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For discrete-state stochastic systems obeying Markovian dynamics, we establish the counterpart
of the conditional reversibility theorem obtained by Gallavotti for deterministic systems [Ann. de
l’Institut Henri Poincaré (A) 70, 429 (1999)]. Our result states that stochastic trajectories condi-
tioned on opposite values of entropy production are related by time reversal, in the long-time limit.
In other words, the probability of observing a particular sequence of events, given a long trajectory
with a specified entropy production rate σ, is the same as the probability of observing the time-
reversed sequence of events, given a trajectory conditioned on the opposite entropy production, −σ,
where both trajectories are sampled from the same underlying Markov process. To obtain our result,
we use an equivalence between conditioned (“microcanonical”) and biased (“canonical”) ensembles
of nonequilibrium trajectories. We provide an example to illustrate our findings.
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I. INTRODUCTION

In equilibrium statistical mechanics, the equivalence of ensembles in the thermodynamic limit provides a useful
tool for analyzing systems that are subject to sharp constraints. For example, for purposes of calculating averages in
physical situations in which the total energy is fixed, the microcanonical ensemble can be replaced by the typically
more convenient, fixed-temperature canonical ensemble, provided the temperature is chosen appropriately [1, 2].
Alternatively, if we wish to construct an ensemble that describes an equilibrium system conditioned on a specific
value of an extensive observable, then we can use Boltzmann-like weights to bias the distribution toward that value;
in the thermodynamic limit the conditioned and biased distributions become equivalent. The mathematical tools for
constructing such ensembles have been analyzed rigorously within the theory of large deviations [3].

In the last decade these tools have been applied extensively to probability distributions P[S] on the space of
paths or trajectories of nonequilibrium systems [4–10]. This approach has been used to study dynamical phase
transitions in kinematically constrained models [11–13], glass transitions [14–16], quantum systems [17–19], and
efficiency fluctuations in stochastic heat engines [20–22]. By analogy with the equilibrium case, nonequilibrium path
ensembles can be constructed by introducing exponential, Boltzmann-like weights e−λA[S] to modify a given probability
distribution. Here the quantity inside the exponent is a time-extensive functional of the trajectory, A[S], multiplied
by a biasing parameter −λ. The formal analogy with the equilibrium case suggests that such biased ensembles
may be equivalent, in the appropriate limit, to nonequilibrium ensembles conditioned on specified values of the path
observable A. This problem has been addressed explicitly by Jack and Sollich [8] for discrete-state systems, and by
Chetrite and Touchette [9, 10] for a broad class of stochastic models including diffusive processes. Using the theory of
large deviations, these authors have established the equivalence between conditioned (“microcanonical”) and biased
(“canonical”) path space distributions, in the long-time limit, given certain conditions related to the fluctuations
of the observable appearing in the exponential weight. The results contained in Refs. [8–10] are related to earlier
results by Evans [4, 5, 7], obtained within the framework of maximum-entropy inference, as well as to the generalized
Onsager-Machlup theory developed by Maes and Netočný [6].

Here we use this equivalence to study nonequilibrium systems that are conditioned on values of entropy production.
For a discrete-state system whose time-averaged rate of entropy production takes a positive value σ̄ in the infinite-time
limit, Eq. (9), we consider the statistical fluctuations in the entropy production rate over finite intervals of duration
T . Heuristically, it is useful to imagine “chopping” an infinite trajectory into segments of duration T , and then
segregating these according to the time-averaged entropy production rate during each segment. Those segments for
which the entropy production rate takes on a value σ comprise an ensemble that is conditioned on that value. In
the long-T limit, we find that ensembles conditioned on opposite values of entropy production rates are related by
time-reversal. In effect, if we compare two long trajectory segments, conditioned on entropy production rates ±σ, then
(statistically) one of them will look like a mirror image of the other, in time. This result is the stochastic counterpart
of the conditional reversibility theorem derived by Gallavotti [23] in the context of deterministic dynamics.

In our presentation we will not aim at full mathematical rigor, nor will we assume that the reader is deeply familiar
with large deviation theory. We will show that our central result, which is the conditional reversibility described
above, follows from relatively straightforward manipulations. In order to keep the presentation self-contained, in Sec.
II we will derive results obtained previously in Refs. [8–10].

The outline of the paper is as follows. In Sec. II we define a stationary, discrete-state Markov process that violates
detailed balance, Eq. (1); and following [8–10] we construct the rate matrix for the biased ensemble, Eq. (37). In
Sec. III we establish that ensembles biased toward opposite values of entropy production rates ±σ are described by
rate matrices that are the dual of one another, Eqs. (46), (48), and we use this result to formulate a conditional
reversibility theorem for stochastic dynamics, Eq. (53). In Sec. IV we present an illustrative example and in Sec. V
we finish with concluding remarks.

