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Abstract. We analyze a class of modal logics rendered insensitive to reflexivity by way of a
modification to the semantic definition of the modal operator. We explore the extent to which these
logics can be characterized, and prove a general completeness theorem on the basis of a translation
between normal modal logics and their reflexive-insensitive counterparts. Lastly, we provide a suffi-
cient semantic condition describing when a similarly general soundness result is also available.

§1. Introduction. This paper deals with modal logics that are rendered insensitive to
the presence of reflexivity in the accessibility relation by way of a suitable modification of
the standard semantics. Logics of this kind have already been introduced, independently,
by Marcos (2005) and Steinsvold (2008b), with the intention of providing formal analyses
of certain metaphysical and epistemological notions, respectively.1

Our intension here is not to provide a critique or endorsement of these interpretations,
but rather to give a formal study to these logics (which we will call reflexive-insensitive),
from the perspective of modal logic. Marcos (2005) provided a sound and complete axiom-
atization of the minimal reflexive-insensitive logic. This result was extended by Steinsvold
(2008a), accounting for the reflexive-insensitive analogs of T, S4 and S4.3. However, both
papers lacked a comprehensive treatment of the new semantics, as well as the correspond-
ing modal operator, symbolized by ◦.

In this paper we propose a general account of the relationship between normal modal
logics and reflexive-insensitive modal logics. We will provide a method for associating
with any normal modal logic L, its reflexive-insensitive counterpart, which we will call L◦.

Our contribution to this subject, therefore, consists in both a conceptual clarification
of the notions involved, and in proving general results that describe the conditions under
which characterization results for a logic L◦ follow from the corresponding results for L.
In particular, we will prove a general completeness theorem for any logic L◦, provided
that the corresponding normal logic L is canonical and complete with respect to a class of
frames CL containing the canonical frame.

Moreover, although a fully general soundness result is not as forthcoming, we will
demonstrate that there is a semantic condition, being robust with respect to reflexivity,
that is able to act as a sufficient condition for the logic L◦ to be sound with respect to the
class of all L-frames.

The paper is organized as follows. Section 2 introduces the ◦-operator and the corre-
sponding semantics, outlining the phenomenon of insensitivity to reflexivity that can be for-
mally described by way of mirror reduction (following the terminology of Marcos, 2005).

Received: April 20, 2015.
1 In Marcos (2005), the focus is on logics of essence and accident. In Steinsvold (2008b), the

analysis is aimed at elucidating the logic of unknown truths.
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168 DAVID R. GILBERT AND GIORGIO VENTURI

We then explain how this property is in fact responsible for almost all of the results con-
tained in Marcos (2005) and Steinsvold (2008a). In Section 3 we briefly present the mini-
mal reflexive-insensitive modal logic, following the presentation of Steinsvold (2008a). In
Section 4 the ◦-translation is defined, and a general completeness theorem for ◦-translations
of normal modal logics is proved using a clever model-theoretic technique from Goldblatt &
Mares (2006). In Section 5 we define the semantic notion of robustness under reflexivity,
and we provide soundness results encompassing the ◦-translations of many well-known
normal modal logics. In Section 6, we will address explicitly the project of axiomatizing
logics in the language of ◦. Finally, in the last section, we will propose some concluding
considerations summarizing the results of this paper in a more abstract setting. We also set
the stage for some future work.

§2. Language and semantics. In this paper we will be working with two languages:
the usual language of modal logic, which we will call L�, and the language of the reflexive-
insensitive logics, which we call L◦. Letting V ar be a countable set of propositional
variables (we can assume the same set of propositional variables for both languages), the
formulas of L�, FormL� , are defined as usual (for p ∈ V ar ):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ
and the well-formed formulas of L◦, FormL◦ , are defined recursively as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ◦ϕ
One can define �, ⊥, ∨, →, ↔, and � (in L�) as usual. In the language L◦, we also define
the operator • so that •ϕ stands for ¬ ◦ ϕ.

2.1. Semantics. Structurally, the relational semantics we will use for the logics in both
languages are the same, but the clauses in the definition of truth will differ.

DEFINITION 2.1 (Frame and model). A frame F is an ordered pair 〈W, R〉, where W is a
non-empty set of states and R ⊆ W × W . A model M = 〈F, V 〉 is a frame along with
a valuation function V : V ar → P(W ).

Intuitively, V assigns, to each variable p, the set of states at which p will be considered
true. The truth of a formula of L�, with respect to a model and state, is defined as normal.

M, w |� p iff w ∈ V (p)
M, w |� ¬ϕ iff M, w �|� ϕ
M, w |� ϕ ∧ ψ iff M, w |� ϕ and M, w |� ψ
M, w |� �ϕ iff M, x |� ϕ for all x s.t. wRx

For the L◦ formulas, the propositional formulas are treated identically, and the interpre-
tation of ◦ is given by:

M, w |� ◦ϕ iff either M, w �|� ϕ or, for all x ∈ W , if wRx then M, x |� ϕ
Thus, for •, we have:

M, w |� •ϕ iff M, w |� ϕ and there exists an x ∈ W s.t. wRx and M, x �|� ϕ

A formula is said to be true in a model M when it is true at every state in M . A formula is
said to be valid with respect to a frame F when it is true in every model based on F , and a
formula is valid with respect to a class of frames when it is valid on each frame in the class.

