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Abstract

Differently from previous studies that used Transcranial Doppler (TCD) and functional MRI (fMRI) for cerebral vasomotor
reactivity (CVR) assessment in patients with carotid stenosis (CS), we assessed CVR using an identical stimulus, the Breath-
Holding Test (BHT). We included 15 patients with CS and 7 age-matched controls to verify whether fMRI responded differently
to BHT between groups and to calculate the agreement rate between tests. For TCD, impaired CVR was defined when the
mean percentage increase on middle cerebral artery velocities was p31% on 3 consecutive 30-s apnea intercalated by 4-min
normal breathing intervals. For fMRI, the percent variation on blood oxygen level-dependent (BOLD) signal intensity in the
lentiform nucleus (LN) ipsilateral to the CS (or both LNs for controls) from baseline breathing to apnea was measured. The
Euclidian differences between the series of each subject and the series of controls and patients classified it into normal or
impaired CVR. We found different percent variations on BOLD-signal intensities between groups (P=0.032). The agreement
was good in Controls (85.7%; k=0.69) and overall (77.3%; k=0.54). We conclude that BHTwas feasible for CVR assessment on
fMRI and elicited different BOLD responses in patients and controls, with a good overall agreement between the tests.
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Introduction

Patients with critical carotid stenosis (CS) may present
reduction of the cerebral perfusion pressure when col-
lateral flow is insufficient. This may lead to a vasodilation
of resistance arterioles mainly modulated by CO2 and,
secondly, to a decrease in cerebral blood flow (CBF) and
an increase in oxygen extraction fraction (OEF) (1,2). The
initial vasodilatory response reflects the cerebral vaso-
motor reactivity (CVR). Impaired CVR is an independent
risk factor for ischemic events in patients with CS (3–5).

Positron emission tomography (PET) is the gold-
standard method to assess CVR (1,6). However, due to
the wide unavailability and high costs of PET, transcranial
Doppler ultrasound (TCD) with transient hypercapnia
vasodilatory stimuli such as acetazolamide, inhalation of
carbon dioxide or breath holding test (BHT) has been
used in clinical practice instead (6–12).

More recently, with the advantage of imaging resolution,
blood oxygen level-dependent (BOLD) contrast in functional
magnetic resonance imaging (fMRI) has been often used
for CVR assessment (13–18). fMRI detects changes in the

concentration of deoxyhemoglobin, dependent on a complex
interplay among CBF, blood volume and cerebral oxygen
consumption (13,19). Hypercapnia increases CBF, which
reduces the concentration of deoxyhemoglobin leading to an
increase in BOLD signal.

Few studies have associated TCD to BOLD-fMRI for
CVR assessment, most of them using distinct vasodilatory
stimuli (16,18,20–22). Differently, we aimed to assess
CVR in patients with CS and controls using an identical
vasodilatory stimulus (BHT) in both tests to verify whether
BOLD curves responded differently between the groups
and, additionally, to calculate the agreement between the
tests.

Material and Methods

Subjects
Subjects were recruited from the outpatient Neurology

Clinic at the Hospital das Clínicas, Universidade Estadual de
Campinas (UNICAMP; patients) or among hospital employees,
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or from a Community Physical Activity program for the
elderly (controls) between October 2010 and January 2013.

Sixteen patients (12 males; mean age: 68 years;
range: 52–90) with CS X60% by angiography, X70% by
duplex ultrasound, or X80% by computed tomography
angiography or MRI angiography (CREST criteria) (23),
and 7 age-matched controls with no history of cerebro-
vascular disease (5 males; mean age: 64.5 years range:
51–85) were enrolled. One patient (76-year-old male;
labeled ‘‘P12’’) was lately excluded from the analysis,
as he did not comply with the BHT on fMRI. Therefore,
15 patients were included.

Patients had to be asymptomatic or, if otherwise, have
only transient ischemic attack, Amaurosis fugax or syn-
cope. Controls were neurologically healthy and had nor-
mal carotid arteries, as seen by duplex ultrasound.
Subjects with self-declared respiratory disorders were
not included. Subjects with LN lesions or diffuse leukoen-
cephalopathy were excluded, as this could affect the
BOLD signal assessment in the region of interest (ROI).

Demographics are shown in Table 1. All subjects pro-
vided written informed consent. The study was approved
by the institutional review board of the Faculdade de
Ciências Médicas of UNICAMP.

