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ABSTRACT

We have addressed blind deconvolution in a multichannel
framework. Recently, a robust solution to this problem based
on a Bayesian approach called sparse multichannel blind de-
convolution (SMBD) was proposed in the literature with in-
teresting results. However, its computational complexity can
be high.We have proposed a fast algorithm based on the mini-
mum entropy deconvolution, which is considerably less ex-
pensive. We designed the deconvolution filter to minimize a
normalized version of the hybrid l1∕l2-norm loss function.
This is in contrast to the SMBD, in which the hybrid
l1∕l2-norm function is used as a regularization term to di-
rectly determine the deconvolved signal. Results with syn-
thetic data determined that the performance of the obtained
deconvolution filter was similar to the one obtained in a su-
pervised framework. Similar results were also obtained in a
real marine data set for both techniques.

INTRODUCTION

One important goal of seismic signal processing is to determine
the subsurface reflectivity function, which is information of great
interest for several applications, including oil exploration (Robin-
son, 1954; Porsani and Ursin, 1998; Yilmaz, 2001; Misra and Cho-
pra, 2011). However, the seismic traces are actually a blurred
version of the reflectivity. This blurring is caused by the fact that
the seismic wavelet is not an ideal impulse, having instead a finite,
nonzero duration. In fact, the seismic data can be modeled as the
convolution of the reflectivity function and the seismic wavelet. To
remove the effects of the wavelet from the data, and thus recover the
reflectivity, we use a process called deconvolution.
Deconvolution has a very long and rich history in seismic process-

ing and beyond (Kundur and Hatzinakos, 1996; Proakis, 2001). One

particular challenge in the seismic case is that, in general, neither the
reflectivity nor the wavelet can be assumed to be known. (In contrast,
in communication systems, data are transmitted in blocks that begin
with a known signal. This is used to determine the deconvolution
systems, which are then used to deconvolve the actual, unknown,
data in the remainder of the block.) Thus, one must resort to a body
of techniques known as blind deconvolution (Romano et al., 2011).
For a thorough account of the several kinds of blind deconvolution
methods that have been applied in seismic signal processing, we
refer the reader to the “Introduction” section in Kazemi and Sacchi
(2014).
Of particular interest to this paper are the so-called multichannel

blind deconvolution methods (Wiggins, 1978; Xu et al., 1995;
Inouye and Sato, 1996; Rietsch, 1997a, 1997b; Kaaresen and Taxt,
1998; Ding and Li, 2001; Ram et al., 2010). The term multichannel
comes from the fact that these methods are applied when we
have several observations of a certain signal, and each observation
goes through a different channel. This is exactly the case with
seismic data, in which the same wavelet affects all traces, and the
different channels are the different reflectivities in each trace. One
of the very interesting properties of multichannel methods is that they
yield an exact, algebraic estimation of the reflectivity in the noise-
less case.
However, multichannel methods cannot be applied directly in the

seismic case. Among other reasons, this happens because of the large
similarity between neighboring reflectivities, which makes the prob-
lem either numerically unstable or, at worst, ill posed and impossible
to solve. To overcome this problem, Kazemi and Sacchi (2014) pro-
pose a Bayesian approach in which the hybrid l1∕l2-norm loss func-
tion is used as a sparsity-promoting regularization function. This
technique, called sparse multichannel blind deconvolution (SMBD),
presents good results in the synthetic and real data scenarios. How-
ever, it has a high computational cost.
In this paper, we propose a faster algorithm for SMBD based on

the minimum entropy deconvolution (MED) algorithm. MED is an-
other sparsity-promoting blind deconvolution approach, widely ex-
plored during the 1980s (Claerbout, 1977; Gray, 1978b; Wiggins,
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1978; Ooe and Ulrych, 1979; Donoho, 1981; Cabrelli, 1985). In this
case, a sparse signal is defined as a signal composed of a few spikes,
of unknown amplitude and position, separated by nearly zero terms
(Wiggins, 1978). (The parallel between sparsity and entropy drawn
by Wiggins [1978] is that sparse signals, being well-organized,
should have a small entropy.) By observing that the convolution
of such a signal with the seismic wavelet would lead to a less sparse
signal, Wiggins (1978) proposed a technique based on linear filter-
ing that searches for the filter that leads to the most sparse output,
which would correspond to the estimated reflectivity.
In summary, the main idea of MED algorithms is to estimate a

