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a b s t r a c t

We consider the problem of finding an integral (and fractional) packing of branchings in a
capacitated digraph with root-set demands. Schrijver described an algorithm that returns
a packing with at most m + n3

+ r branchings that makes at most m(m + n3
+ r) calls

to an oracle that basically computes a minimum cut, where n is the number of vertices,
m is the number of arcs and r is the number of root-sets of the input digraph. Leston-Rey
and Wakabayashi described an algorithm that returns a packing with at most m + r − 1
branchings but makes a large number of oracle calls. In this work we provide an algorithm,
inspired on ideas of Schrijver and in a paper of Gabow and Manu, that returns a packing
with atmostm+r−1 branchings andmakes atmost (m+r+2)n oracle calls.Moreover, for
the arborescence packing problem our algorithm provides a packingwith atmostm−n+2
arborescences – thus improving the bound of m of Leston-Rey and Wakabayashi – and
makes at most (m − n + 5)n oracle calls.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Integral packing problems form an important class of combinatorial optimization problems. A general algebraic version
of a packing problem can be formalized as follows. Let B be a set of vectors in an m-dimensional vector space. Suppose
we are given a non-negative integral vector c and we are asked to find (if possible) positive integers y1, . . . , yk and vectors
b1, . . . , bk ∈ B such that

y1b1 + · · · + ykbk 6 c.

When we require equality above, we are asking whether c belongs to the integer cone generated by the vectors in B. In
combinatorial applications, the set B is typically much larger thanm. For example, B could be the set of (incidence vectors
of) bases of a matroid whose ground set has m elements or could be the set of r-arborescences of a digraph with m arcs.
From the perspective of an algorithmic designer, it is essential to find a packing with a polynomial number of members of
B. Moreover, from a theoretical point of view it would be very interesting to find the smallest upperbound k for which it is
always possible to pack at most k elements of B independently of the choice of c. This latter problem is related to the study
of Hilbert bases introduced by Cook, Fonlupt and Schrijver [2].

In this paper we are concerned with the case in which B corresponds to the set of branchings (with many root-sets) of
digraphs. We note that the problem we consider here does not fit exactly in the general setting we have defined.

In a seminal paper Edmonds [4] characterized when a capacitated digraph with root-set demands has an integral
packing of branchings. Lovász [12] established the fundamental ideas and proof techniques for problems involving packing
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of arborescences and branchings [1,6,7,10]. In this paper we investigate this problem from the point of view of finding
efficiently a packing with few branchings.

Schrijver [15] described an algorithm that returns a packing with at most m + n3
+ r distinct branchings that makes at

most m(m + n3
+ r) calls to an oracle that basically computes a minimum cut, where n is the number of vertices, m is the

number of arcs, and r is the number of root-sets of the input digraph. Pevzner [14] considered the special case of finding a
maximum integral packing of r-arborescences in a capacitated digraph and proved there exists such a packing with O(nm)
distinct arborescences. Gabow and Manu [8], also for this special case, provided an algorithm that returns a packing with
at most m + n − 2 distinct arborescences whose time complexity is O(min{n, lg C}n2m lg(n2/m)), where C is the largest
capacity of an arc. They also showed an upperbound of m for the number of distinct arborescences in a fractional packing.
One of the key ideas in their algorithm is to keep a laminar family of cuts in order to bound the number of arborescences
used in the final packing. Leston-Rey andWakabayashi [11] described an algorithm for a general framework that implies an
algorithm that returns an integral packing of branchings using at mostm+ r − 1 distinct branchings, which in turn implies
that there exists an integral packing of arborescences using at most m distinct arborescences. Though their algorithm is
oracle-polynomial time and improves on the best known upper bounds for the packing size, it also requires a large number
of oracle calls.

In thisworkweprovide an algorithm for packing branchings for both the fractional and the integral version. The algorithm
returns a packing with at mostm + r − 1 branchings and makes at most (m + r + 2)n oracle calls.

This paper is organized as follows. In the remaining of this section we introduce some basic notation, recall Edmonds’
theorem and present ourmain result (Theorem2) and its consequences. In Section 2,we discuss some concepts and auxiliary
results which we use throughout the paper. In Section 3 we present our main contribution: a new algorithm for packing
branchings in a network. Finally, in Section 4 we describe the pre-processing step of our algorithm — this is required to
ensure that the packing produced by the algorithm is ‘‘small’’.

Preliminaries Before we begin, let us state a few preliminary definitions. For a function f : X → R+, and Y ⊆ X , we
write f (Y ) to denote the sum


[f (y) | y ∈ Y ]. The support of f , denoted by f +, is the set {x ∈ X | f (x) > 0}. Let B be a

subset of some set E. The characteristic function of B is the function χB
: E → {0, 1} defined by

χB(e) :=


1 if e ∈ B,
0 otherwise

for each e ∈ E. We use characteristic functions without explicitly stating its domain, since the context will imply to which
domain we refer. A function is integral if its image is a subset of the set N of nonnegative integers.

For a set V , a subset P of 2V , we write


P to denote the set {u | u ∈ U for some U ∈ P }.
For a property P , we write

[P] :=


1, if P is true
0, otherwise.

A digraph is a pair D = (V , A), where V is a finite set of vertices, and A is a finite set of arcs. Each arc is associated with
two vertices, its ends, which are called its tail and its head. Let S be a subset of V . We write S̄ to denote V \ S. We say that an
arc a ∈ A enters S if the tail of a is in S̄ and the head of a is in S, otherwise we say that a avoids S. We write ρ(S), or simply
ρS, to denote the set of arcs of D that enter S. Finally, set

CS := {∅ ≠ U ⊆ V | U ∩ S = ∅}.

An S-cover is a subset B of arcs such that B ∩ ρU ≠ ∅ for each U ∈ CS . An S-branching is a minimal S-cover. For most of the
proofs in this paper we only require that B is an S-cover rather than an S-branching. We also say that B ⊆ A avoids P ⊆ 2V

if B ∩ ρU = ∅ for each U ∈ P . When B = {a} we just say that a avoids P .
Let D = (V , A) be a digraph, c : A → R+ an arc capacity function and µ : 2V

\ {∅} → R+ a demand function. The triple
F = (D, c, µ) is called a network. Each set in µ+ is called a root-set. It is convenient to set

c(U) :=


[c(a) | a ∈ ρU], and

c(U,W ) :=


[c(a) | a ∈ A has one end in U and the other inW ]

for each U,W ⊆ V . It is well-known that

c(U) + c(W ) = c(U ∪ W ) + c(U ∩ W ) + c(U \ W ,W \ U), (1)

for each U,W ⊆ V . In other words, c is a submodular function.
For each nonempty U ⊆ V , we define the demand induced by µ by setting

p(U) :=


[µ(R) | R ∈ µ+,U ∈ CR].