Transcranial Doppler ultrasound protocol
Subjects were evaluated in a quiet room and in supine

position. Throughout the session, arterial blood pressure
was measured continuously. Expiratory end-tidal CO2 was
recorded throughout the experiment through a nasal sampling
line attached to a capnometer (CapnochecktII8401 Smiths
Medical, USA).

The M1 segment of both middle cerebral arteries (MCA)
were identified through the examination of the transtem-
poral window with a 2-MHz transducer (SONARAt Viasys
Healthcare, USA) operated by an experienced sonographer
(C.R.C.H.). Upon isolating the site of highest flow velocity
within the segment, the transducer was held constant
through a head frame to measure time-averaged maximum

mean velocities (MMV). Lack of a suitable transtemporal
window precluded the performance of bilateral examination
in 3 controls and in 3 patients with unilateral CS (P01, P08,
and P16). In these patients, TCD examination was done
ipsilateral to the CS only.

Prior to TCD, all subjects were instructed about BHT,
which consisted of an initial 5-min resting time followed by
three 30-s periods of transient apnea (verbally coached by
the examiner) intercalated by 4-min of normal breathing
between them. Subjects were instructed to avoid hyper-
ventilation before breath-holding time as well as to
perform a not so deep inspiratory breath-hold in order to
prevent a Valsalva episode. After the breath-hold, a quick
exhalation of residual air was performed prior to a return
to natural breathing, which allowed the measurement of
end-tidal CO2 increases as a result of the breath-hold. All
participants performed BHT in the same way and under
continuous examiner supervision.

Time-averaged MMV immediately before (baseline)
and after each apnea period were recorded. Impaired
CVR was considered if the mean percentage increase on
the MCA time-averaged MMV from baseline to apnea was
p31% or steal phenomenon occurred (8).

Functional MRI protocol
fMRI acquisition was performed with a 3.0T MRI

scanner (Philips Achieva, Netherlands) and included: 3D
T1-weighted image for anatomical reference (240� 240�
180 mm3 FOV, 1.00� 1.00� 1.00 mm3 voxel size, 240�
240� 180 matrix, 8° flip angle, TR=6.9 ms, TE=3.2 ms),
FLAIR image for visualization of parenchymal lesions
(200� 185.71�149 mm3 FOV, 0.45� 0.45� 4.00 mm3

voxel size, 448� 448� 30 matrix, 1 mm slice gap,
TR=12,000 ms, TE=140 ms, TI=2850 ms), DWI to assess
recent subclinical lesions (230� 230� 119 mm3 FOV,
0.90� 0.90� 4.00 mm3 voxel size, 256� 256� 24 matrix,
1 mm slice gap, 90° flip angle, TR=2198 ms, TE=60 ms,
b-value=1000 s/mm2) and echo-planar image (EPI)
to assess the BOLD effect (240� 240� 120 mm3 FOV,

Table 1. Demographic data and vascular risk factors in carotid stenosis patients
and age-matched controls.

Patients (n=15)

n (%)

Controls (n=7)

n (%)

P

Male 11 (73) 5 (71) NS*

Mean (age/range) 68/52–90 64.5/51–85 NS#

Smoking 11 (73) 0 0.003*
Hypertension 12 (80) 2 (28) 0.03*
Dyslipidemia 14 (93) 0 o0.0001*

Diabetes 3 (20) 0 NS*
Atrial fibrillation 0 0 NS*
Coronary artery disease 4 (27) 0 NS*

NS: non-significant; *Fischer exact test; #Student’s t-test.
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3.00� 3.00� 3.00 mm3 voxel size, 80� 80� 40 matrix, no
slice gap, 90° flip angle, TR=2000 ms, TE=30 ms).

Prior to scanning, all subjects were instructed to stay
as still as possible while on fMRI examination and to look
continually at a computer screen (Eloquence, Invivo, USA)
positioned on the head coil for breath-hold paradigm
instructions. Breathing tasks were displayed in traffic
lights-based visual commands: green screen for normal
breathing (3 min 50 s); yellow, for normal breathing in
preparation for holding (10 s); and red, for an inspiratory
breath holding (24 s). This sequence was repeated
3 times in the same EPI acquisition (total: 17 min 12 s),
ending with a 4-min green screen. The instructions were
the same as done earlier, i.e., to avoid hyperventilation
before breath-holding time as well as to perform a not so
deep inspiratory breath-hold in order to prevent Valsalva.
A respiratory gating belt was used for apnea monitoring.