One can view these clauses as providing a unified definition of the truth of a formula,
regardless of the language used. That is, when evaluating L◦-formulas, one will utilize the
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REFLEXIVE-INSENSITIVE MODAL LOGICS 169

semantic condition for ◦, but not the one for �, though one could, if one wished, consider
that clause present. However, despite this, we think it is convenient to use the following
notational convention: M, x |�ri α indicates that we are evaluating α in the context of
the clauses appropriate for L◦, or, equivalently, that α is a formula in the language L◦.
However, when clear from the context, we will not stress the semantic context.

It is also worth pointing out that while ◦ϕ can be defined within the context of normal
modal logic as ϕ → �ϕ, it is not the case that �ϕ can always be defined within L◦
(Marcos, 2005). In extensions of T, however, it can be regarded as an abbreviation of
ϕ ∧ ◦ϕ.2

2.2. Mirror reduction. Consider the following definition, from Marcos (2005, p. 50).

DEFINITION 2.2 (Mirror reduction). Let F = 〈W, R〉 and Fm = 〈W, Rm〉 be frames such
that Rm ⊆ R and R \ Rm ⊆ {〈x, x〉 : x ∈ W }. Then Fm is said to be a mirror reduction of
F. Two frames are said to be mirror-related, F1 ∼m F2, when they are mirror reductions
of a common frame.

More casually stated, Fm is just the result of removing some reflexive arrows from F .
Though this is a straightforward concept, its utilization sheds some immediate light on the
behaviour of formulas (and, hence, logics) in the language L◦ with respect to the semantics
outlined above. Immediately, for example, one can obtain the following lemma.

LEMMA 2.3 (Marcos, 2005, Lemma 4.2). Let Fm be a mirror reduction of F. Then for
any models M and Mm, based on F and Fm, respectively, and any x ∈ W ,

M, x |�ri α iff Mm, x |�ri α

for all L◦-formulas α.

Proof. This is proved by way of a straightforward induction on the complexity of
formulas. We include only the case for ◦.

Assuming M, x |�ri ◦ϕ, we have that either M, x �|�ri ϕ or, for all y ∈ W , if x Ry then
M, y |�ri ϕ. In the first case, from the induction hypothesis, we have that Mm, w �|�ri ϕ,
and so Mm, x |�ri ◦ϕ.

So assume that for all y ∈ W , if x Ry then M, y |�ri ϕ. Then, since Rm ⊆ R, we have
if x Rm y then M, y |�ri ϕ, and from the induction hypothesis we obtain x Rm y implies
Mm, y |�ri ϕ, as desired.

In the other direction, consider Mm, x |�ri ◦ϕ. Again, if Mm, x �|�ri ϕ then we are
finished. So assume that Mm, x |�ri ϕ and that for all y ∈ W , if x Rm y then Mm, y |�ri ϕ.
From the induction hypothesis we have that if x Rm y then M, y |�ri ϕ. But now, since we
have that Mm, x |�ri ϕ, we also have M, x |�ri ϕ, and so if x Ry then M, y |�ri ϕ, as
desired. �

Perhaps the most interesting, and applicable, aspect of this theorem is the following
corollary:

COROLLARY 2.4 (Marcos, 2005, Lemma 4.2). If F1 ∼m F2 then, for all L◦-formulas α,

F1 |�ri α iff F2 |�ri α.

2 Below, we will exploit this understanding of �ϕ when defining a translation between the
languages L� and L◦. And while it is not always a genuine definition, it can be assumed,
harmlessly, in a wide variety of cases, which will be detailed.
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170 DAVID R. GILBERT AND GIORGIO VENTURI

In Marcos (2005), a sound and complete axiomatization was presented for the simplest
logic that is insensitive to reflexivity. That is, an axiom system in the language of L◦ was
demonstrated to be sound and complete with respect to the class of all frames. Extensions
of this logic, however, were not fully explored. For example, in Marcos (2005) the follow-
ing open problem was posed: Provide a natural axiomatization for the set of L◦-formulas
that are valid on the class of reflexive frames (Marcos, 2005, p. 48). Steinsvold (2008a)
solved this open problem by proving:

THEOREM 2.5 (Steinsvold, 2008a, prop. 3.5). Let KX be any normal modal logic be-
tween K and KT: K ⊆ KX ⊆ KT. Then the following are equivalent, for α a formula
of L◦:

1. α is valid over the class of all frames;

2. α is valid over the class of all frames for KX;

3. α is valid over the class of all reflexive frames.

The proof provided by Steinsvold (2008a), however, was based on the canonical con-
struction (which differed from the one offered by Marcos, 2005) of the basic logic. The
point we would like to make here is that, in fact, this result (and others similar to it)
is a direct corollary of the mirror reduction results given above, as the following proof
demonstrates.