deconvolution filter to remove the effects of the seismic wavelet
based on the optimization of the sparsity of the deconvolved reflec-
tivity series. Several sparsity measures can be considered to this
end. In this paper, we propose a simple modification of the hybrid
l1∕l2-norm loss function that enables it to be used as an unsuper-
vised criterion for blind deconvolution (Takahata et al., 2012). In
terms of computational complexity, the major advantage of MED
algorithms is that the deconvolution filter can be obtained using
only a small part of the section to be deconvolved; this filter is then
used to deconvolve the whole section.
Finally, we note that in our approach, the deconvolution itself is

performed by a linear filter; what we propose here is a method to de-
sign this filter. In contrast, SMBD and other multichannel approaches
seek to directly determine the reflectivity (Rietsch, 1997a, 1997b;
Kaaresen and Taxt, 1998; Kazemi and Sacchi, 2014). As we will see,
this difference also helps to explain the reduced computational com-
plexity of our approach. In terms of results, we will see that each ap-
proach has advantages and disadvantages.

THE CONVOLUTIONAL MODEL

In seismic data, the recorded traces are usually modeled by the
convolution model as shown in Figure 1. The seismic data recorded
at the jth receiver are given by

xjðnÞ ¼ sjðnÞ � hðnÞ þ νjðnÞ; j ¼ 1; : : : ; J; (1)

where n refers to the temporal samples; sjðnÞ corresponds to the re-
flectivity series in the jth trace; hðnÞ is the seismic wavelet, assumed
to be the same for all traces; νjðnÞ is the additive noise; and J is the

number of receivers. In the sequel, we will show how the assumption
that all traces are affected by the same wavelet can be exploited to
determine the reflectivities, even when the wavelet is unknown.

SPARSE MULTICHANNEL BLIND
DECONVOLUTION

In this section, we review the blind multichannel method proposed
by Kazemi and Sacchi (2014) to estimate the reflectivity series sjðnÞ.
To that end, consider the z-transform of the multichannel noiseless
seismic data in equation 1, given by the following equation:

XjðzÞ ¼ HðzÞSjðzÞ: (2)

By isolating the seismic wavelet HðzÞ, it can be shown (Kazemi and
Sacchi, 2014) that

XpðzÞSqðzÞ − XqðzÞSpðzÞ ¼ 0; ∀ p; q: (3)

In matrix notation, equation 3 can be expressed as

Xpsq − Xqsp ¼ 0; (4)

where Xj represents the convolution matrix of the jth channel and
sj ¼ ½sjð1Þ; : : : ; sjðNÞ�T . The combination of all possible equa-
tions, for all possible combinations of p and q, leads us to the fol-
lowing system of linear equations:

Xs ¼ 0; (5)

where

X ¼

2
666666666666664

X2 −X1

X3 −X1

X4 −X1

..

. . .
.

X3 −X2

X4 −X2

X5 −X2

..

. . .
.

3
777777777777775

; (6)

Figure 1. The convolution model in the depth and time domains.
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and

s ¼ ½sT1 ; sT2 ; : : : ; sTJ �T: (7)

In the noisy case, the linear system of equations becomes

Xs ¼ e; (8)

where e denotes the representation error, modeled as an additive
noise term, which is not necessarily white and Gaussian (Kazemi
and Sacchi, 2014).
In Kazemi and Sacchi (2014), the authors use a Bayesian approach

(Kormylo and Mendel, 1983; Cheng et al., 1996; Rosec et al., 2003;
Repetti et al., 2015) to estimate the reflectivity. Bayesian estimation
usually aims at estimating the parameters s of a statistical model by
solving the following problem:

ŝ ¼ arg min
s

fðX; sÞ þ λgðsÞ: (9)