II. CONDITIONED AND BIASED ENSEMBLES AND THEIR DYNAMICS

We consider a model with K discrete states labelled by i ∈ Λ ≡ {1, . . . ,K}. The probability pi(τ) to find the
system in state i at time τ evolves according to the master equation

dpi
dτ

=

K∑
j 6=i

(Rij pj −Rji pi) =

K∑
j=1

Rij pj (1)
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where the transition rates Rij from state j to state i are time-independent, and
∑
j 6=iRji = −Rii is the escape rate

from state i. The formal solution of (1) reads

p(τ) = e(τ−τ0)R p(τ0) , (2)

where p ≡ (p1, · · · , pK)T and p(τ0) is an initial probability distribution.
We assume that the K states form a connected network: from any state i the system can evolve to any other state

j by a finite sequence of transitions. We also assume that if Rij 6= 0, then Rji 6= 0. These assumptions imply a unique
stationary distribution, which we will denote by π = (π1, · · · , πK)T :

lim
τ→∞

p(τ) = π . (3)

This distribution is characterized by stationary currents,

Jij = Rijπj −Rjiπi (4)

representing the flow of probability from j to i in the stationary state.
We denote by P[S] the probability of observing a trajectory S over an interval of total duration T , beginning at

time τ0 = −T /2 and ending at time T /2. Discretizing time in intervals of duration δτ , we represent this trajectory
as a sequence of states S = (s−N , s−N+1, . . . , sN−1, sN ) ∈ Λ2N+1, where sn is the state of the system at time n δτ
and δτ = T /2N . We will take δτ to be infinitesimal, hence δτ Rij � 1 for all i, j, and we will ignore terms of order
δτ2. The probability P[S] can be written as

P[S] =

(
N−1∏
k=−N

Usk+1sk

)
ps−N (τ0), (5)

where the transition probability Uij is given by

Uij =
(
eδτ R

)
ij
' δij + δτ Rij . (6)

The distribution P[S] defines a statistical ensemble of discretized trajectories of duration T .
The time-averaged entropy production rate along a trajectory S is given by

σ[S] =
1

T

N−1∑
k=−N

ln

(
Rsk+1sk

Rsksk+1

)
, (7)

where ln(Rij/Rji) is the entropy production associated with a transition from j to i [24–27]. The probability distri-
bution of the time-averaged entropy production rate is then

P (σ) =
∑
[S]

P[S] δ(σ − σ[S]) , (8)

where
∑

[S] ≡
∑
s−N ,··· ,sN . Finally, we define a conditioned ensemble of trajectories, described by a probability

distribution Pc[S|σ], which is the subensemble of P[S] containing only those trajectories with a time-averaged entropy
production rate equal to σ. Our aim is to study the dynamics of the system within this conditioned ensemble.

Note that the distributions P[S], P (σ) and Pc[S|σ] – as well as Pλ[S] and Pλ(σ), defined below – all depend on the
duration T , but this dependence is notationally suppressed. We are interested in the long-time limit, T → ∞ (with
δτ fixed, hence N → ∞). In this limit, the distribution P (σ) becomes ever more sharply peaked around a value σ̄,
which is the infinite-time average entropy production rate in the stationary state:

σ̄ =
∑
i>j

Jij ln

(
Rij
Rji

)
. (9)

Now consider a biased ensemble, described by the probability distribution

Pλ[S] =
1

N
P[S] e−λT σ[S] (10)
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where λ is a real parameter and

N = N (λ) =
∑
[S]

P[S]e−λT σ[S] (11)

is a normalization factor. The distribution Pλ[S] defines a modified distribution of entropy production rates

Pλ(σ) =
∑
[S]

Pλ[S] δ(σ − σ[S]). (12)

When λ > 0, the factor e−λT σ[S] favors trajectories with low values of σ, hence the distribution Pλ(σ) is shifted to
the left of P (σ); the opposite comments apply when λ < 0.

As shown in Refs. [8–10], in the long-time limit the statistics of the biased ensemble become equivalent to those

of a stationary Markov process, described by a rate matrix R̃(λ), Eq. (37). Moreover, in this limit the distribution
Pλ(σ) becomes sharply peaked around a value σ̄λ. This value decreases monotonically with λ, and can be written as

σ̄λ =
∑
i>j

J̃ij(λ) ln

(
Rij
Rji

)
, (13)

where J̃ij(λ) is the net flow of probability from j to i in the biased λ-ensemble, in the long-time limit. Note that in
Eqs. (12) and (13), the entropy production rate is defined with respect to the original, unbiased transition rates Rij .