Proof. Clearly, validity for the class of all frames implies validity for the class of K X
frames. Similarly for the move from K X to K T frames. Thus, just assume that a formula
α is valid in all reflexive frames. We have to show that it is valid in all frames whatsoever.
Assume this not to be the case. That is, assume that there is a frame on which one can
invalidate α. In this case, such a frame is a mirror reduction of a fully reflexive frame, and
so we would have that the fully reflexive frame also invalidates α, and this is obviously a
contradiction. �

Therefore, by providing an axiomatization for the basic logic, Marcos (2005) also pro-
vided an axiomatization for the logic of all reflexive frames, and all intermediate logics,
thereby answering his own question.

Obviously, such a result can be generalized to some extent.

PROPOSITION 2.6. Let L ⊆ LX ⊆ LT be normal modal logics and CL, CLX, and CLT
be the classes of L, LX, and LT frames, respectively. Then, if it is the case that the addition
of all possible reflexive arrows to a frame in CL results in a frame in CLT, then, for any
α ∈ L◦, α is valid in CL iff it is valid in CLX iff it is valid in CLT.

As in the specific case of K and T, the reason is simply mirror reduction.
To provide another illustration of this observation, one can consider the logics K4 ⊆

K4X ⊆ K4T = S4. Recall that the K4 frames are the transitive frames and the S4 frames
are transitive and reflexive. Then, because the addition of all reflexive arrows preserves
transitivity, we immediately obtain the result that if one can axiomatize the reflexive-
insensitive logic (in L◦) corresponding to the transitive frames, then one also has axioma-
tized the logic for transitive reflexive frames, and all intermediate logics as well. This result
is also contained in Steinsvold (2008a), where, once again, a canonical model construction
is used in the proof once an adequate axiomatization has been provided for K4 (by means
of the axiom (◦ϕ ∧ ϕ) → ◦(◦ϕ ∧ ϕ)).

On the contrary, if one cannot add reflexive arrows to a frame while preserving the
relevant structural properties, then this result clearly does not hold. For example, we can
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REFLEXIVE-INSENSITIVE MODAL LOGICS 171

consider the logics situated between K5 and S5.3 K5 is characterized by the class of
euclidean frames (if x Ry and x Rz then y Rz) and S5 by the class of frames in which R is
an equivalence relation. However, when one adds reflexive arrows to a euclidean frame
one need not obtain an S5 frame, because this might require the extra step of taking the
closure (of R) under the euclidean condition. Thus, the jobs of axiomatizing these classes
of frames, in the reflexive-insensitive setting, are separate.

The following definition will be useful when proving soundness and completeness for
systems, as we will below. It is simply an attempt to formalize the effect of mirror reduction
on soundness and completeness results.

DEFINITION 2.7. Let C be a class of frames, and let L be a logic in the language L◦.
Then we say that L is m-characterized by C if L is sound and complete with respect to
C

m = {F : ∃F ′ ∈ C(F ∼m F ′)}.4

§3. The minimal logic. For the remainder of this paper we will be concerned with
logics in the language L◦ and their relationships with logics in L�. In order to properly
define the logics in L◦ with which we are concerned, we will make use of the following
axiom schemata (found in Steinsvold, 2008a):

b0 ◦�
b1 •ϕ → ϕ
b2 (◦ϕ ∧ ◦ψ) → ◦(ϕ ∧ ψ)

as well as the rule
bN from � ϕ → ψ one can obtain � (◦ϕ ∧ ϕ) → (◦ψ ∧ ψ).

DEFINITION 3.1 (RI -logics). An RI -logic is a set of L◦ formulas that contains all substi-
tution instances of propositional tautologies, all instances of the schemata b0, b1, and b2,
and is closed under the rules Modus Ponens, bN, and Uniform Substitution.

For now, following Steinsvold (2008a), we can call the smallest RI -Logic BK.

PROPOSITION 3.2. The following are theorems of BK:

1. ((◦ϕ ∧ ϕ) ∨ (◦ψ ∧ ψ)) → ◦(ϕ ∨ ψ)
2. ϕ ∨ ◦ϕ
3. ϕ → (◦(ϕ → ψ) → (◦ϕ → ◦ψ))

In addition, the following rules are derivable:

1. from � ϕ ↔ ψ one can obtain � ◦ϕ ↔ ◦ψ
2. from � ϕ one can obtain � ◦ϕ

Proof. We will give a proof of the two rules. Though this result was referred to in
Steinsvold (2008a), an explicit derivation was not provided.

For the first rule, assume that � ϕ ↔ ψ . We will just prove one direction. The other
direction is obtained in exactly the same manner.

