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Abstract

Background

Primary congenital glaucoma (PCG), occurs due to the developmental defects in the trabec-

ular meshwork and anterior chamber angle in children. PCG exhibits genetic heterogeneity

and the CYP1B1 gene has been widely implicated worldwide. Despite the diverse mutation

spectra, the clinical implications of these mutations are yet unclear. The present study at-

tempted to delineate the clinical profile of PCG in the background of CYP1B1mutations

from a large cohort of 901 subjects from India (n=601) and Brazil (n=300).

Methods

Genotype-phenotype correlations was undertaken on clinically well characterized PCG

cases from India (n=301) and Brazil (n=150) to assess the contributions of CYP1B1muta-

tion on a set of demographic and clinical parameters. The demographic (gender, and history

of consanguinity) and quantitative clinical (presenting intraocular pressure [IOP] and corne-

al diameter [CD]) parameters were considered as binary and continuous variables, respec-

tively, for PCG patients in the background of the overall mutation spectra and also with

respect to the prevalent mutations in India (R368H) and Brazil (4340delG). All these
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variables were fitted in a multivariate logistic regression model using the Akaike Information

Criterion (AIC) to estimate the adjusted odds ratio (OR) using the R software (version

2.14.1).

Results

The overall mutation spectrum were similar across the Indian and Brazilian PCG cases, de-

spite significantly higher number of homozygous mutations in the former (p=0.024) and

compound heterozygous mutations in the later (p=0.012). A wide allelic heterogeneity was

observed and only 6 mutations were infrequently shared between these two populations.

The adjusted ORs for the binary (demographic) and continuous (clinical) variables did not

indicate any susceptibility to the observed mutations (p>0.05).

Conclusions

The present study demonstrated a lack of genotype-phenotype correlation of the demo-

graphic and clinical traits to CYP1B1mutations in PCG at presentation. However, the

susceptibility of these mutations to the long-term progression of these traits are yet to be

deciphered.

Introduction
Primary congenital glaucoma (PCG) is an autosomal recessive disease that occurs due to de-
velopmental defects in the trabecular meshwork and anterior chamber angle resulting in a se-
vere form of visual impairment in children. [1–5] Surgical management involving the
reduction of intraocular pressure (IOP) is the only treatment modality and untreated cases
may result in irreversible blindness. [4,6] PCG exhibits a high prevalence in populations
where inbreeding and consanguinity are common such as 1 in 1250 to 1 in 2500 to 1 in 3300
among the Slovakian gypsies, Saudi Arabians and a Southern Indian population, respectively.
[7–9] The prevalence is relatively lower in the developed world and ranges from 1 in 10,000–
30,000 livebirths. [10–11]

Genetic heterogeneity is the hallmark of PCG and locus heterogeneity is evident across the
four chromosomal regions (GLC3A [OMIM 231300], GLC3B [OMIM 600975], GLC3C
[OMIM 613085], GLC3D [OMIM 613086]) mapped by linkage analysis. [12–15] The GLC3A
and the GLC3D loci have been further characterized to harbor mutations in the CYP1B1
(OMIM 601771) and LTBP2 (OMIM 602091) genes, respectively. [16–19] While CYP1B1 ex-
hibits wide allelic heterogeneity across multiple populations,[20–35] the LTBP2 is largely re-
sponsible for atypical forms of congenital glaucoma and its mutation spectrum across different
populations is currently being determined. [36–39]

Despite the varying frequencies of CYP1B1mutations worldwide, it has been observed that
there is a greater degree of sharing of similar mutations across multiple ethnicities. [29, 40] Ear-
lier, we demonstrated that the CYP1B1mutations are geographically well structured based on
their intragenic haplotypes, indicating founder effects and population movements. [40–41]
While this provides an excellent opportunity to undertake extensive genotype-phenotype cor-
relations to characterize specific clinical traits in the background of CYP1B1mutation spec-
trum, such efforts are rarely seen in PCG. Nevertheless, there are some studies that did attempt
to associate the effect of certain mutant genotypes on the phenotypes. [39,42–47] However, a
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concerted effort to unravel the overall picture of genotype-phenotype correlations pertaining
to CYP1B1mutations that would help in understanding the clinical course of the disease for a
better prognosis, is still elusive.