It is straightforward to verify that p is a supermodular function, that is,

p(U) + p(W ) 6 p(U ∪ W ) + p(U ∩ W ), (2)
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for each U,W ⊆ V with U ∩ W ≠ ∅. Note that if ∅ ≠ U ⊆ W , then

p(U) > p(W ), (3)

or, in words, p is nonincreasing. For a vertex v, we write for brevity c(v) and p(v) instead of c({v}) and p({v}).
Let S ∈ 2V

\ {∅}, and denote by BS the set of all S-covers of D. We say that a function yS : BS → R+ is a packing of S if
[yS(B) | B ∈ BS] = µ(S).

A function y that assigns a packing yS to each S ∈ 2V
\ {∅} is a packing of F if

[yS(B)χB
| S ∈ 2V

\ {∅}, B ∈ BS] 6 c.

Furthermore, y is integral if yS is integral for each S ∈ 2V . The size of y is the number

|y+
| :=


[|y+

S | | S ∈ µ+
].

In this setting, the problem of finding a packing of branchings consists in given a network F = (D, c, µ) finding a packing
y of F. Note that |y+

| is an upper bound on the number of distinct covers used in y.
We say that F is feasible if c(U) > p(U) for each nonempty U ⊆ V . The following theorem is a classical result of

Edmonds [4].

Theorem 1 (Edmonds [4]). A network has a packing if and only if it is feasible.

In the proof of our main result, tight sets and laminar families play an important role. We say that a nonempty U ⊆ V is
tight in F if c(U) = p(U). The set of all tight sets of F is denoted by Γ F. We highlight a certain subset of Γ F and write

Γ+F := {U ⊆ V | c(U) = p(U) > 0},

that is, Γ+F is just the set of tight sets with positive induced demand. We say that two subsets U,W of V intersect if

U ∩ W ≠ ∅, U \ W ≠ ∅, and W \ U ≠ ∅.

We say that a subset L of 2V is laminar if no two of its members intersect, that is,

U ⊆ W , or W ⊆ U, or U ∩ W = ∅

for each U,W ∈ L. For T ⊆ V let LT be the set of all maximal elements L of L such that L and T intersect. For each
P ⊆ 2V , we write γ (P ) to denote the size of a maximum laminar subset of P such that ∅, V ∉ P . It is easy to verify that
γ (P ) 6 2|V | − 2 if V is nonempty.

OracleHenceforth, we assume that we have an oracle that given a feasible network F = (D, c, µ), a root-set S ∈ µ+ and
an arc a ∈ ρ(S̄), it returns a set X in

argmin{c(W ) − p(W ) | W ⊆ V ,W ∩ S ≠ ∅, a ∈ ρW }. (4)

We also write

αS(a) (5)

to denote the number c(X)− p(X). Informally, this number is the maximum amount that we can subtract from the capacity
of a while keeping the feasibility of the network (this is described more precisely in Section 2). Schrijver [15] showed that
this quantity can be computed in polynomial time.

In order to describe our main result, we need one more definition. For a network F = (D, c, µ) let HF := {u ∈ V | p(u)
> 0}.

Theorem 2. There is an oracle-polynomial time algorithm that given a feasible network F = (D, c, µ), returns a packing y such
that |y+

| 6 |A| − |HF| + |µ+
| and makes no more than (|A| − |HF| + |µ+

| + 3)|V | oracle calls. Moreover, if c is integral, then
y is integral.

Some implications Theorem 2 has some interesting implications which we next describe.
The integer cone of a set L := {b1, b2, . . . , bk} of vectors is defined as

k
i=1

λibi | λi ∈ N, i = 1, 2, . . . , k


.

The Carathéodory rank of L is the smallest integer t such that every element in the integer cone of L can be written as a
nonnegative integral linear combination of at most t elements from L. Let D = (V , A) be a digraph and consider a nonempty
S ⊆ V . Let BS denote the set of all S-branchings of D. Consider now a fixed nonempty S ⊆ 2V

\ {∅, V }. Suppose that BS is
nonempty for each S ∈ S. LetQ denote the integer cone of incidence vectors of S-branchings for S ∈ S. Let c ∈ Q with c ≠ 0,
that is, c =


[λS

Bχ
B

| S ∈ S, B ∈ BS] for nonnegative integers λS
B with S ∈ S, B ∈ BS . Consider the network F = (D, c, µ),
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where µ(S) :=


[λS
B | B ∈ BS] if S ∈ S, and µ(S) := 0 otherwise. It is clear that F is feasible, |µ+

| = |S| and |HF| > 1.
Moreover, since B is an S-branching (and thus minimal) for each S ∈ S and each B ∈ BS , we have that c(u) = p(u) for each
u ∈ V . Theorem 2 together with these last observations imply that c is a nonnegative integral linear combination of at most
|A| + |S| − 1 covers. In other words, the Carathéodory rank of the set of incidence vectors of minimal S-covers for S ∈ S is
at most |A| + |S| − 1.

The next consequence is the special case in which µ+
= {r} for some r ∈ V , that is, we want to pack r-arborescences.

An r-arborescence is an {r}-branching. It improves, with respect to the size of the packing, a previous result of Leston-Rey
and Wakabayashi [11].

