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Quantum discord is the quantitative difference between two alternative expressions for bipartite mutual
information, given respectively in terms of two distinct definitions for the conditional entropy. By
constructing a stochastic model of shared states, classical discord can be similarly defined, quantifying the
presence of some stochasticity in the measurement process. Therefore, discord can generally be understood
as a quantification of the system’s state disturbance due to local measurements, be it quantum or classical.
We establish an operational meaning of classical discord in the context of state merging with noisy
measurement and thereby show the quantum-classical separation in terms of a negative conditional entropy.

DOI: 10.1103/PhysRevLett.115.030403 PACS numbers: 03.65.Ta, 03.67.Mn, 05.40.-a

Entanglement exemplifies the mystery of quantum
mechanics, for example, the conundrum of Schrödinger’s
cat [1–3], and embodies the quintessential resource for
quantum information processing, such as the consumable
ebits for quantum teleportation [4]. Recently significant
effort is expended on extending the notion of entanglement
to generalized bipartite “quantum correlations” [5] with
“quantum discord” the most ubiquitous of these measures
and furthermore universal in the sense that only a negligibly
few states have zero discord [6].

The huge effort into studying discord is driven by the
optimism that, “Algorithms could instead tap into a
quantum resource called discord, which would be far
cheaper and easier to maintain in the lab” [7]. Just as
entanglement is operationalized [8] by teleportation, dis-
cord is operationalized by state merging [9–12]. Therefore,
discord can be understood not just as a mathematical
characterization of a state but also as a quantity relevant
for performing a certain information task.
The question we address is whether this resource,

operationalized by state merging, is restricted only to the
quantum world or can be described within a classical
theory.
To assess the quantumness of discord, we need to

transcend the dichotomy of quantum vs classical mechan-
ics, in which something that is not classical, in the sense of
deterministically evolving objects with arbitrarily precise
properties, is ipso facto quantum. Similar issues have been
recently raised in the context of weak measurements [13].
Development of a quantum “toy theory” [14] is an example
of breaking this dichotomy by finding a self-consistent
theory that is broader than classical theory yet not as
powerful as quantum theory. A famous middle-ground
approach arises by replacing classical mechanics by sto-
chastic mechanics, or stochastic field theory [15], in which

case either or both the precision of specifying states and the
dynamics are sacrificed. Those theories do not rule out
quantum phenomena such as quantum coherence and
entanglement; instead they give an alternative description
or possibility of emergence of analogous behavior in terms
of purely classical stochastic processes.
The essential feature being captured by the quantum

discord is how much a bipartite system state is affected by
measurements. The peculiar structure of quantum mea-
surements intrinsically leads to conditioned state changes
when a detection is made and naturally introduces the
notion of correlations that cannot be locally accessed even
when there is no entanglement. There is a clear distinction
of this situation from a classical one, when perfect
measurements are enacted. However a scenario of imper-
fect classical measurements can be conceived where such
an analogous situation to the quantum one could exist. The
purpose of this Letter is to propose such a scenario by
introducing the notion of classical discord, which shares the
same feature of its quantum counterpart, in signaling how
much a system state is disturbed by measurements.
We begin by reviewing the essence of discord. Consider

two parties sharing some state of information. A precisely
known state of information can be represented by an n-bit
string i ∈ f0; 1gn, which we now generalize to a state in
stochastic information theory.
Definition 1: A stochastic-information state is a distribu-
tion pðiÞ ≥ 0 such that

P
pðiÞ ¼ 1.

The Shannon entropy of this stochastic-information state
is H ¼ −

P
pðiÞ logpðiÞ with the base 2 logarithm nota-

tion suppressed. In the quantum case the state is a trace-
class bounded positive operator ρ on the Hilbert space
represented by C⊗n

2 with basis fjiig, and the state is pure
if ρ2 ¼ ρ. The state’s von Neumann entropy
is S ¼ −trðρ log ρÞ.
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Mutual information relates to shared information
between two parties often called “Alice” (A) and “Bob”
(B). In the stochastic classical case the joint state can be
described by a probability matrix

pAB ¼
X

i;j

pABði; jÞχði; jÞ; ð1Þ

where i labels the rows and j labels the columns, and the i; j
entry pABði; jÞ represents the joint probability of Alice
having the bit string i and Bob having the bit string j,
respectively. Here χði; jÞ represents the 2n × 2n matrix with
zeros everywhere except at the location (i; j), which is the
classical version of the quantum basis tensor product