The function fðX; sÞ measures the fitness of the statistical model,
whereas the regularization term gðsÞ measures the fitness of a prior
assumption about the parameters s. For the problem at hand, Kazemi
and Sacchi (2014) assume that the representation error e is white and
Gaussian, so that fðX; sÞ can be written in terms of the log likelihood
of a Gaussian random variable, which leads to the well-known mean-
squared error. As prior information, they assume that the reflectivities
are sparse, containing few nonzero values, and they use the hybrid
l1∕l2-norm function, also known as the pseudo-Huber function
(Hartley and Zisserman, 2003; Huber and Ronchetti, 2009), as a spar-
sity-promoting regularization term. The resulting Bayes estimator is
given by

ŝ ¼ arg min
s

1

2
kXsk22 þ λ

X
j

RϵðsjÞ; subject to sTs ¼ 1;

(10)
where

RϵðsjÞ ¼
X
n

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2jðnÞ þ ϵ2

q
− ϵ

�
(11)

is the hybrid l1∕l2-norm function. The constraint sTs ¼ 1 is imposed
to avoid the trivial solution.
In robust statistics, the hybrid l1∕l2-norm function is usually used

when the data have outliers, i.e., large elements that would be unlikely
under a Gaussian assumption. To better fit the data in this case, the
assumed statistical distribution should have a heavier tail than that of
the Gaussian. The hybrid l1∕l2-norm function achieves this end auto-
matically. In fact, if one thinks of the loss function as the log likeli-
hood of a random variable, the corresponding distribution has a peak
similar to the Gaussian distribution, but a tail resembles the Laplace
distribution (Huber and Ronchetti, 2009; Repetti et al., 2015).
The hybrid l1∕l2-norm function can also be seen as a smoothed

version of the l1 norm (Bube and Langan, 1997; Li et al., 2010;
Zhang and Claerbout, 2011; Repetti et al., 2015), and hence it can
be used as a measure of sparsity of a signal (Donoho, 2006). To
illustrate such a relationship, consider the function,

zjðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2jðnÞ þ ϵ2

q
− ϵ: (12)

In Figure 2a and 2b, we plot this function, along with yjðnÞ, related
to the l1 norm. From this figure, it is possible to observe that the
hybrid l1∕l2-norm function resembles the l2 norm for yj ≪ ϵ and to
the l1 norm for yj ≫ ϵ.
The ability of the hybrid l1∕l2-norm function to measure the spar-

sity of a signal has already been exploited in seismic deconvolution
(Zhang and Claerbout, 2011). In the next section, we propose to use
this function to perform multichannel deconvolution based on an
MED framework.
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Figure 2. (a) Comparison of the absolute value and its approximation with the function zjðnÞ for different values of ϵ, followed by its re-
spective first-order derivative (b).
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A FAST ALGORITHM FOR SPARSE
MULTICHANNEL BLIND DECONVOLUTION

The deconvolution method reviewed in the previous section re-
quires the solution of the optimization problem in equation 10, which
can be costly. However, the solution of equation 10 yields the reflec-
tivity functions, gathered in the vector s. An alternative, simpler ap-
proach is to use the Bayesian framework to seek good deconvolution
filters. Once these linear filters are designed, they can be applied to
the seismic data xjðnÞ to determine the reflectivities.
In the context of this paper, the minimum entropy criterion for

filter design is a very interesting approach. MED has been first in-
troduced byWiggins (1978). It is based on the prior assumption that
the convolution of the reflectivity series, which is sparse, with the
seismic wavelet will produce a less sparse signal. Hence, deconvo-
lution can be achieved with a deconvolution filter able to retrieve the
most sparse signal, which corresponds to the original signal. Suffi-
cient and necessary conditions for that can be found in Donoho
(1981), Shalvi and Weinstein (1990), Nose-Filho et al. (2014), and
Nose-Filho and Romano (2014).

In this case, the solution does not depend on the magnitude of the
filter coefficients, nor on its intrinsic delay (Shalvi and Weinstein,
1990). Hence, the adaptation/optimization of the filter coefficients
can be done by means of the optimization of an invariant scale func-
tion able to measure the degree of sparsity of a given signal (Hurley
and Rickard, 2009). As a consequence, local minima are to be ex-
pected and may correspond to the set of desirable solutions, i.e., to
delayed and scaled versions of the inverse filter.
For the adaptation/optimization of the filter coefficients, several

different measures could be used. If one defines a sparse signal as
being a signal composed of a few spikes separated by exactly zero
terms, one may prefer l0 or l1 norm. However, if one refers to a
sparse signal as a signal composed of a few spikes separated by
nearly zero terms, then, one may prefer to use smoother functions,
such as the varimax norm (Wiggins, 1978), the smooth l0 norm
(Nose-Filho et al., 2014), or any other norm, different from the
l0 and the l1 norms (Gray, 1978a, 1978b; Ooe and Ulrych,
1979; Donoho, 1981; Cabrelli, 1985; Nandi et al., 1997; Nose-Filho
and Romano, 2014).
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Figure 3. (a) Original reflectivity series and (b) synthetic seismogram with 9 dB of S/N, followed by its respective power spectral density (c and d).

