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Abstract: Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal 

defense, and NO-donor drugs may protect against diseases associated with gastric mucosal 

blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method 

and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor 

drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 

and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM 

and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the 

incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions  

(12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released 

NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL−1·min−1, respectively, while NaNO2 

(12 mM) released NO at a rate of 0.06 nmol·mL−1·min−1 and NaNO3 (12 mM) did not 

release NO. These results suggest that the SNAC-induced GMBF increase is due to their 

higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken 

together, our data indicate that oral SNAC administration is a potential approach for gastric 

acid-peptic disorder prevention and treatment. 
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1. Introduction 

In mammalian cells nitric oxide (NO) is synthesized by NO synthases (NOS) from L-arginine, and 

it mediates several biological processes, including neurotransmission, vasodilation, host defense and 

immunity [1]. NO-mediated vasodilation is a fundamental gastric mucosa defense mechanism, as impaired 

blood supply to the stomach renders the mucosa more susceptible to acid and pepsin-induced injuries [2]. 

In addition, the NO actions on gastric physiology include the modulation of gastric mucous formation [3] 

and antimicrobial activity [4], the reduction of mast cell degranulation and release, neutrophil adherence 

and secretion, macrophage cytokine release and epithelial barrier function regulation [5–7] and its possible 

involvement in the protective effects of angiotensin (1–7) on gastroesophageal reflux [8]. 

Cyclooxygenase inhibition in the gastrointestinal mucosa by nonsteroidal anti-inflammatory drugs 

(NSAIDs) is associated with GMBF alterations, which leads to gastrointestinal injury as a common 

NSAID side effect [9]. Widespread and intense NSAID use has generated an important demand for 

gastrointestinal injury prevention, which has led to modified NSAID design and development in which 

NO donor moieties are chemically attached to allow for local NO release in the stomach. This gastric 

mucosal blood flow regulation by combining NSAIDs with local NO release proved to be a valid and 

efficacious approach to prevent NSAID-induced gastric lesions [10]. As new modified NSAID 

development requires novel synthetic routes and clinical trials, an alternative approach is the development 

of formulations, which combine standard oral NSAIDs with an NO donor drug in a physical mixture. 

The efficacy of this combination was recently reported by Tam et al. [11], who showed that 

co-administration of the well-known NO donor S-nitrosoglutathione (GSNO) with piroxicam inhibited 

NSAID-associated gastric lesions. 

Like GSNO, S-nitroso-N-acetylcysteine (SNAC) (Figure 1) is a primary S-nitrosothiol (RSNO) 

derived from N-acetylcysteine (NAC) S-nitrosation. Both GSNO and SNAC have been shown to be 

potent vasodilators in vivo [12,13], and oral aqueous SNAC administration in animals with impaired 

NO production have therapeutic effects [14–16]. However, SNAC’s vasodilator effect on GMBF and 

its potential for protecting the gastric mucosa against acids or pepsin injuries has not been investigated.  

In this study, we evaluated the effect of luminal SNAC solution administration on Sprague Dawley 

rat GMBF compared to the effects of sodium nitrite (NaNO2) and sodium nitrate (NaNO3) solutions at 

pH 7.4 using Laser Doppler Flowmetry. We observed a significant increase in GMBF upon SNAC 

solution treatment, but NaNO2 and NaNO3 solutions had no effect. The GMBF increase correlated with 

the spontaneous NO release from SNAC, as measured by chemiluminescence. 

 

Figure 1. Structure of S-nitroso-N-acetylcysteine (SNAC).  
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2. Results and Discussion 

2.1. NO Release Profiles 

Figure 2 shows the chemiluminescence profiles of spontaneous NO released from 600 μM and  

12 mM SNAC (A, B) and from 12 mM NaNO2 and NaNO3 solutions (C, D) over 10 min at 37 °C and 

pH 7.4, along with the corresponding total released NO, which was calculated from these curves (E). 

We observed a narrow chemiluminescence peak in each curve immediately after solution injection. 

After these initial peaks, NO release rates for the 600 µM SNAC, 12 mM SNAC and 12 mM NaNO2 

plateaued above the initial baseline, and maintained their level over the remaining measurement times. 

The shift of these plateaus from the baseline can be seen more clearly in the insets of Figure 2A,B. 