We can view the transformation P[S]→ P[S]e−λT σ[S] as a method for constructing ensembles of trajectories that
are effectively conditioned on particular entropy production rates. By varying λ, we “tune in” to trajectories with
values of σ near a desired value σ̄λ; the larger the value of T , the narrower the distribution of values of σ around σ̄λ.
Under conditions discussed by Jack and Sollich [8] and by Chetrite and Touchette [9, 10], which are fulfilled by the
model we study, in the long-time limit the ensemble Pλ[S] becomes equivalent to an ensemble in which the entropy
production rate is constrained to the value σ̄λ. We represent this equivalence using the notation

Pλ[S] ∼ Pc[S|σ̄λ] , (14)

where the limit T → ∞ is implied.
As in the equilibrium case, the equivalence of nonequilibrium ensembles expressed by Eq. (14) helps us to avoid

the difficulties imposed by sharp constraints. For nonequilibrium path-space ensembles, the long-time limit T → ∞
is analogous to the thermodynamic limit, and we can select a value of λ that gives a desired entropy production rate
σ̄λ: the long-time dynamics of the system in the λ-ensemble Pλ[S] are equivalent to its dynamics in the corresponding
fixed-σ ensemble, Pc[S|σ̄λ]. We will exploit this equivalence in order to explore the behavior of the system when its
long-time-averaged entropy production rate is conditioned on a particular value.

In the remainder of this section we first establish that the λ-ensemble Pλ[S] describes a stationary process whose
dynamics are Markovian in the long-time limit, Eq. (31), and we obtain the rate matrix that generates this process,
Eq. (37).

We begin with the expression

Pλ[S] = N−1
(

N−1∏
k=−N

Usk+1sk

)
e−λT σ[S]ps−N (τ0) = N−1

[
N−1∏
k=−N

Usk+1sk

(
Rsksk+1

Rsk+1sk

)λ]
ps−N (τ0), (15)

which follows from Eqs. (5) and (10), along with

e−λT σ[S] =

N−1∏
k=−N

(
Rsksk+1

Rsk+1sk

)λ
. (16)

Defining a matrix Q(λ) with elements Qij ≡ Uij(Rji/Rij)λ, we rewrite Eq. (15) as

Pλ[S] = N−1
[
N−1∏
k=−N

Qsk+1sk

]
ps−N (τ0). (17)

Moreover we can use Eq. (6) to obtain

Qij '

{
1 +Rii δt, i = j

R1−λ
ij Rλji δt, i 6= j

. (18)
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Next, we introduce the convenient bra-ket notation to denote the right and left eigenvectors of Q:

Q|uk〉 = αk|uk〉, , 〈vk|Q = αk〈vk|, (19)

where αk are the corresponding eigenvalues. For the sake of simplicity we assume Q to be diagonalizable, so that the
following relations apply after suitable normalization of the eigenvectors:

〈vk|uj〉 = δkj , (20a)∑
k

|uk〉〈vk| = 1 . (20b)

In the appendix we extend our derivation to the case when Q is defective, that is non-diagonalizable [28].
Because the matrix Q is non-negative (by construction) and irreducible (since the K states form a connected

network), the conditions of the Perron-Frobenius theorem are satisfied [29]. This theorem tells us that Q has a real
eigenvalue µ whose value is greater than the modulus of any other eigenvalue:

µ ≡ α1 > |α2| ≥ |α3| ≥ . . . . (21)

Without loss of generality we have arranged the αk’s in descending order of their moduli. We denote by

|ψ〉 ≡ |u1〉 and 〈ω| ≡ 〈v1| (22)

the right and left eigenvectors associated with the eigenvalue µ. The Perron-Frobenius theorem further guarantees
that the elements of these eigenvectors are strictly positive. Note that the eigenvectors and eigenvalues of Q(λ) depend
on the value of λ. In particular, when λ = 0 we have Q = U , µ = 1, |ψ〉 = |π〉 and 〈ω| = 〈1|, where 〈1| ≡ (1, 1, . . . , 1).

From Eq. (17) we have

N =
∑
[S]

[
N−1∏
k=−N

Qsk+1sk

]
ps−N (τ0) (23)

=
∑
[S]

QsNsN−1
QsN−1sN−2

· · ·Qs−N+1s−N ps−N (τ0) (24)

= 〈1|Q2N |p(τ0)〉 (25)

Introducing the notation p0 ≡ p(τ0) and using Eq. (20), we obtain

N =
∑
k

〈1|Q2N |uk〉〈vk|p0〉 =
∑
k

α2N
k 〈1|uk〉〈vk|p0〉 → µ2N 〈1|ψ〉〈ω|p0〉 , (26)

where → denotes the long-time limit (T , N →∞), and we have invoked Eq. (21) when taking this limit.
With these elements in place, let us consider the probability, in the λ-ensemble, that the system proceeds through

a sequence of states r0, r1, · · · rκ at times 0, δτ, · · ·κδτ . (Without loss of generality, we have taken j = 0 as the initial
time step.) This probability is given by

pλ(rκ, κ; rκ−1, κ− 1; . . . ; r0, 0) = N−1
∑
[S]

[
N−1∏
k=−N

Qsk+1sk

]
ps−N (τ0) δs0r0 , δs1r1 · · · δsκrκ . (27)

Here we have inserted appropriate Kronecker delta functions δsjrj into Eq. (17) and taken a sum over trajectories.

