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Abstract.
In this work a subtracted kernel renormalization procedure (SKM) is applied to the chiral

NN potential up to next-to-next-to-next-to-leading-order (N3LO) to obtain the running of
the renormalized contact strengths with the subtraction scale µ and the phase shifts for all
uncoupled waves with contact interaction (S, P,D). We use two potentials constructed within
the framework of Weinberg’s approach to ChEFT, which provide a very accurate description of
NN scattering data below laboratory energies E ∼ 350 MeV , namely Epelbaum, Glöckle and
Meissner (N3LO-EGM) and Entem and Machleidt (N3LO-EM). For both potentials, we consider
a large cutoff (30 fm−1) and analyze the phases and the running of the contact strengths with
the subtraction point µ by making a fit of the K-matrix with five subtractions to the K-matrix
from the Nijmegen II potential at low energies (E ≤ 20 MeV).

1. Introduction
Quantum Chromodynamics (QCD) is widely accepted as the fundamental theory of strong
interactions. The degrees of freedom described in the QCD Lagrangian are quarks and gluons.
The strength of the interaction is strongly energy dependent and decreases as the energy
increases. As a consequence, the QCD coupling constant αs decreases for large momentum
and the quarks inside the hadrons behave as free particles. Thus, in the high-energy regime αs
is very small and QCD can be treated perturbatively. On the other hand, in the low-energy
regime the QCD coupling constant increases and perturbation theory can no longer be applied.
Therefore, QCD is not effective to describe the strong interactions at low energies. To avoid
this problem alternative approaches to treat strong interactions in the non-perturbative regime
have been developed over the last two decades.

At low-energies the relevant degrees of freedom are baryons and mesons rather than quarks
and gluons. Hence, it is more convenient to use Effective Fields Theories (EFT) which are
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constructed with nucleons and pions as the relevant degrees of freedom. Weinberg proposed
an EFT formalism for the nucleon-nucleon (NN) interaction based on a chiral expansion of an
effective Lagrangian known as Chiral Perturbation Theory (ChPT) [1, 2, 3]. This approach,
first applied by Ordóñez, Ray and van Kolck [4] allows one to work with the NN interaction
perturbatively where the classes of the Feynman diagrams required to complete each order are
organised by a power counting scheme called Weinberg’s Power Counting (WPC). At leading
order (LO) the NN potential consists of one-pion-exchange (OPE) plus a contact term. At next-
to-leading order (NLO) two-pion-exchange (TPE) and O(p2) contact interactions are added, at
next-to-next-to-leading order (N2LO) there is an additional set of TPE diagrams and finally, at
next-to-next-to-next-to-leading order (N3LO) corrections to both OPE and TPE are included
along with O(p4) contact interactions.

At any order in the chiral expansion the NN interaction contributions have ultraviolet (UV)
divergencies and therefore a renormalization procedure is required. Usually a momentum cutoff
(sharp or smooth) is applied to the potential so that the integral in the Lippmann-Schwinger
(LS) equation becomes finite. An alternative procedure based on a kernel subtraction scheme
has been proposed to modify the scattering equation and keep the potential uncut. This method
was first introduced in Ref.[5] where the authors applied a single subtraction to renormalize the
NN interaction at leading order.

In this formalism only one scale parameter is introduced, the subtraction point µ, which is
the scale where a physical input for the two-body scattering amplitude has to be supplied in
order to fix the renormalized counter-terms. The number of subtractions necessary to render
the amplitude finite depends on the degree of divergence of the interaction. Each subtraction
introduces a factor of p−2 in the kernel of the LS equation. So, if the interaction has terms with
O(pd), at least d + 1 subtractions have to be performed in the LS equation kernel to generate
finite results.

A generalisation of the SKM method for any number of subtractions was developed in Ref.
[6] and it was shown that a non-relativistic Callan-Symanzik equation arises from the condition
that the two-body amplitude has to be invariant under the change of the subtraction point. The
renormalization group flow equation tell us how the driving terms have to be modified with the
renormalization scale in order to keep the scattering amplitude invariant.