3 K5 is the logic obtained by adding the axiom �ϕ → ��ϕ to K.
4 Notice that the notion of m-characterization is weaker than the standard one, and it is also different

from the notion of LEA-characterizability as defined in Marcos (2005).
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172 DAVID R. GILBERT AND GIORGIO VENTURI

1. � (◦ϕ ∧ ϕ) ↔ (◦ψ ∧ ψ) from the rule bN
2. � (◦ϕ ∧ ϕ) → ◦ψ from line 1
3. � (◦ϕ ∧ ¬ϕ) → ¬ψ since � ϕ ↔ ψ
4. � ¬ψ → ◦ψ because � ψ ∨ ◦ψ
5. � (◦ϕ ∧ ¬ϕ) → ◦ψ lines 3 and 4
6. � ((◦ϕ ∧ ϕ) ∨ (◦ϕ ∧ ¬ϕ)) → ◦ψ lines 2 and 5
7. � (◦ϕ ∧ (ϕ ∨ ¬ϕ)) → ◦ψ line 6
8. � ◦ϕ → ◦ψ

The second rule is just a consequence of the first. If � ϕ then � ϕ ↔ �, and so, from
the first rule, � ◦ϕ ↔ ◦�. Because � ◦�, we have � ◦ϕ, as desired. �

THEOREM 3.3. BK is sound with respect to the class of all frames.

A proof of this result can be found in both Marcos (2005) and Steinsvold (2008a).

§4. Completeness. We can prove an immediate completeness result for BK by way of
a standard canonical model construction. The basic construction is the same as the one in
Steinsvold (2008a). (In light of Theorem 2.5, we will then have that the logic BK is sound
and complete with respect to CT, and, in fact, Cm

K.) In addition, we will show that this
result generalizes to cover a much wider range of modal logics.

The canonical model MBK = 〈WBK, RBK , VBK〉 is defined as follows:

WBK := the set of all maximal BK-consistent sets of formulas;
RBK := {〈x, y〉 ∈ WBK × WBK : λ(x) ⊆ y}, for λ(x) := {ϕ ∈ FormL◦ :
(ϕ ∧ ◦ϕ) ∈ x};
VBK(p) = {x ∈ WBK | p ∈ x}.

As a matter of convenience, for the remainder of this section we will omit subscripts.

REMARK 4.1. Note, at the outset, that by definition our canonical model is going to be
reflexive. That is, it will always be the case that λ(x) ⊆ x, since if ϕ ∈ λ(x), then it must
be that ϕ, ◦ϕ ∈ x.

PROPOSITION 4.2. The relevant version of the Lindenbaum lemma holds. That is, any
BK -consistent set of formulas can be extended to a maximal set.

LEMMA 4.3 (Steinsvold, 2008a, props. 3.1, 3.2 and 3.3). The following properties hold
of λ(x).

1. λ(x) �= ∅
2. if ϕ,ψ ∈ λ(x) then ϕ ∧ ψ ∈ λ(x)
3. if ϕ ∈ λ(x) and BK � ϕ → ψ , then ψ ∈ λ(x)

We can then obtain the usual truth lemma.

LEMMA 4.4 (Truth lemma). For any L◦-formula α, and any maximal set w,

MBK, w |�ri α iff α ∈ w.
Again, the proof is in Steinsvold (2008a).

THEOREM 4.5. The logic BK is strongly complete with respect to the class of all frames.
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REFLEXIVE-INSENSITIVE MODAL LOGICS 173

4.1. Generalized completeness. We can generalize the above completeness result
significantly. In particular, we will show that completeness results for normal modal logics
can, under quite general circumstances, be imported into the setting of RI -logics. We
require, however, a translation between the formulas of these languages.

DEFINITION 4.6. Define the following translation from formulas of L� to formulas of L◦.

p◦ = p
(¬ϕ)◦ = ¬(ϕ◦)

(ϕ ∧ ψ)◦ = ϕ◦ ∧ ψ◦
(�ϕ)◦ = ◦(ϕ◦) ∧ ϕ◦

In addition, for a normal modal logic L, define L◦ to be the smallest RI -logic containing
ϕ◦ for every ϕ ∈ L.

THEOREM 4.7. K◦ = BK. That is, K◦ is the smallest RI -logic.

Proof. Clearly, BK ⊆ K◦.
In the other direction, we will show that if α is a theorem of K, then α◦ is a theorem of

BK, and so K◦ ⊆ BK. We can achieve this by way of an induction on proofs.
First, if α is an instance of the K schema, then it is of the form �(ϕ → ψ) → (�ϕ →

�ψ). In this case, α◦ is

(◦(ϕ◦ → ψ◦) ∧ (ϕ◦ → ψ◦)) → ((◦ϕ◦ ∧ ϕ◦) → (◦ψ◦ ∧ ψ◦)).

Assume that this formula is not valid. In this case, there would be a model M and world
w, at which

M, w |�ri ◦(ϕ◦ → ψ◦) ∧ (ϕ◦ → ψ◦)
but at which

M, w �|�ri (◦ϕ◦ ∧ ϕ◦) → (◦ψ◦ ∧ ψ◦).
It must then be the case that

M, w |�ri ◦ϕ◦ ∧ ϕ◦

while

M, w �|�ri ◦ψ◦ ∧ ψ◦.
Note that it is impossible for M, w �|�ri ψ

◦, because we have that M, w |�ri ϕ
◦ and

also M, w |�ri ϕ
◦ → ψ◦.

Therefore, it must then be the case that

M, w �|�ri ◦ψ◦.

