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Abstract. One of the major problems in cancer therapies is the high occurrence of side effects 

intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a 

wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a 

number of side effects like multidrug resistance and cardiotoxicity. The association with 

nanomaterials has been considered in the past decade to overcome the high toxicity of these 

drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as 

carriers once they are very biocompatible. Taking into account the combination of 

nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with 

systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer 

(Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in 

tumor conditions proportional to the concentration of the nanoparticles, opening a perspective 

to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment. 

1.  Introduction  

It is known that one of the main problems related to cancer treatments is the high incidence of side 

effects caused by anticancer drugs. Doxorrubicin (DOX), for instance, is an antibiotic and anticancer 

that is commonly used to treat many types of cancers, such as breast, ovarian and prostate [1,2]. 

However, its efficacy is yet very limited for the occurrence of aggressive side effects, including 

mielosuppression, alopecia, multidrug resistance and cardiotoxicity [2,3].   

In the last years, many alternatives to minimize this issue have been studied. Among them, the 

association with nanoparticles is promissing. Their use as drug carriers is advantageous once they can 

provide a sustained release and increase the effectiveness of drug delivery [4,5]. Among 
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nanomaterials, mesoporous silica nanoparticles (MSNs) have a good perspective to be used as drug 

carriers because of their biocompatibility and safety profile [4]. These particles have high superficial 

area and great pore volume, which is very suitable to carry actives [4]. 

Another strategy to overcome the intrinsic toxicity of anticancer drugs is the association with 

materials that can provide a long-term release of the drug. This ensures a better drug distribution and 

avoids a premature degradation of the drug [6]. In this context, Pluronic F-127 (PF-127) is a 

biocompatible block copolymer, approved by the FDA, that has a transition sol-gel temperature near 

room temperature [7]. That is, it is liquid at low temperatures (e.g. refrigerator temperatures) and it 

gelates at room temperature, which makes it very suitable to reach in situ gelation [6].  

So, to obtain preliminary results about the antitumor potential of the association MSNs + DOX + 

PF-127 and the role of the nanoparticles in this process, we developed three systems containing these 

components and tested them in rats with chemically induced prostate cancer. The MSNs were used as 

carriers for DOX, to reach a sustained release of the drug. The polymer, in turn, was used as the matrix 

of the hydrogel, to achieve in situ gelation (i.e. inside the animal body after inoculation) and thus reach 

a prolonged release of the components.  

 

2.  Methods 

Synthesis and characterization of mesoporous silica nanoparticles (MSNs)  

MSNs were synthesized following the protocol developed by Paula et al. (2012) [8], which consists of 

a sol-gel synthesis based on the methods of Stöber [9] and Bein [10]. This approach allow to produce 

spherical and monodisperse nanoparticles with high colloidal stability in aqueous medium. In this 

context, 0.75 g of cetyltrimethylammonium bromide (CTAB) were added to a 0.050 mol L
-1

 

ammonium hydroxide solution of pH 11. Then, 3.2 mL of absolute ethanol were added and after 15 

minutes under magnetic stirring, 2.5 mL of tetraethyl orthosilicate (TEOS) were added. The reaction 

was maintained under reflux at 60C for two hours. After completing the reaction, a centrifugation 

step was carried out to separate the products (60 minutes at 18,400 rcf). To extract the CTAB, the 

products were resuspended in 90 mL of absolute ethanol and 10 mL of hydrochloric acid were added 

(1:9 HCL:Ethanol volume ratio), sonicating the mixture for 10 minutes. Finally, to obtain ethanolic 

suspensions of the nanoparticles, the mixture was centrifuged (60 minutes at 18,400 rcf) following two 

washing steps with absolute ethanol and resuspended in absolute ethanol.  

The size distribution and morphology of MSNs were analyzed by transmission electron microscopy 

(TEM) in the bright field mode (TEM-BF, Zeiss Libra 120, operating at 80 kV). Nitrogen-sorption 

assays were run to obtain information on nanoparticles surface area, pore volume and pore diameter 

(Accelerated Surface Area and Porosimetry System ASAP 2020 micromeritics). To calculate surface 

area and pore diameter, the BET (Brunauer-Emmet-Teller) and BJH (Barret-Hoyner-Halenda) 

methods were used, respectively, both using N2 adsorption branch. The pore volume was calculated 

from the single-point value adsorbed at P/P0 = ~0.94.   

