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The use of the stationary phase method as a mathematical tool
to determine the path of optical beams
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We use the stationary phase method to determine the paths of optical beams that propagate through

a dielectric block. In the presence of partial internal reflection, we recover the geometrical result

obtained by using Snell’s law. For total internal reflection, the stationary phase method overreaches

Snell’s law, predicting the Goos-H€anchen shift. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4898044]

I. INTRODUCTION

Optical beams propagating through dielectrics with
dimensions greater than the wavelength of light can be
described by rays obeying a set of geometrical rules.1–3 In
this limit, Snell’s law is used to determine the relationship
between the incidence and refraction angles and, conse-
quently, the paths of optical beams.4–9 In this paper, we dis-
cuss beam propagation through the dielectric block
illustrated in Fig. 1, and, as the first step in our analysis
(Sec. II), we calculate its geometrical path using Snell’s
law.

The analogy between optics1,2 and quantum mechan-
ics10,11 has been a matter of discussion in recent works.12,13

The possibility of linking Maxwell’s equations for photon
propagation in the presence of dielectric blocks with the
quantum-mechanical equations for the propagation of
electrons in the presence of potential steps14–16 allows one to
determine, in a simple and intuitive way, the reflection and
transmission coefficients at the dielectric block interfa-
ces.17–20 As the second step in our analysis (Sec. III), we
obtain the reflection and transmission coefficients for s-
polarized waves transmitted through the dielectric system of
Fig. 1.

Once we obtain the transmission coefficient at the exit
interface, we use the stationary phase method (SPM) to cal-
culate the optical path by imposing the cancellation (in the
oscillatory electric field integral) of sinusoids with rapidly
varying phase.21–23 The calculation of the position of the
maximum of the outgoing beam at the exit of the dielectric
block, based on the SPM (Sec. IV), represents an alternative
way to obtain the optical path (one that does not require a ge-
ometrical analysis). The SPM analysis only requires that we
cancel the derivative of the outgoing beam phase. However,
the use of the SPM as a mathematical tool to obtain the path
of optical beams propagating into dielectric blocks is not
simply a matter of taste. For total internal reflection24,25 the
SPM also predicts the Goos-H€anchen (GH) shift,26–29 dem-
onstrating the importance of the SPM not only to recover
Snell’s law but also to obtain a typical quantum-mechanical
effect. The SPM, illustrated in this paper for calculating the
path of optical beams, is a mathematical tool easily extended
to other fields of physics in which wave packets play an im-
portant role.

Finally, after discussing our conclusions, we extend our
results to p-polarized waves, suggest how to amplify the GH
shift by building a band of dielectric blocks and propose fur-
ther theoretical investigations.

II. THE OPTICAL PATH VIA SNELL’S LAW

Let us consider an incoming Gaussian beam with waist size
w0 and wavenumber k that moves along the z-direction:1,2

Ein rð Þ ¼ E0 eikz w2
0

w2
0 þ 2iz=k

exp � x2 þ y2

w2
0 þ 2iz=k

 !
; (1)

where

r ¼ x ex þ y ey þ z ez: (2)

The plane of incidence is chosen to be the yz-plane. The nor-
mals to the left/right and up/down sides of the dielectric
block are respectively oriented along the directions of the
unit vectors e~z and ez� , as shown in Fig. 1. The unit vector e~z

forms an angle h with ez, which specifies the direction of the
incoming light ray, so that

e~y ¼ ey cos hþ ez sin h; (3)

e~z ¼ �ey sin hþ ez cos h: (4)

In addition, as can be seen in Fig. 1, ez� forms an angle p=4
with e~z , giving

ey� ¼
1ffiffiffi
2
p e~y þ e~zð Þ; (5)

Fig. 1. Geometric layout of the dielectric block used to determine the optical

path by Snell’s law. The ~z and z� axes represent the normals to the left/right

and up/down interfaces, respectively. The origin is chosen at the point where

the incoming beam touches the first interface (Pleft). The ~z-axis is obtained

from the z-axis by a clockwise rotation of angle h.
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ez� ¼
1ffiffiffi
2
p �e~y þ e~zð Þ: (6)

In the new coordinates systems, the components of the posi-
tion vector r are then related by

y�

z�

 !
¼ 1ffiffiffi

2
p

1 1

�1 1

 !
~y

~z

 !

