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HOROSPHERES

ROSA MARIA BARREIRO CHAVES,
MÁRCIO F. DA SILVA AND RENATO H. L. PEDROSA

We investigate the isoperimetric problem of finding the regions of prescribed
volume with minimal boundary area between two parallel horospheres in
hyperbolic 3-space (the part of the boundary contained in the horospheres
is not included). We reduce the problem to the study of rotationally invari-
ant regions and obtain the possible isoperimetric solutions by studying the
behavior of the profile curves of the rotational surfaces with constant mean
curvature in hyperbolic 3-space. We also classify all the connected compact
rotational surfaces M of constant mean curvature that are contained in the
region between two horospheres, have boundary ∂ M either empty or lying
on the horospheres, and meet the horospheres perpendicularly along their
boundary.

1. Introduction

Geometric isoperimetric problems, (upper) estimates for the volume of regions of
a given fixed boundary volume, and the dual problems play an important role in
analysis and geometry. There are both isoperimetric inequalities, common in anal-
ysis, and actual classification of optimal geometric objects, like the round ball in
Euclidean geometry. We will be interested in the study of a relative free-boundary
isoperimetric problem in hyperbolic 3-space between two parallel horospheres. A
survey of recent results in isoperimetric problems is [Ritoré and Ros 2002].

For a Riemannian manifold Mn , we state the classical isoperimetric problem as
follows: Classify, up to congruency by the isometry group of M , the (compact)
regions � ⊆ M enclosing a fixed volume that have minimal boundary volume.
The relevant concepts of volume are those of geometric measure theory: Regions
and their boundaries are respectively n- and (n−1)-rectifiable subsets of M ; see
[Morgan 2009].
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If M has a boundary, the part of ∂� included in the interior of M will be called
the free boundary of �, and the other part will be called the fixed boundary. One
may specify how the fixed boundary of � is included in the computation of the
boundary volume functional. In this paper, we will not consider the volume of the
fixed boundary of � to be part of the boundary volume functional. We will see in
Section 3 that this implies that the angle of contact between the interior boundary
of � and ∂M is π/2 (when this contact occurs). Such problems are related to the
geometry of stable drops in capillarity (the angle of contact depends, as mentioned,
on how one considers the volume of the fixed boundary in the computation of the
boundary volume functional). For a discussion, see [Finn 1986].

This work is motivated by the well-known results of Athanassenas [1987] and
Vogel [1987], which imply that between two parallel planes in Euclidean space R3,
a (stable) soap bubble touching both walls perpendicularly is a straight cylinder
orthogonal to the planes, and may only exist down to a certain minimal enclosing
volume depending on the distance between the planes. Below that value, only
half-spheres touching one of the planes or whole spheres not touching either plane
occur, and the cylinders become unstable. A new proof of this fact can be found
in [Pedrosa and Ritoré 1999], where the authors study the analogous problem in
higher-dimensional Euclidean spaces.

In this paper we study the analogous relative isoperimetric problem between
two parallel horospheres in the hyperbolic space H3(−1). We will use the upper
half-space model R3

+
, in which parallel horospheres are represented by horizontal

Euclidean 2-planes of R3
+

. We will classify the possible isoperimetric solutions.
The existence of isoperimetric regions in the manifold with boundary (B, g),

the slab composed of the two horospheres and the region between them, may be
obtained by adapting a result of Morgan [2009] (applicable since B/G is a com-
pact space, where G is the subgroup of the isometry group of H3(−1) leaving B
invariant). Regarding the regularity of the free boundary, well-known results about
the lower codimension bounds of the singular subset imply that it must be regular,
and in fact analytic.

In Section 2, we define basic notions in the model R3
+

, like geodesics, totally
geodesic surfaces, umbilical surfaces and rotational surfaces. We also use the area
and volume functionals to more precisely formulate the isoperimetric problem.

In Section 3 we get some basic geometric properties of isoperimetric regions;
for instance, their (free) boundaries must have constant mean curvature and, when
they touch the bounding horospheres, the contact angle must be π/2. We also
discuss their rotational invariance.

In Section 4 we investigate the tangency of profile curves for the rotational
surfaces with constant mean curvature, to determine the possible isoperimetric
regions between the two parallel horospheres. We discuss in detail the existence
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of isoperimetric regions and the regularity of the free boundary part, and we prove
the following result:

Theorem 1.1. Let c1, c2 be positive real constants such that c1 < c2, and let
Fc1,c2 = {(x, y, z) ∈ R3

+
: c1 ≤ z ≤ c2}. Let V > 0, and let Cc1,c2,V be the set of

�⊂Fc1,c2 with volume |�| = V and boundary volume (area) A(�∩
◦

Fc1,c2) <∞,
where we suppose that � is connected, compact and 3-rectifiable in Fc1,c2 , and
has as boundary (between the horospheres) an embedded, orientable, 2-rectifiable
surface. Let

Ac1,c2,V = inf{A(�∩
◦

Fc1,c2) :� ∈ Cc1,c2,V }.

(1) There exists � ∈ Cc1,c2,V such that A(�∩
◦

Fc1,c2)= Ac1,c2,V . The free bound-
aries are analytic surfaces.

(2) If � has minimal boundary volume between the horospheres, the free bound-
ary of � is either

(a) of catenoid cousin type or umbilical with H = 1,
(b) of equidistant type or umbilical with 0< H < 1, or
(c) of onduloid type or umbilical with H > 1.

