
RESEARCH ARTICLE

Choosing the Most Effective Pattern
Classification Model under Learning-Time
Constraint
Priscila T. M. Saito1*, Rodrigo Y. M. Nakamura2, Willian P. Amorim3, João P. Papa4, Pedro
J. de Rezende5, Alexandre X. Falcão5

1Department of Computing, Federal University of Technology—Paraná, Cornélio Procópio, Brazil, 2 Big
Data Brazil, São Paulo, SP, Brazil, 3 Institute of Computing, Federal University of Mato Grosso do Sul,
Campo Grande, Brazil, 4 Department of Computing, São Paulo State University, Bauru, Brazil, 5 Institute of
Computing, University of Campinas, Campinas, SP, Brazil

* psaito@utfpr.edu.br

Abstract
Nowadays, large datasets are common and demand faster and more effective pattern anal-

ysis techniques. However, methodologies to compare classifiers usually do not take into

account the learning-time constraints required by applications. This work presents a meth-

odology to compare classifiers with respect to their ability to learn from classification errors

on a large learning set, within a given time limit. Faster techniques may acquire more train-

ing samples, but only when they are more effective will they achieve higher performance on

unseen testing sets. We demonstrate this result using several techniques, multiple data-

sets, and typical learning-time limits required by applications.

Introduction
Advances in digital technologies make large datasets commonly available, which demands
faster and more effective pattern analysis techniques. However, methodologies to find the most
suitable technique for a given application do not usually take into account the learning-time
constraint required by the application. One may argue that parallel processing is possible in
many situations and that machines are faster, but in practice datasets grow fast and opportuni-
ties for new applications continually emerge.

Consider a large database of face images obtained from many individuals through video
cameras and all possible applications involving face recognition and verification. When a cell
phone user uploads a video of her face to that database, such that a classifier can be trained to
identify her and unlock the cell phone, the learning time for this application should not take
more than a few seconds. In computer-assisted diagnosis of parasites [1], each microscopy
slide may contain hundreds of thousands of image components to be classified either as impu-
rity or as some type of parasite. Possible variations in the preparation of the slides, due to the
choice of reagent brands or human operator, demand retraining and updating the classifier
from time to time. The whole process should not take longer than a few minutes. Other
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applications, such as interactive segmentation of medical [2] and natural images [3], require
real-time response to the user’s actions. Fig 1 illustrates an example based on the method
described in [3]. The user draws labeled markers (a training set) inside and outside the object,
and segmentation is based on optimum paths from the competing markers in an image graph
(Fig 1a). These markers can easily contain tens of thousands of pixels, as modern digital cam-
eras can take pictures with tens of millions of pixels. Image segmentation first relies on a pixel
classifier, which is trained from the markers to create a fuzzy object map (Fig 1b). Second, the
image is interpreted as a graph, whose pixels are the nodes and arcs between pixels are
weighted based on intensity differences from the image and fuzzy object map (Fig 1c). For
higher effectiveness, the object should appear brighter than the background in the fuzzy object
map and arcs weights should be lower on the object’s border than elsewhere. The visual feed-
back from Fig 1a-1c guides the user to the image location where more markers must be
selected, improving segmentation along a few interventions (Fig 1d-1f). Note that, the user
should not have to wait longer than one second for a response after each intervention.

In general, applications in which a classifier must be trained upon user request (e.g., to
answer a query performed by the user) should provide interactive response time. Even without
user interaction, applications that require parameter optmization, using the accuracy of a clas-
sifier as criterion function, also require training and testing the classifier several times. As the
dataset grow large, this becomes a problem. A good example of this occurs when learning the
architecture of a convolutional neural network for feature extraction and classification—a hot
topic nowadays. The response time does not need to be interactive, but processing time limita-
tions may compromise the success of the optimization procedure by reducing the search space.
Feature selection from large datasets may be used as a similar example. In the case of face rec-
ognition in mobile devices, this may be considered a future application that will become reality
with the advances of cloud computing and communication networks. Currently, the mobile
devices provide mechanisms for face recognition that are independent of the user—i.e., the
design of the classifier does not consider the most informative samples to distinguish a particu-
lar user from other individuals with similar face characteristics. As a consequence of that, face
recognition in mobile devices does not work properly. In order to have a robust face recogni-
tion system, it is desirable to learn the most informative samples from a large negative dataset,
which could be stored and processed in a cloud system. During user enrollment, the important
negative samples could be mined and together with the face samples from the user could train
an user-specific classifier, which would be transmitted back to the mobile device, being the
whole process performed in interactive time. Furthermore, for research purposes, where some
techniques commonly take several minutes or hours to train a classifier, it is desirable to reduce
the learning time to no longer than a few minutes. After all, we may need to repeat experiments
hundreds of times in order to obtain statistically significant results and the increasing size of
the datasets may also prevent us from train the classifier with all labeled samples.

Methodologies to compare pattern classification models usually fix features, training sam-
ples, test samples, and accuracy measures for all classifiers. This approach is adequate when
evaluating the effectiveness of different techniques under the same conditions, but it contem-
plates neither learning-time constraints from the applications nor the fact that faster classifiers
may be able to achieve higher performance on the same unseen testing set, given an allowance
for a larger training set. For fairness with faster techniques and from a practical viewpoint, it is
important to relax the constraint of a fixed training set for all classification models, provided
that: (1) the training samples come from the same large learning set, and (2) all techniques
must choose their own training samples and complete training within a pre-established learn-
ing-time limit, granted by the application.
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In this work, we propose a methodology consistent with the above conditions. At first, a
large dataset is randomly divided into learning and testing sets. The learning set should be
large enough to contain representative samples from all classes. Given the learning-time limit
allowed by a given application, it is usually not feasible to train a classifier using all learning
samples. Therefore, the proposition is to start with a very small training set composed of ran-
domly selected samples from the large learning set. This initial training set is the same for all
classification models. Each classifier is then trained and subsequently evaluated on the learning
set. By assembling a subset of randomly chosen misclassified samples, containing no more
than the number of samples in the current training set, and incorporating it to the training set,
we prepare the stage for a new learning cycle. This three-step procedure is then repeated until
either (i) the learning-time limit from the application is reached or (ii) the number of errors
becomes zero. In this way, faster techniques may acquire more error samples and complete the
learning process with larger training sets. However, for their performance to be better on the
unseen testing set, they must be more effective in learning from their own errors. Moreover, in
order to achieve statistically significant results, this entire process, with distinct learning and
test sets, has to be repeated several times.