Corollary 1. There exists an oracle-polynomial time algorithm that given a digraph D, a root r ∈ V such that D has at least one
r-arborescence, and an arc capacity function c : A → R+, returns r-arborescences B1, . . . , Bk and positive reals y1, . . . , yk such
that

k 6 |A| − |V | + 2,
k

i=1

yiχBi 6 c, and
k

i=1

yi = min{c(X) | X ∈ C{r}}

by making no more that (|A| − |V | + 5)|V | oracle calls. Moreover, if c is integral, then y1, . . . , yk are integers. �

So the Carathéodory rank of the set of incidence vectors of r-arborescences is at most |A| − |V | + 2.
Another byproduct of our main result concerns packing of spanning trees in undirected graphs. Nash-Williams [13]

and Edmonds [3] characterized when an undirected graph contains k edge-disjoint spanning trees. Frank [6] provided an
alternative proof of this result by finding an appropriate orientation of the graph and applying Theorem 1. Using the same
approach we can show that Theorem 2 implies that given a graph G = (V , E)with edge-capacities there is always a packing
of spanning trees of size at most 2|E|−|V |+2. Bounds on the size of packing of spanning trees (in fact, of bases of amatroid)
were previously known. de Pina and Soares [5] showed that the Carathéodory rank of the set of incidence vectors of bases
of a matroid is at most m + r − 1 where m is size of the ground set and r is the rank of the matroid. Gijswijt and Regts [9]
extended their result showing that the Carathéodory rank of the set of incidence vectors of bases of a polymatroid is at most
m where m is the size of the ground set of the polymatroid.

2. Some auxiliary results

Let us begin with a simple lemma, which generalizes a lemma of Gabow and Manu [8] involving arborescences, and
whose proof follows the idea of Lovász proof [12] of Edmonds theorem.

Lemma 1. Let F be a feasible network, and L be a laminar subset of Γ F. If there exists S ∈ µ+ with S ≠ V , then there exists an
arc a ∈ c+

∩ ρS̄ which avoids L \ CS .

Proof. Let S ∈ µ+ with S ≠ V . Suppose first that L ∩ S̄ = ∅ for each L ∈ L \ CS . Since µ(S) > 0, it follows that p(S̄) > 0.
But c(S̄) > p(S̄), and thus there exists a in c+

∩ ρS̄, and clearly a avoids L \ CS .
Suppose now that L ∩ S̄ ≠ ∅ for some L ∈ L \ CS . Choose such a minimal L. Observe that L ∩ S ≠ ∅ by the definition of

CS . Now c(L ∩ S̄) > p(L ∩ S̄) > p(L) = c(L), and so there exists an arc a ∈ c+ whose tail is in L ∩ S and whose head is in
L ∩ S̄. To finish we establish that a avoids L \ CS . Indeed, let T ∈ L \ CS and suppose that a ∈ ρT . In this case, T ∩ L ≠ ∅,
since both sets contain the head of a, and T ∩ S̄ ≠ ∅. But the tail of a is in L \ T , and hence, the laminarity of L imply that
T ⊂ L, which contradicts the minimality of L. �

Decreasing the capacity of a set of arcs Let F be a network, S ∈ µ+ a root-set, and B ⊆ c+. Let H be the set of heads of
the arcs in B and assume that S̄ ∩H ≠ ∅. Moreover, let k be a number with 0 6 k 6 min{µ(S)}∪ {c(a) | a ∈ B}. The network
obtained from F by decreasing k units the capacity of each arc in B, denoted by FS,kB, is the network (D, ckB, µS,kB), where

ckB(a) :=


c(a) − k, if a ∈ B,
c(a), otherwise, for each a ∈ A.

µS,kB(T ) :=


µ(T ) − k, if T = S
µ(T ) + k, if T = S ∪ H,
µ(T ), otherwise,

for each ∅ ≠ T ⊆ V .

Note that the demand induced by µS,kB, denoted pS,kB, satisfies

pS,kB(X) =


p(X) − k, if B enters X and X ∈ CS,
p(X), otherwise, for each ∅ ≠ X ⊆ V . (6)

Wewrite FkB instead of FS,kB when no confusion can arise. Moreover, if B = {a} for some arc a, thenwewrite FS,ka instead
of FS,k{a}. Finally, when k = 1, we write FS,B instead of FS,1B.

Observe that if F is feasible and 0 6 k 6 αS(a), then Fka is feasible.
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Let us roughly describe themain ideas of our algorithm—a precise formulation is given in the next section. The algorithm
is recursive and has as input a feasible network F and a laminar family L of tight sets. It begins by choosing a root-set S
with positive demand. Using Lemma 1 the algorithm finds an arc a that avoids L \ CS . Then it decreases the capacity of a as
much as possible keeping feasibility (using the oracle). Depending on the resulting capacity of a, the algorithmmay increase
L, and then recursively finds a packing of the resulting network. The returned packing is then extended to a packing of the
original network. As we will show, the laminar family L imposes an upperbound on the number of oracle calls.

The next lemma establishes in which conditions we can extend a laminar family of tight sets.

Lemma 2. Let F be a feasible network, S ∈ µ+ with S ≠ V , L ⊆ Γ F laminar, and a ∈ c+
∩ ρS̄. If a avoids L \ CS and

αS(a) = 0, then there exists L∗
∈ Γ+F such that L∗

∉ L and L ∪ {L∗
} ⊆ Γ F is laminar.

Proof. Suppose that a avoidsL\CS andαS(a) = 0. Let k be such that 0 < k < min{c(a), µ(S)}. Observe thatFka is infeasible
and
(1�) for each ∅ ≠ U ⊆ V : cka(U) > pka(U) − k, and
(2�) for each L ∈ L : cka(L) = pka(L),

since (1�) follows from the feasibility of F, and (2�) holds because a avoids L \ CS . We claim that there exists T ⊆ V such
that
(3�) cka(T ) = pka(T ) − k, and
(4�) for each L ∈ L: if L intersects T , then cka(L ∩ T ) > pka(L ∩ T ).

Since a ∈ c+ and αS(a) = 0, then there exists U ∈ Γ F \ CS with a ∈ ρU . Hence cka(U) = pka(U) − k. If (4�) holds with
respect to U , then let T := U . Suppose that (4�) does not hold with respect to U . We show that there exists L ∈ L such
that L intersects U and cka(L ∩ U) = pka(L ∩ U) − k. Indeed, since (4�) does not hold, then there exists L ∈ L such that L
intersects U and cka(L ∩ U) < pka(L ∩ U). Note that a enters L ∩ U . In this case, L ∩ U ∉ CS , and so L ∉ CS . But a avoids L,
because a avoids L \ CS which, combined with a ∈ ρ(L ∩ U), implies that a avoids L ∪ U , whence cka(L ∪ U) > pka(L ∪ U).
Now the submodularity of cka, and the supermodularity of pka imply that

pka(U) − k + pka(L) = cka(U) + cka(L) > cka(L ∩ U) + cka(L ∪ U)

> pka(L ∩ U) − k + pka(L ∪ U) > pka(U) − k + pka(L).

