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Role of innate immunity-triggered 
pathways in the pathogenesis of 
Sickle Cell Disease: a meta-analysis 
of gene expression studies
Bidossessi Wilfried Hounkpe1, Maiara Marx Luz Fiusa1, Marina Pereira Colella1, 
Loredana Nilkenes Gomes da Costa1, Rafaela de Oliveira Benatti1, Sara T Olalla Saad1, 
Fernando Ferreira Costa1, Magnun Nueldo Nunes dos Santos2 & Erich Vinicius De Paula1

Despite the detailed characterization of the inflammatory and endothelial changes observed in Sickle 
Cell Disease (SCD), the hierarchical relationship between elements involved in the pathogenesis of 
this complex disease is yet to be described. Meta-analyses of gene expression studies from public 
repositories represent a novel strategy, capable to identify key mediators in complex diseases. 
We performed several meta-analyses of gene expression studies involving SCD, including studies 
with patient samples, as well as in-vitro models of the disease. Meta-analyses were performed 
with the Inmex bioinformatics tool, based on the RankProd package, using raw gene expression 
data. Functional gene set analysis was performed using more than 60 gene-set libraries. Our 
results demonstrate that the well-characterized association between innate immunity, hemostasis, 
angiogenesis and heme metabolism with SCD is also consistently observed at the transcriptomic 
level, across independent studies. The enrichment of genes and pathways associated with innate 
immunity and damage repair-associated pathways supports the model of erythroid danger-associated 
molecular patterns (DAMPs) as key mediators of the pathogenesis of SCD. Our study also generated 
a novel database of candidate genes, pathways and transcription factors not previously associated 
with the pathogenesis of SCD that warrant further investigation in models and patients of SCD.

Sickle cell disease (SCD) is a genetic disorder that affects approximately 300,000 newborns worldwide 
each year, mostly in developing countries1. Early diagnosis and improvements in supportive care allow 
more patients to survive into adulthood, thereby increasing the burden of this condition. It has been 
estimated that by 2050, the lives of nearly 10 million patients with SCD will be saved, leading to a 
major increase in the prevalence of this condition2. Since the majority of SCD patients reside in low and 
medium income countries, the provision of adequate care to SCD patients should be regarded as one of 
the most important healthcare challenges of the next decades. Despite significant improvements during 
the last decades, the disease remains associated with unacceptably high morbidity and mortality.

Although SCD is caused by a single amino acid substitution in the β  chain of hemoglobin, the dis-
ease is characterized by multisystem and progressive organ damage affecting almost every system of 
the body3. Such widespread consequences are explained by the systemic and sustained inflammatory 
response observed in SCD, whose triggers and perpetuators are subject of intense investigation. In fact, 
despite the detailed characterization of several discrete parts of this inflammatory response, the hierar-
chical relationship between all these elements is yet to be described4,5.
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High-throughput genomic technologies such as microarrays have contributed to our understanding of 
complex interactions in multisystem diseases such as diabetes and cancer6,7. In SCD, two microarray-based 
gene expression studies were published in the last year in different populations of patients8,9. In addi-
tion, this technology has also been used in the study of the effect of heme on endothelial cells (EC)10. 
Microarray-based studies generate large databases of raw gene expression data that are deposited in data 
repositories for public reuse11. Recently, meta-analysis of these data emerged as an attractive strategy to 
generate new biological insights that could not be obtained from individual studies12. In analogy to role 
of meta-analysis in the clinical arena, the combined analysis of gene expression datasets has the potential 
to reduce study biases and increase statistical power, obtaining a more accurate estimate of differen-
tially expressed (DE) genes12,13. Moreover, the last years have witnessed the development of several new 
bioinformatics tools capable to generate more complex and biologically relevant data from lists of DE 
genes. These tools allow the prediction of biological pathways, protein-protein interactions, kinase and 
transcription factor regulatory networks, thus contributing to the generation of new hypothesis about 
the pathogenesis of complex traits14.

In order to refine our understanding and generate new hypothesis about the different biological sys-
tems involved in the pathogenesis of SCD we performed a meta-analysis of two recent gene expres-
sion studies involving patients with SCD. In addition, to explore the role of heme in the inflammatory 
response observed in these patients, we also performed meta-analyses comparing the gene expression 
pattern of heme-stimulated EC, with that observed in patients with SCD.

Results
Studies included in the meta-analysis. Four studies fulfilled the inclusion criteria and were 
selected for our meta-analysis. All of them provided high-quality metadata that allowed the meta-anal-
ysis. Table 1 provides the details of each study, and highlights the differences and similarities in sample 
type and microarray platform used. Two studies included samples from SCD patients (GSE53441 and 
GSE35007), and two studies included samples from EC stimulated with heme or with plasma from SCD 
patients. Samples from GSE35007 were further separated by us in two subgroups, according to disease 
status and to a severity score15, which were both informed in the database metadata. In total, 62 samples 
from patients with sickle cell anemia (homozygous SS) were included in the meta-analysis, of which 18 
were in acute crisis and 44 were in steady-state. A subsample with the 56 samples with the top severity 
score (including patients in acute crisis and steady-state) was used in some of the analyses. Of note, all 
whole blood samples obtained from SCD patients were submitted to globin mRNA reduction, which 
according to a recent report, minimizes differences and increase the overlap with the gene expression 
signature of peripheral blood mononuclear cells (PBMC) in the context of SCD16.

