The motion of a ball moving down a circular path
Diego C. de Souza and Vitor R. Coluci

Citation: American Journal of Physics 85, 124 (2017); doi: 10.1119/1.4972177
View online: http://dx.doi.org/10.1119/1.4972177

View Table of Contents: http://aapt.scitation.org/toc/ajp/85/2

Published by the American Association of Physics Teachers

Articles you may be interested in

Sliding down an arbitrary curve in the presence of friction
American Journal of Physics 85, 108 (2017); 10.1119/1.4966628

Weight of an hourglass—Theory and experiment in quantitative comparison
American Journal of Physics 85, 98 (2017); 10.1119/1.4973527

Kepler and the origins of pre-Newtonian mass
American Journal of Physics 85, 115 (2017); 10.1119/1.4972044

Interactions between uniformly magnetized spheres
American Journal of Physics 85, 130 (2017); 10.1119/1.4973409

Thermodynamically reversible processes in statistical physics
American Journal of Physics 85, 135 (2017); 10.1119/1.4966907

Why trains stay on tracks
American Journal of Physics 85, 178 (2017); 10.1119/1.4973370

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%#E!
http://jobs.aapt.org Elﬁ



http://jobs.aapt.org/
http://aapt.scitation.org/author/de+Souza%2C+Diego+C
http://aapt.scitation.org/author/Coluci%2C+Vitor+R
/loi/ajp
http://dx.doi.org/10.1119/1.4972177
http://aapt.scitation.org/toc/ajp/85/2
http://aapt.scitation.org/publisher/
http://aapt.scitation.org/doi/abs/10.1119/1.4966628
http://aapt.scitation.org/doi/abs/10.1119/1.4973527
http://aapt.scitation.org/doi/abs/10.1119/1.4972044
http://aapt.scitation.org/doi/abs/10.1119/1.4973409
http://aapt.scitation.org/doi/abs/10.1119/1.4966907
http://aapt.scitation.org/doi/abs/10.1119/1.4973370

@ CrossMark
& click for update

The motion of a ball moving down a circular path
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The problem of a body slipping down a frictionless hemisphere is very common in physics and
engineering textbooks. In this type of problem, students are normally asked to find the angle at
which the body flies off the surface. In this work, we have constructed an apparatus to determine
the angle at which a ball flies off a circular track, and to study the motion of the ball (rolling and
slipping) along the surface. The apparatus is comprised of two parallel rails that form a quarter
circle. The angular position and velocity of a steel ball are measured using a moveable arm
equipped with a photodetector. Two methods are used to determine the angle the ball loses contact
with the track. Both methods provide values in agreement with a model for rolling followed by

slipping. © 2017 American Association of Physics Teachers.
[http://dx.doi.org/10.1119/1.4972177]

I. INTRODUCTION

“What height does the boy lose contact with the ice?”’
This is a typical question of undergraduate physics and
engineering textbooks regarding the problem of a body
sliding down a frictionless circular path.'” Under these
conditions, the height is determined from the angle at
which the boy loses contact with the ice, which turns out to
be 48.2°, measured from the top of the path. When friction
is present, the phenomenon changes, and for a circular
object, both slipping and rolling can be present in the
motion. A related problem, treated in Symon’s seminal
book,4 that has “little practical importance, but which is
quite instructive, is that in which one cylinder rolls upon
another.”

Transforming textbook problems into real experiments
provides an interesting way to liven up a physics class by
discussing a real situation with students. Besides catching
the attention of students, incorporating such experiments in
class or laboratory creates an environment prone to discus-
sions regarding apparatus construction, measurement details
and difficulties, data analysis, and the comparison between
theory and experiment.

In this paper, we describe the construction of an apparatus
to determine the angle at which a ball loses contact with a
circular track. The apparatus allows students to discuss fric-
tion, slipping, and rolling by working with a real experiment
inspired from the idealized, textbook physics problem.
Whereas, rolling and slipping have been studied by various
authors in the last 30 years,” '? to our knowledge this is the
first work that considers the circular path as discussed in
physics textbooks.

In this paper, we first present the model to describe the
phenomenon and the methods we have proposed to deter-
mine the angle at which the ball loses contact with the track.
We then present the details of the apparatus. Finally, we pre-
sent our results and some discussion about the motion of the
ball on the track.

