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Abstract. The Pierre Auger Observatory studies the most energetic cosmic rays arriving

at Earth, those with energies from 1017 eV up to 1020 eV and beyond. In continuous oper-

ation since 2004, the Observatory employs two complementary detection techniques for

measuring air showers induced by those extremely energetic particles. For the past few

years new detectors and techniques are being added in order to augment the sensitivity

of the measurements. Data accumulated in ten years have led to major advances in our

knowledge of the origin and nature of cosmic rays. We present a summary of the latest

results for the spectrum of cosmic rays, their arrival directions and composition, as well

as the challenges for the future operation of the Observatory.

1 Introduction

Since the discovery of cosmic rays a century ago, the study of these high-energetic particles repre-

sents a challenge. Arriving at Earth with energies from 109 eV up to 1020 eV and above, their origin,

propagation, and chemical composition have always piqued the interest of astrophysicists and parti-

cle physicists. A lot has been learned about these cosmic particles, mainly consisting of protons and

atomic nuclei. The biggest question remains the elucidation of the characteristics of the particles at

the upper end of spectrum. Understanding the acceleration processes up to macroscopic energies that

they have undergone at their sources and the details of their cosmological propagation is already chal-

lenging. The flux of extremely energetic particles reaching Earth is very low, only about one such per

square kilometer per year above 1019 eV, therefore requiring large detector arrays and long observa-

tion times to obtain any significant clues about these particles. Due to this low flux, it is not possible

to measure their properties directly, and the study of ultrahigh-energy cosmic rays (UHECRs) is pur-

sued through the measurement of the extensive air showers they induce when striking the atmosphere.

For primary cosmic particles of 1018 eV, the first hadronic interactions with nuclei in the atmosphere

occur at energies already beyond those attainable at terrestrial accelerators like the LHC, and their

study allows one to establish a link between cosmic-ray physics and high-energy physics. Tracing

back, from the detected secondary particles, the properties of the high-energy primary that initiated

a shower, requires extrapolations of what we learned from accelerator experiments at energies up to

two orders of magnitude less.

ae-mail: carola@ifi.unicamp.br
bFull author list:http://www.auger.org/archive/authors_2014_08.html

 
 

DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2015

/

0 0  (2015)
201epjconf

EPJ Web of Conferences ,
0 059

9
5

5 4
4
1

1

�����������	
������������������������������������������������������������������������������������������������
�������

�������������������������������������
������������������������
��������������� ��������!����
��
�����������

6
6

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20159504016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296760386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20159504016


The Pierre Auger Observatory faces the challenge of studying the origin and the nature of cosmic

rays of ultrahigh energies. As the largest cosmic-ray observatory ever built, it covers an area of 3000

km2 in the Argentinian pampa, near the town of Malargüe, in the province of Mendoza. Situated at

32.5◦ S, 69.5◦ W and at 1400 m a.s.l., its location is privileged, allowing the observation of the region

around the center of our Galaxy. The atmospheric conditions are favorable to the measurement of

air showers through the fluorescence light emitted by nitrogen molecules after being excited by the

billions of charged particles of an ultrahigh-energy air shower. Detecting UHECRs continuously since

2004, the Pierre Auger Observatory exploits two complementary detection techniques: a large surface

array of 1600 water-Cherenkov detectors at the ground (SD) [1] and 24 fluorescence telescopes (FD)

[2] disposed on the perimeter of the array and overlooking the huge atmospheric volume above it. The

