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ABSTRACT

An adaptive multiple subtraction step is necessary for al-
most all methods that predict seismic multiple reflected
waves. We aim at giving a better understanding of matching
filters based on lq-norms and on statistical independence.
We found that the formulation of all of these techniques
can be gathered in a mutual framework by introducing a
space-time operator, called the primary enhancer, acting
on the estimated primaries. The differences between the con-
sidered matching filters become more intuitive because this
operator behaves as a simple amplitude compressor. In this
perspective, all the methods tend to uncorrelate the predicted
multiples and the enhanced estimated primaries. The study
of these matching-filter methods can be narrowed to the
study of the primary enhancer operator because it is the only
difference. Moreover, we have emphasized the role of using
adjacent traces or windowing approaches in terms of statis-
tics, and we show that an adequate windowing strategy may
overbear the choice of the objective function. Indeed, our
analysis showed that setting a good windowing strategy
may be more important than changing the classical least-
squares adaptation criterion to other approaches based on
lq-norm minimization or independent component analysis.

INTRODUCTION

Multiple attenuation is crucial for improving the quality of seis-
mic images, especially in marine acquisitions. Several techniques

exist to provide a prediction of these multiples such as wavefield
extrapolation (Wiggins, 1988, 1999) or surface-related multiple
elimination (SRME) (Verschuur et al., 1992).
Unfortunately, none of these prediction-based methods can pro-

vide a perfect prediction of the multiples because of phase, wavelet,
or space-shift errors (Abma et al., 2005). Therefore, a second step,
usually referred to as adaptive multiple subtraction, is required to
accommodate the prediction to the actual multiples before the sub-
traction. The most common solutions are based on matching-filter
approaches (Verschuur and Berkhout, 1997; Rickett et al., 2001;
Guitton and Verschuur, 2004) and on prediction-error filters either
in the frequency domain (Spitz, 1999) or in the time domain (Guit-
ton, 2005).
Most adaptive multiple subtraction schemes rely on a linear con-

volutive model to reshape the predicted multiples. However, they
may differ in the following aspects:

• the objective function to be optimized
• the domain to perform the optimization
• the strategy to overcome the nonstationarity of the filter
• the strategy to exploit the space-time coherence of the seis-

mic signal.

Often, nonstationarity and space-time coherence are handled with a
common strategy. However, it is important to keep in mind that non-
stationarity is a difficulty to overcome, whereas space-time coher-
ence is an asset to capitalize on.
Because of its computational efficiency, the l2-norm is the most

commonly used objective function in the adaptive multiple subtrac-
tion. The resulting filter, which is known as a least-squares or
Wiener filter, works under the assumption that primaries and multi-
ples are orthogonal in the considered domain (Verschuur, 2006).
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However, in practice, and in particular in the time-offset domain,
this assumption fails and it may lead to an overattenuation of
the estimated primaries. For this reason, some works consider some
l1-norm-based filters that seem to overcome the problem by pro-
moting a sparser solution of the estimated primaries (Guitton and
Verschuur, 2004). Interestingly, lq-norms have been considered as
a regularization term (Costagliola et al., 2011). Moreover, a Baye-
sian framework is also investigated by Saab et al. (2007).
More recently, other works propose to use independent compo-

nent analysis (ICA) (Comon and Jutten, 2010) to separate primaries
and multiples. This approach has led to the use of new objective
functions associated with methods such as geometric-based ICA
(Lu, 2006), FastICA (Kaplan and Innanen, 2008), kurtosis-based
methods (Donno, 2011), InfoMax (Liu and Dragoset, 2013), and
negentropy maximization (Li and Lu, 2013). The first works
(Lu, 2006; Kaplan and Innanen, 2008; Donno, 2011) on ICA-based
adaptive multiple subtraction operate in a two-step fashion. They
comprise an estimation of the shape of the filter using a classic
l2-norm matching filter or a histogram method to correct for time
delay, followed by a more precise adjustment of its amplitude using
ICA. More recent works (Liu and Dragoset, 2013; Li and Lu, 2013)
propose to directly rely on a convolutive modeling with objective
functions based on statistical independence. These last solutions are
also proposed for 3D multiple elimination (Li and Lu, 2013).
The domain in which the matching filter is performed is decisive

in adaptive multiple subtraction, and a lot of effort has been done to
search for domains where primaries and multiples do not overlap.
Usually, the adaptive multiple subtraction procedure is carried out
in the time-offset domain in which the orthogonal assumption fails.
Other domains have been proposed such as the dip-domain (Donno,
2011), wavelet-domain (Ventosa et al., 2012), curvelet-domain
(Herrmann et al., 2007, 2008; Donno et al., 2010), Radon domain
(Li and Lu, 2014), frequency domain (Spitz, 1999), and adjoint do-
mains (the first derivative along with the Hilbert transform and its
first derivative) (Wang, 2003). We only consider the space-time do-
main, but our conclusions hold for other domains.
After defining a proper objective function and a suitable domain to

