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Abstract

We study statistical estimators of the number of genomic events separating two genomes under a Double Cut-and
Join (DCJ) rearrangement model, by a method of moment estimation. We first propose an exact, closed, analytically
invertible formula for the expected number of breakpoints after a given number of DCJs. This improves over the
heuristic, recursive and computationally slower previously proposed one. Then we explore the analogies of genome
evolution by DCJ with evolution of binary sequences under substitutions, permutations under transpositions, and
random graphs. Each of these are presented in the literature with intuitive justifications, and are used to import
results from better known fields. We formalize the relations by proving a correspondence between moments in
sequence and genome evolution, provided substitutions appear four by four in the corresponding model. Eventually
we prove a bounded error on two estimators of the number of cycles in the breakpoint graph after a given number
of rearrangements, by an analogy with cycles in permutations and components in random graphs.

Introduction
Double Cut and Join (DCJ) is a mathematical operator
modeling genome rearrangements which has consider-
ably simplified many combinatorial studies [1] compared
with other operators. We would like to show here how
it can also significantly enrich and simplify statistical
methods of moment estimations. These consist in com-
puting an expected value for some parameter p after a
fixed number k of DCJ applied to a genome. The para-
meter can be the number of breakpoints (gene neigh-
borhood present in the initial genome but not in the
final one), or the number of cycles in the breakpoint
graph (a slightly more complicated structure defined
later). Then, by the method of moments, an estimate of
k, which is usually unknown, can be computed as a
function of p, which has an observed value, by inverting
the expected value of p as a function of k.
There have been a few published probabilistic models

for DCJ, usually giving equal probability to every event
coded as a DCJ. They lead to heuristic estimators of the

number of breakpoints between two genomes after a
fixed number of DCJs [2,3], Bayesian sampling strategies
among evolutionary scenarios [4], estimates of the
domain of validity of parsimony [5], or estimates of
transposition rates [6].
Statistical methods related to inversions (see among

others [7-10]) show a variety of techniques and build
informal links with various known processes as random
graphs, transpositions in the symmetric group, and coa-
gulation-fragmentation. This allows one to adapt statisti-
cal results from other fields to genome rearrangements.
Another way to do so is to code genome arrangements
by sequences or binary characters and let these sequences
evolve by substitutions [11,12]. The efficiency of these
importations has empirically been tested on simulations,
but has not been assessed theoretically.
Here we introduce a “mechanistic” DCJ model, based on

breakage probabilities rather than on events, which allows
one to

• Obtain a closed, analytically invertible, exact for-
mula for the expected number of breakpoints after a
fixed number of DCJs; the previously published
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estimation [2] was based on an unbounded approxi-
mation, computed by a recurrence and thus not
easily invertible.
• Establish formal links with three well-known pro-
cesses, and in consequence theoretically found or
correct the intuitions of former studies. A graphical
intuition of these links is drawn in Figure 1. We
show that coding genome arrangements by binary
structures gives estimations only if substitutions are
supposed to occur four by four, which has the same
effect as adjusting the size of the sequence. Without
this correction the estimations are badly wrong as
shown from simulations. Then we show that the
random graphs or transpositions in the symmetric
group induce an estimation error less than O(k/

√
n)

if used for DCJ, where n is the number of genes. As
saturation occurs at k = O(n log n), the error is
always bounded by o(n). In practice, on simulations,
it does not make a visible difference.

We first describe our model for evolving genomes by
DCJ and some of its properties.