Remark 1.2. We give details of this description in Section 4. The hyperbolic dis-
tance d = ln(c2/c1) between the horospheres could determine which region among
cases (a)–(c) is the isoperimetric solution. It is still not clear, however, which from
among (a)–(c) would be solutions for a given d . (In [Athanassenas 1987], the
classification of isoperimetric solutions depending on d is fully answered for the
analogous problem in R3.) In some cases, as in Figure 1, we know by fixing the
lower horosphere at z= 1/2 that umbilical surfaces with H = 1 cannot be solutions
when the upper horosphere is at level z < 1. In the general case, the question is
still open because it is necessary to study the stability of the surfaces (a)–(c) (see
[Barbosa et al. 1988] for the notion of stability in this context).

z

z > 1

z = 1

1/2< z < 1

z = 1/2

Figure 1. A case in which it is possible to decide.
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Remark 1.3. Theorem 1.1 shows how the situation in hyperbolic geometry differs
from that in Euclidean 3-space. In R3, we also have rotationally invariant surfaces
of catenoid and onduloid type, but they cannot appear as boundaries of optimizing
tubes, even though in higher dimensions, hypersurfaces generated by onduloids in
Euclidean space are known to occur as boundaries of optimal tubes connecting two
parallel hyperplanes; see [Pedrosa and Ritoré 1999].

Corollary 1.4. Let M be a connected compact rotational surface of constant mean
curvature in hyperbolic 3-space. Suppose M is contained in the region between two
horospheres, and that the boundary ∂M is either empty or lies on the horospheres,
and meets them perpendicularly along its boundary. Then M is either

(1) of catenoid cousin type or umbilical with H = 1, or

(2) of equidistant type or umbilical with 0< H < 1, or

(3) of onduloid type or umbilical with H > 1.

2. Preliminaries

Let L4
= (R4, g) be the 4-dimensional Lorentz space endowed with the metric

g(x, y)= x1 y1+ x2 y2+ x3 y3− x4 y4 and the 3-dimensional hyperbolic space

H3(−1) := {p = (x1, x2, x3, x4) ∈ L4
: g(p, p)=−1, x4 > 0}.

We use the upper half-space model R3
+
:= {(x, y, z) ∈ R3

; z > 0} for H3(−1),
endowed with the metric

(2-1) 1
z2 (dx2

+ dy2
+ dz2).

Let φ : 6 → R3
+

be an isometric immersion of a compact surface 6 with
nonempty boundary ∂6, and let 0 be a curve in R3

+
. If φ is a diffeomorphism of

∂6 onto 0, we say that 0 is the boundary of φ; if φ has constant mean curvature H ,
we say that6 is an H -surface with boundary 0. We identify6 with its image by φ
and ∂6 with the curve 0.

The plane z = 0 is called the infinity boundary of R3
+

and denoted ∂∞R3
+

.
The geodesics of R3

+
are represented by vertical Euclidean lines and half-circles

orthogonal to ∂∞R3
+

and contained in R3
+

. The totally geodesic surfaces have
constant mean curvature H = 0 and are represented by vertical Euclidean planes
and hemispheres orthogonal to ∂∞R3

+
and contained in R3

+
.

The horizontal Euclidean translations and the rotations around a vertical geo-
desic are isometries of R3

+
. We have two families of isometries associated to one

point p0 ∈ ∂∞R3
+

, the Euclidean homotheties centered at p0 with factor k > 0,
called hyperbolic translations through a geodesic α perpendicular to ∂∞R3

+
at p0,

and the hyperbolic reflections with respect to a totally geodesic surface P .
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When P is a hemisphere orthogonal to ∂∞R3
+

centered at p0 and of radius r > 0,
the hyperbolic reflections are Euclidean inversions centered at p0 that fix P . When
P is a vertical Euclidean plane, they are Euclidean reflections with respect to P .

Now we describe the umbilical surfaces of R3
+

; see for example [López 1999].

• Totally geodesic surfaces are represented by vertical Euclidean planes in R3
+

and the hemispheres in R3
+

perpendicular to the plane z=0. They have H =0.

• Geodesic spheres are represented by Euclidean spheres entirely contained
in R3

+
. They have H > 1 (the mean curvature vector points to the interior). If

ρ is the hyperbolic radius of a geodesic sphere, then H = coth ρ.

• Horospheres are represented by horizontal Euclidean planes in R3
+

and Eu-
clidean spheres in R3

+
that are tangent to ∂∞R3

+
. They have H = 1; the mean

curvature vector points upwards in the case of horizontal planes and to the
interior in the case of spheres.

• Equidistant surfaces are represented by the intersection of R3
+

with the planes
in R3 that are neither parallel nor perpendicular to the plane z = 0 and by
(pieces of) Euclidean spheres that are not entirely contained in R3

+
and are

neither tangent nor perpendicular to the plane z = 0. They have 0 < H < 1,
and the mean curvature vector points to the totally geodesic surface they are
equidistant to.

In our study, the (spherical) rotational surfaces of R3
+

play an important role
since the solutions of the isoperimetric problem must be rotationally invariant.
They are defined as surfaces invariant by a subgroup of isometries whose principal
orbits are (Euclidean) circles.