χ̂ði; jÞ ≔ jiihij ⊗ j jih jj: ð2Þ

The strings i and j need not be equal length, but we make
the restriction that Alice and Bob each hold n-bit strings for
convenience of notation. In the quantum case the joint state
ρAB acts onC⊗n

2 ⊗ C⊗n
2 . The notation we used in (1) can be

generalized to encompass tripartite or multipartite stochas-
tic classical states. For example, in the tripartite case, such a
state can be described by a rank-3 probability tensor
pABC ¼ P

i;j;kpABCði; j; kÞχði; j; kÞ, where χði; j; kÞ is now
a rank-3 tensor, representing the classical equivalent of the
quantum basis tensor product jiihij ⊗ j jih jj ⊗ jkihkj.

Let HðAÞ signifying the entropy of A’s marginal dis-
tribution and similar for B and for A and B. The mutual
information IðA;BÞ ¼ HðAÞ þHðBÞ −HðA; BÞ between
Alice and Bob is mathematically equivalent to JðA;BÞ ≔
HðAÞ −HðAjBÞ for

HðAjBÞ ¼ −
X

i

pAðiÞ
X

j

pBð jjiÞ logpBð jjiÞ: ð3Þ

Operationally, this conditional entropy is obtained by Bob
measuring and announcing his results to Alice.
If Alice’s state has zero entropy conditioned on Bob’s

results, and vice versa for Bob’s state conditioned on
Alice’s results, we refer to this state as conditionally pure.
Definition 2: The stochastic-information joint state
pABði; jÞ is conditionally pure iff HðAjBÞ ¼ 0.
Remark 1: The state is trivially pure if the Shannon
entropy of the stochastic-information state is zero, but this
notion of conditional purity allows noisy preparation
provided that Alice and Bob can still recover pure states
by one-way communication. The state would not be
conditionally pure if either Alice or Bob’s announcements
are based on results from noisy measurements.
Note that the conditional entropy is zero if and only if the

results of the measurements on B are completely deter-
mined by A, or, equivalently, if the marginal distribution on
B is a function only of A (see Chap. 2 of [16]). Hence,
according to our definition, a stochastic-information state is
conditionally pure if and only if it has the form

pAB ¼
X

i

pABði; fðiÞÞχði; fðiÞÞ; ð4Þ

where fð•Þ can be any bijection on bit strings of length n. A
simple two bit example of a conditionally pure state is
pAB ¼ ð1 − pÞχð0; 1Þ þ pχð1; 0Þ, with 0 ≤ p ≤ 1.
In the quantum case, the same expression for I above

holds but with the Shannon entropy H being replaced by
the von Neumann entropy S. In that situation the expression
for the conditional entropy [17] SðAjBÞ ≔ SðA;BÞ − SðBÞ
can be negative, signaling the presence of entanglement,
thereby making its operational interpretation less
straightforward.
To address the operational challenge of quantum condi-

tional entropy, an alternative version explicitly dependent
on one party’s choice of measurements has been introduced
[18]. For Π ≔ fπkg representing Bob’s choice of projective
measurement basis and

ρAjk ≔
trB½ð1 ⊗ πkÞρAB�
tr½ð1 ⊗ πkÞρAB�

ð5Þ

being the resultant states conditioned on Alice’s side, this
measurement-dependent conditional quantum entropy is

SΠðAjBÞ ≔
X

k

pkSðρAjkÞ ≥ 0; ð6Þ

where pk ¼ tr½ð1 ⊗ πkÞρAB� denotes the probability of Bob
obtaining the result k when measuring the state ρ in the
basis fπkg. Operationally this nonnegative quantity
represents how much information, on average, Alice can
extract from her system given Bob’s measurement results.
Quantum discord, defined as [18]