Genomes and DCJ
Here a genome is defined as a graph on a set of 2g ver-
tices, called gene extremities, composed by two match-
ings. Recall a matching is a set of edges (unoriented
pairs of vertices) or arcs (oriented pairs of vertices) such
that any two edges (or arcs) in the set do not share ver-
tices. In a genome one matching has g arcs, called genes,
and the other has a ≤ g edges, called adjacencies. The
2g − 2a gene extremities that do not belong to an adja-
cency are called telomeres. This definition models gene
order in linear or circular chromosomes: genes as arcs
model oriented segments of DNA, and adjacencies are
the links between consecutive genes on a chromosome,
being more general than signed permutations [1].
When we compare two genomes, we assume that they

are on the same set of vertices, and that the genes are

Figure 1 Evolution of genomes, sequences, permutations or graphs. Similarity between four processes: (A) counting the number of
breakpoint or cycles in the breakpoint graph of two genomes evolved by DCJ; (B) counting the number of components in a random graph; (C)
counting the number of cycles in a permutation evolved from the identity by transpositions; (D) counting the number of different sites in two
binary sequences evolved by substitutions.
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the same. Only adjacencies are different. So the arcs are
used only to make the connection between matchings
and gene orders, but can be ignored in the comparisons.
For example, Figure 2(A) shows two genomes (the red
matching and the blue matching) with three genes, six
gene extremities, and two adjacencies. The red matching
yields gene order g1g2g3 and the blue matching g3g2g1.
For technical purposes we define an augmented gen-

ome by adding a so-called telomeric vertex t for each tel-
omere x, and a telomeric adjacency between x and t. We
also introduce an even number f (f will be a parameter
of the model) of fictional vertices that are perfectly
matched two by two by fictional adjacencies in an arbi-
trary way. No vertex remains unmatched in the augmen-
ted genome, which has 4g − 2a + f vertices and n = 2g − a
+ f/2 edges. We call the non telomeric and non fictional
vertices (or adjacencies) as observed.
For example, an augmented genome for the red and the

blue genomes in Figure 2 (A)is depicted in Figure 2(B) or
2(C). There are two observed and two telomeric adjacen-
cies in the red and blue genomes, two telomeric and no
fictional vertices. Note that we still require that the telo-
meric vertices, as all gene extremities, are shared between

the two compared genomes, but there are several differ-
ent ways to do so, as exemplified by Figure 2(B) and 2(C).
This is discussed in the “Breakpoint graphs” section,
when this distinction becomes important.
We always suppose that f = o(n) and 2g − 2a = o(n),

that is, most gene extremities have observed adjacencies.
A Double Cut-and-Join (DCJ) is an operation defined on

an augmented genome, in which two different adjacencies
(of any kind) AB and CD are replaced by new adjacencies
AC and BD, or AD and BC. For instance, two DCJs trans-
form the red genome into the blue genome in Figure 2(C):
one DCJ transforms the red edges of the lower cycle into
the blue edges, and the same thing for the upper cycle.
This definition of DCJ contains all types of operations

usually defined as DCJ on non-augmented genomes [13],
including fusions, fissions, and operations including telo-
meres. It also contains some operations that do not affect
the non augmented genome. So our definition is equiva-
lent to the usual one if we add an “do nothing” operation.
A DCJ can change a telomeric vertex into fictional and

vice versa. So the nature of telomeric and fictional vertices
or adjacencies is the same regarding the evolutionary
process.

Figure 2 Two genomes, with their real and observed breakpoint graphs. Genes are g1, g2, g3, ordered in one linear chromosome in a blue
and a red genome: in the order g1g2g3 on the red chromosome, and in the order g3g2g1 on the blue chromosome. In (A) the two non
augmented genomes are depicted. In (B) and (C), augmented genomes are depicted. Both augmented genomes are identical in both parts.
Only the correspondence of the telomeric vertices between the blue and red genomes vary, which illustrates the possible difference between
the real and observed breakpoint graph. There are two breakpoints in the red genome with respect to the blue genome. In the situation (B) the
blue genome can be obtained from the red by three DCJs. But the adjacencies leading to t vertices are not observed, so another possibility is
(C), where a scenario with only two DCJs exist. Case (C) is the observed breakpoint graph because it maximizes the number of cycles in the
breakpoint graph. The real breakpoint graph can be either (B) or (C), but to determine it requires a knowledge of the evolutionary scenario that
have shaped these two genomes.
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The DCJ model of genome evolution is a Markov
chain on the set of perfect matchings on graphs with 2n
vertices, which consists in selecting two different adja-
cencies uniformly at random, and choosing one of the
two ways to draw two adjacencies different from the
initial configuration on the same four vertices.
The model is slightly different from two previously