¼ 1ffiffiffi
2
p

1 1

�1 1

 !
cos h sin h

�sin h cos h

 !
y

z

 !

¼ R
p
4
þ h

� �
y

z

 !
; (7)

where R represents the two-dimensional rotation matrix
(note that x ¼ ~x ¼ x�). The fe~y ; e~zg and fey� ; ez�g coordinate
systems will be used to calculate the geometrical path using
Snell’s law and to determine the reflection and transmission
coefficients of the optical beam.

In order to determine the optical path using Snell’s law,
we first demonstrate that the outgoing beam is parallel to the
incoming beam. After that, we calculate the exit point Pright,
which gives the distance d between the incoming and out-
going beams (see Fig. 1).

When an optical beam falls onto a boundary between two
homogeneous media with different refractive indices, it is
split into two beams. The refracted (transmitted) beam prop-
agates into the second medium and the reflected beam propa-
gates back into the first medium. For the left air/dielectric
boundary in Fig. 1, Snell’s law gives

sin h ¼ n sin w ; (8)

where n is the index of refraction for the dielectric material,
and h and w are the angles that the incident and refracted
beams form with the normal e~z . In this case, the second me-
dium is optically denser than the first so the refracted angle
is a real quantity for all incident angles. The beam propa-
gates into the dielectric block, forming an angle w with the
~z-axis and an angle p=4þ w with the z�-axis. Because the
dielectric forms a parallelogram, triangles APleftPdown and
CPrightPup are similar, so that

/ APdownPleft ¼ / CPupPright ¼
p
4
� w � a: (9)

Consequently, the optical beam forms an angle w with the
normal to the right side of the dielectric block (i.e., with e~z).
Thus, by Snell’s law we find that the outgoing beam forms
an angle h with e~z , making it parallel to the incoming beam.

We next determine the coordinates of the point Pright, where
the outgoing beam leaves the block. To do so, it is convenient
to use the fey� ; ez�g coordinate system. Without loss of gener-
ality, we choose as origin of the coordinate system the inci-
dent point on the left (air/dielectric) interface: Pleft ¼ f0; 0g.
Using simple geometrical considerations, we find that

Pdown ¼ APleft sin
p
4

1

tan a
; 1

� �

¼ affiffiffi
2
p tan

p
4
þ w

� �
; 1

� �
; (10)

where a is the length of segment APleft. Similarly, we find that

Pup ¼ Pdown þ AB sin
p
4

1

tan a
;�1

� �

¼ 1ffiffiffi
2
p aþ bð Þtan

p
4
þ w

� �
; a� bð Þ

� �
; (11)

where b is the length of segment AB. To obtain the coordi-
nates of Pright we need to calculate the intersection between
the straight line connecting Pup and Pright (L1) and the
straight line connecting Pright and C (L2).

In the fey� ; ez�g system, these straight lines are represented
by

L1 : z� �
a� bffiffiffi

2
p ¼ tan

p
4
� w

� �

� y� �
bþ affiffiffi

2
p tan

p
4
þ w

� �� �
; (12)

L2 : z� �
a� bffiffiffi

2
p ¼ � y� �

b� affiffiffi
2
p þ c

ffiffiffi
2
p� �� �

; (13)

where c
ffiffiffi
2
p

is the length of segment BC. After simple alge-
braic manipulations, these equations can be simplified to

L1 : z� ¼ tan
p
4
� w

� �
y� � b

ffiffiffi
2
p

; (14)

L2 : z� ¼ �y� þ c
ffiffiffi
2
p

: (15)

Finally, the coordinates for Pright can be determined by solv-
ing the system (14) and (15), giving

Pright ¼
bþ cð Þ

ffiffiffi
2
p

1þ tan p
4
� w

	 
 ; c tan p
4
� w

	 

� b

� � ffiffiffi
2
p

1þ tan p
4
� w

	 

