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ABSTRACT

Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) is a host protein with reported cell-intrinsic antiviral activity
against several RNA viruses. The proposed basis for the activity against negative-sense RNA viruses is the binding to exposed
5=-triphosphates (5=-ppp) on the genome of viral RNA. However, recent studies reported relatively low binding affinities of IFIT1
for 5=-ppp RNA, suggesting that IFIT1 may not interact efficiently with this moiety under physiological conditions. To evaluate
the ability of IFIT1 to have an impact on negative-sense RNA viruses, we infected Ifit1�/� and wild-type control mice and pri-
mary cells with four negative-sense RNA viruses (influenza A virus [IAV], La Crosse virus [LACV], Oropouche virus [OROV],
and Ebola virus) corresponding to three distinct families. Unexpectedly, a lack of Ifit1 gene expression did not result in increased
infection by any of these viruses in cell culture. Analogously, morbidity, mortality, and viral burdens in tissues were identical
between Ifit1�/� and control mice after infection with IAV, LACV, or OROV. Finally, deletion of the human IFIT1 protein in
A549 cells did not affect IAV replication or infection, and reciprocally, ectopic expression of IFIT1 in HEK293T cells did not in-
hibit IAV infection. To explain the lack of antiviral activity against IAV, we measured the binding affinity of IFIT1 for RNA oli-
gonucleotides resembling the 5= ends of IAV gene segments. The affinity for 5=-ppp RNA was approximately 10-fold lower than
that for non-2=-O-methylated (cap 0) RNA oligonucleotides. Based on this analysis, we conclude that IFIT1 is not a dominant
restriction factor against negative-sense RNA viruses.

IMPORTANCE

Negative-sense RNA viruses, including influenza virus and Ebola virus, have been responsible for some of the most deadly out-
breaks in recent history. The host interferon response and induction of antiviral genes contribute to the control of infections by
these viruses. IFIT1 is highly induced after virus infection and reportedly has antiviral activity against several RNA and DNA
viruses. However, its role in restricting infection by negative-sense RNA viruses remains unclear. In this study, we evaluated the
ability of IFIT1 to inhibit negative-sense RNA virus replication and pathogenesis both in vitro and in vivo. Detailed cell culture
and animal studies demonstrated that IFIT1 is not a dominant restriction factor against three different families of negative-sense
RNA viruses.

To protect against pathogenic microbial agents, host cells have
evolved cell-intrinsic and cell-extrinsic innate immune de-

fense mechanisms. Type I interferon (IFN) is an essential compo-
nent of the host innate immune response against viruses. The type
I IFN response pathway is activated after the detection of nonself
pathogen-associated molecular patterns (PAMPs) by pattern rec-
ognition receptors (PRRs), such as retinoic-acid inducible gene I
(RIG-I)-like receptors, DNA sensors, and Toll-like receptors. The
binding of PAMPs triggers a signaling cascade that results in the
transcriptional activation of type I IFN and its secretion from in-
fected cells. Type I IFN can bind to its cognate receptor on both
infected and uninfected cells and can induce hundreds of interfer-
on-stimulated genes (ISGs), many of which may have antiviral
effects.

Members of the IFN-induced protein with tetratricopeptide
repeats (IFIT) gene family are induced to high levels in cells in
response to IFN signaling or viral infection (1). IFIT proteins re-
side in the cytoplasm and contain multiple tetratricopeptide re-
peat (TPR) motifs enabling interactions with other proteins and

molecules. IFIT genes are present in many vertebrate species, but
the number of genes and their sequence identity vary between
species, suggesting the presence of a positive evolutionary selec-
tion pressure (2). The human IFIT family contains four charac-
terized (IFIT1, IFIT2, IFIT3, and IFIT5) and two uncharacterized
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(IFIT1B and IFIT1P1) genes. Mice also have four characterized
(Ifit1, Ifit1c, Ifit2, and Ifit3) and two uncharacterized (Ifit1b and
Ifit3b) genes (1–3). The first reported activities of human IFIT1
were related to interactions with host and viral proteins. The bind-
ing of IFIT1 to eukaryotic initiation factor 3 (eIF3) and the 40S
ribosome subunit (4–6) inhibited protein translation and hepati-
tis C virus replication (7). IFIT1 also binds to the E1 protein of
human papillomavirus, inhibiting its replication (8, 9). More re-
cently, human and mouse IFIT1 proteins were identified as pro-
teins that distinguish between self and nonself RNA species. Spe-
cifically, IFIT1 restricted infections by flaviviruses, poxviruses,
and coronaviruses that were deficient in 2=-O methyltransferase
activity (10–15). Loss-of-function mutations in viral 2=-O
methyltransferases resulted in an inability to generate cap 1
(n7mGpppNm) mRNA structures, which rendered the cap 0
(n7mGpppN) viral RNA susceptible to IFIT1-mediated inhibi-
tion of translation (11, 15, 16). IFIT1 was also shown to restrict
attenuated alphaviruses containing a single nucleotide change, at
position 3 of the 5= end of the untranslated region (UTR) (17).
This residue modulates the thermostability of a secondary struc-
ture element that allows alphavirus mRNA, which naturally lacks
cap 1 structures, to evade IFIT1 restriction. The mechanism for
how IFIT1 distinguishes between host (self) and viral RNAs is not
yet fully understood, but the atomic structure suggests that the
TPR motifs create a positively charged pocket that is responsible
for direct RNA binding (18).

Human and mouse IFIT1 proteins can also interact with the
5=-triphosphate (5=-ppp) moiety present in the genomes of nega-
tive-sense RNA viruses. Previous studies suggested that this inter-
action inhibits infections by vesicular stomatitis virus (VSV) and
influenza A virus (IAV) (18, 19), possibly by sequestering viral
RNA from the replicating pool (19). However, the antiviral effect
of mouse Ifit1 on VSV replication and pathogenesis was not con-
firmed in a subsequent study (20). Furthermore, binding studies
with the various RNA ligands of human and rabbit IFIT1 proteins
(reviewed in reference 21) demonstrated that IFIT1 has a higher
affinity for cap 0 RNA than for 5=-ppp RNA or cap 1 RNA.

