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Sacrificial adhesive bonding: a 
powerful method for fabrication of 
glass microchips
Renato S. Lima1,2, Paulo A. G. C. Leão3,4, Maria H. O. Piazzetta1, Alessandra M. Monteiro3,4, 
Leandro Y. Shiroma1,2, Angelo L. Gobbi1 & Emanuel Carrilho3,4

A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the 
method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as 
in conventional adhesive bonding-based approaches. Subsequently, an additional step removes 
the adhesive layer from the channels. This step relies on a selective development to remove the 
SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by 
specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an 
ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-
scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. 
Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the 
deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an 
improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist 
adherence, formation of bubbles, and thermal stress were effectively solved by using simple and 
inexpensive alternatives.

In microfluidics, the effect of the material on the microchannel surface properties is amplified because 
of the large surface-to-volume ratio. As a consequence, the substrate dominates the functions of the 
microfluidic chips1. In general, glass is the best material for applications in microfluidics, including as 
additive steps and subtractive etchings to fabricate empty cavities (such as reservoirs, chambers, and 
microchannels) and positive units (as electrodes, monoliths, pumps, and valves)2. The thermal expan-
sion coefficients (α) for glass, metals, and semiconductors are in the same order of magnitude. This fact 
avoids thermal stress and consequent cracking or shrinkage of metals and semiconductors deposited on 
glass during electrical or electrochemical experiments. Furthermore, the glass surface shows satisfactory 
electroosmotic mobility (μEO) and thermal conductivity (κ, 1.5 W mK−1) for employment in electroos-
motic pumping and capillary electrophoresis (CE) ensuring fast and high-resolution separations3. Other 
advantages of glass are: (1) optical transparency, (2) chemical inertia, (3) solvent resistance, (4) thermal 
stability, (5) robust fabrication, and (6) nano-scale adequacy, allowing us to encode nanostructures by 
using femtosecond laser writing4 or high-resolution lithography5. Meanwhile, the high complexity and 
cost of microfabrication (especially because the step of bonding that usually requires cleanroom, harsh 
temperature and pressure, and dedicated equipment), the difficult integration of functional components 
for the development of micro total analysis systems (μ TAS), lab-on-a-chip (LOC), microelectromechan-
ical platforms, and poor gas permeability (not viable for cell culture assays) limit a broader use of glass 
chips1.
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In response to the drawbacks related to the microfabrication technology of glass chips, the field of 
microfluidics emerged just after the advent of poly(dimethylsiloxane) (PDMS) at the end of the 1990s6. 
Besides its simple soft lithography-based fabrication, the PDMS elastomer is adequate for the integra-
tion of functional elements7 and cell culture assays8,9. Conversely, PDMS presents important down-
sides, including: (1) permeability (it may spoil the results of vapour loss or pH change), (2) elasticity 
(the channel may deform depending on applied pressure generating, for example, unstable mass trans-
port), (3) contamination of the sample with unreacted oligomers, (4) absorption of small molecules, 
(5) biomolecule adsorption, and (6) swelling in some organic solvents10–13. Thus, PDMS is restricted to 
analyses in aqueous media. Recently, Mays et al. reported a polymer that resisted the phenomenon of 
swelling in organic medium, namely poly(vinylmethylsiloxane)14. Furthermore, oxygen plasma-assisted 
irreversible bonding for PDMS microchips is cumbersome despite its simple procedure15–17. This down-
side is relative to the instability of the oxidized surfaces in air once the reactive silanol groups remain 
for only up to 10 min. It hampers the application of this bonding in ultra large-scale integration (ULSI) 
processes. Furthermore, functionalization procedures are not possible before the bonding process 
owing to the harsh conditions of the plasma. Such conditions can damage functional groups at the 
surfaces like organic chemical receptors. In situ modifications, in turn, are difficult owing to the inert 
and hydrophobic nature of native PDMS18. Furthermore there is a simple way to obtain hydrophilic 
PDMS surfaces, which is degassing under vacuum19. Lastly, PDMS is neither suitable for deposition 
of metals and semiconductors nor for electrophoresis applications. The thermal expansion coefficient 
of PDMS is typically one order of magnitude higher than the values for metals and silicon-based sub-
strates. This fact may generate thermal stress, cracking, shrinkage, or even delamination of polymer 
structures over such surfaces. Another downside is the low adhesion between metals and PDMS20. Its 
limitations in electrophoresis arise from poor μEO/κ21. Other compounds for specific situations include 
glass-elastomer hybrids, thermosets, thermoplastics, hydrogels, and paper. Recently, Ren et al. listed 
several substrates, which could be used depending on the final assay purpose1.

Considering the notable features of the glass for microfluidics and drawbacks related to polymer 
substrate—especially PDMS—as previously stated, the development of methods to reduce the costs and 
complexity of the bonding step for glass microchips is a current and active research field. The conven-
tional method used to seal these microdevices is thermal bonding22. It is a direct approach based on 
condensation reactions (reaction (1) on “Adhesion strength” section) involving silanol groups (–SiOH) 
at high temperatures that are usually between 450 and 650 °C for all-glass surfaces23. Thermal bonding is 
applied to microchips of silicon, glass, and quartz and it generates appreciable interface energies (adhe-
sion strength). Nonetheless, it is essential that the substrate surfaces are flat (root mean square, RMS, 
on the order of nm) and very clean. Therefore, the bonding step should be conducted in a clean room 
with heavy investment in its installation and maintenance. In addition, the harsh conditions of temper-
ature may generate thermal stress, damaging the deposited thin films for electrical or electrochemical 
analyses3.