Let us now introduce the notation |es〉 = (δ1s, δ2s, . . . , δKs)
T to denote a unit vector. Proceeding as in the previous

paragraph we get

pλ(rκ, κ; . . . ; r0, 0) = N−1〈1|QN−κ|erκ〉Qrκrκ−1 · · ·Qr1r0〈er0 |QN |p0〉

= N−1
∑
l,m

〈1|QN−κ|ul〉〈vl|erκ〉Qrκrκ−1
· · ·Qr1r0〈er0 |QN |um〉〈vm|p0〉

→ N−1µ2N−κ〈1|ψ〉ωrκ

κ−1∏
j=0

Qrj+1rj

ψr0〈ω|p0〉

= µ−κωrκ

κ−1∏
j=0

Qrj+1rj

ψr0 =

κ−1∏
j=0

ωrj+1
Qrj+1rj ω

−1
rj

µ

 ωr0ψr0 (28)
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For the special cases κ = 0 and κ = 1 we get

pλ(r0, 0) = ωr0ψr0 , pλ(r1, 1; r0, 0) =
ωr1 Qr1r0 ω

−1
r0

µ
ωr0ψr0 , (29)

implying that the conditional probability to be found in state r1 at t = δτ , given state r0 at t = 0, is

pλ(r1, 1|r0, 0) =
ωr1 Qr1r0 ω

−1
r0

µ
. (30)

An identical result holds for pλ(rj+1, j+ 1|rj , j) for any j (since the choice of j = 0 as the initial time step in Eq. (28)
was arbitrary), allowing us to rewrite Eq. (28) as follows:

pλ(rκ, κ; . . . ; r0, 0) =

κ−1∏
j=0

pλ(rj+1, j + 1|rj , j)

 pλ(r0, 0), (31)

from which we conclude that the trajectory segment r0, r1, · · · rκ, sampled from the λ-ensemble, is described statisti-
cally by a Markov process, in the limit T , N →∞.

Following Refs. [8–10], let us now construct the rate matrix that governs the λ-biased dynamics. As discussed in
Refs. [9, 10], this rate matrix is related to the original, unbiased rate matrix by Doob’s transform [30].

We have used the notation R and U to denote the rate matrix and the single-time-step transition matrix for the
unbiased dynamics. In what follows we will use R̃(λ) and Ũ(λ) to denote the rate and transition matrices for the

biased dynamics, thus R̃(0) = R and Ũ(0) = U . The elements of Ũ(λ) are given by Eq. (30):

Ũ =
1

µ
ΩQΩ−1 (32)

where Ω ≡ diag(〈ω|) is a diagonal matrix whose elements are the components of the left eigenvector 〈ω| of Q. Using

Ũ = eR̃δτ ' 1+ R̃δτ (where 1 is the identity matrix) we obtain

R̃δτ =
1

µ
ΩQΩ−1 − 1 (33)

To rewrite this expression in a more convenient form, we first use Eq. (18) to write

Q = 1+M δτ , (34)

where

Mij =

{
Rii , i = j

R1−λ
ij Rλji , i 6= j .

(35)

By Eq. (34), Q and M have the same eigenvectors but different eigenvalues, and in particular

µ = 1 + η δτ , 〈ω|M = η〈ω| , M |ψ〉 = η|ψ〉 . (36)

Keeping terms only up to first order in δτ , Eq. (33) gives us

R̃(λ) = ΩM Ω−1 − η1 , (37)

where the quantities appearing on the right side of the equation depend on λ, but not on δτ . This rate matrix, R̃(λ),
generates trajectories with the same statistics as those of the λ-ensemble, in the long-time limit.

Let us now solve for the null right eigenvector of the rate matrix R̃(λ). We will use the notation |π̃(λ)〉 to denote this
eigenvector, whose components π̃s = 〈es|π̃〉 represent the stationary probability distribution in the biased λ-ensemble.
We have

|0〉 = R̃|π̃〉 = ΩMΩ−1|π̃〉 − η|π̃〉 (38)

hence

M
(

Ω−1|π̃〉
)

= η
(

Ω−1|π̃〉
)
, (39)
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which implies by Eq. (36) that Ω−1|π̃〉 ∝ |ψ〉. We thus have |π̃〉 = cΩ|ψ〉, or π̃s = 〈es|π̃〉 = c ωsψs. The constant c
is set by the normalization condition

∑
s π̃s = 1, which combines with 〈v1|u1〉 = 1 to give us c = 1, hence

|π̃〉 = Ω|ψ〉 , π̃s = ωsψs . (40)

This is consistent with Eq. (29).
To end this section, we establish symmetry identities, Eqs. (41) and (42), that will allows us to investigate the

dependence of the biased dynamics on the parameter λ. From Eq. (35) we have M(1− λ) = M(λ)T , which implies

η(λ) = η(1− λ) , |ψ(λ)〉 = |ω(1− λ)〉 . (41)

These results combine with the transpose of Eq. (37) to give us

Ω(λ)R̃(λ)TΩ(λ)−1 = M(1− λ)− η(1− λ)1 (42)

The symmetry property embodied by Eqs. (41) and (42) was previously obtained by Lebowitz and Spohn [24], in their
proof of the fluctuation theorem for general Markov processes. A similar symmetry is implicit in Kurchan’s earlier
derivation of the fluctuation theorem for Langevin processes [31].