V10 Nose-Filho et al.



In this paper, we propose the use of the hybrid l1∕l2-norm func-
tion to obtain the coefficients of the deconvolution filter. This pref-
erence relies on the fact that it is a smooth function, so that simple
gradient-based methods can be used in the optimization. However,
as stated before, an appropriate criterion for any unsupervised tech-
nique must be scale invariant, which is not the case of the hybrid
l1∕l2-norm function. Thus, we propose to normalize it by the vari-
ance of the deconvolved signal. To express this new criterion, let
yjðnÞ be the deconvolved traces, obtained as the output of a decon-
volution filter with impulse response wðnÞ:

yjðnÞ ¼ xjðnÞ � wðnÞ ¼
X
k

wðkÞxjðn − kÞ: (13)

The normalized cost function is then given by

RϵðyjÞ ¼
X
n

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2jðnÞ
σ2yj

þ ϵ2

s
− ϵ

!
; (14)

where σ2yj ¼
P

ny
2
jðnÞ∕N is the estimated variance of the estimated

reflectivity series.

In a multichannel framework, the MED filter is the solution of the
following optimization problem:

ŵ ¼ argmin
w

JðyÞ ¼
X
j

RϵðyjÞ;

subject to wTw ¼ 1;
(15)

where the constraint wTw ¼ 1 is provided to avoid the trivial
solution.
The optimization of the coefficients of the deconvolution filter is

performed by means of a simple gradient-descent algorithm. The
derivative of the normalized hybrid l1∕l2-norm function with re-
spect to the kth coefficient of the filter w is given by

∂JðyÞ
∂wk

¼
X
j

X
n

ðzjðnÞÞ−1∕2
σ2yj

�
yjðnÞxjðn − kÞ

−
yjðnÞ2
N

X
n

yjðnÞxjðn − kÞ
�
; (16)

where we redefine zjðnÞ as zjðnÞ ¼ y2jðnÞ∕σ2yj þ ϵ2.
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Thus, the adaptation of w is given by

wðmþ 1Þ ¼ wðmÞ − μ∇JðwðmÞÞ;

wðmþ 1Þ ¼ wðmþ 1Þ
kwðmþ 1Þk22

; (17)

where μ is the step size of the gradient algorithm. The second step in
equation 15 ensures that the constraint wTw ¼ 1 is met at every
iteration (Douglas et al., 2000).
It is worth mentioning that the optimization problem in equation 15

may present some local minima, so that the gradient descent algorithm
must be carefully initialized. A good initialization can be made by a
single spike of unit magnitude located according to some previous
assumption on the phase of the wavelet (Shalvi and Weinstein, 1990).
For example, for minimum-phase wavelets, it is advisable to initialize
the deconvolution filter with a single spike at the beginning of the filter.
For mixed-phase wavelets, it is advisable to initialize it with a single

spike located at the middle of the filter, and in the case of maximum-
phase wavelets, it is advisable to initialize it with a spike at the end.
For simplicity, from now on, the method proposed by Kazemi

and Sacchi (2014) will be referred to as SMBD, whereas the method
that we propose will be referred to as fast SMBD (F-SMBD).
A detailed analysis of the computational cost of each algorithm is

a difficult task, and it is outside the scope of this work. However, to
give a general idea of the reduction in computational cost achieved
by our proposal, we will compare the size of matrix X in equa-
tion 10, which refers to SMBD, and the size of the convolution ma-
trix for computing the output of the deconvolution filter, which
refers to F-SMBD. The SMBD is extremely costly because it com-
pares all channels with all channels, leading to a matrix of dimen-
sion ððJðJ − 1ÞðN þ L − 1ÞÞ∕2 × JNÞ, where J is the number of
channels, N is the number of samples, and L is the length of the
wavelet. However, the proposed algorithm makes use only of the
multichannel convolution matrix of dimension ððN þ L − 1Þ × JNÞ,
i.e., ðJðJ − 1ÞÞ∕2 times smaller than X.
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Figure 5. Deconvolved section with SMBD for different values of λ: (a) λ ¼ 5 and (b) λ ¼ 10, followed by its respective power spectral density
(c and d).
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In the following, we present some results illustrating the perfor-
mance of both algorithms with synthetic and real data.