After NaNO3 injection, the chemiluminescence signal did not shift from the baseline, and the 

extremely narrow initial peak was too low to quantify. We obtained total released NO values after 

SNAC and NaNO2 injection (expressed per mL per min) from the integrations of total area under the 

curves (over 600 s) (Figure 2E). The NO release rates from 600 μM and 12 mM SNAC were  

0.3 nmol·mL−1·min−1 and 14 nmol·mL−1·min−1, respectively, compared to 0.06 nmol·mL−1·min−1 for 

the NaNO2 solution. Therefore, 12 mM SNAC releases NO at a rate 46 times higher than 600 μM 

SNAC, and 600 μM SNAC and 12 mM SNAC release NO at rates 5 and 233 times higher than 12 mM 

NaNO2 solution, respectively. 

 

Figure 2. Chemiluminescence detection of NO release from 12 mM SNAC (A) and 600 μM 

SNAC (B) and 12 mM NaNO2 and NaNO3 solutions (C and D, respectively) over 10 min 

at 37 °C, and the total NO release (E) extracted from these curves. The baseline trace was 

recorded for PBS, pH 7.4. Error bars are the SEM of triplicates. a.u., arbitrary units.  

2.2. Gastric Blood Flow Measurements by Laser Doppler Flowmetry 

Figure 3 shows the GMBF profiles for control and SNAC-treated animals. Importantly, control 

animals were exposed only to PBS solution for the full 20 min (basal readings plus test reading), while 
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the gastric mucosas of the treated animals were incubated in PBS during the first 3 min to record their 

basal GMBF, then the PBS was replaced by SNAC, NaNO2 or NaNO3. The GMBF of the control 

group remained stable throughout the 20-min period at a value of approximately 1.0 tissue perfusion 

units (T.P.U). The treated groups had similar stable baseline GMBF values in PBS during the first  

3 min. However, when the PBS was replaced by SNAC, the GMBF rapidly increased with onsets  

at 3 and 5 min after 12 mM and 600 μM SNAC application, respectively. Both SNAC treatment 

groups reached similar GMBF peaks (2.5–3 T.P.U) after 4 to 5 min. In addition, increased GMBF 

values remained close to the peak values during SNAC incubation periods (from 3 to 13 min), but they 

slowly decreased after SNAC was replaced with PBS over the next 7 min until reaching the basal level 

after approximately 4 min. Notably, the 12 mM SNAC solution, which has a concentration 20 times 

higher than the 600 μM solution, led only to a slightly earlier increase in GMBF onset but not to a 

higher peak or a slower return to the baseline. In contrast to the GMBF profiles after SNAC 

application, luminal application of 12 mM NaNO2 or NaNO3 did not significantly change the basal 

GMBF over the same time periods (Figure 4). 

 

Figure 3. Ex vivo Laser Doppler measurements of rat gastric mucosal blood flow in a 

gastric chamber after incubation with PBS only over 20 min (control) or PBS for 3 min, 

followed by 600 μM or 12 mM SNAC for the next 10 min, which were replaced by PBS 

during the last 7 min, as indicated by the horizontal bars. The results are expressed as the 

mean ± S.E.M. of triplicates. 

2.3. Quantification of Plasma NOx Levels 

Figure 5 shows the time-course of the plasma NOx concentrations 30, 60, 120 and 180 min after 

oral 12 mM SNAC administration to Swiss mice. We observed a significant increase in absolute 

plasma NOx levels at all time points, and the maximum increase (relative to the basal level) occurred 

after 60 min. After this time, plasma NOx levels began to decrease, although the levels were still 

significantly higher than basal levels 2 h after gavage. Figure 6 shows the dose-response of plasma 

NOx concentration 1 h after 1.2, 12 and 60 mM (corresponding to 7.0 μmol/kg, 70 μmol/kg and  

350 μmol/kg, respectively) oral SNAC administration to Swiss mice compared to control naive 
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animals and to animals that received only distilled water. While the plasma NOx concentration of the 

animals that received 1.2 mM SNAC did not significantly change compared to control animals 

(approximately 20 μM), 12 and 60 mM SNAC administration led to a significant dose-response 

increase in plasma NOx concentrations, which reached 45 ± 12 µM and 103 ± 15 µM, respectively. 

For this reason, we chose 12 mM SNAC and equimolar NaNO2 and NaNO3 solutions as the highest 

concentrations for evaluating their effects on the GMBF increase and time course of plasma NOx 

levels after oral SNAC administration, as described above. 