II. THEORETICAL MODEL

A ball of radius r, and mass m is released from rest at a
small («1°) angle Oy from the top of a circular track of
radius a (Fig. 1). The track consists of two parallel rails
whose separation distance is /, which gives the ball an
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— (1/2)* while on the track

(our notation parallels that of Ref. 4). Due to friction
between the ball and the track, the ball begins its descent by
rolling. At an angle 6, the ball begins slipping, and this slip-
ping continues until the ball reaches an angle 0. (>0,), when
the normal force exerted by the track on the ball becomes
zero. At 0. the ball loses contact with the track and freely
falls for a time #;, at which point it lands on the ground a dis-
tance d from the point where it would be in contact with the
circular track (see Fig. 1).

Because the motion of the ball is constrained by the circu-
lar track, we use the Lagrangian formulation to obtain the
equations of motion and the relationship between the ball’s
(translational) velocity and its angular position. The relation-
ship between the velocity and angular position of the ball is
used to determine whether the ball is purely rolling or slip-
ping. We follow the procedure used by Symon4 to describe
the motion of one cylinder rolling on another. Using polar
coordinates (r, 0) to describe the center of mass of the ball,
the Lagrangian £ of the system is written as

effective radius repf = 0ta = r,%

1 . 1
L= Em(f2 + r292) + Elq’oz — mgrcos 0
2
1 . 1 /1
— 5m(r'2 +r202> +§1( :“)

X (92 — 295} + 3')2) — mgrcos 0, (1)

where I = (2/5)mr}, g is the gravitational field strength, y =
0 — ap/(1 + o) is the slip angle, and ¢ describes the ball’s
rotation along its axis.

During the pure rolling phase of motion, two constraints
are imposed to the ball

1+ o
hr)=r— (1+a)a=0. 2)

The first constraint ensures that the ball does not slip (y =0)
while the second ensures that the ball remains in contact
with the hemisphere. Solving Lagrange’s equations subject
to these constraints, we obtain a relationship between the
angular position 0 of the ball’s center of mass and its time
derivative 0 given by

f1(0,0) =0 — (L>¢=O and
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Fig. 1. Schematic of the motion of a ball on a circular path. The position of
the ball is given by variable r and 0, whereas the rotation of the ball is quan-
tified by ¢. Angle 0.. is where the ball loses contact with the track and starts
its free fall. The ball impacts the ground a horizontal distance d from where
it would be in contact with the circle.

1/2
0= 2(@> sin <§> (3)
a 2
where = 5/[(5+ 2n)(1 + )] and = (r,/0a)’.

The forces of constraint, which are the frictional force f
and the normal force F exerted by the track on the ball, are
found to be f =2nmgsin0/(5+ 2n) and F = mg[(15 + 2n)
cos — 10]/(5 + 2n). As long as the ball rolls without slip-
ping, the condition f= u " will be satisfied, where py is
the coefficient of static friction. Note that p can take
on any value between zero and some maximum value
u. Therefore, the maximum angle 6, that the ball rolls with-
out slipping is obtained from the condition f= uF, which
leads to

cos by

(150 +200) 1® +2n+/4n2 (1 + p2) +60n 12 + 12512
An2(1+ p2) +60nu2 + 22512 ’

“)

For 6,< 0 < 6., the ball begins slipping, so only the con-
straint f> =0 holds. For the simplified case where slipping
occurs with no friction, we resolve Lagrange’s equations
(subject to f> =0), which leads to

0 0 :
_ gsin 6
0do=| ———db, 5
L}v Lfa(l + o) ©)

where 0, is given by Eq. (3) with 0 = 0;. Integrating Eq. (5)
leads to the relation between 0 and 0, which can then be
used to determine the normal reaction force F. Setting F'=0
then gives the angle 0. the ball flies off the track (when
there is no friction after slipping occurs) as

cos O = (5 + 2ncos by). 6)

15+ 61

For a completely frictionless surface, the ball will
begin slipping immediately (at a nonzero 0 < 1°) so that
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cos Oy = 1. Taking n =1 (the effective radius of the ball is
equal to the actual radius of the ball) then leads to the stan-
dard problem of a mass sliding without friction on a spheri-
cal surface. In this case, Eq. (6) reduces to cos 0.0 = 2/3, as
expected.

To obtain the equation of motion when the ball is slipping
on the track in the presence of friction, we need to include
Rayleigh’s dissipation function'® F = umga(1 + )0 cos 0
in Lagrange’s equations.'* In this case, the relationship
between 6 and 6 becomes

ﬁ/ 1/2
0= 2(g> [B(1 + o) sin®(0,/2)
a
1
+§(Cos03 + usin 0 — cos 0 — ,usiné))}l/z, @)
where f'=1/(1+a). In this case, the angle the ball

loses contact with track (in the presence of friction) is
given by

2[4 1.0) — 3sin 0, — u/52(.2. 5,05 |

cos O, = T ,
(8)
where
g1(n,05) = 3cos Oy + 3p(1 + a)(1 — cos 0y), )
and

gz(:“? %, ﬁa ev) =9+ 4(ﬂ2 - 1) COSzgs
—16B(1+ ) [B(1 + o) sin*(0,/2)