( )

:

(16)

Now, given that the path of the incident beam of light is
given by the line

z� ¼ y� tan
p
4
� h

� �
; (17)

we can immediately calculate the (perpendicular) distance
between this line and point Pright as

d ¼ y� Prightð Þtan p=4� hð Þ � z� Prightð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 p=4� hð Þ

p
¼ bþ bþ cð Þ sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � sin2h
p

� �
cos h� c sin h : (18)

Before concluding this section we note that, depending on
the incidence angle h, the internal reflections can be partial or
total. Let us discuss this briefly by calculating the critical
angle that characterizes the distinction between partial and
total reflection. As discussed earlier, at the first air/dielectric
interface the second medium (n> 1) is optically denser
than the first (n¼ 1) and we always find a refracted beam
that moves into the dielectric block forming a real angle
w ¼ arcsinðsin h=nÞ with the ~z-axis. At the second interface
(at Pdown) we have total internal reflection when
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n sin
p
4
þ w

� �
> 1: (19)

It is important to note here that for w > p=4 the refracted
beam cannot reach the second interface; this represents an
additional constraint to be considered in our discussion. By
adding this constraint to Eq. (19), we obtain the condition for
total internal reflection:

arcsin
1

n

� �
� p

4
< w <

p
4
: (20)

In terms of the incidence angle h, the previous condition
becomes

arcsin
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1
p
ffiffiffi
2
p

 !
< h < arcsin

nffiffiffi
2
p
� �

: (21)

In Fig. 2, we plot the critical angle

hc ¼ arcsin
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1
p
ffiffiffi
2
p

 !
(22)

as a function of the refractive index n. This curve separates
the partial and total reflection zones. We conclude this sec-
tion by observing that for

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1
p
ffiffiffi
2
p � �1; (23)

which implies

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

ffiffiffi
2
pq

; (24)

we always find total internal reflection.

III. MAXWELL’S EQUATIONS AND

TRANSMISSION COEFFICIENTS

In this section, we calculate the transmission and reflection
coefficient at each interface using Maxwell’s equations.1,2

The phase of the outgoing beam will be then used to

calculate the path of the optical beam using the stationary
phase method21–23

The plane wave solution of

@xx þ @yy þ @zz �
@tt

c2

� �
E r; tð Þ ¼ 0 (25)

is given by

exp ½iðkxxþ kyyþ kzz� xtÞ�; (26)

providing that k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z

q
¼ x=c. Given the linear-

ity of Eq. (25), a superposition of these plane wave solutions
will also be a solution. Many lasers emit beams that approxi-
mate a Gaussian profile,18,19,30 given by

E r; tð Þ ¼ E0

w2
0

4p

ð
dkx dky exp � k2

x þ k2
y

 �
w2

0=4
h i

� exp i k 	 r� xtð Þ½ �; (27)

where w0 is the waist size of the beam. Observe that forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q

 k (which constitutes the paraxial approxima-

tion), the previous integral can be calculated analytically and
leads to Eq. (1).

Given that the transmitted (refracted) beam is along the
~z-axis, it is convenient to rewrite Maxwell’s equations by
using the coordinate system ðx; ~y; ~zÞ:

@xx þ @~y~y þ @~z~z � n2 ~zð Þ @tt

c2

� �
Eleft r; tð Þ ¼ 0 (28)

with

nð~zÞ ¼ 1 for ~z < 0

n for ~z > 0:

�
(29)

The plane wave solution is now given by

exp ½iðkxxþ k~y ~y � xtÞ�

�
exp ½ik~z~z� þ Rleft exp ½�ik~z~z� for ~z < 0

Tleft exp ½iq~z~z� for ~z > 0;

�
(30)

where

k~y

k~z

� �
¼ RðhÞ ky

kz

� �
(31)

and

fq~y ; q~zg ¼ k~y ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2 � k2

x � k2
~y

q� �
: (32)

Observe that the ~y-component of the wave number does not
change because the discontinuity is along the ~z-axis.31

Imposing the continuity of Eleft and @~z Eleft at the point where
the refractive index is discontinuous (i.e. ~z ¼ 0) we find

Rleft ¼
k~z � q~z

k~z þ q~z
and Tleft ¼

2k~z

k~z þ q~z
: (33)

At the second interface, it is convenient to use the coordinate
system ðx; y�; z�Þ and solve the Maxwell equation

Fig. 2. The critical angle hc is plotted as a function of the refractive index n.