To evaluate the importance of 5=-ppp RNA recognition by hu-
man and mouse IFIT1 proteins in the replication and pathogene-
sis caused by negative-strand RNA viruses, we infected human
and mouse cells deficient in IFIT1 protein expression with four
different negative-sense RNA viruses corresponding to three dis-
tinct families. We also performed an in vivo analysis of wild-type
(WT) and Ifit1�/� mice after inoculation with IAV (Orthomyxo-
viridae), La Crosse virus (LACV) (Bunyaviridae), and Oropouche
virus (OROV) (Bunyaviridae). Our studies indicate that human
and murine IFIT1 proteins do not efficiently restrict infection by
IAV, LACV, OROV, or Ebola virus (EBOV).

MATERIALS AND METHODS
Mice. WT and congenic Ifit1�/� (gene ID 15957) (13) C57BL/6 mice were
bred under specific-pathogen-free conditions at the Washington Univer-
sity School of Medicine. All animal studies were approved and performed
in accordance with protocols approved by the Washington University
School of Medicine Institutional Animal Care and Use Committees.

Cells. Deletion of IFIT1 (gene ID 3434) and IFIT1B (gene ID 439996)
protein expression in the A549 human lung epithelial cell line was
achieved by using CRISPR/Cas9 gene-editing technology (22). A guide
RNA specific for human IFIT1 (GCTGCATATCGAAAGACAT) was
cloned into the gRNA expression plasmid and cotransfected into A549
cells by using Lipofectamine LTX, together with a human-codon-opti-

mized Cas9 expression plasmid, and an empty vector containing a puro-
mycin resistance gene. After 24 h, transfected cells were treated with 2
�g/ml of puromycin for 2 days and cultured in Dulbecco’s modified
Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS), penicillin,
streptomycin, L-glutamine, 25 mM HEPES, and nonessential amino acids.
IFIT1 gene modification was evaluated by DNA sequencing of a PCR
product containing the gRNA target site. Next, we performed a limiting
dilution assay to generate clonal cell lines. DNAs were extracted from
these clonal A549 cells, and the target area was amplified by PCR (primer
sequences are available upon request). The PCR product was cloned into
the TOPO-blunt vector (Life Technologies) and sequenced using an M13
primer (IDT Technologies). One cell line harboring two different modi-
fications (at nucleotide position 757 from the start codon) in the IFIT1
gene was selected for further evaluation (IFIT1mu/mu A549) (Fig. 1). The
modification resulted in a frameshift and the generation of a stop codon
approximately 60 nucleotides downstream from the target site. Due to the
similarity in target sequence between the IFIT1 and IFIT1B genes, we
sequenced the IFIT1B gene and identified one modified IFIT1B gene. The
modification in IFIT1B resulted in a frameshift and the generation of a
stop codon 39 nucleotides downstream from the target site. As a control,
we selected a clonal A549 cell line from the procedure described above that
had no modifications in both IFIT1 and IFIT1B (referred to as A549-
CRISPR ctrl).

Bone marrow-derived macrophages (M�) were generated as de-
scribed previously (23). Briefly, bone marrow was isolated from WT or
Ifit1�/� mice and cultured for 7 days in the presence of 40 ng/ml macro-
phage colony-stimulating factor (M-CSF; PeproTech). Murine embry-
onic fibroblasts (MEFs) were generated from day 15 WT or Ifit1�/� em-
bryos and maintained in DMEM supplemented with 10% FBS,
L-glutamine, and nonessential amino acids as described previously (24).
Primary mouse tracheal epithelial cells (mTECs) were harvested from 6-
to 8-week-old WT and Ifit1�/� mice and cultured in growth factor-en-
riched medium on semipermeable membranes (Transwell; Corning-Co-
star, Corning, NY) (25). Medium was maintained in the upper and lower
chambers until the transmembrane resistance increased (�1,000 �/cm2),
indicating tight junction formation. Medium was then removed from the
upper chamber to establish an air-liquid interface (ALI), and cells were
allowed to differentiate for 14 days before they were used.

Viruses. The 2009 pandemic influenza A virus A/California/04/2009
H1N1 (IAV-Cal) and A/Puerto Rico/8/1934 (IAV-PR8) were obtained
from St. Jude Children’s Research Hospital and propagated in the allan-
toic cavities of 10-day-old embryonic chicken eggs (26). WT West Nile
virus (WNV-WT) and WNV-E218A (27) were generated from an infec-
tious cDNA clone of the New York 1999 strain and propagated in BHK
clone 13 cells (ATCC). Mouse-adapted Ebola virus (maEBOV; adapted
from Ebola virus [Zaire ebolavirus] isolate Mayinga as described previ-
ously [28]) was propagated in Vero E6 cells. All work with maEBOV was
performed under biosafety level 4 conditions at the Integrated Research
Facility at the Rocky Mountain Laboratories, NIAID, NIH, Hamilton,
MT. Sample inactivation/removal was performed according to standard
operating protocols approved by the local institutional biosafety commit-
tee. LACV (original strain) and OROV (strain Bean 19991) were provided
by Andrew Pekosz (Johns Hopkins University, Baltimore, MD) and Eu-
rico Arruda (São Paulo University, Ribeirão Preto, Brazil), respectively,
and were passaged in Vero cells (29). All experiments with OROV were
conducted in a biosafety level 3 facility with appropriate personal protec-
tive equipment and approval from the U.S. Department of Agriculture.

Morbidity and mortality analyses. Seven- to 8-week-old WT and
Ifit1�/� female mice were inoculated with 104 50% egg infective doses
(EID50) of IAV-Cal intranasally in 30 �l of sterile phosphate-buffered
saline (PBS) after sedation with 2,2,2-tribromoethanol (Avertin; Sigma-
Aldrich). Six- or 8-week-old WT and Ifit1�/� mice were inoculated sub-
cutaneously in the footpad with 106 or 105 focus-forming units (FFU) of
OROV or LACV, respectively, in a volume of 50 �l after sedation with
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ketamine hydrochloride (80 mg/kg of body weight) and xylazine (15 mg/
kg). Morbidity and mortality were monitored for 21 days.