From the semantic clause governing ◦, this entails that M, w |�ri ψ
◦ but that there

exists some y s.t. wRy and M, y �|�ri ψ
◦.

However, in light of the fact that M, w |�ri ◦ϕ◦ ∧ ϕ◦, ϕ◦ must hold at y. That is,

M, y |�ri ϕ
◦.

Also, because M, w |�ri ◦(ϕ◦ → ψ◦) ∧ (ϕ◦ → ψ◦), we also have that

M, y |�ri ϕ
◦ → ψ◦.

This gives M, y |�ri ψ
◦, a contradiction. Therefore, all translation instances of the K

schema are valid. From the completeness result of BK above, they must also be theorems
of BK.
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174 DAVID R. GILBERT AND GIORGIO VENTURI

Lastly, α might be the result of applying a rule of inference to some formulas (the trans-
lations of which are already in BK). The cases for Modus Ponens and Uniform Substitution
are immediate, from the definition of the ◦ translation.

In case α is the result of applying necessitation to some β, then α is of the form �β. But
(�β)◦ is just ◦β◦ ∧ β◦. From our assumption we already know that β◦ ∈ BK, and so ◦β◦
is also in BK, from Proposition 3.2. Therefore, so is ◦β◦ ∧ β◦.

This completes the proof that K◦ ⊆ BK. Therefore, K◦ = BK. �
In light of this result, we will henceforth refer to the minimal RI -logic as K◦. Addition-

ally, notice that (�ϕ → ϕ)◦ = (◦(ϕ◦) ∧ ϕ◦) → ϕ◦ is a tautology in K◦, and so T◦ = K◦.
In light of Theorem 2.5, this should not be surprising.

By utilizing this translation, we can obtain completeness results for a wide variety of
RI -logics.

In order to do so, recall the following, standard, definitions and results (see Blackburn
et al., 2001 for all details).

DEFINITION 4.8 (Bounded morphism). Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be frames.
Then f : W1 → W2 is a bounded morphism from F1 to F2 when the following two
conditions are met:

(forth) x R1 y implies f (x)R2 f (y);
(back) if f (x)R2z, then there is a w s.t. x R1w and f (w) = z.

When there is a surjective bounded morphism from F1 onto F2, written F1 � F2, F2 is
said to be a bounded morphic image of F1.

DEFINITION 4.9 (Generated subframe). Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be frames.
F2 is a generated subframe of F1, written F2 � F1, when F2 is a subframe of F1 and the
following condition holds:

if x ∈ W2 and x R1 y, then y ∈ W2.

THEOREM 4.10. Let F1 and F2 be frames and α a modal formula.

If F1 � F2, then F2 |� α implies F1 |� α;
If F1 � F2, then F1 |� α implies F2 |� α.

DEFINITION 4.11 (Canonical logic). A normal modal logic L is said to be canonical when
the frame of its canonical model is an L-frame. (That is, when all L-theorems are valid on
the canonical frame.)

Our goal is to prove the following.

THEOREM 4.12. Let L be a normal modal logic that is canonical. Furthermore, let its
canonical frame be contained in the class CL. Then L◦ is also complete with respect to CL.

We will proceed by constructing an isomorphism between the canonical model for L◦
and a generated subframe of the canonical model for L. Specifically, we will construct an
injective bounded morphism from the canonical model of L◦ to that of L. This is a proof
strategy taken from Goldblatt & Mares (2006). We only modify their technique slightly, to
accommodate for the ◦-operator in our logics.

Consider a mapping from V ar onto FormL◦ :

V ar → FormL◦
p �→ p∗
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This map exists since our sets of formulas are countable. Now extend it recursively to a
map:

FormL� → FormL◦
α �→ α∗

where α∗ is defined similarly to Definition 4.6:

(¬ϕ)∗ = ¬(ϕ∗)
(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗
(�ϕ)∗ = ◦(ϕ∗) ∧ ϕ∗

Except for the last clause, the above map consists in a uniform substitution of p∗ for p
in α. We call the above function the ∗-map.

Because of how L◦ is defined, the ∗-map preserves theoremhood. That is, if β is a
theorem of L, then β∗ is a theorem of L◦.

Let FL◦ = 〈WL◦ , RL◦〉 be the canonical frame for L◦, as we constructed it before, and
let FL = 〈WL, RL〉 be the canonical frame for L as it is usually defined.

(As a remark, we notice that if the set of axioms of L◦ gives rise to an inconsistent
system, then the corresponding logic is indeed complete with respect to any class of frames,
since everything is provable. Hence, from now on, we will just assume that L◦ is a consis-
tent axiomatic system, and thus the set WL◦ is non-empty.)

We can then define the following function:

f : WL◦ → WL
a �→ {α : α∗ ∈ a} = f (a)

for any maximal consistent a ∈ WL◦ . In order to show that the above is a meaningful
definition, we have to verify that f (a) is indeed an element of WL.

PROPOSITION 4.13. The set f (a) is maximal and L-consistent.