published ones [2,4]. They assumed that all operations
modified the non augmented genome and that all dis-
tinct such operations were equiprobable. As some
operations in our definition do nothing to the non aug-
mented genome, and some distinct operations on the
augmented genome have the same effect on the non
augmented one, some probabilities are slightly different.
But the probability of the do nothing operation, pro-
vided f stays low compared to n, is low enough so that
in practice it can be negligible.
Note that, with this model, there are exactly n(n − 1)

different equiprobable DCJs at any time on the augmen-
ted genome. It is slightly different than defining equi-
probability of all DCJs on the non augmented genomes
as in previous models. In particular, in the later, the
Markov chain converges to a steady state which necessa-
rily has a number of telomeres of the order of the
square root of the number of adjacencies [2]. The steady
state can be far from all data on which the model is
used, for example, if the number of chromosomes
should be more or less stable, and less than the square
root of the number of adjacencies. Adding a parameter f
and uniform probability on the DCJs on the augmented
genome is a way to allow a different steady state. The
estimation of the parameter is discussed in the sequel.

Closed formula for the expected number of
breakpoints
We give here an exact, closed, easily invertible formula
for the expected number of breakpoints after k DCJs. A
breakpoint of a genome G with respect to another gen-
ome Gk is an observed adjacency AB in G such that A
and B are not adjacent in Gk . For instance, in Figure 2
the red genome has two breakpoints with respect to the
blue (and this depends only on observable data).
Theorem 1 The expected number Bk of breakpoints

between G and Gk , if Gk is produced from G by k DCJs,
is

E (Bk) = a
2n − 2
2n − 1

(
1 −

(
1 − 1

n − 1
− 1

n

)k
)
, (1)

where a is the number of observed adjacencies and n is
the total number of (observed, telomeric, fictional)
adjacencies.
This theorem improves on the only previous estima-

tion for DCJ [2] which was an approximate recursive

computation. The exact formula in the present theorem
requires the knowledge of n, and thus of the parameter
f , which is part of the model. It is always possible to set
up the parameter to stick to the equilibrium properties
of the model of [2], thus providing a formula for an
equivalent model. The proof is similar to classical cor-
rections of sequence evolutionary models, used also in
rearrangements for unsigned inversions [7].
Proof The idea is first to define the probability Pxy,k of

a couple xy of gene extremities which are linked by an
adjacency in G, to be unlinked in Gk. Then we have

E (Bk) =
∑

xy observed adjacency

Pxy,k = aPk,

where Pk is the Pxy,k for any xy because the probability
Pxy,k does not depend on x and y.
Pk can be computed from Pk−1 by

Pk = Pk−1qu + (1 − Pk−1)ps = Pk−1(qu − ps) + ps, (2)

where ps is the probability to cut an adjacency by one
random DCJ from the model, and qu is the probability
not to form an adjacency when it is absent.
It is possible to solve the recurrence in order to obtain

a closed formula depending on ps and qu. As P0 = 0,

Pk =
k−1∑
i=0

ps(qu − ps)i = ps
(qu − ps)

k − 1
qu − ps − 1

. (3)

We can easily compute qu and pu from the model:

ps =
2(n − 1)
n(n − 1)

=
2
n

and qu = 1 − 1
n(n − 1)

. Plugging

these into Equation (3) gives Equation (1).
Inverting the expression of E(Bk) gives an estimator of

k as a function of an observed value of Bk :

D̃CJ(G1,G2) =
log

(
1 − B(2n − 1)

a(2n − 2)

)
log

(
1 − 1

n − 1
− 1

n

) ,

where B is the observed number of breakpoints
between of G1 with respect to G2, and a is the number
of observed adjacencies in G1. This estimator requires
the estimation of a parameter f to compute n, which has
to be common to G1 and G2. We do not have enough
observations to estimate it in a statistically grounded
way, but it can be chosen between 2|a − a2|, where a2
is the number of observed adjacencies of G2, and

√
g ,

where g is the number of genes. The lower bound is
necessary to be able to transform G1 into G2, because in
a DCJ the number of telomeric plus fictional vertices
never vary. So fictional elements adjust the number of
telomeres. The upper bound sticks to the previously
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published models, where at equilibrium state the num-
ber of telomeres is O(

√
g) .