The forbidden region (shaded) represents incidence angles for which the

refracted beam at the left interface cannot reach the down boundary. For

n >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

ffiffiffi
2
pp

, we always find total internal reflection.
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@xx þ @y�y� þ @z�z� � n2 z�ð Þ
@tt

c2

� �
Edown r; tð Þ ¼ 0 (34)

with

n z�ð Þ ¼
n for z� <

affiffiffi
2
p

1 for z� >
affiffiffi
2
p :

8>><
>>: (35)

The plane wave solution is

exp i kxxþ qy�y� � xtð Þ½ �

�
exp iqz�z�½ � þ Rdown exp �iqz�z�½ � for z� <

affiffiffi
2
p

Tdown exp ikz�z�½ � for z� >
affiffiffi
2
p ;

8>><
>>:

(36)

where

qy�

qz�

� �
¼ R

p
4

� �
k~y

q~z

� �
(37)

and

fky� ; kz�g ¼ fqy� ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � q2
y�

q
g: (38)

As with the first interface, the y�-component of the wave
number is not modified because the discontinuity of the sec-
ond interface is along the z�-axis. By matching Eq. (36) at
~z ¼ a=

ffiffiffi
2
p

, we find

Rdown ¼
qz� � kz�

qz� þ kz�

exp 2iqz�

affiffiffi
2
p

� �
and

Tdown ¼
2qz�

qz� þ kz�

exp i qz� � kz�ð Þ
affiffiffi
2
p

� �
: (39)

We can use the result obtained for the down interface to find
the result for the up interface. Making the substitutions
ðkz� ; qz� Þ ! �ðkz� ; qz� Þ and a=

ffiffiffi
2
p
! ða� bÞ=

ffiffiffi
2
p

, we find
the reflection and transmission coefficients for the up inter-
face to be

Rup ¼
qz� � kz�

qz� þ kz�

exp 2iqz�

b� affiffiffi
2
p

� �
and

Tup ¼
2qz�

qz� þ kz�

exp i qz� � kz�ð Þ
b� affiffiffi

2
p

� �
: (40)

In a similar way, the reflection and transmission coefficients
for the right interface can be directly obtained from the coef-
ficients calculated for the left interface. Replacing k~z $ q~z

and observing that the discontinuity is now located at ~z ¼ c,
we obtain

Rright ¼
q~z � k~z

q~z þ k~z
exp 2iq~zc½ � and

Tright ¼
2q~z

q~z þ k~z
exp i q~z � k~zð Þc½ �: (41)

Finally, the outgoing transmission coefficient is given by

Tout ¼ TleftRdownRupTright

¼ 4k~zq~z

q~z þ k~zð Þ2
qz� � kz�

qz� þ kz�

� �2

� exp iqz�b
ffiffiffi
2
p
þ i q~z � k~zð Þc

h i
: (42)

The spatial phases of the optical beam in the different
regions are then

in : kxxþ kyyþ kzz ¼ kxxþ k~y ~y þ k~z~z;

left! down : kxxþ k~y ~y þ q~z~z ¼ kxxþ qy�y� þ qz�z�;

down! up : kxxþ qy�y� � qz�z�;

up! right : kxxþ qy�y� þ qz�z� ¼ kxxþ k~y ~y þ q~z~z;

out : kxxþ k~y ~y þ k~z~z ¼ kxxþ kyyþ kzz:

(43)

The outgoing beam, which as expected is parallel to the
incoming one, is then given by18,19

Eout r; tð Þ ¼ E0

w2
0

4p

ð
dkx dky

4k~zq~z

q~z þ k~zð Þ2
qz� � kz�

qz� þ kz�

� �2

� exp � k2
x þ k2

y

 �w2
0

4

� �

� exp i qz�b
ffiffiffi
2
p
þ q~z � k~zð Þcþ k 	 r�xt

h in o
:

(44)

In the following section, we use the stationary phase method
(SPM) to calculate the position of the maximum of the out-
going beam, and consequently the position of the optical
beam, at the exit of our dielectric system. The calculation
based on the SPM thus represents an alternative method to
obtain the optical path. More importantly, the SPM calcula-
tion also allows us to obtain the Goos-H€anchen shift.