The CYP1B1 gene has been widely analyzed in the Indian [26,45] and the Brazilian [48–50]
PCG patients earlier with varying degrees of severity. We had also demonstrated that certain
CYP1B1mutations occurred on the same haplotype backgrounds in these two populations.
[40] We now aimed to understand the genotype-phenotype correlations in CYP1B1-associated
PCG cases in a large cohort of subjects (n = 901) representing clinically well-characterized
PCG patients and ethnically matched normal controls across two different ethnicities from
India and Brazil.

Methods

Enrolment of the cohort
The work was accomplished through a joint research funding under the initiatives of the Min-
istries of Science and Technology of the Governments of India (Department of Science and
Technology) and Brazil (CNPq). A consortium was developed with 5 major institutes from São
Paulo in Brazil (University of Campinas, Federal University of São Paulo, Universities of São
Paulo at São Paulo city and Ribeirão Preto and the Santa Casa de Misericordia de São Paulo)
and a tertiary eye care centre at Hyderabad in India (LV Prasad Eye Institute). The total cohort
included 901 subjects comprising 451 PCG patients (India [n = 301] and Brazil [n = 150]) and
450 controls (India [n = 300]; Brazil [n = 150]). It also included subjects characterized earlier
from India and Brazil along with the new cases. [45,48,50] A consensus was developed through
joint meeting of investigators in both the countries and disease definitions and clinical criteria
for enrolment were harmonized to facilitate genotype-phenotype correlation.

The inclusion criteria for patients were as defined earlier and those with secondary causes of
disease were excluded. [40] Ethnically matched normal volunteers without any signs or symp-
toms of glaucoma or other ocular and systemic diseases were enrolled as controls. The enrol-
ments of subjects were strictly monitored by clinicians across both the countries with expertise
in congenital glaucoma diagnosis and treatment.

Ethics statement
The study protocols adhered to the tenets of the Declaration of Helsinki and were approved by
the Institutional Review Boards (IRB) at each of the 5 centres in Brazil and one from India. A
written informed consent was obtained from each participant at all the study sites prior to their
enrolment in the study. In case of minors, the written informed consent was obtained from
their parents or legal guardians. The IRB approvals were obtained by each PI from their respec-
tive organizations, which are listed below:

a. University of Campinas, Campinas, São Paulo, Brazil (IRB Approval No. 976/2009),

b. Federal University of São Paulo, São Paulo, Brazil (IRB Approval No. 1376/09),

c. University of São Paulo School of Medicine, São Paulo, Brazil (IRB Approval No. 753/06),

d. Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil (IRB Approval
No. HCRP 14631/2009)

e. Irmandade da Santa Casa de Misericordia de São Paulo, School of Medical Sciences (IRB
Approval No. 178/04)

f. L.V. Prasad Eye Institute, Hyderabad, India (IRB Approval No. LEC/08/2009)
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Clinical and demographic details of the subjects
The demographic details of the subjects including their gender, age at onset of disease symp-
toms, geographical region of origin, family history of glaucoma and consanguinity were noted.
The "age at onset" was defined as the time since the signs and/or symptoms of PCG were first
visible to the parent or legal guardian of the PCG-affected child. Additionally, all the new sub-
jects underwent a comprehensive clinical examination and ocular parameters at presentation
(intraocular pressure (IOP), corneal diameter, ratio of optic cup to optic disc, visual acuity and
corneal clarity) similar to the existing cohorts.