FD reaches a duty cycle of 13%, operating only during clear moonless nights. The telescopes provide

a means of obtaining an almost calorimetric measurement of the shower energy, and anchoring the

energy calibration for the SD. With the FD the longitudinal development of extensive air showers

in the atmosphere can be measured simultaneously (in “hybrid” mode), revealing clues about the

mass composition of the primary particles. The surface array operates almost full time, registering

air showers with a duty cycle of 98%. From the lateral distribution of secondary particles at the

ground, certain size parameters are measured for each air shower, and through the calibration of

these parameters using data from both detectors, the energies of the corresponding primary particle

can be inferred. The SD comprises two regular configurations, one covering the whole extension

of the Observatory with water-Cherenkov detectors disposed on a triangular grid of 1500 m size,

and a smaller infill area covering 30 km2, where 60 additional surface detectors are deployed to

complete a subarray with half of that spacing. In the area of the infill, muon detectors (AMIGA)

[3] and three additional telescopes with an elevated field of view (HEAT) [4] are installed, allowing

an extension of the observed energy range down to 1017 eV. Over the last six years, some additional

detectors have been added to the Observatory, exploring the detection of air showers through signals

in the radio band (AERA) [5], and more recently, in the GHz band (AMBER, EASIER, MIDAS) [6].

Performing precision measurements of the fluorescence light in the atmosphere above the Observatory

also requires a thorough monitoring of local atmospheric conditions [7]. The performance of all

detectors is continuously monitored to assure high quality of the data [8].

2 Energy spectrum

The latest spectrum reported by the Pierre Auger Observatory includes four data sets collected until

the end of 2012 [9]. These data sets are combined to compose the spectrum shown in figure 1: hybrid

events measured with both the FD and the SD, events with the 750 m SD subarray and with the 1500 m

full SD array, the latter two analyzed separately depending on their zenith angle being below or above

60◦ (hereafter called “vertical” and “inclined”, respectively). The flux J(E) is multiplied by E
3 to favor

an easy identification of features in the power-law spectrum E
−γ. A maximum-likelihood method

is used to combine the four data sets, providing the relative normalization. Smearing corrections

are applied to take into account possible bin-to-bin migrations. About 130,000 events compose this

spectrum. The systematic uncertainty in the energy scale is 14% [10] and the energy resolution for

events measured only with the SD is better than 12% above 1019 eV [11]. Two features can be clearly

identified in the resulting spectrum: a sharp hardening of the spectrum at the so-called “ankle”, and

a suppression of the flux at the highest energies. At the energy of 5×1018 eV corresponding to the

ankle, the power-law index changes from 3.23±0.07 to 2.63±0.04. Above 2×1019 eV the spectrum

starts to deviate from this power law, being suppressed with respect to what would be expected by

extrapolating the spectrum above the ankle. At 4×1019 eV the flux is half of that expected from that

extrapolation. The significance of the suppression is 20σ.
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Figure 1. Left: The energy spectra obtained from hybrid events, and from data of the 750 m and 1500 m SD

arrays for vertical and inclined showers measured at the Auger Observatory. Right: The combined spectrum,

with the number of events shown in each energy bin. The arrows represent upper limits at an 84% confidence

level [9].

There are different scenarios to explain the causes of both the ankle and the suppression in the

spectrum. Usually changes in the spectrum index are attributed to different origins, to changes in the

cosmic-ray composition, to different processes occurring during the propagation of UHECRs from

their sources to Earth, or else to a combination of these alternatives. The ankle can either indicate

the transition from Galactic to extragalactic cosmic rays [12], or the distortion of an extragalactic

proton-dominated spectrum as a consequence of e
± pair production in interactions of these protons

with photons from the cosmic microwave background (CMB). This latter scenario, known as the “dip

model”, requires a pure-proton composition, since heavier nuclei do not show this feature [13]. In

this scenario the transition from Galactic to extragalactic cosmic rays would occur at lower energies,

around 1017 eV. On the other hand, if the ankle were the indication of such a transition, cosmic rays of

1017 eV would mostly originate from within our Galaxy, and their escape from it by diffusion would

be expected to cause a dipole modulation in their angular distribution in this energy region.