+ psin 0] sin® (0,/2)
—8[2(1 + ) sin®(0/2) + psin O] cos 0.
(10)
Figure 2 shows the behavior of the angles 0, 0., and 0, as
the (maximum) coefficient of static friction u varies from 0
to 1. As seen in this figure, the variation of 0 as a function

of u is fairly large, about 45°, whereas 0.y and 0., exhibit
much smaller variations of about 10°.

o f il
gao |
o 20 |
10f .
o ]
0.0 0.2 0.4 0.6 0.8 1.0

¢

Fig. 2. Behavior of 0y, 0.9, and 0, as a function of the coefficient of static
friction.
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III. MEASURING THE ANGLE THE BALL FLIES
OFF THE TRACK

We considered two methods to determine the angle the
ball flies off the track. In Method I, the angle 0. was deter-
mined by measuring the time evolution of the angular posi-
tion of the ball, 6(f), and determining the exact time ¢, the
ball loses contact with the rails. We then have 0,.= 0(z,.).

In Method II, we use data from when the ball has already
flied off the track. The x and y coordinates of the center of
mass of the ball during free fall depend on 6. and on the time
of flight ¢ through

x(0.,t) =Rsin 0. + (v, cos 0,.)t, (1D

and
y(0c,1) = Rcos 0, — (v, sin@c)t—%gtz, (12)

where R=a(x+ 1) and v, is the speed of the center of mass
of the ball at the moment it loses contact with the surface.
Equations (11) and (12) hold from the moment the ball loses
contact with surface until it collides with the table. If the total
free-fall flight time is 7, then at the moment of impact with
the table we have x=R+d, y=r;,, and t=1; (see Fig. 1).
Plugging these values into Egs. (11) and (12) allows us to
solve for 0. and v,. in terms of the measurable quantities d and
tr. The results are

AB ++1 — A% + B2

cosl, = T B , (13)
and
C:d—l—a(oc—l—l)(l—sme(,), (14)
(cos 0, )1y
where
(0 +1)a
A= ———— 15
(0 +1Da+d’ (15)
and
ry +gt7 /2
B=——+7"-—. 16
(0+1)a+d (16)

Thus, we can determine 0. by measuring d and #; and using
Eq. (13).

IV. APPARATUS

Two electrically isolated aluminum plates make up the cir-
cular track for the steel ball (Fig. 3). A quarter circle track
was constructed using computerized machining in order to
guarantee a circular path as much as possible. We used the
two plates as part of an electronic circuit with the ball acting
as a switch between the plates. When the ball is on the track,
an electrical contact between the plates is established that
produces a HIGH signal. When the ball loses contact with at
least one of the plates, a LOW signal is produced. In this way,
we can determine the time #. at which the ball flies off the
track.
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Fig. 3. The apparatus used to determine the angle the ball loses contact with
a circular track: (a) schematic diagram and (b) photograph that shows the
ball B, the optical detector S, the electromagnetic device E to release the
ball, and the microphone M. The inset in (a) shows the separated plates used
to keep the ball on the circular path. The inset in (b) shows the optical sen-
sor; the LED is placed below the track with the photodetector above.

An electromagnet—a solenoid extracted from an electro-
valve (Microar, 12V, 4 W, Part No. 0200000113)—is used
to release the ball at the top of the track. In addition, the ball
is also used as an electrical switch to start the timer. At the
top of the track, a small copper plate is placed between the
electromagnet and the ball. When the electromagnet is on,
the ball stays in contact with the cooper plate. When the ball
loses contact with the copper plate (by turning off the elec-
tromagnet), the timer is started.

A photodetector, comprised of a green LED and a photo-
transistor, is placed in a moveable arm. This photodetector is
used to measure the angular position 0 of the ball on the track,
and the ball velocity is determined from the ratio of the ball
diameter to the time the ball interrupts the light on the photo-
detector. These photodetector measurements are used to
obtain the angle 0. at which the ball loses contact with the
track. In addition, we also determined 0, using the total free-
fall time #; and the location d where the ball impacts the
ground (see Fig. 1). The free-fall time was found by measur-
ing the sound (using an analog sound sensor, HR 11080 from
DFRobot'?) produced by the ball during its motion on the
track and the sound the ball makes upon the impact with the
ground, while the impact point was measured using carbon
paper to record the ball’s impact with the ground.