perform the adaptive multiple subtraction procedure, the last issue to
overcome is the nonstationarity of the primaries and the multiples
(Guitton, 2005; Fomel, 2009). This means that the statistical features
of the data are not steady with respect to the time or the offset, and so
neither is the filter we aim to recover. However, the spatial and tem-
poral coherence of the seismic signal prevents from drastic changes,
and smooth variations can be assumed. Hence, most of the time, the
signal is considered as stationary in a small data window in which a
unique filter can be obtained. This operation is then repeated on sev-
eral overlapping windows to complete the full data length. Finally, we
must mention that 1D, 2D, or 3D data windows, and so filters, can be
considered (Wang, 2003; Donno, 2011) because the seismic signal is
coherent in the full data cube.
We aim to give a better understanding of the matching filters

based on lq-norms and ICA in the context of adaptive multiple sub-
traction. In particular, we focus on the most common l1 and l2-
norms and two other ICA-based methods based on independence,
namely, information maximization (Liu and Dragoset, 2013) and
negentropy maximization (Li and Lu, 2013). By introducing a
new function called the primary enhancer, we show that all these
methods share strong similarities. Basically, they all uncorrelate the
estimated multiples with the primaries enhanced by the operator.

The differences between the investigated techniques can be ex-
plained by introducing different primary enhancer operators.
This article is organized as follows: In the next section, we

present the adaptive multiple subtraction problem in formal terms
and present different lq-norm optimization problems. The section
"Blind source separation" (BSS) is dedicated to the presentation of
BSS problems and ICA in which the matching filters based on stat-
istical independence will be briefly presented. The section "Equiv-
alences and similarities between matching-filter methods" contains
our main contribution. It presents some similarities and equivalen-
ces between the different matching filters. In this article, an equiv-
alence between two methods means that the objective functions to
be optimized are mathematically the same. Then, the section "Com-
parison of methods" is devoted to providing a statistical description
of windowing techniques and then to make a comparison between
the methods on 2D real seismic data.

OBJECTIVE FUNCTIONS USED FOR ADAPTIVE
MULTIPLES SUBTRACTION

Marine seismic data d½t; h; s�, where t, h, and s denote, respec-
tively, the time, offset, and shot position, are corrupted by multiple
reflections m½t; h; s� due to the water-free surface and internal
layers. Most of the time, these multiples are considered as noise
to be removed before the imaging process, and one would like
to obtain only primary events p½t; h; s� (Verschuur, 2006). Among
the existing techniques providing a prediction m

̮ ½t; h; s� of these
multiples (Wiggins, 1988, 1999; Verschuur et al., 1992), none of
them are perfect and time shifts or wavelet differences need to
be adjusted. To do so, one searches for a filter w½t; h; s� of size Kt ×
Kh × Ks to better match the prediction with the observed data
d½t; h; s�. Unless otherwise stated, an italic bold lowercase letter
d indicates a multidimensional data set, and an italic lowercase letter
d indicates an element of it. If subscripts appear, they indicate the
dimension of the considered data set. For instance dt represents an
element of a 1D data set and dth an element of a 2D data set.
We consider the following linear model:�

d ¼ pþm
m̂ ¼ w �m̮ ; (1)

where a breve ⋅̮ indicates a prediction, a hat ⋅̂ indicates a final es-
timation, and � denotes the convolution product that can either be
1D, 2D, or 3D, according to the dimension of w andm

̮
. The estimate

of the primaries is then given by

p̂ ¼ d − m̂ ¼ d − w �m̮ : (2)

To find a filter, we need to formulate an optimization problem of
the form

find w such that ϕðwÞ is minimum; (3)

where ϕðwÞ is an objective function to be defined. The most
common objective functions are based on the lq-norm, q ≥ 1,
which is defined for a vector x as

kxklq
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

jxijqq

r
: (4)

From that, the l2-norm refers to the classical Euclidean distance,
whereas the l1-norm is simply the sum of the absolute values of
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the vector components. In multiple subtraction, the most commonly
adopted approach is based on the l2-norm such as

ϕl2 ¼ kd − w �m̮ kl2
: (5)

This norm is quite convenient from a mathematical point of view
because it admits an analytical solution when a linear model is con-
sidered (Haykin, 2001). The objective function in equation 5 can be
written in matrix form as

ϕl2
¼ kd −M

̮
wkl2 ; (6)

where M
̮
and w are, respectively, a matrix and a vector constructed

such that M
̮
w ¼ w �m̮ . This construction can be done for the 1D,

2D, or 3D convolutional products according to the dimension of w
and m

̮
. The damped least-squares solution gives

wl2
¼ ðM

̮ TM
̮
þ ζIÞ−1M

̮ Td; (7)

where the term ζI regularizes the inversion of M
̮ TM

̮
if necessary.