A link with sequence evolution
The same reasoning as in the previous section can be
applied to several models of genome evolution.
Caprara and Lancia [7] applied it on a model of evolu-
tion of unsigned permutations, and it is commonly
used for computing distances from evolutionary mod-
els on sequences.
In our case, let for example S be a sequence of size N

over the binary alphabet {0, 1}. Let the evolutionary
model on the state space of sequence be a Markov
chain on all possible such sequences, with equiprobable
substitutions at any site (a Jukes-Cantor-like model on a
binary alphabet). If at one site there is a 1, the substitu-
tion turns it into 0, and conversely. Let Sks be a
sequence obtained after ks steps of this process. We can
compute the expected number Dks of sites that have a
different value in S and Sks by the formula

E(Dks) = N Pks ,

where Pks is the probability that one site is different in
Sks , and it can be computed with the recurrence (see
Equations (2) and (3)):

Pks = Pks−1
(
qu − ps

)
+ ps = ps

(qu − ps)
ks − 1

qu − qs − 1
,

where ps = 1/N is the probability to change a site
given that it is the same in S and Sks , and qu = 1 − 1/N
is the probability not to change back a site when it is
different. This gives

E
(
Dks

)
=
N
2

(
1 −

(
1 − 2

N

)ks
)
. (4)

Let us code genomes G and Gk evolved by k DCJs
from G by two aligned binary sequences S1 and S2,
where each site corresponds to a possible adjacency,
with a 1 in one sequence if the adjacency is present in
the associated genome, and a 0 otherwise, like for exam-
ple in [11,12]. A choice has to be made for the adjacen-
cies that are neither present in G nor in Gk . Usually
they are ignored because they represent a large set of
invariable sites. We show that they are very important
for statistical estimation, but should not be all present.
Proposition Equation (4) is equal to the expected

number of breakpoints between G and Gk if

N = 4a
2n − 2
2n − 1

≈ 4a,

and

ks = k
log(1 − 1/n − 1/(n − 1))

log(1 − (2n − 1)/4a(n − 1))
≈ 4ka/n.

Proof The number of differences Dk is twice the num-
ber of breakpoints: it counts the breakpoints from one
genome and from the other. So dividing the right term

of Equation 4 by two and identifying the terms
N
4

in

Equation 4 and a
2n − 2
2n − 1

in Equation 1 gives

N = 4a
2n − 2
2n − 1

. Now let
(
1 − 2

N

)ks
be equal to(

1 − 1
n − 1

− 1
n

)k

, that is, ks log
(
1 − 2

N

)
≈ 2ks/N

with k log
(
1 − 1

n − 1
− 1

n

)
≈ k log(1 − 2/n) ≈ 2k/n .

This gives ks ≈ kN/n which, with N ≈ 4a, gives ks ≈
4ka/n.
Simulations show that the estimation errors of codings

that ignore all 0 sites, or consider them all, are not only
theoretical (see Figure 3). Choosing N = 2n systematically
overestimates the distance while N = n(2n − 1) underesti-
mates it. With N = 4a and ks = 4ka/n, the estimation is
quasi superposed with the DCJ estimation of Equation 1.
The intuitive reason for these multiplications by 4,

and the choice of a space of possible adjacencies which
is 4 times as big as the space of observed adjacencies
can be understood by an adaptation of the substitution
model: indeed if we think about DCJ, sequences do not
evolve site per site, but as 4 simultaneous substitutions
in 4 sites ("4 per 4”). A DCJ cuts two adjacencies and
reforms two, which is changing 4 sites at the same time.
Developing a model of sequence evolution where sites
evolve 4 per 4 yields ps = 4/N and qu = 1 − 4/N, hence
the expected number of differences under a 4 × 4 model
is computed as follows:

E
(
D4ks

)
=
N
2

(
1 −

(
1 − 8

N

)ks
)
.