We have evaluated our methodology on large datasets, using several techniques, and subject
to the learning-time limits typically required by applications. We categorized these time limits
into very interactive (less than 1s), interactive (from 1s to 5s), nearly interactive (from 5s to 1

Fig 1. Example of interactive graph-based image segmentation. (a) The user draws labeled markers (a training set) inside and outside the object, and
segmentation is based on optimum path competition from the markers in an image graph. (b) Image segmentation first relies on a pixel classifier, which is
trained from the markers to create a fuzzy object map (the object should appear brighter than the background). (c) Second, the image is interpreted as a
graph, whose arc weights should be lower on the border of the object than elsewhere. (d)-(f) The visual feedback from these results guides the user to the
image location where more markers must be selected, improving fuzzy object map, arc weights, and so segmentation along a few interventions.

doi:10.1371/journal.pone.0129947.g001
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minute), and non-interactive (above 1 minute). As this work aims at presenting a new method-
ology for the evaluation of classifiers and not to endorse any particular technique, we opted for
standard implementations of each of the techniques used, since choosing optimized implemen-
tations might skew the results unfairly.

This work is organized as follows. We start by describing the background material and
related works. Next, we introduce the new methodology. Then, we discuss the experiments and
results. Finally, we present our conclusions.

Background
Many works have presented pattern classification models based on discriminant analysis, near-
est neighbors, neural networks, support vector machines and decision trees, among other tech-
niques. In [4] the authors carry out a performance study of well-known classifiers, comparing
the influence of the parameter configurations on the accuracy. They present a generic method-
ology to construct artificial datasets modeling the different characteristics of real data. Even
though theoretical properties and settings may be used to justify new techniques, most of the
literature compares the effectiveness of a proposed approach with respect to others for specific
applications. Methodologies for that comparison usually divide a dataset into two parts, train-
ing and testing sets, where the first is used to project a classifier and the second to measure its
errors [5]. This process must be repeated several times so that a sound conclusion on the statis-
tics of its results can be reached.

Several aspects must be carefully considered for such methodologies to work. Firstly, call to
mind that certain characteristics of the datasets (e.g., class imbalance) may require a specific
sampling strategy [6]. Also, distinct sampling strategies to create training and testing sets can
produce different estimates of performance [7]. The most popular ones are known as cross-val-
idation, hold-out, leave-one-out, and bootstrap. Many articles adopt cross-validation tech-
niques [8–11], despite their inherent trade-off regarding the number of folds and iterations. [9]
showed that ten-fold cross-validation has a lower variance than leave-one-out and bootstrap.
[10] and [11] hold running five separate iterations of two-fold cross-validation in order to
reduce the correlation between the training sets.

On the other hand, one aspect rarely considered is that those methodologies are sensitive to
the order of the samples in the dataset. [8] have evaluated the impact of the order of the sam-
ples in effectiveness, reproducibility, and generalization of the results. The authors showed
that, due to distinct orders, a few iterations of cross-validation can severely affect the conclu-
sions when comparing classifiers. [12] studied the consistency of statistical tests on individual
datasets and recommended a corrected t-test [13] across ten iterations of ten-fold cross-valida-
tion as the least sensitive to the order of the samples. Other studies offered general guidelines
for evaluation [14–17].

Different measures can also alter conclusions with respect to effectiveness. The literature
offers many measures, such as: named accuracy [18–21], misclassification/error/hit rate [22],
Mean Average Precision (MAP) [23], F-measure [24], H-measure [25], phi coefficient [26],
Receiver Operating Characteristics (ROC) curve [27], Area Under the ROC Curve (AUC) [28–
30], precision-recall curve [31, 32], while many other works [23, 25, 33–41] are devoted to opti-
mizing the most popular measures. [14] discussed some measures in details and also pointed
out how they differ, in order to define which one is the most suitable for a given experiment
(application). Some works have also employed distinct measures according to each specific
application domain [42].

The methodology presented in the next section can be used with any measure of effective-
ness, since it is able to maximize effectiveness under a learning-time limit, as required by
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applications. To the best of our knowledge, our methodology is unique in the sense that it takes
into account both the efficiency of the techniques in acquiring more knowledge (training sam-
ples) from the problem instance and their effectiveness in identifying the most representative
training samples (errors in a learning set) to lead to a more accurate classifier. The methodolo-
gies mentioned above also aim at maximizing effectiveness, but they attempt this without
regard for learning time. Given that each classifier selects its own training samples during the
learning phase and the number of learning iterations is dependent on its efficiency, our meth-
odology is robust with respect to the order of samples in the learning set. As we will see, the
fact that all classifiers start with a small training set, obtained from randomly selected samples
from the large learning set, considerably reduces the correlation between the initial training
sets among multiple executions of the method.

Methodology
In this section, we present the proposed evaluation methodology that considers efficacy and
efficiency at the same time. In order to accomplish a fair comparison, the proposed methodol-
ogy allows the classifiers to learn from their own errors, within a given time limit as required
by the application.

A dataset Z is first randomly divided into a learning set Z2 and a test set Z3. Due to the
learning-time limit of the given application, training with all learning samples is usually not
possible. So, an initial training set Z1 is created with a very small subset of randomly selected
samples from Z2, such that each class is represented by at least one sample.

After training each of the models with the same training set Z1, they are evaluated on
Z2nZ1. Next, we randomly select from the misclassified samples of each classifier a number of
samples to be incorporated into (its own) Z1 (this number is limited so as to, at most, double
the size of the current training set). Retraining, evaluation, and misclassified sample selection is
repeated until either the number of errors goes to zero or the learning-time limit T of the appli-
cation is reached. Within the learning-time limit T, each classifier has the opportunity to learn
from its own classification errors on the learning set Z2nZ1, as the training set Z1 increases.

This procedure works under the reasonable assumption that the most informative samples
can be obtained from the errors on Z2nZ1. So, after each learning phase, an improvement in
accuracy should also be expected on the unseen testing set Z3. Algorithm 1 details this learning
approach.