 

Figure 4. Ex vivo Laser Doppler measurements of rat gastric mucosal blood flow in a 

gastric chamber after incubation with PBS only over 20 min (control) or PBS solution for  

3 min, followed by 12 mM NaNO2 or NaNO3 solutions for the next 10 min, which were 

replaced by PBS during the last 7 min, as indicated by the horizontal bars. The results are 

expressed as the mean ± S.E.M. of triplicates. 

 

Figure 5. Plasma NOx levels 30, 60, 120 and 180 min after 12 mM oral SNAC administration 

to Swiss mice. The results are expressed as the mean ± S.E.M. (n = 3). * p < 0.05 compared 

to “Before gavage” group, one-way ANOVA with Bonferroni post hoc test. 
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Figure 6. Dose-response of plasma NOx concentration 60 min after 1.2, 12 and 60 mM 

oral SNAC administration. The results are expressed as the mean ± S.E.M. (n = 3). * p < 0.05 

compared to control animals, one-way ANOVA with Bonferroni post hoc test. 

2.4. Discussion 

This is the first study to our knowledge where an ex vivo gastric chamber method was used to 

investigate the effect of luminal SNAC administration on GMBF and where the physiological effects 

of SNAC were correlated with the rates of spontaneous NO release from SNAC solutions. 

Characterization of these rates showed that aqueous SNAC solutions continuously release free NO 

after its formation from NAC S-nitrosation. The initial narrow peaks observed in chemiluminescence 

NO detection (Figure 2) can be assigned to spontaneously released NO by SNAC molecules, which 

accumulates in the solutions prior to analysis. Immediately after solution injection into the NO analyzer 

reaction flask, which is continuously flushed by N2, the accumulated NO is immediately carried to the 

detector, resulting in the observed narrow transient peaks. We confirmed the rapid free NO accumulation 

in SNAC solutions by allowing NO to re-accumulate in the solution after its removal by the instrument’s 

N2 flow, (Figure S3), as interruption of N2 flow after recording the first narrow peak leads to new 

narrow peaks upon N2 flow reestablishment. The plateau signal that follows the initial NO peak reflects 

steady NO production from SNAC during the measurement time period. NO generated in both the 

peak and the plateau comes from the bimolecular reaction of two SNAC molecules to form a 

sulfur-bridged NAC dimer with the concomitant release of two NO molecules according to Scheme 1. 

 

Scheme 1. Spontaneous NO release from SNAC.  

The rate of reaction 1 depends on SNAC concentration, as previously reported [17]. Thus, the rapid 

GMBF increase immediately after luminal SNAC application on the gastric mucosa can be assigned to 

the NO released in reaction 1. Increased GMBF maintenance while the gastric mucosa is incubated 

HO O

N
H

S
NO

O

H3C

HO O

N
H

S
S

NH

OH

OO

H3C

H3C

O

2
+ 2NO



Molecules 2015, 20 4115 

 

with the SNAC solutions is likely due to the approximately constant rate of NO released during the 

plateau phase of SNAC decomposition, as shown in the kinetic curves of Figure 2A,B. NO released in 

scheme 1 is expected to diffuse through the mucous layer of the gastric mucosa, the mucosal capillary 

bed and the muscularis mucosa, reaching the arterial and venous plexuses of the submucosa. Through 

this diffusion process, NO can activate soluble guanylate cyclase (sGC) in the smooth muscle cells 

(SMC) of the mucosal capillary bed and of the arterial and venous plexuses of the submucosa 

microvasculature, including the arterioles and the capillary network, which drains into the venules that 

accompany the arterioles. sGC activation in the microvasculature SMCs elicits a cyclic guanosine 

monophosphate (cGMP)-dependent vasodilatory response, according to the well-known NO-mediated 

vasodilation mechanism [18]. 