In previous works this formalism was applied with three [7] and four [8, 9] subtractions in
the study of higher orders of NN interaction. In the latter, the Callan-Symanzik flow equation
with four subtractions was numerically integrated for the 1S0 channel and renormlization group
invariance of the method was shown explicitely.

2. Chiral forces at N3LO: renormalization with five subtractions
The NN potential at N3LO can be separated in three main contributions:

VN3LO = VOPE + VTPE + VContact . (1)

The first term is the one-pion-exchange potential which describes the long range part of the
interaction. The second is the two-pion-exchange potential that is associated with the mid-
range part and the last one is the contact term which parametrizes the short range part of the
interaction.

At N3LO, there are contact interactions only in the partial waves with J ≤ 2 and for
uncoupled channels we have twelve Low-Energy Constants (LEC):

V 1S0
Contact = C0 + C2 (p2 + p′2) + C4 (p2 × p′2) + C ′4 (p4 + p′4) ,

V 3P0, 1P1, 3P1
Contact = C1 (p× p′) + C3 (p× p′) (p2 + p′2) ,

V 1D2, 3D2
Contact = D4 (p2 × p′2) . (2)
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The OPE and TPE terms are given in terms of well known physical quantities like the axial
coupling constant, ga, the pion weak-decay constant, fπ, the nucleon mass, m, and the pion
mass, mπ. The LECs Ci and D4 stand for the strengths of the contact interactions which have
to be adjusted to reproduce the two-nucleon observables.

Both pion-exchange and contact interaction terms can lead to UV divergences when the
effective NN potential at a given order in the chiral expansion is iterated in the LS equation,
requiring a regularization and renormalization procedure in order to obtain well-defined finite
solutions. Both a sharp cutoff renormalization scheme [10] or a smooth cutoff regularization
function [11] can applied with very successful results.

In this work we renormalize the N3LO interactions by applying five subtractions to the kernel
of the LS equation for the K-matrix with an iterative procedure at a given momentum scale µ.
The LS equation for the K-matrix with five subtraction is given by

K5(p, p
′; k, µ) = V (5)(p, p′; k, µ) +

2

π
P
∫
dq q2 V (5)(p, q; k, µ) G(5)(q, k;µ) K5(q, p

′; k, µ) , (3)

where G(5) is the five-fold subtracted Green’s function

G(5)(q, k;µ) =

(
µ2 + k2

µ2 + q2

)5
1

k2 − q2
, (4)

and V (5) is the so called fifth-order driving term

V (5)(p, p′; k, µ) = V (4)(p, p′; k, µ) +
2

π
P
∫
dp p2 V (4)(p, q; k, µ)

(µ2 + k2)4

(µ2 + q2)5
V (5)(q, p′; k, µ) . (5)

Thus, for a given subtraction scale µ we determine the recursive driving terms by applying the
recursive procedure described in detail in our previous works. Then we insert the driving term
V (5) in Eq.3 and a finite solution for the K-matrix is obtained which can be used to calculate
the NN phase-shift at a given energy. In the next section we will show some numerical results
for all uncoupled channels up to J = 2.

3. Numerical results
In the following we present the numerical procedure used to fix the strengths of the contact
interactions and some results for the NN phase shifts and the running of the contact strengths
with the renormalization scale are shown.

3.1. Fitting Procedure
We compute the mean square function

F(µ) =
1

N

N∑
j=1

[K5(kj ; µ)−Kref(kj)]
2 , (6)

and obtain C(µ) by minimizing F(µ) for each value of the renormalization scale µ. We use
N = 21 points in the interval 0 ≤ kj ≤ 0.5 fm−1 (0 ≤ Ej ≤ 20 MeV). Once the strengths of the
contact interactions have been determined, the phase shifts can be obtained as

δµ(kj) = atan [−kj ×K5(kj ; µ)] . (7)

Note that we fit only the low-energy part of the K-matrix so that the results for higher energy
will be just predictions.
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Table 1. Strengths of the renormalized contact interactions, all given in fm, for the reference
scale µ0, in fm−1, for the EGM potential.