DA→BðρABÞ ≔ min
Π

SΠðAjBÞ − SðAjBÞ; ð7Þ

is equivalent to

DA→BðρABÞ ¼ IðA;BÞ −max
Π

JΠðA;BÞ; ð8Þ

with

JΠðA;BÞ ≔ SðAÞ − SΠðAjBÞ ð9Þ
being the version of mutual information that employs
measurement-dependent quantum conditional entropy.
The term JΠðA;BÞ is the “classical” part of the correlations;
hence, nonzero quantum discord is attributed to genuine
quantum correlations independent of measurements regard-
less of the measurement basis. In this perspective, zero
discord is proclaimed as being classical due to I ≡ J. An
interpretation of quantum discord as given by Eq. (7) is that
of a measure of how much the bipartite quantum system is
affected by local measurements. We argue in the following
that such interpretation is directly applicable to the classical
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case, where we define the classical discord, and show that
its properties closely resembles the ones of quantum
discord.
Our aim is to show that nonzero discord can hold

classically by treating conditional entropy operationally
and by incorporating noise into Bob’s measurement proc-
ess, recognizing that any measurement procedure cannot be
perfect.
In other words we now establish that I ≢ J if measure-

ment is at all noisy. This noisy measurement arises
naturally within the stochastic reconciliation protocol used
to construct the conditional entropy.
In contrast with the definition of quantum discord, which

invokes a minimization over all possible bases (7), in
classical information theory there is only one measurement
basis. Considering that in reality channels are never ideal,
and are in fact characterized by parameters that specify how
“noisy” they are, such as channel capacity or rate distortion
[16], we treat Bob’s measurement as always noisy. This is
equivalent to Bob using a noisy channelM, represented by
the stochastic transition matrix M, followed by perfect
measurements of his bit string. Unlike the quantum case,
with uncountable basis choices fΠg, the classic noiseless
measurement can be performed only in one basis fig. As a
stochastic matrix,

P
iMði; jÞ ¼ 1 ∀ j. The noiseless and

maximally noisy cases correspond to M ¼ 1 and to
Mði; jÞ ¼ 2−n ∀ i; j, respectively.
Now we define classical discord analogous to the

quantum discord (8) but with quantum measurement-based
mutual information JΠ replaced by a noisy classical
measurement-based counterpart defined below. The noisy
measurement apparatus is represented by a channel M,
which can be represented by a stochastic matrix M.
Definition 3: The stochastic-information state with added
stochasticity due to Bob’s measurement apparatus (quanti-
fied by stochastic matrix M) is

pAB0 ≔ pABMT; ð10Þ

for T denoting the matrix transpose, and the subscript B0
denotes that the noise is on Bob’s side.
Definition 4: The mutual information of noisy state pAB0 is

JMðpABÞ ≔ IðpAB0 Þ ¼ IðpABMTÞ: ð11Þ

Definition 5: The classical discord of state pAB subjected
to B’s measurement with noise M represented by stochas-
tic matrix M, is

DM
A→BðpABÞ ≔ IðA;BÞ − JMðpABÞ: ð12Þ

Proposition 1: Classical discord is nonnegative.
Proof.—DM

A→BðpABÞ ≥ 0;∀ pAB follows immediately from
the data processing inequality [16].

As any classical (1) can be “embedded” into a quantum
bipartite state ρAB by replacing χði; jÞ by the quantum
projector (2), namely ρAB ¼ P

i;jpABði; jÞχ̂ði; jÞ, the neces-
sary and sufficient conditions for zero quantum discord
[18] must also be necessary and sufficient for classical
discord. Equivalently, pAB must be invariant under the
measurement M on B side, which we formalize in the
following proposition.
Proposition 2: The classical discord of the state pAB with
noise M on B is zero, namely DM

A→BðpABÞ ¼ 0, iff

pAB0 ¼ pAB: ð13Þ
We now investigate condition (13) for zero classical

discord in two cases: (i) for a fixed noise M, we find all
possible states that have zero classical discord, and (ii) for a
given state pAB we show how to find all noisy channels that
induce zero classical discord.
Case (i).—We employ reshaping to find all possible

states pAB that satisfy (13). A square matrix C can be
reshaped into a column vector C by employing a column-
major order; i.e., each column is stacked on top of its next
adjacent column. Arbitrary A;B; C;D square matrices
satisfy the identity

