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ABSTRACT 
In this paper, we report the employment of surface-core fibers for hydrostatic pressure sensing. To our knowledge, this is 
the first demonstration of the use of these fibers for the referenced purpose. Theoretical simulations of the fiber structure 
were performed in order to estimate fiber phase and group birefringence values and its pressure sensitivity coefficient. In 
order to test fiber performance when acting as a pressure sensor, the same was placed in an polarimetric setup and its 
spectral response was measured. A sensitivity of 4.8 nm/MPa was achieved, showing good resemblance to the expected 
sensitivity value (4.6 nm/MPa). 
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1. INTRODUCTION  
The development of pressure sensors based on optical fibers is very important due to the numerous advantages 

provided by this sort of setups. Among them, one can identify their intrinsic electromagnetic immunity, robustness, 
tunable sensitivity and dynamic range and the possibility of being set in a compact size. Optical fiber pressure sensors 
are, thus, very useful for acting in harsh environments such as underwater petroleum exploration sites.1 

Specially designed birefringent optical fibers, such as the photonic crystal ones, are often used for this purpose1, 2, 3, 4. 
Usually, they are set in polarimetric configurations which allow the orthogonal modes that travel along them to interfere. 
The spectral response of these configurations is characterized by the existence of interferometric fringes whose spectral 
position shifts according to the pressure conditions to which the fiber is subjected (as a manifestation of the photo-elastic 
effect). To characterize the relation between this wavelength shift and the applied pressure, one defines a sensitivity 
coefficient CS, as expressed in Eq. 1.3 

 ∆ఒ୼௉ ≡ ௌܥ ≈ ఒீ డ஻డ௉                                                                             (1) 
 

In Eq. 1, Δλ is the spectral wavelength shift of an interferometric fringe caused by the application of an external 
hydrostatic pressure variation ΔP. Besides, λ is the central wavelength of the considered fringe. G and ∂B/∂P are 
respectively the fiber group modal birefringence and the phase birefringence derivative with respect to pressure. 

In this paper, we report, to our knowledge, the first demonstration of a hydrostatic pressure sensor based on a 
surface-core optical fiber5. The main advantage of using surface-core optical fibers instead of employing photonic crystal 
fibers in pressure sensing measurements is the ease of fabrication. Preparation of photonic crystal fibers can be very 
demanding and time consuming. The fabrication method of surface-core fibers is, in turn, very simple since it is based on 
the merging of a germanium doped silica rod to a silica tube followed by a standard fiber drawing process5. The off-
center core, on the other hand, can not be trivially spliced to standard single mode fibers – an issue to be addressed in 
future if all-fiber setups are desired.  

In the next sections, the performance of the proposed sensor is analyzed. To do this, a theoretical study of fiber 
characteristics is firstly provided and then compared to the experimentally measured data. 

2. STUDY OF FIBER PRESSURE SENSITIVITY 
In order to study the surface-core fiber pressure sensitivity, whose measure is given by the CS coefficient (Eq. 1), 

one needs to obtain information about fiber phase and group birefringence. To attain this goal, one proceeded with the 
performance of numerical simulations by using a commercial finite element-based software. Figure 1a presents the 
simulated idealized fiber structure. The core region (darker area) was assumed to have an elliptically symmetric graded 
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