RESULTS

In this section, we illustrate results obtained for both algorithms
with synthetic and real data. As a figure of merit for the estimated
reflectivity, we will use the Pearson correlation coefficient (Gibbons
and Chakraborti, 2010), given by

r ¼ sTy
ksk2kyk2

; (18)

where s corresponds to the true reflectivity and y corresponds to its
estimate. Note that the output of the deconvolution filter may have an
unknown delay with respect to the actual reflectivity s (Ding and Li,
2001). To fix this, we compute the correlation coefficient for several
delayed versions of the filter output; the estimated reflectivity y cor-
responds to the delay that yields the largest r. In other words, y is the
delayed filter output that best aligns with the actual reflectivity s.

Synthetic results

First, we test the proposed method in a synthetic example with ad-
ditive white Gaussian noise with a signal-to-noise ratio (S/N) of 9 dB.
The true reflectivity is shown in Figure 3a, and the synthetic data are
shown in Figure 3b. In this example, we use a Ricker wavelet with a
central frequency of 40 Hz and a 5° phase rotation. To benchmark our
results, we also use an ideal least-squares (LS) deconvolution filter,
designed under the assumption that the reflectivity series is known.
For the F-SMBD algorithm, we use a deconvolution filter of

length 51, initialized with a single spike located at the middle of the
filter, ϵ ¼ 1, a learning rate of μ ¼ 0.02, and 1000 iterations as the

stop criterion. In the SMBD method, there are two parameters to be
adjusted: the regularization parameter and the hybrid norm param-
eter ðϵÞ. Moreover, the second one just needs to be a very small
number to approximate the l1-norm behavior. The SMBD algorithm
is run for two different values of λ (recall that λ is the parameter that
controls the weight of the regularization term in SMBD [refer to
equation 10]; in this case, two different values are used to obtain
a less sparse reflectivity [λ ¼ 5] and a sparser reflectivity
[λ ¼ 10]), λ ¼ 5 and λ ¼ 10, we assume that the wavelet length
is approximately 5 ms, ϵ ¼ 0.0005, a maximum of five iterations
for each line search and 200 iterations as the stop criterion. It is
worth mentioning that the difference between parameter ϵ used
in the algorithms is due to the use of the proposed normalized
version of the hybrid l1∕l2-norm criterion in the F-SMBD.
The results obtained with the F-SMBD and the LS algorithm are

presented in Figure 4a and 4b, respectively. All of them are followed
by their respective power spectral densities. The results obtained for
the SMBD algorithm for the different values of λ are presented in
Figure 5a and 5b. As one can see, the results of SMBD are full band,
meanwhile the results of F-SMBD are band-limited. To have a fair
comparison, we apply a band-pass filter in the results of SMBD
with corner frequencies of 1, 10, 100, and 125 Hz before calculating
its Pearson correlation coefficient with respect to the actual reflec-
tivity. The Pearson correlation coefficients are as follows: 0.45 for
the synthetic data, 0.52 for the F-SMBD, 0.56 for the ideal LS filter,
and 0.51 and 0.60 for the two values of λ in the SMBD. These re-
sults illustrate that the proposed algorithm almost reaches the best
performance possible for a filtering approach, which is obtained by
the supervised LS filter. Despite the fact that SMBD presents a more
spikelike deconvolution, it is worth observing that, from the decon-
volved section with F-SMBD, it is possible to retrieve the true re-
flectors by comparing Figures 3a and 4a. In addition, we can add the
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facts that SMBDmay not preserve some amplitudes’ relations and it
may kill some events. In the case of F-SMBD, this is also true, but
the use of a single linear operator may cause only linear distortions,
and it is more aligned with most of the methods that are used in
seismic deconvolution.