Molecular analysis
The two coding exons of CYP1B1 gene were screened by resequencing in all the new subjects
with appropriate primers on an automated DNA sequencer ABI 3130xl (Applied Biosystems,
Foster City, CA) using the BigDye chemistry following the manufacturer’s guidelines. [40] A
variation was termed as ‘mutation’ based on the criteria detailed earlier [40] and the SIFT anal-
ysis was also done to determine the pathogenic nature of the variant. Validation of an observed
variant was further undertaken by resequencing using the above technique. Six intragenic poly-
morphisms in CYP1B1 were used to generate haplotypes for cases with and without mutations
and the normal controls. The estimated haplotype frequencies, measures of Hardy Weinberg
equilibrium and linkage disequilibrium were calculated with the Haploview software as de-
scribed earlier.[40]

Genotype-phenotype correlation
Genotype-phenotype correlations based on mutation profiles were assessed based on different
demographic and clinical parameters. The quantitative clinical profiles of PCG patients at pre-
sentation were compared to the overall mutation spectra as well as common mutations in India
(R368H) and Brazil (4340delG). All these clinical and demographic variables were subsequent-
ly fitted in a multivariate logistic regression model using the Akaike Information Criterion
(AIC) with forward and backward elimination to estimate the adjusted odds ratio (OR). Statis-
tical analysis was performed using the statistical software R (version 2.14.1; GNU General Pub-
lic License). A value of p<0.05 was considered to be statistically significant.

Results

Demographic profile across PCG patients
The demographic profile of the Indian and Brazilian PCG patients are provided in Table 1. A
lower age at onset and the presence of a positive family history of PCG was significantly associ-
ated with the presence of CYP1B1mutations among the Indian PCG cases but not among the

Table 1. Demographic profile of PCG patients in India and Brazil.

Demographic parameters India (n = 301) Brazil (n = 150)

CYP1B1(+)a [n = 132] CYP1B1(-)b [n = 169] p value CYP1B1(+)a [n = 66] CYP1B1(-)b [n = 84] p value

Age at onset 1.51±1.25 2.42±3.34 0.003 3.76±6.34 4.14±5.21 0.687

Family history 16 (12.1%) 7 (4.2%) 0.014 29 (43.9%) 27 (32.1%) 0.174

Consanguinity 64 (48.5%) 65 (38.7%) 0.193 13 (19.7%) 11 (13.1%) 0.370

aCYP1B1(+): Patients harboring CYP1B1 mutation;
bCYP1B1(-): Patients devoid of CYP1B1 mutation

doi:10.1371/journal.pone.0127147.t001
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Brazilians. The proportions of cases born out of consanguineous marriages in the mutation
and non-mutation group were similar in both the Indian and Brazilian cohorts.

Mutation spectrum of CYP1B1 across PCG cases
The overall frequencies of CYP1B1mutations were similar between the Indian and Brazilian
patients (Table 2). However, significantly higher frequencies of homozygous mutations were
observed in the Indian cohort (p = 0.024) and compound heterozygous mutations the Brazilian
cohort (p = 0.012), respectively. The mutation spectrum of CYP1B1 was slightly different be-
tween the two populations and relatively higher number of mutations were observed among
the Indian patients (n = 39) compared to the Brazilians (n = 17), which could be due to the var-
iation in their sample sizes. Only six mutations were shared across these populations (Table 3).
A detailed list of all the observed CYP1B1mutations in the Indian and Brazilian cohorts is pro-
vided as a Supplementary Table (S1 Table). Both these populations exhibited significant allelic
heterogeneity with the R368H and the 4340delG being the prevalent mutations in India and
Brazil, respectively. Interestingly, the prevalent mutation in Brazil (4340delG) was not observed
in the Indian population and the R368H was observed only in three Brazilian patients in homo-
zygous and compound heterozygous forms.

CYP1B1 haplotypes in India and Brazil
In order to assess the haplotype backgrounds of the observed CYP1B1mutations, six intragenic
SNPs in the promoter (rs2617266), exon 2 (rs10012, rs1056827) and exon 3 (rs1056836,

Table 2. Distribution of CYP1B1mutations in India and Brazil.