The first prediction of a suppression of the flux at the highest energies dates from 1966, when soon

after the discovery of the CMB radiation, Greisen [14] and, independently, Zatsepin and Kuz’min [15]

foresaw this possibility as a consequence of energy losses caused by interactions of UHECRs with

the CMB on their way to Earth. Protons of energies above 4×1019 eV can suffer pion photoproduc-

tion through the delta resonance, losing about 20% of their energy in each interaction. If UHECRs

were heavy nuclei, they would also interact with CMB photons and lose part of their energy through

photodisintegration. These processes limit the distances of possible astrophysical sources from us,

constraining them to lie within a sphere of radius ≈100 Mpc. An alternative interpretation of the

suppression is that the sources could be reaching the limit of their acceleration capability.

Details of the Auger spectrum were compared with theoretical predictions assuming different

extragalactic astrophysical scenarios, pure-light or pure-heavy compositions, and two maximal accel-

eration energies at the sources, 1020 and 1020.5 eV. Auger flux measurements over the whole energy

range from below the ankle up to the suppression region are in better agreement with predictions

assuming a maximal acceleration energy of 1020 eV, and exclude a pure-iron composition [11].

The energy spectrum of UHECRs turns out to be most likely the result of multiple processes. In an

intricate way, the spatial distribution of their sources, the acceleration process, the interactions suffered
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along their propagation, all affect the spectrum measured at Earth. Clearly, the measurement of the

energy spectrum alone does not allow us to distinguish between the different scenarios mentioned

above and complementary measurements of the mass composition are needed.

3 Mass composition

Identifying the mass of primary particles is one of the biggest challenges in the study of UHECRs.

Most of the time, our knowledge relies on comparisons between measurements of certain shower ob-

servables and the predictions from shower simulations, which, in turn, use extrapolations of hadronic

interaction models tuned to describe interactions at accelerator energies at least one order of magni-

tude less.

Due to the hybrid nature of the Pierre Auger Observatory, it is possible to measure air-shower

observables that hold information about the mass of the primary particle that initiated the air shower.

On the one hand, the fluorescence telescopes allow us to follow the longitudinal development of air

showers in the atmosphere. The energy deposited in the atmosphere is predominantly due to the elec-

tromagnetic component of the shower cascade, depending on the air mass traversed, referred to as

the slant depth X. Applying quality criteria in the selection of events, the mean atmospheric depth at

which the showers in a certain energy range deposit the maximum energy in the atmosphere, 〈Xmax〉,

and its fluctuations, σ(Xmax), can be obtained. On the other hand, the time structure of particles reach-

ing the surface detector array on the ground allows us to measure the distribution of muon production

distances and from that distribution infer the slant depth at which the production of muons reaches its

maximum, X
μ
max. The depths of both maxima are, of course, strongly correlated, mainly through the

depth of the first interaction. At the same time, these measurements provide a means of testing and

constraining models of hadronic interactions at the energies involved in the shower. Measuring the

longitudinal profile of air showers, the FD is sensitive to the first interactions which occur near the top

of the atmosphere. The SD, in measuring the particles reaching the ground, is sensitive to the whole

hadronic cascade. The first two moments of the distributions of Xmax and X
μ
max are then compared

to the results of Monte Carlo simulations of complete air showers, adopting for the generation of the

hadronic interactions the models Sybill 2.1 [16], QGSJetII-04 [17] and EPOS-LHC [18]. The last two

models already had their parameters tuned to recent data from LHC, and are extrapolated to the ener-

gies involved in air showers. Starting with the mean depth of shower maximum and its fluctuations,

it is expected, from a simple shower model assuming that a nucleus can be treated as a superposition

of its nucleons (and confirmed by results from simulations), that nucleus-induced showers develop

higher in the atmosphere, resulting in lower 〈Xmax〉 than for proton-induced ones. The distribution of

〈Xmax〉 is also narrower for nucleus-induced showers than for proton-induced ones, resulting in smaller

σ(Xmax).