Biological terms identified in individual studies. We first identified relevant biological terms 
(pathways, transcription and kinase networks and gene ontology terms) enriched in each individual 
study that used samples from SCD patients (Table  2). The terms were identified using EnrichR, based 
on the list of DE up-regulated genes from each individual study. Pathways and gene ontology terms 
associated with immune response, autophagy, oxidative stress, heme and porphyrin metabolism, and 
coagulation were identified in this analysis, in both children and adults, steady-state and acute crisis 
(Table 2). Of note, these pathways were consistently identified in different gene set analysis libraries.

Meta-analysis results of gene expression studies using samples from SCD patients. We per-
formed a meta-analysis of the two studies that evaluated gene expression signatures in patients with 
SCD (GSE53441 and GSE35007). Although the GSE35007 database includes 250 samples from chil-
dren with SCD, we selected only SS homozygous patients with a severity score15 higher than 0.404 
for our meta-analysis. In total, data from 62 patients were included, of which 44 were in steady-state 
and 18 in acute crisis. In total, 4,944 DE genes were identified, of which 655 were only identified in 

Sample characteristics

Platform
GEO accession 

number Size (Pt:Ctl) Source Experimental context

1 GSE53441 24:10 PBMC Adults, steady-state Affymetrix Human U133 2.0 Plus

2 GSE35007* 62:29 Whole blood** Children, acute crisis and steady-state Illumina HumanHT-12 v4

4 GSE25014 12:12 PAEC/PMVEC Heme-stimulated endothelial cells Affymetrix Human U133 2.0 Plus

5 GSE1849 12:20 PAEC Plasma-stimulated endothelial cells Affymetrix Human Genome U133

Table 1.  Characteristics of individual studies included in the meta-analysis. GEO: Gene Expression 
Omnibus, Pt:Ctl: patients:controls; PBMC: peripheral blood mononuclear cells; PAEC: Human pulmonary 
artery endothelial cells, PMVEC: human pulmonary microvascular endothelial cells. *62 samples were 
selected samples from GSE35007, including 18 patients in acute crisis and 44 in steady-state (based on the 
highest severity-score informed in the database); **submitted to a globin mRNA reduction step.
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the meta-analysis (Fig.  1a). Using our more stringent criteria for differentially-expressed genes (> 1.4 
fold-change, up- or down-regulated in the same direction in both studies), a list of 384 DE genes (336 
up-regulated and 48 down-regulated) was used in our subsequent analyses (supplementary table 1). A 
heatmap visualization of the gene expression pattern of the top 30 DE genes from the meta-analysis is 
presented in Fig. 1 (Fig. 1b). The top 10 up- and 10 down-regulated DE genes are presented in Table 3, 
along with the fold-change of expression in each individual study (Table 3).

To gain further insights into the biological processes associated with the expression signature iden-
tified in the meta-analysis, a comprehensive gene set analysis was performed, using EnrichR and the 
list of DE genes. The top significant (ranked by the P-value) biological pathways, gene ontology terms, 
protein-protein interaction (PPI) hub proteins and kinases predicted from the meta-analysis are shown 
in Table 4. Pathways associated with heme metabolism, innate immunity, proteasome degradation and 
autophagy were overrepresented in this analysis. In regard to PPI hub proteins and kinase enrichment 
analysis, the most significant predicted proteins were associated with ubiquitin-proteasome pathway, cell 
proliferation and motility, immune response and angiogenesis (Table 4). Again, all top-ranked pathways 
and terms were consistently identified in different gene set libraries.

Finally, to further facilitate the interpretation of the biological process associated with the gene sig-
nature from our meta-analysis, we used a bioinformatics tool that clusters gene ontology and pathway 
terms that participate in the same biological function, thereby reducing redundancy of these analyses. 
The tool also permits the visualization of gene interactions inside each cluster, as well as between dif-
ferent groups. The following groups were highly enriched: cellular response to extracellular stimulus, 
protein ubiquitination, type I interferon signaling pathway, porphyrin compound biosynthesis, myeloid 
cell development, apoptotic mitochondrial changes and regulation of peptidase activity. Figure 2 shows 
the relationship between these pathways, and the DE genes identified in our meta-analysis (Fig. 2).