Algorithm 1: Learning Algorithm
input: A learning-time limit T, a learning set Z2 and a function λ(s) that

returns the correct label of any sample s 2 Z2.
Output: A supervised classifier.
auxiliaries: A training set Z1 and a listM of misclassified samples.

1 Z1 small random sampling from all classes in Z2;
2 repeat
3 M ;
4 Create a classifier instance I from Z1;
5 for each sample t 2 Z2nZ1 do
6 Compute the label L(t) using I;
7 if L(t) 6¼ λ(t) then
8 M M[ {t}
9 end
10 end
11 Z1 Z1[(random subset of samples fromM)
12 until (M = ; or learning time� T);
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Experiments
In this section, we describe the overall experimental methodology, including datasets, effective-
ness measure, classification models and the computational environment used. The experiments
were carried out 100 times with randomly generated learning set Z2 and test set Z3. After start-
ing off with an identical small training set containing at least one sample from each class, each
individual classifier assembled its own training set Z1 from Z2. The resulting training sets
ended up having different sizes, after the learning-time limit, according to the efficiency of
each classifier. All the experiments reported here were performed on an off the shelf desktop
computer featuring an Intel Core I5 processor and 4 GB of RAM. We used the standard C
implementations of each classifier, as well as their own specific training strategy, with or with-
out parameter optimization depending on the case, which is repeated during each learning iter-
ation. It is impossible to establish the same parameter optimization method for all classifiers,
because each classifier has its own mechanism. Some of them, such as OPF, does not require
parameter optimization. Note that, since the methodology can be used to select the most suit-
able classifier for any given application, we are not targeting any application in particular. The
experiments essentially demostrate the main characteristics of the methodology when compar-
ing classifiers in different scenarios (datasets and time constraints).

Dataset Description
For the experiments, we selected commonly available datasets of modest sizes with feature
spaces of various dimensions.

• Cod-RNA Dataset [43]: comprised of 488,565 samples, 2 classes and 8 features.

• Connect-4 Dataset: obtained from the UCI Machine Learning Repository [44] containing
67,557 samples, 3 classes and 126 features.

• Covertype Dataset: also obtained from the UCI Machine Learning Repository [45]; it con-
tains 581,012 samples, 7 classes and 54 features.

• IJCNN 2001 neural network competition [46]: consisting of 141,691 samples, 2 classes and
22 features.

• SensIT Vehicle (combined) [47]: made up of 98,528 samples, 3 classes and 100 features.

Effectiveness Measure Description
It is important to highlight that the proposed methodology can be used with any effectiveness
measure appropriate to the specific domain of application. The literature suggests several inter-
esting effectiveness measures, as previously stated. In our experiments, we adopted the F1
score, which Jardine and van Rijsbergen [48] defined as the normalized, weighted harmonic
mean of precision and recall:

F1 ¼ 2 � precision � recall
precisionþ recall

ð1Þ

Learning-Time Constraints
For each dataset, we used four different learning-time limits, which were empirically chosen to
simulate potential applications with different response times, so named: very interactive,
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interactive, nearly interactive and non-interactive. Table 1 presents the specified time limits for
each type of application.

For the sake of completion, the compared classifiers are briefly described in the following
subsections. For more details, see [49, 50].

Support Vector Machines. Support Vector Machines (SVM) [51], a widely used classifica-
tion model, is formulated as an optimization scheme that seeks to determine the hyperplane
which best separates two classes (or one class from the others). Also, given non-linearly separa-
ble classes, it is possible to apply kernels that transform the data, improving separation between
each class and the remaining ones. SVM’s main deficiency is that, depending on the size of the
training set, too much computational time is needed for convergence to a solution. This lack of
efficiency for large datasets may make SVM unfeasible in applications that require multiple
retraining phases with interactive response times. Moreover, the assumption of class-separabil-
ity in transformed space may not hold [52].

In our experiments, we used the latest version of the LibSVM package [49] with Gaussian
mapping function (denoted as KSVM), optimization of the parameters C and γ using 5-fold
cross-validation within the training set and a grid search over exponentially growing sequences
of C and γ (C = 2−5,2−3, . . ., 215 and γ = 2−15,2−13, . . ., 23), as well as the linear version [53] of
SVM (denoted as LSVM) and optimization of the parameter C through 5-fold cross-validation.
We also used a grid search over exponentially growing sequences of C.

k-nearest neighbors. The k-nearest neighbor (k-NN) algorithm is amongst the simplest
and most largely used of all classification techniques. k-NN classifies a given sample by assign-
ing it to the label most frequently present among its k nearest neighbors. For k = 1, a given sam-
ple is simply assigned to the class of its nearest neighbor and it corresponds to a first order
Voronoi tesselation of the training data. k-NN takes into account k neighbors, so making the
variance of the method less sensitive to noise and outliers. In this work, we estimated the value
for k using a leave-one-out procedure over the training set (k = 1,3,5).

Optimum-Path Forest. The Optimum-Path Forest classifier (OPF) [50, 54] is a graph-
based technique which models classification problems as optimum-path searches in graphs
derived from an adjacency relation between samples in a given feature space (a complete rela-
tion, in this paper). The nodes are represented by the feature vectors and the edges connect
pairs of them. Class representatives (prototypes) are chosen among the training samples in all
classes and used to classify the remaining samples based on lengths of paths on the graph. This
method has as advantage a very low computational training cost, given that it does not have to
optimize parameters. Moreover, it can handle some overlap among classes.

In our experiments, we used LibOPF [50], which is a free library, implemented in the C lan-
guage, for the design of classifiers based on optimum-path forest. The distance between feature
vectors was measured using log-euclidean distance.

Table 1. Type of application and time limits.

Type of Application Time Limit

Very Interactive up to 1 sec

Interactive 1 sec to 5 sec

Nearly Interactive 5 sec to 60 sec

Non-Interactive over 60 sec

doi:10.1371/journal.pone.0129947.t001
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Results
In this section, we discuss the average results obtained by following the approach presented in
the Methodology Section, with the experiments repeated 100 times with randomly selected
learning and test sets. In the preprocessing step, we employed a feature standardization to
avoid that attributes in larger numeric ranges dominate those in smaller ranges. We initialized
each learning instance with 0.01% of Z for the initial training set, Z1; 49.99%, for the learning
set, Z2nZ1; and 50.0%, for the test set, Z3. Given that each experiment was repeated 100 times
with randomly selected learning and test sets, this procedure resembles a 50 × 2 Monte Carlo
cross validation [55]. However, final training sets were constructed from this learning set by
each classifier. Given that sample selection is based on a fixed increment of 0.01% of jZ2j (the
learning set size) at each iteration, we can easily estimate the number of iterations, that each
classifier required to complete the learning process (sample selection and training) within each
given time limit, based on the final training set size. For instance, if the final training set con-
tains 0.05% of the learning samples, then the classifier required 5 iterations.