Functional images were visually examined to detect
gross artifacts and preprocessed with SPM8 (http://www.
fil.ion.ucl.ac.uk/spm) running on MATLAB R2010a (The
MathWorks, Inc., USA). The images were realigned
(6-parameter rigid body transformation), normalized to
standard Montreal Neurological Institute space using the
unified segmentation (24) and spatially smoothed with a
Gaussian kernel of 6 mm full width at half maximum.

For the patients, the ROI was the LN ipsilateral to the
stenosis. In patients with bilateral CS, the ROI was
ipsilateral to the higher-grade stenosis. In controls, both
LN were used. LN masks were provided by the WFU
PickAtlas toolbox (about 400 voxels each). The extracted
signal is the average value of all the voxels inside the ROI.
The average signal of both LN was extracted and
corrected for motion through a multiple linear regression
with 6 motion parameters from preprocessing (25).

To avoid any hemodynamic and respiratory signal
changes related either to breath holding or to inspiration or
expiration movements, we considered for baseline BOLD
signal the instants when the subject was looking at the
green screen and excluded 4 s of the signal that preceded
the yellow screen presentation and 60 s after the red
screen. From this set of baseline signal points, we
calculated the median rather than the average in order
to avoid the effect of outliers. The stimulus-induced BOLD
signal level was calculated through the analysis of the
interval from 4 to 12 s after the onset of breath holding,
as the series showed greater differences between them
at this period. Afterwards, the percent variation in the magni-
tude of stimulus-induced BOLD signal (delta-BOLD%)
was calculated in relation to the baseline median BOLD
signal level (Figure 1).

Figure 1. Top: visual BOLD-functional MRI activation paradigm based on traffic lights for instructing subjects on breathing tasks during
echo-planar image acquisition. Bottom, within the light blue rectangle: a detailed view of the temporal series of the region of interest
(ROI) signal points that were considered for baseline and apnea signal points median calculation, as well as the for the percent variation
in the magnitude of stimulus-induced BOLD signal (delta BOLD%).
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The temporal series of the ROI of controls and patients
were individually analyzed by a researcher who was blind
to TCD results. Each subject was then classified as nor-
mal or abnormal CVR. Since the number of subjects was
small, the training data for the classifier was the whole
data with the time series of the current subject removed.
The average signal across all remaining individuals in
each group (controls and patients) was calculated. Then,
the Euclidian distance between the series of the current
subject and the series of each group was compared. The
smallest distance guided the classification: if the distance
between the series of a given subject and the series
of the controls was smaller than the distance between
this subject and the series of patients, then CVR was con-
sidered normal.

Statistical analysis
Patients and controls were classified by each one of

the tests into normal or impaired CVR. Afterwards, the
agreement was calculated through Cohen’s kappa coeffi-
cient (k). Comparisons of nominal data and age distribu-
tion between groups were performed with Fisher’s exact
test and two-tailed Student’s t-test, respectively. The
comparison of the delta-BOLD% between groups was
done with the Mann-Whitney test. In all tests, Po0.05 was
considered to be statistically significant.

Results

On TCD, impaired CVR was detected in 2 of the 7
controls (men; 70 and 85 years old). The oldest one had
well-controlled hypertension; the youngest one had no risk
factors. Among patients, 10 of 15 showed impaired CVR.
Demographic, TCD and fMRI data are shown in Table 2.

For fMRI, the graphical shape of the temporal variation
of delta-BOLD% response during the 3 phases of the
paradigm (yellow, red and green) typically consisted of an
expressive increase in the signal intensity during the
yellow screen followed by a deep undershoot on the
apnea time (in the first 10 s of the red screen), and then
a second increase while going from the red screen into
the first few seconds of the green screen followed by
a decrease towards the baseline signal intensity while
resuming normal breathing.

However, the delta BOLD% signal was significantly
different between the groups, particularly in the interval
between 4 and 12 s after the onset of breath hold (Mann-
Whitney test, P=0.032). The individual analysis of the
temporal series of the ROI of all the subjects classified
3 controls and 10 patients as having impaired CVR. Both
groups performed similarly for the BHT task, except
patient ‘‘P12’’, excluded for not accomplishing BHT on
fMRI (Figure 2).