The observed GMBF increase can be assigned exclusively to exogenous NO released by SNAC and 

is independent of the endothelium, which is itself a major source of NO and of other vasoactive 

paracrine factors. Although the NO release rate from the 12 mM SNAC solution (14 nmol·mL−1·min−1) 

is 4.7 times higher than from 600 μM SNAC (0.3 nmol·mL−1·min−1), there was no significant difference 

between the maxima GMBF plateaus from these two solutions. These results suggest that the maximum 

subepithelial microcirculation vasodilation was already achieved with 600 μM SNAC. The apparent 

microvasculature tolerance to further increases in blood flow with higher SNAC concentrations is 

likely associated with the maximum mechanically possible SMC relaxation. However, other mechanisms, 

such as the depletion of endogenous species involved in cGMP-dependent NO signaling to vasodilation 

or to metabolic and myogenic mechanisms that operate in the auto-regulatory responses in arteries and 

arterioles to restore blood flow to basal conditions, cannot be ruled out. 

The increased GMBF upon 600 μM SNAC application has great potential to counteract 

NSAID-induced injuries, at least in in the present animal model, considering that a maximum GMBF 

decrease of 25% was observed in indomethacin or diclofenac-treated Sprague Dawley rats [19], while 

in the present study, luminal SNAC application resulted in GMBF increases greater than 250% in the 

same animal model. In contrast, NaNO2 and NaNO3 solutions did not affect GMBF in the conditions 

used in the present study. Although Petersson et al. [20] reported a similar study in which NaNO2 

incubation increased GMBF, the authors used acidic NaNO2 solutions in which NaNO2 is converted to 

nitrous acid (HONO), which undergoes decomposition to release free NO (Scheme 2). 

 

Scheme 2. Nitric oxide release from acid nitrite solution.  

This is also the fate of nitrite coming from the reduction of dietary nitrate, which is known to be 

metabolized in vivo to NO, a pathway involved in the mediation of blood flow regulation [21]. 

Therefore, in the normal situation the administration of nitrite to healthy patients with acidic luminal 

pH, is expected to lead to NO production with consequent GMBF increase. In the ex vivo gastric 

chamber condition of the present study the normal protective effect of the buffered stomach mucous 

layer can be compromised, thus the SNAC, NaNO2 and NaNO3 solutions were buffered at pH 7.4 in 

order to avoid any possible artifact due to gastric acid damage caused by the administration of these 

solutions at the acidic luminal pH 1–2. A special point must be raised for patients receiving proton pump 

2 NO2
- + 2 H+              2 HNO2 H2O + NO + NO2
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inhibitor (PPI) co-therapy with NSAIDs. In these cases, the intragastric pH can be higher than 6 [22,23] 

and the administration of nitrite or nitrate to increase GMBF would be ineffective, while SNAC 

administration could enhance the protective action of the PPI therapy. In this respect, the 

characterization of the effects of SNAC, NaNO2 and NaNO3 on the GMBF at pH 7.4 allows proposing 

a potential therapeutic action of SNAC for patients taking PPI. In addition, as nitrate is incapable of 

generating NO in the absence of nitrate reductases, luminal administration of NaNO3 solution at pH 7.4 

was used as a negative control in our study. 

Our chemiluminescence measurements of NO release from 12 mM NaNO2 solution (pH 7.4) 

showed a rate of NO formation of 0.06 nmol·mL−1·min−1, which is fivefold lower than the rate of NO 

released from 600 μM SNAC, and this does not lead to significant blood flow increase as measured by 

Laser Doppler Flowmetry. In the case of 12 mM NaNO3 solution, no equilibrium implying NO production 

can be established in the absence of NO3
− to NO2

− reducing agents, which in turn, could produce NO 

according to reaction 2. This hypothesis is supported by the absence of vasodilation upon 12 mM 

NaNO3 application (Figure 2D) and the absence of chemiluminescence of NO release. In this case, the 

quantitatively insignificant narrow NO peak (Figure 2D), can be assigned to the presence of trace 

amounts of NaNO2 in the NaNO3 reagent. We also investigated the kinetic behavior of NO release 

from SNAC solutions 600 μM and 12 mM at the pH 1.2 using a simulated gastric fluid (SGF) medium. 

The results obtained are shown in Figure S4 where it can be seen that in the SGF both the NO release 

profile and the rate of NO release from the SNAC solution 600 μM are very similar to those obtained 

at pH 7.4. However, the SNAC solution 12 mM showed a different NO release profile, which led to  

a much higher rate of NO release. The similar behavior of the SNAC 600 μM solution at pH 7.4 and 1.2 

is in accordance with previous studies which showed that GSNO, also a primary S-nitrosothiol, has an 

enhanced stability in highly acidic pH [24]. The higher rate of NO release observed for the SNAC 

solution 12 mM at pH 1.2 may be associated with the catalytic action of trace metal ions present in the 

SGF reagents, and is expected to be more prominent in concentrated S-nitrosothiol solutions, which 

are subjected to autocatalytic effect on their thermal decomposition [17]. For therapeutic purposes, one 

may consider that the less concentrated SNAC solution 600 uM is already capable of promoting the 

maximum GMBF increase, as shown in Figure 4, and that its rate of NO release will not be significantly 

affected by the stomach pH in the range 1.2 to 7.4.  