To analyze the stability of the proposed algorithm, we ran a
Monte Carlo simulation with 50 different realizations of noise
and reflectivity for different S/Ns. The reflectivity series is gener-
ated by a Bernoulli Gaussian random variable with the probability
of having a nonzero value equal to 0.1. However, due to the fact that
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the Pearson correlation coefficients are bounded, they are not nor-
mally distributed. Thus, for the calculation of its mean and standard
deviation, a transformation is necessary to have an unbiased esti-
mation. In this case, we make use the Fisher’s z-transform (Silver
and Dunlap, 1987; Kazemi and Sacchi, 2014), given by the follow-
ing equation:

z ¼ 1

2
ln

�
1þ r
1 − r

�
. (19)

The statistics are calculated over the z-transformed coefficients and
transformed back to the Pearson correlation coefficients by means
of the following transformation:

r ¼ expð2zÞ − 1

expð2zÞ þ 1
: (20)

The mean and standard deviation of the Pearson correlation coef-
ficient for these experiments are illustrated in Figure 6a, in which
we also show the results obtained with the LS filter. From this fig-
ure, it is possible to observe that the proposed algorithm produces
results that are quite close to the one obtained with the supervised
approach, with small standard deviation, indicating the stability of
F-SMBD. To illustrate the convergence of F-SMBD, we also pro-
vide the convergence curves (cost function × number of iterations)
for each Monte-Carlo simulations for the 9-dB S/N case, illustrated
by the curves of Figure 6b.

Real data results

In this subsection, we present some results obtained with F-
SMBD and the SMBD algorithm for real marine seismic data.
These stacked data are shown in Figure 7a.
The parameters for the F-SMBD algorithm were a deconvolution

filter with 21 coefficients, initialized with a single spike at the middle
of the filter; a learning rate of μ ¼ 0.1, ϵ ¼ 1; and 1000 iterations as a
stop criterion. The deconvolution filter was designed using only one
part of the data, comprising the common midpoint 2239–2241 from
1.3960 to 1.9960 s (which comprises three traces of the first break).
The parameters for the SMBD algorithm were λ ¼ 5, a wavelet

length of 10 ms, ϵ ¼ 0.0001, a maximum of five iterations for each
line search and 200 iterations as the stop criterion. In this case, we
used a spatial window with 25 traces and 20% overlapping.
In Figure 7b and 7c, we illustrate the results obtained for both al-

gorithms and the resulting power spectral densities. In spite of the fact
that SMBD provides a more spikelike deconvolution, F-SMBD offers
improvements to the vertical resolution in terms of much less time
used and with much lower computational cost. In terms of power
spectral densities, the proposed algorithm is able to provide a more
significant gain in the frequency range of 40–60 Hz. In terms of the
computational cost, although SMBD took almost 1 h to provide the
results, the proposed algorithm took just a few seconds.

CONCLUSIONS

In this paper, we address blind deconvolution in a multichannel
framework by means of anMED algorithm. MED seeks to determine
a deconvolution filter able to retrieve, in its output, the most sparse
signals. As such, it is expected that the deconvolved signal should
resemble the reflectivity series. Our proposal relies on a modification

of the hybrid l1∕l2-norm function to make it scale invariant and,
hence, suitable for being used as an unsupervised criterion. For the
optimization of the coefficients of the deconvolution filter, we used a
simple gradient-based algorithm.
One of the main advantages of the MED algorithm is that it can

be used in a multichannel framework with very low computational
cost. This is because the deconvolution filter can be optimized using
a small part of the seismic section, and once the filter is optimized, it
can be used to deconvolve the whole section.
We compare our method with an SMBD algorithm, which also

uses the hybrid l1∕l2-norm function, but in a Bayesian estimation
framework. Despite the very good results obtained with such an
algorithm, it is computationally costly because it requires the com-
parison of all channels with all channels. In fact, its cost grows
quadratically with the number of channels.
In our results, for the synthetic and real data scenarios, one may see

a trade-off between spikiness and computational cost. Although
SMBD provides a more spikelike deconvolution, F-SMBD improves
quite well the vertical resolution with much less computational cost.
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