IV. THE OPTICAL PATH VIA THE STATIONARY

PHASE METHOD

The SPM is a basic principle of asymptotic analysis that
applies to oscillatory integrals.22,23 The main idea of the
SPM relies on the cancelation of sinusoids with rapidly vary-
ing phase, so the dominant contribution to the integral comes
when the phase is stationary; that is, where the derivative of
the phase vanishes. This means that many sinusoids with the
same phase can be added together constructively, giving rise
to a peaked function. To illustrate this principle let us con-
sider the incoming beam given in Eq. (27). In order to solve
the integral we impose that

@

@kx
k 	 r� xtð Þ

� �
0;0ð Þ
¼ @

@ky
k 	 r� xtð Þ

� �
0;0ð Þ
¼ 0:

(45)

The subscript (0, 0) tells us that the derivatives have to be
calculated at the maximum value of the convolution func-
tion, where kx ¼ ky ¼ 0. For the incoming optical beam of
Eq. (27), the convolution function is a Gaussian distribution;
consequently, the maximum of the incoming beam is located
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at x ¼ y ¼ 0. This maximum position, which can be obtained
without any integration by using Eq. (45), is confirmed by
Eq. (1).

A. Partial internal reflection

As discussed in Sec. II, we get partial internal reflection
for h < hc. In this case, the outgoing optical beam has, with
respect to the incoming beam, an additional phase given by

/ ¼ qz�b
ffiffiffi
2
p
þ ðq~z � k~zÞc: (46)

In order to solve the outgoing integral (44) using the SPM,
we must impose the constraints

@

@kx
/þ k 	 r� xtð Þ

� �
0;0ð Þ
¼ @

@ky
/þ k 	 r� xtð Þ

� �
0;0ð Þ

¼ 0:

(47)

Observing that

@q~z

@kx;y
¼ � k~y

q~z

@k~y

@kx;y
¼ � k~y

q~z
cos h

@ky

@kx;y
þ sin h

@kz

@kx;y

� �
;

@qz�

@kx;y
¼ @

@kx;y

q~z � k~yffiffiffi
2
p

� �

¼ � k~y þ q~z

q~z

ffiffiffi
2
p cos h

@ky

@kx;y
þ sin h

@kz

@kx;y

� �
;

@k~z

@kx;y
¼ �sin h

@ky

@kx;y
þ cos h

@kz

@kx;y

� �
; (48)

we immediately find

x ¼ � @/
@kx

� �
0;0ð Þ
¼ 0 (49)

and

y ¼ � @/
@ky

� �
0;0ð Þ
¼ b

sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2h
p þ 1

� �
cos h

þ c
sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � sin2h
p cos h� c sin h

¼ bþ bþ cð Þ sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2h
p

� �
cos h� c sin h: (50)

Thus, we recover Eq. (18) for the shift in the outgoing beam,
showing that the SPM represents an alternative way to obtain
the geometrical path of optical beams. For partial internal
reflection the phase in Eq. (46) is the only phase that contrib-
utes to the SPM calculation, so this shift in the y-coordinate
is the real shift seen in an optical experiment. As we discuss
in the next subsection, an additional phase appears for total
internal reflection (when h > hc), resulting in an added shift
that cannot be predicted by Snell’s law.