Herein, we present a new bonding method for fabricating glass microchips, named sacrificial adhesive 
bonding (SAB). The procedure is simple, fast, and compatible with ULSI processes and thin film integra-
tion. First, it consists of using an intermediate layer to seal glass slides to one another, as in conventional 
adhesive bonding. However, this intermediate layer is selectively developed (and removed) to create 
microfluidic channels with glass-like surface properties. In this procedure, a specific developer flows 
with the aid of a hydrodynamic pumping system removing the intermediate just inside the microfluidic 
channel. The main steps of the microfabrication in SAB are depicted in Fig. 1. SU-8 resist was used as 
sacrificial adhesive. Such a thermoset is a fundamental element of pattern transfer processes obtained 
by photolithography. The advantages of this epoxy-based negative photoresist are: (1) thermomechanical 
stability, (2) chemical inertia (resistance to organic media and alkaline or acid solutions at high temper-
ature), (3) transparency (near UV and visible radiation), (4) sensitivity, selectivity, and contrast to UV, 
(5) photolithography resolution, (6) biocompatibility, (7) vertical sidewall profile (desired for lift-off), 
(8) wide range of thickness (1 to approximately 500 μ m) achieved by spinning in a single run3, and (9) 
electrophoretic performance similar to that of glass24. Additionally, uncross-linked SU-8 is used as glue 
in adhesive bonding processes. All-SU-8 microdevices are reported in the literature as well. The latter 
require a multilevel photolithography for fabrication that defines the bottom, sidewall, and top surfaces 
in SU-825.

The current paper reports the SAB fabrication steps as well as investigations into the repeatability 
of the glass etching step, the decrease in bubbles and thermal stress, the uniformity of the SU-8 film, 
the transversal section of the microchannel, the adhesion strength between the stacked flats, and 
the effect of the remaining SU-8 on the properties of microchannel surface. Finally, we performed 
a comparative study involving the developed bonding and some techniques for glass chips from the 
literature.

The approach
General Considerations. The main steps of the SAB (Fig. 1) include: (1) deposition of adhesive on 
a glass flat slide, (2) preliminary bonding against the substrate integrating microchannels coated with 
thin-film, (3) cure of the resist between the glass surfaces around the channel, and (4) development of 
the uncured adhesive resist.
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In general, adhesive bonding is attained only after curing (polymerization) of the adhesive inter-
mediate26. In this case, highly aggressive solvents would be required for the development step in SAB, 
damaging the bonding itself and any functional components integrated in the microfluidic device. The 
selection of SU-8 like adhesive provided preliminary bondings containing high adhesion strength when 
only SU-8 monomers (uncured resist) were applied. It allowed us to use mild solvent (SU-8 developer) 
for the selective removal of adhesive. The chemical inertia is another advantage of SU-8. It is important 
because residual layers of this resist remain at the microchannel sidewalls after the SAB process. Such 
layers may interact with the sample in analytical applications, generating unpredictable results.

Besides the need of using uncured resist for step of adhesive removal as discussed above, other hur-
dle is the selective development of the adhesive only inside the channel. A simple alternative to this 
step concerns the pumping of the developer at a specific time and flow rate. Nevertheless, the rate of 
development for SU-8 is very high as some experiments demonstrated. Thus, an excessive removal of 
the adhesive layer in regions beyond the microchannel was observed even at a very low time (10 s) and 
developer flow rate (5 μ L min−1) (described below). Herein, one option would be to dilute the developer 
with a suitable solvent, but such a procedure is not suitable for ULSI processes because a new calibra-
tion for development time and flow rate would be necessary for different adhesive thicknesses. Hence, 
a method based on curing the SU-8 resist only around the microchannels before preliminary bonding 
was created. This process avoided the excessive removal of adhesive and new calibrations depending on 
thicknesses of SU-8.

Cure of the SU-8 requires two sequential steps: (1) UV exposure at 365 nm for formation of the 
photoactivator and (2) post-exposure bake (PEB) to allow the polymerization of SU-8 monomers26,27. 
The chemical structures and reactions involved in this process are depicted in Fig. 23,21. Condensation 

Figure 1. Microfabrication steps for SAB. Glass slide (a), deposition of SU-8 over this wafer and then 
pre-bake (b), preliminary bonding against the glass substrate with the walls of the microchannel coated 
with a thin film of Al (golden in the drawings) (c), cure of the resist just around the microchannel after UV 
exposure and PEB (resist under the channel is not cured because it is protected from UV by thin film of Al 
that is deposited only inside the microchannel; see Fig. 4) (d), removal of the uncured SU-8 and, next, of 
the Al film by pumping specific solvents (blue in the drawing) (e), and final chip showing residual SU-8 in 
the bottom of the sidewalls (Fig. 6) (f). Features not drawn to scale. In addition, the sidewalls in wet-etched 
glass are commonly not vertical but rounded.
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reactions between glass and resist surfaces provide an irreversible bonding. The selective development 
of the SU-8 monomers underneath the microchannel requires that such regions be protected from UV 
radiation. In this situation, there is not the cure of resist inside the microchannel because the polymer-
ization initiator is not formed. For this process, we used a photolithographic negative mask that relies 
on an Al opaque film deposited inside the microchannel. This thin film of Al acted as an absorption 
standard (a template) during UV exposure, protecting the SU-8 under channel from radiation, whereas 
all of the other regions were exposed, and, then, later cured. Accordingly the development step in SAB 
can be conducted for long time and high flow rates regardless of the adhesive thickness as the side layers 
are already cured during such a procedure.