Proof. For what concerns consistency, assume not. Then there are formulas α1, . . . , αn ∈
f (a) such that

L � (α1 ∧ . . . ∧ αn) → ⊥.
As a consequence of ∗ preserving theoremhood we can infer that

L◦ � (α∗
1 ∧ . . . ∧ α∗

n) → ⊥
with α∗

1 , . . . , α
∗
n ∈ a. This contradicts the consistency of a ∈ WL◦ .

For maximality, again assume not. Then there is a formula α ∈ FormL� such that
neither α nor ¬α is in f (a). As a consequence, according to the definition of f (a), neither
α∗ nor ¬α∗ is in a. This contradicts the maximality of a ∈ WL◦ . �

Therefore, the definition of f makes sense. We now show that f is actually an injective
bounded morphism. We proceed by means of the following claims.

PROPOSITION 4.14. The function f is injective.

Proof. Assume a �= b. We must show f (a) �= f (b). Without loss of generality, we may
assume that there is a formula θ ∈ a \ b. Since θ belongs to FormL◦ , it is equal to some
p∗, for p ∈ V ar . Therefore, by maximality of b, we have that ¬θ ∈ b. Now, since θ = p∗
we also have that ¬θ = ¬(p∗) = (¬p)∗. As a consequence, p ∈ f (a) and ¬p ∈ f (b),
thus showing that f (a) �= f (b). �
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PROPOSITION 4.15. If aRL◦b then f (a)RL f (b).

Proof. The claim consists in showing that �−(
f (a)

) ⊆ f (b). To this aim, assume
α ∈ �−(

f (a)
)
, and so �α ∈ f (a). Then, by definition of f (a), (�α)∗ ∈ a. By definition

of the ∗-translation, we conclude that ◦(α∗) ∧ α∗ ∈ a. This means, in particular, that
α∗ ∈ λ(a), and so α∗ ∈ b, by our hypothesis. Hence, α ∈ f (b), by definition of f (b). �

PROPOSITION 4.16. If f (a)RLc, then there is a b ∈ WL◦ such that aRL◦b and f (b) = c.

Proof. Define the following set:

b0 = {α∗ : α∗ ∧ ◦(α∗) ∈ a} ∪ {β∗ : β ∈ c}.
We claim that b0 is consistent. Assume not, and let α∗, β∗ ∈ FormL◦ ∩ b0 such that

L◦ � α∗ ∧ β∗ → ⊥.
Hence, we have the following deductions.

1. L◦ � α∗ → ¬β∗

2. L◦ � α∗ → ( ◦ (α∗ → ¬β∗) → (◦α∗ → ◦¬β∗)
)

3. L◦ � ◦(α∗ → ¬β∗)

where (2) is an instance of a theorem of L◦, as pointed out in Proposition 3.2. Moreover,
since α∗ ∈ a we can show that ◦¬β∗ ∈ a. As a consequence, ¬β∗ ∧ ◦¬β∗ ∈ a. Thus(
�(¬β))∗ ∈ a, and so �¬β ∈ f (a). By our hypothesis we then have that ¬β ∈ c, thus

contradicting the consistency of c.
Now extend b0 to a maximal set and name it b. We have to show that λ(a) ⊆ b and that

f (b) = c.
So assume α ∈ λ(a). Since α is a formula in L◦, we know that there is a p ∈ V ar such

that p∗ = α. Hence p∗ ∧ ◦(p∗) ∈ a and so, by construction, p∗ ∈ b0 ⊆ b. Thus α ∈ b.
In order to show that f (b) = c it is sufficient to notice that, by construction, c ⊆ f (b).

And so the equality holds by the maximality of c. �
At this stage, we have shown that f is indeed an injective bounded morphism from the

canonical frame of L◦ to that of L. Furthermore, the image of f is a generated subframe of
the canonical frame of L, and is isomorphic to the canonical frame of L◦.5 Symbolically,
we have

FL◦ ∼= Fsub � FL

(where Fsub is the subframe of FL). Therefore, FL◦ is actually an L-frame, from Theo-
rem 4.10.

Finally, assume that some formula α is not a theorem of L◦. Then, clearly, it is not valid
on the canonical frame FL◦ . In turn, we then know that there is a generated subframe of
FL, call it Fsub, on which α is not valid (since FL◦ ∼= Fsub). This then implies that α is
not valid on FL (because Fsub � FL and so FL |� α implies Fsub |� α). Therefore, on

5 Clearly, since we are considering the image of f , we obtain a bijection between the canonical
frame of L◦ and a subframe of the canonical frame for L. The fact that this bijection is in fact an
isomorphism follows from two applications of Theorem 4.10: in the one direction we consider f ,
and in the other f −1, both of which are surjective bounded morphisms. Lastly, the fact that the
subframe is a generated subframe of FL is a consequence of the (back) condition placed on f .
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the assumption that L is canonical, we have that L◦ is complete with respect to classes of
frames containing the canonical frame of L, as desired.

This completes the proof of Theorem 4.12.

COROLLARY 4.17. Let L be a normal modal logic that is canonical. Furthermore, let
its canonical frame be contained in the class CL. Then L◦ is complete with respect to C

m
L .