Concerning the problem of overlapped training sets in cross-validation methodologies, as
mentioned in the Background Section, we studied the correlation between each pair of training
sets to evaluate the effectiveness of our methodology with respect to the choice of statistically
different training sets (see Fig 2). The training sets present correlation below 0.2, being mostly
much lower than that. This indicates that our methodology really measures the generalization
ability of the classifiers for different training sets.

Tables 2–6 illustrate the effectiveness measure, namely the F1-score and the final training
set size for each classification model, grouped by the learning-time constraint over different
datasets.

From the experimental results for Cod-RNA dataset (Table 2), we see that both SVM strate-
gies are able to obtain relatively good accuracy even with small training sets. One of the main
issues with SVM is its non-scalability with respect to the number of training samples. Our
methodology allowed these methods to select their most representative samples for a reduced
training set.

In Table 3, we can see that faster techniques, such as OPF and k-NN, can acquire more sam-
ples within the time constraint as well as achieve higher mean accuracy. However, k-NN usu-
ally presents higher variance, being more sensitive to noise. Differently, OPF presents a more
stable performance (Tables 3–6), in general, especially in multi-class problems.

Some techniques can learn faster than others, building larger training sets. However, the
ability of the technique in selecting the most informative samples is more important than its
speed. This makes an interesting point with respect to the proposed methodology. It is fair to
all techniques in the sense that each one has the chance to mine the most informative samples
for training. Note that, Tables 2–6, show the final training set size of each technique and the
best technique is not always the one with largest training set. Indeed, faster techniques obtained
their maximal predictive performance only when they could effectively learn from their errors.

To provide a statistical analysis of the results, we performed a Friedman test [56] for each
pair of dataset and learning time constraint. Demšar [57] states that the Friedman test provides
reliable conclusions when the assumptions (normal distributions and sphericity) of the tradi-
tional multiple hypotheses testing ANOVA are violated.

Figs 3–7 illustrate a graphical representation of the post-hoc Nemenyi test [58], since we
rejected the null hypotheses that all the classifiers are equivalent. Note that 1 represents the
best technique, and while 4 stands for the worst one. Groups of classifiers that are not signifi-
cantly different (at p = 0.05) are connected by using a calculated critical distance (CD) equals
to 0.4690.
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Fig 2. Correlation table between each pair of training sets,Z1, after the learning process with learning constraint of 300 seconds. Cod-RNA (a—d).
Connect (e—h). Covertype (i—l). IJCNN (m—p). SensIT (q—t).

doi:10.1371/journal.pone.0129947.g002
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Table 2. Cod-RNA dataset: Predictivity performance overZ3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model
and learning time constraint using the proposed selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (±variations)

1 sec KNN 0.8190 ± 0.032 0.0393% ± 0.000

OPF 0.8490 ± 0.013 0.0786% ± 0.000

LSVM 0.9342 ± 0.020 0.0196% ± 0.000

KSVM 0.9279 ± 0.027 0.0196% ± 0.000

5 sec KNN 0.8673 ± 0.024 0.1902% ± 0.064

OPF 0.8784 ± 0.006 0.3144% ± 0.000

LSVM 0.9272 ± 0.019 0.1572% ± 0.000

KSVM 0.9346 ± 0.019 0.0246% ± 0.009

20 sec KNN 0.8958 ± 0.018 0.6288% ± 0.000

OPF 0.8913 ± 0.005 0.6288% ± 0.000

LSVM 0.9338 ± 0.029 0.6602% ± 0.137

KSVM 0.9402 ± 0.022 0.0778% ± 0.006

60 sec KNN 0.9100 ± 0.013 2.5151% ± 0.000

OPF 0.9131 ± 0.003 2.5151% ± 0.000

LSVM 0.9401 ± 0.028 2.4522% ± 0.274

KSVM 0.9492 ± 0.020 0.0912% ± 0.029

300 sec KNN 0.9366 ± 0.006 10.0605% ± 0.000

OPF 0.9333 ± 0.001 10.0605% ± 0.000

LSVM 0.9198 ± 0.057 9.1075% ± 1.867

KSVM 0.9495 ± 0.031 0.2515% ± 0.077

1200 sec KNN 0.9640 ± 0.000 18.9256% ± 0.546

OPF 0.9588 ± 0.005 19.8643% ± 0.233

LSVM 0.9619 ± 0.007 17.5507% ± 2.848

KSVM 0.9567 ± 0.028 0.4205% ± 0.149

doi:10.1371/journal.pone.0129947.t002

Table 3. Connect dataset: Predictivity performance overZ3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model and
learning time constraint using the proposed selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.5443 ± 0.030 0.2842% ± 0.000

OPF 0.5328 ± 0.017 0.2842% ± 0.000

LSVM 0.4364 ± 0.026 0.0178% ± 0.000

KSVM 0.5226 ± 0.000 0.0178% ± 0.000

5 sec KNN 0.5704 ± 0.029 1.1368% ± 0.000

OPF 0.5599 ± 0.008 1.1368% ± 0.000

LSVM 0.5269 ± 0.027 0.1229% ± 0.032

KSVM 0.2614 ± 0.161 0.0355% ± 0.000

20 sec KNN 0.6046 ± 0.024 4.5473% ± 0.000

OPF 0.5953 ± 0.005 4.5473% ± 0.000

LSVM 0.6143 ± 0.032 0.4860% ± 0.129

KSVM 0.3277 ± 0.175 0.1435% ± 0.014

60 sec KNN 0.6263 ± 0.027 9.0945% ± 0.000

OPF 0.6355 ± 0.003 18.1891% ± 0.000

LSVM 0.6316 ± 0.019 0.5741% ± 0.057

KSVM 0.5311 ± 0.107 0.5684% ± 0.000

300 sec KNN 0.6828 ± 0.020 36.3782% ± 0.000

OPF 0.6790 ± 0.002 37.1242% ± 0.491

LSVM 0.6737 ± 0.012 1.1368% ± 0.000

KSVM 0.6048 ± 0.087 1.1368% ± 0.000

1200 sec KNN 0.7572 ± 0.018 43.1991% ± 0.000

OPF 0.7772 ± 0.002 43.1991% ± 0.000

LSVM 0.5939 ± 0.037 6.5171% ± 2.187

KSVM 0.6024 ± 0.044 2.6999% ± 0.000

doi:10.1371/journal.pone.0129947.t003
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Table 4. Covertype dataset: Predictivity performance over Z3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model
and learning time constraint using the proposed selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.4842 ± 0.033 0.0196% ± 0.000