Microfabrication. Microfabrication relied on standard UV photolithography for the pattern transfer 
processes, including (1) deposition of thin films by spinning and sputtering and (2) wet etching.

Carving of the microchannels and ATZs. Cavities around the microchannel called air-trapping zones 
(ATZs) were engraved on substrate at the same time as the etching of the microchannels These structures 
are illustrated in Fig. 3. That being so, the etching mask covered both the regions for microchannel and ATZ. 

Figure 2. Chemical structures and reactions in SAB. SU-8 structure (a), activation of the triphenyl-sulfonium 
herafluoroantimonate (initiator of the cure) at UV (b), and (c) polymerization of the monomers in PEB.
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The latter aims to retain the air bubbles created during the preliminary bonding in the interface of glass 
slides28. Thus, ATZs improve adhesion strength and bonding quality (measured by reducing the defect rate).

Standard photolithography transferred the pattern by utilizing a photolitho-based dark field (positive) 
mask, AZ 4620 positive resist, photoaligner (Karl Suss America Inc. MJB 3 UV 200, Waterbury, VT), thin 
film deposition by spinning (Headway Research Inc. EC101DT, Garland, TX), and corrosion by wet etch-
ing. The procedure for etching was performed sequentially with the following solutions: (1) 396 mL H2O, 
54 mL Hydrofluoric acid (HF), and 270 g NH4F for 14 min; (2) 150 mL H2O, 150 mL hydrochloric acid 
(HCl), and 150 mL HF for 3 min; and (3) HCl for 1 min. Then, substrates were rinsed in excess acetone 
with the aid of ultrasound, washed with deionized water, and dried in N2. The channels were Y-shaped in 
geometry (Fig. 3). Reservoirs were fabricated with a diamond drill. Repeatability of the glass etching was 
studied by measuring width and depth in 11 slides through profilometry (Veeco Dektak 2210, Branson, 
MO) for five distinct points on each slide.

Fabrication of the mask for SU-8 selective cure. As explained earlier in “General Considerations” sec-
tion, the mask for selective cure of adhesive resist was based on the deposition of a film of Al inside the 
microchannel. Al is ideal because it is cheaper than other metals like Au and is easily removed in HF or 
alkaline diluted solutions—a required step after SU-8 development. Vapour phase deposition methods 
are potential alternatives taking into account their high production capacity and film uniformity. The 
protocol applied in this specific process is depicted in Fig. 4. The resist for engraving the microchannel 
and the ATZs was retained after etching of the glass slides. Next, Al thin film was deposited via sput-
tering (Oerlikon Balzers BA510, Schaumburg, IL). Lastly, acetone excess lifted off the etching mask for 
2 min. As a consequence, a selective coating of the cavities by Al was attained. The developed method 
avoids both alignment and further photolithography steps applied in standard processes for pattern 
transfer of the microchannel and ATZs by wet etching.

Bonding. The protocol was the same as that previously reported for hybrid glass/SU-8 chips—with-
out the selective development of SU-826. It was an improvement compared with the approaches usually 
applied for SU-825. Bake times were decreased and additional steps to raise the glass/SU-8 adhesion or 
progressive temperature ramps were not necessary. In addition, ATZ reduced the formation of void areas 
and eliminated thermal stress.

Figure 3. Microchannels, ATZs, and SU-8 surface morphology. Photo of the substrate incorporating 
channel and ATZs (a), profilometry image of microchannel and ATZs (b), photo by digital microscope 
showing the Al film-coated cavities (c), and AFM image of the SU-8 surface (d). m, microchannel; ATZ, air-
trapping zone, and r, reservoir.
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The main steps of bonding are: (1) spin coating SU-8 onto the glass slide, (2) preliminary bonding 
between this slide and substrate with microchannel, ATZs, thin film of Al as absorption standard, and 
reservoirs, (3) SU-8 polymerization just around the microfluidic channel, (4) resist development and 
Al removal by pumping specific solvents inside the microchip, and (5) hard bake (see Fig. 1 for a more 
didactic explanation).

Bonding was achieved using SU-8 5 (52% m/m in gamma-butyrolactone, GBL) as adhesive layer 
in a temperature above resist Tg (glass-transition temperature) and native SU-8. Initially, the slides 
were chemically cleaned through immersion in piranha solution (H2SO4/H2O2 2:1, v/v) for 10 min to 
remove organic impurities. Afterwards, the slides were dehydrated at 120 °C on a hot plate for 30 min. 
It improved the adhesion of the glass/SU-8 by decreasing the surface energy. Moreover, the use of reac-
tive silicones like hexamethyldisilazane (HMDS) was not required3. SU-8 was coated on glass chips by 
spinning; deposition conditions were investigated as discussed below to increase the uniformity of the 
film. As the dehydration step, the usage of thin and low-viscosity films ensured a good adhesion of the 
SU-8 film to glass slides29. Ways to improve the adhesion of the film include: (1) substrate oxidation in 
O2 plasma30, (2) coating of the substrate with reactive silicone primers3 or ultra-thin Ti adhesion layers31, 
and (3) doping of resist with hydrophilic species32,33. Soft bake, which is intended to remove solvent, 
occurred in a two-step process: the SU-8 was soft baked at 65 °C for 1 min to decrease thermal stress and 
then at 95 °C for 5.0 min. After 2.5 min of soft bake, the SU-8-coated glass was brought into contact with 
substrate under the application of a constant weight of 200 g. This step was conducted until the end of 
soft bake step, thus during 2.5 min at 95 °C. The hot plates were horizontally leveled since the gravity can 
affect the flatness of resist thin films. It is important also to highlight that progressive temperature ramps 
were not employed. Next, the cure of the resist just around the microchannel and ATZs (because the 
presence of the Al inside these cavities precluded polymerization) was performed as usual25. Exposing 