The profile of plasma NOx levels after SNAC administration shows a significant increase after  

30 min reaching a maximum after 60 min, compared to the basal level. This profile suggests that, 

despite the fast NO release from the SNAC solutions displayed in Figure 2, the increase in plasma 

NOx concentration is governed by the kinetics of NOx absorption in the gastric mucosa, followed by 

the distribution of these species in the systemic circulation. , The decrease of the plasma NOX levels 

after 1 h, reflects the fast diffusion of the primary NO products (NO2
− and NO3

−) though the stomach 

and intestine and a fast clearance of these anions from the blood. Our results are in accordance with 

those reported by Pannala et al. who found that urinary excretion in humans leads to total nitrate 

clearance in a 24-h period [25]. In addition, the basal NOx levels (approximately 20 μM) are also in 

accordance with previous reports of plasma and urinary NOx levels in animals. For example,  

Fletcher et al. [26] reported plasma NOx levels of approximately 17 μM in naive Lewis rats, compared 

to values up to 56 ± 18 μM under inflammatory conditions after arthritis induction. Amsterdam et al. [27] 

analyzed Wistar rats and rabbits and found basal plasma NOx levels of 34 and 61 μM, respectively. 
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Plasma NOx measurements in diabetic rats also led to values in the same order of magnitude, such as 

those reported by Kino et al. [28] of 20 μM for control Wistar rats and 12 and 14 μM for diabetic 

Wistar rats, a condition of impaired NO production. 

Notably, only oral 12 and 60 mM SNAC administration (corresponding to 70 μmol/kg and  

350 μmol/kg, respectively) led to significant increases in average plasma NOx levels in mice. 

However, luminal 600 μM SNAC administration (a concentration 20 times lower than 12 mM) on rat 

stomachs was sufficient for a marked increase in GMBF. Therefore, the local actions of SNAC, such 

as GMBF increase, do not necessarily imply increases in plasma NOx above basal levels. Similarly, 

other studies have reported therapeutic and protective actions of SNAC using much lower doses and 

concentrations, such as the attenuation of liver fibrosis in cirrhotic rats with 6 μmol/kg/day oral  

SNAC [16], and the reduction of ischemia reperfusion lesions in the steatotic liver [14] and a protection 

of livers during cold storage [29] in rats, both using 0.1 μM SNAC. Therefore, the potential therapeutic 

actions of SNAC may be obtained in an ample concentration range without necessarily impacting the 

homeostatic plasma NOx levels. 

Finally, further studies are necessary to investigate whether SNAC completely decomposes in the 

stomach lumen after administration, and only the free NO diffuses through the gastric mucosa leading 

to GMBF increase with a subsequent plasma NOx increase, or whether intact SNAC also crosses the 

gastrointestinal barrier into the submucosal microcirculation, where it may release NO in situ, also 

leading to GMBF increase. In any case, at a neutral pH, the contribution of exogenous NO2
− to free 

NO production is negligible, and both NO2
− and NO3

− ions likely follow excretion pathways without 

increasing GMBF. These mechanistic possibilities are schematically shown in Figure 7. 

 

Figure 7. Scheme of the major pathways involved in the vasodilation action of SNAC on 

the gastric mucosal blood flow (GMBF) compared to nitrite (NO2
−) and nitrate (NO3

−) 

anions. Orally or luminally administered SNAC spontaneously releases NO into the 

stomach lumen. Free NO diffuses through the gastric mucosa into the submucosal blood 

vessels, where it increases GMBF. Intact SNAC molecules may also diffuse through the 

gastric mucosa into the submucosal blood vessels, where in situ NO release may lead to 

vasodilation. At neutral pH, NO2
− and NO3

− anions from oral or luminal sources diffuse to 

the submucosal blood vessels where they contribute to NO-derived NO2
− and NO3

− levels 

and are excreted without increasing GMBF. The blood vessels of the submucosa are not 

drawn to scale. SNAC, S-nitroso-N-acetylcysteine; NO, nitric oxide. 
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3. Experimental Section  