III. DUAL DYNAMICS AND CONDITIONAL REVERSIBILITY

We are now in a position to study the dual of the rate matrix R̃, defined by [32, 33]

R̃dual = Π̃R̃T Π̃−1 (43)

where Π̃ = diag(|π̃〉). From this definition it follows that 〈1|R̃dual = 〈0| and R̃dual|π̃〉 = |0〉, hence R̃dual is a rate

matrix whose stationary distribution is the same as that of R̃. Moreover, in the stationary state the flow of probability
under the dual dynamics is exactly opposite to the probability flow under the original dynamics:

J̃dual
ij = R̃dual

ij π̃j − R̃dual
ji π̃i =

(
π̃iR̃jiπ̃

−1
j

)
π̃j −

(
π̃jR̃ij π̃

−1
i

)
π̃i = −J̃ij . (44)

Combining Eq. (43) with Eqs. (37), (40), (41) and (42), we obtain[
R̃dual(λ)

]
ij

= π̃i(λ)
[
R̃(λ)T

]
ij
π̃j(λ)−1

= ψi(λ)
[
Ω(λ)R̃(λ)TΩ(λ)−1

]
ij
ψj(λ)−1

= ψi(λ) [M(1− λ)− η(1− λ)1]ij ψj(λ)−1

= ωi(1− λ) [M(1− λ)]ij ωj(1− λ)−1 − η(1− λ)δij =
[
R̃(1− λ)

]
ij

(45)

That is,

R̃dual(λ) = R̃(1− λ) . (46)

Together with Eq. (44), this result gives us

J̃ij(1− λ) = −J̃ij(λ) . (47)

Thus the stationary currents in the λ-ensemble are the opposite of those in the (1−λ)-ensemble, which further implies
(see Eq. (13)) that the corresponding average entropy production rates are opposite:

σ̄1−λ = −σ̄λ . (48)

Therefore, by the equivalence of ensembles expressed by Eq. (14), in the long-time limit the biased ensembles Pλ[S] and
P1−λ[S] become equivalent to ensembles conditioned on opposite entropy production rates, Pc[S|σ̄λ] and Pc[S|−σ̄λ].

In Sec. II we discussed the equivalence between biased and conditioned ensembles of trajectories; see Eq. (14).
Combined with Eq. (46), this equivalence implies that ensembles conditioned on opposite values of entropy production,
Pc[S|σ] and Pc[S|−σ], are characterized by the same stationary distribution, but opposite currents. This suggests
that these ensembles may be related by time-reversal, not only with respect to time-averaged currents and entropy
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production, but also at the level of individual trajectories. We now explore this idea in detail, to arrive at our central
result, Eq. (53).

Let us consider an interval of time of finite duration κ δτ , and let r = (r0 → r1 → · · · → rκ) denote a trajectory
segment evolving during this interval, in which the system is found in state r0 at time step 0, in state r1 at time step
1, and so forth up to time step κ. The notation r∗ = (rκ → · · · → r1 → r0) will denote the time-reversed segment, in
which the same states are visited in reverse order. If we sample a trajectory S from the biased λ-ensemble, and we
examine the states visited by this trajectory from τ = 0 to τ = κ δτ , then the probability to observe the trajectory
segment r is given by

Pλ(r) = π̃r0(λ)Ũr1r0(λ) · · · Ũrκrκ−1
(λ)

→
[

1

µ(λ)

]κ
ωrκ(λ)

κ−1∏
j=0

Qrj+1rj (λ)

ψr0(λ) , (49)

using Eqs. (32) and (40). Similarly,

P1−λ(r∗)→
[

1

µ(1− λ)

]κ
ωr0(1− λ)

κ−1∏
j=0

Qrjrj+1
(1− λ)

ψrκ(1− λ) . (50)

Let us now compare these probabilities.
From Eq. (18) we have Q(1− λ) = Q(λ)T , which implies [24]

µ(1− λ) = µ(λ) , ωs(1− λ) = ψs(λ) (51)

(compare with Eq. (41)). Combining these results with Eqs. (49) and (50), we obtain

Pλ(r) = P1−λ(r∗) . (52)

By the equivalence of ensembles, this implies the following conclusion. The probability to observe a given trajectory
segment r = (r0 → · · · → rκ) when conditioning on a particular value of time-averaged entropy production rate σ,
is the same as the probability to observe the time-reversed segment r∗ = (rκ → · · · → r0) when conditioning on the
opposite value of time-averaged entropy production rate, −σ. Using obvious notation:

Pc(r|σ) = Pc(r
∗|−σ) (53)