Let 51 and 52 be horospheres represented by distinct parallel horizontal Eu-
clidean planes, and let5=51∪52. Let F=F(51,52) be the closed slab between
them, and let φ : 6 → F be an isometric immersion of a compact, connected,
embedded and orientable C2 surface with boundary 0 = ∂6 and the property that
φ(0)⊂5. (Later we will see that the image under φ of the interior of the surface
6 will not touch 5 if 6 is the boundary of an optimal domain in our variational
problem, but this is not part of the general situation yet.)

Now we fix notation for some well-known geometric invariants related to iso-
metric immersions. We (locally) identify 6 with φ(6) and X (p) ∈ Tp6 with
dφp(X (p))⊂R3

+
. We have the decomposition Tp(R

3
+
)= Tp(6)⊕Np(6) into the

tangent and normal spaces to 6 at p. Choose an orientation for 6, and let N be
the (positive) unitary normal field along the immersion φ. If X (p) ∈ Tp(R

3
+
), we

may write X (p)= X (p)T + X (p)N
= X (p)T +αN (p), where α ∈ R.

Let 〈 · , · 〉 be the metric induced on 6 by the immersion φ, let ∇ be the Rie-
mannian connection of the ambient space R3

+
, and let∇ be the induced Riemannian
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connection on 6. Let X, Y ∈ X(6) be C∞ vector fields. Then ∇X Y = (∇X Y )T

and B(X, Y )= (∇X Y )N are, as usual, the induced connection on6 and the second
fundamental form of the immersion given by B. We also have the Weingarten
operator AN (Y ) = −(∇Y N )T , so that 〈AN (X), Y 〉 = 〈B(X, Y ), N 〉. Finally, the
mean curvature of the immersion φ is H = 1/2 trace(AN ).

Definition 2.1. A variation of φ is a smooth map F : (−ε, ε)×6→R3
+

such that
for all t ∈ (−ε, ε) the map φt :6→R3

+
, p 7→ F(t, p) is an immersion and satisfies

φ0 = φ.

For p ∈ 6, we define the variation vector field of F by X (p)= ∂φt(p)/∂t |t=0

and the normal variation function of F by f (p)= 〈X (p), N (p)〉. We say that the
variation F is normal if X is normal to φ at each point; we say F has compact
support if X has compact support. For a variation with compact support and for
small values of t , we have that φt is an immersion of 6 in R3

+
. In this case the

area function A : (−ε, ε)→ R is given by

A(t)=
∫
6

d At =

∫
6

√
det((dφt)∗(dφt)) d A,

where d A is the area element of 6. The function A(t) is the area of 6 with the
metric induced by φt . We also define the volume function V : (−ε, ε)→ R by

V (t)=−
∫
[0,t]×6

F∗d(R3
+
),

where d(R3
+
) is the volume element of R3

+
and F∗d(R3

+
) is the pull-back of d(R3

+
)

by F . The function V (t) does not actually represent the volume of some region
with φt(6) as boundary, but of a “tubular neighborhood” along φ(6) between
φ(6) and φt(6). The sign is related to the net change with respect to the normal
field defining the orientation; for example, contracting a sphere in R3, which means
moving it in the direction of the mean curvature vector, gives the expected negative
sign for V (t).

Definition 2.2. Let F : (−ε, ε)×6→R3
+

be a variation of φ. We say F preserves
volume if V (t) = V (0) (which is equal to zero) for all t ∈ (−ε, ε). We say F is
admissible if F(∂6)⊂5 for all t ∈ (−ε, ε).

Definition 2.3. We say that the immersion φ is stationary if A′(0) = 0 for all
admissible variations that preserve volume.

Remark 2.4. Suppose � is a (compact) regular region in the slab F between the
horospheres 5. Then by taking 6 in Definition 2.2 as the (embedded regular)
free boundary of �, we may extend the variational approach above to produce a
variation �(t) of � by embedded domains (for small t), such that the condition
V (t) = 0 in Definition 2.2 is equivalent to holding |�(t)| equal to �(0) along
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the variation. This justifies saying that the variation “preserves volume” in the
definition above.

We now restate our problem. Let 51 and 52 be two parallel horospheres in R3,
and let F= F(52,52) be the (closed) slab between them.

Isoperimetric problem for F. For a fixed volume, find the domains � ⊂ F that
have minimal free boundary area.

Definition 2.5. A (compact) minimizing region � for this problem will be called
an isoperimetric domain or region in F.

More precisely, one looks to classify and describe geometrically the isoperi-
metric regions (as a function of the volume), that is, to find the isoperimetric profile
(minimal free boundary area as a function of the prescribed volume) for F.

3. First results about the isoperimetric solutions

Here, we characterize the stationary immersions according to Definition 2.3. The
formulas below for the first variations of the area and volume functions are well
known. For an immersed surface with boundary, the exterior conormal is the vector
field along the boundary given as follows: In the tangent plane of6 at p∈ ∂6=0,
take the outward unitary vector orthogonal to the tangent vector to 0 at p.

Proposition 3.1. Let F be a variation of φ with variational field X and compact
support in 6. Then

(1) A′(0) = −2
∫
6 H f d A +

∫
0〈X, ν〉d0, where ν is the unitary exterior co-

normal, d A is the element of area of 6 and d0 is the element of length of
0 induced by φ;

(2) V ′(0)=−
∫
6 f d A, where f (p)= 〈X (p), N (p)〉.