ACBT ¼ D⇔ðA ⊗ BÞC ¼ D; ð14Þ
so Proposition 2 is equivalent to

DM
A→BðpABÞ ¼ 0⇔ð1 ⊗ MÞpAB ¼ pAB: ð15Þ

In other words, pAB must be a fixed point of 1 ⊗ M and
must also be a valid probability vector. Fixed points with
such properties are called stationary vectors.
Stochasticity of M implies stochasticity of 1 ⊗ M, and

the Perron-Frobenius theorem states that any stochastic
matrix has at least one stationary vector. Therefore, a
solution to the right-hand side (15) always exists. To find
the class of all R possible states of zero discord, let
fm1;m2;…;mRg be the largest set of linearly independent
stationary vectors ofM (R ¼ 1 if all entries ofM are strictly
positive).
Thus, a stationary vector of 1 ⊗ M must have the form

X2n

j¼0

XR

k¼0

qjk1j ⊗ mk;
X2n

j¼0

XR

k¼0

qjk ¼ 1; qjk ≥ 0 ∀ j; k;

ð16Þ
and 1j denotes the jth eigenvector of 1, i.e., the vector
comprising all zeros except for a unique 1 at the jth
position. Therefore, a class of zero-discord states S0 ¼
fpABg exists with each pAB of the form (16).
Case (ii).—For a given fixed state pAB, we now show

how to find all possible noisy channels that induce zero
classical discord. The right-hand side of (15) can be
rewritten as ð1 ⊗ M − 1ÞpT

AB ¼ 0, which holds iff
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ð1 ⊗ pABÞM ¼ pTAB: ð17Þ

Thus, given pAB, the class of channels for which the
classical discord is zero can be found from solving (17)
with the additional restriction that M is a valid representa-
tion of a classical channel (i.e., its reshaping M is
stochastic). This last restriction is a linear constraint,
and, therefore, the solutions to (17) can be found using
linear programming [19].
Just as zero-discord quantum states have zero measure

[6], zero-discord classical states have zero measure except
in the singular case of perfect measurement, as formal-
ized below.
Proposition 3: The set of classical zero-discord states has
measure zero in the set of all classical bipartite states except
for noiseless measurements.
Proof.—A zero-discord state can be represented by the
distribution fqjkg (16), which has a 2nR-dimensional
domain. Unless R ¼ 2n, which pertains to M ¼ 1, the
domain of the distribution is strictly lower in dimension so
the set of zero-discord states has measure zero unless the
channel is noiseless. □

We now have a definition of classical discord, demon-
strated its natural correspondence with quantum discord,
showed that nonzero classical discord is due to measure-
ment noise on Bob’s side, and proved that states with zero
classical discord occupy zero measure.
While in the quantum case the natural stochasticity

present on the ambiguous choice of the local measurement
basis is sufficient to led to nonzero discord, in the classical
case such stochasticity is not present, as explained above,
and the discord is only different from zero if another kind of
stochasticity, the noisy measurement, is present. The
minimization present in (7) is absent in the classical discord
definition due to this absence ambiguity in the measure-
ment basis. However, if the theory is relaxed in a way that
the stochastic matrix M is not fixed, a minimization over
the set of allowed matrices M is required.
Remark 2: By combining (11) and (12) for unfixed
channels M the classical stochastic discord reads

DC
A→BðpABÞ ≔ min

M
DM

A→BðpABÞ
¼ min

M
HðAjB0Þ −HðAjBÞ; ð18Þ

which explicitly shows its usefulness in signaling how
much the system state is disturbed by the (imperfect)
measurement, similarly to the quantum discord.
Throughout the rest of the text we deal only with
DM

A→BðpABÞ to simplify the discussion.
Now we establish an operational meaning via state

merging, analogous to the operationalized quantum
discord.
Definition 6: State merging is a two-party task whereby
the bipartite state pAB comprising two shares of size n and

m bits is merged into a unipartite state of size nþm bits
held by one party such that the merged state has the same
distribution as the original bipartite state.
Remark 3: The term “state merging” arose in quantum
information [9,10] but quantizes the notion of compressing
correlated classical data streams [20,21]. We use the term
state merging for the classical case because our objective is
to connect quantum discord with classical information
theory so transferring quantum terminology to the classical
domain is appropriate here.
We consider two-bit state merging (Alice holds one bit

and Bob holds the other bit) as this simple case suffices to
establish operational meaning for classical discord. The
following argument is readily extended to multiple bits held
by each party. In the quantum case, the operational
interpretation of quantum discord arises through a
Gel’fand-Naimark purification of the bipartite state ρAB
with the resultant tripartite state ρABC being pure [22].
We purify pAB to a tripartite state according to Definition