Steady state adults (GSE53441) – PBMC

Biological term GSA library P value

B cell receptor signaling pathway KEGG 0.0003

Type II interferon signaling Wikipathways 9.2 e-7

Hemoglobins chaperone Biocarta 6.0 e-6

Defense response to virus GO biological process 3.9e-19

SYK (spleen tyrosine kinase) KEA 8 e-5

ROCK2 (Rho-associated protein kinase 2) Kinases perturbations 0.002

Top severity score - children (GSE35007) – whole blood

MAPK signaling pathway KEGG 0.02357

Adherens junction KEGG 0.04524

Glutathione metabolism Wikipathways 0.00091

Oxidative Stress Wikipathways 0.00442

Heme biosynthesis Wikipathways 0.00925

IL-6 signaling pathway Wikipathways 0.0288

Autophagy GO biological process 1.3 e-6

Regulation of cellular response to stress GO biological process 0.00008

Acute crisis children (GSE35007) – whole blood

Porphyrin and chlorophyll metabolism KEGG 0.014

Complement and coagulation cascades KEGG 0.016

Oxidative Stress Wikipathways 5.6 e-4

Heme biosynthesis Wikipathways 0.005

Response to virus GO biological process 2.5 e-8

Autophagy GO biological process 8.0 e-9

Response to type I interferon GO biological process 1.0 e-8

Table 2.  Significant biological terms identified in each individual study. GSA (gene set analysis) was 
performed using the EnrichR tool, that includes 69 different gene set libraries. A list of all significantly 
upregulated genes from each individual study was obtained using the GEO2R tool, from the Gene 
Expression Omnibus database. KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: gene ontology term; 
KEA: kinase enrichment analysis; PBMC: peripheral blood mononuclear cells.
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Meta-analysis results of gene expression studies with heme-stimulated endothelial cells. In 
order to study the mechanisms by which heme interferes with the pathogenesis of SCD, we next per-
formed three exploratory meta-analysis between a gene expression study of heme-stimulated EC 
(GSE25014), and 3 different gene expression studies, respectively: (i) EC exposed to plasma from SCD 
patients during acute chest syndrome (GSE1849), (ii) SCD adult patients in steady-state (GSE53441), 
and (iii) SCD children in acute crisis (GSE35007). The list of top 10 DE genes is presented for each 
meta-analysis (Table  5). The gene coding for interferon alpha-inducible protein 27 (IFI27), which was 
up-regulated in the meta-analysis involving SCD patients, was again up-regulated in both meta-analyses 
involving heme-stimulated EC. In addition, the gene coding for Bone Marrow Stromal Cell Antigen-1 
(BST2), which is involved in B cell growth and redox reactions was also identified in more than one 
meta-analysis (Table 5).

A gene set functional analysis was then performed to identify biological pathways and gene ontol-
ogy terms overrepresented in each of the three meta-analyses using data from heme-stimulated EC. 
Again, pathways and gene ontology terms associated with coagulation and platelet activation, innate 
immune response, response to oxidative stress and angiogenesis were consistently overrepresented in 
these meta-analyses (Table 6).

Prediction of the regulatory networks upstream to the DE genes identified in the 
meta-analysis. To gain insight into the regulatory system upstream of the DE genes identified in the 
meta-analysis, we used a bioinformatics tools (Expression2Kinase) to identify: (i) the predicted tran-
scription factors (TFs) that likely drove the identified expression pattern; (ii) the intermediate proteins 
that could be forming a regulatory complex with these TFs; and (iii) the kinases most likely involved 
in the formation and activation of the regulatory complexes identified. With the candidate regulatory 
proteins identified, we built a subnetwork/protein complex that connects the TFs to each other and to 
their activation systems (Figure S1). The top 10 predicted TFs sorted by p-value, as well as the top 10 
predicted kinases that might control the formation of these TF complexes are shown in supplementary 
Table 2 (Table S2).

Discussion
Sickle cell disease is a monogenic, yet multisystem chronic progressive disease characterized by tissue 
damage and complications in nearly every body system1. This apparent paradox can be reconciled by 
considering SCD as a condition in which the function of almost every single gene is altered by the 
presence of hemoglobin S (HbS), as previously stated about cystic fibrosis17. Systemic and sustained 
inflammation, with the endothelium as the main target organ, is currently the best explanation for the 
multisystem nature of SCD. In this regard, several details on how the immune system ultimately responds 
to HbS polymerization - the initial trigger of the pathogenic cascade of SCD - have been described. 

Figure 1. Gene expression pattern from the meta-analysis. The upper panel shows the overlap between 
DE genes identified in the meta-analysis (Meta-DE) and in each individual data analysis (individual-DE). 
Gain genes are those identified only in the meta-analysis. Loss genes are those identified in individual 
studies, but not in the meta-analysis. In the lower panel, a heatmap built using the top 30 differentially-
expressed genes (15 up – and 15 down-regulated) comparing the gene expression pattern of studies that 
enrolled patients with sickle cell disease (GSE35007 and GSE53441) is shown. Class 1 and 2 refer to control 
and patient samples respectively, from each individual dataset.
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This complex immune response involves endothelial and coagulation activation18,19, increased cellular 
adhesion20, expression of pro-inflammatory and pro-angiogenic cytokines21, neutrophil activation22 and 
increased oxidative stress23. Although critical to our understanding of SCD pathogenesis, these studies 
do not explain how exactly inflammation is elicited in the first place, nor the hierarchical relationship 
between all these elements. More recently, critical steps have been taken towards this goal, with the 
demonstration of the role of reperfusion injury4, nitric-oxide depletion by free hemoglobin24, and innate 
immunity activation by free heme5,25,26. Based on the analysis of this complex network of pathogenic 
mechanisms, and using a “systems biology” approach, Hebbel et al. proposed a probable hierarchy of 
sub-biological process involved in the pathogenesis of SCD, in which reperfusion injury was regarded as 
the most likely proximate mechanism of inflammation4. An updated version of this model by published 
by the same authors highlights the role of vascular stasis, free hemoglobin and free heme as initiators 
of inflammation27.