3.1. SNAC Synthesis  

S-nitroso-N-acetylcysteine (2-acetamido-3-nitrososulfanylpropanoic acid, C5H8N2O4S, MW: 

192.193020 g/mol) was synthesized from equimolar amounts of aqueous NaNO2 and NAC at pH 2, 

which was adjusted with 6 M HCl. The reaction was performed at room temperature with constant 

stirring in an ice bath for 20 min. After the reaction was complete, the acidic solution was neutralized 

to pH 7.0 with NaOH. The final 600 μM and 12 mM SNAC solutions were used immediately. SNAC 

solutions were spectrophotometrically characterized by obtaining their UV-Vis spectra (200–800 nm) 

in the concentration range of 10 to 1000 μM in a quartz cuvette (1 cm optical path) at 25 °C using a 

model 8453 spectrophotometer (Hewlett-Packard, Santa Clara, CA, USA) equipped with a Peltier 

thermostated cell holder (Figure S1). 

3.2. Characterization of NO Release from SNAC, NaNO2 and NaNO3 Solutions 

The spontaneous NO release from 600 μM and 12 mM SNAC solutions in PBS (pH 7.4) was 

characterized by chemiluminescence using a Nitric Oxide Analyzer (NOA 280i, GE Analytical 

Instruments, Boulder, CO, USA) operating at 6.1 psi O2 pressure and 6.5 Torr N2 pressure [30]. A total 

of 5 mL PBS was initially placed in the instrument’s reaction flask and thermostated at 37 °C. After 

baseline stabilization, 600 μM and 12 mM SNAC solutions and 12 mM NaNO2 and NaNO3 solutions 

were analyzed by injecting 100 µL of the individual SNAC, NaNO2 or NaNO3 solutions and by 

monitoring the NO release response over 10 min. The instrument was initially calibrated with standard 

NaNO2 solutions as described previously [31] (Figure S2). Measurements were performed in triplicate 

and are expressed as the mean ± SD. 

3.3. Animal Care  

The present study was performed in accordance with the guidelines of standard humane animal care 

as outlined in the “Guide for the Care and Use of Laboratory Animals”, National Academy Press, 

1996. The Ethical Committee of the University of Campinas approved all animal procedures. The 

study was performed using healthy male Sprague Dawley rats (n = 3) weighing between 250 and 300 g 

and healthy male Swiss mice weighing between 30 and 35 g (n = 4–5). All animals were provided by 

the Multidisciplinary Center for Biological Research in Laboratory Animals of the State University of 

Campinas (CEMIB/Unicamp). All animals were housed in ventilated clean cages (dimensions 30.0 × 

20.0 × 13.0 cm (mice) or 49.0 × 34.0 × 16.0 cm (rats)) in standard housing conditions (12 h light and 

12 h darkness, 25 °C) which were cleaned twice a week. All animals had free access to food and water. 

3.4. Experimental Design  

The effects of local SNAC, NaNO2 and NaNO3 solution administration on GMBF were measured 

using the ex vivo gastric chamber method described by Camara et al. [32]. A pencil probe (type N, 

penetration 1 mm, Transonic Systems, Ithaca, NY, USA) connected to a Laser Doppler Flowmeter 

(BLF 21A, Transonic Systems) was used in all cases. Male Sprague Dawley rats (n = 3), which had 
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been deprived of food but not water for the previous 6 h, were used. The animals were anesthetized 

with halothane and laid supine in a Plexiglas holder heated from an underneath heating pad at 37 °C. 

Their abdomens were opened by midline incision, and the stomach was exposed and carefully opened 

along the greater curvature. The gastric mucosa was exposed, everted onto a 1.5-cm-diameter hole in a 

round Plexiglas plate and pinned along the hole’s perimeter. The pinned gastric mucosal border was 

further clamped with a Plexiglas cylinder, which served as a chamber to apply the solutions to the 

exposed stomach lumen. The gastric mucosa was washed three times with 5 mL PBS (pH 7.4) and 

then incubated in 5 mL PBS (pH 7.4) for three min to record the basal GMBF. The PBS was then 

replaced by fresh PBS (5 mL) in the control animals or by 5 mL aqueous SNAC (600 μM or 12 mM), 

NaNO2 (12 mM) or NaNO3 (12 mM) solution in the treated animals, and the GMBF was monitored for 

10 min. The mucosa was washed again three times with normal PBS, and the SNAC solution was 

replaced by 5 mL PBS (pH 7.4). The GMBF was measured for an additional 7 min. The GMBF values 

were recorded every minute and expressed as perfusion units normalized to control values, which were 

obtained from the PBS bath. Three animals were studied in each group. The animals were killed under 

deep anesthesia by decapitation. 