However, the l2-norm filter, also known as a Wiener or least-
squares filter, may lead to overattenuation issues when primaries
and multiples overlap. Guitton and Verschuur (2004) analyze the
use of the l1-norm objective function:

ϕl1 ¼ kd − w �m̮ kl1
; (8)

and they have shown that it may lead to a sparser estimate of the
primaries. Unfortunately, a direct analytic solution does not exist for
the l1-norm. Guitton and Verschuur (2004) propose to use the iter-
ative reweighted least-squares (IRLS) algorithm to approximate the
l1-norm solution by using the objective function:

ϕl1∕2
¼ kFðd − w �m̮ Þkl2 ; (9)

where F is a diagonal matrix depending on the estimated primaries
p̂ and iteratively updated with the least-squares solution given by
equation 7. By using a specific F, they have shown that their
method is equivalent to consider the following objective function:

ϕl1∕2
¼ E

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp̂∕ϵÞ2

q
− 1

�
; (10)

where Ef·g is the expectation operator and ϵ is a positive constant.
Their analysis suggests to use a constant ϵ ¼ max jdj∕100.
More generally, it is also possible to envisage formulations based

on the minimization of a lq-norm objective function:

ϕlq
¼ kd − w �m̮ klq

; (11)

with q ≥ 1. This formulation is adopted, for instance, by Costa-
gliola et al. (2011) for regularization purposes. Pham et al.
(2014) also propose a more general framework able to introduce
different kinds of norms for the estimated primaries and the filter.
More recently, some authors consider that primaries and multi-

ples can be modeled as statistical independent variables (Kaplan
and Innanen, 2008; Donno, 2011; Li and Lu, 2013). As in equa-
tion 3, we can write the optimization problem as

findw such that p̂ andm
̮
are independent: (12)

Once again, no analytic solution exists for this problem. However,
ICA has emerged as a powerful framework for specifically tackling
this problem, and many algorithms can be found (Hyvärinen et al.,
2001; Comon and Jutten, 2010). Although all of these methods have
in common to try to solve the problem in equation 12, they differ by
their objective function. For instance, Donno (2011) uses a kurtosis-
based function, Liu and Dragoset (2013) use an information maxi-
mization (InfoMax) objective function, and Li and Lu (2013) use a
negentropy maximization objective function.
In the section "Equivalences and similarities between matching-

filter methods", we will show that for the convolutive model of
equation 1, the optimization problems using the lq-norm or the stat-
istical independence are actually very similar and, therefore, are ex-
pected to lead to similar practical results. Before presenting these
equivalences, we shall, in the next section, briefly review the BSS
problem, the ICA framework for solving BSS, and two ICA-based
algorithms, known as information maximization (Liu and Dragoset,
2013) and negentropy maximization (Li and Lu, 2013), that have
been used for multiple subtraction.

BLIND SOURCE SEPARATION

Formulation of the blind source separation problem

BSS is a problem in which one aims to recover a set of N
sources fs1; s2; : : : ; sNg from a set of M observed mixtures
fx1; x2; : : : ; xMg (Comon and Jutten, 2010). If the mixing process
is modeled as a linear and instantaneous system, the observed mix-
ture can be written as

X ¼ AS; (13)

where the matrices S and X contain, respectively, the source and
mixed signals, and A is the M × N mixing matrix. The term blind
comes from the fact that we assume no information about the mix-
ing process A nor training samples performing supervised learning.
For the determined case, in which M ¼ N, the separation can be

achieved by finding a demixing matrixW such that, once applied to
the observations, it gives an estimate Ŝ of the sources as

Ŝ ¼ WX ¼ WAS ¼ GS; (14)

where G ¼ WA represents the global mapping between the true
sources S and their estimates Ŝ. It is proved that we can only recover
sources up to a scale and a permutation ambiguity (Comon, 1994).
For a convolutive mixing model, equation 13 must be trans-

formed into

X ¼
XL−1
l¼0

AlT lfSg; (15)

where L is the size of the filters acting on the sources and T l is a
time-shifting operator acting on S. Analogously to the instantaneous
case, separation in the convolutive case can be performed by adjust-
ing a set of separating filters of length K such that the set of re-
trieved sources is given by
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Ŝ ¼
XK−1
k¼0

WkT kfXg: (16)

All the models and strategies discussed in this section for 1D
sources can be directly extended to two or three dimensions with
filters of the corresponding size.

Solving the blind source separation problem
using independent component analysis

Clearly, a BSS problem is ill posed and some a priori information
on the desired sources must be added. Historically, the first idea was
to consider the assumption of statistically independent sources,
which led to ICA (Comon, 1994). However, other information such
as sparsity can be considered to achieve the separation (Bofill and
Zibulevsky, 2001).
Two sources s1 and s2 are said to be statistically independent if

their joint probability distribution function (PDF) g 0
s1;s2 is the prod-

uct of their marginal PDF such as

g 0
s1;s2 ¼ g 0

s1 × g 0
s2 ; (17)

where the notation g 0ð·Þ for the PDF is chosen to make clearer the
notations used in the following sections. Therefore, ICA algorithms
search for a unique demixing matrix W, in the instantaneous case,
or a set of demixing filtersWk, in the convolutive case, that provide
independent estimates of the signals to be recovered.
In practice, ICA can be conducted by different approaches, which

mainly differ on the choice of the statistical function used to express
the independence. Interested readers may refer to Hyvärinen et al.
(2001) or Comon and Jutten (2010) for a complete overview of ICA
methods. In the sequel, we describe two ICA-based methods that
have been recently used for adaptive multiple subtraction, namely,
InfoMax (Liu and Dragoset, 2013) and negentropy maximization
(Li and Lu, 2013). We focus here on their objective functions.