Figure 4. Fabrication of the mask for SU-8 selective polymerization by depositing Al thin film only 
inside the microchannel. Glass flat slide (a), deposition of positive resist over this slide and then pre-bake 
(b), UV exposure, development producing the mask for microchannel pattern transfer, and hard bake (c), 
glass etching (d), deposition of opaque thin film by sputtering over all of the slide (e), and lift-off with the 
thin film only inside the etched cavity (f). Features not drawn to scale.
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the microchip at 365 nm UV activates the photoinitiator and PEB ensures the polymerization reactions 
as shown in Fig.  2. Experimentally, the microdevices were exposed at 365 nm UV for 1 min with an 
exposure dosage of 600 mJ cm−2. The exposure was conducted from the top of substrate to protect the 
resist under microchannels of UV radiation by means of the Al mask. Hence, the SU-8 in this region 
was not cured allowing its posterior removal by using a specific developer. Afterwards, the cure of SU-8 
was performed during the PEB at 65 °C for 1 min and then at 95 °C for 1.0 min as well. The exposure 
extension is critical because short times produce less dense cross-linked polymers. Therefore, the solvent 
molecules diffuse into SU-8 bulk swelling the film during its development34. PEB raises adhesion, reduces 
scumming, and improves the contrast and profile of the resist3. Recently, Mitri et al.35 described another 
way to cure SU-8. They eliminated the PEB by exposure at 254 nm UV. It was enough to promote the 
epoxy ring opening, thus allowing polymerization.

To execute the development of the SU-8 and removal of the Al film, the microchip was previously 
connected to syringe pump by means of stainless steel needles, which were fixed by epoxy glue on 
the reservoirs in substrate. Silicone tubes ensured the contact between syringe and needles. The pro-
tocols of SU-8 development and Al removal consisted of flowing propylene glycol monomethyl ether 
acetate (PGMEA, 40 s at 20 μ L min−1) and then 10% v/v HF in water (2 min at 50 μ L min−1) through 
a syringe pump (New Era Pump Systems Inc. NE-300, Wantagh, NY) inside the microchannel, respec-
tively. Excessive removal of SU-8 through the sidewalls of the microchannel was not verified because 
their edges were already polymerized during this stage. Finally, the microfluidic channel was washed by 
pumping deionized water for 3 min at 50 μ L min−1.

Results and Discussions
Etching repeatability. Glass etching for carving of the microfluidic channels showed satisfactory 
repeatability levels. Average global values (n =  55) were 29.8 ±  0.1 μ m (depth) and 116.0 ±  2.0 μ m 
(width). Relative standard deviations (RSD) for the same slide (intra-chip precision) exhibited average 
values of 0.1% and 2.3% for depth and width, respectively. In addition, the RSD were 0.2% (depth) and 
2.9% (width) for different glass slides (inter-chip precision). As regards to ATZ cavities, their average 
dimensions for five slides (n =  25) were 28.7 ±  0.1 μ m (depth) and 293.0 ±  2.9 μ m (width).

Formation of bubbles. The ATZ cavities significantly decreased the formation of voided areas by 
retaining the air produced during the preliminary bonding, as illustrated in Fig.  5. We can verify that 

Figure 5. Optical microscopy images of the microchips without (a,b) and with (c,d) ATZs. m, microchannel 
and v, voids and air bubbles.
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there was a very high incidence of bubbles when the ATZs were not used. Voided areas help to minimize 
the adhesion strength and can affect the dimensions and shapes of integrated empty spaces and positive 
features in the analytical microdevice. Furthermore, shrinkage or cracking of the SU-8 films was not 
verified. This fact indicates the effectiveness of the ATZ cavities in reduction of thermal stress by decreas-
ing contact surface between SU-8 and glass. Some alternatives for reducing thermal stress further are:  
(1) low bake temperatures36,37, (2) doping of the resist based on nanoparticles of SiO2

38, and (3) treatment 
in ultrasound39.

Uniformity and roughness of the SU-8 film. SU-8 adhesive was deposited over the glass by spin-
ning during 30 s. In general, it is the minimum spin time necessary to generate a uniform coating. This 
parameter is essential for bonding adhesion strength by determining the density of defects and, thus, the 
contact area between adhesive and substrate. The deposition was conducted using two procedures. First, 
the spin coating was based on a unique speed (3000 rpm as described in Methods section, process A).  
The other deposition mode was performed using two steps of velocity in order to improve the uniformity 
of SU-8 by decreasing edge beads and ridges (process B). These steps were: spread cycle (500 rpm for 5 s) 
enabling the spread of fluid on the entire substrate and, then, spin cycle (3000 rpm for 25 s) defining the 
final film thickness. At these speeds, initially the resist flows to the slide edges because centrifugal force. 
Next, the fluid is expelled from the edge after building up when surface tension is exceeded3.