Mutation Profile Type of mutation India n, (%, [95%CI]) Brazil n, (%, [95%CI]) P
value

Cases with CYP1B1 Mutation Total number of cases with any CYP1B1
mutations

132 (43.85%, [95%CI, 38.36%-
49.50%])

66 (44.00%, [95%CI, 36.30%-
51.99%])

0.999

Homozygous mutations 73 (24.25%, [95%CI, 19.75%-
29.39%])

25 (16.66%, [95%CI, 11.55%-
23.45%])

0.024a

Heterozygous mutations 41 (13.62%, [95%CI, 10.20%-
17.95%])

22 (14.66%, [95%CI, 9.88%-
21.21%])

0.748

Compound heterozygous mutations 18 (5.98%, [95%CI, 3.81%-
9.25%])

19 (12.66%, [95%CI, 8.26%-
18.94%])

0.012a

Cases without any CYP1B1
mutation

- 169 (56.15%, [95%CI, 50.49%-
61.64%])

84 (56.00%, [95%CI, 48.00–
69.61%])

0.999

aStatistically significant (p<0.05)

doi:10.1371/journal.pone.0127147.t002

Table 3. Distribution of sharedCYP1B1mutations in the Indian and Brazilian cohorts.

Mutation Frequency of the mutant allele P value

India, n (% [95% CI]) Brazil, n (% [95% CI])

R368H 97 (16.11%, [13.29%-19.26%]) 3 (1.00%, [0.34%-2.89%]) <0.0001

P437L 6 (0.99%, [0.45%-2.15%]) 4 (1.33%, [0.52%-3.37%]) 0.738

A443G 1 (0.17%, [0.03%-0.93%]) 4 (1.33%, [0.52%-3.37%]) 0.044

S476P 1 (0.17%, [0.03%-0.93%]) 1 (0.33%, [0.06%-1.86%]) 0.554

8037_8046dup10 2 (0.33%, [0.09%-1.20%]) 14 (4.66%, [2.80%-7.67%]) <0.0001

8214_8215delAG 2 (0.33%, [0.09%-1.20%]) 3 (1.00%, [0.34%-2.89%]) 0.339

doi:10.1371/journal.pone.0127147.t003
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rs1056837, rs1800440) of CYP1B1 were used to generate haplotypes in PCG cases and controls.
It was observed that the mutation spectrum of CYP1B1 was largely distributed across the four
major haplotypes (>5%) in these two populations. As was seen earlier, the C-C-G-G-T-A was
the risk haplotype while the T-G-T-C-C-A haplotype was protective in these populations.
[45,48,50] The haplotype frequencies between the Indian and Brazilian PCG cases with and
without CYP1B1mutations and the normal controls were not significantly different. As was
noted earlier, the majority of the mutations clustered on the background of the C-C-G-G-T-A
haplotype in both these populations.[40]

Genotype-phenotype correlation of Indian and Brazilian PCG patients
The clinical profiles of PCG patients harboring CYP1B1mutations were compared to those
without any mutations in both the cohorts under a logistic regression model. The demographic
variables like gender, family history of the disease and history of consanguinity were treated as
binary variables, while the presenting IOP and the presenting corneal diameter were analyzed
as continuous variables. Although other measures like age at onset and cup to disk ratios were
also recorded (wherever possible), they were not considered for further analysis due to their
subjective determination across both the cohorts. Being an autosomal recessive disease, the
analysis was repeated for the same clinical and demographic variables with respect to the sub-
jects harboring homozygous mutations compared to those with heterozygous mutations.

Logistic regression revealed that neither gender, nor history of consanguinity conferred any
susceptibility to CYP1B1mutations in the Indian and Brazilian cohorts. A similar phenomenon
was observed with respect to the presenting IOP and CD in patients harboring any CYP1B1
mutation in either of these cohorts (Table 4). Re-analysis of the data with respect to the carriers
of homozygous mutations, did not provide any additional risk for any of these variables com-
pared to those harboring heterozygous mutations. The data was also sub-classified with respect
to the prevalent mutation seen among the Indians (R368H) and Brazilians (4340delG) com-
pared to the other mutations with respect to these clinical and demographic variables. Interest-
ingly, these mutations did not confer any additional susceptibility with respect to all the
parameters across these two cohorts (Table 5).

Discussion
The involvement of CYP1B1mutations with PCG has been widely demonstrated across differ-
ent populations worldwide.[10,11,17] Despite the identification of over 100 CYP1B1mutations
in PCG, thorough genotype-phenotype correlation studies are very scant in the literature.

Table 4. Logistic regression showing the adjusted odds ratios for the binary and continuous variables for different mutation categories in the Indi-
an and Brazilian cohorts.

