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Nanowires (NW) have received much attention due to their high aspect ratio, shape anisotropy,

relatively large surface area and particular electron transport properties. In addition, since NW

present low current levels and high sensitivity, they can be used as sensor devices for several

applications. One of the major challenges when dealing with transport measurements in NW is to

trap them between electrodes, which allow electrical characterization and therefore fabrication of

nanowire-based devices. Electrically neutral NW can be deposited by dielectrophoresis (DEP)

method, which requires the application of an alternating electric field between electrodes. In this

work, properly dispersed Ni nanowires (NiNW) (length¼ 4 6 1 lm, diameter¼ 35 6 5 nm) were

deposited on top of Pt electrodes using the DEP method. The effects of electrodes geometry and

electric field frequency on DEP efficiency were evaluated. For optimized DEP parameters, the pro-

cess efficiency is up to 85%. The deposited NiNW exhibit a Schottky-like current versus voltage

behavior due to the high contact resistance between NiNW and electrode. Its reduction down to

two orders of magnitude, reaching value less than the NiNW resistance (�6 kX), was achieved by

depositing a 10 nm-thick Pt layer over the NW extremities. Therefore, this method presents a selec-

tion of adequate electrical DEP parameters and electrode geometry, making it a suitable process of

NW deposition and electrical characterization. This can be used for investigation of electrical trans-

port properties of individual NW and fabrication of NW-based devices, like sensors and field effect

transistors. VC 2015 American Vacuum Society. [http://dx.doi.org/10.1116/1.4918732]

I. INTRODUCTION

Nanowires (NW) are appropriate elements for electronic

devices that require ultralow power consumption, given the

low current levels and high sensitivity they usually exhibit.1–5

One challenge to fabricate and study electrical transport prop-

erties of NW-based devices, such as semiconductor- and

carbon-based transistors, is the appropriate manipulation of

the NW toward electrodes.6,7 So far, devices have been fabri-

cated by several techniques, including electron beam lithogra-

phy, focused ion beam (FIB) and atomic force microscopy

manipulation, although with relatively low throughput.5

Alternatively, metallic NW suspended in a dielectric liq-

uid medium can be directly manipulated through electric

fields.1,5,8–12 When a neutral NW is placed inside a nonuni-

form electric field region, the electric charges are redistrib-

uted within the NW and in the liquid portion of the

liquid–solid interface, building up a dipole moment.13 Since

the Coulomb forces on either sides of the dipole moment can

be different, a net force is exerted on the NW, which is

known as the dielectrophoretic force.6,8–13 This force direc-

tion depends on the relative polarizabilities of the NW and

of the diluting medium, inducing the former to move toward

or against the region of higher electric field intensity.6,8–13

Such motion is called dielectrophoresis (DEP).6–14

Unlike the other techniques aforementioned, large electro-

des array can be properly defined by lithography such that

DEP can take place concomitantly in a large number of electro-

des, leading to high throughput. Moreover, since DEP directly

depends on the dielectric properties of the particles and diluting

medium, it allows high selectivity and sensitivity analysis.13,15

DEP manipulation can be also controlled by varying the fre-

quency and magnitude of the applied electric field.13

In this work, properly isolated Ni nanowires (NiNW),

with length of around 4 lm and 35 nm of diameter, obtained

by electrodeposition into pores of anodized alumina mem-

brane, were dispersed in a dimethylformalmide (DMF) solu-

tion and dielectrophoretically manipulated to make electricala)Electronic mail: puyding@ifi.unicamp.br
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contact between electrodes. Electrodes geometry and DEP

electrical parameters were varied to evaluate the NiNW dep-

osition efficiency by this technique. In addition, electrical

characterizations of the NW and of the contact resistance

between the NW and electrode were performed by current

versus voltage curves. Significant reduction of contact resist-

ance was achieved by ion-beam assisted deposition of Pt cap

layers on the NW extremities.