This means that a number of differences under a 4 ×
4 model can be estimated from a number of differences
under a single site substitution model if the length of
the sequence is multiplied by 4, and the number of dif-
ferences is divided by 4. This corroborates the theoreti-
cal and empirical results we obtained.

A link with transpositions in the symmetric group
Eriksen and Hultman [9] proposed, as an analogy to
signed inversions evolving by reversals, a Markov chain
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on the symmetric group, where permutations evolve by
random transpositions. Here transpositions are permuta-
tions with one cycle of size two, or the operation of
composition with these permutations. The analogy was
also noted in the definition of an algebraic model of
genome rearrangements [14]. Explaining the analogy
requires defining breakpoint graphs.

Breakpoint graphs
A breakpoint graph is roughly defined as the union of
the adjacencies of two genomes G1 and G2 defined on
the same set of genes. But this definition requires addi-
tional precision for telomeric and fictional elements
because we defined them for one genome, so we need a
common definition for two genomes.
There are two ways to proceed, which will end up in

two different breakpoint graphs, the real breakpoint
graph and the observed breakpoint graph (see Figure 2).
First, suppose telomeres and fictional elements are
defined on the genome G1, and G2 is evolved from G1

by a series of DCJs. Then, by extension, telomeres and
fictional elements are also defined for G2, and the break-
point graph is a set of disjoint cycles alternating
between adjacencies of G1 and G2, that we call the real
breakpoint graph.
But the real breakpoint graph cannot be observed in

reality, because it would require one to have access to
the evolutionary process transforming G1 into G2, and
keep the trace of the correspondence between telomeric
and fictional elements. We can nonetheless build such a

correspondence, which is used also for example in [15].
The union of observed adjacencies of G1 and G2 is com-
posed of a set of disjoints cycles and paths. Let P be a
path. If P has an even number of edges, then it starts
with an adjacency of G1 and ends with an adjacency of
G2. Take a telomeric vertex t and join it to the two
extremities, creating a telomeric adjacency in G1 and a
telomeric adjacency in G2. So P is turned into a cycle.
Now if P has an odd number of edges, suppose it starts
and ends with adjacencies from G1 (the other case is
symmetric). Take two fictional elements t1 and t2, join
each of them to one different extremity of P , with telo-
meric adjacencies from G2. Then join t1 and t2 with a
fictional adjacency from G1. P is again turned into a
cycle. If there remains unmatched telomeres or fictional
elements, make trivial cycles of two parallel edges from
G1 and G2 out of them. The obtained set of disjoint
cycles is called the observed breakpoint graph, and it is
always possible to construct it from two sets of observed
adjacencies for two genomes on the same set of genes.
The observed breakpoint graph has a maximum num-

ber of cycles, given its observed adjacencies. As it shares
the observed adjacencies with the real breakpoint graph,
the number of cycles in the observed breakpoint graph
is never lower than in the real breakpoint graph. The
difference between the two is bounded by the number
of telomeric and fictional vertices, because in the
extreme case, there is one cycle per telomeric or fic-
tional vertex in the observed breakpoint graph, and one
cycle containing all vertices in the real breakpoint

Figure 3 4 × 4 correction when estimating a distance through binary sequence evolution. A genome with a = 980 observed adjacencies
and n = 1020 adjacencies in total was evolved with DCJ. The set of observed adjacencies was coded in a sequence, with a 1 for the presence
of an adjacency and 0 for the absence. The number of observable sites, that is, the number of 0 s, was set to N , and variations on N were
performed. Choosing a sequence of length N < 4a, where a is the number of observed adjacencies of the genomes, leads to an overestimation,
while N > 4a leads to an underestimation. With N = 4a, as the theoretical results predicted, the estimation is correct and its quality is equivalent

to the D̃CJ direct prediction.
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graph. By the assumption that f and 2g − 2a are both o
(n), we can also assume that the difference between the
two numbers of cycles is bounded by o(n), so that the
number of cycles in the real breakpoint graph can be
estimated with a bounded error.