§5. Soundness. In this section we will give a sufficient semantic condition for a logic
L◦ to be sound with respect to CL. Though we do not obtain a single soundness theorem
that is as general as our completeness theorem, we do obtain a result that covers a wide
variety of normal modal logics and their ◦-translations. In conjunction with Theorem 4.12,
this then provides an m-characterization theorem for those logics satisfying the condition.

Before starting, we need a lemma that connects the truth of L�-formulas and L◦-
formulas.

LEMMA 5.1. Let M = 〈F, V 〉 be a model based on F = 〈W, R〉 and let α be a formula
of the language L�. Then, for every x ∈ W , the following holds:

M, x |�ri α
◦ ⇐⇒ Mr , x |� α

where Mr stands for the model 〈Fr , V 〉, based on the frame Fr = 〈W, Rr 〉, given by
Rr = R ∪ {(x, x) : x ∈ W }.

Proof. We prove the lemma by induction on the complexity of α. If α = p ∈ V ar , then
the result is immediate, since the valuations in the two models are identical.

If α = β ∧ γ , then an easy application of the inductive hypothesis shows that the
conclusion of the lemma holds.

If α = ¬β, then Mr , x |� ¬β iff Mr , x �|� β iff M, x �|�ri β
◦ iff M, x |�ri ¬β◦.

Finally, if α = �β, then Mr , x |� �β implies that for all y ∈ W s.t. x Rr y, Mr , y |� β.
By the inductive hypothesis, this is equivalent to saying that for all y ∈ W , x Rr y implies
M, y |�ri β

◦. From this we obtain that for all y ∈ W s.t. x Ry, M, y |�ri β
◦ and that

M, x |�ri β
◦. Thus, we have that M, x |�ri ◦β◦ ∧ β◦, and so M, x |�ri (�β)

◦.
In the other direction, if M, x |�ri (�β)

◦ then M, x |�ri ◦β◦ ∧ β◦. We then have that
M, x |�ri β

◦ and so Mr , x |� β. In addition, from M, x |�ri ◦β◦ we have that for all y
s.t. x Ry, M, y |�ri β

◦ (since the other possibility, that M, x �|�ri β
◦, has been ruled out).

Then, from the induction hypothesis we get that for all y s.t. x Ry, Mr , y |� β. But, since
M, x |�ri β, we have that for all y s.t. x Rr y, Mr , y |� β, and so Mr , y |� �β. �

DEFINITION 5.2. We will say that a class of frames C is robust with respect to reflexivity
when the following condition holds:

If F ∈ C, and Fr is the result of adding all reflexive arrows to F, then Fr ∈ C.

In other words, C is robust with respect to reflexivity when the reflexive closure of each
frame in C is also in C .

Notice that this is obviously not equivalent to saying that F and Fr are mirror related.
First, Fr is obtained, specifically, by adding arrows. In addition, Fr is completely reflexive.

THEOREM 5.3. Let L be a normal modal logic that is sound with respect to a class of
frames CL that is robust with respect to reflexivity. Then L◦ is sound with respect to CL. In
fact, L◦ is sound with respect to C

m
L .
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Proof. We will show that for every theorem ϕ of L, ϕ◦ is valid on CL. Since the rules
of K◦ preserve validity, this will imply that every theorem of L◦ is valid on CL. Assume,
for a contradiction, that this is not the case. Thus, there exists a frame F ∈ CL, such that
F �|� ϕ◦.

Thus, there is a model M , based on F , and a state x , such that M, x �|�ri ϕ
◦. From

lemma 5.1, we then have that Mr , x �|� ϕ. Therefore, Fr �|� ϕ. But if CL is robust to
reflexivity, it would have to be that Fr ∈ CL, and so Fr |� ϕ, a contradiction.

Therefore, L◦ is sound with respect to CL, and also with respect to C
m
L . �

Though this result lacks the generality present in the completeness theorem, there are
still some immediate corollaries.

COROLLARY 5.4. Let L be any normal modal logic extending T, and let CL be the class
of all L-frames. Then L◦ is sound with respect to CL.

Proof. If L extends T, then any L frame is reflexive. Therefore, CL is obviously robust
with respect to reflexivity. Thus, L◦ is sound with respect to CL. �

We can also apply this theorem in order to obtain more specific results. The next corol-
lary lists just some examples of this, and is in no way comprehensive.

COROLLARY 5.5. The following soundness results hold:

1. D◦ is sound with respect to the class of all serial frames;

2. K4◦ is sound with respect to the class of all transitive frames;

3. KB◦ (where KB = K + (ϕ → ��ϕ)) is sound with respect to the class of all
symmetric frames;

4. KM◦ (where KM = K + (��ϕ → ��ϕ)) is sound with respect to the class of all
final frames.6

Proof. The classes of serial, transitive, symmetric, and final (every state is related to at
least one state that is related only to itself) frames are all robust with respect to reflexivity. �

Note, in addition, that soundness is going to be preserved when combining these logics,
as usual. That is, for example, we have that KB4◦ is sound with respect to the class of
transitive symmetric frames. Thus, while the soundness result is less general than desired,
in fact one can still use it to obtain soundness results for a surprisingly wide range of
normal modal logics.