µ0 C0
3
√
C1

3
√
C2

3
√
C3

5
√
C4

5

√
C ′4

5
√
D4

1S0 0.97 -1.248 - -2.451 - 3.176 -0.646 -
3P0 3.00 - -1.707 - -0.288 - - -
1P1 1.90 - 0.429 - 0.416 - - -
3P1 1.50 - -0.499 - 0.722 - - -
1D2 5.25 - - - - - - -0.346
3D2 0.47 - - - - - - -0.614

Table 2. Strengths of the renormalized contact interactions, all given in fm, for the reference
scale µ0, in fm−1, for the EM potential.

µ0 C0
3
√
C1

3
√
C2

3
√
C3

5
√
C4

5

√
C ′4

5
√
D4

1S0 1.00 -0.838 - -2.798 - 3.388 -0.817 -
3P0 3.05 - 3.672 - -0.3 - - -
1P1 1.70 - 0.574 - 0.541 - - -
3P1 1.50 - -0.584 - 0.649 - - -
1D2 4.00 - - - - - - 3.094
3D2 0.47 - - - - - - -0.423

In Tables 1 and 2 we show the strengths of the renormalized contact interactions for the best
fit in each partial wave for the N3LO-EGM and N3LO-EM respectively. We define the scale
which provides the best fit as the reference scale µ0.

In Figs. 1 and 2 we show the phase-shifts for the 1D2 and 3D2 waves for both N3LO-EM
and N3LO-EGM chiral potentials compared to the Nijmegen partial wave analysis [12]. The
magenta and yellow bands correspond to a range for the renormalization scale µ. With the
exception of the 1D2 with the N3LO-EGM potential which doesn’t show a good fit, there is a
narrow range of the renormalization scale where the fits are very good up to Elab = 100 MeV.

The running of the contact strength D4 for the two potentials are displayed in Fig. 3 for the
uncoupled D-waves. In the case of the 3D2 channel (blue line), the running is nearly identical for
the two potentials and is similar to what was obtained by Epelbaum and Meissner with cutoff
regularization [13]. The strengths for the 1D2 channel (red line) is almost scale invariant in the
range 0 < µ < 2 fm−1.

Figs. 4 shows the phase-shifts for the 1P1 and 3P1 channels. In these channels a proper choice
for the renormalization scale range (see figure legends) allows a good prediction for the phases
up to Elab = 100 MeV like in the D-waves. The associated running of C1 and C3 are displayed
in Fig. 5, where we can observe that the running for C1 is rather stable (upper panels) but for
C3 there are regions with stability followed by sharp variations (lower panels). Note that C3 in
the 3P1 channel changes sign for N3LO-EM in the range 1 < µ < 2 fm−1 and for N3LO-EGM
there is a maximum for C3 at µ = 1.5 fm−1 in the 3P1 channel and at µ = 2.0 fm−1 in the 1P1

channel. In the range 2 < µ < 4 fm−1 the strengths of C3 are nearly the same for the 1P1 and
3P1 channels for both N3LO-EM and N3LO-EGM.
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Figure 1. Phase-shifts for the 1D2 channel from both N3LO-EM (left) and N3LO-EGM (right)
chiral potentials compared to the Nijmegen partial wave analysis.
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Figure 2. Phase-shifts for the 3D2 channel from both N3LO-EM (left) and N3LO-EGM (right)
chiral potentials compared to the Nijmegen partial wave analysis.
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Figure 3. Running of the contact strength D4 with the renormalization scale µ for the
uncoupled D-waves with both N3LO-EM (left) and N3LO-EGM (right) chiral potentials.
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Figure 4. Phase-shifts for the 1P1 (top) and 3P1 (bottom) channels from both N3LO-EM and
N3LO-EGM chiral potentials compared to the Nijmegen partial wave analysis.