The time and dose-responses of oral gavage SNAC administration on total plasma NO metabolites 

were assessed by quantifying the sum of NO2
− and NO3

− levels; the sum was termed NOx. Swiss mice 

were used for gavage experiments instead of Sprague-Dawley rats because they are better suited for 

repeated tail blood collection through tail vein prick with minimal animal restraint and stress, while tail 

blood collection from rats would demand tail tip removal under terminal anesthesia. Swiss male mice 

(n = 4–5) were fasted for 6 h with free access to distilled water and evaluated in gavage experiments. 

To evaluate the time-response of plasma NOx levels, the animals were fasted and gavaged with  

200 μL 12 mM SNAC. Blood samples were collected after 30, 60, 120 and 180 min. To evaluate the 

dose-response of plasma NOx levels, the animals were fasted and gavaged with 200 μL distilled water 

(control group) or 200 μL SNAC solutions at three different concentrations: 1.2, 12 and 60 mM, which 

corresponded to doses of 7, 70 and 350 μmol/kg, respectively. Tail blood was collected after 1 h, at 

which time the maximum NOx level was observed, using a non-surgical microsampling technique. 

Each mouse was removed from the home cage, placed on top of the bench, gently restrained by the 

base of the tail, and the tip of the tail was pricked with a sterile 23–25-gauge needle. The blood sample 

was collected by capillary action using a 10 μL microcapillary tube inserted into a pipette bulb, which 

was placed near the blood sample at the tip of the tail. Blood flow was stopped by applying finger 

pressure to the soft tissue for approximately 20 s before returning the mouse to its home cage. The 

blood samples were dispensed into heparin-coated tubes and centrifuged at 3000 rpm for 30 min at 

room temperature. Plasma NOx levels were measured by chemiluminescence. Briefly, measurements 

were performed by the vanadium chloride method to ensure the complete reduction of NO2
− and NO3

− 

anions to NO [33]. The vanadium chloride solution (6 mL) was initially placed in the instrument’s 

reaction flask and thermostated at 90 °C. After baseline stabilization, 1 μL of the plasma sample was 

injected, and the NO release signal was monitored. In these measurements, O2 and N2 pressures were 

set at 6.0 psi and 7.0 Torr, respectively. A calibration curve was first obtained from injections (1 µL) 

of five standard NaNO3 solutions in the concentration range of 1 to 1,000 µM. Measurements of each 

sample were performed in triplicate. 
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3.5. Materials 

N-acetylcysteine (NAC), sodium nitrite (NaNO2), sodium nitrate (NaNO3), phosphate buffer saline 

(PBS), vanadium chloride, sodium iodide (KI), glacial acetic acid and hydrochloric acid were 

purchased from Sigma (St. Louis, MO, USA). Deionized water from a Milli-Q purification system was 

used to prepare all solutions. 

3.6. Statistical Analysis 

Results are expressed as mean ± S.E.M. Statistical differences between the groups were analyzed 

using one-way ANOVA followed by Bonferroni post hoc test. A difference with a p < 0.05 was 

considered statistically significant. 

4. Conclusions 

Luminal 600 μM and 12 mM SNAC administration, but not 12 mM NaNO2 or NaNO3 solutions, led 

to a rapid threefold increase in the GMBF of rats, which was maintained throughout the incubation 

with these solutions. This effect correlated to the sixfold higher rate of spontaneous NO release from 

SNAC solutions, compared with equimolar NaNO2 and is in accordance with the absence of NO 

release from the NaNO3 solution. Oral SNAC administration led to a dose-response increase in plasma 

NOx levels compatible with physiological action based on NO release from SNAC. Oral SNAC 

administration may provide a new therapeutic approach for acid-peptic disorder prevention and treatment. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/20/03/4109/s1. 
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