InfoMax

Let us define the mutual information between two random var-
iables x and y as

Ix;y ¼ Hx þHy −Hx;y; (18)

where Hx is the differential entropy of a random variable x follow-
ing a PDF g 0

x andHx;y is the joint entropy of two random variables x
and y having a joint PDF g 0

x;y. They are defined as

Hx ¼ −
Z

g 0
x log g 0

xdx; (19)

and

Hx;y ¼ −
Z

g 0
x;y log g 0

x;ydxdy: (20)

As proposed by Bell and Sejnowski (1995), maximizing the mu-
tual information IX;Y between the inputs X ¼ ½ x1 x2 �T and the
outputs Y ¼ ½ y1 y2 �T of the neural network shown in Figure 1a
leads to the recovery of estimated sources Ŝ ¼ ½ ŝ1 ŝ2 �T that are
statistically independent.
It is important to note that, in the context of BSS, the outputs yi ¼

g0ðŝiÞ of the neural networks are auxiliary variables used to opti-
mize the statistical independence between the estimated sources ŝi.
The functions g0ð·Þ can be seen as estimates of the cumulative dis-
tribution functions (CDF) of the desired sources. Often, logistic
functions are used such as the sigmoid function:

g0ðsÞ ¼
1

1þ e−λs
; with g0 0ðsÞ ¼

λe−λs

ð1þ e−λsÞ2 ; (21)

where λ is a shaping parameter. As shown in Figure 2, g0 0ðsÞ rep-
resents an estimate of the PDF of the desired sources (Cardoso,
1997). Liu and Dragoset (2013) consider the shaping parameter
fixed with λ ¼ 1. In this article, more flexibility is added to take
into account a wider range of CDF.
It can be shown (Bell and Sejnowski, 1995) that maximizing the

mutual information IX;Y is equivalent to minimizing the following
objective function:

ϕIM ¼ −EflogðjJIMjÞg; (22)

Figure 2. Nonlinear functions g0ðsÞ are used in an InfoMax net-
work, and their derivatives g 0

0ðsÞ with different shaping parameters
λ. They respectively represent the estimated CDF and PDF of a
desired signal.

a)

b)

Figure 1. (a) BSS network — neural network of the InfoMax al-
gorithm with two mixtures and two sources, corresponding to the
formulation of a BSS problem. (b) Matching filter network —
adaptive multiple subtraction (equation 2) described as a neural net-
work. In the image, a line indicates a convolution with the specified
filter.

V46 Batany et al.



where logð·Þ denotes the natural logarithm function and JIM is the
Jacobian defined for a 2 × 2 network as

JIM ¼ det

"
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

#
: (23)

Negentropy maximization

As explained by Comon and Jutten (2010) or Hyvärinen et al.
(2001), recovering estimates Ŝ as far as possible from a Gaussian
distribution is a valid method for recovering independent sources.
This measure of Gaussianity can be achieved by using the negen-
tropy QŜ of the estimated sources defined as

QŜ ¼ HN −HŜ; (24)

where HN is the differential entropy of a random vector following a
Gaussian distribution with the same mean vector and covariance
matrix as Ŝ.
As proposed by Hyvärinen and Oja (2000), we can approximate

the maximization of negentropy by minimizing the following ob-
jective function:

ϕQ ¼ −ðEfgiðŜ0Þg − EfgiðN0ÞgÞ2; (25)

where Ŝ0 has a zero mean vector and unit covariance matrix and N0

is a random standardized Gaussian vector. The function gið·Þ can be
chosen within the following set of nonquadratic functions (Li and
Lu, 2013):

g1ðsÞ ¼ − exp

�
−
s2

2

�
; (26)

g2ðsÞ ¼ logðcoshðsÞÞ; (27)

and

g3ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
− 1. (28)

EQUIVALENCES AND SIMILARITIES BETWEEN
MATCHING-FILTER METHODS

In this section, we first show an equivalence between the lq-
norm- and InfoMax-based matching filters, as well as an equiva-
lence between InfoMax- and negentropy-based matching filters.
We remind the reader that in this article, an equivalence between
two methods means that the objective functions to be optimized
are mathematically the same. Then, we introduce an operator that
allows showing the similarities between l2-norm, l1∕2-norm, Info-
Max, negentropy, and l1-norm-based matching filters. In this con-
text, the l1-norm filter is seen as a limiting case of the others.

Equivalence between InfoMax and lq-norm

Let us consider the neural network in Figure 1b, which represents
the matching filter approach as proposed by the linear convolutive
model presented in equations 1 and 2. The difference between this
network and the classical formulation of a BSS problem (Figure 1a)

is that only one filter w is required to perform the separation for
adaptive multiple subtraction. This network could be considered
as a special case of the BSS network. Therefore, the objective func-
tion of equation 22 also holds for the network of Figure 1b. In this
case, the statistical independence is required between the estimated
primaries p̂ and the predicted multiples m

̮
.