Proof. Although the formula of the variation of the area functional is well known
(see [Barbosa et al. 1988]), here we show a different way to deduce it. From the
definition of A(t), we obtain

A′(t)=
∫
6

( 1
2
√

det((dφt)∗dφt)
det((dφt)

∗dφt)

× trace
(
((dφt)

∗dφt)
−1
◦

d
dt ((dφt)

∗dφt)
))

d A.

Since φ0 is the inclusion of 6 in R3
+

, dφ0 is the inclusion of the respective
tangent spaces and dφ∗0 is the orthogonal projection on T6.

By evaluating A′(t) for t = 0, we get

A′(0)=
∫
6

1
2 trace

( d
dt

∣∣
t=0((dφt)

∗dφt)
)
d A.
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We apply the symmetry lemma for ∇φ along the immersion and get

d
dt

∣∣∣
t=0
(dφt)=∇

φ ∂φt

∂t

∣∣∣
t=0
=∇

φX.

Then

A′(0)=
∫
6

1
2 trace

(
(∇φX)∗

∣∣
T6 + projT6 ∇

φX
)
d A =

∫
6

trace(projT6 ∇
φX)d A,

where projT6 denotes the projection on T6.
By decomposing the variational field as X = X T

+ X N , the projections of the
tangent and normal components of ∇φ(X) on T6 are

projT6 ∇
φ(X T )=∇(X T ) and projT6 ∇

φ(X N )=−AX N ,

where AX N is the Weingarten operator on 6. Therefore

A′(0)=
∫
6

(div X T
− 2〈X N , H N 〉)d A.

We apply Stokes’s theorem and get

A′(0)=
∫
0

〈X T , ν〉d0− 2
∫
6

〈X N , H N 〉d A=−2
∫
6

H f d A+
∫
0

〈X, ν〉d0.

The first variation of volume given in (2) is standard and its proof will be omitted;
see [Barbosa et al. 1988]. �

From the next result we conclude that the boundary of our isoperimetric region
must be an H -surface that contacts the horospheres 51 and 52 perpendicularly.

Theorem 3.2. Let φ : 6 → R3
+

be an immersion with boundary 0 = ∂6. Let
5=51∪52 be the horospheres containing 0. Then φ is stationary if and only if it
has constant mean curvature and intersects5 (if it does) perpendicularly along 0.

Proof. We may show the reverse implication by adapting the proof of [Barbosa
and do Carmo 1984, Proposition 2.7]. To show that φ meets 5 perpendicularly
along 0 if φ is stationary, we take an admissible variation8 that preserves volume
with variational field X , and we take p0 ∈ ∂6. Suppose by contradiction that
〈X (p0), ν(p0)〉 6= 0. By continuity there is a neighborhood U = W1 ∩ ∂6 of p0

such that 〈X (p), ν(p)〉> 0 for all p ∈U , where W1 is a neighborhood of p0 in 6.
Take q ∈

◦

6 \W1, let W2 be a neighborhood of q disjoint from W1, and let P be a
partition of unity on W1

⋃
W2. There exists a differentiable function ξ1 :W1→ R

such that ξ1(W1) ⊂ [0, 1] and with support supp ξ1 ⊂ W1. We may also take a
differentiable map ξ2 :W2→ R such that ξ2(W2)⊂ [0, 1], supp ξ2 ⊂W2 and∫

W1

ξ1 f dW1+

∫
W2

ξ2 f dW2 = 0.
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Define a variation 8ξ : (−ε, ε)×6→ R with compact support on W1
⋃

W2 by

8t
ξ (p)=8ξ (t, p)=

{
8(ξ1t, p) if p ∈W1,

8(ξ2t, p) if p ∈W2.

Note that 8ξ is admissible because 8 is admissible.
If fξ (p) denotes the normal component of the variation vector, we have∫

6

fξ (p) d A =
∫

W1

ξ1(p) f (p) dW1+

∫
W2

ξ2(p) f (p) dW2 = 0,

and 8ξ preserves volume.
For this variation we have

0= A′(0)=−2H
∫
6

fξ d A+
∫

W1

ξ1〈X, ν〉 d0 =
∫

W1

ξ1〈X, ν〉 d0 > 0,

which is a contradiction. Then for all p ∈ ∂6, it follows that 〈X, ν〉(p)= 0. �

Next we show that the isoperimetric domains are rotationally invariant.
We need some symmetrization principle for H -surfaces. By taking the hyper-

bolic version of Aleksandrov’s principle of reflection (for further references and
details, see [Aleksandrov 1962]) and using [Barbosa and Sa Earp 1998] to special-
ize to the case of reflection planes, we get the next result. A detailed proof may be
found in [López 2006].

Theorem 3.3. Suppose 6 is a compact, connected, orientable and embedded H-
surface of class C2 that lies between two parallel horospheres 51 and 52 in R3

+

and has boundary ∂6 ⊂ 51
⋃
52 (possibly empty). Then 6 is rotationally sym-

metric around an axis perpendicular to 51 and 52.

We observe that the intersection of 6 with a horosphere H (represented by a
horizontal Euclidean plane) is just a Euclidean circle. In fact, if there were two
concentric circles and the isoperimetric region R was delimited by these circles,
we would apply the Aleksandrov’s reflection principle with respect to vertical Eu-
clidean planes and get a totally geodesic symmetry plane P determined by the first
contact point x0; see Figure 2. However, P would obviously not contain the axis
of symmetry of R. See [López 2006] for a detailed proof of this fact.