Variables Parameters "All CYP1B1 mutations" versus "No CYP1B1
mutations"

All "Homozygous CYP1B1 mutations" versus
"Heterozygous CYP1B1 mutations"

India India Brazil Brazil India India Brazil Brazil
Adjusted OR
(95%CI)

P
value

Adjusted OR
(95%CI)

P
value

Adjusted OR
(95%CI)

P
value

Adjusted OR
(95%CI)

P
value

Binary Gender (Male) 0.55 (0.25–1.99) 0.131 0.42 (0.13–1.41) 0.160 0.35 (0.10–1.28) 0.112 1.96 (0.28–
13.83)

0.502

History of
consanguinity

0.84 (0.39–1.81) 0.650 0.34 (0.02–5.58) 0.448 0.40 (0.10–1.52) 0.178 0.24 (0.03–2.28) 0.215

Continuous IOP 1.02 (0.96–1.09) 0.481 1.05 (0.95–1.15) 0.284 0.98 (0.86–1.11) 0.751 0.93 (0.79–1.10) 0.395

CD 0.73 (0.50–1.06) 0.099 1.36 (0.65–2.82) 0.416 1.10 (0.59–2.07) 0.755 0.67 (0.17–2.69) 0.573

doi:10.1371/journal.pone.0127147.t004
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[42–47] Majority of the studies were limited in number of PCG cases as a whole and those har-
boring mutations, which often precluded from undertaking this efforts.[35,43,44,47] In order
to address this lacunae, a comprehensive study was planned on a large sample (n = 901), com-
prising 451 PCG cases and 450 controls representing cohorts from India and Brazil. These two
ethnically diverse and geographically distant populations represented a diverse mutation spec-
trum in CYP1B1 along with variable clinical manifestation that helped in undertaking geno-
type-phenotype correlation.

In our effort to understand if any of the demographic or the presenting clinical parameters
had a bearing on the susceptibility to mutations, all the PCG cases that either harbored or were
devoid of any CYP1B1mutations in these two populations were analyzed. As evident from
Table 1, a lower age at onset and a positive family history of the disease was associated with the
occurrence of any CYP1B1mutation in the Indian cohort. An early age at onset was also ob-
served in CYP1B1-associated PCG patients of South Korean and Lebanese origin.[33,47] Con-
versely, this was not observed in the Brazilian patients who had a relatively higher age at onset
and an equal distribution of cases with positive family history in the mutation and non-muta-
tion groups. While consanguinity per se, was not associated with the CYP1B1mutations in ei-
ther of the cohorts, Indian PCG cases harboring mutations (p<0.0001) and those devoid of
mutations (p<0.0001) exhibited a significantly higher proportion of consanguinity compared
to the Brazilians.

As evident from Table 2, the mutation frequencies of CYP1B1 in PCG were not grossly dif-
ferent between the Indian and Brazilian cohorts. While Indians had a slightly higher propor-
tion of homozygous mutations (p = 0.024), so was for the Brazilian cases with the compound
heterozygous mutations (p = 0.012). Allelic heterogeneity of CYP1B1 was evident as 44 unique
mutations were observed in the Indian (n = 33) and Brazilian (n = 11) patients. Only 6 muta-
tions (8037_8046dup10, 8214_8215delAG, R368H, P437L, A443G and S476P) were shared be-
tween these two patient cohorts. Except for the R368H, the other shared mutations were
observed in relatively lesser frequencies in the Indian patients (Table 3). It was seen that the al-
lele frequencies of the prevalent mutations in a cohort was significantly different from the
other cohort. For instance, the most prevalent Indian mutation R368H was observed only in 3
Brazilian patients (p<0.0001), but their common mutation 4340delG was not present in the In-
dian patients. Likewise, the second prevalent Brazilian mutation (8037_8046dup10) was ob-
served in only one Indian patient with the homozygous mutant alleles (p<0.0001). A relatively
larger number of CYP1B1mutations were observed in the background of all the 4 major haplo-
types in the Indian cohort compared to the Brazilians, with some of them being observed on
multiple haplotypes. Interestingly, the shared mutations in these two populations largely oc-
curred on the same intragenic haplotypes providing further evidence for founder effects and
population movements, as was demonstrated in our earlier study.[40]

Table 5. Logistic regression showing the adjusted odds ratios for the binary and continuous variables with the prevalentCYP1B1mutation in the
Indian and Brazilian cohorts.