Thus equality holds throughout, and cka(L ∩ U) = pka(L ∩ U) − k, as required. Select a minimal L such that L intersects U
and cka(L∩ U) = pka(L∩ U) − k, and set T := L∩ U . Then the laminarity of L and the choice of L imply that T satisfies (3�)
and (4�).

Let L∗
:= T ∪


LT . Observe that L ∪ {L∗

} is laminar. The following claim proves that L∗
∉ L.

Claim. cka(T ∪


LT ) = pka(T ∪


LT ) − k.

Proof. We prove that cka(T ∪


P ) = pka(T ∪


P )− k for each subset P of LT , by induction on |P |. The result is obvious
if P = ∅. Suppose that P ≠ ∅. Let L ∈ P and set P ′

:= P \ {L}. Note that L intersects T ∪


P ′. By induction hypothesis,
cka(T ∪


P ′) = pka(T ∪


P ′) − ε. Hence

pka

T ∪


P ′


− k + pka(L) = cka


T ∪


P ′


+ cka(L)

> cka


T ∪


P ′


∪ L


+ cka


T ∪


P ′


∩ L


> pka


T ∪


P ′


∪ L


− k + pka


T ∪


P ′


∩ L


> pka


T ∪


P ′


− k + pka(L),

where the first equality holds by induction hypothesis and by (2�); the first inequality, by submodularity of cka; the second
inequality, by (1�) and by (4�); finally, the third inequality, by supermodularity of pka. Thus equality holds throughout and
cka(T ∪


P ) = pka(T ∪


P ) − ε. This finishes the proof of the claim. •

Now, cka(L∗) = pka(L∗) − k and F feasible imply that L∗
∈ Γ+F, and hence L ∪ {L∗

} ⊆ Γ F, which establishes the
lemma. �

The following theorem is a reformulation of a classical theorem of Edmonds [4].

Theorem 3 (Edmonds [4]). Let F be a feasible network and S ∈ µ+ with S ≠ V . Then there exists an arc a ∈ c+
∩ρS̄ which avoids

Γ F\CS and such that Fka is a feasible network,where k := min{c(a), µ(S),min{c(W )−p(W ) | W ⊆ V ,W∩S ≠ ∅, a ∈ ρW }}.

Proof. Choose a laminar subfamily L of Γ F of maximum cardinality. By Lemma 1, there is an arc a ∈ c+
∩ ρS̄ that avoids

L \ CS . If a does not avoid Γ F \ CS then Fk′a is infeasible for each 0 < k′ 6 min{c(a), µ(S)}. Lemma 2 now implies the
existence of L∗

∈ Γ+F such that L ∪ {L∗
} ⊆ Γ F is laminar and L∗

∉ L, which contradicts the maximality of L. So a avoids
Γ F \ CS , and therefore Fka is a feasible network. �
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We note that Theorem 3 easily implies Theorem 1. This provides an alternative proof of Edmonds’ result.
The following corollary will be useful.

Corollary 2. Let F be a feasible network, and S ∈ µ+. Then there exists an S-cover B ⊆ c+ and a real ε > 0 such that FS,εB is a
feasible network. Moreover, if FS,ka is a feasible network for some arc a ∈ c+ and some real k > 0, then there exists an S-cover
B ⊆ c+ and a real ε > 0 such that a ∈ B and FS,εB is a feasible network. �

3. The algorithm

In this section we present our algorithm for packing branchings in a network. Before that let us describe roughly
Schrijver’s algorithm for this problem. The algorithm finds a safe arc a, that is, for which αS(a) > 0—the existence of this
arc is guaranteed by Theorem 3. Then it decreases the capacity of a by αS(a) and recursively finds a packing in the resulting
network. Finally, it extends this solution to a packing in the original network. Schrijver [15] showed that the algorithm
returns a packing with at most m + n3

+ r distinct branchings and makes at most m(m + n3
+ r) calls to an oracle that

basically computes a minimum cut, where n is the number of vertices, m is the number of arcs, and r is the number of
root-sets of the input digraph.

Our algorithm uses essentially the same idea but in order to obtain better bounds we rely on a laminar family of tight
cuts. The idea of using a laminar family was used by Gabow andManu [8] in their algorithm for packing arborescences with
a same root in a network. Roughly speaking at each iteration the algorithm either finds a removable arborescence or enlarges
the laminar family. Since the size of a laminar family on V is bounded by 2n − 1, this implies a bound on the number of
arborescences used in the packing. In our algorithm we select a suitable arc a. If αS(a) > 0 then we decrease the capacity
of a and recursively find a packing. On the other hand, if αS(a) = 0 then we enlarge the laminar family. We note however
that in our algorithm, the bound on the number of branchings in the packing is related to the rank of a certain subset ZF of
vectors. The laminar family plays a slightly different role when compared to Gabow andManu’s algorithm. This allows us to
obtain better bounds. As far as we know, the idea of using the rank of ZF to bound the size of the packing and the number
of oracle calls has not been used before.

For a network F = (D, c, µ) set

ZF := {χρU
| U ∈ Γ F} ∪ {χ {e}

| e ∈ A, c(e) = 0}.