Tissue viral titers. Lungs were collected on day 3, 6, or 9 after inocu-
lation with 104 EID50 of IAV-Cal. Tissues were homogenized in 1 ml of
minimal essential medium, centrifuged for 5 min at 1,000 � g to remove
cellular debris, and stored at �80°C. The supernatant was used to quantify
the amount of infectious virus present in the lungs. Virus titers were
determined on Madin-Darby canine kidney (MDCK) cells as described
previously (26). Livers, spleens, brains, and sera of WT and Ifit1�/� mice
inoculated with either 106 FFU of OROV or 105 FFU of LACV were col-
lected on day 4 or 8, respectively, after perfusion (20 ml) with PBS. Organs
were weighed and homogenized. Sera from all infected animals were col-
lected prior to perfusion and stored at �80°C. Total RNAs from organs
were extracted by using a Qiagen RNeasy kit and were treated with DNase
to remove genomic DNA. Quantitative reverse transcription-PCR (qRT-
PCR) was performed using One-Step RT-PCR master mix and a model
7500 Fast real-time PCR system (Applied Biosystems). Viral burdens in
sera and organs were measured using OROV- and LACV-specific primers
and probes, and the level of viral RNA was normalized to Gapdh gene
expression in the tissue samples (29). The viral burden was recorded as the
number of viral genome equivalents per gram of tissue for the organs and
as the number of viral genome equivalents per milliliter for serum.

Viral growth kinetics in cell culture. The growth of IAV-PR8 was
assessed in wild-type A549, IFIT1mu/mu A549, and A549-CRISPR ctrl cells.
Cells were infected at a multiplicity of infection (MOI) of 0.01, and the
supernatant was collected at 24, 48, and 72 h postinoculation. The virus
titer in the supernatant was quantified on MDCK cells, and the 50% tissue
culture infective dose (TCID50) was calculated using the Reed and
Muench method. OROV and LACV growth curve studies were performed
by using WT and Ifit1�/� MEFs as described previously (29). Briefly,
multistep virus growth curve studies were performed after infection of
cells at an MOI of 0.01, and the viral titer in the cell-free supernatant was
determined by FFU assay of Vero E6 cells at the following time points after
infection: 0, 1, 4, 12, 24, 36, 48, and 60 h. The infected-cell foci in the FFU
assay were detected at 22 to 24 h of infection by using a polyclonal mouse
anti-OROV ascites fluid (VR1228AF; ATCC) or a 1:100 dilution of hy-
bridoma cell supernatants containing monoclonal antibodies (MAbs)

against LACV (807-31 and 807-33; provided by Andrew Pekosz). For
maEBOV, 1.5 � 105 M� were seeded in a 12-well plate 7 to 8 days prior to
infection. Eight hours prior to infection, M� were pretreated with 100
U/ml of mouse IFN-�. M� were infected with maEBOV at an MOI of 0.1
for 1 h at 37°C before the inoculum was removed and the cells were
washed with PBS. Supernatant containing maEBOV was harvested at 24,
48, and 72 h postinfection, and viral titers were determined by a TCID50

assay on Vero E6 cells, using the Spearman-Karber method.
Analysis of bronchoalveolar cellular infiltrate after IAV infection.

To assess the levels of cellular infiltrate 3, 5, 7, and 9 days after IAV-Cal
infection, bronchoalveolar lavage (BAL) was performed by lavaging the
trachea and lungs three times by injecting a total of 2.5 ml of Hanks
balanced salt solution (HBSS). Cells were collected by centrifugation and
stained with MAbs specific for CD3, CD8, CD4, CD11b, CD11c, Ly6G,
major histocompatibility complex (MHC) class II, and B220 to define cell
types. All samples were processed on an LSRII machine (BD Biosciences).
The resulting data were analyzed using FlowJo software (Treestar).

Western blotting. WT and IFIT1mu/mu A549 cells that were left un-
treated or treated with 100 U/ml human IFN-� for 24 h were lysed in RIPA
buffer (10 mM Tris, 150 mM NaCl, 0.02% sodium azide, 1% sodium
deoxycholate, 1% Triton X-100, and 0.1% SDS, pH 7.4) containing pro-
tease inhibitors. Samples were resolved by electrophoresis on 10% or 12%
SDS-polyacrylamide gels. Following transfer of proteins, membranes
were blocked and probed with the following panel of primary antibodies:
rabbit anti-�-actin (Abcam), mouse anti-human IFIT1 (Pierce), and
mouse anti-mouse Ifit3, which cross-reacts with human IFIT3 (M. S. Di-
amond, unpublished result). The secondary antibodies were anti-rabbit–
Alexa 690 and anti-mouse–Alexa 800 (Li-Cor). The Western blots were
imaged on a Li-Cor Odyssey infrared imager and then analyzed with Im-
age Studio Lite.

Measurement of ISG expression by qRT-PCR. RNAs were isolated
from control and IFN-�-treated A549 cells or mTECs by using an RNA
isolation kit (Qiagen), and expression was measured by fluorogenic qRT-
PCR using primers and probes (sequences available upon request) specific
to human and murine IFIT1, IFIT2, IFIT3, and RSAD2, using One-Step
RT-PCR master mix and a model 7500 Fast real-time PCR system (Ap-
plied Biosystems).

FIG 1 CRISPR-Cas9 editing of IFIT1 and IFIT1B genes in A549 cells. (A and B) Representative electropherograms of individual TOPO plasmids containing PCR
fragments of the IFIT1 (A) and IFIT1B (B) genes from IFIT1mu/mu A549 cells. Two distinct alleles were identified for IFIT1, and only a single allele was identified
for IFIT1B. The red bar indicates the NGG motif required for SpCas9 activity.
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IAV and WNV antigen flow cytometry. HEK293T cells (2 � 105)
were transfected with 500 ng of the indicated plasmids by using Trans-IT
LTI (Mirus Bio LLC) according to the manufacturer’s instructions. Six-
teen hours later, cells were infected with IAV-PR8 at an MOI of 5 for 6 h.
For WNV infections, HEK293T cells were transiently transfected with the
IFIT1 or control vector. After 24 h, cells were infected with WNV-WT or
WNV-E218A (MOI of 10), and 24 h later the cells were processed for
relative infection detection by flow cytometry. For both IAV and WNV,
cells were collected, fixed, and permeabilized prior to intracellular anti-
body staining with an anti-Flag-tag MAb and a biotinylated anti-IAV NP
(MAb 8258B; EMD Millipore) or anti-WNV E antibody (human E16)
(30). NP- or E-positive cells were visualized by use of Alexa 647-labeled
streptavidin. All flow cytometry studies were performed using a FAC-
SCalibur flow cytometer (BD Biosciences), and data were analyzed with
FlowJo software (TreeStar). The relative infection level was calculated as
the percent infection of transfected cells divided by the percent infection
of untransfected cells. The percent infection of transfected cells was deter-
mined by dividing the percentage of the viral antigen	 Flag	 population
by that of the Flag	 population. The percent infection of untransfected
cells was determined by dividing the percentage of the viral antigen	

Flag� population by that of the Flag� population. The calculation was
done for each sample and then normalized to the value for luciferase
control-transfected cells.