Cycles of permutations and breakpoint graphs
An analogy can be stated by using the identity permuta-
tion Id as a starting point, as the genome G as the start-
ing point, and applying successive transpositions to Id,
as DCJs are applied to G (see Figure 1(A) and 1(C).

• adjacencies in G (observed or not) are identified
with elements in the identity permutation Id;
• cycles of the breakpoint graph of G and Gk are
identified with cycles of the permutation Pk obtained
from Id by a series of k transpositions;
• a DCJ can increase, decrease or leave unchanged
the number of cycles, while a transposition can
increase or decrease the number of cycles.

Transpositions in the symmetric group are a case of
coagulation-fragmentation processes, since at each step
either a fission splits a cycle into two, or a fusion joins
two cycles into one. DCJ adds a third possibility,
because the number of cycles may stay unchanged. Erik-
sen and Hultman [9] proposed an exact formula for the
expected number of cycles in a permutation obtained
from the identity permutation of size n by a series of k
random transpositions:

E(Cyk) = n −
n∑
i=1

1
i
+

n−1∑
p=1

min{p,n−p}∑
q=1

apq

⎛⎜⎜⎜⎜⎝
(
p

2

)
+

(
q − 1
2

)
−

(
n − p − q + 2

2

)
(
n

2

)
⎞⎟⎟⎟⎟⎠

k

, (5)

where

apq = (−1)n−p−q+1 (p − q + 1)2

(n − q + 1)2(n − p)

(
n − p − 1
q − 1

)(
n
p

)
.

Simulations showed that it was a rather precise way to
estimate the number of rearrangements but no formal
link was established. We prove that it approximates the
expected number of cycles in the breakpoint graph of
genomes G and Gk , where Gk is obtained from G by k
random DCJs.
Theorem 2 Let BCyk be the number of cycles of the

breakpoint graph between a genome G with n genes and
a genome Gk evolved from G by k random DCJs, and
Cyk be the number of cycles of a permutation evolved by
k transpositions from the identity permutation with n
elements. Then

E(BCyk) = E(Cyk) + o(n).

This remains valid for the real or observed breakpoint
graph.
Proof Let G be a genome with n adjacencies and Id

the identity with n elements. We apply a DCJ process
on G, and it will imply a transposition process on Id.
Elements of Id can be mapped to adjacencies of G, as
cycles of the breakpoint graph of G and G0 can be
mapped to cycles of Id. At any step of the process, we
will keep this mapping between elements of Pk and adja-
cencies in Gk . The mapping between the types of cycles
will be less strict because of the difference between the
two processes.
When a DCJ cuts adjacencies a and b on the current

genome, we also apply the transposition ab to the cur-
rent permutation.
If a and b are in two different cycles of the breakpoint

graph, then the two cycles are necessarily joined by a
fusion into one, just as a transposition on two different
cycles fusions them into one. In that case the processes
are identical from the point of view of cycles. The two
new adjacencies arising from the DCJ are mapped to the
elements a and b in the resulting permutation, in an
arbitrary way.
If a and b are in the same cycle of the breakpoint

graph then, with probability 0.5, the cycle is splitted into
two, and with probability 0.5 the cycle is unchanged
(only the order of the elements are changed). In the per-
mutation, the cycle is necessarily splitted by a fission
into two new cycles. In the case of a fission of the cycle
in the breakpoint graph, the two new adjacencies are
mapped to elements a and b of the permutation, in
order to respect the cycles: if the new adjacency goes
into a cycle of the breakpoint graph with some adjacen-
cies that are mapped to the elements going into a cycle
of the permutation with a, then map it to a. In the case
the breakpoint graph is unchanged from the point of
view of the cycle distribution, map the new adjacencies
to a and b arbitrarily.
The permutation clearly follows a process of evolution

by random transpositions. Moreover, the correspon-
dence between the processes ensures that the number of
cycles of the breakpoint graph is always lower than the
number of cycles in the permutation. Indeed, every time
the number of cycles decreases, it decreases in both pro-
cesses. And every time the number of cycles increases in
the breakpoint graph, it also increases in the permuta-
tion. So we have

E(BCyk) ≤ E(Cyk).