Here, we used a complementary strategy to further explore the relationship between the biological 
processes involved in the pathogenesis of SCD consisting of meta-analyses of public databases of gene 
expression studies. The past 15 years have witnessed an explosive increase in the number of studies 
using microarray technology in a variety of diseases and phenotypes13. With the adoption of reporting 
guidelines, and the establishment of public databases for raw microarray data, a large bulk of transcrip-
tomic data from several diseases and phenotypes has accumulated, and is currently available for public 
reuse11. Frequently, the complexity of microarray data precludes the full exploration of its informative 
potential in original studies. In addition, inter-laboratory variation is still an inherent limitation of this 
technology28,29. By analyzing multiple experiments together, the effects of biases and artifacts can be 
reduced, helping true relationships to stand out30. Indeed, despite the heterogeneity of individual studies, 

Fold-change in individual studies (LogFC) Meta-analysis results

Genes GSE53441 GSE35007 CombRP AveLogFC P

Up-regulated genes

     HBD 3.80 4.12 6.37 3.96 < 0.0001

     GYPB 1.60 3.50 20.40 2.55 < 0.0001

     CA1 1.88 3.32 24.23 2.60 < 0.0001

     RUNDC3A 0.90 3.12 35.67 2.01 < 0.0001

     RAP1GAP 0.24 3.38 36.50 1.81 < 0.0001

     IFI27 2.70 3.07 37.90 2.88 < 0.0001

     OSBP2 0.73 3.05 40.60 1.88 < 0.0001

     TMCC2 1.16 2.99 40.62 2.07 < 0.0001

     XK 1.08 2.94 41.43 2.01 < 0.0001

     SLC4A1 2.44 2.82 42.16 2.63 < 0.0001

Down-regulated genes

     C12orf57 − 0.30 − 1.24 156.78 − 0.77 < 0.0001

     CD3G − 0.31 − 1.23 176.91 − 0.77 < 0.0001

     CCR7 − 0.23 − 1.17 206.27 − 0.70 < 0.0001

     IL7R − 0.22 − 1.15 231.82 − 0.68 < 0.0001

     RGS19 − 0.09 − 1.09 267.28 − 0.59 < 0.0001

     C21orf7 − 0.11 − 1.05 270.6 − 0.58 < 0.0001

     SNRPD3 − 0.09 − 1.11 293.33 − 0.60 < 0.0001

     LRPAP1 − 0.05 − 1.04 306.19 − 0.54 < 0.0001

     PARK7 − 0.07 − 1.05 309.77 − 0.56 < 0.0001

     PHB2 − 0.20 − 0.99 333.57 − 0.59 < 0.0001

Table 3.  Top 20 DE genes identified in the meta-analysis of studies with clinical samples. Genes were 
ranked based according to the combined-rank product obtained in each meta-analysis. LogFC: base 2 log 
of Fold-change; CbnRP: combined Rank Product (the smaller the combRP, the higher is the likelihood of 
differential expression; AveLogFC: average LogFC.
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meta-analysis of independent gene expression datasets were capable to identify new therapeutic targets 
in complex diseases31,32. This possibility has been further facilitated by the recent development of spe-
cific guidelines for these meta-analyses12,13, and of several bioinformatics tools capable to generate more 
complex and biologically relevant data from lists of DE genes14,33.

Robust experimental data demonstrate the prominent role of pathways associated with the innate 
immune system34,35, hemostasis18,36, and angiogenesis21 in the pathogenesis of SCD. The data generated 
by our analyses confirms the importance of these pathways in several ways. First, the top significant bio-
logical terms derived from the list of upregulated genes of each individual study included pathways asso-
ciated with innate immunity (type I and II interferon signaling, defense response to virus, IL-6 signaling 
pathway), hemostasis (complement and coagulation cascades and MAPK signaling pathway), response to 
oxidative stress (glutathione metabolism, oxidative stress) and angiogenesis (adherens junction, MAPK 
signaling pathway). Second, the transcription signature derived from the meta-analysis of studies with 
SCD patient samples seemed to reflect a similar pattern, which was consistent across different gene 
set analysis libraries. Terms associated with innate immunity (interferon alpha/beta signaling, antivi-
ral mechanisms by interferon-mediated genes, cellular response to type I interferon, response to other 
organisms and cytokine-mediated signaling pathway), heme biosynthesis (porphyrin and chlorophyll 
metabolism, metabolism of porphyrins), angiogenesis (signaling by TGF-beta receptor complex and 
degradation of extracellular matrix), autophagy, ubiquitination and proteasome degradation were also 
among the top ranked findings (Table 4). Third, among the top predicted hub proteins in protein-protein 

Biological pathway Overlap GSA library p-value

Porphyrin and chlorophyll metabolism 05/41 KEGG 9.0 e-4

Interferon alpha/beta signaling 12/67 Reactome 1.7 e-8

Metabolism of porphyrins 05/17 Reactome 0.007

Antigen processing: ubiquitination & proteasome 
degradation 10/211 Reactome 0.007