RNA binding and competition assays. Oligonucleotides representing
the 5= ends of the PB2, PB1, and NS gene segments of IAV (A/California/
04/09) were left untreated (5=-ppp RNA), treated with a ScriptCap m7G
capping system (Epicentre) alone (cap 0 [7mGpppNp]) or in conjunction
with a ScriptCap 2=-O methyltransferase kit (Epicentre) (cap 1 [7mGp-
ppNm]), or treated with calf intestinal phosphatase (NEB) (5=-OH RNA).
Following radiolabeling with [
-32P]ATP by using T4 polynucleotide ki-
nase (NEB), the RNAs were purified using 12% urea-PAGE. Labeled
RNAs (5 nM) were incubated with increasing concentrations of purified
murine Ifit1 protein (GenScript). In the competition assay, unlabeled
RNA with cap 0 or 5=-OH (125 nM) was added to the murine Ifit1 protein
(0.3 �M) and radiolabeled 5=-ppp RNA (5 nM). After 15 min at room
temperature, samples were applied to a dot blot apparatus (Whatman)
with one nitrocellulose (NC) membrane on top of one nylon (NY) mem-
brane. Radiolabeled RNA bound to the NC and NY membranes was quan-
tified using a Typhoon 9410 variable-mode imager, and the fraction of
RNA bound to Ifit1 was calculated using the following equation: fraction
bound � RNA signal on NC/(RNA signal on NC 	 RNA signal on NY).
Data were fitted to the Hill equation by using Origin, and the dissociation
constants (KD) were calculated.

Cytokine Bio-Plex assay. WT or Ifit1�/� mice were infected with IAV,
and at specified times, lungs were collected and homogenized as described
above. The Bio-Plex Pro assay was performed according to the manufac-
turer’s protocol (Bio-Rad). The cytokine screen included interleukin-1

(IL-1
), IL-1�, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-
12p70, IL-13, IL-17, eotaxin, granulocyte colony-stimulating factor (G-
CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF),
IFN-�, KC, CCL2, CCL3, CCL4, CCL5, and tumor necrosis factor alpha
(TNF-
).

Statistical analysis. All data were analyzed using Prism software
(GraphPad6). Kaplan-Meier survival curves were analyzed by the log rank
test. Differences in viral titers, cytokine levels, gene expression data, and
cell numbers were analyzed by the Mann-Whitney test. Differences in the
percentages of NP	 A549-WT, A549-IFIT1mu/mu, and A549-CRISPR ctrl
cells following pretreatment with increasing doses of human IFN-� were
determined by linear regression analysis. Other specific tests are indicated
in the text.

RESULTS
Effect of IFIT1 on influenza virus infection in cell culture. We
first established an in vitro growth system with Ifit1-sufficient and
-deficient mouse and human respiratory epithelial cells that are

permissive for IAV infection. We used differentiated primary
mouse tracheal epithelial cells (mTECs) generated from WT or
Ifit1�/� C57BL/6 mice (31). These cells were left unmanipulated
or pretreated with 50 U/ml of recombinant mouse IFN-� prior to
infection with IAV-Cal (A/California/04/2009; H1N1) at an MOI
of 0.01. The virus was harvested at different times after IAV infec-
tion, and the viral yield was quantified. Unexpectedly, we ob-
served no difference in the growth of IAV in untreated or IFN-�-
pretreated WT and Ifit1�/� mTECs at any of the time points (Fig.
2A) (P � 0.6). To confirm that the mTECs responded to recom-
binant IFN-�, we analyzed gene expression data from both WT
and Ifit1�/� mTECs stimulated with 50 U/ml or 1,000 U/ml
IFN-� (Fig. 2B). Following IFN-� stimulation, WT mTECs ex-
pressed high levels of Ifit1 and Rsad2 mRNAs, whereas Ifit1�/�

cells expressed high levels of Rsad2 mRNA but no Ifit1 mRNA, as
expected. Since Ifit1 can oligomerize with other IFIT proteins (16,
19), we assessed the expression of Ifit2 and Ifit3. Notably, Ifit2 and
Ifit3 were upregulated equivalently in both WT and Ifit1�/�

mTECs following IFN-� stimulation (Fig. 2B), suggesting that the
loss of Ifit1 did not affect the expression of other IFIT gene family
members. Thus, the absence of an antiviral effect of Ifit1 in mTECs
against IAV was not due to an absence of expression of other Ifit
genes.

As the antiviral activities of murine and human IFIT1 proteins
may differ (reviewed in reference 32), we questioned whether hu-
man IFIT1 could inhibit IAV replication, as suggested previously
(19). To evaluate this, we generated A549 cells deficient in IFIT1
and IFIT1B protein expression (IFIT1mu/mu cells) by using
CRISPR/Cas9 gene-editing technology. IFIT1 and IFIT1B gene
modification was confirmed by sequencing of individual PCR
products (Fig. 1). The two alleles of IFIT1 in IFIT1mu/mu A549 cells
contained 1- and 7-nucleotide deletions at position 757 from the
translation start site, resulting in a premature stop codon approx-
imately 60 nucleotides downstream of the modification. Only a
single allele of IFIT1B was identified, and the 2-nucleotide dele-
tion resulted in a premature stop codon 39 nucleotides down-
stream of the modification. The loss of expression of IFIT1 pro-
teins was corroborated by Western blotting of A549 cells treated
with human IFN-� with an antibody that recognizes IFIT1 and
IFIT1B (Fig. 2C). However, IFIT1mu/mu A549 cells expressed WT
levels of IFIT3 protein and IFIT2, IFIT3, and RSAD2 mRNAs after
IFN-� treatment (Fig. 2D).

To assess the role of IFIT1 in restriction of IAV infection,
IFIT1mu/mu A549 cells were pretreated with increasing doses of
human IFN-� and infected with A/Puerto Rico/8/1934 H1N1
(IAV-PR8) at an MOI of 5 for 8 h (Fig. 2E). Infected cells were
analyzed for expression of nucleoprotein (NP) by flow cytometry.
As the dose of human IFN-� was decreased, infection became
apparent in both WT and IFIT1mu/mu A549 cells, and the levels of
NP	 cells were equivalent (P � 0.3). To assess whether IFIT1
would have a greater impact over several rounds of replication, we
performed a multistep growth analysis by infecting cells at an MOI
of 0.01 and monitoring viral growth over 72 h. Again, we saw no
statistically significant differences in replication of IAV in WT and
IFIT1mu/mu A549 cells (Fig. 2F) (P � 0.1).