OPF 0.5094 ± 0.024 0.0196% ± 0.000

LSVM 0.5402 ± 0.031 0.0196% ± 0.000

KSVM 0.5207 ± 0.070 0.0196% ± 0.000

5 sec KNN 0.5200 ± 0.025 0.0392% ± 0.000

OPF 0.5360 ± 0.020 0.0392% ± 0.000

LSVM 0.5470 ± 0.032 0.0196% ± 0.000

KSVM 0.5384 ± 0.058 0.0196% ± 0.000

20 sec KNN 0.5680 ± 0.020 0.1570% ± 0.000

OPF 0.5813 ± 0.012 0.1570% ± 0.000

LSVM 0.5661 ± 0.030 0.0502% ± 0.018

KSVM 0.5230 ± 0.063 0.0196% ± 0.000

60 sec KNN 0.6000 ± 0.018 0.3139% ± 0.000

OPF 0.6427 ± 0.015 0.5776% ± 0.115

LSVM 0.5969 ± 0.028 0.1319% ± 0.037

KSVM 0.5226 ± 0.084 0.0392% ± 0.000

300 sec KNN 0.7156 ± 0.019 2.5115% ± 0.000

OPF 0.7321 ± 0.003 2.5115% ± 0.000

LSVM 0.5959 ± 0.036 0.3186% ± 0.047

KSVM 0.5780 ± 0.067 0.1570% ± 0.000

1200 sec KNN 0.8158 ± 0.025 5.9734% ± 0.000

OPF 0.8374 ± 0.003 5.9734% ± 0.000

LSVM 0.6661 ± 0.019 23.8936% ± 0.000

KSVM 0.6864 ± 0.016 0.3733% ± 0.000

doi:10.1371/journal.pone.0129947.t004

Table 5. IJCNN dataset: Predictivity performance over Z3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model and
learning time constraint using the proposed selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.8800 ± 0.067 0.2936% ± 0.000

OPF 0.8982 ± 0.039 0.2936% ± 0.000

LSVM 0.8414 ± 0.044 0.0211% ± 0.007

KSVM 0.9497 ± 0.000 0.0183% ± 0.000

5 sec KNN 0.9395 ± 0.024 1.1744% ± 0.000

OPF 0.9433 ± 0.017 1.1744% ± 0.000

LSVM 0.9257 ± 0.038 0.2936% ± 0.000

KSVM 0.9319 ± 0.022 0.0734% ± 0.000

20 sec KNN 0.9661 ± 0.013 4.6975% ± 0.000

OPF 0.9688 ± 0.006 4.6975% ± 0.000

LSVM 0.8949 ± 0.076 1.1744% ± 0.000

KSVM 0.9528 ± 0.024 0.2936% ± 0.000

60 sec KNN 0.9809 ± 0.009 11.1440% ± 1.406

OPF 0.9852 ± 0.001 12.3998% ± 0.497

LSVM 0.8804 ± 0.092 2.3723% ± 0.234

KSVM 0.9619 ± 0.016 0.5872% ± 0.000

300 sec KNN 0.9894 ± 0.001 13.6423% ± 1.607

OPF 0.9883 ± 0.000 13.4193% ± 0.371

LSVM 0.8571 ± 0.098 9.3951% ± 0.000

KSVM 0.9769 ± 0.008 1.1744% ± 0.000

1200 sec KNN 0.9896 ± 0.001 13.7359% ± 1.579

OPF 0.9883 ± 0.000 13.4822% ± 0.404

LSVM 0.9571 ± 0.001 22.8248% ± 2.280

KSVM 0.9756 ± 0.010 2.3488% ± 0.000

doi:10.1371/journal.pone.0129947.t005
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Table 6. SensIT dataset: Predictivity performance over Z3 and final training set size, jZ1j as a percentual of jZ2j, for each classificationmodel and
learning time constraint using the proposed selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.4387 ± 0.035 0.1462% ± 0.000

OPF 0.4367 ± 0.025 0.1462% ± 0.000

LSVM 0.4124 ± 0.055 0.0183% ± 0.000

KSVM 0.3667 ± 0.089 0.0183% ± 0.000

5 sec KNN 0.4701 ± 0.026 0.5846% ± 0.000

OPF 0.4621 ± 0.015 0.5846% ± 0.000

LSVM 0.4261 ± 0.036 0.0731% ± 0.000

KSVM 0.3126 ± 0.111 0.0353% ± 0.005

20 sec KNN 0.4942 ± 0.020 2.3384% ± 0.000

OPF 0.4793 ± 0.008 2.3384% ± 0.000

LSVM 0.4887 ± 0.021 0.5320% ± 0.112

KSVM 0.4285 ± 0.085 0.1462% ± 0.000

60 sec KNN 0.5076 ± 0.020 7.7636% ± 2.215

OPF 0.4903 ± 0.005 9.3537% ± 0.000

LSVM 0.4945 ± 0.019 0.5846% ± 0.000

KSVM 0.4475 ± 0.077 0.2923% ± 0.000

300 sec KNN 0.5089 ± 0.023 18.7074% ± 0.000

OPF 0.4966 ± 0.003 37.4147% ± 0.000

LSVM 0.5332 ± 0.018 1.1692% ± 0.000

KSVM 0.4729 ± 0.072 1.1692% ± 0.000

1200 sec KNN 0.5169 ± 0.022 63.4233% ± 2.274

OPF 0.5100 ± 0.002 71.4498% ± 0.233

LSVM 0.5361 ± 0.021 2.3384% ± 0.000

KSVM 0.5200 ± 0.050 2.3384% ± 0.000

doi:10.1371/journal.pone.0129947.t006

Fig 3. Cod-RNA. Comparison of all classifiers against each other with the Nemenyi test and learning time constraint equals to 1, 5, 20, 60, 300, and 1200
seconds. Groups of classifiers that are not significantly different (at p = 0.05) are connected.