The measurement of the distributions of Xmax of air showers with energy above 1017.8 eV as mea-

sured with both the FD and the SD was recently published by the Auger Collaboration [19], presenting

the distributions of Xmax for eighteen energy bins. These distributions were obtained after applying

rigorous selection criteria, yielding nearly bias-free measurements. The effects of acceptance and

Xmax resolution were carefully taken into account, both being parametrized as a function of energy

and used in the deconvolution of the measured distributions to obtain the true distributions. The reso-

lution in the measurement of Xmax varies from 25 g cm−2 in the lower energy bin to 12 g cm−2 at the

highest energy end. After correcting for acceptance and detection resolution, 〈Xmax〉 and σ(Xmax) are

compared to the predictions from simulations, assuming the three hadronic interaction models men-

tioned above, as shown in figure 2. Clearly, these observables do not follow a constant rate change

with energy as predicted from simulations. Assuming that those models give a fair representation of
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interaction models [19].

the hadronic interactions in the shower, the measurements of both 〈Xmax〉 and σ(Xmax) favor a change

from a proton-like composition at around 1018.3 eV towards a heavier one for energies above the ankle

and an increase in the fraction of intermediate and heavier nuclei in the primary cosmic rays up to

1019.6 eV. From the measured values of both observables, and assuming the same interaction mod-

els, it is possible to determine the mean logarithmic mass 〈ln A〉 of the primaries and its dispersion,

where A stands for the mass number of the primary particle [19]. In figure 3, the two first moments of

the logarithmic mass distribution resulting from this procedure are shown and also indicate a change
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from a light to an intermediate-light composition, with 〈ln A〉 increasing slowly above the energy of

the ankle. Unphysical values are obtained in the case of QGSJetII-04 at higher energies.

The Pierre Auger Collaboration has also examined the implications of the measured Xmax distribu-

tions for the composition of primary cosmic rays [20]. Rather than using only the first two moments

of the distribution, its shape is used in this analysis, maximizing the information and reducing possible

degeneracies in the interpretation. The whole hybrid Xmax data set between 1017.8 eV and 1020 eV is

used in the analysis, binning the showers in intervals of energy and Xmax. A template of Xmax distri-

butions for each primary species is created using the three hadronic interaction models EPOS-LHC,

QGSJetII-04 and Sibyll. The simulated Xmax for each species is determined by a quadratic interpo-

lation around the peak as a function of slant depth. The template consists of the binned distribution

after including effects of acceptance and measurement resolution. To carry out the comparison with

the data, for a given energy bin the value in the template is weighted according to the fraction of each

species. A binned maximum-likelihood method is then used to find the best fitting combination for

these species. As a result of this analysis, it was shown that considering only a mixture of protons

and iron nuclei, the fit qualities are poor throughout the whole energy range for all three interaction

models. Although the peak data values lie between those for protons and iron nuclei, the resulting

distributions are too narrow. When nitrogen nuclei are included in the analysis, the fit results accept-

able only for EPOS-LHC. Further including helium nuclei results in all models being able to describe

the data within systematic uncertainties over most of the energy range. Including the intermediate

components brings the models into remarkable agreement in their predictions for the proton and iron

nuclei contributions, despite large differences in the remaining composition. A substantial change in

the proton fractions is observed over the whole energy range, dropping to near zero just above 1018 eV

with a possible resurgence at higher energies. In the region of the ankle, the fraction of protons in the

primary flux is at the level of ∼90%. Details of this analysis are reported in [20].