An absence of an effect of murine and human IFIT1 on IAV
infection was unexpected, because a previous report suggested
that IFIT1 bound to viral RNA displaying 5=-ppp moieties and
inhibited replication of negative-strand RNA viruses (19). One
possible explanation for the disparity in our results was that IFN-�
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FIG 2 Effects of human and mouse IFIT1 proteins on influenza A virus infection and replication. (A) Kinetics of IAV-Cal replication in WT and Ifit1�/� primary
mTECs after infection at an MOI of 0.01, with or without IFN-� stimulation. The virus was harvested at 0, 24, 48, 72, 120, and 168 h postinfection, and viral yields
were quantified by a TCID50 assay on MDCK cells. Data were pooled from two independent experiments performed in triplicate. (B) Expression of ISGs in WT
and Ifit1�/� mTECs after IFN-� stimulation. mTECs from WT and Ifit1�/� mice were treated with 50 U/ml (dark colors) or 1,000 U/ml (light colors) of
recombinant IFN-� or mock treated for 18 h before cellular RNA was extracted and used to quantify Ifit1, Ifit2, Ifit3, and Rsad2 gene expression by quantitative
RT-PCR. Data were pooled from three independent experiments performed in duplicate. (C and D) Expression of ISGs in WT and IFIT1mu/mu A549 cells after
IFN-� stimulation. (C) Western blots of human IFIT1, IFIT3, and �-actin on cell lysates from WT and IFIT1mu/mu A549 cells stimulated with 0 or 100 U/ml of
human IFN-� for 18 h. (D) A549-WT and A549-IFIT1mu/mu cells were treated with 100 U/ml (dark colors) or 1,000 U/ml (light colors) of recombinant human
IFN-� or mock treated for 18 h before cellular RNA was extracted and used to quantify IFIT2, IFIT3, and RSAD2 gene expression by quantitative RT-PCR. Data
were pooled from two independent experiments performed in triplicate. (E and F) Kinetics of IAV-PR8 replication in WT and IFIT1mu/mu A549 cells. (E) Viral
replication was measured in WT and IFIT1mu/mu A549 cells that were pretreated for 18 h with human IFN-� (hIFN-�). (F) WT and IFIT1mu/mu A549 cells were
infected, and the virus titers in supernatants were determined at 1, 8, 24, 48, and 72 h postinfection. The data represent the means  standard deviations (SD) for
two independent experiments performed in triplicate.
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treatment of mTECs or A549 cells could have induced multiple
other antiviral ISGs against IAV, such that the impact of any single
ISG, including IFIT1, was masked. To evaluate this, we tested
whether ectopic expression of N-terminally Flag-tagged human
IFIT1 could inhibit IAV infection directly. Human IFIT1 was
transfected into HEK293T cells, and 16 h later the cells were in-
fected with IAV-PR8 at an MOI of 5. After 6 h, the cells were

costained with an anti-Flag-tag antibody to identify transfected
cells and an anti-NP antibody to define IAV-infected cells
(Fig. 3A). As a positive control, we transfected the HEK293T cells
with human IFITM3, which inhibits IAV entry (33). In contrast to
IFITM3, ectopic expression of human IFIT1 did not affect IAV-
PR8 infection and replication in these cells. Human IFIT1 was
active functionally in HEK293T cells, as it preferentially inhibited

FIG 4 Murine Ifit1 does not restrict infection by OROV, LACV, and maEBOV. (A and B) Kinetics of OROV (A) and LACV (B) replication in WT and Ifit1�/�

MEFs, with or without 18 h of IFN-� (20 U/ml) stimulation prior to infection at an MOI of 0.01. Supernatants were harvested at the indicated times for titration
by a focus-forming assay. Two independent experiments were performed, each with seven technical replicates. (C) Kinetics of maEBOV replication in WT and
Ifit1�/� M�, with or without 18 h of IFN-� (100 U/ml) stimulation before infection at an MOI of 0.01. Supernatants were harvested at the indicated times for
titration by a TCID50 assay. A dotted line represents the limit of detection of the assay. The data represent the means  SD for two independent experiments
performed in triplicate. No statistical differences were observed as judged by the Mann-Whitney test.

FIG 3 Ectopic expression of human IFIT1 does not affect IAV infection. (A) Impact of luciferase, IFITM3, or IFIT1 expression in HEK293T cells infected with
IAV-PR8. HEK293T cells were transfected with Flag-tagged luciferase, IFITM3, or IFIT1 and then, 16 h later, infected with IAV-PR8 at an MOI of 5. Cells were
harvested at 6 h postinfection and stained with MAbs specific for IAV-NP and Flag. Representative flow cytometry plots are shown for luciferase, IFITM3, and
IFIT1. The relative infection level was calculated as the percent infection of transfected cells divided by the percent infection of nontransfected cells for each
sample and then normalized to that of control (luciferase) transfected cells. The data represent the mean relative infection levels  SD for three independent
experiments with three or four technical replicates. (B) Expression of IFIT1 preferentially inhibits WNV-E218A. HEK293T cells were transiently transfected with
Flag-tagged IFIT1 or a Flag-tagged luciferase control vector. After 48 h, cells were infected with WNV-WT or WNV-E218A (MOI of 10). The cells were harvested
24 h after infection and stained with MAbs specific for WNV E and Flag. Representative flow cytometry plots are shown for IFIT1-transfected cells infected with
either WNV-WT or WNV-E218A. The relative infection level was calculated as the percent infection of transfected cells divided by the percent infection of
untransfected cells. The percent infection of transfected cells was determined by dividing the percentage of the viral antigen	 Flag	 population by the percentage
of the Flag	 population. The percent infection of the untransfected cells was determined by dividing the percentage of the viral antigen	 Flag� population by the
percentage of the Flag� population. The calculation was done for each sample and then normalized to that for luciferase control-transfected cells to adjust for
interassay variation. The data represent the mean relative infection levels  SD for two independent experiments performed in triplicate. ***, P � 0.001; ****,
P � 0.0001; ns, no significant difference.
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a mutant strain of WNV (WNV-E218A) lacking 2=-O methylation
(Fig. 3B).