II. DIELECTROPHORESIS

DEP uses nonuniform AC electric fields to selectively

move neutral metallic NW dispersed in a dielectric diluting

medium (i.e., DMF) [Fig. 1(a)]. It relies on the polarizability

differences between the NW and the DMF. The electrodes

shape yield to a nonuniform electric field, E, which is pro-

portional to the applied voltage [Fig. 1(b)]. It creates a net

force, FDEP, on the NW that exceeds the viscous force

between the NW and the fluid, inducing a preferential NW

movement toward the electrodes gap [Fig. 1(c)]. This force

can be expressed by5,11,16

FDEP ¼
1

8
pu2LeDMFRe Kf grjEj2; (1)

where Re{K} is the real-term of the complex polarization

factor, expressed as function of electrical permittivities of

NiNW and DMF (respectively, eNiNW and eDMF ¼ 36:7e0,

where e0 is the electrical permittivity of vacuum)5

K ¼ e�NiNW � e�DMF½ �
e*

DMF

: (2)

The imaginary component of the complex permittivity,

e�, depends of the conductivity, r, and the applied field

angular frequency, x,5

e* ¼ e� j
r

x
: (3)

Thus, the real-term frequency dependent factor of the

dielectrophoretic force is given by5

Re Kf g ¼
x2 eDMFeNiNWð Þ þ rDMFrNiNW � r2

DMF

� �

e2
DMFx

2 þ r2
DMF

: (4)

Inserting the appropriate NW and diluting liquid electrical

conductivities (respectively, rNiNW ¼ 1:4� 107X�1m�1 and

rDMF ¼ 2:5� 10�4X�1m–1) in Eq. (4), one may calculate

the frequency-dependence of FDEP, where a reduction of

DEP force for frequencies higher than 100 kHz is observed

(Fig. 2). At 500 kHz and 1 MHz, the force decreases by one

and two orders of magnitude, respectively. However, this

model does not consider fluid dynamics effects, such as elec-

tro-osmosis.7 For the electrostatic parameters of NiNW and

DMF, this effect can reduce the force for frequencies below

10 kHz,6 as will be presented in Sec. IV. Other effects also

act on the NW, such as viscous and frictional forces, fluid

flow, and NW–surface interactions.5,17 The DEP force there-

fore needs to be greater than calculated in order to effec-

tively perform deposition.

Furthermore, Eq. (1) exhibits a quadratic dependence of

DEP force with the applied voltage, which increases the

amount of deposited NW in the gap region.5 In this work, we

fixed the peak-to-peak voltage (VPP) to 3 V, since it a pro-

duces reasonable DEP force without overheating and conse-

quently damaging the NW during DEP process.

Finally, the DEP force is maximized for a ratio between

the electrodes gap and the NW length of around 0.8, since the

electric field gradient and strength effects are largest for this

ratio.18 For a smaller gap, the DEP force decreases because,

despite that the electric field applied at the gap center remains

constant, it is reduced around the entire NW length. On the

other hand, for a larger gap, the DEP force still decreases,

simply because the electric field around the NW is less

intense.18 In this work, for NiNW length of (4 6 1) lm, we

used a gap length of (2.5 6 0.3) lm, yielding a ratio of

(0.6 6 0.2), which is near the maximum DEP force condition.

FIG. 1. (Color online) (a) Schematic of the DEP setup, (b) transversal view of total electric field and potential over the gap region of the electrodes structure,

and (c) DEP mechanism, in which the electric field induces attraction forces on the nanowire toward the electrodes.
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III. EXPERIMENTAL DETAILS

Pt electrodes were defined on a SiO2/Si structure. First, a

300 nm-thick SiO2 layer was grown on an nþ-type Si (100)

wafer (electrical resistivity of 1–10 X cm) by wet thermal

oxidation in a conventional furnace, in order to act as a

dielectric layer [Fig. 3(a)]. Then, photolithography was per-

formed to define the electrodes region. Eighty nanometer-

thick Pt layer was sputtered by a physical vapor deposition

system, and lift-off process was carried out to define electro-

des [Fig. 3(b)]. Three different electrodes geometries were

fabricated to evaluate the effect of electrode shape on DEP

force, further denominated #1 (rectangular extremities), #2

(circular extremities), and #3 (narrow extremities) (Fig. 4).

The total electric field distribution over the gap area was

simulated using COMSOL MULTIPHYSICS simulation tool.