The analysis of 〈Xmax〉 and σ(Xmax) relies on measurements of hybrid events, thus suffering from

the lower number of events measured during the shorter duty cycle of the FD. The analysis of 〈X
μ
max〉

exploits the higher number of showers measured with the SD, and therefore also reaches higher ener-

gies. Results from simulations indicate that this quantity depends on the mass of the primary particle

in a similar way as Xmax, its average and dispersion being smaller for heavier primaries compared to

those obtained for lighter ones. An example of the X
μ
max distribution for showers initiated by protons

and iron nuclei of 3×1019 eV is shown in figure 4 (left), obtained with simulations adopting EPOS-

LHC as interaction model [21]. The analysis of muon production depths was performed on showers

of energies above 2×1019 eV detected at the Auger Observatory from January 2004 up to December

2013. In the construction of the distributions of muon production depths, only muons from inclined

showers with zenith angle between 55◦ and 65◦ and within a distance from the shower core between

1700 m and 4000 m were included, thus allowing a clear selection of the signal due to the muonic

component, without any bias arising from the electromagnetic component. In figure 4 (right), the re-

sulting 〈X
μ
max〉 are shown for five energy bins, and compared to predictions from simulations adopting

QGSJetII-04 or EPOS-LHC. Both models predict a linear evolution of 〈X
μ
max〉 with the logarithm of

the energy, although with a systematic difference of about 50 g cm−2. The data points are bracketed by

the lines following predictions of the simulations for proton and iron primaries with the QGSJetII-04

model, and fall below those predicted from simulations with EPOS-LHC. Furthermore the data show

a flatter trend than predicted for a pure-proton or a pure-iron composition. From these results, it is

also possible to use the muon production depth as a tool to constrain hadronic interaction models.

Assuming that the shower simulations give a fair representation of the real processes occuring in

air showers, it is possible to compare them to the data and derive clues about the primary mass com-

position. In a similar procedure as followed for Xmax, the measurements of 〈X
μ
max〉 can be converted

EPJ Web of Conferences

04016-p.6



]������max

μ

X
400 500 600 700 800 900

e
n

tr
ie

s

0

10

20

30

40

50

60

70

80

90

proton

iron

E [eV]
1910×2 1910×3 2010

]
2

 [
g

/c
m

〉
m

a
x

μ
X〈

400

450

500

550

600

198 122 92 42 27

Epos-LHC

QGSJetII-04

proton

iron

Figure 4. Left: X
μ
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between 55◦ and 65◦, simulated with EPOS-LHC. Right: Evolution of measured 〈X
μ
max〉 with energy, compared

to the predictions of simulations using EPOS-LHC and QGSJetII-04 for proton and iron showers. The brackets

represent the systematic uncertainty. The number of showers is shown for each energy bin [21].

to 〈ln A〉 using the same interaction models. The outcome of the conversion is shown in figure 5 for

the two models QGSJetII-04 and EPOS-LHC [21]. On the one hand, EPOS-LHC predicts primaries

heavier than iron and the values of ln A obtained from the measurements of Xmax and X
μ
max are in-

compatible at a level of 2.5σ. On the other hand, although QGSJetII-04 yields compatible values for

ln A, it does not describe in a consistent way the first two moments of the ln A distribution obtained

with the FD as already shown in figure 3. From these results one can thus conclude that none of the

interaction models recently tuned to LHC data provides a consistent description of Auger data on the

electromagnetic and muonic shower profiles.

Figure 5. Conversion of 〈Xmax〉 (black triangles) and 〈X
μ
max〉 (red circles) to 〈ln A〉, as a function of energy, for

the hadronic interaction models QGSJetII-04 (left) and EPOS-LHC (right) [21].

4 Arrival directions

The arrival direction distribution is an important observable in the search for sources or source regions

of UHECRs and for pointing out the transition from Galactic to extragalactic cosmic rays. A thorough
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analysis of the dipole anisotropy in the equatorial plane was performed in the energy region of the

ankle with data from the 1500 m SD array and from the 750 m infill array [22]. Different methods

were applied in the analyses of data below and above 1018 eV, and the results are shown in figure 6 for

the amplitude (left) and phase (right) of the first harmonic. For three energy bins above 1018 eV, the

measured amplitudes have a probability of less than 1% of originating by chance from an isotropic

distribution. Being more sensitive to a dipole anisotropy than the dipole amplitude, the phase angle of