doi:10.1371/journal.pone.0129947.g003
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Fig 4. Connect-4. Comparison of all classifiers against each other with the Nemenyi test and learning time constraint equals to 1, 5, 20, 60, 300, and 1200
seconds. Groups of classifiers that are not significantly different (at p = 0.05) are connected.

doi:10.1371/journal.pone.0129947.g004

Fig 5. Covertype. Comparison of all classifiers against each other with the Nemenyi test and learning time constraint equals to 1, 5, 20, 60, 300, and 1200
seconds. Groups of classifiers that are not significantly different (at p = 0.05) are connected.

doi:10.1371/journal.pone.0129947.g005

Fig 6. IJCNN 2001.Comparison of all classifiers against each other with the Nemenyi test and learning time constraint equals to 1, 5, 20, 60, 300, and 1200
seconds. Groups of classifiers that are not significantly different (at p = 0.05) are connected.

doi:10.1371/journal.pone.0129947.g006
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It is worth noting the importance of the statistical test, since the mean and standard devia-
tion (see Tables 2–6) in some cases are not sufficient to indicate the best classifier. The results
presented by both tests (Nemenyi test and mean-standard deviation), in general, are equiva-
lents. The statistical test in the CodRNA dataset (Fig 3) shows that both SVMs have signifi-
cantly better performance when compared to other classifiers. According to the mean and
standard deviation (Table 2), both SVMs are equivalent. However, the statistical tests show evi-
dence that they are not.

Such divergences can also be observed with the other datasets. They occur due to the fact
that the standard deviation values are relatively high compared to the difference in perfor-
mance of the classifiers. Similarly to the results expressed by the mean and standard deviation
(Tables 3–6), the statistical test also reveals that k-NN and OPF, in general, present a better per-
formance for Connect, Covertype, IJCNN and SensIT Vehicle datasets (Figs 4–7). However,
the Nemenyi test indicates statistically significant differences between them, unlike the mean-
standard deviation test. It is important to clarify that in some cases, for example SensIT Vehicle
dataset with learning-time constraint 300, we cannot reach any conclusion regarding the rela-
tive performances of LSVM, k-NN and OPF.

Sample selection methods do not account for time constraints. Methods based on clustering
and statistical information learned from the data are usually time costly for large learning sets,
which would make it very difficult to select and train a classifier within lower time limits. The
simplest approach is random sample selection from each class. Even in this case, one has to
estimate the maximum number of samples that a given model can use to train the classifier in a
single iteration and within the given time limit. First, for some models, such as SVM, the train-
ing time also depends on the selected samples. Anyway, ignoring that, we have estimated that
number for each classification model and compared to the proposed sample selection approach
based on classification errors. Tables 7–11 present the corresponding results using a single
learning iteration with the maximum number of randomly selected samples.

Comparing the results achieved by the proposed method (Tables 2–6) with the ones by the
randomized method (Tables 7–11), one can observe that in general, the proposed methodology
is capable to select the most representative samples for the training set, holding higher accuracy
results (see Tables 2 and 7 with time constraint equal to 1 sec for all classifiers). Even in some

Fig 7. SensIT Vehicle (combined). Comparison of all classifiers against each other with the Nemenyi test and learning time constraint equals to 1, 5, 20, 60,
300, and 1200 seconds. Groups of classifiers that are not significantly different (at p = 0.05) are connected.

doi:10.1371/journal.pone.0129947.g007
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Table 7. Cod-RNA dataset: Predictivity performance overZ3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model
and learning time constraint using random selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.7863 ± 0.024 0.4300% ± 0.068

OPF 0.8107 ± 0.032 0.9003% ± 0.085

LSVM 0.8983 ± 0.041 0.4303% ± 0.220

KSVM 0.8499 ± 0.118 0.1498% ± 0.066

5 sec KNN 0.8432 ± 0.014 3.0301% ± 0.116

OPF 0.8531 ± 0.019 4.6503% ± 0.195

LSVM 0.9329 ± 0.006 2.6303% ± 0.116

KSVM 0.9387 ± 0.005 1.3901% ± 0.166

20 sec KNN 0.8728 ± 0.011 11.3300% ± 0.221

OPF 0.8781 ± 0.017 17.2904% ± 0.152

LSVM 0.9377 ± 0.002 9.9906% ± 0.100

KSVM 0.9449 ± 0.001 4.2096% ± 0.099

60 sec KNN 0.8818 ± 0.007 35.2902% ± 0.166

OPF 0.8940 ± 0.007 40.2902% ± 0.152

LSVM 0.9385 ± 0.005 24.9295% ± 0.095

KSVM 0.9490 ± 0.001 8.7100% ± 0.152

300 sec KNN 0.8998 ± 0.000 100.0000% ± 0.000

OPF 0.8955 ± 0.000 100.0000% ± 0.000

LSVM 0.9357 ± 0.008 70.2701% ± 0.274

KSVM 0.9518 ± 0.008 19.2902% ± 0.251

1200 sec KNN 0.8998 ± 0.000 100.0000% ± 0.000

OPF 0.8955 ± 0.000 100.0000% ± 0.000

LSVM 0.9397 ± 0.000 100.0000% ± 0.000

KSVM 0.9533 ± 0.004 44.2700% ± 0.275

doi:10.1371/journal.pone.0129947.t007

Table 8. Connect dataset: Predictivity performance overZ3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model and
learning time constraint using random selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.5132 ± 0.274 2.0799% ± 0.093