Antiviral mechanism by IFN-stimulated genes 05/71 Reactome 0.01

Apoptosis 07/146 Reactome 0.02

Class I MHC mediated antigen processing & 
presentation 10/255 Reactome 0.025

Degradation of the extracellular matrix 05/89 Reactome 0.03

Cell surface interactions at the vascular wall 05/99 Reactome 0.043

Signaling by TGF-beta receptor complex 04/70 Reactome 0.048

Heme biosynthesis 04/09 Wikipathway 4.7 e-5

Senescence and autophagy 6/108 Wikipathway 0.012

Gene ontology term Overlap GSA library p-value

Tetrapyrrole metabolic process 11/59 GO 3.2 e-8

Cellular response to type I interferon 11/65 GO 7.9 e-8

Response to other organism 26/462 GO 4.5 e-7

Autophagy 12/102 GO 7.2 e-7

Cytokine-mediated signaling pathway 15/342 GO 1.6 e-3

PPI hub proteins Overlap GSA library p-value

RPS27A 11/173 EnrichR 3.0 e-6

HSPA1A 9/145 EnrichR 3.0 e-5

DYNLL1 9/183 EnrichR 1.9 e-4

TNFRSF1A 8/173 EnrichR 6.0 e-4

SMAD4 9/221 EnrichR 7 e-4

UBC 16/540 EnrichR 2.5 e-4

Kinase enrichment analysis Overlap GSA library p-value

BMPR2 194/10324 EnrichR 0

IRAK4 70/2805 EnrichR 4.7 e-9

Table 4. Top biological pathways and terms identified by GSA in the meta-analysis of studies with 
clinical samples. GSA (gene set analysis) was performed using the EnrichR tool, that includes 69 different 
gene set libraries. Genes or terms were ranked based on the p-value. Overlap indicates the number of hits 
from the meta-analysis compared to each curated gene set library. GO: gene ontology biological process.
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interactions and enriched kinases were proteins associated with innate immunity (TNFRSF1A, IRAK4), 
redox sensing (DYNLL1), autophagy (RPS27A, HSPA1A, UBC) and angiogenesis (SMAD4, BMPR2). 
Of note, mutations in the genes encoding BMPR2 and SMAD4 are among the most important genes 
associated with pulmonary hypertension37, a major clinical complication of SCD, and polymorphisms in 
BMPR2 have been associated with an increased risk of this complication in SCD38. Moreover, the associ-
ation between angiogenesis and pulmonary hypertension in SCD is also suggested by the demonstration 
of the prominent role of PlGF (Placental Growth Factor) in the pathogenesis of this condition39.

Figure 2. Enriched gene ontology pathways identified in the meta-analysis. The top enriched biological 
processes predicted from the list of up-regulated genes generated in the meta-analysis of samples from 
patients with sickle cell disease were grouped with the software ClueGO as a functional cluster (using a 
kappa score =  0.3). Each node represents a biological process. Their associated genes are represented as dots. 
Node and dot colors represent the functional group to which they belong. Mixed coloring nodes and dots 
belong to multiple groups. One ungrouped term is shown in grey. Edges represent term-term interaction or 
term-genes interaction. The title of the most significant term per group is shown in the network as a group 
title (colored text). The size of nodes reflects the enrichment significance of the terms.
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Despite the inherent limitation of analyzing lists of individual DE genes, the list generated by 
our meta-analysis (Table  3) also supports the role of these pathways in SCD. Interestingly, the list of 
up-regulated genes was higher in terms of absolute fold-change. The exact reason for this observation 
is not clear, but since recent bioinformatics studies demonstrated that a gene expression signature can 
be captured by the analysis of a subset of the most representative DE genes, we focused some of our 
analysis on these genes40. Nonetheless, the full list of DE genes (up and down-regulated) is presented in 
supplementary table S1, allowing additional analysis and hypothesis generation. Not surprisingly, 5 of 
the top 10 up-regulated genes were genes directly associated with erythrocyte development: hemoglobin 
delta, glycophorin B, carbonic anhydrase, Kell blood group precursor and Band 3 anion transport pro-
tein. These results probably reflect the contribution of transcripts from reticulocytes and nucleated red 
blood cells (NRBC) to gene expression studies involving patients with SCD and other conditions with 
high reticulocyte counts. In fact, it has been suggested that reticulocytes cannot be completely eliminated 
from PBMC prepations41. In addition, globin mRNA reduction doesn’t reduce other erythroid genes. To 
estimate the relative contribution of this erythroid development signature to our dataset, we compared 
our results with a dataset of the human reticulocyte transcriptome42. Of the 384 DE genes from our 
meta-analysis, 43 (11.2%) belonged to the list of the top 127 genes that are DE in human reticulocytes42 
We also repeated the gene set analysis using EnrichR after the exclusion of these 43 genes, with similar 
results (data not shown). While corroborating the hypothesis that reticulocytes can copurify with PBMC, 
the results of this comparison suggest that the erythroid development signature is not cancelling out the 
representation of other genes in our dataset. Moreover, they suggest that the 5 additional upregulated 
genes which have not been previously associated with SCD, should be regarded as interesting targets for 
future studies. These genes include RUNDC3A (RUN Domain Containing 3A) and RAP1GAP (RAP1 
GTPase Activating Protein), which are involved in the regulation of GTPase activity. RAP1GAP was also 
upregulated in monocytes from patients with chronic lymphocytic leukemia43, and RAP1GAP-mediated 
inhibition of RAP1 GTPase has been shown to severely impair macrophage function in vitro44; TMCC2 
(Transmembrane And Coiled-Coil Domain Family 2), a transmembrane protein whose functions are 
not well characterized, but that was recently associated with mean platelet volume in a large GWAS 
study45. OSBP2, which codes for Oxysterol binding protein 2 was also upregulated. Oxysterols are cyto-
toxic components that increase oxidative stress and have been shown to be increased in red cells from 