the first harmonic shows a smooth change in direction with increasing energy, changing from pointing

to the Galactic center below 1018 eV to the opposite direction at higher energy. A prescription is

presently running to determine the statistical significance of this transition in the phase, and will end

in 2015. The small dipole amplitude resulting from this analysis already challenges models in which

cosmic rays are of Galactic origin up to the ankle.
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Figure 6. At left, the equatorial dipole amplitude of the reconstructed first harmonic in the arrival direction

distribution is shown as a function of energy. The dashed line indicates the upper limit of the amplitude resulting

from fluctuations of an isotropic distribution at a 99% confidence level. At right, the phase of the first harmonic

as a function of energy is shown as reconstructed from data up to 2011. The solid line corresponds to the phase

ϕ= 263◦, and the dashed line is obtained from a fit assuming a logarithmic evolution of the tangent of the phase

with energy [22].

An update of the correlation between arrival directions of the highest-energy cosmic rays and the

directions of active galactic nuclei from the Véron-Cetty and Véron catalogue [23] was reported by

the Pierre Auger Collaboration in 2010 [24]. In this update the fraction of correlation is estimated as

(33±5)%, compared to the prediction of 21% obtained assuming isotropy. The probability that this

result would originate from a fluctuation from an isotropic distribution is 9×10−3.

Recently, the Pierre Auger Collaboration and the Telescope Array Collaboration published the

results for the dipole and quadrupole moments combining their data sets of arrival directions above

≈1019 eV in a full-sky coverage [25]. The region of the sky for which the fields of view of both obser-

vatories overlap provides the cross-calibration factor for the different exposures and the compensation

of systematic uncertainties due to different energy scales. No significant deviation from isotropy at

any scale is found throughout the various analyses. Upper limits on the amplitude of the dipole and

quadrupole moments are derived as a function of the direction in the sky, resulting between 7% and

13% for the dipole, and between 7% and 10% for a symmetric quadrupole. A sky map of the flux for

the joint data set, for an expansion up to �=4, is displayed in equatorial coordinates in the left panel

of figure 7, in units of km−2 yr−1 sr−1. For a better visualization of structures at intermediate angular

scales, the sky map of the significance is presented in the right panel of figure 7, smoothed out at a

15◦ angular scale, showing regions of relative excesses and deficits.
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Searches for primary photons [26], neutrons [27], and neutrinos [28] have also been performed

by the Auger Collaboration. No significant evidence of detection has been found in any of these

analyses, providing upper limits for photon fractions in the cosmic-ray flux, for the omnidirectional

neutron flux, and for the neutrino flux in the field of view of the Observatory. These resulting limits

also allow us to set constraints on some astrophysical scenarios of sources and propagation.

5 Conclusion

Results from the Pierre Auger Observatory clearly confirmed the sharp transition in the spectrum in-

dex at 4×1018 eV as well as the flux suppression above 5×1019 eV. Based on these results alone, it is

not possible to confirm whether the suppression is caused by the energy loss of cosmic rays during

their propagation (the so-called GZK effect, after Greisen, Zatsepin, and Kuz’min), or is rather a sig-

nal of the maximum acceleration at their sources. To answer this question, the Auger Collaboration is

currently proposing an upgrade of the Observatory, with additional detectors aiming at a better identi-

fication of the chemical composition of the primary particles, mostly increasing the mass sensitivity of

the Observatory in the highest-energy region. To accomplish the increase in mass sensitivity, the de-

tectors that will complement the surface detector array focus on improving the discrimination between

the electromagnetic and muonic components of the showers. Measuring the identity of the primary

cosmic ray on an event-by-event basis will help to address the issue of the maximum acceleration

capability of the sources, if the suppression appears at energies proportional to the primary charge.

It will also allow an improved study of anisotropies by selecting those primaries with a small charge

and of hadronic interactions at center-of-mass energies an order of magnitude above those presently

attainable at the LHC.
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