Variables Parameters "The prevalent mutation" versus "Other CYP1B1 mutations"

India (R368H) India (R368H) Brazil (4340delG) Brazil (4340delG)
Adjusted OR (95%CI) P value Adjusted OR (95%CI) P value

Binary Gender (Male) 1.96 (0.50–7.62) 0.334 1.45 (0.17–12.56) 0.734

History of consanguinity 3.24 (0.88–11.95) 0.078 0.98 (0.06–14.8) 0.986

Continuous IOP 0.95 (0.83–1.08) 0.410 1.06 (0.90–1.26) 0.471

CD 1.84 (0.98–3.46) 0.059 0.96 (0.22–4.25) 0.957

doi:10.1371/journal.pone.0127147.t005
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Since the overall allele frequencies of the shared and unique mutations were not significantly
different between the Indian and Brazilian patients, further genotype-phenotype correlations
were initially based on the pooled data of all the observed mutations across these two cohorts
to understand their implications on the demographic and clinical manifestations. However, the
patients harboring the most prevalent mutations among the Indians (R368H) and the Brazi-
lians (4340delG) were also analyzed separately to get an overall insight with respect to their
clinical manifestations.

As evident from the Tables 4 and 5, our data did not indicate any correlation of the geno-
type(s) with phenotype(s) based on logistic regression. The adjusted odds ratios for the binary
and continuous variables did not provide any additional susceptibility for any type of CYP1B1
mutations in the Indian and Brazilian cohorts. The analysis with homozygous mutations only,
did not provide any additional insights compared to the patients harboring a single copy of the
mutant allele (heterozygous) in these two populations. This lack of correlation was consistent
for the prevalent mutations in the Brazilian and Indian cohorts. This data therefore demon-
strate a consistent trend with respect to the susceptibility of CYP1B1mutations among the de-
mographic and clinical parameters at onset and indicate that a mutation per se, would not
confer any additional risk in terms of disease severity to the patients in either population.
These observations are interesting with respect to the underlying involvement of CYP1B1,
since it happens to be the only major gene mapped in PCG so far. This is in contrast to another
study wherein, the clinical characteristics varied widely across three different CYP1B1-associat-
ed ethnic groups comprising the Muslim Arabs and Druze and the Ashkenazi Jews in an Israeli
population.[47]

While the precise role of CYP1B1 in PCG is yet unclear, some in vitro and in vivo studies
have demonstrated its involvement in development based on the retinoic acid signalling and
also in the 17b estradiol formation.[17, 51] It has also been suggested that mutations in
CYP1B1 affect the development of TM by the degradation of some endobiotic compound that
is necessary for the development of filtering structures.[52,53] An earlier study on the histolog-
ical sections of 6 PCG patients indicated that cases with specific mutations exhibited severe to
moderate angle dysgenesis.[44] Unfortunately, many of these studies were limited by the vaga-
ries of small sample size and the associations with respect to the clinical outcomes have not
been replicated universally. Similarly, some studies also demonstrated the implication of gene
mutations based on the disease severity [39,44,46,47,], but these associations were grossly in-
consistent in other populations.[27,33]

In summary, the present data suggested a lack of genotype-phenotype correlation with re-
spect to the demographic and clinical parameters at onset of the disease. This is consistent with
studies from South Korea and Kuwait.[27,33] Compared to other studies, the present data is
robust in terms of sample size and has uniformly captured several parameters to undertake this
genotype phenotype correlation in these two ethnically diverse and geographically distant pop-
ulations from India and Brazil. Thus, the data would have further implications for understand-
ing the involvement of CYP1B1mutations in the progression of clinical traits assessed through
long-term follow up across these two patient cohorts. This may also aid in disease management
and prognosis.

Supporting Information
S1 Table. The overall distribution of CYP1B1mutations observed in the Indian and Brazil-
ian cohort.
(DOCX)
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