There was an 85.7% (6/7) observed rate of agreement
between TCD and fMRI with a good Cohen’s kappa coef-
ficient (k=0.69) for controls. For patients, the agreement

between TCD and fMRI was fair (73.3%; 11/15; k=0.43).
Overall, TCD and fMRI showed a good agreement
(77.27%; 17/22; k=0.54).

Discussion

The goal of the present study was to assess CVR in
patients with CS and age-matched controls through TCD
and fMRI using an identical vasodilatory stimulus on
both. The delta-BOLD% curve was significantly different
between patients and controls. Additionally, there was
good agreement between the tests for controls and
overall. Within the patient group, the agreement was fair
only. Our study is original because: 1) BHT was used for
inducting transient hypercapnia in both TCD and fMRI;
2) controls were included; 3) LN was the ROI, and 4) the
agreement between TCD and fMRI results was primarily
assessed.

We chose BHT because of its low cost, easy perfor-
mance and overall good correlation to other vasodilatory
stimuli (8,26). BHT can cause some concomitant hypoxia
during hypercapnia, which may influence the ventilatory
response (27) and, additionally, have some issues related
to the within-observer long-term reproducibility (28). How-
ever, we argue that the short duration of each apnea in our
study as well as the fact that TCD measurements were
obtained by only one examiner and on a short-term basis
have probably reduced those disadvantages.

We included controls to verify whether fMRI with BHT
would be able to detect any impairment on CVR, com-
pared to TCD, even in the absence of CS. In our study, the
signal averaged time series of BOLD response to BHT in
the ROI elicited roughly similar graphical shapes in both
groups.

Regarding the graphical shape of the temporal
variation of delta-BOLD% during the 3 phases of the
paradigm (yellow, red and green), we argue that the
increase on the delta-BOLD% in the very last seconds of
the yellow phase may have occurred because, in spite of
being instructed to avoid hyperventilation, it is possible
that subjects may have performed inspiratory movements
in a deeper way than the expiratory ones, leading to some
degree of CO2 retention just before apnea. The curve then
decreases within the first 10 seconds of the red screen
probably because, at that point, in spite of the progressive
increase on the CO2 concentration, the concentration of
oxygenated hemoglobin is still higher than the concentra-
tion of deoxygenated hemoglobin. As the apnea period
continues, CO2 concentration increases and the concen-
tration of deoxyhemoglobin overcomes the concentration
of oxyhemoglobin. So the delta-BOLD% curve goes up
again towards the first few seconds of the green screen
period, when the concentration of deoxyhemoglobin is still
higher as there is a physiological delay for the wash out
process. As the normal breathing is resumed, the delta-
BOLD% curve goes down and back into a steady stage.
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Delta-BOLD% signal was significantly lower in patients
than in controls. This may reflect the degree of collater-
alization, slow flow, as well as an increased baseline
oxygen extraction fraction in patients as compared to
controls. Additionally, patients showed a slight delay on
the time-to-peak, which may suggest some degree of
hypoperfusion or even an uncoupling of blood flow and
metabolism (29,30). Chang et al. (29) applied BHT in
17 patients with unilateral CS, in which impairment of CVR
was evaluated directly by the comparison of the dynamic
pattern of BOLD change over the MCA territory between
the hemispheres, considering the contralateral hemi-
sphere as an inner control for each patient. In that study,
most patients showed a great heterogeneity regarding
BOLD curves, which might have resulted either from the
wideness of the chosen ROI or from the lack of an outer
control. We argue that the role of the contralateral
hemisphere as an inner control is not appropriate, as the
presence of a microvascular dysfunction in the non-
stenotic hemisphere may conceal any eventual difference

on the expected BOLD responses leading to a false
negative interpretation. This probably could be overcome
with age-matched controls inclusion. However, as CVR
impairment may result either from macrovascular effects
of CS on perfusion as well as from microvascular
dysfunctions (31), which may explain the CVR impairment
observed in some of our controls (28% by TCD; 43% by
fMRI) as this group was matched for age only, but not for
vascular risk factors.

LN was chosen as the ROI because of its dense
arteriolar irrigation and earlier BOLD response to tran-
sient hypercapnia stimuli than other locations (29,32,33).
Besides, as a more centered structure, it is less suscep-
tible to peripheral movement artifacts. Another particu-
lar interesting point for choosing LN while using BHT as
the vasodilatory stimulus is that its neurons are directly
involved in the complex network of cortical and subcortical
structures integrated by the pons that, in turn, exerts
inhibitory effect on medullary respiratory neurons during
voluntary apnea (34).