Effect of Ifit1 on bunyavirus and filovirus replication in cell
culture. Given the results obtained with IAV, we next assessed
whether Ifit1 restricted infection by three other negative-sense
RNA viruses, including two bunyaviruses (OROV and LACV) and
a filovirus (maEBOV). Bunyaviruses were chosen for study be-
cause ectopic expression of IFIT1 reportedly inhibited infection
by Rift Valley fever virus (19), a phlebovirus in the Bunyaviridae
family. Since bunyavirus mRNA contains a cap 1 structure that is
acquired through cap snatching (34, 35), IFIT1 restriction pre-
sumably would occur through recognition of the 5=-ppp moiety
on the negative-sense genomic strand of viral RNA. We per-
formed a multistep growth analysis with LACV and OROV in WT
and Ifit1�/� murine embryonic fibroblasts (MEFs), with and
without IFN-� pretreatment (Fig. 4A and B). In the absence of
IFN-� treatment, LACV and OROV both replicated to high titers
in WT and Ifit1�/� MEFs. As expected, pretreatment of MEFs
with IFN-� inhibited replication of LACV and OROV, but we saw
no significant increase in replication in Ifit1�/� MEFs, suggesting
that in the context of an antiviral type I IFN response, Ifit1 did not
have a dominant inhibitory phenotype against these two orthobu-
nyaviruses.

As an additional test of the antiviral function of Ifit1 against
negative-strand RNA viruses, we assessed its activity against a fi-
lovirus, maEBOV. Filoviruses contain a genomic RNA with a 5=-

ppp RNA moiety and likely encode viral methyltransferases to
generate cap 1 structures on their mRNA (36), although this has
not been demonstrated formally (37). We analyzed the multistep
growth kinetics of maEBOV in WT and Ifit1�/� bone marrow-
derived macrophages (M�) that were left untreated or pretreated
with 100 U of murine IFN-� (Fig. 4C). In the absence of IFN-�
pretreatment, there was no difference in the growth of maEBOV
in WT and Ifit1�/� M� (P � 0.2). Analogously, following IFN-�
pretreatment, we observed no difference in the growth of
maEBOV in WT and Ifit1�/� M� at any of the time points tested,
although IFN-� inhibited infection. Thus, in the context of an
antiviral type I IFN response, Ifit1 did not have potent antiviral

FIG 5 Binding of murine Ifit1 to the 5=-UTR of IAV. (A) A filter-binding assay was used to measure the binding affinity of murine Ifit1 for the viral RNA (vRNA)
of influenza A virus (IAV-Cal). Oligonucleotides representing the first 41 nucleotides of the PB2, PB1, and NS vRNAs were modified to contain a cap 0 (black)
or cap 1 (red) structure or left untreated (5=-ppp RNA) (green). Dissociation constants (KD) were calculated by using the nonlinear Hill equation, using Origin.
The data are means  SD and are representative of two independent experiments performed in triplicate. (B) Ifit1 has a lower affinity for RNA with 5=-OH than
for 5=-ppp and cap 0 RNAs. A nonradiolabeled RNA (125 nM) representing the 5= end of PB2 of IAV-Cal was modified to contain a cap 0 or 5=-OH structure and
added to the Ifit1 protein (0.3 �M) in the presence of radiolabeled 5=-ppp RNA from PB2 (5 nM). The data represent the means  SD for two independent
experiments performed in triplicate. **, P � 0.02; ns, no significant difference.

TABLE 1 Difference in dissociation constants of murine Ifit1 for RNA
oligonucleotides representing influenza virus genomic RNAa

5=-End modification

Fold difference in KD of murine Ifit1 for
IAV gene segment

PB2 PB1 NS

cap 0 ¡ cap 1 5 16 7
cap 0 ¡ 5=-ppp 11 17 6
a A filter-binding assay was used to measure the binding affinity of murine Ifit1 for IAV
5=-UTR cap 0, cap 1, and 5=-ppp. The KD (micromolar) was calculated by using the
nonlinear Hill equation, using Origin. The data presented are fold differences in KD

values between cap 0 and cap 1 or cap 0 and 5=-ppp RNA, calculated from two
independently repeated assays.
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FIG 6 Murine Ifit1 does not affect virus infection, pathogenesis, or cellular infiltrates in vivo after infection with IAV. (A and B) Morbidity and survival analyses
of 6- to 7-week-old female mice after intranasal inoculation of WT (n � 19) and Ifit1�/� mice (n � 10 for morbidity study and n � 19 for mortality study) with
104 EID50 of IAV-Cal. Data were pooled from four independent experiments. (C) Viral burdens in lung homogenates on days 3, 6, and 9 after IAV infection of
WT and Ifit1�/� mice were measured by a TCID50 assay on MDCK cells. A scatterplot of the data is shown, with each individual point representing a single animal
(n � 8 to 12). The dashed line represents the limit of detection of the assay. Statistical significance was judged by the Mann-Whitney test. (D) Representative flow
plots showing the gating strategy for BAL fluid immune cell analysis. (E to I) BAL fluid cell composition in WT and Ifit1�/� mice after infection with IAV-Cal.
Three, 5, 7, and 9 days after inoculation with 104 EID50 of IAV-Cal, BAL was performed, and the cellular composition of the fluid was determined by flow
cytometry, using monoclonal antibodies against mouse CD3, CD4, CD8, CD11c, CD11b, Ly6G, MHC class II, and B220. The data shown are the numbers of
CD8	 T cells (B220� CD3	 CD8	) (E), CD4	 T cells (B220� CD3	 CD4	) (F), dendritic cells (B220� CD3� MHC class II	 CD11blo CD11chi) (G),
macrophages (B220� CD3� MHC class II	 CD11b	 CD11clo) (H), and neutrophils (B220� CD3� CD11b	 Ly6G	) (I). The data were pooled from three
experiments, each containing at least three WT and Ifit1�/� mice. No statistical differences were observed as judged by the Mann-Whitney test.
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activity against viruses from three different families of negative-
strand RNA viruses, all of which display 5=-ppp on their genomic
RNA.