For this specific network, the Jacobian given by the equation 23
simplifies and becomes

JIM ¼ ∂y0
∂d

∂y1
∂m
̮ ¼ ∂y0

∂p̂
∂p̂
∂d

∂y1
∂m
̮ ¼ g 0

0ðp̂Þg 0
0ðm

̮ Þ: (29)

Because the predictionm
̮
does not change in the network, after sub-

stituting equation 29 in equation 22, the term Eflog jg 0
0ðm

̮ Þjg is con-
stant and the objective function to be minimized becomes

ϕIM ¼ −Eflog jg 0
0ðp̂Þjg: (30)

As discussed in the previous section, the function g0ð·Þ can be seen
as an estimate of the CDF of the desired signals and the function
g 0
0ð·Þ represents an estimate of their PDF. We can assume that the
primaries follow a generalized Gaussian distribution that can either
be super- or sub-Gaussian, so that its PDF is given by

g 0
0ðp̂Þ ∝ expð−jp̂jqÞ: (31)

The objective function to be minimized in this case becomes

ϕIM ∝ þEfjp̂jqg; (32)

which is equivalent to the minimization of the lq-norm of the pri-
maries as in equation 11.
In particular, if we assume that the primaries follow a Laplacian

distribution, we can choose g 0
0ðp̂Þ ∝ expð−jp̂jÞ, and so ϕIM ∝ þ

Efjp̂jg, which is equivalent to the minimization of the l1-norm
of the primaries as in equation 8. In the same way, if we assume
that the primaries follow a Gaussian distribution, we can choose
g 0
0ðp̂Þ ∝ expð−p̂2Þ, and so ϕIM ∝ þEfp̂2g, which is equivalent
to the minimization of the l2-norm of the primaries as in equation 5.

Equivalence between InfoMax and negentropy
maximization

In the case of adaptive multiple subtraction, Li and Lu (2013)
show that the objective function in equation 25 can be written as

ϕQ ¼ þEfgiðp̂∕σp̂Þg; (33)

where σ2p̂ is the variance of the estimated primaries. As they point
out, the use of the function g3ð·Þ in adaptive multiple subtraction
leads to a formulation identical to the IRLS algorithm described
in equation 10. Therefore, in the following, we will focus on the
first two nonquadratic functions g1 and g2 by keeping in mind that
for a zero-mean signal, the normalization by σp̂ is equivalent to a
normalization by the l2-norm of the estimated primaries.
In particular, if the nonquadratic function g2 is used, we can write

it as

ϕQ ¼ −E
�
log

1

coshðp̂∕σp̂Þ
�
; (34)
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that is equivalent to the objective function of the InfoMax matching
filter in equation 30 with g 0

0ðsÞ ¼ 1∕ coshðsÞ. Also, if the nonqua-
dratic function g1 is used, we have

ϕQ ¼ −E
�
exp

�
−

p̂2

2σ2p̂

��
; (35)

which is equivalent to the objective function of the InfoMax match-
ing filter with g 0

0ðsÞ ¼ exp ½exp ð−s2∕2Þ�. Interestingly, it can also
be seen as using the InfoMax objective function after removing the
log operator, such that ϕ ¼ −Efg0 0ðp̂Þg with a Gaussian a priori
distribution g 0

0.

Uniformization of the objective functions

The first derivative stationary condition applied to a given objec-
tive function imposes that we have

∇ϕ ¼ 0 (36)

at the solution, where ∇ϕ is the gradient of the objective function
with respect to each filter coefficient such as

a)

b)

c)

d)

e)

T
im

e 
(s

)
T

im
e 

(s
)

T
im

e 
(s

)
T

im
e 

(s
)

T
im

e 
(s

)

Offset (km)

Figure 3. The primary enhancer operators ḡð·Þ, analyzed in equa-
tions 39 to 43, are applied on the same small window of seismic
data, supposedly the estimated primaries. The mean and the vari-
ance of the data have been, respectively, normalized to zero and
one. A scaling factor is applied for the operator of the hybrid
l1∕2 method and the InfoMax method to bound their value range
between −1 and 1.

a)

b)

c)

Figure 4. Contour plots in R2 of: (a) the l2-norm and the l1-norm
objective functions, (b) the hybrid l1∕2-norm objective function
with ϵ ¼ 10 and 0.1, and (c) the InfoMax-based objective function
with λ ¼ 0.1 and 10.

Table 1. Primary enhancer operators.