Table 2. Demographic data and vascular parameters in carotid stenosis patients and age-matched controls.

Subject/

Gender/

Vascular risk

factors

Percent

stenosis grade

Symptoms Mean % increase

on MCA velocities

CVR Agreement

between TCD
Age (right/left) (right/left) on TCD on fMRI and fMRI

Controls
C01/M/52 62.1/n.a. N I
C02/F/53 56.2/n.a. N N Yes

C03/F/51 54.8/n.a. N N Yes
C04/M/76 H 52.42/35.8 N N Yes
C05/M/65 61.1/51.6 N N Yes
C06/M/85 H 21.3/25.3 I I Yes

C07/M/70 16.9/17.04 I I Yes
Patients
P01/F/63 S; Dy 70/(–) None 42.5/n.a. N N Yes

P02/M/72 S; H; Dy; CAD (–)/80 TIA 42.88/17.36 I I Yes
P03/M/73 S; H; Dy; CAD 90/(–) Carotid murmur 20.96/28.35 I I Yes
P04/M/52 S; Dy 80/90 Syncope 29.18/13.01 I I Yes

P05/M/66 H 470/(–) Syncope 19.06/27.12 I N
P06/M/74 S; H; Dy; CAD (–)/470 None 21.06/30.15 I I Yes
P07/M/59 S; Dy 470/490 AFug;TIA; LS 21.40/11.1 I I Yes
P08/F/69 S; H; Dy (–)/70 Dizziness n.a./74.6 N N Yes

P09/M/69 S; H; Dy (–)/80 TIA 34.7/36.2 N N Yes
P10/M/61 S; H; Dy (–)/490 Cerebellar stroke 40.8/37.84 N I
P11/F/67 H; D; Dy 70/(–) None 36.84/54.3 N I

P13/M/65 S; H; Dy; CAD 470/470 None 23.25/36.8 I I Yes
P14/M/60 S; H; D; Dy 80/(–) None 25.65/22.76 I N
P15/M/90 H; Dy 70/(–) TIA –2.6/–13.8 I I Yes

P16/F/76 H; D; Dy (–)/80 None n.a./26.67 I I Yes

F: female; M: male; H: hypertension; S: former or current smoker; Dy: dyslipidemia; D: diabetes; CAD: coronary artery disease; TIA:
transient ischemic attack; AFug: Amaurosis fugax; LS: lacunar stroke; MCA: middle cerebral artery; CVR: cerebrovascular reactivity;
TCD: transcranial Doppler; fMRI: functional MRI; N: Normal; I: Impaired; (–): no stenosis; n.a.: suitable transtemporal window not
available.
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Most of the studies that used TCD and fMRI for CVR
assessment in patients with CS or occlusion were prima-
rily aimed to investigate singularities of BOLD curves in

response to several paradigms rather than the agreement
between the methods (15,16,18,20–22). Even so, two
studies with carbon dioxide inhalation demonstrated a

Figure 2. A, mean BOLD% signal variation in the
time series during paradigm patients and controls.
B, averaged delta BOLD% signal, which was
significantly different between groups (P=0.032,
Mann-Whitney test). C, visually different BOLD
signal curves were observed in both left and right
lentiform nucleus of the patient P12, who did not
comply with the breath-holding test. In A, B and C,
the background colors represent the paradigm
tasks during the green (normal breathing), yellow
(normal breathing in preparation for holding) and
red screen (breath holding).
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good agreement between TCD and fMRI (20,22). In our
study, the agreement was overall good, but only fair in
patients. This may be due to the small sample or, prob-
ably, to the fact that TCD was arbitrarily set as the
reference test as PET was not available in our institution.
The reliability of TCD for CVR screening in patients with
CS is still controversial: few studies have shown a good
correlation between CBF velocity in the MCA measured
by TCD and the blood flow volume assessed by PET
(6,11,12), but the association between increased OEF on
PETand impaired CVR on TCD has not been consistently
found (35).

In conclusion, our study supports that fMRI with BHT is
a feasible and useful tool for mapping CVR in patients with
carotid stenosis, as MRI can overcome some of the main

limitations of TCD: the operator-dependence, the need for
an ultrasonic window and the lack of imaging. Further
studies with larger samples of patients and age- and
vascular risk-matched controls may provide a more
accurate measure of the agreement between these
methods.
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