4. Isoperimetric regions between horospheres in R3
+

We now classify the rotational H -surfaces of R3
+

that lie between two parallel horo-
spheres, have boundary contained in the horospheres, and intersect the horospheres
perpendicularly. In so doing, we get all possible solutions for the isoperimetric
problem in hyperbolic space, since the solutions must be regions delimited by these
H -surfaces. We start with important results from the thesis of Barrientos [1995].
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.

P

x0

Figure 2. Excluded case: region between two concentric circles

If (ρ, θ, z) are the cylindrical coordinates of a point p in R3
+

, then the Cartesian
coordinates are given by

(4-1) (x̄, ȳ, z̄)= ez(tanh ρ cos θ, tanh ρ sin θ, sech ρ).

For a spherical rotational surface 6 of R3
+

around the z̄-axis, the orbit of a point
p = (ρ0, θ0, z0) is Rϕ(p) = (ρ0, θ0 + ϕ, z0), where Rϕ(p) denotes the rotation
of p with angle ϕ around z̄. If c(s) is the profile curve of 6 parametrized by
arclength, we can parametrize 6 as X (s, t)=Rt(c(s)), so that its metric is dσ 2

=

ds2
+U 2(s) dt2, where U =U (s) is a positive function, s is the arclength parameter

of c(s), and dt = dϕ. We call (s, t) the natural parameters of 6. From (4-1), the
metric (2-1) is given by

(4-2) dρ2
+ sinh2 ρ dθ2

+ cosh2 ρ dz2.

In the plane θ = 0, the profile curve c(s) can be locally viewed as the graph
z = λ(s) = λ(ρ(s)). From (4-2) we have in this parameterization that dt = dϕ,
ds = (1+ λ′2(ρ) cosh2 ρ)1/2dρ,

(4-3) U 2(s)= sinh2 ρ(s) and λ′2(s)=
1+U 2(s)−U ′2(s)
(1+U 2(s))2

.

Then the natural parametrization for a rotational surface in cylindrical coordi-
nates is

sinh2 ρ(s)=U 2(s), λ(s)=
∫ s

0

√
1+U 2(t)−U ′2(t)

1+U 2(t)
dt, ϕ(t)= t.

Barrientos [1995] classified the H -surfaces of R3
+

; another important reference
is [Sterling 1987]. By setting ζ(s) = U 2(s), Barrientos found that the differential
equation for the rotational H -surfaces in R3

+
is

ζ ′2/4= (1− H 2)ζ 2
+ (1+ 2aH)ζ − a2,
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and showed that the behavior of their profile curves is determined by the constant
of integration a. After choosing the surface orientation so that H ≥ 0, there are
three cases to study: H = 1, H ∈ [0, 1) and H > 1.

Next we give in each of these cases the natural parametrizations for a rotational
H -surface in R3

+
generated by a curve c(s)= (ρ(s), λ(s)).

H = 1



sinh2 ρ(s)=
a2
+ (1+ 2a)2s2

1+ 2a
,

λ(s)=
∫ s

0

√
1+ 2a(−a(1+ a)+ (1+ 2a)2t2)

√
a2+ (1+ 2a)2t2

(−a(1+ a)+ (1+ 2a)2t2)2+ (1+ 2a)4t2 dt,

ϕ(t)= t.

H ∈ [0, 1)



sinh2 ρ(s)=
−A+ B cosh(2αs)

2α2 ,

λ(s)=
∫ s

0

√
2α(−2a+ H(−1+ B cosh(2αt)))

√
−A+ B cosh(2αt)

(−2a+ H(−1+ B cosh(2αt)))2+α2 B2 sinh2(2αt)
dt,

ϕ(t)= t,

where A = 1+ 2aH, B =
√

1+ 4aH + 4a2 and α =
√

1− H 2.

H > 1



sinh2 ρ(s)=
A+ B sin(2αs)

2α2 ,

λ(s)=
∫ s

0

√
2α(2a+ H(1+ B sin(2αt)))

√
A+ B sin(2αt)

(2a+ H(1+ B sin(2αt)))2+α2 B2 cos2(2αt)
dt,

ϕ(t)= t,

where A = 1+ 2aH , B =
√

1+ 4aH + 4a2 and α =
√

H 2− 1.

Now we introduce some notations and definitions used throughout this section.
From (4-1) the profile curve of a rotational H -surface in R3

+
is given by

(4-4) c+(s)= eλ(s)(tanh ρ(s), sech ρ(s)).

Here ρ(s) and λ(s) are determined by the suitable parametrization above. In
the H = 1 case, a > −1/2. When −1/2 < a < 0, we say the rotational surfaces
are of catenoid cousin type. In the H ∈ [0, 1) case, a ∈ R. When a < 0, we
say the rotational surfaces are of equidistant type. In the H > 1 case, we have
a ≥ (−H +

√
H 2− 1)/2. When −1/(4H) < a < 0, we obtain the onduloid type

surfaces. In each case, we get umbilical surfaces when a = 0.
By taking λ= 0 in (4-4), we get the curve cg(s)= (tanh ρ(s), sech ρ(s)), which

is an upper half-circle perpendicular to the z̄-axis. Namely, it is a geodesic with
Euclidean radius r = (tanh2 ρ(s)+sech2 ρ(s))1/2= 1. The curve cg(s) is called the
geodesic radius. Our analysis works up to Euclidean homotheties Hr for general
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r > 0, namely
Hr (c+(s))= eλ(s)(r tanh ρ(s), r sech ρ(s));

these give other families of profile curves of rotational H -surfaces. For the results
in this section that deal with geodesic radius, we take r = 1. By Theorems 3.2
and 3.3, the boundaries of the isoperimetric solutions must be rotational H -surfaces
that meet the horospheres {z = c1} and {z = c2} perpendicularly. Now our goal
is to determine the vertical tangency points of the profile curves of the rotational
surfaces.