However, we have already encountered one system that sits outside the scope of the
soundness theorem: K5◦. Recall that K5 is characterized by the class of euclidean frames.
However, euclidean frames are not robust with respect to reflexivity. To take a trivial
example, one can consider the frame in which W = {x, y} and R = {〈x, y〉, 〈y, y, 〉}.
On this frame, the euclidean condition is satisfied. However, when one adds all reflexive
arrows, we obtain the frame with the accessibility relation Rr = {〈x, y〉, 〈x, x〉, 〈y, y〉}.
This is no longer euclidean, as x Ry and x Rx ought to imply that y Rx , but we lack this
relationship. The point, therefore, is that our soundness theorem does not, on the basis of
a soundness theorem for K5, provide us with a theorem for the translated logic K5◦. And,
in fact, it is straightforward to construct a euclidean frame that does not validate 5◦, the
translation of �ϕ → ��ϕ.

6 However, note that in this case we do not have a completeness result because KM is not canonical
(Goldblatt, 1991).
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§6. Axiomatizing RI -logics. Our results so far place conditions on when L◦ will be
sound and complete with respect to the class of frames CL. So far, we have not explicitly
mentioned the issue of axiomatizing these logics, a topic that was very central to both
Marcos (2005) and Steinsvold (2008a). We can say something about this now.

As the following theorem demonstrates, in order to obtain an axiomatization of L◦, one
can simply take any adequate axiomatization of L, and add the translations of these axioms
to K◦. This is, more or less, a consequence of the definition of L◦. Moreover, as in the case
of normal modal logics, the choice of axiomatization does not matter.

THEOREM 6.1. Let L be a normal modal logic that is axiomatized by adding some axiom
A to K. Let K◦ + A◦ be the smallest RI -logic that contains all instances of A◦. Then
K◦ + A◦ = L◦.

Proof. Clearly, since A ∈ L, K◦ + A◦ ⊆ L◦, from the definition of L◦.
In the other direction assume that α ∈ L◦ but that α �∈ K◦ + A◦.
There are two options regarding α: either it is the translation of some β that is a theorem

of L, or else it is a product of rule applications.
In the first case, since β ∈ L, and K + A is assumed to be an adequate axiomatization

of L, K ∪ {A} � β. However, this would then imply that K◦ ∪ {A◦} � β◦, since the
application of rules in L is honored by the translation, as was demonstrated as part of the
proof of Theorem 4.7. This would then be a contradiction, as α is β◦.

In the second case, α is the result of the application of rules to some finite set of formulas
B = {β1, . . . , βn}, where each βi (1 ≤ i ≤ n) is either an instance of b0, b1, or b2, or
the translation of some γ ∈ L. However, as we have just demonstrated, it would have to be
that for any such γ we have that γ ◦ ∈ K◦ + A◦. Since all instances of b0, b1, and b2 are
also obviously in K◦ + A◦, and L◦ and K◦ + A◦ are closed under the same rules, α must
be in K◦ + A◦, as desired. �

An immediate corollary of this result is that if a logic L has two different axiomati-
zations, then the translations of these axiomatizations, in the above sense, both provide
axiomatizations of L◦, as one would hope.

§7. Concluding remarks. We may describe the ◦-translation as a functor between N,
the collection of all normal modal logics, and N◦, the collection of all non-normal modal
logics in the language L◦ that extend K◦.

F : N → N◦
L �→ L◦

As the results of the previous sections show, the behavior of F may be useful in under-
standing the meta-theoretical properties of members of N◦.

We might then reformulate Theorem 2.5 by saying that F(T) = K◦ and that the logic T◦
is m-characterized by CK. In the same way, Proposition 3.6 in Steinsvold (2008a) can be
expressed saying that F(K4) = F(S4), and that the logic S4◦ is m-characterized by CK4.
Moreover, notice that since S5 = K5 + T and T ◦ is a tautology, we have that F(K5) =
F(S5). However, the logic S5◦ is not m-characterized by CK5. As a consequence, our
method is not able to give a straightforward axiomatization of a logic in N◦ able to be
m-characterized by CK5.

A possible development of this work—which may be of independent interest in the
study of normal modal logics—is the possibility of giving a syntactic characterization of
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the semantic notion of robustness with respect to reflexivity. Indeed we believe that, at more
general level, the topics and the results of this paper illustrate the potential usefulness of
utilizing non-normal modal logics in the pursuit of a better understanding of normal ones.
We hope that the content and the techniques of this paper will help foster the analysis
of logics with different modal operators that are able to give new insights into the meta-
theoretical study of normal modal logics.

In particular, one might undertake an extensive study of a 	-operator, whose definition
is complementary with respect to that of the ◦-operator:

M, w |� 	ϕ iff either M, w |� ϕ or, for all x ∈ W , if wRx then M, x |� ϕ

A first step in the study of logics that may be called reflexive intolerant has already been
made in Steinsvold (2011), in the context of epistemic logic.7 We intend to study this
further in future work.
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