A substantial improvement in uniformity was found when the SU-8 film was deposited using the 
two-step spin profile, process B. Average global thicknesses were 3.76 ±  0.41 μ m and 4.35 ±  0.08 μ m for 
A and B, respectively. The process B was, then, applied in SAB. Figure 3(d) depicts an AFM image of 
the SU-8 surface obtained by routine B. It was smooth with RMS of 0.59 nm.

Cross-sectional analysis of the microchannel. Figure 6 shows micrographies of the cross-section 
of the bonded microchannel for the two methods of SU-8 film development in SAB discussed above. 
Figure 6(a) presents the excessive removal of adhesive when the development step is performed before 
its cure. In this case, PGMEA was pumped for 10 s at 5 μ L min−1 for development of SU-8. Conversely, 
Fig. 6(b) illustrates the removal of the adhesive layer just under the microfluidic channel by using Al thin 
film as a mask. This mask allowed the resist removal after the selective cure around the microchannel 
during UV exposure. The procedure was conducted for 40 s at 20 μ L min−1 of PGMEA.

The bonding temperature of 95 °C is greater than SU-8 Tg (64 °C)40. This temperature is important 
because it decreases the viscosity of the resist, bypassing voided areas which increase the contact surface 
and thus the adhesion strength during preliminary bonding. Conversely, very high values of pressure and 
temperature result in partial filling of the microchannel by the adhesive resist. This phenomenon arises 
from the low viscosity of the adhesive resist that flows inside the microfluidic channels due to pressure 
and capillary force41. The effects of filling are more pronounced when thicker films are used. For a 50 μ m 
SU-8 layer, for example, the complete filling of channels with a depth less than 100 μ m is verified at 
68 °C42. Low temperature and pressure, in turn form voided areas, decreasing the adhesion strength and 
affecting the structure of units integrated in the microchip28. These parameters applied in SAB avoided 
the formation of bubbles. Conversely, a proportion of approximately 5% of the residual SU-8 adhesive 
was spread into microchannel edges, forming a semi-spherical cross-section as verified in Fig. 6(b)26. We 
believe this phenomenon is positive because the rounded sidewalls in etched amorphous glass (under 
etching) favour particulate retention in prolonged analyses or increase the band broadening in separation 
applications. Such residual SU-8 comes from the pressure and capillary forces during preliminary bond-
ing that spread the resist inside the channel. Additionally, the polymerization of these residual parts is 
presumably caused by UV diffraction through the glass (Fig. 1(d)). It can generate the activation of the 
initiator (Fig. 2(c)) ensuring the cure of SU-8 in the microchannel edges during the PEB step.

Adhesion strength. The results for the leakage tests and adhesion strength are presented in Fig. 7. 
Microfluidic channels did not show any leakage for any of the applied flow rates. However, the connec-
tions between the pump and the microchips leaked over 800 μ L min−1 for both SU-8 adhesives obtained 
post UV exposure and PEB and over 1,200 μ L min−1 for the resist attained post pre-bake. Consequently, 
sudden reductions in pressure were observed. Taking up the tested flow rates (previously to the leaks 
in connections), the microchips endured pressures of up to 3.9 MPa. In addition, we can state that the 
preliminary bonding presented an adhesion strength high enough to withstand the pressures applied 
during the selective development step (flow rate lower than 100 μ L min−1).

Regarding the tensile pull tests, all samples fractured over a pressure of 5.28 ±  1.04 MPa (n =  6). 
Moreover, the long-term performance of the bonding under high pressure was tested. The microchips 
(n =  3) endured a pressure of 2.00 MPa for 24 h without any fracture. The adhesion results demonstrated 
that the bonding has bursting pressures sufficient to withstand harsh flow rate conditions for long peri-
ods. In microfluidics, the flow rates are usually up to hundreds of μ L min−1, producing pressure values 
on the order of 1 MPa only. According to investigations reported in the literature, SU-8-based bonding 
shows bursting pressures between 4 and 45 MPa43–45. These values are much larger than those attained 
when the PDMS is employed as adhesive layer. Using oxidative pretreatment by inductively coupled 
high-density plasma, we found that the maximum adhesion strengths for PDMS-PDMS and glass-PDMS 
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were nearly 0.4 and 0.5 MPa, respectively17. For the glass-PDMS functionalization-assisted bondings, 
such force was only 0.6 MPa with grafted polymeric adhesive18.

The irreversible bonding between glass and cured SU-8 is owed to condensation reactions22 generat-
ing chemical adsorption by covalent bonds involving silanol groups as follows:

( ) + ( − ) → ( ) ( − ) + ( )– – – –Glass OH SU 8 OH Glass O SU 8 H O 12

Another element that contributes to such bonding is the intrinsic adhesion. It is related to attractive 
intermolecular forces among the surfaces producing physical adsorption. This adhesion rises with the 
decrease in interfacial tension. For the glass and uncured SU-8, we believe that the condensation reac-
tions also have some effect on irreversible bonding as well as intrinsic adhesion. In this case, the covalent 
bonds would be caused by the opening of the resist epoxy groups by the silanol groups present on the 
glass surface, thus allowing condensation reactions to occur. Although uncured SU-8 produced a satis-
factory adhesion strength, its cure is essential for improvements in properties such as chemical inertia, 
thermal stability, and electroosmotic flow.