The difference between the two will be bounded by
the number of times a DCJ occurs on a and b in the
same cycle, and the number of cycles in the breakpoint
graph remains unchanged. The probability that a cycle
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of fixed size s <
√
n is created from a fission in the per-

mutation but not in the breakpoint graph is less than 1/
n. So the probability to create a cycle of any size at
most

√
n is less than 1/

√
n . The expected number of

such events is thus less than k/
√
n , and as the number

of cycles of size at least
√
n cannot itself be more than√

n , we have, for k ≥ √
n ,

E(Cyk) ≤ E(BCyk) +O(k/
√
n).

As we can suppose that k is always under O(n log n)
because after this the signal is saturated, it proves the
result, provided the cycles of the breakpoint graphs are
known. However we saw in the introduction that the
real breakpoint graph is not always known. If they are
unknown they can be approximated within a o(n) factor.
So we get the result even if we do not have access to
the common telomeric and fictional structure of the
genomes.

A link with random graphs
Berestycki and Durrett [10] proposed, as an analogy
with signed inversions evolving by reversals, to use the
evolution of random graphs [16]. The analogy can be
stated with DCJ, by using a random graph model start-
ing from an empty graph Gr, and adding random edges

among the
(
n
2

)
possible ones at each step. Note that

we allow parallel edges, so the model is not exactly
Erdős and Rényi’s, but most parameters evolve in the
same way. The relation between genomes and graphs is
the following, depicted in Figure 1(A) and 1(B):

• adjacencies in G are identified with vertices in the
empty graph Gr;
• cycles of the breakpoint graph of G and Gk are
identified with connected components of Grk ,
obtained from Gr by adding a series of k edges;
• a DCJ can increase, decrease or leave unchanged
the number of cycles, while adding an edge can
decrease or leave unchanged the number of cycles.

We noticed that DCJ was a sort of “coagulation-frag-
mentation-nothing” process, compared to the “coagula-
tion-fragmentation” behavior of transpositions in the
symmetric group. Here random graphs can be considered
as “coagulation-nothing” processes, since an edge can
fusion two connected components or change nothing to
the distribution of components if it falls inside one. Bere-
stycki and Durrett [10] proved a relation between the pro-
cess of transpositions in permutations and random graphs:
Theorem 3 (Berestycki and Durrett (Theorem 3) [10])

Let Cok be the number of components of a graph Gr

evolved from the empty graph with n vertices by adding
k random edges, and Cyk be the number of cycles of a
permutation evolved by k transpositions from the identity
permutation with n elements. Then

E(Cyk) = E(Cok) +O(
√
n).

There does not seem to exist a good computable gen-
eral formula for the number of components of a graph
after the addition of k edges. Berestycki and Durrett [10]
use the formula for the number of trees:

∞∑
i=1

n

2k
ii−2

i!

⎛⎜⎝2k
n
e
−
2k
n

⎞⎟⎠
i

, (6)

which is a provably good approximation of it, and can
be considered computable if we neglect the high terms
of the sum. But they did not prove a relationship of the
estimator with a rearrangement model, though their
study was motivated by inversions. A direct corollary of
Theorems 2 and 3 is
Corollary Let BCyk be the number of cycles of the

breakpoint graph between a genome G with n genes and
a genome Gk evolved from G by k random DCJs, and
Cok be the number of components of a graph Gr evolved
from the empty graph with n vertices by adding k ran-
dom edges. Then

E(Bk) = E(Cyk) + o(n).