OPF 0.5157 ± 0.028 2.8840% ± 0.067

LSVM 0.5608 ± 0.028 0.1504% ± 0.066

KSVM 0.5065 ± 0.024 0.0975% ± 0.021

5 sec KNN 0.5593 ± 0.019 4.6868% ± 0.302

OPF 0.5469 ± 0.014 6.7665% ± 0.211

LSVM 0.6167 ± 0.012 0.4902% ± 0.074

KSVM 0.3749 ± 0.001 0.3296% ± 0.289

20 sec KNN 0.6493 ± 0.006 9.0972% ± 0.302

OPF 0.5871 ± 0.007 14.0972% ± 0.441

LSVM 0.6799 ± 0.001 1.1797% ± 0.051

KSVM 0.4246 ± 0.001 1.1501% ± 0.553

60 sec KNN 0.6697 ± 0.002 18.6447% ± 0.307

OPF 0.6234 ± 0.004 25.7391% ± 0.203

LSVM 0.6867 ± 0.002 2.4295% ± 0.067

KSVM 0.6024 ± 0.006 2.2500% ± 0.113

300 sec KNN 0.7321 ± 0.001 80.9282% ± 0.655

OPF 0.6927 ± 0.000 100.0000% ± 0.000

LSVM 0.6992 ± 0.005 9.5821% ± 0.103

KSVM 0.6189 ± 0.006 5.9501% ± 0.110

1200 sec KNN 0.7425 ± 0.001 100.0000% ± 0.000

OPF 0.6927 ± 0.000 100.0000% ± 0.000

LSVM 0.7106 ± 0.001 25.3101% ± 0.232

KSVM 0.6756 ± 0.008 11.1401% ± 0.303

doi:10.1371/journal.pone.0129947.t008
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Table 9. Covertype dataset: Predictivity performance over Z3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model
and learning time constraint using random selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.5057 ± 0.059 0.6516% ± 0.084

OPF 0.4906 ± 0.014 0.6523% ± 0.303

LSVM 0.5306 ± 0.070 0.0699% ± 0.147

KSVM 0.5378 ± 0.037 0.0596% ± 0.211

5 sec KNN 0.5145 ± 0.009 1.3241% ± 0.018

OPF 0.5029 ± 0.025 1.5392% ± 0.012

LSVM 0.5461 ± 0.065 0.1196% ± 0.371

KSVM 0.5392 ± 0.059 0.1021% ± 0.514

20 sec KNN 0.5767 ± 0.006 2.2071% ± 0.053

OPF 0.5651 ± 0.051 3.1570% ± 0.219

LSVM 0.6183 ± 0.020 0.3802% ± 0.068

KSVM 0.5304 ± 0.053 0.3124% ± 0.145

60 sec KNN 0.6328 ± 0.015 5.6238% ± 0.166

OPF 0.6192 ± 0.065 5.5776% ± 0.067

LSVM 0.6414 ± 0.008 0.7019% ± 0.211

KSVM 0.6504 ± 0.046 0.6491% ± 0.251

300 sec KNN 0.6821 ± 0.029 9.5115% ± 0.476

OPF 0.6949 ± 0.007 10.5115% ± 0.052

LSVM 0.6478 ± 0.007 2.1687% ± 0.303

KSVM 0.6674 ± 0.018 1.1007% ± 0.303

1200 sec KNN 0.7454 ± 0.035 19.9734% ± 0.023

OPF 0.7587 ± 0.097 20.9734% ± 0.226

LSVM 0.6944 ± 0.003 5.7300% ± 0.116

KSVM 0.6776 ± 0.016 3.8273% ± 0.032

doi:10.1371/journal.pone.0129947.t009

Table 10. IJCNN dataset: Predictivity performance overZ3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model and
learning time constraint using random selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.8621 ± 0.012 0.9502% ± 0.110

OPF 0.8637 ± 0.006 0.9582% ± 0.120

LSVM 0.8888 ± 0.016 0.7301% ± 0.257

KSVM 0.8647 ± 0.017 0.0320% ± 0.134

5 sec KNN 0.9070 ± 0.005 4.6509% ± 0.303

OPF 0.9039 ± 0.006 5.4511% ± 0.196

LSVM 0.8654 ± 0.100 2.9706% ± 0.221

KSVM 0.9244 ± 0.018 1.7504% ± 0.301

20 sec KNN 0.9340 ± 0.004 15.2490% ± 0.346

OPF 0.9313 ± 0.005 15.4491% ± 0.127

LSVM 0.8944 ± 0.012 9.9100% ± 0.250

KSVM 0.9558 ± 0.003 6.4513% ± 0.269

60 sec KNN 0.9527 ± 0.002 36.0492% ± 0.508

OPF 0.9494 ± 0.003 36.4493% ± 0.158

LSVM 0.8988 ± 0.040 24.4509% ± 0.221

KSVM 0.9612 ± 0.004 10.4485% ± 0.377

300 sec KNN 0.9655 ± 0.000 100.0000% ± 0.000

OPF 0.9624 ± 0.000 100.0000% ± 0.000

LSVM 0.9110 ± 0.004 72.2685% ± 0.275

KSVM 0.9724 ± 0.001 25.4511% ± 0.504

1200 sec KNN 0.9655 ± 0.000 100.0000% ± 0.000

OPF 0.9624 ± 0.000 100.0000% ± 0.000

LSVM 0.9168 ± 0.000 100.0000% ± 0.000

KSVM 0.9782 ± 0.001 65.4511% ± 0.238

doi:10.1371/journal.pone.0129947.t010
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cases, when it was possible to train with the entire dataset (for instance, see Table 7 with time
constraint equal to 300 sec for k-NN and OPF, as well as with time constraint equal to 1200 sec
for k-NN, OPF and LSVM), it seems that some randomly selected training samples impaired
the performance of the classifier, while our methodology is capable to avoid them in the train-
ing set (see Table 2 with the same time constraints and classifiers). Note also that the proposed
methodology can output considerably smaller training sets, which matters in some approaches,
such as the OPF and k-NN classifiers, to speed up classification of large test sets.

The comparison of methods using randomized sample selection is not suitable, because
these samples capture the geometry of the classes. Besides, as they increase in number, all clas-
sification models become equivalent. Fig 8 shows randomly selected samples by each classifica-
tion model within a given time constraint (1 and 1.5 seconds) using the Cone-Torus dataset
[59]. Samples that were not selected are highlighted in gray. One can observe that OPF reached
greater effectiveness and efficiency, selecting 100% of the learning samples with only 1.5 sec-
onds and presenting F-score measure equal to 1 (Table 12). It is noteworthy that faster tech-
niques (with a larger training set) do not always achieve higher accuracy. It relies on the
effective learning from their errors. For instance, LSVM did not achieved better performance,
even being faster than KSVM.