Relative binding of Ifit1 to 5=-OH, capped, and 5=-ppp RNA
structures. Given the absence of an antiviral effect of Ifit1 against
IAV, OROV, LACV, and maEBOV, we considered whether Ifit1
was capable of recognizing the 5=-UTR of IAV. Oligonucleotides
representing the first 41 bases of the viral PB2, PB1, and NS gene
segments were synthesized and used to generate 5=-OH, cap 0, cap
1, and 5=-ppp RNA structures. Mouse Ifit1 binding to the 5=-UTRs
of all three gene segments was detected when they displayed cap 0,
cap 1, and 5=-ppp RNA structures (Fig. 5A). However, Ifit1 bound
5=-ppp RNA and cap 1 RNA less avidly than it bound cap 0 RNA
(5- to 17-fold lower affinity) (Table 1), as also suggested by an-
other group (16). To validate the specificity of our assay, we per-
formed a competition assay between radiolabeled 5=-ppp RNA
and nonradiolabeled cap 0 or 5=-OH RNA of the PB2 gene seg-
ment. The cap 0 RNA outcompeted the 5=-ppp RNA (P � 0.02)
(Fig. 5B), whereas the 5=-OH RNA did not (P � 0.2). Thus, the
lower-affinity binding of Ifit1 to 5=-ppp RNA than to cap 0 RNA
may explain the absence of antiviral effects against negative-strand
RNA viruses that we observed in cell culture.

Effect of Ifit1 on IAV, OROV, and LACV pathogenesis in
vivo. Although an antiviral effect of Ifit1 against several negative-
strand RNA viruses was not observed in cell culture, it remained
possible that one could exist in vivo. To evaluate this hypothesis,
we infected WT and Ifit1�/� mice with IAV, LACV, or OROV and
monitored morbidity, mortality, and viral burden. First, we inoc-
ulated mice via the intranasal route with 104 EID50 of IAV-Cal
(Fig. 6A and B). Weight loss and lethality data between IAV-in-

fected WT and Ifit1�/� mice were not significantly different in
magnitude, rate, or duration (P � 0.1). Correspondingly, no dif-
ference in viral burden in the lungs was observed on days 3, 6, and
9 after IAV infection of WT and Ifit1�/� mice (P � 0.2) (Fig. 6C).
Consistent with the virologic results, cytokine levels in the lungs at
these time points revealed no differences between IAV-infected
WT and Ifit1�/� mice (Table 2) (P � 0.08). We also observed no
differences in the recruitment of dendritic cells, macrophages,
neutrophils, or lymphocytes into the lungs on days 3, 5, 7, and 9
after infection (Fig. 6D to I) (P � 0.08).

We next assessed the effect of Ifit1 on OROV and LACV patho-
genesis. We infected WT and Ifit1�/� mice with 105 FFU of LACV
(Fig. 7A and B) or 106 FFU of OROV (Fig. 7D and E) and moni-
tored the mice for 21 days. We observed no difference in weight
loss or mortality between WT and Ifit1�/� mice for either LACV
or OROV (P � 0.4). Analysis of viral RNA levels in the serum,
spleen, liver, and brain, on day 8 for LACV (Fig. 7C) and on day 4
for OROV (Fig. 7F), also revealed no significant differences be-
tween WT and Ifit1�/� mice (P � 0.07). These experiments indi-
cate that Ifit1 does not have a major role in restricting infection or
pathogenesis of several negative-strand RNA viruses.

DISCUSSION

To evaluate the possible role of IFIT1 in the recognition and re-
striction of negative-sense RNA viruses, we performed viral infec-
tion studies in cells that were deficient in or ectopically expressed
IFIT1, as well as pathogenesis studies in Ifit1�/� mice. Our results
revealed no ostensible antiviral effect of Ifit1 on viruses from three
different negative-strand RNA virus families, including ortho-
myxoviruses, bunyaviruses, and filoviruses. These results were un-

TABLE 2 Cytokine and chemokine levels in lungs of WT and Ifit1�/� mice after influenza virus infectiona

Cytokine

Concn (pg/ml) (mean  SD) in mouse lung

Day 3 Day 6 Day 9

WT Ifit1�/� WT Ifit1�/� WT Ifit1�/�

IL-1
 31  3 33  5 52  15 45  3 16  3 16  3
IL-1� 319  13 326  30 787  76 852  197 214  25 227  26
IL-2 23  11 24  11 35  12 35  12 29  13 33  13
IL-3 4  10 5  10 14  12 13  11 8  12 8  10
IL-4 4  10 5  11 36  3 37  3 23  5 22  6
IL-5 65  9 67  18 214  33 397  73 21  9 21  6
IL-6 297  32 231  37 413  40 416  178 127  7 57  4
IL-10 21  1 23  2 43  7 67  38 85  13 82  20
IL-12(p40) 253  18 270  22 49  13 77  67 38  8 22  3
IL-12(p70) 39  4 32  2 821  76 772  51 235  49 259  45
IL-13 ND ND 79  32 92  22 90  28 74  26
IL-17 ND ND 8  21 12  11 37  34 33  34
Eotaxin 613  76 455  79 489  58 657  50 6  11 5  14
G-CSF 294  41 315  67 743  70 821  89 299  63 114  23
GM-CSF 63  31 64  4 52  41 55  21 38  53 33  21
IFN-� 9  21 8  11 40  11 93  11 ND ND
KC 3,303  242 2,985  588 1,635  155 1,383  168 107  22 151  30
CCL2 1,272  178 1,018  122 1,357  464 2,216  243 698  111 474  114
CCL3 182  29 145  19 767  42 931  158 111  28 87  25
CCL4 134  18 128  24 121  12 267  39 58  11 53  8
CCL5 395  57 284  55 513  36 515  53 120  20 152  44
TNF-
 296  40 254  46 323  23 332  23 239  42 282  44
a WT and Ifit1�/� mice (n � 9) were infected with 104 EID50 of IAV-Cal, and 3, 6, or 9 days after infection, lungs were harvested, homogenized, and analyzed by the Bio-Plex Pro
23-plex mouse cytokine and chemokine assay. Data were pooled from three independent experiments. ND, levels were below the threshold of detection. No significant differences
(P � 0.08) were observed between WT and Ifit1�/� mice for any of the cytokines or chemokines for any day tested.
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expected but might be explained by the relatively low binding
affinity of Ifit1 for 5=-ppp RNA. Thus, although IFIT1 can bind to
5=-ppp RNA, its relevance for controlling negative-sense RNA vi-
ruses may be limited.