Matching filter Primary enhancer operator ḡðp̂Þ

l2-norm ∝ p̂

Hybrid l1∕l2-norm ∝ p̂ð1þ p̂2∕ϵ2Þ−1∕2
InfoMax ∝ −g 00

0 ðp̂Þ∕g 0
0ðp̂Þ

Negentropy ∝ g 0
i ðp̂Þ

l1-norm ∝ signðp̂Þ
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∇ϕ ¼
�

∂ϕ
∂w0

; : : : ; ∂ϕ
∂wk

; : : : ; ∂ϕ
∂wK−1

�
T
: (37)

Equation 36 is equivalent to a set of K equations,

∂ϕ
∂wk

¼ ∂ϕ
∂p̂t

∂p̂t

∂wk
¼ −

∂ϕ
∂p̂t

m
̮
t−k ¼ 0; for k ¼ 0; : : : ; K − 1;

(38)

from which it is clear that we can restrain our study to the first
derivative of the objective function with respect to the estimated
primaries. We obtain for all the objective functions considered in
this paper (equations 5, 10, 30, 25, and 8, respectively):

∂ϕl2

∂wk
¼ −

X
t

p̂tm
̮
t−k ¼ 0; (39)
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¼ −

X
t

p̂t

ϵ2

�
1þ p̂2

t

ϵ2

�−1∕2
m
̮
t−k ¼ 0; (40)

∂ϕIM

∂wk
¼ −

X
t

−
g 00
0 ðp̂tÞ
g 0
0ðp̂tÞ

m
̮
t−k ¼ 0; (41)

∂ϕQ

∂wk
¼ −

X
t

gi 0ðp̂tÞm
̮
t−k ¼ 0; (42)

and

∂ϕl1

∂wk
¼ −

X
t

signðp̂tÞm
̮
t−k ¼ 0. (43)

We propose to unify these conditions by introducing the opera-
tor ḡð·Þ, that we call the primary enhancer, which allows writing
the first-derivative condition as

∇ϕ ¼ −ḡðp̂Þ⋆m̮ ¼ 0; (44)

where ⋆ denotes the crosscorrelation product. The primary enhancer
operators for all of the objective functions analyzed in this paper are
presented in Table 1 and are shown in Figure 3.
In particular, if a sigmoid function is used in the InfoMax match-

ing filter, we have ḡðp̂Þ ¼ −λð1 − 2g0ðp̂ÞÞ. For the negentropy
maximization matching filter, we get ḡðp̂Þ ¼ p̂ expð−p̂∕2Þ if
g1ð·Þ is used and ḡðp̂Þ ¼ tanhðp̂Þ if g2ð·Þ is used.
Figure 3 shows the analyzed primary enhancer operators and

their application on a small seismic data window. In this context,
the result of the l1-norm matching filter can be seen as the limit
of the hybrid l1∕l2-norm matching filter when ϵ → 0 or also as
the limit of the InfoMax matching filter when λ → ∞. Between
those extreme values, the InfoMax and the hybrid l1∕l2-norm pri-
mary enhancer operators share strong similarities because they pro-
vide a smooth transition from the l1-norm to the l2-norm solution.
From our observations, they are the most similar when a relation
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Figure 5. Synthetic toy example of two crossing events. (a) The
synthetic data set containing one primary and one multiple that
are overlapping at traces 20 to 30. (b) Scatterplot of the primary
and the multiple at trace 25 only (in black) and at traces 20 to
30 (in white). (c) The prediction of the multiple that is equal, in
this example, to the true multiple. (d) Scatterplot of the data and
the prediction of the multiple at trace 25 only (in black) and at traces
20 to 30 (in white).

a) b)

Figure 6. (a) Input common shot gather from real marine data set
and (b) SRME-predicted multiples.

a) b)

Figure 7. Magnification of the black rectangles of Figure 6. The
legends are the same. A primary event is indicated by a white arrow.
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λ ¼ 1∕ϵ is kept. Figure 4 also shows how the InfoMax and the
hybrid l1∕2-norm objective functions make a smooth transition be-
tween the l2-norm and the l1-norm objective function depending
on the value of their shaping parameter.
It is already known that the least-squares filter aims at canceling

the crosscorrelation between the estimated primaries and the pre-
dicted multiples in a vicinity defined by the dimensions of the filter.
Equation 44 unifies the methods analyzed in this paper in a same
fashion. They can all be seen as canceling the crosscorrelation be-
tween the enhanced primaries and the predicted multiples. As we
indicated in the two previous subsections, there exist equivalences
between certain methods if specific shaping parameters or nonlinear
functions are used. In those cases, the enhanced operators are equal.
Otherwise, the methods are similar and their practical differences
will be discussed in the next section.

COMPARISON OF METHODS

Considerations about space-time coherence and data
windowing

Because the seismic signal is not stationary either in space or in
time, windowing strategies are usually used. The space-time coher-
ence of the seismic signal can be used to smooth the variations in the
filter and avoid drastic changes in space and time.