It is in this sense that the two conditioned ensembles are related by time-reversal.
Equation (52) is related to expressions that already exist in the literature. For instance, Eq. (37) of Ref. [25] and

Eq. (2.21) of Ref. [24] can be written in our notation as (see Sec. II)

P[S] e−λT σ[S] =
ps−N (τ0)

psN (τf )
P[S∗] e−(1−λ)T σ[S

∗] , (54)

where τf − τ0 = T is the total duration of the trajectory S, s−N and sN are the corresponding initial and final
states and S∗ is the time reversal of S. We recognize in this expression the unnormalized distributions of the λ and
(1−λ)-ensembles (see Eq. (10)). In the long-time limit T → ∞, the first factor appearing on the right side of Eq. (54)
can be neglected (it is subdominant), leading to Eq. (52). For stochastic systems governed by time-dependent rate
matrices, a transient result analogous to our Eq. (52) appears as Eq. (3.35) in Ref. [34]. However, to the best of our
knowledge, the symmetry expressed by Eq. (52) has not previously been combined with the equivalence of ensembles
(Eq. (14)) to arrive at our central result, Eq. (53), which has a simple and appealing physical interpretation.

Equation (53) is the stochastic version of Gallavotti’s conditional reversibility theorem [23]. Gallavotti’s theorem
is derived in the context of deterministic dynamics and is stated in terms of “fluctuation patterns”, a term that
denotes the evolution of an arbitrary observable over a finite interval of time. However the basic content of the
theorem is the same as that of Eq. (53): the probability to observe a system to behave in a particular manner when
conditioning on one value of entropy production, is the same as the probability to observe the time-reversed behavior
when conditioning on the opposite value. In particular, suppose we condition on the value −σ̄, which is the opposite
of the entropy production rate in the unbiased ensemble. Then Eq. (53) implies that the trajectories we will observe
are statistically equivalent, under time-reversal, to the those generated by the original, unbiased dynamics, Eq. (1). In
effect, in the ensemble conditioned on σ = −σ̄, time will appear to be running backward. An analogous result has been
obtained for the case of systems driven away from equilibrium by varying a parameter of the Hamiltonian [35, 36],
rather than by equations of motion that violate detailed balance.
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FIG. 1. Schematic representation of the transitions described by the matrix R. Clockwise transitions occur at an average rate
p, and counterclockwise transitions at an average rate q.

IV. EXAMPLE

We now illustrate our results with an exactly solvable model. Consider the rate matrix

R =

−1 q p
p −1 q
q p −1

 , (55)

whose off-diagonal elements represent the transitions rates of a system with only three states, as shown schematically
in Fig. 1. We impose p + q = 1 in order to fulfill the condition

∑
iRij = 0. (Note that q and p are rates, thus the

condition p+ q = 1 reflects our choice to set the escape rate from any state i to unity: |Rii| = 1.)
We start by calculating the stationary currents, Jij , and the infinite-time average entropy production rate, σ̄, in

the unbiased ensemble. The stationary distribution in this case is |π〉 = (1/3, 1/3, 1/3)T , from which we first obtain
the currents,

J =
1

3

 0 (q − p) (p− q)
(p− q) 0 (q − p)
(q − p) (p− q) 0

 , (56)

and then the average entropy production rate, using Eq. (9):

σ̄ = (p− q) ln

(
p

q

)
. (57)

Analogously, the stationary currents J̃ij(λ) and the infinite-time average entropy production rate σ̄λ for a biased

ensemble are obtained from the transition rate matrix R̃(λ). From Eq. (37), this matrix is constructed from the
matrix M(λ) (see Eq. (35)),

M(λ) =


−1 q

(
p
q

)λ
p
(
q
p

)λ
p
(
q
p

)λ
−1 q

(
p
q

)λ
q
(
p
q

)λ
p
(
q
p

)λ
−1

 ≡
−1 qλ pλ
pλ −1 qλ
qλ pλ −1

 , (58)

its largest eigenvalue,

η(λ) = −1 + qλ + pλ , (59)

and the corresponding left-eigenvector,

〈ω(λ)| = (1, 1, 1) . (60)
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Using Eqs. (55), (58), (59) and (60) in Eq. (37), we obtain

R̃(λ) =

−(qλ + pλ) qλ pλ
pλ −(qλ + pλ) qλ
qλ pλ −(qλ + pλ)

 . (61)

The stationary distribution of (61) is |π̃(λ)〉 = (1/3, 1/3, 1/3)T , from which we obtain the stationary currents

J̃(λ) =
1

3

 0 (qλ − pλ) (pλ − qλ)
(pλ − qλ) 0 (qλ − pλ)
(qλ − pλ) (pλ − qλ) 0

 , (62)

and the average entropy production rate,

σ̄λ = (pλ − qλ) ln

(
p

q

)
. (63)

Finally, note that Eq. (58) implies the identity

qλ = p1−λ . (64)

From Eq. 61 we see that in the biased ensemble, the system makes clockwise transitions at an average rate pλ and
counterclockwise transitions at a rate qλ (compare with Fig. 1). Combining this observation with Eq. 64, we conclude
that the dynamics in the λ-ensemble are the time-reversal of those in the (1− λ)-ensemble: the clockwise transition
rates in one case become the counterclockwise rates in the other case. In particular, for λ = 1 the biased dynamics
are obtained from the unbiased, λ = 0 dynamics by exchanging the roles of q and p in the rate matrix R. Moreover,
Eqs. (47) and (48) are easily verified for an arbitrary value of λ, using Eqs. (62) - (64).

