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Abstract: Nature often produces compounds with a high degree of symmetry to reduce structural
information and complexity. Synthesis of identical twin drugs, through the linkage of two identical
pharmacophoric entities, is a classical strategy to produce more potent and/or selective drugs.
Herein, two units of the privileged core of the coumarin hymecromone were linked together
using “click chemistry”. Synthesis of 1-[2-(4-Methyl-7-coumarinyloxy)ethyl]-4-(5-{1-[2-(4-methyl-
7-coumarinyloxy)ethyl]-1H-1,2,3-triazol-4-yl}pentyl)-1H-1,2,3-triazole was achieved by coupling
of two identical units of an azido coumarin with a symmetrical alkine using copper(I)-catalyzed
alkyne-azide cycloaddition reaction, in good yields and with complete regioselectivity.
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1. Introduction

Aiming to reduce structural information and complexity, nature often produces compounds
with a high degree of symmetry, as observed for the macromolecules HIV protease, hemoglobin and
insulin. The linkage of two identical pharmacophoric entities, generating an “identical twin drug”
or homodimer derivative, is a classical strategy used in medicinal chemistry to produce more potent
and/or selective drugs compared to the single entities. These new compounds will have specific
pharmacokinetic and pharmacodynamic properties, which normally differ from what it would be
expected by simple doubling the dose of the drug [1].

Coumarins are a large class of compounds that display a wide variety of interesting biological
properties [2–7], being their 2H-chromen-2-one nuclei the structural feature responsible for this
“privileged” pharmacological profile. This planar ring system is composed by one aromatic ring,
capable of establishing hydrophobic, π-π, CH-π and cation-π interactions, and one lactone ring, which
contains two oxygen atoms that may interact via hydrogen bonding with a series of amino acid
residues, such as serine, threonine, cysteine, asparagine, glutamine, and tyrosine [8].
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In order to explore the possibility of potency and selectivity enhancements provided by the
synthesis of twin drugs, two units of the privileged 2H-chromen-2-one nuclei of hymecromone
(7-hydroxy-4-methylcoumarin) were linked together using “click chemistry”, a set of highly efficient
conjugation reactions commonly used to join two or more entities [9].

2. Experimental Section

2.1. General Information

All chemicals were purchased as reagent grade and used without further purification. Solvents
were distilled and/or dried according to standard methods [11]. Column chromatography was
performed on silica gel 60 (0.040–0.063 mm) using CH2Cl2 and CH2Cl2/EtOAc (5:1 v/v or 2:1 v/v).
Microwave-assisted reactions were performed on a CEM Discover® Microwave System. Melting
points were determined on a Fisatom 431 apparatus, which were uncorrected. MS spectra were
recorded on Q-Tof micro Waters high resolution mass spectrometer, operating in electrospray ionization
mode. Nuclear magnetic resonance spectra were recorded on Bruker Advance DPX 400 (400 MHz)
spectrometer. Chemical shifts (δ) are given in parts per million downfield from tetramethylsilane.
7-(2-Azidoethoxy)-4-methyl-2H-chromen-2-one (1) was synthesized according to reported methods [10]
and coupled with commercial 1,8-nonadiyne (2) by using the copper(I)-catalyzed alkyne-azide
cycloaddition reaction, in good yields and with complete regioselectivity (Scheme 1).
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Scheme 1. Synthesis of 
1-[2-(4-Methyl-7-coumarinyloxy)ethyl]-4-(5-{1-[2-(4-methyl-7-coumarinyloxy)ethyl]-1H-1,2,3-triazol-
4-yl}pentyl)-1H-1,2,3-triazole. Reagents, conditions and yields: (a) CuSO4, sodium ascorbate, DMF, 
MW 70 °C (18 W), 40 min (67%). 

2.2. Synthesis of 
1-[2-(4-Methyl-7-coumarinyloxy)ethyl]-4-(5-{1-[2-(4-methyl-7-coumarinyloxy)ethyl]-1H-1,2,3-triazol-4-yl}p
entyl)-1H-1,2,3-triazole (3) 

1,8-nonadiyne (2) (0.15 mL, 1.1 equiv) was added to a solution of 1 in DMF (0.5–1 M, 0.1 mL) in 
a microwave flask (0.2 mL) equipped with a stirring bar. Sodium ascorbate (0.1 equiv) and CuSO4 
(0.03 equiv) were added, the tube was sealed, and the mixture was stirred for 25 seconds at room 
temperature, followed by heating under microwave irradiation at 70 °C (18 W) in 2 cycles of 20 min. 
Consumption of the reactant was followed by TLC (CH2Cl2/EtOAc 2:1 v/v). The reaction mixture 
was partitioned between H2O and EtOAc, the aqueous phase was extracted with EtOAc three times. 
The organic phase was dried over MgSO4, filtered, concentrated, and the residue purified by column 
chromatography with a CH2Cl2/EtOAc gradient [10]. Yield 67%; mp 168 °C; 1H NMR (400 MHz, 
DMSO-d6) δ 7.90 (s, 2H), 7.64 (d, 2H, J 8.8 Hz), 6.96 (d, 2H, J 2.6 Hz), 6.91 (dd, 2H, J 8.8, 2.6 Hz), 6.19 
(d, 2H, J 1.2 Hz), 4.73 (t, 4H, J 5.0 Hz), 4.50 (t, 4H, J 5.0 Hz), 2.57 (t, 4H, J 7.6 Hz), 2.36 (d, 6H, J 1.2 Hz), 
1.57 (quint, 4H, J 7.6 Hz), 1.31 (quint, 2H, J 7.6 Hz); 13C NMR (100 MHz, DMSO-d6) δ 160.9, 160.1, 
154.6, 153.4, 146.9, 126.5, 122.4, 113.5, 112.5, 111.4, 101.4, 66.9, 48.7, 28.7, 28.1, 24.9, 18.1; HRMS (ESI) 
m/z, calcd. for C33H35N6O6 [M + H]+: 611.2573, found: 611.3377. 

Supplementary Materials: 1H, 13C-NMR and HRMS spectra for compound 3 and the molfiles can be found at 
http://www.mdpi.com/1422-8599/2016/2/M894. 
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