Empirical comparisons
We tested all estimators on the same set of simulated
genomes, evolving by DCJ according to our model. We
started with nG = 980 genes, and matched them ran-
domly to make a starting genome G, so that 40 vertices
among the gene extremities remain unmatched. We
added 10 fictional elements. Then we performed a ran-
dom DCJ at each step k during 4000 steps, then obtain-
ing 4000 genomes Gk .
At each step we computed:

• DCJ , the DCJ distance, which is the minimum
number of DCJs between G and Gk ;
• D̃CJ , the estimator presented here with a closed
and exact formula;
• EH is the approximation derived from the link
with transpositions and symmetric groups, based on
the work of Eriksen and Hultman [9];
• BD is the approximation inspired by the relation
between evolution of random graphs and genome
rearrangements, pointed out by Berestycki and Dur-
rett [10];
• LM is the heuristic described by Lin and Moret [2].
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In terms of running time, EH, BD and LM all require
the precomputation of expected values for 4000 DCJs,
and at each step the search for the value of k which
minimizes the observed and expected parameter. For
LM , which has no closed formula but does have a
recursive one, this precomputation and this mode of
numerical inversion is necessary, while for EH and BD,
as they have a closed formula, a smarter numerical
inversion could be imagined. The running time of EH
was quite high, since it required very high precision
numbers. The running time of BD depends on where
we decide to cut the infinite sum of Equation 6. For
D̃CJ , the computations are nearly instantaneous, as
there is a closed, analytically invertible formula that
does not require any sum.
Results are given in Figure 4. Such graphs are present

in all publications related to a single estimator but were
never compared. They tend to have approximately the
same behavior, and from a single run no striking differ-
ence can be assessed. They estimate a number close to
the real one approximately twice as long as parsimony
(DCJ ) does, and then the estimate starts to diverge
away from the diagonal, though still much better than
parsimony. The quality of LM and D̃CJ are indistin-
guishable, though one is exact and the other heuristic.
So the main empirical advantage of D̃CJ seems to be
the running time, in addition to the theoretical value of
having a closed formula. LM was computed in 2.628
seconds, whereas D̃CJ took only 0.015 seconds.

Discussion/Conclusion
Statistical estimators of rearrangement distances are very
diverse, using the similarity to various random processes
as coagulation-fragmentation, sequence evolution,

random graphs, transpositions in the symmetric group,
being more or less approximate, tractable in practice,
and using different parameters from the genome com-
parisons, e.g. number of breakpoints or number of cycles
in the breakpoint graph.
They all suppose a model where events are more or

less equiprobable, even if, as we saw, there can be
slightly different interpretations of this in the case of
DCJ. But this makes them comparable in a single frame-
work, both theoretically and empirically, as we tried to
do in this contribution.
An interesting difference are estimations based on num-

ber of breakpoints or number of cycles in the breakpoint
graph. The distribution of cycles in the breakpoint graph
contains the information of the breakpoints because
breakpoints are all observed adjacencies in non trivial
cycles, that is, not in cycles formed by parallel edges. So
the distribution of cycles should contain more information
than the breakpoints. But in practice they seem to carry
the same information. In particular the saturation of the
information happens at the same time, or at least same
order. It was remarked by Caprara and Lancia [7] that a
permutation is randomised after O(n log n) inversions. It
means that after this number of rearrangements, there will
be no signal in breakpoints or in the breakpoint graph to
retrieve any evolutionary distance. This bound is also the
time after which random graphs starting from empty
graphs get connected almost surely [16]. The analogy
between random graphs and genomes translates this result
into: after O(n log n) DCJs, it is expected that no adjacency
remains unbroken, so the number of breakpoints becomes
meaningless for a distance computation. So statistically
breakpoints seem to contain as much information as
cycles of the breakpoint graph, and as they are often easier
to compute, from this statistical point of view they are
more promising for phylogeny.
We remark as a curiosity that mathematical and compu-

tational difficulties are not necessarily correlated for com-
binatorial and statistical problems. For example, sorting
unsigned permutations by a minimum number of inver-
sions is NP-hard, while estimating the number of break-
points after a fixed number of inversions has a nice
solution [7]. Sorting signed permutations by a minimum
number of inversions is polynomial, while no closed exact
formula exists so far for the statistical problem (but has an
approximate nice solution [17]). Only for DCJ do we have
simple solutions in both cases. Sorting a permutation by a
minimum number of transpositions is a known difficult
combinatorial problem, and statistical solutions are not
known but do not seem out of reach [6].
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