Effect of the remaining SU-8 on channel property. The heat dissipation capacity depends on 
diverse factors such as (1) roughness, dimension, and composition of the microchannel wall and (2) 

Figure 6. SEM-FEG micrographies of the cross-section of microchannels obtained by SAB for two 
methods of SU-8 development: prior to its cure (a) and after its cure outside the microchannel (b). R, SU-8.
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temperature, pH, and solution ionic strength46. Because of the good etching precision when the micro-
channels were carved as described above, the results of thermal characterization can be attributed to the 
nature of the channel walls only.

Under the same ionic strength conditions, the glass and SU-8 surfaces generate similar electroosmotic 
mobility26 and electrokinetic experiments were not necessary to study the effect of the SU-8 on the 
channel surface properties. Conversely, the thermal conductivity values for SU-8 and glass are 0.2 and 
1.5 W mK−1, respectively. It yields a substantial difference in the heat dissipation capacity for glass and 
glass/SU-8 walls. Analyses with 20 mmol L−1 phosphate buffer at pH 8.0 showed some Joule heating with 
linearity deviation in the current/potential relationship at electric fields higher than 580 and 730 V cm−1 
for microfluidic channels of glass/SU-8 and glass, respectively21. Under such conditions, chips obtained 
by SAB had similar thermal behaviour when compared to glass, as illustrated in the Ohm’s law plots of 
Fig.  8. In both cases, Joule heating was observed only at electric fields greater than 730 V cm−1. This 
data indicates that the residual layers of SU-8 after the SAB did not interfere on surface properties of 
the glass channel walls.

Figure 7. Testing the adhesion strength. This graphic shows the pressures inside the channel arising from 
flow rates applied by an HPLC pump. The chips were bonded with SU-8 adhesive in different processing 
stages: (1) post pre-bake (uncured, grey), (2) post-UV exposure (with produced cure initiator but uncured, 
yellow), and (3) post PEB (cured, red).

Figure 8. Effect of the remaining SU-8 layer on the surface properties of the microfluidic channel. The 
Ohm’s law plots were obtained by using 20 mmol L−1 phosphate at pH 8.0 for glass (yellow) and glass/SU-8/
glass (red) microdevices. Each value represents a global average current which was achieved from four 
microchips (real-time monitoring for 2 min).
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The medium employed to remove Al in SAB (10% v/v HF in water) also etches glass. Nevertheless, 
the similarity between the obtained currents for glass and glass/SU-8/glass (SAB) chips shows that the 
removal process of Al with such a solution did not interfere substantially on channel surface features. 
Presumably, this fact stems from the short exposition time and the laminar flow generated inside the 
microfluidic channels. The latter reduces the etching rate compared with the turbulence transport. Lastly, 
the deviations for diverse microchips indicated satisfactory repeatability within all the microfabrication 
processes.

Comparative study. Alternatives for all-glass microchip bonding were developed because of the 
drawbacks of thermal bonding previously described. Generically, these methods consist of direct tech-
niques at low temperature or even room temperature.

The protocols described in the literature for reducing temperature include (1) long periods of contact 
among the slides (150 °C)47, (2) surface activation in liquid (9048, 11549, and 65 °C50) and gas (70 °C51) 
phases, and (3) functionalization with silanol/amine groups (200 °C)52. Direct bondings of glass at room 
temperature are achieved by surface activation in plasma or in liquid phase. The processes applied in the 
first case are (1) argon atom fast beam53, (2) reactive ion etching (RIE) in plasmas of O2 radio frequency 
and N2 microwave54, and (3) RIE in O2 and CF4 plasma55. The activation in liquid phase56, in turn, is 
based on a laborious process that involves washing, immersion in acid solution for 8 to 12 h, exposure 
to tap water flow and demineralized water, and drying. Usually, the aforesaid methods aim to improve 
adhesion strength by increasing the density of silanol groups—reaction (1). Table 1 lists some key fea-
tures of these methods and compares to SAB.

Direct bonding at low temperatures decreases the risks of thermal stress and requires a cleanness 
level lower than that needed for conventional thermal techniques. Conversely, this method has several 
surface chemical treatment steps, which can take up to 24 h. Such a procedure is inadequate for the ULSI 
process. Methods at room temperature bypass thermal stress. The plasma activation-based technique has 
higher operation velocity. Nonetheless, it requires sophisticated, expensive, and dedicated instrumenta-
tion. Finally, activation in the liquid phase uses a very laborious and slow experimental protocol.

The SAB process proved to be a powerful approach to the fabrication of glass microfluidic devices. 
The protocol meets important requirements of an ideal method such as: (1) throughput (number of 
slides that can be transferred per hour), (2) relatively reduced cost, (3) compatibility with ULSI (surface 
oxidation in plasma or functionalization are not required), (4) high adhesion strength, holding-on pres-
sures of at least 3.9 MPa, and (5) the properties of the microchannel are majorly governed by glass as 
indicated by the thermal dissipation test, keeping desirable features in terms, for example, of its applica-
tion in electrokinetic assays. In addition, the SAB process (1) avoids the application of high temperature, 
pressure, or electric potential, enabling the deposition of thin films and eliminating thermal stress, (2) 
demands low levels of cleanness and flatness of the substrate (it tolerates micro-scale particles owing to 
the planarization by adhesive), thus bypassing the need for cleanrooms, and (3) does not create blocking 
of the microchannel by the adhesive layer. It is important to highlight also the advantages related to the 
use of the SU-8 as adhesive. Besides parameters such as thermal stability, chemical inertia, and opti-
cal transparence, this polymer does not show serious drawbacks as PDMS does, including non-specific 
adsorption and swelling in organic media. Moreover, the experimental protocol employed for the SAB 
process was improved in relation to the SU-8-based bondings described in the literature25. Aspects such 
as substrate/resist adherence, formation of bubbles between the slides, and thermal stress were effectively 
solved by using simple and inexpensive alternatives. The dehydration and PEB steps, as well as the use 