For a subsetM of vectors, let rank (M) denote the size of a maximum linearly independent subset ofM .
Our packing algorithm consists of two phases. In the first phasewe construct a suitable laminar family of tight sets which

is used in the second phase. We postpone the presentation of this phase for the last section.
Herewe describe the algorithm Rpack (F, L) for the second phase. It receives a feasible network F and a laminarL ⊆ Γ F

and returns a packing y of F with |y+
| 6 |A| − rank (ZF) + |µ+

|. Furthermore, the number of oracle calls is at most
(|A| − rank (ZF) + |µ+

|)(|V | − 1) + γ (p+) − |L|. See Theorem 2.
We remark that, in the description of the algorithm, we use Claim 1 (in the proof of Theorem 4) which is responsible for

the construction of a packing of a feasible network F by using a recursively obtained packing of a feasible network Fka.
In the algorithm Rpack we use the following notation: for each ∅ ≠ S ⊆ V and each integer k, let kS : BS → N be the

function defined by kS(B) := k for each B ∈ BS .
Algorithm Rpack (F, L)

1 if µ+
= ∅ then

2 return the packing {(S, 0S) | ∅ ≠ S ⊆ V }

3 if µ+
= {V } then

4 return the packing {(S, 0S) | ∅ ≠ S ⊂ V } ∪ {(V , µ(V )V )}

5 select S ∈ µ+
\ {V } and a ∈ c+

∩ ρS̄ such that a avoids L \ CS
6 if αS(a) = 0 then
7 select L∗ as in Lemma 2
8 return y := Rpack (F, L ∪ {L∗

})
9 y′

:= Rpack (FαS (a)a, L)
10 return the packing y of F obtained from y′, using Claim 1

Analysis of the packing algorithm
The following result, which follows from elementary linear algebra, will be useful.

Lemma 3. Let M be a finite set, and for each i ∈ M, let ai ∈ Rn. If there exist x, z, d ∈ Rn, and η ∈ R such that dx 6 η, dz > η,
and aix = aiz for each i ∈ M, then d ∉ span ({ai | i ∈ M}). �

Recall that the size of a packing y of F is |y+
| :=


[|y+

S | | S ∈ µ]. Our main result, Theorem 2, follows from the next
result by picking P := p+.
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Theorem 4. Let F be a feasible network, and P , L ⊆ 2V . If P ⊇ p+ and L ⊆ {X ∈ P | c(X) = p(X)} is laminar, then
Rpack(F, L) returns a packing y of F such that |y+

| 6 ϕ(F), and makes no more than q(F, L) oracle calls, where

ϕ(F) := |A| − rank (ZF) + |µ+
|, and

q(F, L) := (|A| − rank (ZF))(|V | − 1) + γ (P ) − |L| +


S∈µ+

|S̄|.

Moreover, if c is integral, then y is integral.

Proof. Suppose thatP ⊇ p+ andL ⊆ {X ∈ P | c(X) = p(X)} is laminar. The proof is by induction on q(F, L). Ifµ+
= ∅ or

µ+
= {V }, then the result is immediate, since in this case the algorithm returns a packing y such that |y+

| = |µ+
| 6 ϕ(F),

and makes no oracle calls.
Suppose now that there exists S ∈ µ+ with S ≠ V (so |V | > 2) and we are at line 5 of the algorithm. By Lemma 1, there

exists an arc a as in line 5.
Assume first that αS(a) = 0. In this case, we are at line 7, and by Lemma 2, there exists L∗

∈ Γ+F such that L ∪ {L∗
}

is laminar. Note that L ∪ {L∗
} ⊆ {X ∈ P | c(X) = p(X)}. Furthermore, q(F, L ∪ {L∗

}) + 1 6 q(F, L), and therefore,
by induction hypothesis, the call in line 8 returns a packing y of F such that |y+

| 6 ϕ(F), and makes no more than
q(F, L ∪ {L∗

}) + 1 6 q(F, L) oracle calls. This completes the proof in this case.
In what follows, we assume that αS(a) > 0. To simplify, we write F′

:= FαS (a)a; similarly for the components of F′,
for instance, µ′

:= µαS (a)a. Let t be the head of a and S ′
:= S ∪ {t}. Observe that, by (6), P ⊇ (p′)+, and furthermore

µ′(S ′) > αS(a).
Before we proceed, we prove the following.

Claim 1. If y′ is a packing of F′, then there exists a packing y of F with |y+
| 6 |(y′)+| + [S ′

∈ µ+
].

Proof. Let k := αS(a). Let y′ be a packing of F′ and B1, . . . , Be be the covers in (y′

S′)
+. Then

e
i=1 y

′

S′(Bi) = µ′(S ′) > k. Choose
i in {1, . . . , e} such that

i−1
j=1

y′

S′(Bj) < k and
i

j=1

y′

S′(Bj) > k.

Set k′
:= k −

i−1
j=1 y

′

S′(Bj). Define now z : BS → N, a packing of S, by setting

z(J) :=

y′

S(J) + y′

S′(Bj), if J = {a} ∪ Bj and j ∈ {1, . . . , i − 1},
y′

S(J) + k′, if J = {a} ∪ Bi,
y′

S(J), otherwise,

for each J ∈ BS .
Moreover, we now define z ′

: BS′ → N, a packing of S ′, by setting

z ′(J) :=

y′

S′(J) − k′, if J = Bi,
y′

S′(J), if J = Bj and j ∈ {i + 1, . . . , e},
y′

S′(J), otherwise

for each J ∈ BS′ .
Finally, we define a packing y of F by setting

yT :=

z, if T = S,
z ′, if T = S ′,
y′

T , otherwise,
for each ∅ ≠ T ⊆ V .

It is easy to see that y is a packing of F with |y+
| 6 |(y′)+| + [S ′

∈ µ+
]. This finishes the proof of the claim. •

Now we deal with lines 9 and 10 of the algorithm. We divide the rest of the proof in the following cases:

Case 1 αS(a) = µ(S).
Clearly, S ∉ (µ′)+. Then


T∈(µ′)+ |T̄ | 6


T∈µ+ |T̄ |−1, and so q(F′, L)+1 6 q(F, L). Thus, by induction hypothesis,

the call in line 9 returns a packing y′ of F′ such that |(y′)+| 6 ϕ(F′), and makes no more than q(F′, L) oracle calls.
Now, it is clear that |(µ′)+| 6 |µ+

|− [S ′
∈ µ+

], and so ϕ(F′) 6 ϕ(F)−[S ′
∈ µ+

]. Hence, by Claim 1, F has a packing
y such that |y+

| 6 |(y′)+| + [S ′
∈ µ+

], and thus |y+
| 6 ϕ(F).

Since only one oracle call is made in line 7, then the number of oracle calls is at most q(F′, L) + 1 6 q(F, L), as we
wanted.

Case2 αS(a) < µ(S).
Recall that we are assuming αS(a) > 0. The following claim contains the main step of the proof for Case 2.
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Claim 2. rank(ZF′) > rank(ZF) + 1.