NiNWs of 4 6 1 lm-long and 35 6 5 nm diameter were

fabricated via pulsed electrodeposition into anodized

alumina membrane.19 They were released from the mem-

brane by chemical etching with a 1 M NaOH solution at

27 �C under agitation. NiNW were then cleaned with deion-

ized water (18 MX cm) and dispersed in DMF, in order to

avoid NW clusters formation.

The NiNW deposition was performed by DEP, con-

ducted with a HP 8116A pulse/function generator config-

ured with 3 VPP and null offset [Fig. 3(c)]. The sinusoidal

signal was generated for a frequency range between 50 kHz

and 1 MHz. Before DEP process, the solution (concentra-

tion of 108 NiNW/ml) was sonicated for 120 s, in order to

uniformly disperse the NiNW into the DMF. For each pair

of electrodes, the DEP field was applied during 60 s on a

solution volume of 1 ll. The DMF excess was rinsed with

deionized water (18 MX cm) before being dried with N2.

For each set of DEP parameters, the experiment was

repeated several times to ensure statistical reliability

(Table I).

Finally, a 10 nm-thick cap layer of Pt was deposited on

the NiNW extremities to reduce the contact resistance with

the electrodes [Fig. 3(d)], using a Gaþ focused ion beam

(GaFIB)/scanning electron microscope (SEM) with a gas

injection system (GIS) tool.20 This dual beam system may

be used for micro- and nanofabrication in prototype nanoma-

chining applications21–23 and allows high resolution etching

in nanoscale design without requiring lithography.24

The GIS is an available feature with the GaFIB/SEM dual

beam system that allows the deposition, using ion or electron

beams, of metallic materials, such as Pt.20,25,26 The precursor

gases are introduced very near the sample by the GIS and

adsorbed on the substrate surface (Fig. 5). Secondary elec-

trons, with energy in the range of 2–80 eV, are produced in

the scanned region of the substrate by interaction with ion or

electron beam, which crack precursor molecules over the

defined area.21,25 Volatile components of the process then

leave the surface and are pumped away by the vacuum sys-

tem. The precursors gas of Pt is a platinum-based organome-

tallic compound [(CH3)3PtCpCH3].21,25,26

FIG. 3. (Color online) Schematics of experimental procedures: (a) dielectric layer formation on top of nþ-Si wafer by thermal oxidation; (b) electrodes defini-

tion by photolithography and lift-off; (c) NiNW deposition on electrodes by DEP experiment; and (d) contact resistance reduction after the deposition of Pt

layer by GIS-FIB.

FIG. 2. (Color online) Real part of complex polarization factor (proportional

to FDEP) as function of frequency for DEP experiment of NiNW diluted in

DMF, indicating a reduction of DEP force intensity over higher frequencies.
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The ion beam source used in this work was gallium ions

(Gaþ) from a FEI Nova 200 Nanolab GaFIB/SEM dual

beam system with energy of 30 keV, current of 10 pA and tilt

angle of 0� (Fig. 5). Under these conditions, the milling pro-

cess of NiNW and electrodes was significantly reduced. It is

well known that ion beam induced deposition and milling

processes damage the incident beam region by sputtering the

surface and implanting ions.23,27–29 The Gaþ ion bombard-

ment can cause an amorphous layer formation, as atoms are

ejected by collisions and create vacancies, thus reducing the

material conductivity.23,27 Therefore, GaFIB process can

modify the sample electrical and mechanical properties near

the incidence region.26–29 Simulations of the Gaþ ions influ-

ence on the NiNW was obtained with TRIM software, a

Monte Carlo computer program that calculates the interac-

tions of energetic ions with targets.30 With this tool, one can

evaluate the stopping power and range of ions into matter,

using a classical mechanical treatment of ion–atom colli-

sions. This will be discussed in Sec. IV B.

IV. RESULTS AND DISCUSSION

A. DEP efficiency

Visual inspection of the gap region by SEM was used to

evaluate the DEP efficiency for the three electrode geome-

tries and the frequency range used (Fig. 6). An experiment

where at least one NiNW was deposited—and made electri-

cal contact with a pair of electrodes—was considered as suc-

cess. For each geometry and frequency, we normalized the

number of successes by the total number of experiments

(Table I). Thus, it was possible to evaluate the efficiency per-

centage of NiNW deposition [Fig. 7(a)] and the average

number of deposited NiNW for the successful cases [Fig.