2 except that in this tripartite case conditional purity means
that HðAjBCÞ ¼ 0 and also for BjCA and CjAB.
Specifically the purified state is

pABC ¼ ð1 − qÞχða; b; cÞ þ qχðā; b̄; c̄Þ; a; b; c ∈ f0; 1g;
ð19Þ

with 0 ≤ q ≤ 1 an arbitrary mixing parameter associated
with noisy preparation and ā denoting the logical negation
of a; i.e., 0̄ ¼ 1 and 1̄ ¼ 0. As before, Bob’s measurement
is through a noisy channel M. We treat Charlie’s meas-
urement technology as equivalent to Bob’s so Charlie’s
measurement is also through M.
We now show that the quantum relation between discord

and conditional entropy [23] holds in the classical case as
well. To show this equivalence, we consider the tripartite
ABC system and first determine the classical discord
between A and C0 (noisy C) and then the conditional
entropy between A and B0. Then we see that the classical
discord for pAC0 is the conditional entropy for pAB0.
By our definition of classical discord (12)

DM
A→CðpACÞ ¼ HðAÞ þHðCÞ −HðA;CÞ

− ½HðAÞ þHðC0Þ −HðA;C0Þ�
¼ HðCÞ −HðA;CÞ þHðA;C0Þ −HðC0Þ
¼ HðAjC0Þ ¼ HðAjB0Þ: ð20Þ

The last line of (20) follows from the previous line because
a simple calculation yields HðCÞ ¼ HðA;CÞ ≕ h2ðqÞ, the
entropy of the single bit with flip probability q, and
HðAjC0Þ ¼ HðAjB0Þ because of the symmetry of the state
(19) and the fact that the noise on B’s side is assumed to be
the same as the noise on C’s side.
Remark 4: In the quantum case, DM

A→CðpACÞ (20) is
modified by including entanglement of formation between
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A and B, and entanglement of formation must be zero
classically as entanglement is forbidden. Hence, in the
quantum case, conditional entropy can be negative as
shown in quantum state merging, but not in the classical
case due to entanglement of formation being zero.
In the case of quantum state merging, the total entangle-

ment that is consumed between A and B is equal to the
discord between A with measurements on C [9,10,23]

DðAjCÞ ¼ EFðA∶BÞ þ SðAjBÞ; ð21Þ

where EFð•Þ denotes the entanglement of formation
between A and B and SðAjBÞ is the conditional entropy
of A given B. The conditional entropy being negative
implies leftover entanglement at the end of the merging
protocol. In contrast, our relation (20) has no term
analogous to the entanglement of formation.
We have addressed the question of whether discord is

exclusive to quantum systems or whether it can manifest
also in a stochastic information theory. Our method for
showing nonzero classical discord has been to construct a
model for stochastic information, which incorporates a
noisy measurement represented by a stochastic channel. A
direct consequence of measurement being noisy is the in-
equivalence of defining classical mutual information in
terms of joint vs conditional entropy. In an operational
treatment of conditional measurement, conditional entropy
involves measuring a string and announcing these results to
the other party. Nonzero noise in the measurement causes
mutual information based on conditional entropy to differ
from mutual information based on joint entropy. Our
findings clearly demonstrate that the notion of discord
can be extended as a quantifier of stochasticity in general.
In the nonquantum case stochasticity is introduced by
imperfect or noisy measurements, while in the quantum
case it is naturally introduced by the arbitrariness of the
local measurement basis. In both situations the discord
measures how much the joint state is affected by a local
measurement.
A consequence of our classical discord investigation is

that the role of entanglement is precisely on the negativity
of conditional information. This negativity only arises if
entanglement of formation is nonzero. Thus, discord could
be understood classically through a stochastic information
figure of merit except when entanglement of formation is
nonzero. Operationally nonzero entanglement of formation
is precisely what distinguishes our classical state merging
from genuine quantum state merging [9,10].
The present discussion significantly contributes to

reinforce the notion of discord as a measure of disturbance
of a state under measurement. In addition to the funda-
mental issues that can be raised vis-à-vis the quantum
discord and the quantum-classical separation, our
definition of classical discord may be relevant for other

well-established information-theoretical related areas such
as measurement theory and statistical inference.
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