Proof. Suppose first that αS(a) = c(a). Corollary 2 implies that there exists an S-cover B ⊆ c+ in F and a real ε > 0
such that a ∈ B and FεB is a feasible network. Moreover, since µ′(S) > 0 and F′ is feasible, it also implies that there
exists an S-cover J ⊆ (c ′)+ in F′ and a real ε > 0 such that (F′)εJ is feasible, and thus a ∉ J . Then

for each U ∈ Γ F : χB(ρU) = χCS (U) = χ J(ρU), and
for each e ∈ E with c(e) = 0 : χB(e) = 0 = χ J(e).

But χB(a) = 1 and χ J(a) = 0, whence, by Lemma 3, χ {a}
∉ span (ZF). Since χ {a}

∈ ZF′, we conclude that
rank (ZF′) > rank (ZF) + 1.
Now, assume that αS(a) < c(a). In this case, αS(a) = c(W ) − p(W ) for some W ⊆ V such that W ∩ S ≠ ∅ and
a ∈ ρW . Since F is feasible, then Corollary 2 implies that there exists an S-cover B ⊆ c+ in F and a real ε > 0 such
that a ∈ B, and FεB is a feasible network. Moreover, since F′ is feasible and µ′(S) > 0, then Corollary 2 also implies
that there exists an S-cover J ⊆ (c ′)+ in F′ and a real ε > 0 such that (F′)εJ is a feasible network. Note that no arc in
J entersW , becauseW ∈ Γ F′ andW ∩ S ≠ ∅. Then

for each U ∈ Γ F : χB(ρU) = χCS (U) = χ J(ρU), and
for each e ∈ E with c(e) = 0 : χB(e) = 0 = χ J(e).

Furthermore, χB(ρW ) > 1, since a ∈ ρW , and χ J(ρW ) = 0 which, by Lemma 3, implies that χρW
∉ span (ZF). But

χρW
∈ ZF′, and thus rank (ZF′) > rank (ZF) + 1. This completes the proof of the claim. •

Nowwe establish that q(F′, L)+1 6 q(F, L). By the claim, rank (ZF′) > rank (ZF)+1. However, (µ′)+ = µ+
∪{S ′

},
and |V | − 1 > |S̄ ′| + 1. Thus

q(F′, L) + 1 = (|A| − rank (ZF′))(|V | − 1) +


T∈(µka)+

|T̄ | + γ (P ) − |L′
| + 1

6 (|A| − rank (ZF))(|V | − 1) − (|V | − 1) + |S̄ ′| + 1 +


T∈µ+

|T̄ | + γ (P ) − |L|

6 (|A| − rank (ZF))(|V | − 1) +


T∈µ+

|T̄ | + γ (P ) − |L| = q(F, L),

as we wanted.
Since L ⊆ {X ∈ P | c ′(X) = p′(X)} and q(F′, L) + 1 6 q(F, L), then by induction hypothesis, the call in line 9
returns a packing y′ of F′ such that |(y′)+| 6 ϕ(F′), and makes no more than q(F′, L) oracle calls. But the number of
oracle calls is at most q(F′, L) + 1 6 q(F, L), as required.
Clearly, |(µ′)+| = |µ+

| + 1 − [S ′
∈ µ+

], which together with rank (ZF′) > rank (ZF) + 1, implies that
ϕ(F′) 6 ϕ(F) − [S ′

∈ µ+
]. By Claim 1, F has a packing y such that |y+

| 6 |(y′)+| + [S ′
∈ µ+

], and thus |y+
| 6 ϕ(F).

This finishes the proof of the theorem. �

4. Pre-processing

If we recall the bounds on the size of the packing and on the number of oracle calls in the last section, we see that they are
better when rank (ZF) is large. This motivates the following idea: given a feasible network F, find a new feasible network G
in such a way that a packing of G is also a packing of F, and rank (ZG) is ‘‘large’’. This is the pre-processing step (first phase)
of our algorithm.

It is possible to find such a network G with rank (ZG) ‘‘large’’, as in [11], by considering a critical feasible network. A
feasible network F is critical if each arc enters a tight set. Recall that HF := {u ∈ V | p(u) > 0}. It is not difficult to show
(see [11]) that if F is critical, then rank (ZF) > |HF|. Note, however, that such a straightforward approach would require |A|

oracle calls to turn F into a critical feasible network. In this section, by using the pre-processing algorithm, we show how to
turn a feasible network F into a feasible network G for which rank (ZG) ≥ |HG|, by making no more than |HF| oracle calls.
The pre-processing algorithmwill not change the demand function, and soHF = HG. As a byproduct of this pre-processing,
we will also obtain a laminar family of tight sets that can be used as an initial laminar family in our packing algorithm.
Clearly, this is asymptotically better than reducing to a critical feasible network, since |HF| 6 |V |. While, for the overall
procedure of constructing a packing, this might not be asymptotically better than reducing to a critical feasible network –
since number of oracle calls is dominated by |V ||A| – we believe that the procedure is interesting in its own.

The pre-processing algorithm uses the uncrossing procedure Uncross (F, L, X, a) that receives a feasible network F, a
laminar subfamily L of Γ+F, a subset X of V and an arc a ∈ ρX and returns a set T ∈ Γ+F such that a ∈ ρT and L ∪ {T } is
laminar. Recall that for U ⊆ V , LU is the set of all maximal elements L of L such that L and U intersect.
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Algorithm Uncross (F, L, X, a)
1 if a enters X ∪


LX then

2 return X ∪


LX
3 chooseM ∈ L minimal that contains both ends of a
4 Y := X ∩ M
5 return Y ∪


LY .

Lemma 5 describes more precisely what this routine does, but first we need the following simple lemma.

Lemma 4. Let F be a feasible network. If X, Y ∈ Γ F and X ∩ Y ≠ ∅, then X ∪ Y , X ∩ Y ∈ Γ F and c(X \ Y , Y \ X) = 0.
Moreover, if X ∈ Γ F and P ⊆ Γ F is such that Y ∈ P implies X ∩ Y ≠ ∅, then X ∪


P ∈ Γ F.