An Arduino Mega 2560 is used to control the electromag-
net, to record data from the photodetector and microphone,
and to collect time data from the moment the ball is released

D. C. de Souza and V. R. Coluci 126
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Fig. 4. Time evolution of the angular position of the ball (left) and the
(translational) ball speed (right); the dashed line indicates the time the ball
flies off the track. The inset shows superimposed photodetector data from
five experiments with the arm at different locations.

until it impacts the table; the data were saved using an SD
Module (DFR0071 from DFRobot'®). The Arduino code and
the electronic circuits used are available as supplementary
material."” The Arduino was chosen because it is relatively
inexpensive and is accessible in most undergraduate teaching
laboratories. To validate data from the Arduino, we have
also collected data for some experiments using a Tektronix
TBS1052B-EDU 50-MHz digital oscilloscope.

The geometrical characteristics of our apparatus are:
rp,=7.50*0.05mm, a=487 =1mm, 0,=0.29*+0.12°,
[=5.0=0.5mm, and n=1.12. The (maximum) coefficient
of static friction between the ball and the aluminum plates
was u=0.21 +£0.01. This value was measured by joining
two balls together using adhesive tape and placing them on
the straight part of the setup (the bottom portion of the track
in Fig. 3). The angle with the horizontal was then slowly
increased until the pair of balls starts to move (at angle 7,
with 1 = tany). Using the measured y, the predicted angles
from Egs. (4), (6), and (8) are found to be 0,=28.7 +0.8°,
0.0=50.1%+0.1°,and 0., =53.4 = 0.1°.

——
Sound #1

Photodetector #1

T T I

T | | I Voltage #1
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Fig. 5. Typical measurements for sound, photodetection, and voltage
between the plates obtained from the oscilloscope and the Arduino (voltage
only). Two different experiment results are shown as black and gray (blue
online) as voltage #1 and #2. The vertical dashed line indicates the moment
used as the time origin when the trigger is turned on.
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Fig. 6. Histogram of the voltage measurements for 324 runs. The arrow indi-
cates the estimated time (1300 ms) that the ball loses contact with the track
(the inset shows a zoomed-in view). For each run, 700 voltage measure-
ments were made during the 1500 ms. The histogram was built using only
measurements that indicated the ball was in contact with the rail, which cor-
responds to 11336 total measurements.

V. EXPERIMENT AND RESULTS

The angular position of the ball and the speed of its center
of mass are shown in Fig. 4. Data from the photodetector
revealed, as expected, an increase in the ball speed as the
ball moves down the track (inset). Whereas, the photodetec-
tor data from the Arduino were easily reproducible, measure-
ments of the voltage between the plates exhibited a large
variation from independent runs of the experiment (Fig. 5).
Measurements from the oscilloscope confirmed this varia-
tion. We attribute this behavior to irregularities present on
the track that cause the ball to temporarily lose contact with
the track and, consequently, change the voltage signal.
Therefore, to obtain 7. we repeated the experiment (ball
release) over 300 times and created a histogram of the volt-
age data (Fig. 6). Although we observed voltage signals up

15 ——— ——
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10~ B
o | ]
?
o 5 —
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- = g
=}
& 1200 1300 1400 1500 0— :
~ 120 150 180 210
> . .
= Time of flight (ms)
a
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= I o]
e | ]
220}~ .
3
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210 .
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Time (ms) Time (ms)

Fig. 7. (a) Time evolution of the sound during the motion of the ball. Data
from two different runs of the experiment are shown. The inset graph shows
the time the ball flies off the track (z.), the time the ball hits the ground (z,),
and the free-fall time of flight (4r=1¢, — #.). (b) Histogram for the time of
flight (72 runs). (c) Histograms for #. and ¢,. Gaussian fits to the histograms
are shown in gray (blue online).
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to about 1380 ms, we took the first gap in the measurements
to be the time the ball lost contact with the surface (see
inset), giving .= 1300 = 5ms. This value was also con-
firmed from the sound data (see Fig. 7). Using 7. = 1300 ms,
we estimated 0, from Fig. 4 to be 0. =52 = 2°, which is con-
sistent with the predicted value of 53.4° in the presence of
friction with u=0.21.

Detectable data for sound from the Arduino started at about
500 ms (Fig. 7). From that time on, we observed an irregular
signal pattern up to about 1300 ms. No detectable signal is
observed between about 1300 ms and 1450 ms when the ball
is in free fall. The abrupt increase of the sound signal at about
1450ms is due to the impact of the ball with the ground
(y=0, Fig. 1). The time the ball flies off the track (z.), the
time the ball reaches the ground (z,), and the free-fall time of
flight (#) obtained from the sound data exhibited an approxi-
mately gaussian distribution, as shown in Figs. 7(b) and 7(c).
The narrow distribution of #, indicates the good reproducibil-
ity presented by the apparatus. From the fitted gaussian
curves, we obtain #.=1301 = 38 ms, 7, = 1460 * 24 ms, and
tr= 157 = 20 ms. The time the ball flies off the track obtained
by the sound measurements is in agreement with the one esti-
mated from the voltage measurements.