Definition 4.1. Suppose c+(s) is a curve parametrized by (4-4). We say that a
point c+(s) is a vertical tangency point if the tangent vector at c+(s) satisfies
c′
+
(s)= (0, b), where b ∈ R∗, that is,

eλ(s)(tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s))= 0,(4-5)

eλ(s)(sech ρ(s)λ′(s)− sech ρ(s) tanh ρ(s)ρ ′(s))= b.(4-6)

Since eλ(s) > 0, Equation (4-5) implies that

(4-7) tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s)= 0.

By (4-7) we obtain the points where the vertical tangency occurs, and by (4-6)
we get the direction of the tangency (upward or downward).

By applying (4-3) to (4-7) we see that, if p is a vertical tangency point with
U (s) 6= 0, then

(4-8) U 2(s)=U ′2(s),

and the roots of (4-8) give us the vertical tangency points.
Next we study the behavior of the profile curve of rotational H -surfaces and

determine the possible vertical tangency points. In each case, ρ(s), λ(s) and U (s)
are those the of corresponding parametrization on page 11.

The case H = 1.

Theorem 4.2. If c+(s) = eλ(s)(tanh ρ(s), sech ρ(s)) is the parametrization of the
profile curve of a rotational H-surface in R3

+
with H = 1, then c+(s) is symmetric

with respect to the geodesic radius cg.

Proof. By definition, λ(0) = 0, so c+(0) ∈ cg. If I is the Euclidean inversion
through cg, then I (c+(s))= c+(−s), because ρ(s) is even and λ(s) is odd. �

By the definition of ρ(s),

(4-9) sinh ρ(s)= 0 if and only if a = 0 and s = 0.
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So tanh ρ(s) > 0 if neither a nor s is zero. Furthermore s = 0 is the unique
minimum point of ρ(s).

As for U (s) in the case H = 1, we have

(4-10) U 2(s)=
a2
+ (1+ 2a)2s2

1+ 2a
and U ′2(s)=

(1+ 2a)3s2

a2+ (1+ 2a)2s2 .

By applying (4-10) to (4-8) it follows that

(4-11) (1+ 2a)4s4
+ (2a2(1+ 2a)2− (1+ 2a)4)s2

+ a4
= 0.

This is a second order equation in s2, with discriminant

(4-12) 1= (1+ 2a)6(4a+ 1).

Since 1+ 2a > 0, we have these facts in the H = 1 case:

• If −1/2 < a < −1/4, then (4-11) has no real roots, so there are no points of
vertical tangency.

• If a =−1/4, there are at most two vertical tangency points

(4-13) s =±1/2.

• If a >−1/4, there are at most four vertical tangency points, given by

(4-14)
s1 =

1+2a+
√

1+4a
2(1+2a)

, s2 =−s1,

s3 =
1+2a−

√
1+4a

2(1+2a)
, s4 =−s3.

Besides these pieces of information, we study the vertical tangencies as the
parameter a varies.

The subcase −1/4≤ a < 0. In this case, we have λ′(s) > 0. If s ≥ 0, then

tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s) > 0,

and (4-7) is not possible. Since 1+ 2a > 0, the roots s1 and s3 of (4-8) given by
(4-14) are strictly positive and thus do not give vertical tangency points. The other
roots s2, s4< 0 give us the vertical tangency points with upward direction for b> 0
in (4-6). The left figure in Figure 3 shows the profile curve for H = 1 and a=−0.2
and the horocycles that pass through the vertical tangency. To the right, we see two
parallel horospheres and the rotational surface between the horospheres that meets
them perpendicularly.

In particular, if a = −1/4, the positive root s = 1/2 of (4-8) given by (4-13)
does not give a vertical tangency point, and there is only one vertical tangency
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Figure 3. At left, the profile curve for H = 1 and a = −0.2, and
at right the corresponding rotational surface.

Figure 4. At left, the profile curve for H = 1 and a = 0, and at
right the corresponding rotational surface.

point corresponding to s =−1/2. From the definitions of ρ(s) and λ(s) we get

(4-15)
lim

s→−∞
eλ(s) tanh ρ(s)= 0, lim

s→−∞
eλ(s) sech ρ(s)= 0,

lim
s→∞

eλ(s) tanh ρ(s)=∞, lim
s→−∞

eλ(s) sech ρ(s)=∞.

Geometrically, one sees it’s impossible to get an isoperimetric region in this case.

The subcase a = 0. In this case, two pieces of horocycle tangent at (0, 1) generate
the umbilical surfaces with H = 1. They are represented by the Euclidean plane
{z = 1} or the Euclidean sphere with radius 1/2 and tangent to ∂R3

+
at (0, 0, 0). In

the latter case there is only one vertical tangency point and the surface boundary
meets only one of the horospheres perpendicularly. In fact, by taking the upper
Euclidean half-sphere that represents the horosphere, we get the possible isoperi-
metric solution for the umbilical case with H = 1. Figure 4 illustrates the situation.