Until now, we mainly consider the 1D-1D strategy (1D filter, 1D
data window) for which one wants to recover a single 1D matching
filter of length Kt for a segment of seismic trace of length Ft. How-
ever, this 1D-1D strategy does not avoid a drastic change in space,
but only in time. That is the reason why any matching filter based on
the lq-norm or independence applied trace by trace with the 1D-1D
strategy may lead to overattenuation of the primaries if they do over-
lap with multiple events.
To overcome the overattenuation problem, the 1D-2D strategy

(1D filter, 2D data window) uses adjacent traces to find a 1D filter.
The result of using adjacent traces in terms of statistical diversity is
shown in Figure 5 in the case of crossing events. In this toy exam-
ple, the prediction of the multiples is equal to the true multiples.
Figure 5b and 5d, respectively, shows the scatterplot of the primary
versus the multiple (Figure 5a) and the data versus the predicted
multiple (Figure 5c) at a single offset (in black) and in a small win-
dow (in white). We see that if a single trace containing the crossing
event (in black) is considered, the primary and the multiple are
highly correlated, and so they are highly statistically dependent.
Hence, any strategy trying to make them uncorrelated (least-
squares) or independent (e.g., InfoMax) will systematically fail.
In other words, overattenuation will systematically happen with
the 1D-1D strategy. However, when adjacent traces are used (in
white), the primaries and the multiples became statistically indepen-
dent events and a strategy forcing the independence may work. We

a) b)

c) d)

Figure 8. Primaries and multiples estimated by the l2-norm with a 1D-2D strategy (five adjacent traces) of (a) Ft ¼ 200 ms and Kt ¼ 40 ms,
(b) Ft ¼ 200 ms and Kt ¼ 80 ms, (c) Ft ¼ 200 ms and Kt ¼ 160 ms, and (d) Ft ¼ 400 ms and Kt ¼ 160 ms.
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emphasize here again that considering primaries and multiples as
independent events does not help if they overlap. It is the use of
adjacent traces that help overcoming the overattenuation problem
in adaptive multiple subtraction.
The 2D-2D strategy (2D filter, 2D data window) explicitly uses

the coherence of the seismic signals in space and time. It is ex-
pressed as finding a 2D matching filter of size Kt × Kh, over a data
window of size Ft × Fh. In this case, the convolutional product is
defined in two dimensions. Most of the time, we have Kt < Ft and
Kh < Fh to solve a well-posed problem. A 3D strategy can also be
considered using the shot number as the third dimension; the con-
volutional product will be defined this time on three dimensions.

Results on real data set

We compare the results of matching filter methods on a 2D real
marine data set. The common shot gather is presented in Figures 6a
and 7a and the 2D SRME prediction in Figures 6b and 7b. The spa-
tial sampling is 25 m, and the time sampling is 2 ms. The minimum
and maximum offsets are 225 and 4700 m, respectively. The 2D
SRME prediction is realized with a 600-m aperture around the
source and receivers to reduce aliasing. Some primary events sur-
rounded by multiple events are clearly identifiable. A global time
shift correction of 40 ms is preapplied on the prediction, but no
spatial correction is necessary. Hence, the matching filter we are
seeking should mainly compensate for the surface operator due

to the autoconvolutions of the data during the prediction process.
In a first test, we use the l2-norm matching filter with different win-
dowing strategies. In a second test, we use the same windowing
strategy with different objective functions.
The negentropy maximization matching filter is performed with

the nonlinear function g1 and the IRLS algorithm proposed by Li
and Lu (2013). The hybrid l1∕2-norm (IRLS) has one parameter ϵ
that is estimated for each window by the relation proposed by Guit-
ton and Verschuur (2004). Finally, our formulation of the InfoMax
matching filter needs the estimation of the parameter λ that is related
to the prior CDF of the primaries we tend to estimate. We propose
here to use a fixed value of λ, but an adaptive scheme could also be
used to take better into account the nonstationarity of the signal.
Because one assumes that the multiples should be removed from
the signal, the primaries should have a more spiky PDF compared
to the data. First, an optimum parameter λd is determined to fit
+the data, and then the value for the primaries is overevaluated
by λ ≈ 5λd.
The hybrid l1∕2-norm and negentropy methods are implemented

by using the IRLS algorithm. If an identity matrix is chosen for the
initialization of the matrix of weights F in equation 9, they have the
advantage to give the l2-norm solution at the first iteration (Guitton
and Verschuur, 2004). A gradient method is used for the InfoMax
method (Liu and Dragoset, 2013), and it has the advantage of ac-
tually computing the nonlinear correlation between the estimated
primaries and the predicted multiples for the gradient update rule.

a) b)

c) d)

Figure 9. Magnification of the black rectangles of Figure 8. The legends are the same. The main differences are indicated by an ellipse.
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However, InfoMax is generally more time consuming compared to
the IRLS methods for a small matrix M

̮
.

The results of the l2-norm objective function with four window-
ing strategies are shown in Figures 8 and 9. A 50% window over-
lapping strategy is used for all tests. In all the tests, five adjacent
traces are used to compute a 1D filter. As expected, the increase in
the temporal length of the filter leads to more attenuation of the
multiples, with an eventual overattenuation of the primaries.
The results of the four objective functions described in this article

with the same windowing strategy are shown in Figures 10 and 11.
In all the tests, five adjacent traces are used to compute a 1D filter. In
this example, fewer differences are visible, which is consistent with
the previous theoretical analysis showing the similarities between
the analyzed objective functions. The observation of fewer dissimi-
larities between the primaries estimated by different objective func-
tions is also valid for other windowing strategies. This suggests that
the windowing strategy has more impact on the results than the
choice of an objective function. In this context, Liu and Kostov
(2015) recently focus on a criterion to find a proper filter size
for a given data set.