Determined from 60 experiments, the location of the impact
point of the ball with the ground was d = 50.5 = 0.6 mm. From
the measured values of d and #, we obtained 0. =48 = 4° and
v.=1.65*0.09m/s from Egs. (13) and (14), respectively.
Again, we find a value of 8. close to the prediction.

The apparatus described here also allows studying the
motion of the ball while on the track. An analysis of 0 vs
sin(6/2) based on Egs. (3) and (7) provides a way to deter-
mine whether the ball is rolling or slipping. Such plots (or
similar ones, e.g., involving acceleration) have been used by
other authors to study rolling and slipping.”®'® As shown in
Fig. 8, we observed two different behaviors. A linear fit of
the data for sin(6/2) < 0.2 provides a slope of 3.5 = 0.1 m/s,
which is very close to the predicted value of 3.65m/s for
pure rolling given by Eq. (3). For sin(0/2) > 0.25, Eq. (7)
correctly describes the motion for a friction coefficient close

T T T T T T

Slipping with friction e
E
°
@
g
1.0
Tés Slipping with no friction
o I
©
2 0.51 B
o
|_
Pure rolling
00 | L | L | .
0 0.1 0.2 0.3 0.4
sin(6/2)

Fig. 8. Behavior of the translational ball speed (R0) as function of sin(0/2)
during the motion on the track. The thick line corresponds to a linear fit for
sin(60/2) < 0.2, and corresponds to pure rolling (coefficient of determination
0.9978). The gray lines (blue online) correspond to Eq. (7) for different fric-
tion coefficients (these curves start at sin(0,/2) for the respective u). The
thin line corresponds to Eq. (7) with =0 and 0,= 0 (slipping with no fric-
tion). The dashed line is a guide to the eye. The error bars for sin(0/2) are
smaller than the size of the points.
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to 0.15. For wu=0.15, the predicted angles are
0,=231%+0.8° 0,=49.5*0.1°, and 0.,,=524%*0.1°
This friction coefficient is smaller than the measured value
of u=0.21. This discrepancy might be explained by the fact
that we measured the maximum static friction, whereas a
ball that is rolling and slipping is more appropriately
described by kinetic friction, which is typically smaller than
the maximum static friction. A difference of about 5%
between kinetic and static friction coefficients was measured
in Ref. 5 for materials similar to the ones used in this work.
This difference is of the order of the uncertainty we have in
the measurement of p carried out in this work.

Finally, we note a couple of minor changes that could
improve the apparatus. A larger track radius will increase the
values of all relevant times (e.g., #r and t.) and this should
reduce the relative uncertainties on those quantities. In addi-
tion, we expect that a larger ball will improve both voltage
and sound signals. The use of video analysis'""'* would also
help to identify and to visualize the transition between roll-
ing and slipping. And finally, the cost of the apparatus could
be reduced by replacing the aluminum track with a wooden
track covered by a thin metallic plate.

VI. CONCLUSIONS

We have constructed an apparatus to determine the angle
a ball loses contact with a circular track, and to study how
the ball moves when it is on the track. The apparatus was
constructed based on a textbook problem and it can be used
in classrooms to illustrate the concepts of friction, rolling,
and slipping, as well as to encourage discussions about the
phenomena (e.g., the rolling-to-slipping transition) that
appear in real situations.
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dissipative forces that can not be obtained from a potential energy
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Details of the sound sensor can be determined at <http://www.dfrobot.
com/wiki/index.php/Analog_Sound_Sensor_SKU:_DFR0034>.

%Details of the SD module can be determined at <http://www.dfrobot.com/
wiki/index.php/SD_Module_(SKU:_DFR0071)>.

'7See supplementary material at http://dx.doi.org/10.1119/1.4972177 for cir-
cuit diagrams and Arduino code.

Surveyor’s Compass

The standard undergraduate curriculum in the second half of the 19th century often included a required course in
surveying and land measurement. Thus I was prepared to find this surveyor’s compass at the physics department at
the flagship campus of the University of Texas in Austin, which was founded in 1883. It was made by Gurley of Troy
New York, the largest maker of surveying equipment in the United States at the time. (Picture and Notes by Thomas

B. Greenslade, Jr., Kenyon College)
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