Bonding Method Time Cost
Viability 
for ULSI

Adhesion 
Strength Reference

Low temperature after long period of contact among the slides High Moderate No High 46

Low temperature after surface activation in liquid phase Moderate Moderate No Moderate 47

Low temperature after surface activation in liquid phase Moderate Low No High 48

Low temperature after surface activation in liquid phase High Low No Moderate 49

Low temperature after surface activation in gas phase High Low No Moderate 50

Low temperature after functionalization with silanol/amine groups High Moderate No High 51

Room temperature after surface activation in argon plasma Low High Yes High 52

Room temperature after surface activation in O2/N2 plasma Low High Yes High 53

Room temperature after surface activation in O2/CF4 plasma Moderate High Yes High 54

Room temperature after surface activation in liquid phase High Low No High 55

Sacrificial adhesive bonding (SAB) Low Low-Moderate Yes High This paper

Table 1.  Comparison of the alternative methods to the thermal direct technique for glass microchip 
bonding.
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of a thin adhesive layer, ensured a good glass/SU-8 adherence. The ATZs, in turn, effectively reduced the 
formation of bubbles and void spaces, besides decreasing the thermal stress; cracking or shrinkage of the 
films deposited on the glass surface during the pre-bake, PEB, and post-bake steps were not observed. It 
is notable that for a high density of carved microstructures on glass, these own structures would act as 
air-trapping zones bypassing the use of ATZs in this case. Therefore, the trapping zones do not reduce 
the density of channel per unit area for array-based devices. Another positive feature of the SAB relates 
to the bonding of long (values of up to 65 mm were investigated) and wide (values of up to 140 μ m were 
tested) microchannels without the formation of void areas or appreciable blocking of the channel as 
shown in Supplementary Information (Fig. S1). This drawback is an important limitation for most of the 
SU-8 adhesive-based bonding below57 or above the Tg of the resist41. The applied pressure and tempera-
ture generated a slight filling of the under-etched channels by the SU-8 layer, making the microchannel 
rounder and giving it a less characteristic shape. We believe such a phenomenon is satisfactory because 
it reduces the retention of particulate during use.

We believe the SAB represents a potential breakthrough in glass bonding technologies. The fabrication 
of the mask for selective development of SU-8 only inside the microchannel does not involve further 
photolithography steps in relation to the process required for carving microfluidic channels in glass by 
etching. Accordingly, the bonding needs only one step of photolithography to cure SU-8. In addition, this 
process does not need alignment, as shown in Fig. 4, a key factor for large-scale integration. The bond-
ing step (deposition of SU-8, pre-bake, preliminary bonding, photolithography to cure the resist, and 
removal of the uncured SU-8 and Al) lasts approximately 40 min after the substrate once the channels 
and Al film have been prepared. Such a photomask involves only one additional step to those applied to 
fabricate the microchannels (UV photolithography, etching, and removal of resist). This additional step is 
the coating with Al. It lasts approximately 40 min at 10−5 mTorr in the sputter for deposition of hundreds 
of slides with 100 nm of Al as database of metal deposition in our group. Such a condition is amenable 
since the purity of the thin film of Al is not relevant in SAB, as it needs only to be opaque to protect 
SU-8 from UV light. Additionally, the coating of the microchannel with Al film can be performed by 
utilizing low-cost vapour phase deposition equipment. One example is sputters used to raise the contrast 
in microscopy images. Such a procedure is accessible to most research centers and it is ideal for ULSI. 
Additionally, the use of a physical mask during UV exposure to protect the SU-8 film is a potential 
approach for laboratories with less infrastructure. Photolitho-based masks are a cheap alternative58. In 
this case, the exposure is caused by shadow printing, not by contact printing3. Therefore, studies about 
the effect of light diffraction on resolution should be conducted. Finally, it is important to highlight that 
the application of the SAB process for channels presenting very small depths is limited by the adhesive 
thickness for two reasons. Initially, the intermediate film would interfere the channel surface properties 
for high ratio values between exposed areas of the adhesive and substrate. In addition, such channels 
could be clogged because of filling by the adhesive film during the preliminary bonding. For SU-8, a 
minimum thickness on the order of 1 μ m is achieved by spinning3. Herein, channels with depth greater 
than micrometres could be bonded/presumably by using the SAB. Conversely, direct bonding is the most 
recommended way to bond nanofluidic devices59. Other limitations related to SAB include: functional-
ization processes before bonding are not possible and applications using fluorescence detection suffer 
with the auto-fluorescence phenomenon of SU-8. It decreases the sensitivity and detectability levels in 
the UV range24.