Heme-stimulated endothelial cells x plasma(ACS)-stimulated EC

Up-regulated Down-regulated

Gene name AveLogFC p-value Gene name AveLogFC p-value

LYPD1 4.10 < 0.0001 FGF13 − 4.12 < 0.0001

BST2 4.20 < 0.0001 PDPN − 4.22 < 0.0001

DARC 3.82 < 0.0001 PLA1A − 3.67 < 0.0001

C7 3.77 < 0.0001 PGM5 − 3.90 < 0.0001

CCL23 3.72 < 0.0001 MRC1 − 3.80 < 0.0001

Heme-stimulated endothelial cells x SCD adults (PBMC/steady state)

IFI27 4.65 < 0.0001 CA2 − 4.40 < 0.0001

IFI44L 3.90 < 0.0001 KBTBD11 − 3.00 < 0.0001

SELENBP1 3.00 < 0.0001 KRT23 − 2.16 < 0.0001

IFIT1 2.01 < 0.0001 HSD17B2 − 4.36 < 0.0001

BST2 4.26 < 0.0001 GPAT2 − 2.36 < 0.0001

Heme-stimulated endothelial cells x SCD children (whole blood/acute crisis)

IFI27 4.85 < 0.0001 TCL1A − 0.98 < 0.0001

CA1 1.60 < 0.0001 CLC − 0.80 < 0.0001

TMCC2 1.42 < 0.0001 C12orf57 − 1.14 < 0.0001

SELENBP1 3.34 < 0.0001 CD3G − 0.84 < 0.0001

RUNDC3A 1.44 < 0.0001 ITM2C − 2.75 < 0.0001

Table 5.  Top 10 DE genes identified in the meta-analysis between heme-stimulated endothelial cells and 
clinical samples. In the first panel, we present the results of the meta-analysis between the study comparing 
heme-stimulated endothelial cells with plasma (from patients with ACS)-stimulated endothelial cells. In 
the next two panels, we present the results of the meta-analysis between heme-stimulated endothelial cells 
versus clinical samples. Genes were ranked based according to the combined-rank product obtained in each 
meta-analysis. ACS: acute chest syndrome; AveLogFC: average (from both studies) of the base 2 log of Fold-
change; PBMC: peripheral blood mononuclear cells.
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Biological pathway Library Meta-analysis

Complement and coagulation cascades KEGG 1, 2, 3

Cytokine cytokine receptor interaction 1, 2

Porphyrin and chlorophyll metabolism 3

Glutathione metabolism 3

Cell adhesion molecules 1

Interferon alpha/beta signaling Reactome 1, 2, 3

Extracellular matrix organization 1, 2, 3

Cell surface interactions at the vascular wall 1

Synthesis of prostaglandins and thromboxanes 1, 3

Platelet degranulation 1, 3

VEGF binds to VEGFR 1, 3

Formation of Fibrin Clot 1

Heme Biosynthesis Wiki 3

Oxidative Stress 2, 3

Transcriptional activation by NRF2 Pathways 2

Cytokines and inflammatory response 1

Gene ontology term Library Meta-analysis

Defense response to other organism Gene 1, 3

Cellular response to type I interferon ontology 1, 2, 3

Inflammatory response biological 1, 3

Regulation of angiogenesis process 1,2, 3

Regulation of vasculature development 1, 3

Cellular response to cytokine stimulus 1, 3

Blood coagulation 1, 2

Platelet activation 1, 3

Regulation of cellular response to VEGF stimulus 1, 3

Regulation of vascular permeability 2

Regulation of cell adhesion 2

Positive regulation of vasodilation 3

Response to hypoxia 3

Cellular response to reactive oxygen species 3

Regulation of acute inflammatory response 3

NIK/NF-kappaB signaling 3

Table 6.  Top biological pathways and terms identified by gene set analysis in the meta-analysis between 
heme-stimulated endothelial cells versus other gene expression studies in sickle cell disease. GSA (gene 
set analysis) was performed using the EnrichR tool, that includes 69 different gene set libraries. Pathways 
or terms identified in the meta-analysis between heme-stimulated endothelial cells versus 3 additional 
gene expression studies involving SCD patient samples are presented. The meta-analysis compared heme-
stimulated endothelial cells versus: (1) adults in steady-state; (2) pulmonary endothelial cells stimulated with 
plasma from patients with SCD during acute chest syndrome; and (3) children with SCD in acute crisis.