B. Total internal reflection

As anticipated in the previous section, for h > hc an addi-
tional phase comes from the double internal reflection coeffi-
cient [see Eq. (44)]

qz� � kz�

qz� þ kz�

� �2

: (51)

Indeed, by observing that

k2
z�
¼ 1� sin hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2h
p
ffiffiffi
2
p

 !2
2
4

3
5 k2 þ O k2

x ; ky

	 


¼ 1� n2

2
� sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2h

p� �
k2 þ O k2

x ; ky

	 

;

(52)

and using Eq. (24), we have k2
z�
< 0. Consequently, Eq. (51)

becomes

qz� � ijkz� j
qz� þ ijkz� j

� �2

; (53)

and we obtain the additional phase

u ¼ �4 arctan
jkz� j
qz�

� �
; (54)

which must be included in our calculation. In order to calcu-
late this new contribution, we start from

@u
@kx;y

¼ �4
q2

z�

q2
z�
þ jkz� j

2

@

@kx;y

jkz� j
qz�

� �

¼ � 4

q2
z�
þ jkz� j

2
qz�

@jkz� j
@kx;y

� jkz� j
@qz�

@kx;y

 !
; (55)

which, by using the relation

q2
z�
þ jkz� j

2 ¼ n2 � 1ð Þk2 ) @jkz� j
@kx;y

¼ � qz�

jkz� j
@qz�

@kx;y
;

becomes

@u
@kx;y

¼ 4

jkz� j
@qz�

@kx;y
: (56)

Finally, the additional shift in the y-direction, also known as
Goos-H€anchen (GH) shift (see Fig. 3), is found to be

d ¼ � @u
@ky

� �
0;0ð Þ

¼ 4 cos h sin hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2h
p	 


k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2þ 2 sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2h
p	 


n2 � sin2hð Þ
q :

(57)

Thus, the SPM allows one to obtain the shift Dy of the out-
going beam both for partial and total internal reflection, with

Dy ¼
d for h < hc ½partial internal reflection�
d þ d for h > hc ½total internal reflection�:

�
(58)
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In concluding this section, we recall that the GH shift d can-
not be obtained using Snell’s law. This additional shift is due
to the presence of evanescent waves in the air zones close to
the down and up interfaces and cannot be predicted solely
from geometry.32 This phenomenon is similar to the time
delay encountered in quantum-mechanical scattering.33–35

V. CONCLUSIONS AND OUTLOOK

In this article, we have shown the value of the SPM as a
mathematical tool in determining the path of optical beams.
Our analysis here, which is carried out for s-polarized waves,
can be extended to p-polarized waves, and gives rise to an
outgoing beam transmission coefficient1,18,19,36

T
pð Þ

out ¼
4n2k~zq~z

q~z þ n2k~zð Þ2
qz� � n2kz�

qz� þ n2kz�

 !2

� exp iqz�b
ffiffiffi
2
p
þ q~z � k~zð Þc

h i
: (59)

For partial internal reflections, the SPM reproduces the ge-
ometrical result predicted by Snell’s law: Dy ¼ d. For total
internal reflections, the SPM predicts Dy ¼ d þ d, thus
accounting for the GH shift. The additional shift d is propor-
tional to the wavelength of the incoming beam, with a nu-
merical pre-factor of order unity [see Eq. (57)]. The order of
magnitude of the GH shift for a double (total) internal reflec-
tion is thus relatively small and this makes experimental
observations difficult. Note that red lasers (k � 0:633 lm),
whose beam waist is w0 ¼ 1 mm undergo a shift of
d � 10�4w0. Because the shift depends on the number of in-
ternal reflections, to make such an experimental measure-
ment possible,37 we need to amplify the effect by
considering, for example, a band of N dielectric blocks. In
this case, the final GH shift will be given by Nd.

To guarantee two internal reflections in each block, we
impose that the z�-component at the exit point (Pright) be the
same as the z�-component at the entrance point (Pleft). This
condition implies [see Eq. (16)] that c tanðp=4� wÞ ¼ b,
which, after simple algebraic manipulations, leads to

c ¼ n2 þ 2 sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2h
p

n2 � 2 sin2h
b: (60)

In a forthcoming work, we intend to analytically calculate
the integral in Eq. (44) to obtain the outgoing beam profile.
This calculation can be carried out by approximating the
transmission coefficient in view of the result obtained in
Sec. IV.
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