DISCUSSION

Fundamentally, adaptive multiple subtraction is an underdeter-
mined problem that consists of the joint recovery of a filter

w ∈ W and the primary signal p̂ ∈ P from the data d. Hence,
for the problem to become determined in this form, it always misses
a few equations equal to the size of the filter, at least. By setting
p̂ ≈ 0, the problem can become virtually overdetermined and w
can be estimated with an outnumber of linear constraints. Because
the primaries (what we could see as the “noise” in the Wiener filter-
ing) are not zeros (indeed, it is the signal), an objective function
must weight the contribution of each constraint to be able to specify
which solution is the best and unique estimate p̂.
Most of adaptive multiple subtraction schemes consider lq-norm

matching filters for which it is assumed that the estimated primaries
have minimum energy in the lq-norm sense (equation 4). However,
the desired geophysical solution may not coincide with the opti-
mized solution by lq-norms. In particular, lq-norm objective func-
tions have their minimum at p̂ ¼ 0, leading to overattenuation
problems if the outnumbered constraints in P are actually passing
by this solution. To overcome this inherent problem, some authors
recently propose to use objective functions based on the statistical
independence of primaries and multiples. However, as we have
shown in this article, there is an equivalence between them and
lq-norm objective functions, if the right nonlinear function (or
parameter) is chosen to approximate independence (via InfoMax
or negentropy maximization). Hence, independence-based objec-
tive functions share the same issue as lq-norm objective functions
because their minimum is obtained for p̂ ¼ 0.

a) b)

c) d)

Figure 10. Primaries and multiples estimated with a 1D-2D strategy (five adjacent traces) of Ft ¼ 200 ms andKt ¼ 80 ms by (a) the l2-norm,
(b) the l1∕2-norm (IRLS), (c) InfoMax (λ ¼ 400), and (d) negentropy maximization (g1).
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From a statistical point of view, the least-squares solution (l2-
norm) assumes that primaries and multiple are uncorrelated, and
we must remind ourselves that correlation is a measure of linear
statistical dependence. When primaries and multiples overlap, they
are actually correlated, and so, dependent. Hence, considering pri-
maries and multiples as independent events is not a better strategy if
they do overlap. In fact, as demonstrated in this article, it is the use
of adjacent traces that increases the statistical diversity of primaries
and multiples in a given window, thus allowing to overcome the
overattenuation problem as we pointed out in Figure 5. Moreover,
we have shown that forcing the independence between the predicted
multiples and the estimated primaries can be seen as a nonlinear
decorrelation between the same predicted multiples and the esti-
mated primaries enhanced by a chosen operator. This operator
has to be chosen to respect an a priori information about the
PDF of the desired primaries.
All the methods analyzed in this article can be seen as adding a

priori information about the statistical distribution of the primaries,
so that the underdetermined adaptive multiple subtraction problem
can be virtually overdetermined. If a sigmoid function is used, the
InfoMax method becomes really similar to the hybrid l1∕2-norm
method because these methods make a smooth transition between
the l2 and the l1-norm solutions that, respectively, assume a Gaus-
sian and a Laplacian distribution. Other nonlinear functions could
be used in the InfoMax network, such as an asymmetric distribu-
tion. Unfortunately, the true distribution is not known, and its es-
timation is a difficult task. Hence, parametric methods, such as

InfoMax and the hybrid l1∕2-norm, may be challenging in practice
at choosing the appropriate parameter. On the other hand, nonpara-
metric methods, such as lq-norm or negentropy methods, are easier
to use and easier to interpret but less flexible.
If the l1 and the l2 solutions are close in the parameter spaceW,

all of the methods are expected to give similar results. It is well
known that a subtle balance exists between the use of a short filter
underestimating the noise and the use of a long filter overestimating
it. The use of shorter filters may lead to more significant differences
between two methods such as l1 and l2-norms, and we notice the
same behavior with the analyzed methods on synthetic examples.
However, on our real data set, the statistical diversity of the win-
dows and the need of longer filters to well attenuate the noise seem
to bring closer l1 and l2-norm solutions, leading to fewer signifi-
cant differences between the analyzed methods.

CONCLUSION

We have shown that InfoMax, negentropy maximization, and hy-
brid l1/l2-norm-based matching filters share strong similarities. All
of these techniques aim at minimizing the crosscorrelation between
the predicted multiples and the estimated primaries enhanced by a
chosen operator. It is this operator that links all the analyzed filter-
ing techniques. Because correlation is a particular case of linear stat-
istical dependence, the primary and multiple of a crossing event are
statistically dependent. Then, forcing their statistical independence
does not lead to a better solution. However, the windowing strategy,

a) b)

c) d)

Figure 11. Magnification of the black rectangles of Figure 10. The legends are the same.
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increasing the statistical diversity around the crossing event by the
use of adjacent traces, is decisive because it actually allows us to
model primaries and multiples as independent events.
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