Methods
Chemicals. Soda-lime glass slides (25 ×  45 ×  1 mm) were supplied by Glass Técnica (São Paulo, Brazil). 
HF, ammonium fluoride (NH4F) and HCl were purchased from Synth (Diadema, Brazil). Sodium hydrox-
ide (NaOH) was acquired from Sigma-Aldrich (St Louis, MO). SU-8 1000 photoresist, GBL, and PGMEA 
were purchased from MicroChem Corp. (Newton, MA). Monobasic sodium phosphate (NaH2PO4, used 
as phosphate buffer) was acquired from Mallinckrodt (Xalostoc, Mexico). Solutions were prepared in 
deionized water (Milli-Q, Millipore Corp., Bedford, MA) with resistivity no less than 18 MΩ  cm.

Formation of bubbles between the slides. Cavities around the microchannel were engraved on 
the substrate to retain the air bubbles created during the preliminary bonding in the interface of the 
glass slides. To investigate the effect of these cavities on the prevention of bubbles, images from a digital 
microscope (Hirox KH-7700, Hackensack, NJ) of the glass/SU-8 interfaces were taken for microdevices 
(SU-8 cured) with and without such structures.

Uniformity and roughness of the SU-8 film. The uniformity of the SU-8 films deposited by spin-
ning on glass was evaluated by considering two options: A, single-step and B, double-step rotation. For 
A, the deposition was taken at 3000 rpm for 30 s. For B, two sequential steps were used: 500 rpm for 5 s 
(spread cycle) and 3000 rpm for 25 s (spin cycle) with the same total time of 30 s. The steps of pre-bake, 
UV exposure, and PEB were conducted as described earlier. Uniformity of these films was assessed by 
measuring the thicknesses at seven points along each slide by profilometry. Ten glass slides were ana-
lysed for each applied protocol. Atomic force microscopy (AFM, Veeco MultiModeTM SPM equipment, 
Plainview, NJ) measured the RMS of the film resulting from process B.
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Cross-sectional view of the microchannel. Field-emission gun scanning electron microscopy 
(SEM-FEG) by a Philips XL 30 (Eindhoven, Netherlands) and FEI Inspect F50 (Hillsboro, OR) produced 
images for analysing the cross-section of the bonded microchannel. To improve the image contrast, 
samples were metalized by employing a BAL-TEC SCD 050 (Balzers, Liechtenstein). Micrographies were 
performed for two methods of development: pumping the developer (1) before SU-8 cure under specific 
time (10 s) and flow rate (5 μ L min−1) and (2) after selective cure of SU-8 by using Al film in the micro-
channel as absorption standard during UV exposure (Fig. 1).

Adhesion strength. The adhesion strength was evaluated by two methods: leakage pressure and ten-
sile pull tests. In the first case, the pressure inside the channel produced by water pumping at different 
flow rates was measured in three microchips. Pump of high performance liquid chromatography (HPLC, 
Shimadzu LC-10AVP, Columbia, MD) was used to carry water and measure the pressure. The difference 
between the chips was relative to processing stage of the SU-8 film: (1) post pre-bake (uncured), (2) 
post UV exposure (with produced cure initiator but uncured), and (3) post PEB (cured). For the tensile 
pull tests, we used EMIC DL-3000 equipment (São Paulo, Brazil) with a speed of 10−3 mm min−1. The 
bonding strength was determined by the ratio between the breaking force and the area of steel pieces 
(124.69 mm2). These pieces were connected to the equipment charge cell and glued to both sides of the 
chips by Torr Seal® (Agilent Technologies, Santa Clara, CA).

Effect of the remaining SU-8 on channel property. The fabrication of glass microchannels by 
the SAB method is limited by one condition: the effect of the residual SU-8 layer on properties of the 
surface inside the microfluidic channel should be negligible. Aiming to validate the SAB for bonding of 
glass microdevices, we studied this effect by evaluating the capacity of heat dissipation in electrophoretic 
applications employing the glass/SU-8/glass microchannels obtained by SAB. The data were compared 
with those observed recently in our group for glass and glass/SU-8 (without the SU-8 development) 
chips25. All of the microchannels were carved as previously mentioned. The microfluidic channels con-
sisted of a 27-mm-long straight channel with reservoirs in both ends. Micropipette tips were used as 
reservoir supports for the buffer solutions. These were fixed by epoxy glue on the substrate. Glass chips 
were thermally bonded in a muffle furnace (EDG F3000) at 590 °C for 480 min under the application 
of 1.6 kg weight with a progressive temperature ramp of 2 °C min−1. Glass/SU-8 devices were fabricated 
as previously cited in the literature26. The bonding involved neither selective development of the SU-8 
adhesive nor deposition of Al inside the microchannel, as proposed here.

Heat dissipation was investigated through Ohm’s law plots by measuring the relationship among cur-
rent and applied voltage. A bipolar single-channel high-voltage power supply (CZE 1000R, Spellman, 
Hauppauge, NY) was employed. Additionally, a computer with a National Instruments interface (USB-
6009 model) was used to control the power supply whereas the data acquisition was performed with 
software written in LabVIEW®. Microchannels were rinsed with 100 mmol L−1 NaOH for 30 min prior 
to any measurement to create negatively charged groups on walls. Afterwards, cleaning of the micro-
channels with deionized water and 20 mmol L−1 phosphate buffer at pH 8.0 was performed for 20 and 
10 min, respectively. The buffer was intended to equilibrate the electric double layer and pH on the walls 
of the microchannels. Lastly, all of the reservoirs were filled with 100 μ L phosphate solutions. The pre-
conditioning of the surface was done by applying a vacuum in the waste reservoir. NaOH was used to 
adjust the buffer pH for 8.
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