Proof. The proof is a simple application of submodularity of c and the supermodularity of p. Indeed, let X, Y ∈ Γ F be such
that X ∩ Y ≠ ∅. Then

p(X) + p(Y ) = c(X) + c(Y ) = c(X ∪ Y ) + c(X ∩ Y ) + c(X \ Y , Y \ X)

> p(X ∪ Y ) + p(X ∩ Y ) > p(X) + p(Y ),

where the first equality holds because X, Y ∈ Γ F; the first inequality, because of submodularity; the second, since F
is feasible; and the third, since p is supermodular. Thus equality holds throughout, whence X ∪ Y , X ∩ Y ∈ Γ F and
c(X \ Y , Y \ X) = 0. For the second part, just notice that it follows from the first by induction on |P |. �

Lemma 5. Let F = (D, c, µ) be a feasible network, L a laminar subfamily of Γ+F, X ∈ Γ+F, and a ∈ c+
∩ ρX be such that a

avoids L. Then Uncross (F, L, X, a) returns a set T ∈ Γ+F such that a ∈ ρT , and L ∪ {T } is laminar.

Proof. By Lemma 4, c(X ∪


LX ) = p(X ∪


LX ). First suppose that a enters X ∪


LX . Then c(X ∪


LX ) > 0. Moreover,
L ∪ {X ∪


LX } is laminar, and we are done in this case. Suppose then that a avoids X ∪


LX . Since a enters X , then there

exists N ∈ LX such that the tail of a is in N . By Lemma 4, we have that c(X \ N,N \ X) = 0. Now c(a) > 0, and then the
head of a is also in N . Therefore we can choose a set M as in line 3 of Uncross. Now Y = X ∩ M ∈ Γ+F and a enters Y . By
the minimality of M and the laminarity of L, we have that a enters T = Y ∪


LY . By Lemma 4, c(T ) = p(T ). But a enters

T , and so c(T ) > 0. Therefore T ∈ Γ+F. Furthermore L ∪ {T } is laminar, and this completes the proof of the lemma. �

We present now the algorithm Pre-Process ((D, c, µ), P). The algorithm receives a feasible network F = (D, c, µ) and
a subset P of HF, and returns a pair (L, g), where L ⊆ 2V and g : A → R+, such that

(i) 0 6 g 6 c , and G = (D, g, µ) is a feasible network,
(ii) L ⊆ Γ+G is laminar and {χρL

| L ∈ L} is linearly independent, and
(iii) rank (ZG) > |HG|.

and furthermore makes no more than |HF| oracle calls. Observe that during this procedure the demand function is not
changed, and thus HF = HG. In the main algorithm we use Pre-Process with P = HF, but for technical reasons, in the
proof we assume that P is an arbitrary subset of HF.

Algorithm Pre-Process (F, P)

1 if P = ∅ then
2 return (∅, c)
3 choose u ∈ P
4 (M, g) := Pre-Process (F, P \ {u})
5 choose L minimal in M ∪ {V } such that u ∈ L
6 if there exists a ∈ g+

∩ ρ(u) with both ends in L then
7 let X ∈ argmin{g(W ) − p(W ) | W ⊆ V , a ∈ ρW }.
8 k := g(X) − p(X)
9 if gka(a) > 0 then

10 return (M ∪ {Uncross ((D, gka, µ), M, X, a)}, gka)
11 else
12 return (M, gka)
13 else
14 return (M ∪ {{u}}, g)

Proposition 1. If F = (D, c, µ) is a feasible network and P ⊆ HF, then Pre-process (F, P) returns a pair (L, g), whereL ⊆ 2V

and g : A → R+, such that

(i) 0 6 g 6 c, and G = (D, g, µ) is a feasible network,
(ii) L ⊆ Γ+G is laminar and {χρL

| L ∈ L} is linearly independent, and
(iii) rank ({χρL

| L ∈ L} ∪ {χ {e}
| e ∈ A; g(e) = 0}) > |HF|.

by making no more than |HF| oracle calls. Moreover, if c is integral, then g is also integral.
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Proof. We prove, by induction on |P|, that if F is a feasible network, and P ⊆ HF, then Pre-process (F, P) returns a pair
(M, g), where M ⊆ 2V and g : A → R+, such that

(i) 0 6 g 6 c, and G := (D, g, µ) is a feasible network,
(ii) M ⊆ Γ+G is laminar and {v} ∈ M ⇒ v ∈ P,

(iii) for each nonempty N ⊆ M there exist a ∈ g+
∩


{ρ(v) | v ∈ P} and N ∈ N such that a enters N and

avoids N \ {N}, and

(iv) rank ({χρL
| L ∈ M} ∪ {χ {e}

| e ∈ A, g(e) = 0}) > |P|.

(7)

This, combined with the following claim which proves that truth of (7iii) implies that a certain set of vectors is linearly
independent, implies the Proposition.

Claim 3. If M ⊆ 2V , g : A → R+ and P ⊆ V satisfy condition (7iii), then the set

{χρL
| L ∈ M} ∪ {χ {e}

| e ∈ A, g(e) = 0}

is linearly independent.

Proof. Indeed, assume that M ⊆ 2V , g : A → R+ and P ⊆ V satisfy (7iii). Let Z := {e ∈ A | g(e) = 0}. Consider any
nontrivial linear combination

v :=


[λLχ

ρL
| L ∈ M] +


[λeχ

{e}
| e ∈ Z].

Let N := {L ∈ M | λL ≠ 0}. If N = ∅, then λe ≠ 0 for some e ∈ Z , and so v ≠ 0. Assume that N ≠ ∅. By (7iii),
there exist a ∈ g+

∩


{ρ(v) | v ∈ P} and N ∈ N such that a enters N and avoids N \ {N}. This, is turn, combined
with a ∉ Z , implies that v(a) = λN ≠ 0, and therefore v ≠ 0. This establishes the linear independence of the set
{χρL

| L ∈ M} ∪ {χ {e}
∈ A | g(e) = 0}. •

Now we return to the proof of the correctness of (7). Observe that (7i) is trivial, so we turn to the proof of (7ii) to (7iv).
Let F = (D, c, µ) be a feasible network, and P ⊆ HF. If P = ∅, then it is clear that (7) holds for the pair (∅, c). Assume that
P ≠ ∅. By induction hypothesis, the call Pre-Process (F, P\{u}) returns a pair (M, g) forwhich (7) holds. LetG := (D, g, µ).
We divide the proof in two cases:

Case1. There exists a ∈ g+
∩ ρ(u) with both ends in L (line 6).