The genome of IAV is composed of eight single-stranded, neg-
ative-sense RNA gene segments. The 5= end of each segment dis-
plays a triphosphate motif that could be recognized and seques-
tered by IFIT1 during trafficking from the endosome to the
nucleus or from the nucleus to the cell membrane prior to bud-
ding of new virus particles. Given that our results suggest that
human and murine IFIT1 proteins do not restrict IAV infection,
IFIT1 may not bind avidly enough to 5=-ppp RNA to block viral
replication within a cellular context. It is possible that the 5=-ppp
moiety of IAV segments is not exposed because of masking by the
polymerase complex that sits upon each gene segment (38, 39).
Alternatively, the 5= end of each segment may form secondary
structures (40, 41) to limit binding of IFIT1 to the genome of IAV.
Because IAV has a host mRNA cap-snatching mechanism, it dis-
guises its mRNA as host RNA, which is less susceptible to IFIT1-
mediated restriction. Finally, IAV replicates in the nucleus, evad-
ing the possible detection of its complementary, positive-sense
RNA by IFIT1, which resides in the cytoplasm.

Bunyaviruses, including LACV and OROV, also have a seg-

mented genome, with each segment displaying a 5=-ppp moiety.
Unlike IAV, bunyaviruses replicate in the cytoplasm, which could
facilitate possible interactions between IFIT1 and 5=-ppp RNA.
Nonetheless, LACV and OROV were not inhibited by Ifit1 in vitro
or in vivo. Similar to IAV, LACV and OROV also have a cap-
snatching mechanism (34, 35), which likely contributes to evasion
of IFIT1 restriction. Although the relatively low-affinity binding
of 5=-ppp RNA likely limits IFIT1-mediated sequestration of
LACV and OROV RNAs, it is possible that bunyaviruses have
evolved alternate evasion mechanisms, including subcellular lo-
calization, actions of viral proteins, or the formation of secondary
structure elements at the 5= end of the genome. As part of our
analysis, we also tested the role of Ifit1 in a mouse-adapted strain
of EBOV, a negative-sense RNA virus that replicates in the cyto-
plasm. Unlike IAV, LACV, and OROV, the maEBOV genome en-
codes a polymerase protein with a postulated capping activity.
Therefore, only the 5=-ppp moiety at the end of the genomic neg-
ative-sense RNA and the complementary, positive-sense RNA are
likely targets for Ifit1 binding and restriction (42). We did not find
any evidence for Ifit1-mediated restriction of maEBOV infection.
Thus, despite its ability to bind 5=-ppp viral RNA, our data suggest
that IFIT1 does not efficiently inhibit RNA viruses with a negative
genome polarity.

FIG 7 Murine Ifit1 does not affect virus infection or pathogenesis in vivo after infection with OROV or LACV. (A and B) Morbidity and survival analyses of
8-week-old WT (n � 15) and Ifit1�/� (n � 13) mice after inoculation with 105 FFU of LACV by subcutaneous injection in the footpad. Data were pooled from
three independent experiments. (C) Viral burdens in the liver, spleen, brain, and serum on day 8 after LACV infection of WT and Ifit1�/� mice were measured
by quantitative RT-PCR. A scatterplot of the data is shown, with each individual point representing a single animal (n � 10 to 12). The dashed line represents the
limit of sensitivity of the assay. Statistical significance was judged by the Mann-Whitney test. (D and E) Morbidity and survival analyses of 6-week-old WT (n �
23) and Ifit1�/� (n � 10) mice after inoculation with 106 FFU of OROV by subcutaneous injection in the footpad. Data were pooled from three independent
experiments. (F) Viral burdens in the liver, spleen, brain, and serum on day 4 after OROV infection of WT and Ifit1�/� mice were measured by quantitative
RT-PCR. Viral burdens are recorded as per-gram values for organs (left axis) and per-milliliter values for serum (right axis). A scatterplot of the data is shown,
with each individual point representing a single animal (n � 10 to 13). The dashed line represents the limit of sensitivity of the assay. No statistical differences were
observed as judged by the Mann-Whitney test.
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A lack of IFIT1-mediated restriction of negative-sense RNA
viruses is consistent with published data showing no effect of mu-
rine Ifit1 on VSV replication and pathogenesis (17). Our data
contrast with those from studies showing antiviral activity of the
IFIT1/2/3 protein complex on VSV infection and, to a lesser ex-
tent, on IAV replication (18, 19). This study did not include in vivo
data for IAV, making a direct comparison challenging. It remains
possible that ectopic expression of IFIT1 at very high levels over-
comes the lower-affinity binding to 5=-ppp RNA and inhibits in-
fection of some negative-sense RNA viruses. Alternatively, high-
level expression of IFIT1 could have antiviral activity more
generally, through its reported effects on eIF3 binding and inhibi-
tion of protein translation (5–7). Finally, it is possible that IFIT1
expression or activity toward negative-sense RNA viruses is
greater in HeLa cells (19) than in the A549 cells or mTECs used in
our study.

Although in our experiments IFIT1 did not have a major im-
pact on infection by negative-strand RNA viruses, several groups
have reported significant inhibitory effects on positive-strand
RNA (flaviviruses, alphaviruses, and coronaviruses) and DNA
(poxvirus) viruses lacking 2=-O methylation of their viral RNAs
(10–15, 17, 43, 44). Moreover, we and others have measured a
higher affinity of IFIT1 for RNA containing cap 0 than for cap 1 or
5=-ppp structures (11, 15–17). Consistent with these observations,
flavivirus, alphavirus, or coronavirus mutants lacking 2=-O meth-
ylation of their viral RNAs replicate to higher levels and cause
greater pathogenesis in Ifit1�/� mice and are attenuated in WT
mice.

It is possible that other members of the human and mouse IFIT
gene family restrict infection and pathogenesis by IAV, LACV,
OROV, and EBOV. For example, murine Ifit2 inhibited the repli-
cation of several positive- and negative-sense RNA viruses in spe-
cific tissues, including the brain and lungs (20, 45). Future studies
are needed to determine if human and mouse IFIT2 proteins re-
strict IAV, LACV, OROV, and EBOV. Although IFIT3 has been
implicated in innate immune signaling (46), determination of its
precise role in viral pathogenesis and innate immunity awaits the
generation of Ifit3�/� mice and cell lines. Our study shows that
human and murine IFIT1 proteins do not efficiently restrict infec-
tion by negative-sense RNA viruses from multiple families. This
may be related to the relatively low affinity of IFIT1 proteins for
the 5=-ppp moiety present in negative-sense RNA viruses.
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