The subcase a > 0. In this case, the profile curves have only one self-intersection.
From (4-4), if c+(si ) = c+(s j ) is a self-intersection, then si = ±s j . Since the
curves are symmetric with respect to cg, the self-intersections must occur on cg. So
λ(si )=λ(s j )=0. By its definition in this case, we deduce that λ(s) has a maximum
at −
√

a(1+ a)/(1 + 2a) and a minimum at
√

a(1+ a)/(1 + 2a). Furthermore,
lims→∞ λ(s)=∞ (see [Barrientos 1995]), λ(0)= 0, and λ(s) is an odd function.
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Figure 5. At left, the profile curve for H = 1 and a = 1, and at
right the corresponding rotational surface. This case cannot be an
isoperimetric solution.

Also, ρ(s) has only one minimum at s = 0. So, if s >
√

a(1+ a)/(1+ 2a) > 0
then ρ ′(s), λ′(s) > 0 and

tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s) > 0.

If however−
√

a(1+ a)/(1+2a)< s< 0, then ρ ′(s), λ′(s)< 0, which implies that

tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s) < 0.

In either case, (4-7) does not hold. Since a > 0, the roots s1, s2, s3 and s4 of (4-8)
given by (4-14) satisfy

s2 <−

√
a(1+ a)
1+ 2a

< s4 < 0< s3 <

√
a(1+ a)
1+ 2a

< s1,

Therefore, vertical tangency is possible only for the positive roots s2 and s3. Since
ρ ′(s2) < 0 and λ′(s2) > 0, the vertical tangency for s2 is upward. However, it is
downward for s3, since ρ ′(s3) > 0 and λ′(s3) < 0. The isoperimetric solution is
not possible in this case because, if the vertical tangencies did not occur at the
same height, then a piece of the rotational surface would be outside of the region
between the horospheres; see Figure 5.

Even if vertical tangency occurred at the same height, the intersection of the
rotational H -surface with the parallel horospheres would be two concentric circles,
which is not possible due to Theorem 3.3.

In summary, for H = 1 the boundary of the region � must be either a catenoid
cousin-type surface as in Figure 3 or umbilical as in Figure 4

We proceed in the analogous way to study the other cases, and give here only
the main equations and results.

The case H ∈ [0, 1).

Theorem 4.3. If c+(s) = eλ(s)(tanh ρ(s), sech ρ(s)) is the parametrization of the
profile curve of a rotational H-surface in R3

+
with H ∈ [0, 1), then

(1) c+(s) is symmetric with respect to the geodesic radius cg, and
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(2) the asymptotic boundary of the profile curves consists of one or two points.

Proof. The proof of (1) is similar to that of Theorem 4.2. Barrientos [1995]
showed that ρ(s) is unbounded but λ(s) is bounded and has a limit. Then we have
lim|s|→∞ eλ(s) sech ρ(s) = 0, and the asymptotic boundary of the profile curves
consists of one or two points. �

Since sinh ρ(s) ≥ 0, we have by definition (page 11) that sinh ρ(s) = 0 if and
only if a = 0 and s = 0.

Again by definition, it follows that

(4-16) U 2(s)=
−A+ B cosh(2αs)

2α2 and U ′2(s)=
B2 sinh2(2αs)

2(−A+ B cosh(2αs))
.

By applying (4-16) to (4-8), we get

(4-17) B2 H 2 cosh2(2αs)− 2AB cosh(2αs)+ A2
+α2 B2

= 0.

This is a second order equation in cosh(2αs), with discriminant

1= 4B2(1− H 2)2(1+ 4aH).

Since B > 0 if H ∈ (0, 1) and a is defined for any real, we have these facts:

• If a <−1/(4H), there are no vertical tangency points.

• If a =−1/(4H), there are at most two vertical tangency points

(4-18) s =± 1
2α

arccosh(1/H).

• If a >−1/(4H), there are at most four vertical tangency points

(4-19)
s1 =

1
2α

arccosh
( A+ (1− H 2)

√
1+ 4aH

B H 2

)
, s2 =−s1,

s3 =
1

2α
arccosh

( A− (1− H 2)
√

1+ 4aH
B H 2

)
, s4 =−s3.

In particular, H = 0 in (4-17) gives 2B cosh(2s)−1−B2
= 0, whose solutions

are s =±(1/2) arccosh(B2
+ 1/(2B)).

First, let us specialize to the case that H ∈ (0, 1); we’ll treat H = 0 later.

The subcase −1/(4H) ≤ a < 0. In this case, only the roots s2, s4 < 0 give us
vertical tangency points with upward direction. Figure 6 shows the profile curve
for H = 0.5 and a = −0.25 and the horocycles that pass through the vertical
tangencies. The mean curvature vector for the part of the rotational surface in the
interior of the totally geodesic (symmetry plane of the surface) points out toward
the rotation axis, and so determines the isoperimetric region illustrated at right.
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Figure 6. At left, profile curve for H = 0.5 and a = −0.25, and
at right the corresponding rotational surface.

In particular, if a = −1/(4H) there is only one vertical tangency point at s =
−1/(2α) arccosh(1/H) < 0. Although the profile curve intersects the horocycle at
another point, it is not of vertical tangency.