In this case, by the choice of L, the arc a avoids M.
Suppose first that gka(a) > 0 (line 9). Let G′

:= (D, gka, µ) and notice that M ∪ {X} ⊆ Γ+G′. Thus, by Lemma 5,
Uncross ((D, gka, µ), M, X, a) returns a set T such that T ∈ Γ+G′, a enters T andL := M∪{T } is laminar. Moreover,
T ∉ M, because a enters T and avoidsM. SoL ⊆ Γ+G′, and the first part of (7ii) is valid. Since u ∈ T , then the second
part of (7ii) also holds. Thus (L, gka) satisfies (7ii).
We prove now that (7iii) holds. Let ∅ ≠ N ⊆ L. If N ⊆ M, then we are done, since g+

∩


{ρ(v) | v ∈ P \ {u}} ⊆

(gka)+ ∩


{ρ(v) | v ∈ P}. Assume that T ∈ N . By the choice of a and T , we have that a ∈ (gka)+ ∩ ρ(T ) ∩ ρ(u), and
since a avoids M, then a avoids N \ {T }. Therefore (L, gka) satisfies (7iii).
For (7iv), observe that, by Claim 3, the sets {χρL

| L ∈ M} ∪ {χ {e}
| e ∈ A, g(e) = 0} and {χρL

| L ∈ L} ∪ {χ {e}
| e ∈

A; gka(e) = 0} are linearly independent. Now |L| = |M| + 1, g+
= (gka)+, and the induction hypothesis imply that

rank ({χρL
| L ∈ L} ∪ {χ {e}

| e ∈ A, gka(e) = 0}) = rank ({χρL
| L ∈ M} ∪ {χ {e}

| e ∈ A, g(e) = 0}) + 1
> |P \ {u}| + 1 = |P|.

Thus (L, gka) satisfies (7).
Suppose now that gka(a) = 0.We show that (M, gka) satisfy (7). It is clear that (7ii) holds, and since a avoids P \{u},
then (7iii) also holds. For the proof of (7iv), note that, by Claim 3, the sets {χρL

| L ∈ M} ∪ {χ {e}
| e ∈ A, g(e) = 0}

and {χρL
| L ∈ M} ∪ {χ {e}

| e ∈ A, gka(e) = 0} are linearly independent. Now (gka)+ = g+
\ {a} and induction

hypothesis imply that

rank ({χρL
| L ∈ L} ∪ {χ {e}

| e ∈ A, gka(e) = 0}) = rank ({χρL
| L ∈ M} ∪ {χ {e}

| e ∈ A, g(e) = 0}) + 1
> |P \ {u}| + 1 = |P|.

Thus (M, gka) satisfies (7).
Case2. There does not exist a ∈ g+

∩ ρ(u) with both ends in L (line 13).
Observe that {u} is tight in G. Indeed,

p(u) > p(L) = g(L) > g(u) > p(u),

where the first inequality follows from (3); the first equality, because L ∈ Γ G; the second inequality because
g+

∩ ρ(u) ⊆ g+
∩ ρ(L), and the third inequality, because G is a feasible network. Let L := M ∪ {{u}}. We show that
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(L, g) satisfy (7). Clearly, L is laminar and L ⊆ Γ+G, and so (L, g) satisfy the first part of (7ii). Since {u} ∈ L, then
the second part of (7ii) is also satisfied.
Let us establish that (7iii) holds. Let ∅ ≠ N ⊆ L. If N ⊆ M, then we are done. Suppose that {u} ∈ N . There
is nothing to prove if N \ {{u}} = ∅. Thus assume N \ {{u}} ≠ ∅. Then N \ {{u}} ⊆ M, and so there exists
b ∈ g+

∩


{ρ(v) | v ∈ P \ {u}} and N ∈ N \ {{u}} such that b enters N and avoids N \ {N, {u}}. But b ∉ ρ(u), and
this proves (7iii).
For the proof of (7iv), first observe that since (M, g) satisfies (7ii), then {u} ∉ M, whence |L| = |M| + 1. We have,
by Claim 3, that the sets {χρL

| L ∈ M} ∪ {χ {e}
| e ∈ A, g(e) = 0} and {χρL

| L ∈ L} ∪ {χ {e}
| e ∈ A, g(e) = 0} are

linearly independent. Now |L| = |M| + 1 and induction hypothesis imply that

rank ({χρL
| L ∈ L} ∪ {χ {e}

| e ∈ A, g(e) = 0}) = rank ({χρL
| L ∈ M} ∪ {χ {e}

| e ∈ A, g(e) = 0}) + 1
> |P \ {u}| + 1 = |P|.

Thus (L, g) satisfies (7).

Finally, it is clear that if c is integral, then g is also integral, and this completes the proof of the Proposition. �

Finally, to obtain the algorithm with the desired bounds, we just compose the previous algorithms.
Algorithm Pack (F = (D, c, µ))

1 (L, g) := Pre-Process (F,HF)
2 return Rpack((D, g, µ), L).

Theorem 5. For each feasible network F = (D, c, µ), algorithm Pack (D, c, µ) returns a packing y such that |y+
| 6 |A| −

|HF| + |µ+
| and makes no more than (|A| − |HF| + |µ+

| + 3)|V | oracle calls. Moreover, if c is integral, then y is integral.

Proof. Let F = (D, c, µ) be a feasible network. The call to Pre-Process (F,HF), by Proposition 1, returns a pair (L, g) – by
making nomore than |HF| oracle calls – such that rank ({χρL

| L ∈ L}∪ {χ {e}
| e ∈ A; g(e) = 0}) > |HF|. Let G = (D, g, µ).

Then L ⊆ Γ+G and rank (ZG) > |HF| = |HG|. Moreover, γ (p+) 6 2|HG|− 2. Hence, by Theorem 2, the call to Rpack(G, L)
returns a packing y of G such that |y+

| 6 |A|−|HF|+|µ+
|, bymaking nomore than (|A|−|HF|+|µ+

|)(|V |−1)+2|HF|−2
oracle calls. Therefore the total number of oracle calls of the algorithm Pack is at most (|A| − |HF| + |µ+

| + 3)|V |. Since y
is also a packing of F, this implies the theorem. �
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