V. CONCLUSIONS

The equivalence of ensembles in the thermodynamic limit is a familiar and important concept in equilibrium
statistical physics. In recent years analogous principles of equivalence have been developed for ensembles of trajectories
representing systems away from thermal equilibrium [4–10], with the thermodynamic limit replaced by the long-time
limit. In this paper we have applied these ideas to study discrete-state Markov processes that are conditioned on
values of the time-averaged rate of entropy production. We first mapped the original Markov process onto a new,
biased Markov process that describes the conditioned ensemble, as in Refs. [8–10]. We then used the properties of the
biased transition rate matrix to establish our central result, which states that trajectories conditioned on opposite
entropy production rates are related statistically by time-reversal. This extends Gallavotti’s conditional reversibility
theorem [23], originally formulated for deterministic dynamics, to the case of stochastic dynamics.

We end by pointing out that the study of conditioned ensembles has often led to insights in nonequilibrium statistical
physics. Most prominently, in two groundbreaking papers [37, 38] Onsager considered the spontaneous fluctuations of a
system in equilibrium. By focusing on rare fluctuations that produce an “asymmetric distribution of energy” – or some
other condition ordinarily associated with a system that is deliberately prepared away from equilibrium – Onsager
was led to the regression hypothesis and the reciprocal relations, which lie at the foundations of linear response theory
and the fluctuation-dissipation theorem. In recent years, Bertini et al [39–41] have developed macroscopic fluctuation
theory, which builds on a large deviation-like formula for space-time fluctuations and considerably extends Onsager’s
approach. Separately, Rahav and Jarzynski [42] have argued that when Onsager’s arguments are extended beyond the
regime of linear response, they lead naturally to far-from-equilibrium fluctuation theorems. The common thread in
these studies is a focus on spontaneous fluctuations conditioned on rare values of selected observables, such as energy
distributions [37] or currents density profiles [41]. In the present paper, by considering rare fluctuations conditioned
on entropy production, we have been led to our central result, which relates the sign of the conditioned entropy
production to the direction of time’s arrow.
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Appendix: Results in the long-time limit when Q is defective

We discuss here how our results are modified when the matrix Q given by Eq. (18) is defective or non-diagonalizable.
The main results of sections II and III rely basically on the asymptotic expressions

〈1|Qn|p(τ0)〉 ' µn〈1|u1〉〈v1|p(τ0)〉 , (A.1a)

〈es|Qn|p(τ0)〉 ' µn〈es|u1〉〈v1|p(τ0)〉 , (A.1b)

〈1|Qn|es〉 ' µn〈1|u1〉〈v1|es〉 , (A.1c)

which are valid in the limit n� 1 since |αk|/µ < 1 for k ≥ 2. In what follows we show how to obtain such asymptotic
expressions when Q is non-diagonalizable.

Under the assumptions spelled out in the first two paragraphs of Sec. II (but dropping the later assumption that
Q is diagonalizable) the Perron-Frobenius theorem [29] guarantees that the eigenvalue α1 = µ with the largest real
part is real and nondegenerate, hence we will continue to write Q|u1〉 = µ|u1〉 and 〈v1|Q = µ〈v1|. However, for those
eigenvalues αk whose algebraic and geometric multiplicities differ we have [28]

Q |u(1)
k 〉 = αk |u(1)

k 〉 , (A.2a)

Q |u(νk)
k 〉 = αk |u(νk)

k 〉+ |u(νk−1)
k 〉 , for 1 < νk ≤ γ(k) , (A.2b)

and

〈v(γ(k))
k |Q = αk 〈v(γ(k))

k | , (A.3a)

〈v(νk)
k |Q = αk 〈v(νk)

k |+ 〈v(νk+1)
k | , for 1 ≤ νk < γ(k) , (A.3b)

where γ(k) is the degenerancy of αk. Equations (A.2) and (A.3) show that |u(1)
k 〉 and 〈v(γ(k))

k | are genuine eigenvectors.