The subcase a = 0. In this case, two pieces of equidistant curve tangent at (0, 1)
generate the umbilical surfaces with H ∈ (0, 1). They are represented by pieces of
Euclidean spheres tangent at (0, 0, 1). The vertical tangency occurs only for the
equidistant profile curve that is the nearest to the rotation axis. Since the mean
curvature vector of this umbilical surface points outward to the rotation axis, it
determines an isoperimetric region.

The subcase a > 0. If a > 0 only the roots s2 and s3 correspond to vertical tan-
gencies with directions upward in s2 and downward in s3. Geometrically, one sees
that it is impossible to get an isoperimetric region in this case.

As for the H = 0 case, for a < 0 or a > 0 we get only one vertical tangency
point. If a = 0, the rotational surface is a totally geodesic plane. Thus it is not
possible to get an isoperimetric region for any a ∈ R.

Finally, we conclude that for H ∈ [0, 1) the boundary of the region � must be
an equidistant-type surface (see Figure 6) or an umbilical surface with H ∈ (0, 1).

The case H > 1.

Theorem 4.4. If c+(s) = eλ(s)(tanh ρ(s), sech ρ(s)) is the parametrization of the
profile curve of a rotational H-surface in R3

+
with H > 1, then c+(s) is a periodic

curve with period π/α.

Proof. We show that the hyperbolic length of the segment with extremes c+(s) and
c+(s+π/α) is constant for all s. Barrientos [1995] shows that

(4-20) ρ(s+π/α)= ρ(s) and λ(s+π/α)= λ(s)+ λ(π/α),

which implies from (4-4) that c+(s+π/α)= eλ(π/α)c+(s).
We fix s0 and parametrize the segment with extremes c+(s0) and c+(s0+π/α)

by

β(t)=
(

t, t
sinh ρ(s0)

)
, with eλ(s0) tanh ρ(s0)≤ t ≤ eλ(s0)eλ(π/α) tanh ρ(s0).
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Therefore its hyperbolic length is L(β(t))= λ(π/α) cosh ρ(s0).
The length of the segment depends only on the function ρ(s) with period π/α,

given in (4-20). So L(β(t)) is the same for any s0. �

Again by definition, it follows that

(4-21) U 2(s)=
A+ B sin(2αs)

2α2 and U ′2(s)=
B2 cos2(2αs)

2(A+ B sin(2αs))
.

By applying (4-21) to (4-8), we get

B2 H 2 sin2(2αs)+ 2AB sin(2αs)+ A2
−α2 B2

= 0.

This is a second order equation in sin(2αs), with discriminant

1= 4B2(H 2
− 1)2(1+ 4aH).

Since H > 1 and B > 0, this discriminant leads to these conclusions:

• If a <−1/(4H), there are no vertical tangency points.

• If a =−1/(4H), the possible vertical tangency points are1

(4-22)
sk =

1
2α

arcsin(1/H)+ kπ/α, for k ∈ Z,

s̃k =
1

2α
ãrcsin(1/H)+ kπ/α for k ∈ Z.

• If a >−1/(4H) the possibilities are, for k ∈ Z,

Sk =
1

2α
arcsin(D+)+ kπ/α, sk=

1
2α

arcsin(D−)+ kπ/α,

S̃k =
1

2α
ãrcsin(D+)+ kπ/α, s̃k=

1
2α

ãrcsin(D−)+ kπ/α,

where D± = (−A± (H 2
− 1)
√

1+ 4aH)/(B H 2)

Now we determine when the vertical tangency really occurs, depending on the
geometry of the profile curve.

(1) If−1/(4H)≤ a< 0, only the roots S̃k and s̃k give the vertical tangency points
with upward direction; see Figure 7.

(2) If a = 0, we have tangent geodesic half-circles along the rotation axis, each
of which generates a geodesic sphere in R3

+
; these are umbilical surfaces and

isoperimetric regions.

(3) If a > 0, we may analyze the behavior of the profile curves in the interval
]−π/(4α), 3π/(4α)[, since by Theorem 4.4 they are (π/α)-periodic. It is
easy to see that only the roots s0 and S̃0 give vertical tangency with directions

1Here ãrcsin is the inverse sine such that ãrcsin x ∈ [π/2, 3π/2), and arcsin is the usual inverse.
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Figure 7. Hyperbolic onduloid with H = 3 and a =−0.05.

downward in s0 and upward in S̃0. This case corresponds to the so-called
hyperbolic nodoids, which are not embedded surfaces.

In summary, for H > 1, the boundary of the region� can be either an onduloid-
type surface as in Figure 7 or an umbilical surface.

Proof of Theorem 1.1. We start with the existence and then obtain the possible
minimizing regions. By Theorem 3.3, the solutions to the isoperimetric problem
have as boundaries rotationally invariant surfaces that have constant mean curvature
where they are regular. But they must be regular (actually analytic), since the
singularities along such boundaries must have, by well-known results, (Hausdorff)
codimension at least 7, which is not possible for (2-dimensional) surfaces. Now,
by results of [Morgan 1994], the existence of the isoperimetric solutions follows
from the fact that Fc1,c2/G is compact, where G is the group of isometries of R3

+

whose elements leave invariant the region Fc1,c2 between the horospheres, that is,
the rotations around a vertical geodesic and the horizontal translations. The second
part of Theorem 1.1 follows from the analysis of vertical tangencies done in the
cases H = 1, H ∈ [0, 1), and H > 1. �

plus .5pt
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