 

Synthesis and characterization of hybrid systems 

To evaluate the antitumor potential of the hybrid systems as well as the role of MSNs in the 

association, we developed three systems. The only difference between them was the presence and 

concentration of the nanoparticles (Table 1). The systems were produced by firstly adding DOX to the 

copolymer solution in an ice bath under magnetic stirring and adding the nanoparticles lastly to avoid 

aggregation. The mixture was kept under these conditions overnight. All systems were produced in 

physiological saline solution (0.9% w/v NaCl) to keep the same osmotic pressure than the animals’ 

cells.  

The concentration of DOX was calculated based on Das et al. (2010) [2] to reach 1.5 mg of drug 

per kilogram of animal body weight, considering a dose application of 0.3 mL and an animal body 
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weight of 150 g (average). The PF-127 concentration was chosen regarding its gelation temperature 

(Tgel): Tgel had to fit within a temperature range that would allow easy manipulation of the systems, 

avoiding gelation inside the syringe and on the needles' walls and quickly gelation of the systems once 

applied inside the animals bodies, avoiding the diffusion of the systems to unwanted locations and 

premature release. So, the systems were characterized regarding their Tgel by adding 5 mL of the liquid 

mixture in a beacker in an ice bath with a thermometer. The mixture was heated in a constant rate and 

the temperature in which the bar stopped moving was considered the gelation temperature.  

In order to corroborate the potential for prolonged release of the systems, the release profile was 

studied in vitro through a membraneless dissolution method. To do so, 0.5 mL of ht hybrid systems 

were added to a weighed vial and incubated at 35C (which is the body temperature of mice used in 

the in vivo assays), using a dry bath, to reach thermal equilibrium. So, the vials were weighed and 0.5 

mL of the release medium (NaCl 0.9% w/v) were put carefully in order to avoid mixture. At pre-

determined intervals, the release medium was removed, the vial was weighed and a new release 

medium was put to avoid saturation. The dissolution rate was calculated in terms of weight loss 

against time.  

 

In vivo model 

To accomplish the in vivo study, seventeen 7-week-old male Fischer 344 rats were used and they were 

obtained from the Multidisciplinary Center for Biological Investigation (CEMIB) at University of 

Campinas (UNICAMP). The prostate cancer induction was performed in 13 animals and followed a 

new protocol based on Fávaro et al. (2014) [11] in which the animals are ready to be treated in 

approximately four months. Firstly, the animals received a daily subcutaneous injection of 100 mg kg
-1

 

testosterone cypionate diluted in 0.5 mL of peanut oil for three days. Then, the animals were 

anesthetized with 5 mg kg
-1

 of 2% xylazine hydrochloride and 60 mg kg
-1

 of 10% ketamyne 

hydrochloride in order to perform 0.5 cm suprapubic incision and inoculation of 0.2 mL of 15 mg kg
-1

 

of n-methyl-n-nitrosourea (MNU) dissolved in 0.3 mL of 1 M sodium citrate (pH 6.0) and 25% PF-

127, which allows in situ gelation of the solution. After one week, the animals received subcutaneous 

injections of 5 mg kg
-1 

testosterone cyprionate diluted in 5 mL of peanut oil on alternate days for 120 

days.  

Of the total number of animals, 4 animals comprised the healthy control group (Control, n=4, received 

no cancer induction) and 4 comprised the cancer group (Cancer, n=4, received no treatment), both 

groups received physiological saline (NaCl 0.9% w/v) for treatment. The rest of the animals were 

divided in 3 groups (n=3): Group S1 was treated with S1 system, Group S2 was treated with S2 

system and Group S3 was treated with S3 system. The treatment consisted of a weekly-dose of 

intraperitoneal inoculation of 0.3 mL of the respective treatment for 30 days. To prevent gelation 

inside the needles, the systems were kept in ice bath before each application. The animals received 

water and the same solid diet ad libitum (Nuvilab) and were allocadted in single solid-bottom boxes 

lined with wood shavings in a room with controlled light and temperature (12 hours light and 12 hours 

dark, 20-25C). The experimental protocol followed ethical principles in animal research. After 

treatment, the animals were euthanized and the occurrence of macroscopic changes were observed.  