SCD patients46. More recently, the oxysterol 27-hydroxycholesterol has been shown to down-regulate 
heme-oxygenase and NRF2, a major anti-oxidant transcription factor, in astrocyte cells47. These results 
warrant further studies on the role of OSBP2 in SCD. Finally, IFI27 (Interferon, Alpha-Inducible Protein 
27) was upregulated in both meta-analyses, of clinical samples and heme-stimulated cells. In two recent 
publications, this protein was identified as a mediator of vascular injury in inflammatory animal mod-
els48,49. Of note, the gene coding for heme oxygenase 1 was up-regulated in the meta-analysis, but with 
a fold-change level lower than our 1.4 fold-change threshold for inclusion in the study. In regard to the 
list of downregulated genes, we would like to highlight the potential role of PARK7, a gene that encodes 
a redox-sensitive hypoxia-induced protein associated with cell death from acute ischemia-reperfusion 
injury50,51.
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We also used the gene list generated in our meta-analysis to predict gene regulatory network asso-
ciated with SCD, and generate new hypothesis about the regulatory complexes governing these gene 
expression patterns. CREB1 (cAMP responsive element binding protein 1) was identified as the most sig-
nificant transcription factor. CREB1 regulates cell proliferation, survival and differentiation by mediating 
the transcription of genes containing a cAMP-responsive element. These include several genes from the 
immune system such as IL-2, IL-6, IL-10 and TNF-α . It has been proposed that phosphorylated CREB1 
directly inhibits NF-κ B activation, limiting pro-inflammatory responses52. Accordingly, several CREB1 
targets were up-regulated in our meta-analysis such as FOXO3, NFE2, STAT1 and the kinase MAP2K3 
(Table S1).

SCD patients present higher plasma concentration of heme which, according to recently gen-
erated data, can activate innate immunity in a TLR4-dependent fashion25, and act as an initiator of 
vaso-occlusion and ACS5,26. In addition, the endothelium has been increasingly recognized as a critical 
organ in the pathogenesis of both chronic and acute complications of SCD53. Accordingly, a secondary 
objective of our study was to identify genes and pathways that were stimulated by heme (in a controlled 
in vitro experiment using EC)10, and that were also DE in more clinically-oriented gene expression stud-
ies involving (1) EC stimulated by plasma from patients with ACS54 and (2 and 3) samples from patients 
with SCD8,9. One limitation of these 3 meta-analyses is that they compare gene expression patterns of 
different cells types (EC x whole blood/PBMC). Therefore, while DE genes and pathways that stand 
out were regarded by us as potential modulators of the effects of heme in the pathogenesis of SCD, no 
conclusion should be drawn about genes or pathways that were not identified. Nonetheless, considering 
the evidences supporting that free heme is a critical pathogenic mediator in SCD, and the limitations 
to study its effects in more relevant in vivo human models, we believe that our strategy could add rele-
vant information about the role of heme in the pathogenesis of SCD. Interestingly, pathways and gene 
ontology terms identified in these 3 meta-analyses were similar to those identified in the meta-analysis 
between clinical samples, in that innate immunity, hemostasis, angiogenesis, response to oxidative stress 
and porphyrin metabolism dominated the top enriched terms (Table  6). In addition, the activation of 
these pathways is in accordance with recent data demonstrating the role of heme as a mediator of coag-
ulation activation55 and PlGF-mediated pulmonary hypertension56. The list of up- and down-regulated 
genes reflects the enrichment of these pathways (Table 5).

Finally, using the meta-analysis data, we generated a network representing the most relevant and 
non-redundant biological processes associated with our results. As expected, this network captured the 
importance of erythroid/myeloid cell development and heme biosynthesis in SCD, as discussed above. 
Interestingly, it also highlighted the importance of innate immunity, response to oxidative stress, and 
ubiquitination, as the most important biological pathways associated with our results (Fig. 2). Innate 
immunity activation involves several pathways that were overrepresented in our study and that have 
been associated with SCD such as hemostasis and angiogenesis. These pathways can be viewed as parts 
of the body’s armamentarium for pathogen clearance and damage repair57. In recent years, the patho-
genesis of SCD has been largely attributed to the detrimental role of erythroid DAMPs (danger associ-
ated molecular patterns) such as heme and free hemoglobin, as inflammatory drivers58. As a ubiquitous 
molecule in several domains of life, activation of innate immunity by heme has been regarded as a 
selected mechanism against invading pathogens, and hemorrhage-mediated tissue damage25. In this 
context, the constitutive activation of innate immunity in SCD could be viewed as a consequence of 
the evolutionary trade-off between the benefits of sensing heme and free hemoglobin as alarm signals, 
and the detrimental effects thereof, in the relatively rare individuals in whom high levels of circulating 
heme and free hemoglobin overcome the capacity of natural scavenging mechanisms. We believe that 
the prominent role of innate immunity and damage repair-associated pathways identified in our study 
further supports the model of erythroid DAMPs as critical triggers and perpetuators of inflammation 
in SCD. Our study has several limitations worth noting. First, meta-analysis of gene expression stud-
ies are a relatively recent strategy, with pros and cons. Although recent guidelines tried to establish 
minimum standards for these studies12, different statistical protocols can influence the results. We 
selected only published studies, with high-quality metadata, from internationally-recognized groups. 
The meta-analysis was performed with the INMEX tool, which uses one of the best statistical meth-
ods59 and has been used in several recent publications60–62. Second, the unbalanced contribution of 
reticulocytes transcripts to our results should be regarded as a potential bias, although the compar-
ison between our meta-analysis and a published erythroid development signature suggests a limited 
influence of the latter on our results. A third limitation was the use of different sample types. In 
our main meta-analysis mRNA was obtained from whole blood and mononuclear cells respectively. 
Unfortunately, there were no databases available from studies with the same sample type. However, 
we chose to compare these two studies because whole blood samples from GSE53441 were submitted 
to a globin mRNA reduction step, which according to a well-designed study in sickle cell disease, 
minimizes differences and significantly increases the overlap of the gene expression profile compared 
to mononuclear cells16. Finally, we did not perform a qPCR validation step of our findings. It should 
be born in mind, however, that the objective of our study was not to revalidate these microarray data, 
but rather, to perform a global and hypothesis-generating transcriptomic analysis of SCD, that could 
be used to support independent investigations in the future.
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In conclusion, our results demonstrate that the well-characterized association between innate immu-
nity, hemostasis, angiogenesis and heme metabolism with SCD is consistently observed at the transcrip-
tomic level across independent gene expression studies. We also generated a large database of candidate 
genes, pathways, transcription factors and kinases less or not previously associated with SCD that might 
be helpful for future studies about the pathogenesis of this complex disease.