Table 11. SensIT dataset: Predictivity performance overZ3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model and
learning time constraint using random selection.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.4100 ± 0.038 0.5498% ± 0.083

OPF 0.4439 ± 0.013 1.5500% ± 0.031

LSVM 0.3803 ± 0.087 0.1497% ± 0.054

KSVM 0.4261 ± 0.040 0.1501% ± 0.303

5 sec KNN 0.4662 ± 0.007 3.0501% ± 0.047

OPF 0.4668 ± 0.006 4.0500% ± 0.051

LSVM 0.4029 ± 0.085 0.2898% ± 0.074

KSVM 0.4372 ± 0.029 0.2335% ± 0.008

20 sec KNN 0.4875 ± 0.005 7.5500% ± 0.069

OPF 0.4823 ± 0.006 8.5499% ± 0.054

LSVM 0.4931 ± 0.011 0.8696% ± 0.116

KSVM 0.4636 ± 0.010 0.7202% ± 0.275

60 sec KNN 0.5031 ± 0.005 14.5501% ± 0.072

OPF 0.4849 ± 0.034 16.0002% ± 0.110

LSVM 0.5234 ± 0.004 1.6305% ± 0.067

KSVM 0.4788 ± 0.004 1.4699% ± 0.133

300 sec KNN 0.5207 ± 0.003 40.4501% ± 0.021

OPF 0.5072 ± 0.067 44.9990% ± 0.013

LSVM 0.5409 ± 0.003 5.6696% ± 0.149

KSVM 0.4905 ± 0.006 3.5498% ± 0.075

1200 sec KNN 0.5301 ± 0.001 90.4501% ± 0.528

OPF 0.5185 ± 0.000 100.0000% ± 0.000

LSVM 0.5473 ± 0.002 16.3701% ± 0.221

KSVM 0.5034 ± 0.004 8.4500% ± 0.717

doi:10.1371/journal.pone.0129947.t011
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Each classification model defines decision boundaries (regions) in a different way in the fea-
ture space. By selecting classification errors as training samples, the learning process converges
faster to the corresponding decision boundaries. The errors tend to be samples close to the
decision boundaries rather than outliers, as long as outliers are minority. If this is not the case,
outlier removal should be applied before the learning process. In order to better clarify this
issue, we have added Fig 9 with samples not selected from the learning set in gray and samples
selected by the classifiers to the training set in color. Fig 9 shows the selected samples for 1 sec-
ond of time limit using the 2D Cone-Torus dataset.

Fig 8. Randomly selected samples in the final training set when using the Cone-Torus dataset. (a) k-NN and 1 sec. (b) OPF and 1 sec. (c) LSVM and 1
sec. (d) KSVM and 1 sec. (e) k-NN and 1.5 sec. (f) OPF and 1.5 sec. (g) LSVM and 1.5 sec. (h) KSVM and 1.5 sec.

doi:10.1371/journal.pone.0129947.g008

Table 12. Cone-Torus dataset: Predictivity performance overZ3 and final training set size, jZ1j as a percentual of jZ2j, for each classification model
using random selection and learning time constraint equals to 1 and 1.5 seconds.

Time constraint Classifier F1 score jZ1j/jZ2j% (± variations)

1 sec KNN 0.9303 25%

OPF 1.0000 50%

LSVM 0.6092 12%

KSVM 0.7875 10%

1.5 sec KNN 0.9389 60%

OPF 1.0000 100%

LSVM 0.6485 25%

KSVM 0.8147 20%

doi:10.1371/journal.pone.0129947.t012
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In order to analyze the performance of each classifier using the entire learning set, Table 13
shows the accuracy and the time required for training each dataset. All classifiers presented
similar accuracies. However, k-NN and OPF were more efficient. KSVM and LSVM require
significantly more time for training.

Conclusion
We presented a methodology to compare multiple classifiers under a learning-time constraint,
which is useful to select the best classifier for a given application. In this paper, the applications

Fig 9. Selected samples by each classification model in the final training set, when using the Cone-Torus dataset and time limit of 1s. (a) k-NN. (b)
OPF. (c) LSVM. (d) KSVM.

doi:10.1371/journal.pone.0129947.g009

Table 13. Predictivity performance over Z3 and required time for each classification model and data-
set using all learning samples, jZ2j.
Datasets Classifier F1 score Time (sec)

Cod-RNA KNN 0.8998 165.01

OPF 0.8955 148.92

LSVM 0.9397 426.92

KSVM 0.9598 1555.19

Connect KNN 0.7425 369.66

OPF 0.6927 233.12

LSVM 0.7845 4698.15

KSVM 0.7969 10651.79

Covertype KNN 0.8358 6016.87

OPF 0.8401 5832.24

LSVM 0.8662 21813.39

KSVM 0.8773 32149.23

IJCNN KNN 0.9655 168.62

OPF 0.9624 165.04

LSVM 0.9168 425.71

KSVM 0.9802 1724.40

SensIT KNN 0.5367 1403.79

OPF 0.5181 689.14

LSVM 0.5899 7462.38

KSVM 0.6014 15521.22

doi:10.1371/journal.pone.0129947.t013
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were represented by different datasets with unbalancing of classes, distinct number of classes
and feature space dimensions. The proposed methodology allows each classifier to select its
most representative samples from a learning set during the training phase. The experiments
allowed us to reach several conclusions.

Although it was not possible to assert which is the most effective classification model under
a given time constraint, due to the variability of results on each application domain, experi-
ments obtained using the proposed methodology allowed us to arrive at some relevant
observations.

Larger training sets do not necessarily lead to higher predictive performance on unseen test
sets, which indicates the effectiveness of some classifiers in learning from their own errors.

The methodology is able to produce statistically independent training sets as observed by
the low correlations between each pair of training set obtained for a given dataset-classifier
pair, following 100 executions. This demonstrates the advantage of our approach with respect
to the regular cross-validation procedure, largely used in related works.

It is also very common in the literature for the presentation of experimental results to rely
solely on the mean and standard deviation of accuracy values. The statistical test shows that
this approach is not always reliable, due to the relative variations of the standard deviation.
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