 

3.  Results and Discussion 

 

Synthesis and characterization of MSNs  

Transmission electron microscopy images (Fig. 1a) show MSNs with spherical morphology and size 

distribution from 45 to 75 nm. Nitrogen-sorption experiments using BET and BJH methods revealed 

that the superficial area was 970 cm
2
 g

-1
 and the pore volume was 1.6 cm

3
 g

-1
, with an average pore 

diameter of 4.8 nm. The nitrogen-sorption isotherm (Fig. 1b) shows an adsorption pattern that 
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resembles a type IV isotherm (IUPAC) with a subtle stepwise behavior around 0.4 P/P0, which is 

characteristic of well-ordered mesoporous materials [12].  

 

 
Figure 1. a) TEM images of MSNs with size distribution histogram (measuring at least 100 

nanoparticles) b) Nitrogen sorption isotherm of MSNs 

 

Synthesis and characterization of hybrid systems 

The hybrid systems were synthesized and firstly characterized regarding their Tgel (Table 1). All 

systems have a Tgel around 20C, which allows easy manipulation of them during dose applications 

and a rapid gelation inside the animal body (which temperature is around 35C).  

  

Table 1. Description of the hybrid systems. 

System Components and final concentration Gelation temperature 

(Tgel, C) 

S1 
PF-127 (18%) 

DOX (1.25 mg mL
-1

) 
21.0 ± 0.5 

 

S2 

PF-127 (18%) 

DOX (1.25 mg mL
-1

) 

MSNs (1.0 mg mL
-1

) 

 

21.0 ± 0.5 

 

S3 

PF-127 (18%) 

DOX (1.25 mg mL
-1

) 

MSNs (5.0 mg mL
-1

) 

 

22.0 ± 0.5 

 

 

 The achievement of long-term release was confirmed during the in vitro dissolution experiment 

(Fig. 2). Taking into account the concentration gradient induced by cells permanently on the hydrogel, 
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it is indeed expected that the hybrid system will delay the release of the components (DOX and MSNs, 

when it is the case) after the application.  

 

 
Figure 2. In vitro gel dissolution profiles of the systems. 

 

In vivo macroscopic analyses 

After treatment, the animals were euthanized and macroscopic changes were observed in order to get 

preliminary information on the antitumor potential of the systems (Table 2). 

 

 

Table 2.  Observed macroscopic changes of five experimental groups. 

Macroscopic observation Control Cancer S1 S2 S3 

No macroscopic changes 100% - 33,3% 100% 100% 

Cardiomegaly - - 66,6% - - 

Hernia - - 33,3% - - 
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Lesion in prostate base - 100% 33,3% - - 

 

 

The results from Table 2 show a decrease in frequency of lesions that is proportional to MSNs 

concentration. It might be a possible improvement in tumor conditions as the MSNs are added in the 

formulations, calling the attention for the role of the nanoparticles in this process. Also, we can a high 

frequency of cardiotoxic effects in group S1 (the one treated with the system with no nanoparticles), 

probably caused by intrinsic toxicity of DOX, although these effects can not be seen in groups treated 

with systems containing nanoparticles (S2 and S3). This is particularly interesting once it suggests that 

the MSNs might lead to a decrease in drug toxicity.   

It is known that nanoparticles are submitted to the enhanced permeability retention (EPR) effect, 

that allow macromolecules and particles up to 100 nm to accumulate in interstitial space of tumor cells 

[13]. This may increase the delivery of DOX. In turn, the prolonged and sustained release promoted by 

the hydrogel and the MSNs might protect the organisms from the intrinsic toxicity of the drug, 

increasing the efficacy of the treatment. 

 

4.  Conclusions 

 

After treating rats with chemically induced prostate cancer, preliminary macroscopic analyses showed 

a possible improvement in tumor conditions that was proportional to MSNs concentration and a 

possibly cardioprotection induced by the MSNs. The results suggest that the nanoparticles might play 

an important role in the treatment and that they have good perspectives to minimize the side effects of 

DOX. It might be occurring a combined effect from DOX and MSNs, caused by EPR effect along 

with sustained and prolonged release of the drug. This avoids premature degradation of DOX and 

enables its cell internalization, achieving a better drug distribution, increasing the efficacy of the drug 

and possibly decreasing its toxicity.  
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