7(b)], as a function of the DEP frequency and electrode

geometry.

FIG. 4. (Color online) Schematics (top), optical microscopy (center), and total electric field simulations (below) of the three geometries tested for the Pt electro-

des. The 20 lm line was taken for evaluation of the electric field profile for each geometry, as presented in Fig. 8.

TABLE I. Numbers of measurements taken for DEP efficiency investigation

as function of applied field frequency and electrode geometry.

Frequency (kHz)

Geometry

Total#1 #2 #3

10 20 10 10 40

100 90 35 35 160

200 50 15 15 80

600 50 15 15 80

1000 50 15 15 80

Total 260 90 90 440 FIG. 5. (Color online) Schematic overview of GaFIB/SEM dual beam sys-

tem, with the GIS feature.
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First, as expected from Eq. (4) and fluid dynamics effects

predictions, the DEP efficiency at 10 kHz and 1 MHz was

almost null, obtaining success only for geometry 1 (8% and

16%, respectively). The maximum efficiency obtained for

geometry 1 was 85% at 100 kHz, while an efficiency of 60%

was still reached at 600 kHz. On the other hand, the DEP

process was less efficient for geometries 2 and 3, both with

maximum value of 50% obtained for 600 kHz. This discrep-

ancy may be assigned to electric field homogeneity over the

electrodes gap, which is larger for geometry 1 than for geo-

metries 2 and 3. The electrode areas are smaller in geometry

2 and 3 cases, which could create inhomogeneities and thus

reduce the trapping region in the gap region. For geometry 1,

the larger electrode area increases the probability of success

and captures more NiNW during DEP process. Figure 8

presents the simulated total electric field intensity along a

20 lm transversal cross-section in the gap region, indicated

in Fig. 4. We assume that the product between the peak

height, h, and its full-width half-maximum, r, is related to

the deposition efficiency. The decreasing product value for

geometry #1 to #3 is in agreement with the obtained effi-

ciency results.

Typically, several NiNWs were simultaneously deposited

during the successful experiments, with an average number

ranging from 1.0 to 8.7. Interestingly, for each geometry

investigated, the higher number of deposited NiNW was not

reached for the frequency yielding the highest efficiency.

For geometry 1, only 3.4 NiNWs were deposited at 100 kHz

FIG. 6. (Color online) Typical SEM analysis of NiNW deposited on Pt electrodes for (a) geometry #1, (b) geometry #2, and (c) geometry #3, after DEP experi-

ment (VPP¼ 3 V, frequency¼ 100 kHz (upper row), and 600 kHz (lower row).

FIG. 7. (Color online) Charts of (a) deposition efficiency and (b) average number of deposited NiNW, obtained for DEP experiment as a function of electric

field frequency, for the three electrodes geometries.
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(85% of efficiency), while a peak of 8.7 ones was attained at

600 kHz (60% of efficiency). The situation is similar for geo-

metries 2 and 3, but inverting the frequencies for which the

efficiency and number of deposited NiNWs are maximum

(Fig. 7). The large number of deposited NiNWs even for low

efficiency frequency may be attributed to the distortion of

the electric field in the electrodes gap created by the first de-

posited NiNW, favoring the DEP force on the remaining

NiNW in the DMF solution.

Globally, geometry 1 is the most efficient for DEP of

NiNW, as one can obtain efficiency up to 85% (for 3 VPP

and 100 kHz). However, our aim when using DEP process

was the evaluation of NiNW transport properties and fabri-

cation of devices with a few NW. Thus, a reasonable result

is obtained when only a few NiNW are present between elec-

trodes. Therefore, geometries 2 and 3 reach ideal average

values of NiNW (2.7 and 2.0, respectively, for 600 kHz), still

with 50% of efficiency.

B. Reduction of contact resistance using GaFIB

As shown, DEP is an adequate tool to insert NW between

electrodes for electrical transport measurements. However,

when the nanowire touches the electrodes, a large contact

resistance is usually present, leading to a Schottky-like con-

tact (nonlinear). After depositing a 10 nm-thick cap layer of

Pt on the NiNW extremities to reduce the contact resistance,

the resulting behavior is ohmic (linear).20 Figure 9(a)

presents the parallel-equivalent resistance as a function of

the number of deposited NW, both in logarithmic scale,

before and after Pt deposition. The linear fit slopes

(�1.2 6 0.2 for as-deposited NiNW) and (�1.0 6 0.1 after

Pt deposition) are in agreement with the ideal case (�1),

which confirms the parallel-equivalent resistance law for the

NiNW. In addition, the offset between the linear fits indi-

cates the resistance reduction by the Pt deposition method

using GaFIB/SEM and GIS.

