 2(i), where we have used λ = 532nm and so, for obtaining the same radius values of
the theoretical beams, we have used Q6 = 0.999993ω/c and Q4 = 0.99999ω/c for the first
case and Q4 = Q6 = Q8 = 0.999993ω/c for the second one. Figures 2(k) and 2(l) show the
transverse penetration depths into the barriers as function of the propagation distance for the two
corresponding optical dipole potentials.

4. Conclusions

We have extended the frozen wave method proposing, as new beam solutions, superpositions of
FWs of different orders. As a result, new diffraction-resistant light structures with very interesting
spatial shapes can be constructed and we have proposed their use for atom guiding purposes. We
have provided some theoretical examples, obtained the corresponding optical dipole potentials
and created the beams through computer generated holograms reproduced by a spatial light
modulator. The experimental results are in very good agreement with theory and we believe this
new approach can open new perspectives for optical beam modelling and applications.
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