Methods
Identification of eligible data sets. Microarray datasets that examined potentially DE genes in 
SCD, and that were publicly available by May 2015 were searched in two public repositories: NCBI 
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), and Array-express (http://www.
ebi.ac.uk/arrayexpress/). Search was conducted with the terms (“sickle cell disease” and “homo sapiens”). 
Only studies that offered sufficient metadata for the analysis were included. GEO accession number, 
sample type, platform used for gene expression analysis, number of samples and gene expression data 
were extracted from the databases for each study.

Meta-analysis of microarray datasets. Meta-analysis were performed using a web-based tool 
named INMEX (Integrative Meta-analysis of Expression data), designed to support and facilitate 
meta-analysis of multiple gene-expression data sets63. Gene expression data tables were constructed 
with downloaded raw data, following the INMEX recommendations63. All datasets were processed and 
annotated accordingly. Data integrity was checked for all datasets, and the meta-analysis was performed 
using the combined rank orders method, based on the RankProd package59,63. Briefly, fold changes (FC) 
between stimulated and control samples were computed for each dataset, and for all possible pairwise 
comparisons. The ranks of the ratios of each comparison were then used to calculate the rank product 
for each gene. Permutation tests were performed to assess the null distributions of the rank product 
within each data set. The whole process repeats multiple times to compute p-value and false discovery 
rate (FDR) associated with each gene63. Selected genes were ranked based on the combined rank product 
(combinedRP), which is a non-parametrical statistical method based on the rank of FC for each gene. The 
method is based on the assumption that if a gene appears repeatedly at the top of up- or down-regulated 
gene lists in replicate experiments, it is more likely a DE gene59. The lower the combinedRP value, the 
more interesting the candidate gene for differential expression64. DE genes identified in the meta-analysis 
were further selected using more stringent criteria, which was of a fold-change (FC) expression ≥ 1.4. 
We also excluded all genes identified in the meta-analysis that were DE in opposing directions. These 
post-processing steps were performed using a script in R language65. The GeneVenn web tool was used 
to examine the overlap of gene lists from our analysis66. A p-value <  0.05 was considered statistically 
significant. Heatmap visualization of a subset of genes from different studies was performed using the 
“Pattern extractor” tool from INMEX.

Functional gene set analysis. In order to obtain additional biological information from the list of 
DE genes, a comprehensive functional gene set analysis was performed using the EnrichR platform33, 
a bioinformatics web-based tool that includes 69 gene-set libraries, such as KEGG, Wikipathways, as 
well as libraries that are only available in Enrichr. Libraries are divided into six categories: transcrip-
tion, pathways, ontologies, diseases/drugs, cell types and miscellaneous, and the tool provides the pos-
sibility to obtain a comprehensive functional analysis using any gene list of interest. To further improve 
the interpretation of the biological significance of the enrichment terms obtained from Enrichr, we 
used the ClueGO67, a plug-in of Cytoscape68. This plug-in integrates the full list of identified gene 
ontology terms and pathways, and organizes them in functionally grouped networks, which depict the 
biological relationship between the pathways and gene ontologies. Briefly, we used two-sided (enrich-
ment/depletion) hyper-geometric distribution tests, with a p-value significance level of ≤ 0.05), fol-
lowed by the Bonferroni adjustment for the terms and the groups created by ClueGO. Fusion criteria 
to reduce the redundancy of the terms that have similar associated proteins was also applied allowing 
the maintenance of the most representative “parent” or “child” terms in the generated networks. The 
Kappa-statistics score threshold was set to 0.3, and leading term groups were selected based on the 
highest significance69.

Regulatory gene network analysis. To further refine our exploratory study, we analyzed the regu-
latory networks of transcription factors and kinases predicted from the list of up-regulated genes derived 
from the meta-analysis, and from each individual gene expression study. Each gene list was uploaded 
into the transcription factor (TF) inference module of Expression2Kinases (X2K) software, and the TFs 
that were most likely involved with identified genes were extracted using the Position-Weight-Matrices 
(PWMs) database70. In addition, the top 10 list of human TFs ranked based on p-value was uploaded on 
Genes2Networks (G2N) module of X2K to identify transcriptional complexes associated with these gene 
signatures. These complexes were used to identify the protein kinases that are most likely responsible for 
TF complex formation and functional regulation. Finally, the regulatory network was visualized using 
yEd Graph Editor71.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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