0 , 5 1 , 0 1 , 5 2 , 0 2 , 5- 0 , 6
- 0 , 4
- 0 , 2
0 , 0
0 , 2
0 , 4
0 , 6
0 , 8

N 3 L O - E M

 

 

C 1 (fm
3 )

µ ( f m - 1 )

 
1 P 1
 
3 P 1

0 , 5 1 , 0 1 , 5 2 , 0 2 , 5- 0 , 5 0

- 0 , 2 5

0 , 0 0

0 , 2 5

0 , 5 0
N 3 L O - E G M

 

 

C 1 (fm
5 )

µ ( f m - 1 )

 
1 P 1
 
3 P 1

0 , 5 1 , 0 1 , 5 2 , 0 2 , 5- 0 , 4
- 0 , 3
- 0 , 2
- 0 , 1
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4

N 3 L O - E M

 

 

C 3 (fm
5 )

µ ( f m - 1 )

 
1 P 1
 
3 P 1

0 , 5 1 , 0 1 , 5 2 , 0 2 , 50 , 0

0 , 1

0 , 2

0 , 3

0 , 4
N 3 L O - E G M

 

 

C 3 (fm
5 )

µ ( f m - 1 )

 
1 P 1
 
3 P 1

Figure 5. Running of the contact strengths C1 and C3 with the renormalization scale µ for the
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Figure 9. Running of the contact strengths C0, C2, C4 and C
′
4 with the renormalization scale

µ for the 1S0 channel with both N3LO-EM and N3LO-EGM chiral potentials.

Now we turn to the channels with J = 0. The phase-shifts for the 3P0 wave are shown in
Fig. 6 where we can observe that the experimental data are described only for very low energies
(Elab ∼ 50 MeV) and for the same range of the renormalization scale, 3.0 < µ < 3.2 fm−1, the
N3LO-EM provides a wider band containing the at low energies.

The running for C1 and C3 in the 3P0 channel, displayed in Fig. 7, are very similar for
both N3LO-EM and N3LO-EGM. In fact, the difference between the strengths of the contact
interactions for the two potentials is nearly constant.

The phase-shifts for the 1S0 channel are very well described up to Elab ∼ 70 MeV with
renormalization scales in the range 0.95 < µ < 1.05 fm−1 for both N3LO-EM and N3LO-EGM,
as can be seen in Fig. 8. This is consistent with what has been obtained with four subtractions
at N2LO in Ref. [9].

Fig. 9 shows the running of the four contact terms present in the 1S0 wave and we can observe
that the strengths of the interactions for N3LO-EM and N3LO-EGM match for renormalization
scales in the range 0.6 < µ < 1.0 fm−1.

4. Summary and outlook
In this paper we have used the subtracted kernel renormalization method (SKM) with multiple
subtractions to obtain the phase shifts and the running of the contact strengths for all uncoupled
channels up to J = 2. We have considered two state of the art chiral potentials at N3LO and
performed five subtractions while keeping a large instrumental cutoff Λ = 30 fm−1.

In future works we will study the renormalization group invariance with N3LO potentials
by integrating the non-relativistic Callan-Symanzik flow equation in order to obtain an exact
solution (non-perturbative) for the driving terms in several channels of the NN interaction.
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[11] Epelbaum E, Glöckle W, and Meißner U G 2005 Nucl. Phys. A 747 362.
[12] Stoks V G J, Klomp R A M, Terheggen C P F and de Swart J J 1994 Phys. Rev. C 49 2950.
[13] Epelbaum E and Meissner U -G 2013 Few Body Systems 54 2175.

XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 630 (2015) 012056 doi:10.1088/1742-6596/630/1/012056

9