In the current study, we obtained current (I) versus volt-

age (V) curves by applying current—without exceeding 6 lA

to avoid NiNW damage due to heat dissipation—while

measuring voltage with a four-wire setup. We observed a

transformation from a nonlinear behavior for as-deposited

system to a linear one, after Pt layer deposition, as well as a

resistance reduction [Fig. 9(b)]. From the obtained NiNW re-

sistance (6 kX) after subtracting the electrodes resistance

contribution (120 X), we obtained a resistivity value for

NiNW (qNiNW ¼ 1:3� 10�5X cm) that is consistent with

those of similar dimensions.31

In order to evaluate the effects of Gaþ implantation on

NiNW, simulations of their interactions were carried out

under similar conditions as the experimental ones (30 keV

and tilt angle of 0�) using TRIM software. Figures 10(a) and

10(b) show, respectively, the depth profiles of ion range and

damage (creation of atomic vacancies in the target material)

of gallium ions in the NiNW/Pt electrodes structure at the

region of ionic bombardment for Pt deposition by GaFIB.

We observed a range of 10 6 5 nm for the Gaþ ions penetra-

tion into the NW, yielding to an amorphization depth of

around 25 nm in the region of Pt deposition. This process

therefore leaves a thickness of at least 10 nm of polycrystal-

line NiNW not reached by Gaþ ions, i.e., the damage created

is not over the entire NW diameter. The resistance of the

resulting structure increases around one order of magnitude

to this effect. Nevertheless, the Pt deposition was limited to

the NW very extremities to prevent increase of their resist-

ance by Ga amorphization.

FIG. 8. (Color online) Total simulated electric field amplitude profile for the

20 lm transversal line showed in Fig. 4 for the three geometries, indicating

the trapping efficiency to be related to the product between the peak height

and its full-width half-maximum.

FIG. 9. (Color online) (a) Equivalent parallel resistance vs number of parallel deposited NiNW before and after Pt deposition. (b) I � V curves for NiNW

before (non-linear, left and down axes) and after (linear, right and up axes) 10 nm-thick Pt layer deposition by GIS tool of GaFIB.
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V. SUMMARY AND CONCLUSIONS

This work presented DEP manipulation of NiNW over Pt

electrodes defined by photolithography and lift-off. The dep-

osition efficiency and average number of NiNW were eval-

uated as a function of the electrode geometry and DEP

frequency. The maximum deposition efficiencies for geome-

try 1 were 85% and 60% for 100 and 600 kHz, respectively,

for averages of 3.4 and 8.7 deposited NiNW. On the other

hand, the efficiency was maximized at 600 kHz for geome-

tries 2 and 3, with value of 50% and averages of 2.7 and 2.0

NiNW, respectively. This behavior can be attributed to elec-

tric field inhomogeneities and lower trapping area over the

gap present between electrodes geometries 2 and 3. For ge-

ometry 1, since it presents a larger electrode area, it captures

more NiNW during DEP process and increases the probabil-

ity of success, even with electric field intensity slightly lower

than geometries 2 and 3.

Adequate individual NiNW electrical measurements are

allowed by the successful contact resistance reduction

through deposition of 10 nm-thick Pt cap layer on the NW

extremities by GIS-GaFIB. Simulated results showed the

NiNW resistance increased due to Gaþ ion damage caused

does not prohibit the process adequacy.

Moreover, the studied NiNWs are a promising feature to

be used as sensors devices, since they can be manipulated

with high efficiency to make contact with electrodes and

their electrical, thermal, and/or optical output signals (in

response to the environment stimulus) can be further proc-

essed.32 In addition, NiNWs present ferromagnetic proper-

ties, which allow their low current levels to be controlled

through magnetic fields. Thus, they can be thought as a

promising alternative to the traditional Si-based MOSFET

devices.
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