The |u(νk)
k 〉, for 1 < νk ≤ γ(k), and 〈v(νk)

k |, for 1 ≤ νk < γ(k), are the so-called generalized eigenvectors. Together,
genuine and generalized eigenvectors form a basis in which Q assumes the Jordan canonical form [28]. Therefore, the
following relations apply

〈v(νk)
k |u(υj)

j 〉 = δkj δνkυj , (A.4a)∑
k

γ(k)∑
νk=1

|u(νk)
k 〉〈v(νk)

k | = 1 , (A.4b)

which are the analogue of Eq. (20).
Equations (A.2) imply

Qn |u(νk)
k 〉 =

νk−1∑
l=0

(
n

l

)
αn−lk |u(νk−l)

k 〉 , (A.5)

for n ≥ νk and 1 < νk ≤ γ(k). Analogously, Eqs. (A.3) imply

〈v(νk)
k |Qn =

γ(k)−νk∑
l=0

(
n

l

)
αn−lk 〈v(νk+l)

k | , (A.6)

for n > γ(k)− νk and 1 ≤ νk < γ(k).
Expressions (A.5) and (A.6) allow us to find the dominant contribution of the matrix elements in the left-hand side

of Eq. (A.1) when Q is defective. If we take for instance 〈1|Qn|p(τ0)〉 and insert Eq. (A.4b), we obtain

〈1|Qn|p(τ0)〉 = 〈1|Qn
∑
k

∑
νk

|u(νk)
k 〉〈v(νk)

k |p(τ0)〉

= 〈1|Qn|u1〉〈v1|p(τ0)〉+
∑
k=2

∑
νk

〈1|Qn|u(νk)
k 〉〈v(νk)

k |p(τ0)〉

= µn〈1|u1〉〈v1|p(τ0)〉+
∑
k=2

∑
νk

νk−1∑
l=0

(
n

l

)
αn−lk 〈1|u(νk−l)

k 〉〈v(νk)
k |p(τ0)〉 , (A.7)
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using Eq. (A.5) from the second to the third line. Analogously to Sec. II, we assume that 〈1|u1〉 and 〈v1|p(τ0)〉 are

of the same magnitude of 〈1|u(νk−l)
k 〉 and 〈v(νk)

k |p(τ0)〉, respectively. Thus, we recover Eq. (A.1a) from Eq. (A.7) if
the following limit holds,

lim
n→∞

(
n

l

)
αn−lk

µn
= 0 . (A.8)

In the limit n� l, we use an asymptotic expression for the binomial coefficient to obtain(
n

l

)(
|αk|
µ

)n
=

(
n

l

)
e−n ln (µ/|αk|)

' (n/l − 1/2)l el√
2π l

e−n ln (µ/|αk|)

< nl e−n ln (µ/|αk|) . (A.9)

Since µ/|αk| > 1 and l is always finite, we obtain

lim
n→∞

nl e−n ln(µ/|αk|) = 0 , (A.10)

which, due to Eq. (A.9), implies Eq. (A.8). The same kind of analysis can be done for the other matrix elements of
Eq. (A.1). In summary, Eqs. (A.1) still hold and our main results are valid when Q is defective.
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[34] R. J. Harris and G. M. Schütz, J. Stat. Mech. P07020 (2007).
[35] C. Jarzynski, Phys. Rev. E 73, 046105 (2006).

http://iopscience.iop.org/0295-5075/96/5/50010
http://www.sciencedirect.com/science/article/pii/S0370157309001410
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.150601
http://iopscience.iop.org/0305-4470/38/2/001
http://www.tandfonline.com/doi/abs/10.1080/00107514.2010.496228#.U4zAzM0nEco
http://ptps.oxfordjournals.org/content/184/304
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.120601
http://link.springer.com/article/10.1007%2Fs00023-014-0375-8
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.195702
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.195702
http://www.pnas.org/content/102/31/10837
http://www.sciencemag.org/content/323/5919/1309
http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.040808.090405
http://dx.doi.org/10.1103/PhysRevA.85.043620
http://dx.doi.org/10.1103/PhysRevE.85.051122
http://dx.doi.org/10.1103/PhysRevA.86.063824
http://www.numdam.org/item?id=AIHPA_1999__70_4_429_0
http://dx.doi.org./10.1023/A:1004589714161
http://dx.doi.org/10.1007/s10955-004-3455-1
http://dx.doi.org/10.1088/1742-5468/2007/02/L02001
http://dx.doi.org/10.1103/PhysRevE.61.2361


13

[36] C. Jarzynski, Annu. Rev. Cond. Matt. Phys. 2, 329 (2011).
[37] L. Onsager, Phys. Rev. 37, 405 (1931).
[38] L. Onsager, Phys. Rev. B 38, 2265 (1931).
[39] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Phys. Rev. Lett. 87, 040601 (2001).
[40] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, J. Stat. Phys. 107, 635 (2002).
[41] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Rev. Mod. Phys 87, 593 (2015).
[42] S. Rahav and C. Jarzynski, New Journal of Physics 15, 125029 (2013).


	Conditional reversibility in nonequilibrium stochastic systems
	Abstract
	I Introduction 
	II Conditioned and biased ensembles and their dynamics 
	III Dual dynamics and conditional Reversibility 
	IV Example 
	V Conclusions 
	 Acknowledgments
	 Results in the long-time limit when Q is defective 
	 References


